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Abstract— Forming a Synthetic Aperture Radar (SAR) im-
age while suppressing an airborne broadband jammer can
potentially destroy large regions of the image. In addition to
this, multipath reflections from the ground, known as hot-
clutter (HC) or terrain scattered interference will add a non-
stationary interference component to the image. Using multiple
antennas on a SAR provides spatial degrees of freedom and
allows for adaptive beamforming to suppress the jammer signals.
This paper presents a summary of constrained sub-optimal fast-
time Space Time Adaptive Processing (STAP) techniques which
reduce the interference level with minimal distortion to the SAR
image.

I. I NTRODUCTION

The goal of interference suppression for SAR is to suc-
cessfully suppress the undesired signals while not significantly
effecting the image quality by blurring, reducing the resolution
or raising the sidelobe level. This can be hard to achieve in
practice, especially if the interference is non-stationary and
the training statistics change from pulse to pulse, causing
traditional slow-time STAP techniques be ineffective, [1].
Therefore adapting within each pulse is required by exploiting
fast-time STAP. This offers the advantage of exploiting the
coherency between the direct-path jammer and other HC sig-
nals to provide improved interference rejection. It will however
cause secondary modulations during image formation, similar
to that shown by [2]. In previous work, the use of derivative
constraints to reduce potential signal suppression has shown to
be an effective compromise to reduce the interference without
compromising the target’s range profile, [3].

The first algorithm presented in this paper is a sub-optimal
constrained Generalised Sidelobe Canceller (GSC) suitable
for reducing the secondary modulations without damaging
the desired image. Fully adaptive processing however can be
very computationally intensive and not suitable for real time
operation. Moreover, if the interference is non-stationary, the
eigenvalues of the covariance matrix will spread, increasing
the interference rank and therefore the degrees of freedom
required to effectively cancel it. This problem is also analogous
to the Moving Target Indication application where the ground
clutter returns may not be stationary due to real world effects,
such as aircraft crabbing, non-linear array geometry, intrinsic
clutter motion, and scattering from near-field obstacles. Two
modified GSC algorithms are therefore presented using tech-
niques to reduce the rank associated with the interference plus
noise covariance matrix. These approaches provide equivalent

performance to the full rank version but with reduced sample
support and computation.

II. SYSTEM MODELS AND GEOMETRY

A. SAR Signal Model

Consider a SAR platform travelling along the y-axis atvp

m/s, imaging a point in the slant-planex ∈ [Xc−X0, Xc+X0],
y ∈ [−Y0, Y0]. The radar transmits a broadband chirp and
the received signalxn(t, u), is base-banded and sampled for
each of theN channels of a linear antenna array with equi-
spaced receivers along the azimuth direction. The variables
(t, u) represent (fast-time) samples within a pulse and the
SAR platform position (slow-time) respectively. As the SAR
bandwidth,B (Hz) is much smaller than the carrier frequency,
ωc (rad/s), the SAR signal model can be split into temporal
and spatial components.

The spatial reference signal is given by the time difference
between the phase centre of the antenna array and thenth

channel and can be approximated as a function of the SAR
positionu or equivalently, an angular offsetθ(u), i.e.,

sn(u) = exp
[

j
ωc

c
dn sin [θ(u)]

]

(1)

where c is the speed of light,θ(u) = arctan(−u/Xc) is
the steering angle anddn = nδ is the antenna offset from
the array phase centre with antenna spacingδ and n ∈
[−(N − 1)/2, (N − 1)/2] for N (odd) antenna elements.

The received SAR signal comprises the total ground return,
γn(·), interference from the direct-path and ground reflected
path,qn(·) and receiver noiseνn(·).

xn(t, u) = γn(t, u) + qn(t, u) + νn(t, u). (2)

Fig. 1 shows the processing chain from transmission of the
chirp signal, formation of the received SAR signal, range
processing, adaption and image formation.

B. Jammer and Noise Models

The bistatic jammer model assumes there areK HC patches
within a given area. The interference plus noise signal,zn(·) is
formed by the superposition of the direct path, HC scatterers
and receiver noise,

zn(t, u) =

K
∑

k=0

bkJ(t − τ̄n,k(t, u)) exp[−jωcτ̄n,k(t, u)]

exp[−jωd,kt] + νn(t, u) (3)



Fig. 1. SAR processing diagram

where νn(·) is modelled independently for each channel as
white Gaussian noise with zero mean and varianceσ2

ν , J(·) is
the jamming signal waveform,̄τn,k(·) is the bistatic delay for
the kth scatterer,ωd,k is the fast-time doppler frequency and
bk is defined as the relative magnitude between the direct-path
and HC signal. The zero index refers to the direct-path with
b0 = 1.

The power spectral density of the jammer signal has an
apparent bandwidthB, centred at baseband with power level,
σ2

J . Realisations of the jammer signalJ(·) can then be
generated by an eigen-decomposition of the jammer auto-
covariance,

rJ (τ) = σ2
J sinc(Bτ). (4)

A physically based model for the multipath scattering is
presented by Beckman, [4] and uses a surface roughness
parameter to define the scattering distribution between the
SAR and an airborne jammer at heightshP and hJ respec-
tively, separated by a distancẽxJ in the ground plane. The
coefficients,bk = ρBk for k > 1 are formed with a HC scaling
factorρ, relative to the direct-path and a random amplitudeBk,
determined from the scattering model.

III. FAST-TIME STAP

For effective fast-time filtering, the fast-time sample rate,
∆t is oversampled by a factor of two to provide increased
correlation, [5]. Spatial beamforming for thelth fast-time
range bin requires stacking of both the received data and the
signal model to formN × 1 spatial vectors,

x(tl, u) =
1√
N

[x−(N−1)/2(tl, u), . . . , x(N−1)/2(tl, u)]T ,

s(u) =
1√
N

[s−(N−1)/2(u), . . . , s(N−1)/2(u)]T

wheretl = l∆t. Beamforming is then performed by matching
the received data vector with the spatial steering vector,

y(tl, u) = sH(u)x(tl, u). (5)

To extend the processing to use fast-time taps, the spatial data
vector is stacked over the futurẽL ≪ L taps,

X(tl, u) =
1

√

L̃

[

xT (tl, u) ,xT (tl−1, u) , . . . ,xT
(

tl−L̃+1, u
)]T

with data components forl < L̃ set to zero. The fast-time
component of the steering vector post range processing is
given by,

gk = sinc [B(k − 1)∆t] , k = 1 . . . L̃ (6)

and can be stacked to give the fast-time steering vector,

g =
1

√

L̃
[g1, . . . , gL̃]T ∈ CL̃×1. (7)

If no oversampling is used, the fast-time model matches the
delta function commonly used in literature, [2] where it is
assumed that the target occupies a single range bin. The fast-
time filter is then represented as a convolution,

xf(tl, u) = SH(u)X(tl, u) (8)

with the space/fast-time steering vector formed by the Kro-
necker product of the spatial and temporal steering vectors,

S(u) = g ⊗ s(u) ∈ CL̃N×1. (9)

If the focussing vector in (8) is replaced with a weighted
vector, than adaptive processing can be performed,

xfs(tl, u) = WH(u)X(tl, u). (10)

As shown in the following sections, different criteria can
be used to form the weight vector,W(·). Note, that for
convenience, fast-time samples will be referred to ast.

IV. GENERALISED SIDELOBE CANCELLER

The GSC is a sub-optimal beamspace STAP implementation
and is shown in Fig. 2. It forms a set of ‘beams’ with the main
beam in the ‘desired’ target direction and the other ‘reference’
beams going through a blocking matrixB(·) to remove the
desired signal from the data. This signal then goes through
an adaptive filter to minimise the output power, before being
subtracted from the main beam. The GSC is preferred over
the traditional element space formulation due to its superior
performance with steering vector mismatch. Also due to the
loss ofNcon degrees of freedom in the adaption, less training
data is required for the same adaptive performance.

For a spatial only filter, the canceller’s output is given by

xfs(t, u) = wH
d (u)x(t, u) − wH

a (u)BH(u)x(t, u)

= [wd(u) − B(u)wa(u)]H x(t, u) (11)

where the desired weightwd(·), is given by

wd(u) = c(u)
[

cH(u)c(u)
]−1

d ∈ CN×1 (12)



Fig. 2. Generalised Sidelobe Canceller

with c(·) containing theNcon adaptive constraints with desired
response,d. The adaptive weight vectorwa(·) of size (N −
Ncon)×1, is designed to minimise the output power by solving
the unconstrained optimisation [6],

min
wa

{

E
{

|e0 − ê0|2
}

}

⇒ wa(u) = [BH(u)Rx(u)B(u)]−1BH(u)Rx(u)wd(u).

As the reference beam is orthogonal to the mainbeam and
providing there is no mismatch between the input signal
and reference beam, the following holds for both the total
received covariance,Rx(·) and the interference plus noise only
covarianceRz(·), [6],

BH(u)Rx(u) = BH(u)Rz(u). (13)

The adaptive weight then reduces to,

wa(u) = [BH(u)Rz(u)B(u)]−1BH(u)Rz(u)wd(u)

= R−1
x1

(u)rx1,e0
(u) ∈ C(N−Ncon)×1 (14)

where Rx1
(·) is the ‘reference’ covariance matrix atx1(·)

and rx1,e0
(·) is the cross covariance betweenx1(·) and e0.

To remove the desired signal, the blocking matrix must be
orthogonal to the constraint matrix,BH(u)C(u) = 0. A
general method for the blocking matrix design has been
presented in [3].

To extend this algorithm to usẽL fast-time taps, the desired
fast-time weights are given as,

Wd(u) = g ⊗ wd(u) ∈ CL̃N×1 (15)

with the fast-time blocking matrix expanded by,

Bf(u) = IL̃ ⊗ B(u) ∈ CL̃N×L̃(N−Ncon) (16)

and the fast-time adaptive weight of sizeL̃N × 1,

Wa(u) =
[

BH
f (u)RZ,DL(u)Bf(u)

]−1
BH

f (u)RZ,DL(u)Wd(u)

whereRZ,DL(·) is the diagonally loaded space/fast-time inter-
ference plus noise covariance matrix. The loading is included
to improve the robustness by smoothing the adaption via com-
pression of the eigenvalues. The modified covariance matrix
with η dB of diagonal loading is defined by,

RZ,DL(u) = RZ(u) + ηIL̃N . (17)

The normalised interference plus noise covariance matrix
RZ(u) = α−1R′

Z(u) is determined by averaging overLt

range bins,

R′

Z(u) =
1

Lt

Lt
∑

l=1

Z(tl, u)ZH(tl, u) ∈ CL̃N×L̃N (18)

with the normalising value,α = Tr {R′(u)} /(L̃N) providing
a relative measure of the effect of diagonal loading. It is as-
sumed techniques described in [7] can be used to get different
realisations of the interference plus noise signal withoutany
targets present. The interference plus noise vector,Z(·) is
formed similarly to the data vectorX(·).

A. GSC Results

A multichannel X-band SAR simulation has been imple-
mented with parameters summarised in Table I. A moderately
diffuse scattering scenario is used to demonstrate the worst
case scenario with both direct and HC paths incident in the
SAR mainbeam. Fig. 3 shows the sample image used with
and without interference and after adaptive filtering. Image
formation has been performed with a spatial matched filter
interpolation algorithm.

TABLE I

SIMULATION PARAMETERS

Parameters Value
Carrier frequency(fc) / bandwidth(B) 10 / 0.3 GHz
Number of elements(N) / spacing(δ) 5 / λ

2
m

Number of pulses(M) / range bins(L) 100 / 250
Range centre(Xc) 10 km
Range / azimuth resolution 0.5 / 2.5 m
Fast-time sampling(∆t) / training size(Lt)

1

2B
/ 3L̃N

SAR height(hP ) / jammer height(hJ ) 3 / 3 km
Jam. offset(x̃J) / jam. power(σ2

J ) 50 km / 80 dB
No. HC scats.(K) / relative HC scaling(ρ) 200 / 0.6
Noise power(σ2

ν) / clutter noise ratio 0 dB / 20 dB

SA R im ag e SA R im ag e w ith ho t-c lu tte r F ilte red SA R im ag e

Fig. 3. Simulated image comparison

Both the Minimum Variance Distortionless Response
(MVDR) and first order derivative constraints are used for this
study with the former having a unity response in the steering
direction and the latter also setting the first derivative equal to
zero. This has shown to be effective as it allows less potential
signal suppression [3]. The combined spatial constraint matrix,
c(·) and desired vector,d are defined as,

c(u) =

[

s(u),
∂s(u)

∂θ(u)

]

; d = [1, 0]T (19)

They are also related to the space/fast-time versions by,

C(u) = IL̃ ⊗ c(u) ∈ CL̃N×L̃Ncon,

D = g ⊗ d ∈ CL̃Ncon×1.
(20)



Fig. 5. Reduced rank GSC

The adaptive performance is measured by the Signal Dis-
tortion Ratio (SDR) which is a measure of the signal power
of the adapted image relative to an ideal image with no
interference present. For comparison, the conventional SDR
with no adaption is 3.8 dB. The results in Fig. 4 show the full
rank GSC and the SDR improvement gained with using fast-
time taps. The plot of the left is with the MVDR constraint and
the one on the right uses derivative constraints. With−60 dB
of diagonal loading and 15 fast-time taps, the MVDR SDR
improves from 4 to 6.5 dB. The derivative constraint SDR
however reaches a maximum 7.1 dB and maintains this level
between -90 dB to -60 dB of diagonal loading.
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Fig. 4. SDR for full rank GSC with varying̃L, η

V. REDUCED RANK GSC

Using the space/fast-time formulation, the reduced rank
GSC is shown in Fig. 5 where a reduced rank transform is
now contained in the matrixU(u). This acts to reduce the
size and rank of the reference beam after going through the
blocking matrix. The output of the reduced rank GSC is given
by,

xfs(t, u) = WH
d (u)X(t, u) − WH

a (u)UH(u)BH
f (u)X(t, u)

= [Wd(u) − Bf(u)U(u)Wa(u)]H X(t, u) (21)

where the adaptive weight vector of sizeC × 1 is again
designed to minimise the mean square error betweenê0 and
e0. The solution is given by [8] with the covariance matrix
substitution used from (13) and diagonal loading now included
after the rank reduction,

Wa(u) =
[

UH(u)BH
f (u)RZ(u)Bf(u)U(u) + ηIC

]−1

UH(u)BH
f (u)RZ(u)Wd(u)

= [UH(u)RX1
(u)U(u) + ηIC ]−1UH(u)rX1,e0

(u).

The choice of transform,U(·) can be found by an eigen-
decomposition of the reference interference plus noise covari-
ance matrix,

RX1
(u) = QΛQH ∈ CL̃(N−Ncon)×L̃(N−Ncon) (22)

and choosingC eigenvalue/eigenvector pairs,(λc,qc) ac-
cording to a ranking criteria. If the eigen-pairs are ranked
according the eigenvalues, the transform is known as the
Principle Component (PC) decomposition,

U(u) = [q1, . . . ,qC ] ∈ CL̃(N−Ncon)×C . (23)

By using this approach, the reduction in computational com-
plexity of the matrix inverse is reduced from O(L̃(N−Ncon))

3

to O(C)3.

A. Reduced Rank GSC Results

Fig. 6 shows how the SDR varies as a function of the
rank and the level of diagonal loading. The MVDR results
are on the left and are very sensitive to diagonal loading. The
derivative constraint result however is not as greatly affected
by the diagonal loading level. With a filter rank of only 10
and a small amount of diagonal loading, this filter can safely
achieve the same SDR level as the full rank case.

Fig. 6. SDR with varying rank,η

VI. M ULTISTAGE WIENER FILTER

The Multistage Wiener Filter (MWF) is the final algorithm
and provides a faster rank reduction using a nested chain
of traditional Wiener filter stages. This method does not
need an eigenvector decomposition or large covariance matrix
inversion which makes it more suitable for real world im-
plementation. The space/fast-time constrained MWF of order
P is formed fromP filter stages as shown in Fig. 7, where
null[Wd(u)] represents the nullspace ofWd(u).



Fig. 7. P stage Wiener filter

The output from thepth MWF stage is given by,

xfs(t, u) = [Wd(u) − Lp(u)Wa,p(u)]
H

X(t, u) (24)

where the sequential vector,Lp(·) is defined by,

Lp(u) = [B1(u)h1(u), B1(u)B2(u)h2(u), . . . ,

B1(u)B2(u) · · ·Bp(u)hp(u)] ∈ CL̃N×p. (25)

The rank one space/fast-time basis vectors,hp(·) is designed
to maximise the cross-correlation energy betweenep andep−1,

hp(u) =
rxp,ep−1

√

rH
xp,ep−1

(u)rxp,ep−1
(u)

∈ CL̃(N−Ncon)×1 (26)

with reference covariance and cross covariance,

Rxp
(u) = BH

p (u)Rxp−1
(u)Bp(u) ∈ CL̃(N−Ncon)×L̃(N−Ncon),

rxp,ep−1
(u) = BH

p (u)Rxp−1
(u)hp−1(u) ∈ CL̃(N−Ncon)×1

whereh0(u) = Wd(u), Rx0
(u) = RZ(u) and the blocking

matrices of sizẽL(N − Ncon) × L̃(N − Ncon) for p > 1,

Bp(u) = IL̃(N−Ncon)
− hp−1(u)hH

p−1(u). (27)

The size of thepth order space/fast-time weight vector is then
determined by the MWF order. Diagonal loading level is again
included after the rank reduction,

Wa,p(u) =
[

LH
p (u)RZ(u)Lp(u) + ηIp

]−1

LH
p (u)RZ(u)Wd(u) ∈ Cp×1. (28)

A. MWF Results

Fig. 8 shows the simulated results with both the filter order
and diagonal loading level varied with̃L = 15 fast-time taps. It
takes an order of 14 before the MWF with MVDR constraints
behaves like the full rank case. In contrast, the derivative
constraint results show that a small order of 5 can meet the full
rank case without diagonal loading! This is huge differenceof
11 filter orders and demonstrates the superiority of using the
derivative constraints with the MWF.

−inf
−90

−60
−30

0

5

10

15

4

5

6

7

η (dB)Order

M
V

D
R

S
D

R
(
d
B

)

−inf
−90

−60
−30

0

5

10

15

4

5

6

7

η (dB)Order

D
e
r
iv

S
D

R
(
d
B

)
Fig. 8. SDR for MWF, MVDR (left) and derivative constraints (right) with
varying: order,η

VII. C ONCLUSION

This paper has shown how the constrained fast-time GSC
can be formulated with reduced rank and computational
complexity. Equivalent full rank results were achieved with
derivative constraints for both the PC decomposition and
the MWF. The latter filter however offers the most reduced
computational complexity by using the adaptive degrees of
freedom more effectively to remove the HC interference and
minimise distortion to the final SAR image.
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