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An Adaptive Differentiation Filter for Tracking
Instantaneous Frequency in Power Systems

Rastko Zivanovié, Member, IEEE

Abstract—This paper presents an application of adaptive differ-
entiation filter in tracking instantaneous frequency in electrical
power systems. For each new sample, the filter automatically se-
lects an optimal window length that maximizes measurement ac-
curacy. Large window length is selected if the frequency is slow
varying or steady state, to increase efficiency in filtering noise and
harmonics. For fast-varying frequency, the window length is auto-
matically reduced in order to make frequency tracking more accu-
rate, sacrificing filtering efficiency. Automatic selection of the op-
timal window length that balances between tracking and filtering
performance is the unique feature of this technique. This paper
concludes with the presentation of the representative results ob-
tained in the simulation study as well as in some practical appli-
cations. The results show the adaptive differentiation filter gives
accurate frequency measurement under both steady-state and dy-
namic conditions.

Index Terms—Digital signal processing, frequency measure-
ment, frequency relaying, power system frequency.

1. INTRODUCTION

HE most common approach in designing the frequency

measurement algorithm is based on projecting the voltage
signal on some set of orthogonal basis functions. If the basis
functions are trigonometric functions, the outcome is the dis-
crete Fourier transform (DFT) method [1]. The basis functions
are designed for the fundamental frequency and harmonics
of that frequency which makes the method sensitive to large
frequency variations. The least-squares technique can also
be used for measuring frequency [1]. In this approach, the
voltage signal is represented with a sinusoidal function. Since
the frequency is a nonlinear parameter, this model needs to be
linearized by applying Taylor’s series expansion. Frequency is
calculated using the least-squares algorithm on a fixed window
length. A problem with this approach is that the linearization
is valid only in a narrow range around the expected frequency.
The method is inaccurate for large frequency excursions.

The first step in the demodulation-based frequency mea-
surement technique [2], [3] is a transformation that represents
voltage signals recorded in all three phases with two orthogonal
components—real and imaginary parts of the complex signal.
In the next step, demodulation removes the nominal frequency
from the complex signal. Deviation from the nominal frequency
can be estimated from the instantaneous phase angle of such
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a demodulated complex signal using the differentiation filter
[4]. Another approach is to use a simple backward difference
followed by a low-pass filter [3]. Since the filter parameters and
window length are fixed, these techniques are not optimal for
tracking the time-varying frequency.

In this paper, we present a novel adaptive differentiation filter
to be used as a last step of the demodulation-based frequency
measurement algorithm. By continuously adapting the window
length according to the fundamental frequency change, this
algorithm optimizes the performance in a sense of keeping
balance between accurate tracking and efficient filtering of
noise and nonfundamental components. This paper is divided
as follows: in Section II, the differentiation filter for frequency
estimation is derived, Section III discusses the filter accuracy
as a function of window length, and Section IV presents the
algorithm for selecting the optimal window length. The re-
sults obtained in testing the algorithm, which are presented in
Sections V and VI of this paper, confirm good measurement
accuracy in the presence of abrupt changes during switching
conditions, high noise levels, and nonfundamental frequencies.

II. FREQUENCY ESTIMATION

A. Instantaneous Voltage Phase Angle

Samples (¢ = 1,2,...) of three-phase voltages (v.(q),
up(q), ve(q)) are used to estimate the instantaneous phase
angle. First, the orthogonal components vq4(g) and v4(q) of a
complex voltage signal are obtained through the orthogonal
Clarke transformation [5]

)= 4 B[]

Second, the complex voltage signal vq(q) + jv,(q) is shifted
down (demodulated) in frequency domain to the angle value
that corresponds to the nominal fundamental frequency
fo = wo/2~. Finally, the instantaneous phase angle is calcu-
lated using [2] and [3]

om(q) = arg ((valq) + jvg(q)) e774%) )

where 6y = w7 is the sampling angle, and 7T’ is the sampling
interval.

It should be noted that under nominal frequency conditions,
the phase angle (2) is constant. When the frequency deviates
from nominal, the angle (2) is a slow time-varying nonoscilla-
tory signal. Oscillatory components appear in the instantaneous
phase angle due to additional harmonic components and unbal-
ance condition in the three-phase voltage signals.
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B. Differentiation Filter

The problem with the commonly used two-sample frequency
estimation technique [3]

f(q) = fo+ em(q) = pmlg—1)

27T

is the high-sensitivity-to-noise and oscillatory components in
@m. The approach that is more general and overcomes this
problem would be to approximate the phase-angle signal with a
polynomial model and then take the first-order coefficient as a
frequency estimate. We found that the linear model is sufficient
in this application. Such approximation is applied locally, on
a left-sided data window of length n + 1, and it is obtained
through fitting samples of the signal ¢,, to a linear model by
minimizing the least-squares objective function

1
n+1

3)

n

> lem(a— k) — o(a) + Aw(@kT)* @)

k=0

where the parameters of the local linear model for the sample
q are ¢(q) and Aw(q). It is possible to solve the least-squares
problem (4) in the closed form. The closed-form solution of the
parameter Aw(q) for the window length n + 1 is obtained in the
nonrecursive differentiation filter form

1 n
Aw(gn) = =z > h(k,n)om(g — k) 5)
¥ k=0

where the weight sequence h(k,n) (impulse response of the
filter) is calculated using the following formula:
6(2k — n)

h(k,n) = Tt D1 2)

(6)

Hence, the instantaneous frequency estimator at the sample ¢ is

given by

Ab(g, n)
2

If the window length is comprised of two samples (n = 1), the

differentiation filter (5) and (7) is reduced to (3).

flg,n) = fo+ %

III. ACCURACY AS THE FUNCTION OF WINDOW LENGTH

A. Performance Parameters

The window length of the filter (5) should adapt to the change
in instantaneous phase angle ¢,,, the long window for steady-
state or slow-varying angle, and the short window for the fast-
varying angle. The long data window will efficiently filter os-
cillatory components and noise, while the short window will
reduce bias in tracking the phase-angle (frequency) variations.
The optimal window length should cause a balance between fil-
tering and tracking performance [6]. To find such an optimal so-
lution, it is necessary to establish expressions for bias and vari-
ance estimation as a function of window length. These estima-
tors are derived in the Appendix and presented here

n !
o7, Aw'(q) )
12

&Aw(n) = mfs% &)

~

bAw(q7 n) = -
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where fs = 1/T; is the sampling frequency and Aw’(q) is the
first derivative of Aw(q). The standard deviation o in (9) of the
angle ,, measurement error ¢ is estimated in the robust way
using the median absolute deviation (MAD) estimator [7]

B median (|Ap,|)
S 0.6745V2

where each entry of the vector A¢,, is calculated as the differ-
ence between two consecutive samples of ¢,,,. In the estimators
(8)—(10), we assumed that the measurement error € belongs to
the class of independently and identically distributed random
numbers with zero mean and variance o2.

The bias (8) is a deterministic error defined by the rate of
the change of frequency Aw’(q) at the point ¢T3, window
length, and sampling frequency. The sampling frequency
should be constant which makes practical implementation
easier, while the window length will vary to control bias in
frequency tracking. For Aw’(q) # 0, an increase of n results
in the bias increase. The standard deviation (9) represents
the stochastic error determined by the standard deviation o,
window length, and sampling frequency. According to (9), for
a constant sampling frequency, the varying window length con-
trols the standard deviation of the frequency estimate: the factor
V12/(n(n + 1)(n + 2)) in (9) decreases with the increase of
n. By increasing the window length, we reduce the estimator
(5) variance (i.e., the filtering efficiency is improved).

Mean square error (MSE) criterion gives an estimate of local
accuracy of the filter (5) for a specified window length. This
local MSE criterion combines both bias and standard deviation
in the following expression [8]:

(10)

(11

The straightforward way of determining the optimal window
length by solving d.Ja., (g, n)/dn = 0 is not possible in prac-
tice because the rate of change Aw’(¢) in (8) is not known in
advance. However, we can use this criterion to determine the
minimum window length to be used for tracking the maximal
expected frequency change with the best possible filtering effi-
ciency.

For example, if the sampling frequency fs = 640 Hz, max-
imal rate of frequency change f’ = 40 Hz/s, and standard de-
viation of the phase-angle measurement error 0. = 0.6% are
specified, then the minimum window length that corresponds to
the minimum of the MSE criterion (11) could be directly cal-
culated. For this example, the MSE criterion, bias, and standard
deviation of the filter (5) as a function of increasing the window
length are presented in Fig. 1. The minimum MSE is for n = 5,
which means that the minimum window length should be 6. For
the minimum MSE, bias and standard deviation are in balance

(Fig. 1).

B. Steady-State Accuracy

When the rate of change of frequency drops, a larger window
size should be used to minimize the stochastic error that domi-
nates MSE. The effect of measurement noise in the input voltage
signals on the estimation accuracy is completely predictable and
does not depend on the frequency value. The ratio between stan-
dard deviations of the stochastic errors in the signal ¢, and
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Fig. 1. Mean square error (MSE), bias (b) and standard deviation (std) of the
filter (5) as a function of window length (n) when f' =40 Hz/sand o, = 0.6%.

TABLE I
RATIO BETWEEN STANDARD DEVIATION OF THE STOCHASTIC ERROR IN
FREQUENCY ESTIMATION AND INPUT NOISE STANDARD DEVIATION AS A
FUNCTION OF WINDOW LENGTH

n+1 6 12 24 48 96
883 | 309 109 | 3.85| 136

192
0.48

Orp! Oy

input three-phase voltages is equal to 1/+/3. Based on this fact
and (9), the ratio between standard deviation oa,, and input
noise standard deviation o,, as a function of n can be estimated
using

f_S 12
V3 \ n(n+1)(n+2)

The ratios (12) for the set of dyadic window lengths (6, 12, 24,
48, 96, 192), and the sampling frequency fs; = 640 Hz, are cal-
culated and presented in Table I. The adaptive technique should
automatically select the largest available window length if the
frequency is steady state or slow varying. In this way, the sto-
chastic error will be reduced to a minimum.

Another effect of using larger window lengths is filtering all
unwanted oscillatory components in the instantaneous phase-
angle signal (2). The frequency response of the differentiation
filter (5) is

12)

UAw/U'v =

Hy) = — £03° bk m)e=se®
k=0
e
n(n+ 1)(n + 2)
(’I’L + 2) (ejw _ e—j(n—l)w) + n(e—jnw _ ejQLu)
X - .
(12

(13)

The differentiation filter (5) is the approximation of the ideal
differentiator. An ideal differentiator has a frequency response
that is linearly proportional to frequency (i.e., jw) (magnitude
w and phase response 90°). The frequency response of the ideal
differentiator and differentiator (5) is presented in Fig. 2.

ideal differentiator

n=11

Magnitude

n=23

0 50 100 150

n=5

n=11

Phase [deg]

-1805 50 100

Frequency [Hz]

150

Fig. 2. Magnitude and phase response of the differentiation filter (5) and ideal
differentiation filter.

It is clear by observing the magnitude of the frequency re-
sponse (13) (Fig. 2) that by making the window length small
(n =5), we increase the cutoff frequency of the differentiation
filter (5). In this case, more noise will pass, but at the same time,
more frequencies will be preserved in the differentiated signal.
This mode of operation is appropriate when we wish to reduce
bias in tracking the fast change of frequency. For steady-state
or slow change, the window can be enlarged (n = 11, 23 in
Fig. 2) to reduce the cutoff frequency and to have more efficient
filtering of noise and oscillatory components in (.

For example, if 10 Hz is the lowest unwanted frequency in
©m, the filter (5) with the window of 96 samples (n = 95) will
have a sufficiently low cutoff frequency.

IV. WINDOW SELECTION ALGORITHM

If the frequency changes slowly, a large window should be
used to filter out noise and oscillatory components, and if the
changes are fast, a small window must be used to reduce the
bias in frequency tracking. Therefore, a reasonable choice of
the window to be used is the one that balances bias and variance
as previously discussed.

To find the optimal window length, one needs to calculate es-
timates (5) for several window lengths. Then, each candidate
estimate should be assessed to select the best one. The assess-
ment is based on the intersection of confidence intervals (ICI)
method [6], [9]. In this method, after calculating the estimate
A&(q,n) using (5) for a window length n + 1, the confidence
interval is estimated as follows:

D(q7 TL) = [A(Ij(q TL) - Ka—AW(“)? A(‘:}(q7 TL) + E&Aw(n)]

(14)
where 6 a,,(n) is calculated using the expressions (9) and (10),
and « is a threshold of the confidence interval [6].

For each new sample ¢ and each specified window length, the
estimates A®(q,n) and the corresponding confidence intervals
D(q,n) are calculated. For five window lengths (6, 12, 24, 48
and 96), 5 estimates Aw(q, n) and 5 confidence intervals will be
calculated for each sample g. When the system frequency is in
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Fig. 3. Steady-state frequency case: Estimates of Ad(g,n)/2w (circles),
common points of confidence intervals ﬁ(q7 n)/2x (triangles), standard
deviations 6 a..(n) (square), bias f)Aw(q, n) (diamond), and MSE wa(q, n)
(line) as a function of window length for a time point ¢75.
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Fig. 4. Ramping frequency case (10 Hz/s): Estimates of A& (g, n)/27 (cir-
cles), common points of confidence intervals D(q,n)/2r (triangles), standard
deviations & a.,(n) (square), bias ba.. (¢, n) (diamond), and MSE fm,(kq7 n)
(line) as a function of window length for a time point ¢75.

steady state, the MSE (11) is dominated by the stochastic error in
(m- By increasing the window length, the standard deviation of
this error and the MSE will be reduced, as shown in Fig. 3. The
largest window (96 samples) provides the most accurate result.
Since the frequency is steady state, the bias remains at zero for
all window lengths. In this example, the system frequency is 55
Hz and the phase-angle measurement error o. = 0.6%.

When the system frequency is ramping (for example, 10 Hz/s),
the MSE (11) is not only influenced by the stochastic error. As
shown in Fig. 4, the MSE is dominated by the stochastic error
for small windows and by bias for large windows. The optimal
window length (24 samples) is clearly the one where the bias
and stochastic error are in balance. According to the upper part
of Fig. 4, there are common points of the confidence intervals
for this window length (24) and previous lengths (6 and 12). The
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Fig. 5. Response of the window selection algorithm to the phase angle (2) step
change.

confidence interval for the estimate based on 48-sample window
does not have common points with the previous confidence in-
tervals (window lengths 6, 12, and 24).

The ICI method that determines the optimal point without the
need for bias estimate can be summarized as follows: The op-
timal window length n* for a time instant ¢7 is the one for
which the set Ny <y D(q, n) is nonempty. The asymptotic prop-
erties of the ICI method are provided in [9].

The adaptive differentiation filter can be built as a number
of parallel filters, which are different in their window size, and
the ICI selector, which determines the best size and the cor-
responding estimate. Another possible fast implementation is
based on the frequency-domain solution of the time-domain
convolution (5) for a set of dyadic window lengths using the
fast Fourier transform (FFT).

V. SIMULATION RESULTS AND DISCUSSION

A. Step Change

Step changes in magnitude and phase angle of the input three-
phase voltages can occur in a power system due to faults and
switching conditions. Since the proposed technique estimates
the frequency through the approximation of the instantaneous
phase angle (2), step changes of the angle will cause impul-
sive frequency estimates. Step changes of magnitude will not
have any effect on frequency estimation. The response of the
frequency estimator to the phase angle (2) step change is illus-
trated in Fig. 5. The window selection algorithm handles the
angle step change as a large bias and immediately reduces the
window to a minimum length. With the smallest window, the
frequency estimate returns quickly back to the original value.
The impulsive frequency behavior is not realistic and estima-
tion should be blocked in such cases. Immediate step down of
the optimal window length to its minimum is the reliable indi-
cator of the phase-angle step change. Return of the frequency
estimate to its real value will slow down if the window length
is not reduced during the angle step change. Keeping the large

Authorized licensed use limited to: Adelaide University. Downloaded on October 26, 2008 at 20:44 from IEEE Xplore. Restrictions apply.



ZIVANOVIC: ADAPTIVE DIFFERENTIATION FILTER FOR TRACKING INSTANTANEOUS FREQUENCY 769

<)
o
)
()]
c
(]
[0
(2]
g _2 1 1 1 1
s “0 0.1 0.2 0.3 0.4 0.5
N 52 T T r .
I, actual
3511 N :
& timate
2 50 es
(o
g 49 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
2100 . : : .
o
kel
£
350t
©
£
§ O 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
time [s]

Fig. 6. Tracking of modulated frequency in the presence of harmonics and
noise.

window length optimized for filtering noise and harmonics will
degrade the tracking performance of the filter.

In this example, the sampling frequency is 640 Hz. The
dyadic window lengths 6, 12, 24, 48, and 96 are selected in
order to apply the computationally efficient FFT algorithm [10]
for solving the convolution problem (5).

B. Modulated Frequency

In this simulation example, the nominal frequency is
modulated with 1-Hz and 6-Hz signals representing electro-
mechanical transient oscillations. The simulated voltage signals
are distorted with normally distributed noise (zero mean and 1%
standard deviation), plus 5% 3rd harmonic and 2% Sth harmonic.
The sampling frequency in the simulation and in the frequency
estimation is 640 Hz. The window lengths are 6, 12, 24, 48, and
96 samples as before. The results are presented in Fig. 6.

The third block in Fig. 6 illustrates the process of selecting
the optimal window to adapt the filter to the underlying fre-
quency. When the instantaneous frequency is steady-state or
it is changing slowly, the window is enlarged to 48 samples
making the differentiation filter more efficient in filtering noise
and harmonics. For faster changing instantaneous frequency, the
window length drops to 24. This will reduce bias but the filtering
efficiency is degraded. The result could be improved by using
a denser set of window lengths. Another improvement would
be the use of a better approximation of the instantaneous phase
angle in (4) applying second- or third-order polynomial [11]. In
the offline applications, the estimates obtained with left, central,
and right windows could be combined to produce very accurate
results [12].

VI. APPLICATION EXAMPLES

A. Resonant Frequency

The frequency-tracking algorithm has been tested using the
voltage signals recorded during a single-phase-to-ground short-
circuit (white phase) at a 765-kV line in South Africa. This line
is 434 km long and it is equipped with shunt reactors. White

voltage [pu]

current [pu]

_400 0.1 02 03 04 05 06 07 08

time [s]

phase angle [rad]
N
o

Fig. 7. White phase voltage and current signals (normalized) recorded during
fault condition on a 765-kV line, and the instantaneous phase angle. Sequence
of events: A—fault inception, B—breakers open.
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Fig. 8. Frequency tracking on a 765-kV line with a shunt reactor during fault
conditions.

phase voltage and current signals are shown in Fig. 7 together
with the estimated instantaneous phase angle ¢,,,. The sampling
frequency is 640 Hz. The window lengths used by the algorithm
are 6, 12, 24, 48, 96, and 192.

Position A in Fig. 7 indicates the fault inception. Position B
is the moment when the fault has been isolated. Due to accu-
mulated energy in the circuit, the voltage does not disappear.
An oscillating voltage waveform can be seen in Fig. 7, which
slowly reduces in magnitude. This oscillation is a result of the
interaction between the reactors and the capacitance of the line.
This is a parallel resonant circuit. At B in Fig. 7, the instanta-
neous phase angle ¢,,, suddenly started to change because the
frequency now differs from the fundamental. The result of the
adaptive frequency-tracking algorithm is shown in Fig. 8. The
algorithm automatically reduces the window length to change
quickly from the fundamental to resonant frequency. After the
transition, the window length is enlarged again to reduce noise
and achieve maximum accuracy.
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Fig. 9. Red phase voltage and current signals (normalized) recorded during
power swing condition on a 400-kV line, and the instantaneous phase angle.
Sequence of events: A—power swing inception, B—CVT transients inception.
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Fig. 10. Frequency tracking on a 400-kV line during the power swing
condition.

B. Power Swing

The transmission network in South Africa is structured in
such a manner that a major load center is situated at distance
of 1500 km from the pool of power stations. The link to the
pool of power plants goes through a number of 400-kV lines
with series capacitor compensation. The loss of one of these
tie-lines resulted in a severe power swing condition shown in
Fig. 9. Fig. 9 presents the red phase voltage and current signals
as well as the instantaneous phase angle ¢,,. Location A indi-
cates the inception of a power swing condition. The start of the
capacitive voltage transformer (CVT) transients is designated
with B in Fig. 9. The sampling frequency is 640 Hz. The set
of all window lengths from 6 till 192 samples is used in this
application.

The obtained frequency estimate using the adaptive algo-
rithm is shown in Fig. 10. The adaptation of the window length
to instantaneous frequency changes is presented in the same

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 2, APRIL 2007

figure. This illustrates how the algorithm automatically uses
large window lengths for slow-varying or steady-state instanta-
neous frequency and small window lengths for fast changes. It
should be noticed that a linear function has been used to model
the instantaneous phase angle on the left-sided window of a
variable length. For example, the largest window length has
been selected for the estimate at 2 s (Fig. 10) because samples
in such a long window can be accurately approximated with a
linear function as can be observed in Fig. 9. At approximately
2.25 s (Fig. 9), the instantaneous phase angle is at the peak and
a linear function is a good approximation only for a smaller
number of samples. As shown in Fig. 10, the window length
drops from 192 to 70 samples. The cyclic change of window
length in Fig. 10 follows the change of the instantaneous phase
angle.

At the CVT transients inception moment (location B), the
use of very small window lengths resulted in a very fast re-
turn to accurate frequency tracking. The effect of the instanta-
neous change in the voltage phase angle during this condition is
quickly eliminated.

VII. CONCLUSION

This paper describes the adaptive technique for frequency
measurement, where the window size is varied based on the fre-
quency deviation from the nominal frequency. The technique is
based on the optimal local approximation of the instantaneous
voltage phase angle. One of the problems of frequency estima-
tion algorithms using phase angles is the erroneous frequency
estimates when a sudden change in phase angle is seen during
switching conditions. This problem is efficiently handled by dy-
namically reducing the window length for those conditions there
by eliminating the bad samples quickly. The application and
simulation examples show that the technique is very robust and
accurate in measuring the instantaneous frequency under var-
ious practical conditions.

APPENDIX
The bias of the filter (5) is defined as

baw(a,n) = E[Ad(g,n)] = Aw(q) (15)
where E[x] is the expected value. By using the filter expression
(5) in (15), we obtained

bsulam) = = S (k) B [om(a = B)] = Awla). (16)
% k=0

The phase angle ¢,,, in (16) can be modeled using a nonlinear
function plus modeling error €. It is assumed that the error ¢ be-
longs to the class of independently and identically distributed
random numbers with zero mean and the variance 2. The non-
linear function is approximated using the second-order Taylor’s
series. Hence, the model for the phase angle is

(KTy)?

+e(qg—k).
7)

Pm(q—k) = ¢(q) — Aw(q)kTs + Aw'(q)
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Incorporating this model in (16), we have
T, O M
k=0

—T?Zk h(k,n)Aw'(q) — Aw(q). (18)

ba(g.n) = — q)+§n:kh(k,n)Aw(q)

T k=0

The following properties of the weight sequence (6):

n

= 6(2k —
>tk =3 e =
P “n(n+1)(n+2)
” - 6(2k —
Z kh(k Z k% —
= —n(n+1)(n+2)
k2h(k 1&—”) = 19
2 Z nn+ D(n+2) (19)
are used in (18) to obtain the bias expression (8).
The variance of the filter (5) is defined as
o) = E{(Ad(q,n) - E[ad(e, )’} @O)

Replacing Aw(g,n) in (20) with the filter expression (5) and
approximating (,, with the model (17), we obtained

63, (n) = 7 Zh (k,n) (21)
T3 = 0
The following property of the weight sequence (6):
- 6(2k — ? 12
> (e ) - 22)
n(n+ 1)(n + 2) n(n+ 1)(n + 2)

k=0

is used in (21) to obtain the standard deviation expression (9).
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