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Abstract

We establish a combinatorial formula for homogeneous moments and give some examples
where it can be put to use. An application to the statistical mechanics of interacting gauged
vortices is discussed.

1. Introduction

In this paper we shall prove the following.

THEOREM 1·1. Suppose we are given n integrable real-valued functions J1, J2, . . . , Jn

on a measure space M, an integer m � 0, and a non-zero constant C, so that∫
M
(v1 J1 + v2 J2 + · · · + vn Jn)

2m = C, (1·1)

for all (v1, v2, . . . , vn) ∈ Rn with v1
2 + v2

2 + · · · + vn
2 = 1. Then there is a rational number

Im,n = �
(

1
2

)
�

(
m + n

2

)
�

(
m + 1

2

)
�

(
n
2

) (1·2)

(depending only on m and n) so that∫
M

(
J1

2 + J2
2 + · · · + Jn

2
)m = Im,n C. (1·3)

We refer to quantities such as the integrals in the left-hand side of (1·1) and (1·3) as
homogeneous moments (in the given functions J1, . . . , Jn). For applications, we have in
mind that M should be a compact smooth manifold equipped with a volume form and
that J1, J2, . . . , Jn should be smooth functions. A simple example may be given by tak-
ing M = Sn−1 with its usual round metric and J1, J2, . . . , Jn to be the coördinate functions
for the standard embedding Sn−1 ↪→ Rn . In this case, v1 J1 + v2 J2 + · · · + vn Jn : Sn−1 → R

is simply another coördinate function on the sphere and (1·1) is evident by rotational invari-
ance. (The constant C may always be realised by setting vn = 1 and all other v j ’s equal to
zero: C = ∫

M Jn
2m .) In this example, reflection symmetry directly implies that the integral

on the left-hand side of (1·1) would vanish if 2m were replaced by an odd integer; an easy
argument shows that this would also be true in the general case of our hypothesis. Thus we
are not losing generality by assuming that the degree of homogeneity in (1·1) is even.
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Our motivation, however, stems from a more substantial example in which M is a Kähler
manifold whose structure is invariant under the action of SO(3). In this case n = 3 and the
three functions J1, J2, J3 : M → R are the components of the associated moment map
M → so(3)∗. The action of SO(3) arises because M is the moduli space of gauged vortices
on the round 2-sphere [5]. Further discussion of this case is provided at the end of this article.
When n = 3, the rational numbers Im,3 are, in fact, integers: Im,3 = 2m+1. That the Im,n

are well-defined rational numbers is most easily proved without the explicit formula (1·2).
Having done this in §2, we shall establish (1·2) in §3. In §4, we give a geometric setting
for our hypothesis (1·1) with some examples, and conclude in §5 with a brief discussion of
vortices on the 2-sphere.

2. Combinatorics

We may evidently extend (1·1) by homogeneity to conclude that∫
M

(
v1 J1 + v2 J2 + · · · + vn Jn

)2m = C
(
v1

2 + v2
2 + · · · + vn

2
)m

, (2·1)

for all (v1, v2, . . . , vn) ∈ Rn . Also, by simultaneously rescaling all the functions J1, J2, . . . ,

Jn we may suppose without loss of generality that C = 1 and our task is now to compute

Im,n ≡
∫

M

(
J1

2 + J2
2 + · · · + Jn

2
)m

from this information. To do this we may regard (2·1) as the equality of two polynomials in
the v-variables and deduce the equality of their coefficients. Examining the left-hand side
of (2·1), this means that we may compute∫

M
J1

r1 J2
r2 · · · Jn

rn for all r1 + r2 + · · · + rn = 2m.

Indeed, since only integers are involved in expanding the two sides of (2·1), it follows that
these integrals are all rational. This is more than enough to compute Im,n and to conclude
that these quantities are also rational.

Though the preceding argument is straightforward in principle, in practise it is almost
useless in establishing formulae for Im,n . We shall rectify this deficiency in the following
section. In the meantime, let us compute I3,3 by bare hands. We are supposing that∫

M
(v1 J1 + v2 J2 + v3 J3)

6 = (
v1

2 + v2
2 + v3

2
)3

and, by expanding as polynomials in v1, v2, v3, we conclude that∫
M J1

6 = ∫
M J2

6 = ∫
M J3

6 = 1∫
M J1

4 J2
2 = ∫

M J1
2 J2

4 = · · · = ∫
M J2

2 J4
4 = 1/5∫

M J2
2 J2

2 J3
2 = 1/15

(and more besides). Therefore,

∫
M

(
J1

2 + J2
2 + J3

2
)3 = ∫

M

(
J1

6 + · · · + 3J1
4 J2

2 + · · · + 6J1
2 J2

2 J3
2
)

= 3 × 1 + 6 × 3 × 1/5 + 6 × 1/15 = 7.

Such naı̈ve computations of Im,n rapidly get out of hand for large m and n.
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3. Calculation of Im,n

Given that the argument we used above for the existence of Im,n is purely combinatorial,
it is clear that this quantity does not depend on the measure space M . Thus we can calculate
Im,n by evaluating both the integral and the constant C in (1·3) for a specific model where
the hypothesis (1·1) is satisfied. We shall do this for the first example mentioned in the
Introduction, where M is Sn−1 with metric induced from the embedding ι : Sn−1 ↪→ Rn and
Jj : Sn−1 → [−1, 1] are the standard cartesian coördinates.

In this example, the integral on the left-hand side of (1·3) is just the well-known volume
of Sn−1, ∫

Sn−1

(
J1

2 + · · · + Jn
2
)m =

∫
Sn−1

1 = 2πn/2

�

(
n

2

) . (3·1)

To evaluate the constant C = ∫
Sn−1 Jn

2m on the right-hand side, we start by using cylindrical
coördinates to write the euclidean metric g on Rn as

g = dx2 + dr 2 + r 2 gSn−2 . (3·2)

Here, x = Jn , r =
√

J1
2 + · · · + Jn−1

2 and gSn−2 denotes the metric on Sn−2. On Sn−1 ⊂ Rn ,
we have the relation

x2 + r 2 = 1 ⇒ x dx = − r dr,

therefore (3·2) pulls back to Sn−1 as

gSn−1 = ι∗g = dx2

1 − x2
+ (1 − x2) gSn−2 .

In these coordinates, the volume form on Sn−1 can then be written as

dvolSn−1 = √
det (gSn−1) dx ∧ dvolSn−2 = (1 − x2)(n−3)/2 dx ∧ dvolSn−2 . (3·3)

We observe in passing that the case n = 3 is special, as (3·3) then gives an identification of
the volume forms on S2 and on the cylinder in R3 defined by r = 1 and |x |� 1; this is the
celebrated hat-box theorem of Archimedes, of which our equation (3·3) may be regarded
as a generalisation to arbitrary dimensions. The constant on the right-hand side of (1·3) can
now be evaluated as∫

Sn−1

Jn
2m =

∫
[−1,1]×Sn−2

x2m
(
1 − x2

)(n−3)/2
dx ∧ dvolSn−2

=
∫

Sn−2

1 ×
∫ 1

0
tm−1/2(1 − t)(n−3)/2 dt

= 2π(n−1)/2

�
(n − 1

2

) B

(
m + 1

2
,

n − 1

2

)

=
2π(n−1)/2 �(m + 1

2
)

�
(
m + n

2

) , (3·4)
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where B denotes Euler’s Beta-function [1]. Finally, we obtain Im,n as a quotient of (3·1) and
(3·4), which yields (1·2) using �(1/2) = √

π .
We would like to make two remarks on the formula (1·2):

(A) Notice that (1·2) gives I0,n = 1, and so it follows from the recursion relation �(z +
1) = z �(z) that Im,n is obviously a rational number for all m ∈ N. More explicitly, we
can write

Im,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22m−1
(

m + n

2
− 1

)
!(m − 1)!

(2m − 1)!
(n

2
− 1

)
!

if n is even,

(2m + n − 2)!(m − 1)!
(

n − 3

2

)
!

2(2m − 1)!(n − 2)!
(

m + n − 3

2

)
!

if n is odd.

(B) Our result for Im,n as expressed in equation (1·2) turns out to be a value of Gauß’s
hypergeometric function,

Im,n = 2 F1

(
2m, n − 1; m + n

2 ; 1
2

)
,

which comes as a consequence of Gauß’s second summation theorem (cf. [9, p. 32]).
The property Im,n ∈ Q provides examples of the curious fact that the hypergeometric
function sometimes assumes rational values when its argument and parameters are
rational. This behaviour is general for the geometric series, but it is not understood
under which circumstances it generalises to hypergeometric series.

4. Geometry and examples

We shall now describe a geometric setup where the hypothesis (1·1) naturally arises, and
which inspires generalisations of Theorem 1·1. Let us suppose that V is a real inner product
space and that a compact Lie group G has an orthogonal represention on V , ρ : G → O(V ).
Typically, we take as M a smooth manifold where G acts, equipped with an invariant volume
form, which may in turn be induced by a riemannian or symplectic structure on M . We also
assume that J : M → V is a G-equivariant mapping. At this point, symmetry considerations
will severely restrict the integrals

�m(v)�
∫

M
〈v, J 〉2m (4·1)

with v ∈ V . In fact, for all g ∈ G,

�m(ρ(g)v) =
∫

M
〈ρ(g)v, J 〉2m =

∫
M
〈v, ρ(g−1)J 〉2m = �m(v),

and this implies that �(v) is an invariant polynomial restricted by Weyl’s classical invari-
ant theory [11]. Because G is represented by orthogonal transformations, ||v||2m is one of
the invariant polynomials of degree 2m; however, these ingredients are still not enough to
enforce (1·1). In the following, we discuss three realisations of this general setup that lead
to condition (1·1) being satisfied, or to more general conditions that still allow us to use the
arguments in sections 2 and 3 to determine

∫
M〈J, J 〉2m by combinatorial means.
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Example 4·1. Let G = SO(V ), ρ be the defining representation, and J : M ↪→ V be the
inclusion of any invariant measurable set. Then necessarily �m(v) = C ||v||2m . A particular
case is when M is a single SO(V )-orbit embedded in V , which yields the example that we
used in the calculations of Section 3.

Example 4·2. Let G = SO(4), V = so(4) �
∧2

R4 and ρ be the adjoint representation.
The ring of invariants is freely generated by two polynomials of degree two [2], the squared
norm ||v||2 and the pfaffian Pf(v). Thus we can write

�m(v) =
m∑

j=0

C j ||v||2(m− j) Pf(v) j

for suitable real constants C j . Our hypothesis in the form (2·1) will hold at least for v in
the hypersurface defined by Pf(v) = 0, and the argument in section 2 will still lead to a
combinatorial formula for the homogeneous moments in (1·3). Whether (2·1) holds more
generally depends on the choice of M and J . For instance, one can show that, for m = 1,
(2·1) holds for all v ∈ V if and only if, say,∫

M
J12 J34 = 0, (4·2)

where the indices refer to the standard basis of
∧2

R4. An interesting example is when M is
the 4-manifold of simple 2-vectors in

∧2
R4 of unit norm, the adjoint orbit of SO(4) given

by the algebraic equations Pf(v) = 0 and ||v||2 = 1, and J: M ↪→ ∧2
R4 is the inclusion; an

easy check shows that (4·2) is satisfied, hence our hypothesis (1·1) holds true in this case.

Example 4·3. We take M to be a symplectic manifold with moment map J : M → g∗;
ρ will be the coadjoint representation, and we can use the Killing form to identify g with
g∗. Again, �m is restricted to be a linear combination of the G-invariants in Sym2m(g) and
||v||2m is one of them. In particular, if G = SO(3), then any invariant must be a scalar
multiple of ||v||2m and our hypothesis (1·1) must hold. A particular case of this situation that
illustrates the usefulness of our formula (1·3) will be discussed in the next section.

5. Interacting vortices on a 2-sphere

In this section, we describe an application of Theorem 1·1 to a natural setting where our
hypothesis holds true. Let N be a positive integer. We consider the measure space M to be
the moduli space MN of N -vortices on a 2-sphere of radius R >

√
N [5]. This is just CPN

as a complex manifold, but equipped with a Kähler structure ωL2 induced from a gauge-
theoretic version of the L2 norm on the space of fields. The associated Kähler metric grs̄

encodes information about the physics of vortices at low energies; for example, its geodesic
flow gives a good approximation to the slow dynamics of the abelian Higgs model at critical
coupling [10]. For N > 1, this Kähler structure is distinct from the Fubini–Study structure
ωFS on CPN , although it has been argued that [3]

ωL2 = 2π
(
R2 − N

)
ωFS + o

(
R2 − N

)
as R2 ↘ N .

There is a local description of ωL2 , which we briefly recall here [7, 8]. This uses the
fact that CPN �SymN (S2)�(S2)N/SN . We denote by �⊂ (S2)N the set of fixed points of
elements of SN , and let z be a complex stereographic coördinate on an open set U ⊂ S2. Then
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in terms of the natural coördinates (z1, . . . , zN ) for U N ⊂ (S2)N , which we may interpret as
giving the positions of N individual vortex cores,

ωL2 ≡ i

2

N∑
r,s=1

grs̄ dzr ∧ dz̄s = i
N∑

r,s=1

(
R2δrs(

1 + |zr |2
)2 + ∂br

∂ z̄s

)
dzr ∧ dz̄s . (5·1)

The functions br (z1, . . . , zN ) are defined on U N −� in terms of a solution to an elliptic
PDE reminiscent of the Liouville equation. They satisfy

br (. . . , zr , . . . , zs, . . .) = bs(. . . , zs, . . . , zr , . . .),

therefore local quantities like grs̄ in (5·1) descend to the moduli space. Although the br are
not known explicitly, some statements about them (and the metric) can be made using the
symmetry of the problem. For example, the fact that SO(3) acts on S2 by isometries implies
the relations [6]

N∑
r=1

(zr br − z̄r b̄r ) = 0 and
N∑

r=1

(
2zr + zr

2 br + b̄r

) = 0,

which in turn can be used to show that (5·1) is preserved by the induced action of SO(3)

on MN . Thus the Liouville measure associated to ωL2 is SO(3)-invariant. In addition, there
exists a moment map J = (J1, J2, J3) : MN → so(3)∗, for which our hypothesis (1·1) is
obviously satisfied. Its components can be calculated as [6]

J1 = 2π

N∑
r=1

(
R2 zr + z̄r

1 + |zr |2 + 1

2
(br + b̄r )

)
,

J2 = −2π i
N∑

r=1

(
R2 zr − z̄r

1 + |zr |2 − 1

2
(br − b̄r )

)
,

J3 = 2π

N∑
r=1

(
R2 1 − |zr |2

1 + |zr |2 − (zr br + 1)

)
,

and can be interpreted as angular momenta along the three coördinate axes of an ambient
R3.

The metric on MN has been used to study the statistical mechanics of a gas of vortices in
the abelian Higgs model at critical coupling, both in the noninteracting case where the net
forces experienced by the vortices are zero [4] and in presence of a background potential [7].
A more physically interesting situation would be the case where inter-vortex interactions are
introduced. At the level of the dynamics on the moduli space, these would be described by a
potential V : MN → R invariant under the action of SO(3). The simplest nontrivial potential
with this property is just (a multiple of) the square of the moment map,

V = µ2||J ||2 = µ2
(
J1

2 + J2
2 + J3

2
)
, (5·2)

where µ2 is a positive coupling constant. From the point of view of the dynamics of several
particles, one can expect this potential to be repulsive; this simply means that if N − 2 vortex
positions are kept fixed,

∫
MN

V increases as the remaining two vortex cores come closer
together on the 2-sphere. To justify this, we consider the case where N = 2 and the vortices
are close to each other and symmetrically positioned at

z1 = σeiθ , z2 = −z1
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where 0 < σ < 1 and 0 � θ < 2π . Rotational symmetry implies that [8]

b1 = b(σ )e−iθ , b2 = −b(σ )e−iθ

for some real function b. One can follow an argument similar to the one in Appendix C of
[8] to obtain the estimate

b(σ ) = 1

σ
− 2R2σ + o(σ 2) (5·3)

as σ ↘ 0. The formulae above imply that, in this configuration, the only nonzero component
of the moment map is

J3(σ ) = 4π

(
R2 1 − σ 2

1 + σ 2
− σb(σ ) − 1

)
.

The estimate (5·3) then yields

∂
(
J3

2
)

∂σ
= −28π2

(
R2 − 1

)
σ + o(σ 2)

when σ ↘ 0, and the coefficient in the leading term is always negative for R >
√

2. Thus
the potential (5·2) is creating a force that will locally contribute to push two approaching
vortices apart. An attractive potential can be obtained from (5·2) by reversing the sign of the
coupling constant.

In the model for interacting vortex dynamics corresponding to the potential (5·2), the
partition function is given by (see [7] for details)

Z = 1

(2π h̄)2N

∫
T�MN

exp

(
−

(
1

2π

∑
r,s

grs̄wr w̄s + µ2||J ||2
)

/T

)
ω2N

can

(2N )!

=
(

T

2h̄2

)N ∫
MN

exp

(
−µ2

T
||J ||2

)
ωN

L2

N ! .

Here, wr =π
∑N

s=1 grs̄ ˙̄zs denote canonical momenta to the moduli zr ,

ωcan = 1

2

N∑
r=1

(dzr ∧ dw̄r + dz̄r ∧ dwr )

is the canonical symplectic form on the phase space T∗MN , 2π h̄ is Planck’s constant and
T denotes the absolute temperature. We have indicated explicitly the Liouville measures on
(T∗MN , ωcan) and (MN , ωL2) for clarity. It turns out that Theorem 1·1 can be used to find
a closed expression for this partition function. In fact, after expanding the exponential, we
can organise the remaining integral as a sum of integrals of powers of a single component
of the moment map by making use of (1·3) with n = 3:

Z =
(

T

2h̄2

)N ∞∑
m=0

(−1)mµ2m

m! T m
(2m + 1)

∫
MN

J3
2m .

Now we invoke the following result of [7], which is obtained as an application of the
Duistermaat–Heckman formula to the circle action generated by J3 on the symplectic man-
ifold (MN , ωL2):∫

MN

J3
2m =

N∑
j=0

(−1)N− j (2m)!
j !(N − j)!(N + 2m)! (2π(R2 − N )(2 j − N ))N+2m .
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The partition function can then be expressed as

Z =
(

T

2h̄2

)N N∑
j=0

∞∑
m=0

(−1) j+m(2m + 1)!
j !(N − j)!m!(N + 2m)!

(
µ2

T

)m (
4π(R2 − N )

(
N

2
− j

))N+2m

= 1

N !

(
ÃT

2h̄2

)N N∑
j=0

(−1) j

j !(N − j)!
(

N

2
− j

)N

2 F2

(
1,

3

2
; N + 1

2
,

N +, 2

2
; − (µ Ã)2

T

(
N

2
− j

)2)

in terms of the generalised hypergeometric function 2 F2 [9], and where we introduced the
area available for N vortices on the sphere

Ã � 4π(R2 − N ).

It is still a challenging problem to understand the physics determined by Z — in particular,
it would be interesting to obtain an equation of state for this system (in some approximation)
and analyse whether it allows for phase transitions.
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