Non-Invasive Assessment of Trabecular Bone Structural

Anisotropy – Relevance to Mechanical Anisotropy

A thesis submitted for the degree of

Doctor of Philosophy

by

ARASH BADIEI

Faculty of Health Sciences, Discipline of Pathology

The University of Adelaide

and

Bone and Joint Research Laboratory, Division of Tissue Pathology

Institute of Medical and Veterinary Science

© Arash Badiei 2008

Table of Contents

Abstract	vii
Declaration	viii
Acknowledgements	ix
Publications Arising	xi
Published Abstracts & Scientific Communications	xii
Abbreviations	XV

Chapter One

Introduction	2
1.1 Bone and the Skeletal System	2
1.2 Macroscopic Structure	2
1.3 Microscopic Structure	5
1.4 Chemical Composition	7
1.5 Bone Homeostasis	8
1.5.1 Control of Remodelling	8
1.6 Bone Quality	10
1.7 Osteoporosis	12
1.8 Diagnosis and Assessment of Bone Quality	13
1.8.1 Dual Energy X-ray Absorptiometry	13
1.8.2 Quantitative Ultrasound	14
1.8.3 Computed Tomography	15
1.8.4 Radiography	16
1.9 Anisotropic Properties of Trabecular Bone	17
1.10 Objectives and Overview of the Thesis	19
References	20

Experimental Materials and Methods	23
2.1 Materials	23
2.1.1 Tissue Collection	23
Parasagittal Slice and Vertebral Trabecular Bone Cube	24
2.1.2 Ethical Considerations	26
2.2 Methods	27
2.2.1 Dimension Measurements	27
2.2.2 Micro-Computed Tomography	27
Acquisition	27
Reconstruction	28
2.2.3 Dual Energy X-Ray Absorptiometry	39
Whole Spine Assessment	39
Trabecular Bone Cube Assessment	40
2.2.4 Biomechanical Testing	41
2.2.5 Ashing	46
2.2.6 Semi-Interactive Analysis of Cortical Thickness	47
2.2.7 Radon Transform	49
Inverse Radon Transform	51
References	53

Chapter Three

Assessment of Trabecular Bone Anisotropy	55
3.1 Introduction	55
3.2 Mean Intercept Length	59
3.3 Line Fraction Deviation	61
3.4 Star Volume Distribution	64
3.5 Star Length Distribution	66
3.6 Technical Aspects Of Anisotropy Measurement	68

3.7 Two Dimensional Analyses	69
3.7.1 Two Dimensional Degree Of Anisotropy	71
Ellipse Versus Raw Anisotropy Data	72
3.7.2 Pseudo Three Dimensional Analyses	75
3.8 Three Dimensional Analysis	76
References	77

Chapter Four

Mechanical Anisotropy of Vertebral Trabecular Bone	79
4.1 Introduction	79
4.2 Materials and Methods	81
4.3 Results	85
4.3.1 Bone Architecture	85
4.3.2 First Overload in the SI and AP Directions	89
4.3.3 Second Overload in the Orthogonal Direction	95
4.4 Discussion	101
References	109

Chapter Five

Quantifying Structural Anisotropy – PMIL	111
5.1 Projected Mean Intercept Length	111
5.1.1 Introduction	111
5.1.2 Definition of PMIL	112
5.1.3 Degree of Anisotropy Estimation Using PMIL	118
5.1.4 Total Surface Estimation Using PMIL	118
5.2 Comparison of the PMIL to the MIL	120
References	137

Chapter Six

Quantifying Structural Anisotropy – LPD	139
6.1 Line Projection Deviation	139
6.1.1 Introduction	139
6.1.2 Definition of LPD	139
6.1.3 Degree of Anisotropy Estimation Using LPD	141
6.2 Comparison of LPD to the LFD	145
6.2.1 Introduction	145
6.2.2 Materials & Methods	145
6.2.3 Results	147
6.2.4 Discussion	153
6.3 LPD Anisotropy from Grey and Binary Tomographs	155
6.3.1 Introduction	155
6.3.2 Materials & Methods	155
6.3.3 Results	156
6.3.4 Discussion	167
References	169

Chapter Seven

Explaining Variance in Mechanical Properties with Measures of Structural Anisotropy	171
7.1 Introduction	171
7.2 Materials and Methods	172
7.3 Results	174
7.3.1 Bone Architecture	174
7.3.2 Univariate Analyses for First Overloads	174
7.3.3 Multivariate Analyses for First Overloads	178
7.3.4 Univariate Analyses for Second Overloads	184
7.3.5 Multivariate Analyses for Second Overloads	187
7.4 Discussion	192
References	198

Chapter Eight

Thesis Summary	200
References	202

Bibliography

Bibliography	203
Bibliography	203

Appendix A

Segmentation of Bone from µCT Imaging	2A
Introduction	2A
Materials and Methods	5A
Results	7A
Discussion	11A
References	13A

Appendix B

Parallel-Plate Model	2B
Introduction	2B
Materials and Methods	3B
Results	5B
Discussion	12B
References	14B

Abstract

Although there are now many theories describing empirical relationships between strength properties of bone and various explanatory variables, the need for improved non-invasive diagnostic techniques to assess bone fragility is of core importance in clinical problems such as osteoporosis. The aim of this thesis was to develop non-invasive radiological methods to assess trabecular bone architecture.

Measures of structural anisotropy and bone structure from X-ray or radiological projections have been developed. The first measure, the projected mean intercept length (PMIL), allows extraction of the total bone surface (BS/TV) and the mean intercept length (MIL) from projections of trabecular structure. The second measure, the line projection deviation (LPD), is a technique that quantifies the preferential alignment of trabecular bone from projections of the trabecular structure. Hence, in combination, the PMIL and LPD allow non-invasive extraction of BS/TV and more detailed preferential alignment from projections of the trabecular structure.

In this thesis the PMIL and LPD are introduced and their properties explored. The PMIL and LPD are used to examine the anisotropy and architectural properties of a number of human vertebral body trabecular bone samples. When used in combination with clinical densitometry, these measures improve explanation of the variance in strength, elastic modulus and toughness of vertebral body trabecular bone samples by up to 40% when compared to densitometric values alone.

While μ CT can provide the information needed to access trabecular architecture, it cannot be used in clinical settings since its high radiation dose makes it only applicable to small objects *ex-vivo*. At present, clinically available CT does not provide sufficient resolution to resolve trabecular structures. Thus, the methods described in this thesis will allow estimates of structural parameters from plain X-rays, providing for the first time, the possibility of clinical use of such estimates.

Declaration

This work contains no material which has been accepted for the award of any degree or diploma in any university or other tertiary institution and, to the best of my knowledge, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the copyright act 1968.

Arash Badiei

Acknowledgements

This study was supported by the Australian Government in the form of the Australian Postgraduate Award and by the University of Adelaide in the form of a supplementary scholarship. All laboratory and computational facilities were provided by the Institute of Medical and Veterinary Science.

I would like to express my sincere gratitude to my supervisors Professor Nick L. Fazzalari (Division of Tissue Pathology, Institute of Medical and Veterinary Science) and Associate Professor Murk J. Bottema (Informatics and Engineering, Flinders University), for giving me the opportunity to undertake my PhD. In particular, I would like to thank Nick and Murk, for their guidance, support, supervision, friendship and enthusiasm. To you both I will be forever grateful.

I would like to thank my family and friends who have supported me during this time and motivated me at times when my own motivation was lacking. I would especially like to thank my parents and Olga. Without your support this would not have happened. Thank you.

I would like to thank Dr Ian Parkinson (Division of Tissue Pathology, Institute of Medical and Veterinary Science), for his expertise, advice and many stimulating discussions both related and unrelated to this work.

I would like to thank Mr Chris Schultz (Department of Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital) for his time and advice in relation to everything DXA. Without your help many projects simply would not happen. Thank you.

I would like to thank staff of the Department of Orthopaedics and Trauma, Royal Adelaide Hospital, for providing me access to mechanical testing equipment. In particular, I would like to thank Mrs Margret McGee for all her assistance and advice. I would like to thank Mr Owen Turner (Royal Adelaide Hospital) and Dr Peter Self (Adelaide Microscopy) for donating their time and giving me invaluable advice on all things relating to imaging.

I would like to thank the mortuary staff (Division of Tissue Pathology, Institute of Medical and Veterinary Science), for their support and cooperation in the collection of invaluable postmortem bone tissue.

Thanks to all my fellow researchers and friends in the Bone and Joint Research Laboratory. In particular, I would like to thank Ms Chris Barber and Mrs Helen Tsangari for their continued support and encouragement.

Finally, and in my opinion most importantly, I would like to thank all of the families who generously donated postmortem bone tissue for this research. Without your support this type of research simply could not happen. I am forever grateful and hope that this work brings benefits to our society.

Publications Arising

Badiei, A., Bottema, M.J. & Fazzalari, N.L., "The Influence of Orthogonal Overload on Human Vertebral Trabecular Bone Mechanical Properties", 2007, Journal of Bone and Mineral Research, July 9 [Epub ahead of print]

Badiei, A., Bottema, M.J. and Fazzalari, N.L., "Expected and Observed Changes to Descriptors of Trabecular Architecture with Aging – A Comparison of Measurement Techniques", 2006, Australas Phys Eng Sci Med 29(1): 48 – 53

<u>A. Badiei</u>, M. J. Bottema, N. L. Fazzalari, "Expected and Observed Changes to Architectural Parameters of Trabecular Bone with Aging - A Comparison of Measurement Techniques", 2005, Digital Image Computing: Techniques and Applications (DICTA'05), DICTA, 491 - 497

Published Abstracts & Scientific Communications

N. L. Fazzalari, B. Ma, P. Sutton-Smith, J. S. Kuliwaba, R. Phipps, I. H. Parkinson & <u>A. Badiei</u>, 2007, "Calcium Density of Bone Correlates with Trabecular Bone Architecture", ASBMR 29th Annual Meeting, Honolulu, Hawai, USA.

Parkinson, I.H., **Badiei, A.**, Stauber, M., Müller, R. & Fazzalari, N.L., 2007, "Prediction of Vertebral Body Bone Strength: The Contribution of Individual Trabecular Elements", ANZBMS 17th Annual Meeting, Queenstown, New Zealand. **** Winner of Most Outstanding Clinical Abstract Award ****

Badiei, A., Bottema, M.J., & Fazzalari, N.L., 2007, "Mechanical Integrity of Human Vertebral Trabecular Bone After Orthogonal Overload", ASMR Scientific Meeting – SA Branch, Adelaide, Australia.

Badiei, A., Bottema, M.J. & Fazzalari, N.L., 2007, "Mechanical Relationship between Longitudinal and Transverse Elements Vertebral Trabecular Bone", 34th European Symposium on Calcified Tissues – European Calcified Tissue Society, Copenhagen, Denmark.

Barber, C., <u>Badiei, A.</u> & Schultz, C.G., 2007, "Axial Rotation Significantly Effects DXA Lumbar Spine BMD Measurements", 37th Annual Scientific Meeting of the Australian and New Zealand Society of Nuclear Medicine, Adelaide, Australia. **Badiei, A.**, Barber, C., Parkinson, I.H. & Fazzalari, "Relationships between Vertebral Trabecular Bone Strength and Areal and Volumetric Measures of Bone Mineral Density", Australian Orthopedics Association Meeting 2006 – SA Branch, Adelaide, Australia.

Parkinson, IH, **Badiei, A.** & Fazzalari, N.L., 2006, "Independent Predictors of Human Vertebral Body Bone Strength", Journal of Bone and Mineral Research, 21: S409-S409 SUPP. 1

Barber, C., Schultz, C.G., <u>Badiei, A.</u> & Fazzalari, N.L., 2006, "Effects of Rotation on DXA Lumbar Spine BMD Measurements, Australian & New Zealand Bone Mineral Society (ANZBMS) Annual Meeting, Port Douglas, Australia.

Badiei, A., Barber, C., Parkinson, I.H. & Fazzalari, N.L., 2006, "Areal and Volumetric Measures of Bone Mineral Density and Vertebral Trabecular Bone Strength", 10th Conference of the International Society for Fracture Repair (ISFR), Adelaide, Australia.

Badiei, A., Tsangari, H., Davies, R., Bottema, M.J. & Fazzalari, N.L., 2006, "Relationship Between Antero-Postero Cortical Thickness Trabecular Architecture and Ultimate Failure Strength in the L2 and L3 Vertebral Bodies", Australian & New Zealand Bone Mineral Society Annual Meeting, Port Douglas, Australia.

Parkinson, I.H., <u>Badiei, A.</u> & Fazzalari, N.L., 2006, "Effect of Variability in Image Segmentation on Quantitative Parameters from µCT Analysis of Human Cancellous Bone", The 10th Congress of the International Society of Bone Morphometry, Philadelphia, USA.

Badiei, A., Barber, C., Parkinson, I.H., Bottema, M.J. & Fazzalari, N.L., 2006, "Trabecular Bone Strength - Unravelling the Role of Trabecular Architecture", ASMR Scientific Meeting – SA Branch, Adelaide, Australia.

Badiei, A., Bottema, M.J. & Fazzalari, N.L., 2005, "The Influence of Trabecular Architectural Changes on Estimates of Trabecular Anisotropy", Engineering in Physical Science & Medicine (EPSM), Adelaide, Australia.

Badiei, A., Bottema, M.J. & Fazzalari, N.L., 2005, "Expected & Observed Changes to Architectural Parameters of Trabecular Bone with Aging - A Comparison of Measurement Techniques", Digital Image Processing – Techniques & Applications (DICTA), Cairns, Australia.

Abbreviations

BMC	Bone mineral content
BMD	Bone mineral density
BS/BV	Specific bone surface
BS/TV	Total bone surface
BV/TV	Bone volume fraction
СТ	Computed tomography
DA	Degree of Anisotropy
DXA	Dual energy X-ray absorptiometry
g	Grams
MIL	Mean intercept length
mm	Millimetre (1 x 10^{-3} meters)
LFD	Line fraction deviation
LPD	Line projection deviation
PMIL	Projected mean intercept length
SLD	Star length distribution
SMI	Structure model index
SVD	Star volume distribution
Tb.N	Trabecular number
TBPf	Trabecular pattern factor
Tb.Th	Trabecular thickness
Tb.Sp	Trabecular separation
vBMD	Volumetric bone mineral density
μCT	Micro-computed tomography
μm	Micrometre (1 x 10^{-6} meters)