

STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Chemistry and Biochemistry

ABSTRACT

Here we report the sensing properties of the aqueous solution of *meso*tetra(N-methyl-4-pyridyl)porphine tetrachloride (1) for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg²⁺, Pb²⁺, Cd²⁺, and Cu²⁺ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/ or metal ion receptor capable of detecting two or more toxic metal ions, particularly, Hg²⁺, Pb²⁺, and Cd²⁺ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd²⁺ in the presence of larger metal ions such as Hg²⁺, or Pb²⁺. Finally, the examination of the sensing properties of **1** demonstrated that it can operate as a Cu²⁺ ion selective sensor via metal displacement from the 1-Hg²⁺, 1-Pb²⁺, and 1-Cd²⁺.

INTRODUCTION

Toxic metal ions are dangerous to human health and environment.

Determination of metal ions, particularly, Hg²⁺, Pb²⁺, Cd²⁺, and Cu²⁺ simultaneously by using an inexpensive, water soluble porphyrin based optical sensor has always been a great challenge.

In addition, the preparation of porphyrin-based optical sensors often requires complex organic syntheses, which are very costly, and time consuming.

Furthermore, the porphyrin-based sensors are water insoluble, which limits the detection of metal ions in aquatic environment.

PURPOSE

4

To find a simple, inexpensive, water soluble, and commercially available porphyrin

a single optical chemical sensor capable of detecting any or all Hg²⁺, Pb²⁺, Cu²⁺, and Cd²⁺ ions simultaneously

Water Soluble Cationic Porphyrin Sensor for Detection of Hg²⁺, Pb²⁺, Cd²⁺, and Cu²⁺

Christopher Orr, Miranda Uherek, Matibur Zamadar^{*}

larger metal ions such as Pb²⁺

Stephen F. Austin State University, Department of Chemistry and Biochemistry, Nacogdoches Texas. www.sfasu.edu

FUTURE PLAN

Preparation of solid sensor 1

Determination of toxic metal ions in aqueous solution using solid sensor 1

CONCLUSIONS

We found water soluble, inexpensive, and commercially available cationic porphyrin 1 produced different electronic absorptions in UV-vis region upon interacting with Hg²⁺, Pb²⁺, Cd²⁺, and Cu²⁺ ions.

The porphyrin **1** showed the ability to detect multiple metal ions, particularly Hg²⁺, Pb²⁺, and Cd²⁺ in aqueous solution.

The porphyrin **1** displayed the ability to determine Cd²⁺ ions more easily when other metal ions with larger ionic radii are present.

The porphyrin **1** detected Cu²⁺ via metal displacement from the 1-Hg²⁺, 1-Pb²⁺, and

ACKNOWLEDGEMENTS

Michael A. Janusa, Chair and Professor of Chemistry and Biochemistry at SFASU

The Welch Foundation Departmental Grant (AN-0008)

RCA grant at the Stephen F. Austin State University Research **Enhancement Program**