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ABSTRACT 

Examination and Comparison of the Performance of Common Non-Parametric 

and Robust Regression Models 

 

By 

Gregory Frank Malek 

Stephen F. Austin State University, Masters in Statistics Program, 

Nacogdoches, Texas, U.S.A. 

g_m_2002@live.com 

 

This work investigated common alternatives to the least-squares 

regression method in the presence of non-normally distributed errors.  An initial 

literature review identified a variety of alternative methods, including Theil 

Regression, Wilcoxon Regression, Iteratively Re-Weighted Least Squares, 

Bounded-Influence Regression, and Bootstrapping methods.  These methods 

were evaluated using a simple simulated example data set, as well as various 

real data sets, including math proficiency data, Belgian telephone call data, and 

faculty salaries at the University of South Florida. 

mailto:g_m_2002@live.com
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In addition, simulations were conducted of common error scenarios to test 

and evaluate each method.  These simulations involved simple regression 

models in which the error terms were contaminated normal distributions with 

different amounts and magnitudes of contamination.  The models were evaluated 

based on confidence interval coverage of regression coefficients, as well as bias 

and confidence interval width. 

Finally, results were summarized, conclusions drawn, and suggestions for 

future applications of the results have been provided. 
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INTRODUCTION 

This work will investigate common alternatives to the least-squares 

regression method in the presence of non-normally distributed errors, including 

extreme errors that might occur at specifically identified locations in the predictor 

variable space.  The work will seek to compare and contrast the various 

alternatives considered to the traditional least squares results with the ultimate 

objective of identifying specific circumstances where an alternative to least 

squares might provide a more useful model of the relationship between a 

response of interest and an appropriate predictor variable, or set of predictors. 

The first section will include a literature review of several common 

methods, including Theil Regression, Wilcoxon Regression, Iteratively Re-

Weighted Least Squares, Bounded-Influence Regression, and Bootstrapping.  A 

simple one-predictor-variable regression example will be used to illustrate each 

method. 

The second section will utilize the simple example used to describe the 

various approaches in the first section to compare the methods to the traditional 

least squares approach.  This evaluation will include comparisons in the 

presence of single outliers in each of the response variable space, the predictor 

variable space, and outliers in both variable spaces. 
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The third section will apply the selected methods to various data sets, 

including math proficiency data, Belgian telephone call data, and faculty salaries 

at the University of South Florida.  Each of these data sets have known outliers, 

which will provide for further comparison of the models across several real data 

sets. 

The fourth section will attempt through limited simulation work to explore 

the behavior of each of these methods in fitting a simple regression line in the 

presence of potentially one or more outliers.  Responses considered will be not 

only coverage of respective confidence intervals, but also any bias exhibited by 

the estimators, as well as the width of their associated confidence intervals.   

Finally, the conclusions section will summarize the results of this work, 

and provide a review of the key findings suggested by the results.  In addition, 

suggestions for future work will be offered. 

Section 1: Alternative Methods of Fitting a Line 

1.1: Traditional Least Squares 

The traditional least squares method of fitting a line to ordered pairs of (x, 

y) results was first introduced by Sir Francis Galton in his studies of the 
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relationships between generations (#1).  In his work, he found that successive 

generations tended to regress towards the mean level for their respective 

generation.  As a result, this process of fitting a model to describe the 

relationship between a response variable and a set of identifiable predictor 

variables acquired the rather unfortunate name of “regression”. 

The Normal Simple Linear Regression (NSLR) model having only one 

predictor variable produces the simple linear regression equation written as: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, for 𝑖 = 1,2, … , 𝑛, 

where 𝑦𝑖 is the response value associated with the 𝑖𝑡ℎ paired observation, 

𝛽0 is an intercept parameter, 

𝛽1 is a slope parameter, 

𝑥𝑖 is the value of the predictor variable associated with the 𝑖𝑡ℎ paired observation, 

and 

𝜀𝑖 is a random variable error term associated with the  𝑖𝑡ℎ paired observation. 

The NLSR model often includes the assumption that the error terms are 

normally, independently, and identically distributed with zero mean and a 

constant variance 𝜎2 (i.e., 𝜀𝑖 ~ 𝑁𝐼𝐷(0, 𝜎2)).   

Once this choice of model is specified, the generally unknown intercept 

and slope parameters defining the model must be estimated from the available 

sample observations (i.e., the observed ordered pairs (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,2, … , 𝑛).  

(1) 

 

(

2) 
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The most popular method for obtaining these estimates is the traditional least-

squares approach. 

This method involves finding those estimates that minimize the sum of 

squared residuals, where each residual is the difference between the observed 

value of the response variable and its fitted value on the estimated regression 

line.  Mathematically, the least-squares approach attempts to find a pair of 

estimates for the parameters which will minimize the sum of the squared 

residuals: 

∑ 𝑟𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − (𝑏
0
+ 𝑏1𝑥𝑖))

2𝑛
𝑖=1    

Here 𝑏0 and 𝑏1 are the estimates for the intercept and slope parameters, 𝛽0 and 

𝛽1, respectively. 

In order to minimize this summation, the derivatives of the expression with 

respect to each parameter estimate are obtained, set equal to zero, and then 

solved for 𝑏0 and 𝑏1 as expressions of the observed data (i.e., in terms of the 𝑥𝑖 

and 𝑦𝑖).  Such an approach leads to the following set of equations, often referred 

to as the “normal equations”: 

𝑑

𝑑𝑏0
∑ (𝑦𝑖 − 𝑏0 + 𝑏1𝑥𝑖))

2 = 𝑛
𝑖=1 − 2∑ (𝑦𝑖 − (𝑏

0
+ 𝑏1𝑥𝑖))

𝑛
𝑖=1 = 0       

𝑑

𝑑𝑏1
∑ (𝑦𝑖 − (𝑏

0
+ 𝑏1𝑥𝑖))

2𝑛
𝑖=1 = −2∑ (𝑦𝑖 − (𝑏

0
+ 𝑏1𝑥𝑖))𝑥𝑖

𝑛
𝑖=1 = 0 

Solving (3) provides the following expression for 𝑏0 as a function of 𝑏1: 

𝑏0 = �̅� − 𝑏1�̅�. 

 (3) 

(4) 

(5) 

 (2) 
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where �̅� =  1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  and �̅� =  1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 . 

This expression (5) implies that the traditional least squares fitted line will 

necessarily pass through the ordered pair (�̅�, �̅�).  Substituting this expression (5) 

for 𝑏0 in equation (4) produces the following expression for 𝑏1: 

𝑏1 = 
∑ 𝑥𝑖(𝑦𝑖−�̅�)𝑛

𝑖=1

∑ 𝑥𝑖(𝑥𝑖−�̅�)𝑛
𝑖=1

. 

Often, equation (6) is given instead by the equation (7) below, which is an 

equivalent expression: 

𝑏1 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)(𝑥𝑖−�̅�)𝑛
𝑖=1

 . 

The simple linear regression model can also be written in matrix form, 

allowing the traditional least squares approach to be extended to include multiple 

predictor variables.  Let �⃗⃗�  be an 𝑛𝑥1 column vector containing the n observations 

of the response.  Let X be an 𝑛𝑥𝑝 matrix, where p-1 is the number of predictors, 

as follows: 

𝑿 =  

(

 

1 𝑋11 ⋯ 𝑋1,(𝑝−2) 𝑋1,(𝑝−1)

1 𝑋21 ⋮ ⋮
⋮ ⋮ ⋱ ⋮
1 ⋯ 𝑋𝑛,(𝑝−1))

 , 

where 𝑿𝑖𝑗 is the level of the jth predictor variable associated with the ith observed 

pair, for j = 1, …, p-1 and i = 1, …, n. 

(6) 

(7) 

 

(8) 
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Also, let �⃗⃗�  be a px1 column vector containing the p regression parameters 

(for the p-1 predictors, and an additional parameter for the intercept as the first 

component of this vector): 

�⃗⃗� = 

[
 
 
 
 

𝛽0

𝛽1

⋮
𝛽𝑝−1]

 
 
 
 

. 

Finally, let �⃗�  be an nx1 column vector of NID(0,𝜎2) random variables. 

The model can now be written in matrix form as: 

�⃗⃗� = 𝑿�⃗⃗� + �⃗� , 

Simultaneous least-squares estimates for the parameters can be found by using 

the matrix operation: 

�⃗⃗� = (𝑿𝑻𝑿)
−1

𝑿𝑻�⃗⃗� , 

where �⃗⃗�  is a px1 vector of the least-squares estimates for regression parameters 

�⃗⃗�  as given in (9), 

 𝑿𝑻 = the pxn transpose of the nxp matrix 𝑿 as given in (8), and 

 (𝑿𝑻𝑿)
−1

 = the inverse of the positive definite symmetric matrix 𝑿𝑻𝑿. 

1.1.1: Traditional Least Squares – Simple Example 

As a means of illustrating the fitting of the model described by equation (1) 

above, the open source statistical package R (#2) was used to generate the 20 

ordered pairs displayed in Table 1 and plotted in Figure 1.  

 (9) 

(10) 

(11) 
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The least-squares estimates are 2.5954 for the intercept parameter, and 

1.1996 for the slope parameter, respectively.  The actual relationship had an 

intercept of 2.6 and a slope of 1.2.  Figure 2 overlays the fitted regression line in 

blue, as well as the true linear model equation in red.  Note that in this example, 

least-squares approximates the true line so well that the lines are virtually 

indistinguishable. 
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Table 1:  Simple Example Data 

 

        X         Y 

Least-Squares Fitted 

Values Y - e (E[Y]) 

1 5.016602408 3.795081331 3.8 

2 2.784688156 4.994730153 5 

3 6.31812063 6.194378974 6.2 

4 8.410386613 7.394027796 7.4 

5 9.714981727 8.593676618 8.6 

6 7.850099922 9.79332544 9.8 

7 11.84050087 10.99297426 11 

8 11.22351123 12.19262308 12.2 

9 14.02204069 13.39227191 13.4 

10 14.31045089 14.59192073 14.6 

11 15.3130134 15.79156955 15.8 

12 17.05827744 16.99121837 17 

13 19.53999569 18.19086719 18.2 

14 19.19822543 19.39051602 19.4 

15 21.30742007 20.59016484 20.6 

16 21.03991676 21.78981366 21.8 

17 22.59635183 22.98946248 23 

18 24.06133987 24.1891113 24.2 

19 26.80814811 25.38876012 25.4 

20 25.42083104 26.58840895 26.6 
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Figure 1:  Plot of Simple Example Data from Table 1 

 

Figure 2: Least-Squares Fit for Simple Example, 
 including Actual Relationship 
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1.2: Theil Regression 

While the traditional least squares estimators have some very nice 

properties when the errors are normally and independently distributed with zero 

mean and constant variance, these estimators can be less than optimal in 

situations where such conditions on the error distributions fail to hold.  As a 

result, alternative approaches to obtaining intercept and slope parameter 

estimates for a simple regression model have been suggested in the literature.  

The Theil-Sen estimators are one such pair of estimators (#3).   The Theil-

Sen estimator for the SLR slope is given by: 

𝑏1 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑖𝑗), 

where 

𝑚𝑖𝑗 = 
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

This estimator is simply the median of all pairwise slopes among the n 

observations.  The intercept estimator is given by: 

𝑏0 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑘 − 𝑏1𝑥𝑘), for 𝑘 = 1,2, …𝑛.   

1.2.1: Theil-Sen - Simple Example. 

Using the data displayed in Table 1, the Theil-Sen slope estimator 

determined from equations (12) and (13) is 𝑏1 = 1.1735.  The corresponding 

intercept estimator from equation (14) is 𝑏0 = 2.8677. 

(12) 

 

(13) 

 

(14) 
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Table 2 below summarizes the comparison between the Theil and Least-

Squares estimators for the data in Table 1.  While the Theil-Sen intercept 

estimator is ~10% larger than the true intercept, the slope estimate is within 3% 

of its true value. 

Table 2: Comparison of Least-Squares and Theil Estimators for 
Simple Example 

Parameter Actual 
Least-Squares 

Estimator 

Theil-Sen 

Estimator 

Intercept 2.6 2.5954 2.8677 

Slope 1.2 1.1996 1.1735 

 

Figure 3 below displays the lines: 

Figure 3:  Theil fit vs LS fit for simple example, including actual fit. 
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1.3: Wilcoxon Regression 

Another regression method that can be used when error terms from the 

model described in equation (1) fail to meet the requirements of being NID(0, σ2) 

is the Wilcoxon regression method.  With �⃗⃗�  the nx1 vector of observed response 

variable results, and 𝒙𝑪⃗⃗⃗⃗  ⃗ the nx1 vector of corresponding predictor variable values 

centered about their mean, the Wilcoxon method produces a slope estimator by 

minimizing the Wilcoxon norm, as follows (#4): 

�̂�1 = Minβ{||�⃗⃗�  –  β𝒙𝑪⃗⃗⃗⃗  ⃗||W}, 

where 

||�⃗⃗� ||
W

 = ∑ aф(rank(�⃗⃗� i))�⃗⃗� i
𝑛
𝑖=1 ,   �⃗⃗�  є R

n
, 

𝑎
ф
(𝑖) = ф(

𝑖

𝑛+1
), 

ф(𝑢) = √12*(u –  ½), 

and rank(�⃗⃗� 
i
) ranks the entries of  �⃗⃗�  from least (rank = 1) to greatest (rank = n). 

The estimate of the model intercept term is obtained as 

�̂�0 = 𝑚𝑒𝑑𝑖𝑎𝑛[(�⃗⃗�  – �̂�1�⃗⃗� )]. 

To minimize this function, the Wilcoxon norm was evaluated across 

100,000 “guesses” of the slope estimator, where the guesses for the estimator 

were of equal distance apart, and spanned the range of all pairwise slopes from 

(15) 

(16) 

 
(17) 

(18) 

 

(19) 
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the original data.  The guess which minimized the Wilcoxon norm over these 

100,000 iterates was taken to be the slope estimator. 

1.3.1: Wilcoxon Regression – Simple Example. 

Table 4 displays the Wilcoxon slope and intercept estimates obtained as 

described above for the simple example data from Table 1.  These estimates 

were obtained using an initial guess for the slope parameter of 3.9904, which is 

the maximum of the pairwise slopes.  This resulted in the vi values and ranks as 

shown in Table 3, which produced a score function (15) value of 306.1359.  

These results produced an intercept estimate (19) of -27.0875. 

 

Table 3:  Iteration of the First Guess for Wilcoxon Slope Estimate 

𝑉𝑖 Ranks aф(rank(𝑉𝑖 )) 

1.0262 1 -1.56709 

-5.1961 2 -1.40214 

-5.653 3 -1.23718 

-7.5512 4 -1.07222 

-10.237 5 -0.90726 

-16.0923 6.5 -0.65983 
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-16.0923 6.5 -0.65983 

-20.6996 8 -0.41239 

-21.8915 9 -0.24744 

-25.5935 10 -0.08248 

-28.5819 11 0.082479 

-30.8265 12 0.247436 

-32.3352 13 0.412393 

-36.667 14 0.57735 

-38.5485 15 0.742307 

-42.8064 16 0.907265 

-45.2404 17 1.072222 

-47.7658 18 1.237179 

-49.0094 19 1.402136 

-54.3871 20 1.567094 

 

 

Then, the Wilcoxon objective function given by (15) was evaluated at 

99,999 more potential estimates of the slope parameter, each of which 
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decreased in an equally partitioned sequence ending near the minimum of the 

pairwise slopes.  Therefore, the 𝑖𝑡ℎ guess 𝑔𝑖 of the slope parameter was given as 

follows: 

𝑔𝑖 = max(𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑠𝑙𝑜𝑝𝑒𝑠) − 
𝑖−1

100,000
∗ (max(pairwise slopes) −

min(pairwise slopes)), 

for i = 1,2, … ,100,000. 

Figure 4 below shows a histogram that plots the Wilcoxon score function 

evaluated at each guess of the slope parameter.  A blue, vertical line is drawn at 

the estimate value that minimizes the Wilcoxon score function, and is therefore 

chosen as the Wilcoxon slope estimator. 
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Figure 4: Plot of Score Function Evaluated at Respective Slope Estimates 

 

 

Table 4 below compares the Wilcoxon parameter estimates with the least-

squares estimates and the actual parameter values.  As observed with the Theil-

Sen estimates, the Wilcoxon intercept estimate is within 10 percent of the actual 

parameter value, and the Wilcoxon slope estimate is within 3% of the true slope 

parameter.   The Wilcoxon fit is given next to the least-squares fit and the actual 

line in Figure 5. 
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Table 4: Comparison of Least-Squares and Wilcoxon Estimators 
for Simple Example 

Parameter Actual 
Least-Squares 

Estimator 
Wilcoxon 

Intercept 2.6 2.5954 2.8569 

Slope 1.2 1.1996 1.1746 

 

Figure 5:  Wilcoxon fit vs LS fit for simple example, including actual fit. 
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1.4: Iteratively Reweighted Least Squares (IRLS) Regression 

When the traditional least-squares assumptions on the error fail to hold, 

there is often a small number of observations which disproportionately influence 

the fitted regression line.  The Iteratively Reweighted Least-Squares (IRLS) 

method is sometimes used to attempt to mitigate this problem (#5).  This 

procedure involves using an algorithm to assign weights to the least-squares 

observations based on their least-squares residuals, and then iteratively re-

calculates the weights throughout successive steps until convergence (to some 

level of accuracy) of parameter estimates is achieved.  This regression method 

initially obtains NSLR estimates, then utilizes a weighting function applied to the 

least squares residuals to generate a set of weights for each of the “n” sample 

observations.  Successive steps in the process of generating the IRLS estimates 

proceed by minimizing the squares of the weighted residuals below: 

‖𝑾 ∗ �⃗⃗� ‖ = ∑ 𝑤𝑖𝑟𝑖
2 = �⃗⃗� 

𝑻
𝑾𝑻𝑾�⃗⃗� 𝑖 , 

where �⃗⃗�  is the nx1 column vector of residuals 𝑟𝑖 as defined in (2), and W = 

WT is a diagonal (nxn) matrix containing the square root of the weights for each 

observation.  𝑾𝑡 will denote this matrix at the 𝑡𝑡ℎ iteration of the IRLS algorithm. 

The weighted least-squares estimates obtained on the successive 

iterations are given as: 

�⃗⃗� = (𝑿𝑻𝑾𝑻𝑾𝑿)
−1

𝑿𝑻𝑾𝑻𝑾�⃗⃗� , 

(20) 

 

(21) 
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where 

�⃗⃗�  is a px1 vector of the estimates for regression parameters �⃗⃗�  as given in (9), 

𝑿𝑻 = the pxn transpose of the nxp matrix 𝑿 as given in (8), 

and 

(𝑿𝑻𝑾𝑻𝑾𝑿)
−1

 = the inverse of the positive definite symmetric matrix  

𝑿𝑻𝑾𝑻𝑾𝑿. 

There are many possible algorithms for determining the weights; however, 

two popular approaches are the Huber and the Bi-Square weighting functions. 

1.4.1 IRLS Weighting Functions 

1.4.1.1 Huber Weight Function: 

The Huber Weight function calculates weights at the (𝑡 + 1)𝑡ℎ
 iteration in 

the following way: 

𝑤𝑖,(𝑡+1) = {
1,                   𝑖𝑓  |𝑟𝑠,𝑖,𝑡| < 1.345

  
1.345

|𝑟𝑠,𝑖,𝑡|
,           𝑖𝑓   |𝑟𝑠,𝑖,𝑡|  ≥ 1.345

  

where the scaled residual 𝑟𝑠,𝑖,𝑡 =
𝑟𝑖,𝑡

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖,𝑡−𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖,𝑡)|)/.6745
, and 𝑟𝑖,𝑡 = the 

raw residual as defined in (2) for the 𝑖𝑡ℎ observation at the 𝑡𝑡ℎ  iteration.  The 

denominator of the scaled residual is the popular Median Absolute Deviation 

(MAD) robust estimator of scale (#6). 

(22) 
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The divisor of 0.6745 causes the MAD to be an unbiased estimate of the 

standard deviation of the response under normality.  Scaling the raw residuals by 

an estimator of scale helps control for natural variation in the data, so that 

observations with high residuals are not penalized simply because of the overall 

variance in the response. 

The residuals used for the first iteration (when t = 0) are acquired by NSLR 

(#5).  As such, the initial weight for every observation at t = 0 is 𝑤𝑖,0 = 1, for i = 1, 

…, n, which means that the initial iteration is equivalent to regular least-squares 

regression, and minimizes the standard sum of squares. 

The Huber weighting function (17) is displayed in Figure 6.  Note that 

observations are only down-weighted when the absolute value of their scaled 

residuals exceed 1.345, and that the weights will always be larger than zero.   As 

a result, the Huber weighting function will never entirely discard an observation.  

However, observations which are tied to “large” scaled residuals will be down-

weighted in the next iteration, and will have less influence on that iteration’s 

regression line than observations with smaller scaled residuals.  This is because 

in equation (20), the sum of weighted squared residuals is minimized when the 

larger residuals are paired with smaller weights.  Therefore, the minimum sum of 

weighted squared residuals will fit a line which focuses more heavily on fitting 

those observations with smaller scaled residuals (since they have larger weights) 

than those with larger scaled residuals from previous iterations. 
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Figure 6:  Huber Weighting Function 

 

The weights for each observation are re-calculated at each iteration, and a 

new regression model is fit in the next iteration based on those weights.  The 

iterative process proceeds until a desirable level of convergence is achieved.  

This usually occurs within 5 to 10 iterations. 

1.4.1.2 The Bi-Square Weight Function: 

The Bi-Square weight function calculates weights as follows: 

𝑤𝑖,(𝑡+1) = {
[1 − (

𝑟𝑠,𝑖,𝑡

4.685
)
2

]

2

,    𝑖𝑓   |𝑟𝑠,𝑖,𝑡| < 4.685

  0,                              𝑖𝑓   |𝑟𝑠,𝑖,𝑡|  ≥ 4.685
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(23) 
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For the Bi-Square weight function, the first iteration (t = 0) can be acquired 

via NSLR.  However, convergence can sometimes be achieved more quickly by 

using the residuals obtained by fitting the t=1 Huber IRLS estimates for �⃗⃗�  (9). 

Figure 7 displays the Bi-Weight function.  Note that this function will down-

weight all observations (i.e., all 𝑤𝑖,(𝑡+1) will be less than one, unless 𝑟𝑖,𝑡 = 0); 

however, if the absolute value of the scaled residual for an observation is larger 

than 4.685, then that observation will receive a weight of zero, essentially 

discarding it from the data and any subsequent analysis.  Furthermore, similar to 

the Huber weighting function, observations which are not completely thrown out 

will be down-weighted more heavily the larger their scaled residuals are.  Again, 

as noted with the Huber example, the overall sum of weighted squared residuals 

will be minimized when larger residuals are associated with smaller weights, so 

the procedure will prioritize the fit to those observations with smaller scaled 

residuals rather than to those with larger ones. 
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Figure 7:  Bi-Square Weighting Function 

 

1.4.2: IRLS – Simple Example. 

1.4.2.1 IRLS – Simple Example – Huber Weighting Function 

Using the data displayed in Table 1, the IRLS approach utilizing the Huber 

weighting function produced the results observed in Tables 5 through 7.   The 

initial least squares fit of the results produced the least squares residuals, which 

when scaled by the MAD = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖,𝑡 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑖,𝑡)|)/.6745 scale estimate, 

resulted in the values in the first column of Table 5 (iteration zero) below.  Note 

that the only scaled residuals larger than 1.345 in magnitude were those for 

observations 2 and 6.  As a result, these observations received the weights less 
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than one that appear in the first column of Table 5.  Using these new weights, the 

estimated intercept and slope parameters displayed on the first row of Table 6 

were obtained using the approach described above.  This process continues until 

a desired level of convergence is achieved. 
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Note that convergence to three decimal places for the residuals, the 

weights, and the estimated parameters has been achieved after five or six 

iterations.  Convergence to four decimal places is achieved for the intercept 

parameter estimate after six iterations and for the slope parameter estimate after 

only five iterations in this example.  Additionally, the only observations which 

were ever down-weighted in the process were numbers 2 and 6. 

 

Table 7: Parameter Estimates Using Huber Weighting Function 

Iteration Intercept Slope 

1 2.5954 1.1996 

2 2.7516 1.18 

3 2.7967 1.18 

4 2.8038 1.186 

5 2.8049 1.1859 

6 2.805 1.1859 

7 2.8051 1.1859 

8 2.8051 1.1859 

9 2.8051 1.1859 

10 2.8051 1.1859 
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Example – Bi-Weight Weighting Function 

In order to accelerate the process of convergence for the Bi-Weight 

function, the initial iteration was taken from the first iteration obtained using the 

Huber weighting function.  Subsequent iterations weighted the scaled residuals 

using the Bi-Weight function (23).  Ten iterations were performed, the results of 

which are given below in Tables 8, 9 and 10.  Convergence to four decimal 

places was achieved after eight iterations for scaled residuals and parameter 

estimates, and after five iterations for weights.  Note that the scaled residuals at 

iteration zero represent the Huber weights at iteration 1.  This was done as 

stated before to promote faster convergence for the parameter estimates. 

Convergence to three decimal places is achieved for the scaled residuals 

of every observation after no more than seven iterations, and for the weights of 

every observation after no more than four iterations.  Convergence to four 

decimal places is achieved for the parameter estimates after seven iterations. 

Unlike the Huber function, the Bi-Weight function down-weighted every 

observation by some amount.  However, observations 2 (w2 = 0.661), 6 

(w6=.741), 13 (w13=0.885), and 19 (w19=0.858) are the only observations with 

weights below 0.9.  These first two observations are the same as those receiving 

weights less than one with the Huber weighting approach. 
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1.4.2.3 Comparison of IRLS Weighting Function Approaches 

In Figure 8 below, the actual line is plotted with the IRLS lines obtained 

using the Huber and Bi-Weight functions, as well as the common NSLR line.  

Note that the fitted lines, as with the Theil-Sen and Wilcoxon lines, are again 

virtually indistinguishable in this plot. 

 

Table 10:  Parameter Estimates Using Bi-Squared Weighting Function 

Iteration Intercept Slope 

1 2.5954 1.1996 

2 2.7365 1.894 

3 2.7776 1.864 

4 2.7863 1.858 

5 2.7881 1.857 

6 2.7885 1.856 

7 2.7886 1.856 

8 2.7886 1.856 

9 2.7886 1.856 

10 2.7886 1.856 
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Figure 8:  IRLS Huber fit vs IRLS Bi-Square fit, including 
Actual Line and Least-Squares fit. 

 

 

Parameter estimates obtained from the two weighting functions are given 

in Table 11 below.  

 

 

Table 11:  Comparison of NSLR with Huber and Bi-Weight 
function IRLS parameter estimates for Simple Example 

Parameter Actual Huber Bi-Square 
Least-

Squares 

Intercept 2.6 2.8051 2.7886 2.5954 

Slope 1.2 1.1859 1.1856 1.1996 
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Once again, the lines are nearly indistinguishable, the slope parameter 

estimates for both IRLS lines are within 1.2% of the actual slope, and the 

intercept estimates are within 8% of the actual parameter value.  Moreover, the 

IRLS line parameter estimates are within 1% of each other, with the slope 

estimates being equal to three decimal places. 

1.5: Bounded Influence Regression 

Bounded Influence Regression utilizes the same procedure used in IRLS, 

except that the weighting function involved utilizes deleted residuals at each 

iteration instead of the raw residuals (#5).  Recall that in least-squares, the fitted 

values for the response are given by: 

�⃗⃗̂� = 𝑿�⃗⃗� , 

which after re-expressing �⃗⃗�  as in equation (11), the above (24) can be 

given as: 

�⃗⃗̂� = [𝑿(𝑿𝑻𝑿)
−1

𝑿𝑻]�⃗⃗� = 𝑯�⃗⃗� . 

The square, symmetric, and positive definite 𝑛𝑥𝑛  “hat matrix” 𝑯 is a linear 

transformation from 𝑹𝑛 → 𝑹𝑛 which maps the observed response values to their 

fitted values under the least-squares model.  Note that the hat matrix is solely a 

function of the predictor matrix and does not depend on the response vector �⃗⃗�   at 

all. 

(24)       

(25) 
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One of the most useful aspects of the hat matrix involves its diagonal 

elements, which represent the “leverage values” of individual observations.  Let 

ℎ𝑖𝑖 for 1 ≤ 𝑖 ≤ 𝑛 represent the 𝑖𝑡ℎ diagonal element of the hat matrix, then ℎ𝑖𝑖 

represents the leverage value of the 𝑖𝑡ℎ observation (#5).  The concept of 

leverage is related to how much impact or effect the ith observation can have on 

the estimated parameters in the model being used to describe the relationship 

between the response and the predictor variables.  The larger the leverage 

value, the more potential impact that observation can have on the model fit to the 

data and the overall conclusions suggested through an analysis based on that 

model.   Generally, higher leverage values identify observations extreme 

(potentially to the point of being consider outliers) in the p-dimensional predictor 

variable space.  Observations with low leverage values are those that are near 

the p-dimensional predictor variable mean vector. 

Consider the raw residual 𝑟𝑖,𝑡 as defined in (2), of the 𝑖𝑡ℎ observation after 

iteration “t”.  The deleted residual 𝑑𝑖,𝑡 represents a re-scaled raw residual given 

by 𝑑𝑖,𝑡 = 
𝑟𝑖,𝑡

1−ℎ𝑖𝑖,𝑡
, where ℎ𝑖𝑖,𝑡 is the 𝑖𝑡ℎ diagonal element of the hat matrix at iteration 

“t”.  Note that  0 < ℎ𝑖𝑖,𝑡 < 1.  Higher leverage values will cause the denominator of 

this expression to decrease, which increases the overall value of the deleted 

residual, resulting in a smaller weight associated with that observation via the 

Huber or Bi-Squared functions.  Therefore, using deleted residuals in place of 
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raw residuals provides a means to reduce the influence of extreme (possibly 

outlier) observations in the predictor variable space on the estimated parameters 

defining the regression model.  

Equation (25) describes calculation of the hat-matrix for the regular least-

squares approach.  However, in a weighted least-squares approach, the vector 

of fitted response values is instead calculated by: 

�̂� = 𝑿�⃗⃗� = 𝑿(𝑿𝑻𝑾𝑻𝑾𝑿)
−1

𝑿𝑻𝑾𝑻𝑾�⃗⃗� . 

Therefore, the hat matrix in this instance is given by: 

𝑯 = 𝑿(𝑿𝑻𝑾𝑻𝑾𝑿)−1𝑿𝑻𝑾𝑻𝑾. 

The diagonal elements of this matrix (27) are used to 

calculate the leverages for the Bounded Influence approach.  Once the deleted 

residuals, or 𝑑𝑖,𝑡 values, are calculated, the MAD (Median Absolute Deviation) 

estimator is calculated on these deleted residuals to produce scaled deleted 

residuals, 𝑑𝑠,𝑖,𝑡, given by: 

𝑑𝑠,𝑖,𝑡 = 
𝑑𝑖,𝑡

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑑𝑖,𝑡−𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖,𝑡)|)/.6745
. 

The weights for the next iteration are then calculated using the same 

weighting functions as used for the IRLS estimators, but now with the scaled 

deleted residuals as inputs rather than simply the scaled residuals. 

 

(26)   

(27) 

(28) 
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1.5.1: Bounded Influence Regression – Simple Example.  

1.5.1.1 Bounded Influence Regression – Simple Example – Huber Weighting 

Function 

Using the data displayed in Table 1, the Bounded Influence approach 

utilizing the Huber weighting function produced the results observed in Tables 12 

through 14 below.   The initial least squares fit of the results produced the least 

squares residuals, which when divided by (1 − ℎ𝑖𝑖) (ℎ𝑖𝑖 being the leverage value 

associated with the 𝑖𝑡ℎ observation) and scaled by the MAD estimate of the 

deleted residuals, resulted in the values in the first column of Table 12 (iteration 

zero). 

Note that the only scaled deleted residuals in Table 12 larger than 1.345 in 

magnitude for iteration zero were those for observations 2 and 6.  These were 

the same observations that received weights of less than one for the IRLS 

regression approach described in Section 1.4.  However, note that the initial 

weights in Table 13 are not the same in this Bounded Influence case.  The initial 

weight for observation 6 is similar, but for observation 2, the initial Bounded 

Influence weight (0.6705) is less than the IRLS weight (0.7333).  This is because 

the relatively large residual for observation 2 has relatively high leverage in this 

data set (h22 = 0.159). 
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The final Bounded Influence weights are 0.6387 and 0.7741 for 

observations 2 and 6, respectively, while the corresponding final IRLS weights 

were 0.6595 and 0.7621.  In addition, the Bounded Influence approach also 

down-weighted observation 19 (also with initial leverage = 0.159) to 0.9180, while 

this observation was not down-weighted at all in the IRLS approach. 
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Convergence to four decimal places for scaled deleted residuals, weights, 

and parameter estimates is achieved after no more than five iterations.  

Additionally, the only observations which were ever down-weighted in the 

process were observation numbers 2, 6 and 19.   This is a slightly different result 

than that for the corresponding IRLS where only observations 2 and 6 were 

down-weighted.  

Table 14:  Bounded Influence Parameter 
Estimates Using Huber Weighting Function 

  Iteration         Intercept         Slope 

1 2.5954 1.1996 

2 2.7807 1.1873 

3 2.8124 1.1852 

4 2.8142 1.1850 

5 2.8142 1.1850 

6 2.8142 1.1850 

7 2.8142 1.1850 

8 2.8142 1.1850 

9 2.8142 1.1850 

10 2.8142 1.1850 
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1.5.2.2 Bounded Influence Regression – Simple Example – Bi-Weight 

Weighting Function 

In order to accelerate the process of convergence for the Bi-Weight 

function, the initial iteration was once again taken from the first iteration obtained 

using the Huber weighting function.  Subsequent iterations weighted the scaled 

deleted residuals using the Bi-Weight function (23).  Ten iterations were 

performed, the results of which are given below in Tables 15, 16 and 17.  Note 

that the scaled residuals at iteration zero represent the first iteration Huber 

weights.  This was done as stated before to promote faster convergence for the 

parameter estimates. 
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Here, convergence to four decimal places is achieved for scaled deleted 

residuals, weights, and parameter estimates after no more than six iterations. 

Unlike the Huber function, the Bi-Weight function once again down-

weighted every observation.  However, three of the four most down-weighted 

observations from the Bi-Squared function, which were weighted below 0.9 in the 

last iteration (namely, observations 2 (w2 = 0.6382), 6 (w6=.7479), 13 

Table 17:  Parameter Estimates Using Bi-
Squared Weighting Function 

Iteration Intercept Slope 

1 2.7807 1.1873 

2 2.7916 1.1854 

3 2.7929 1.1853 

4 2.7931 1.1853 

5 2.7931 1.1853 

6 2.7931 1.1853 

7 2.7931 1.1853 

8 2.7931 1.1853 

9 2.7931 1.1853 

10 2.7931 1.1853 
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(w13=0.8911), and 19 (w19=0.8378)), were also the only observations down-

weighted when the Huber function was used.   

1.5.2.3 Comparison of Bounded Influence Weighting Function Approaches 

In Figure 9 below, the actual line is plotted with the Bounded Influence 

lines obtained using the Huber and Bi-Weight functions, as well as the common 

NSLR line.  Note that the fitted lines, as with the Theil-Sen and Wilcoxon lines, 

are again virtually indistinguishable in this plot. 

 

Figure 9:  B.I. Huber fit vs B.I. Bi-Square fit, including Actual Line 
and Least-Squares Fit. 
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Parameter estimates obtained from the two weighting functions are given 

in Table 18 below.  

 

Table 18: Comparison of NSLR with Huber and Bi-Weight function IRLS 
parameter estimates for Simple Example 

Parameter Actual Huber Bi-Square 
Least-

Squares 

Intercept 2.6 2.8142 2.7931 2.5954 

Slope 1.2 1.1850 1.1853 1.1996 

 

 

The slope parameter estimates for both Bounded Influence lines within 

1.25% of the actual slope, and the intercept estimates are within 8.25% of the 

actual parameter value.  Moreover, just as with the IRLS parameter estimates, 

the Bounded Influence line parameter estimates are within 1% of each other, with 

the slope estimates being equal to three decimal places. 

1.6: Bootstrap Regression 

When the number of observations in a sample is small, it is difficult to 

ascertain the distribution of the underlying population, and to make the 

assumptions of error normality and constant variance with acceptable certainty.  
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In these cases, bootstrapping methods can be used as a more robust alternative 

(#7) to least-squares.  Bootstrapping regression first fits a simple linear model (1) 

to the data.  From here, one of two procedures may be chosen. 

In both procedures, a large number (say M, usually M = 300 to 3000) 

bootstrap samples (i.e., samples with replacement) are obtained.  In the first 

procedure, these samples are comprised from the original set of residuals to the 

fitted NLSR model.  These re-sampled residuals are then added to the original 

NLSR fitted values to create new bootstrap samples of the response.  NLSR 

models are then fit to each of these bootstrapped samples of the response, and 

estimates for the regression parameters are obtained. The final estimate is 

obtained by taking the arithmetic mean of the parameter estimates for each of 

the bootstrapped samples.  Clearly, this approach will result in a final bootstrap 

estimate essentially equal to the NLSR estimates.  The value in the bootstrap 

approach using the residuals is in the formation of potentially more valid 

confidence interval estimates than those obtained when assuming the errors are 

NID(0, σ2). 

1.6.1:  Residual Bootstrap 

  A description of this residual-only bootstrapping approach is initiated by 

consideration of model (1), given by:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, for 𝑖 = 1,2, … , 𝑛, 
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With 𝑟𝑖 = 𝑦𝑖 − 𝑦�̂�, where 𝑦�̂� is the least-squares fit for observation 𝑖, 𝑓𝑜𝑟 𝑖 =

1,2, … , 𝑛, the residual-only bootstrapping procedure involves taking M bootstrap 

samples (i.e., samples with replacement) of the 𝑟𝑖 – each residual bootstrap 

sample will be represented by a column vector �⃗⃗� 𝑗, with j = 1,2,…,M, whose 

components consist of sampled 𝑟𝑖 (with replacement).  Then, for each bootstrap 

sample j, define: 

�⃗⃗� 
𝑗
= �⃗⃗̂� + �⃗⃗� 𝑗, for j = 1,2,…,M, 

where �⃗⃗̂�  is a column vector containing the original least-squares fitted 

values.  Least-squares models are then fitted to each �⃗⃗� 
𝑗
 (with the original paired 

predictor values), which yields intercept and slope parameter estimates �̂�0
𝑗
 and 

�̂�1
𝑗
, respectively. 

Finally, the overall parameter estimates are calculated as follows: 

�̂�0 = 
∑ �̂�0

𝑗𝑀
𝑗=1

𝑀
,   �̂�1 = 

∑ �̂�1
𝑗𝑀

𝑗=1

𝑀
.                                                 

 

           1.6.2: Observation Bootstrap 

. The second procedure involves taking bootstrap samples of the 

multivariate observations themselves, rather than just the least-squares 

residuals, and then fitting least-squares models to each bootstrap sample of 

(28) 

     

(29) 
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observations.   The overall estimators for the regression parameters are 

calculated once again by equation (29), by taking the arithmetic mean of the 

estimators for all the samples.  The value of this approach is that the final 

estimated parameters may not always simply return the original least squares 

estimates, but can also allow for more robust interval estimation of the 

parameters. 

1.6.3: Bootstrap Regression – Simple Example 

1.6.3.1:  Bootstrap Regression – Residuals Only – Simple Example 

Figure 10 below displays histograms for the M = 3,000 bootstrap intercept 

and slope estimates obtained through simply bootstrap sampling the original 

least squares residuals of the data displayed in Table 1, and using these to 

construct parameter estimates as described above.  Note that both histograms 

are centered at the original least squares estimates of these parameters (2.5954 

for the intercept and 1.1996 for the slope) as would be expected. In fact, to four 

decimal places, these bootstrap estimates are identical to the least squares 

estimates. 
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Figure 10:  Histograms of Residual-Only Bootstrap 
Simple Example Parameter Estimates 
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1.6.3.2:  Bootstrap Regression – Complete Observations – Simple Example 

Figure 11 below displays histograms for the M = 3,000 bootstrap intercept 

and slope estimates obtained through bootstrapping the observations, then fitting 

least squares estimates for each such bootstrap sample (i.e., the �̂�0
𝑗
 and �̂�1

𝑗
 for j = 

1, …, M = 3000).  In this simple example case, where the data is well-behaved, 

the results for this approach are nearly identical to those of the residual only 

bootstrap. 
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Figure 11:  Histograms of Observation-Based Bootstrap 
Simple Example Parameter Estimates  
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 1.6.1.3 Comparison of Bootstrap Approaches – Simple Example 

A plot of the bootstrapped lines for both the residual-only and complete 

observation approaches, as well as the least-squares fit along and the actual 

model appears in Figure 12 below.  As noted above, and as expected, the least 

squares and the bootstrap lines are nearly identical. 

The respective parameter estimates are displayed in Table 19.  The 

bootstrap estimators of slope are within 0.05% of the actual slope result, and the 

bootstrap estimators of the intercept are within 1% of the actual intercept value.   

This accuracy is primarily due to the least squares estimators for this data also 

having very small errors.  Recall that these bootstrap estimators will converge to 

the least squares estimators, and depend on how well these estimate the actual 

parameters for the original set of data.  
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Table 19: Comparison of Bootstrapping (Residuals) Regression Model and 
Least Squares for Simple Example 

Parameter Actual 
Bootstrap 

(Residuals) 

Bootstrap 

(Observations) 

Least-

Squares 

Intercept 2.6 2.5836 2.5922 2.5954 

Slope 1.2 1.2003 1.2004 1.1996 

1.7: Summary Comparison of Alternatives – Simple Example 

In this simple example, fitting the data in Table 1, the data were obtained 

from a normally distributed error population.  As a result, all of the alternative 

Figure 12:  Bootstrapping (Residuals & Complete Observations) 
Regression vs Least Squares fit and Actual Model 
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methods to NLSR still generate estimates very similar to those provided by the 

commonly applied NLSR.  One way to compare estimators is to utilize 

confidence intervals as these essentially attempt to capture the inherent 

uncertainty in the related point estimates of the parameters of interest.  More 

narrow confidence intervals suggest less uncertainty and a potentially better 

estimator; however, the most important aspect for any confidence interval is that 

it includes the true value of the parameter of interest.  Any confidence interval will 

either include this parameter or it will not, but hopefully, the procedure for 

generating the interval will include it at a rate equal to, or very nearly equal to the 

stated confidence coefficient for the interval.  Consequently, having some means 

to generate confidence intervals for all of the estimation methods will provide a 

frame of reference for cross-comparison of estimation approaches. 

1.7.1 Traditional Least Squares Confidence Intervals 

 The NLSR model allows for construction of confidence intervals on the 

regression parameters by assuming that the model errors are normally and 

independently distributed with zero mean and constant variance.  Under this 

assumption, the least squares parameter estimates divided by estimates of their 

standard errors follow a Student’s t-distributions with (n-2) degrees of freedom.  

Consequently, NLSR confidence intervals are centered at the point estimates for 

the parameters (least-squares estimates) with a margin of error equal to the 
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appropriate t-distribution percentile multiplied by an estimate of the respective 

parameter’s standard error.  This confidence interval method is particularly well-

suited in the case of the simple example data in Table 1 because the errors in 

this data set come from a normally and independently distributed populations 

with zero means and the same variance.   

Confidence intervals for  𝛽𝑘, 𝑘 = 0,1 are given by (#5) as: 

𝑏𝑘 ± 𝑡
(1−𝛼

2⁄ ,   𝑛−2)
∗ �̂�{𝑏𝑘}, k = 0,1, 

Where 𝑏𝑘 = the respective least squares estimate of 𝛽𝑘, k = 0, 1;  𝑡(𝑝,   𝑑𝑓) = the pth 

percentile of a Student’s t-distribution with df degrees of freedom; and estimates 

of the standard errors of the least squares estimates are given as: 

�̂�{𝑏𝑘} = √𝑀𝑆𝐸𝑐𝑘𝑘, 

where 

MSE = Mean Square Error =  
∑ (𝑟𝑖)

2𝑛
𝑖=1

𝑛−2
, 

with 𝑟𝑖 as given in (2), and 𝑐𝑘𝑘 the kth diagonal element of (𝑿𝑻𝑿)
−1

, with the matrix 

𝑿 as defined in (8) with p = 2 and k = 0, 1.  

Performing the calculations shown in (30-32) with an 𝛼 = 0.05 results in 

the 95% NLSR confidence intervals shown in Table 20 below: 

  

(31) 

 

 

 (30) 

 

(32) 
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Table 20:  95% Confidence Intervals on Least-Squares Parameters 

Parameter Lower Bound Upper Bound 

Intercept 1.5336 3.6573 

Slope 1.111 1.2883 

 

Not only do the actual parameter values of 2.6 and 1.2 lie inside their 

respective confidence intervals, but also all the results for the other estimation 

approaches considered do as well.  

Section 1.7.1.2:  Theil-Sen Confidence Intervals 

Because the Theil-Sen slope estimator is the median of pairwise slopes, a 

confidence interval on the slope parameter can be constructed by using the 

percentile approach to finding a confidence interval for a median (#8).   This 

procedure is initialized by finding  𝐶𝛼
2⁄
, the (

𝛼

2
)
𝑡ℎ

 lower percentile of the binomial 

distribution with parameters N = (𝑛
2) = (20

2 ) = 190 (because there are (𝑛
2) total 

pairwise slopes) and p = 0.5.  Then, define U and L as below: 

𝑈 =  𝑁 − 𝐶𝛼
2⁄
 

𝐿 = 1 + 𝐶𝛼
2⁄
 

     (33) 

(34) 
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Then a (1 − 𝛼)% confidence interval on the slope can be constructed by 

using the 𝐿𝑡ℎ and 𝑈𝑡ℎ order statistics of the pairwise slopes as lower and upper 

bounds of the confidence interval, respectively.  Therefore, if 𝑥𝐿 and 𝑥𝑈 are the 

respective 𝐿𝑡ℎ and 𝑈𝑡ℎ order statistics of pairwise slopes, the (1 − 𝛼)% confidence 

interval for 𝛽1is given by (𝑥𝐿, 𝑥𝑈).  It should be noted that because the binomial 

distribution is discrete, exact (1 − 𝛼)% confidence intervals often cannot be 

constructed for any given value of 𝛼.   However, conservative approximations of 

(1 − 𝛼)% confidence intervals can be created by using the largest 𝐶𝑏 such that 

𝑏 ≤
𝛼

2
 in place of 𝐶𝛼

2⁄
 in equations (33) and (34) above. 

For the binomial distribution with N = (20
2

) = 190 and p = 0.5, 𝐶0.0249 = 81 

(Note: 𝐶0.0347 = 82) is the desired lower percentile value.  Therefore, an 

approximate 95% confidence interval (with 𝛼 ≈ .05) can be constructed by using 

81 in place of 𝐶𝛼
2⁄
 in equations (33) and (34) above.  This interval is given by 

(𝑥82, 𝑥109), which yields: 

( 1.12568, 1.22094). 

This ~95% confidence interval clearly captures the actual slope parameter 

of 1.2. 

A (1 − 𝛼)% confidence interval on the intercept parameter can be 

constructed in a similar way because the intercept estimator is the median of 
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observations regressed on the slope estimator.  Recall from equation (14) that 

the Theil-Sen intercept estimator is given by: 

𝑏0 =  𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑘 − 𝑏1𝑥𝑘), for 𝑘 = 1,2, …𝑛. 

Here, the median is taken from a sample of 𝑛 = 20 observations.  

Therefore, a ~95% confidence interval can be constructed on the intercept 

parameter in a similar fashion to that described above; however, this time using 

binomial percentiles with 𝑁 =  𝑛 =  20 and 𝑝 =  .5.  From this distribution, 𝐶0.0207 

= 5 and 𝐶0.0577 = 6; therefore, a (1-2*0.0207)% = 95.86% confidence interval on 

the intercept can be computed as (𝑥6, 𝑥15), where 𝑥𝑖 is the 𝑖𝑡ℎ order statistic of the 

(𝑦𝑘 − 𝑏1𝑥𝑘), k = 1, …, n = 20, values.  This yields the interval: 

(2.404225, 3.704527), 

which captures the true parameter of 2.6.  Table 21 below summarizes the Theil-

Sen confidence intervals: 

Table 21:  ~95% Confidence Intervals on Theil-Sen Parameters 

Parameter Lower Bound Upper Bound 

Intercept 2.4042 3.7045 

Slope 1.1257 1.2209 
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Section 1.7.1.3:  Wilcoxon Confidence Intervals 

The Wilcoxon intercept estimator is a median, so a confidence interval for 

the intercept can be constructed in a similar manner to that used for the slope 

and the intercept in the Theil-Sen model.  Let 𝐶𝛼
2⁄
 be the (

𝛼

2
)
𝑡ℎ

 lower percentile of 

the binomial distribution with parameters N = 20 and p = 0.5.  Define U and L 

once again as given in equations (33) and (34).  L and U give the order statistics 

of the twenty values (𝑦𝑖 − 𝑏1𝑥𝑖), 𝑖 = 1,2,… ,20,  which serve as the lower and upper 

endpoints of the confidence interval, respectively.  When calculating the Theil-

Sen Intercept ~95% confidence interval in the previous section, we found L and 

U to be 6 and 15, respectively.  Therefore the ~95% confidence interval for the 

Wilcoxon median will have endpoints equal to the 6th and 15th order statistics of 

the (𝑦𝑖 − 𝑏1𝑥𝑖) sample, which gives: 

(2.3929, 3.6891). 

For the slope parameter,(#9) proposes a confidence interval that uses the 

jackknife technique to estimate the variance of 𝑏1.  The (1 −
𝛼

2
)% confidence 

interval for 𝛽1 is given by: 

𝑏1 ± 𝑡𝑚−1,𝛼 2⁄  ∗ √𝑣𝑎𝑟(𝑏1)̂ . 

In equation (35) above, “m” is the number of unique pseudo-values of 𝑏1.  

Each of the n=20 psuedo-values of 𝑏1, which we will denote by �̂�1(𝑖) for 𝑖 =

(35) 
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 1,2, … . 𝑛, is obtained by calculating the slope parameter estimate on the sample 

while excluding the 𝑖𝑡ℎ data point.  Let 𝑏1(𝑖) denote the slope estimate derived 

from excluding the 𝑖𝑡ℎ data point, for 𝑖 =  1,2, … , 𝑛; then the 𝑖𝑡ℎ pseudo-value is 

given by: 

�̂�1(𝑖) = 𝑛𝑏1 − (𝑛 − 1)𝑏1(𝑖) 

𝑣𝑎𝑟(𝑏1)̂  is calculated as the sample variance of these pseudo-values. 

This yields a 95% confidence interval on the slope parameter given below: 

( 1.0062, 1.3429). 

Section 1.7.1.4:  IRLS Confidence Intervals 

Confidence Intervals can be constructed for the IRLS parameters in a 

similar fashion to the least-squares confidence intervals because of the similar 

nature of their calculation.  Under normal least squares, confidence intervals 

were obtained using the estimators as interval midpoints, and margins of error – 

given as products of t-distribution percentiles and estimates of the standard 

errors of the parameter estimators – were added and subtracted from the 

midpoints, as given in equations (30), (31) and (32).  With the inclusion of 

weights, the estimates of standard error differ slightly.  Under IRLS, we have the 

following: 

�̂�{𝑏𝑘,𝑤} = √𝑀𝑆𝐸𝑤𝑐𝑘𝑘,𝑤, 

(36) 

(37) 
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where 𝑏𝑘,𝑤 is the respective IRLS estimate of 𝛽𝑘, k = 0, 1, and 𝑐𝑘𝑘,𝑤 is the 

kth diagonal element of (𝑿𝑻𝑾𝑻𝑾𝑿)
−1

, with the matrix 𝑿 as defined in (8) and the 

matrix 𝑾 as defined immediately following equation (20).  

 To estimate the standard error under IRLS, equation (38) below was used 

in place of (31): 

𝑀𝑆𝐸𝑤  =  𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =   
∑ 𝑤𝑖(𝑟𝑖)

2𝑛
𝑖=1

𝑛−2
. 

The 𝑤𝑖 and 𝑟𝑖 values are the weights and residuals (respectively) at the 

last iteration of the estimation process (i.e., the first iteration obtaining desired 

convergence). 

Performing the calculations shown in equations (30 and 37-38) with 𝛼 = 

0.05 results in the 95% IRLS confidence intervals shown in Table 22 below: 

Table 22:  95% Confidence Intervals on IRLS Parameters  

Parameter Lower Bound Upper Bound 

Intercept (Huber) 1.7778 3.8323 

Slope (Huber) 1.1013 1.2705 

Intercept (Bi-Squared) 1.7388 3.8385 

Slope (Bi-Squared) 1.0988 1.2725 

 

(38) 
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All four confidence intervals capture the respective true parameter values 

they are meant to estimate. 

Section 1.7.1.5:  Bounded Influence Confidence Intervals 

Since both IRLS and Bounded Influence estimators are simply weighted 

least-squares estimators, confidence intervals for Bounded Influence parameters 

can be calculated using the same procedure used for IRLS intervals.  Since the 

weights will differ, so will the residuals generated by each fit; however, all the 

same respective formulas given in equations (30 and 37-38) apply.   

  Confidence Intervals on the Bounded Influence parameter estimates are 

given Table 23 below: 

Table 23:  95% Confidence Intervals on Bounded Influence Parameters  

Parameter Lower Bound Upper Bound 

Intercept (Huber) 1.7883 3.8402 

Slope (Huber) 1.1005 1.2696 

Intercept (Bi-Squared) 1.7413 3.845 

Slope (Bi-Squared) 1.0982 1.2723 
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Section 1.7.1.6:  Bootstrap Confidence Intervals 

A 100(1 − 𝛼)% confidence interval can readily be constructed on the 

bootstrap parameters by using the 
𝛼

2
 and (1 −

𝛼

2
) percentiles of the parameter 

estimates obtained from the bootstrap samples.  This is because the bootstrap 

method generates an empirical sampling distribution for each of the parameters.  

For a 95% confidence interval, the 2.5 and 97.5𝑡ℎ
 percentiles of the parameter 

estimates from the generated bootstrap samples provide the confidence intervals 

for intercept and slope parameters are given in Table 24 below. 

Table 24:  95% Confidence Intervals on Bootstrap Parameters 

Method Residuals Observations 

Parameter Lower Bound Upper Bound Lower Bound Upper Bound 

Intercept 1.6155 3.4946 1.2506 3.6940 

Slope 1.1218 1.2772 1.1145 1.3026 

 

The actual parameters of 2.6 (intercept) and 1.2 (slope) are captured in all 

four of the confidence intervals above. 
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1.7.2 Summary and Comparison of Confidence Intervals  

Charts showing the confidence interval bounds for both parameters using all 

methods are given in Figure 13 below.  A table summarizing all confidence 

bounds is given below in Table 25 as well.  Observe that every confidence 

interval captures the parameter that it is meant to estimate.  This suggests that 

the alternative methods to least-squares are sufficient even in cases where 

NSLR (i.e., least squares) is supposed to be optimal, such as with this dataset, in 

which the errors are normally and identically distributed with mean zero and 

constant variance. 

It is worth noting that the Theil-Sen and Wilcoxon confidence intervals are 

the narrowest for the intercept parameter.  In addition, the Bootstrap-Residuals 

interval is also narrower than the least squares interval for the intercept 

parameter. 

For the slope parameter, the Wilcoxon jackknife interval is clearly the 

widest.  However, the Theil-Sen and Bootstrap-Residual intervals again are not 

as wide as the least squares interval. 
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Figure 13:  Confidence Interval Comparisons for Simple Example 
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Section 2: Comparison of Alternatives in the Presence of Outliers 

In Section 1, the various estimation methods were compared using a 

simple and well-behaved example.  The NLSR estimators are known to be 

optimal in this situation; however, as was discussed in the previous section, all 

the alternatives produced results reasonably close to the NLSR result. 

In this section, how NLSR and all the considered alternatives perform 

when the data is less well-behaved will be examined.  One of the original 

observations will be manipulated to become an outlier in either the predictor 

space, the response variable space, or both. 

2.1:  Outliers in the Response Variable Space Only 

In order to examine the results of injecting outliers in the response variable 

only, the original observation (10, 14.31045) was altered by adding the maximum 

of the original response variables to the response value of this observation, 

resulting in the new paired observation (10, 41.1186).  A scatterplot of the “new” 

(and now not so well-behaved) data is provided in Figure 14 below. 
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Figure 14:  Scatterplot of Data with Response Outlier at X = 10 

 

 

Using the methods described in Section 1, each estimation method was 

performed on this data set now including a single outlier in the response space.  

As displayed in Figure 15, the Least-Squares fit has a nearly identical slope to 

the actual line, but the fitted intercept (and overall line) has received a non-

negligible upward shift.    The similar slope is due to the outlier appearing at a 

very low leverage point – near the middle of the predictor variable values.  Note 

that the general quality of the fit is poor as virtually all of the ordered pairs now 

fall below the fitted line. 
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Figure 15:  Least Squares fit with Response Outlier at X=10 
 

 

As displayed in Figure 15, the Least-Squares fit has a nearly identical 

slope to the actual line, but the fitted intercept (and overall line) has received a 

non-negligible upward shift.    The similar slope is due to the outlier appearing at 

a very low leverage point – near the middle of the predictor variable values.  Note 

that the general quality of the fit is poor as virtually all of the ordered pairs now 

fall below the fitted line. 

In contrast to this, Figure 16 shows that both the Theil-Sen and Wilcoxon 

lines are nearly indistinguishable from the actual line, and have hardly been 

influenced at all by the presence of the outlier.  This observation demonstrates 
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the value of these estimation approaches when such extreme observations might 

appear in the data. 

Figure 16:  Theil-Sen and Wilcoxon fits with Response Outlier at X=10 
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As shown in Figure 17, both IRLS and Bounded Influence lines, 

regardless of weighting function, also appear to provide fits similar to the Theil-

Sen and Wilcoxon approaches.  Table 26 below shows the final iteration weights 

for each of the twenty observations for all of the fits displayed in Figure 17, and 

“significantly down-weighted” observations (those with weights smaller than 0.9) 

are highlighted in red. 
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Figure 17:  IRLS and Bounded Influence fits with 
Response Outlier at X=10 
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For both approaches, the Huber weighting function has down-weighted 

the observation at X = 10 significantly – especially in comparison to the rest of 

the observations – and the Bi-Square function has completely thrown out this 

observation (i.e., it has a weight of zero).  An interesting note is that both the 

IRLS and Bounded Influence approaches have down-weighted the exact same 

observations under the Huber function – that is, observations with X = 2, 6 and 

10.  In the original dataset, observations with X = 2 and X = 6 were down-

weighted by the Huber function, so the presence of the Response outlier at X = 

10 has not caused any of the other observations to be down-weighted which 

were not originally down-weighted.  A similar comparison cannot directly be 

made between the results of IRLS and Bounded Influence under the Bi-Square 

function, because the criteria used for identifying significant down-weights (those 

being smaller than 0.9) is arbitrary, however, the down-weighted observations 

with this weighting function are similar to those down-weighted with the original 

data, which were at X = 2, 6, 13, and 19. 

Figure 18 shows that the Bootstrap approaches, whether using residuals 

or the full observations for resampling, tend to provide fits similar to that of the 

least-squares approach.  This result indicates that neither Bootstrap approach is 

particularly robust in the presence of such outliers. 
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Figure 18:  Bootstrap fits with Response Outlier at X=10 
 

 

All of the estimated parameters for the lines displayed in Figures 15-18 

(and ~95% confidence intervals on those parameter estimates) are given in 

Tables A1 (intercept estimates) and A2 (slope estimates) in Appendix 1.  All of 

these intervals are graphically displayed in Figure 19. 
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Figure 19:  Confidence Intervals on Intercept and Slope Parameter with 
Response Outlier at X=10 

 

 

 

Observe that the slope estimates obtained once the outlier has been 

incorporated into the dataset have only changed minimally from those obtained in 

Section 1.  The largest percentage change from the original slope estimator of 

any method is less than 2%, which occurred for the Bootstrap method on the 
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observations.  However, the confidence intervals for the slope estimate have 

noticeably widened for all methods except Theil-Sen. 

The intercept point estimates have experienced larger changes.   For both 

bootstrapping methods and least-squares they have increased by more than 

50% of their original values, while they have changed minimally for the other 

methods.  The ~95% confidence intervals for least-squares and both bootstrap 

sets of estimators have widened much further than those for the other methods 

as well. 

However, the robustness of the slope estimator for all methods in the 

presence of this outlier is primarily because the outlier was introduced near the 

mean of the predictor values (�̅� = 10.5).  Recall that the predictor value 

associated with the outlying response is 10.  If instead, an outlier is introduced at 

the observation with X = 3 by adding the maximum of all response values to the 

original response at X =3, producing a response value of 33.1263, then as can 

be seen in Figure 20 below, the least-squares line is now not merely shifted 

higher, but the slope is also noticeably flatter.  The least-squares line again 

provides a relatively poor fit of the majority of the observations. 
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Figure 20:  Least Squares Fit with Injected Response Outlier at X=3 
 

 

As displayed in Figure 21, similar to when the response outlier was at X = 

10, with it now at X =3, the Theil-Sen is notably robust and does not differ greatly 

from the actual line.  The same can be said for the Wilcoxon line. 
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Figure 21:  Theil-Sen and Wilcoxon fits with Response Outlier at X=3 
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As shown in Figure 22, IRLS lines under both Huber and Bi-Square schemes are 

barely distinguishable from the true line in the presence of this outlier.  The 

Bounded Influence fits appear markedly robust as well, with the Bi-Square 

approach slightly outperforming the Huber approach. 

The final iteration weights are shown in Table 27.  Note that for both the 

IRLS and Bounded Influence estimators, the Bi-Square weighting function has 

again given the outlier a weight of zero, essentially removing it from the data set.   

The final Huber weight for this point is also near zero at ~0.05 for both IRLS and 

Bounded Influence approaches. 
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Figure 22:  IRLS and Bounded Influence Fits with Response Outlier at X=3  
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Figure 23:  Bootstrap Fits with Response Outlier at X=3 

 

 

In comparing the fits in Figure 23 with the fit displayed in Figure 20, it 

becomes clear that both bootstrap methods produce nearly identical results with 

each other, as well as to least squares.  Consequently, it appears bootstrapping 

methods fail to be robust estimators in this situation.  This lack of robustness for 

the bootstrap estimators was suggested in consideration of the intercept 

estimates these approaches produced when the response outlier was at X = 10.  

These results with the outlier at X = 3 confirm that lack of robustness for these 

estimation approaches. 



93 
 

 

Newly obtained parameter estimates with the introduction of this outlier at 

X = 3, along with their approximate 95% confidence intervals can be found both 

in Tables A3 (intercept) and A4 (slope) in Appendix 1.   These intervals are also 

displayed in Figure 24. 

Figure 24:  Confidence Intervals on Intercept and Slope Parameter with 
Response Outlier at X=3 
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The confidence intervals for all regression methods have captured the true 

intercept parameter except for the Theil-Sen and Residual Bootstrap estimators.  

Interestingly, for IRLS and Bounded Influence Regression, the intercept 

estimators are much closer to those from the original dataset when the Bi-

Squared function is used rather than the Huber function. 

With this outlier at X = 3, the contaminated dataset yields slope estimates 

which vary significantly from the true slope of 1.2 for least-squares and bootstrap 

methods.  This is in contrast to the dataset in which the response outlier was 

located at X = 10, for which all slope estimates were relatively robust.  However, 

all confidence intervals still capture the true slope parameter value.  Another 

interesting observation is the relative level of robustness of approaches that 

utilize the Bi-Squared weighting function (IRLS and Bounded Influence) in 

comparison to other approaches.  The parameter estimates for these approaches 

change only minimally with the introduction of outliers, even compared to the 

other robust approaches. 

Overall, both the least-squares and bootstrap sets of estimators can be 

unreliable in the presence of merely a single response outlier.  Although the 

confidence intervals for these approaches have captured the true parameters 

they seek to estimate in these instances, they are excessively wide and the point 

estimates are far from the true value, both of which are potentially problematic for 

any further use of these models. 
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2.2:  Outliers in the Predictor Variable Space Only 

In this sub-section, the effects of an outlier in the predictor space only will 

be evaluated.  Such an outlier will be constructed by changing the x-value of the 

paired observation (10, 14.3105) to (30, 14.3105).  A plot of this altered data set 

is shown in Figure 25 below. 
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Figure 25:  Scatterplot of Data with Injected Predictor Outlier 
 

 

As demonstrated in Figure 26, this type of outlier causes serious problems 

for the least squares estimation approach.  The high leverage associated with 

this outlier has driven the slope increasingly towards zero, and again produced a 

model that does a poor job of describing the trend exhibited by the majority of the 

data. 
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Figure 26:  Least-Squares Fit with Predictor Space Outlier 
 

 

On the other hand, Figure 27 shows that both the Theil-Sen and Wilcoxon 

estimation approaches have essentially ignored the outlier and continue to 

produce fits near to the actual relationship, and that, consequently, still provide 

reasonably useful summaries of a majority of the data. 
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Figure 27:  Theil-Sen and Wilcoxon fits with Predictor Outlier (X = 10 -> 30) 
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Figure 28 shows that like the Theil-Sen and Wilcoxon approaches, both 

the IRLS and Bounded Influence estimators also provide fits that are robust to 

the presence of this predictor space outlier.  The final weights used for each of 

these approaches appear in Table 28 and show again that the Bi-Square 

weighting function removes the outlier from the dataset, while the Huber weights 

for the outlier are near 0.05. 
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Figure 28:  IRLS and Bounded Influence Fits with 
Predictor Outlier (X = 10 -> 30)  
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In contrast to the robustness demonstrated by the least-squares 

alternatives considered above, the bootstrap approaches (similar to least 

squares) poorly fit the majority of the data.  Comparison of Figures 29 and 26 

indicate that the least squares and bootstrap fits are very similar, with the 

Bootstrap-Residual approach being virtually identical to the least squares fit. 

   

Figure 29:  Bootstrap Fits with Predictor Space Outlier 

 

 

 

 

 

 

 

 

 

 

 

The parameter estimates for the models displayed in Figures 26-29 above 

(and their ~95% confidence intervals) can be found in Tables A5 (intercept) and 

A6 (slope) in Appendix 1, and are graphically displayed in Figure 30 below.  
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These results share similarities with the results from those obtained with the 

response outliers in sub-section 2.1, more so when the response outlier was 

located at a higher leverage location, which this predictor space outlier certainly 

is (i.e., leverage value = 0.384, over twice as large as the next largest of 0.158 at 

X =1).  The least-squares and bootstrap approaches have the most deviant 

parameter estimates.  However, their confidence intervals are much wider, which 

allowed them to capture the true intercept parameter; however, both least-

squares and the residuals bootstrap intervals did not capture the true slope 

parameter. 

The Theil-Sen approach, while producing a more accurate point estimate 

than least squares on the slope parameter, also failed to capture the slope 

parameter in a ~95% confidence interval because its confidence interval is so 

narrow compared to the confidence intervals from other approaches. 
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Figure 30:  Confidence Intervals on Intercept and Slope Parameter with 
Predictor Space Outlier 
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2.3:  Outliers in Both the Response and Predictor Variable Spaces  

In this section, estimation results with an outlier in both the predictor and 

response spaces will be evaluated.  Within this category of outliers, two 

contrasting cases will be considered – one in which the outlier is consistent with 

the overall linear trend of the data, and one in which the outlier is inconsistent 

with the general linear trend. 

2.3.1:  Outlier in Both Spaces Consistent with Linear Trend 

 Here, the observation (20, 25.42093) has been changed to (30, 38.6), 

which is equivalent to Y = 1.2*(30) + 2.6.   This is equivalent to an observation 

from the true linear relationship in the original data with an error term of zero.  A 

scatterplot of the altered data appears in Figure 31 below. 
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Figure 31:  Scatterplot of Data with Outlier 
Consistent with Linear Trend 

 

 

The actual relationship is plotted against each of the fits above in Figures 

32-35 below.  As expected, since this type of outlier only reinforces the trend 

exhibited in the main body of the data, all methods came very close to fitting the 

actual line. 
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Figure 32:  Least-Squares Fit with Outlier Consistent with Linear Trend 
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Figure 33: Theil-Sen and Wilcoxon Fits with Outlier Consistent  
with Linear Trend 
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Figure 34:  IRLS and Bounded Influence with Outlier Consistent with Linear 
Trend 
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The final iteration weights for the fits displayed in Figure 34 are shown in 

Table 29.  Note that for this type of outlier (last row, when X = 30), the weights 

applied are 1 for both approaches for the Huber weights, and very near 1 for the 

Bi-Square weighting function.  
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Figure 35:  Bootstrap Fit with Outlier Consistent 
with Linear Trend 

 

 

The parameter estimates and associated ~95% confidence intervals for 

the fits in Figures 32-35 are displayed in Tables A7 (intercept) and A8 (slope) in 

Appendix 1, and also shown in Figure 35 below. The results obtained from all 

methods were relatively close, much like the original dataset from the Section 1 

simple example.  Since the outlier (30, 38.6) represented a random error of zero 

from the standard normal distribution (also its expected value), this created a 

situation in which the initial optimality of least squares did not change. 
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2.3.2:  Outlier in Both Spaces Inconsistent with Linear Trend  
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To create an outlier in both spaces which is inconsistent with the linear 

trend, the x-value of the original observation at x = 20 was changed to 30, and 

two times the range (max(y) – min(y)) of the original data was subtracted from 

the response of this observation. Hence, a new observation (30, -22.6261) was 

generated in place of the original observation (20, 25.4208).  A scatterplot of this 

new data is displayed in Figure 37 below. 

 

Figure 37:  Scatterplot of Data with Outlier 

Inconsistent with Linear Trend 
 

 

The actual relationship is plotted against each of the fits generated by the 

considered estimation approaches in Figures 38-41 below.  Figure 38 clearly 

shows the problem an outlier of this nature poses when attempting to use least 
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squares methods to model the trend in this data.  The least squares fit is 

effectively a horizontal line suggesting no relationship between these two 

variables.  This is obviously not true for a majority of the observations.  

 

Figure 38:  Least-Squares with Outlier Inconsistent 
with Linear Trend 

 

 

In contrast to the extremely poor fit provided by the traditional least 

squares method, Figures 39 and 40 show that the Theil-Sen, Wilcoxon, IRLS, 

and Bounded Influence approaches provide estimates of the relationship 

parameters that are robust to this type of outlier.  The final iteration weights used 

for these estimators are given in Table 30, and again show that the Bi-Square 
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weighting function effectively removed the outlier from the dataset with the Huber 

weights also small at ~0.02. 

Figure 39: Theil-Sen and Wilcoxon Fits with Outlier Inconsistent with Linear 
Trend 
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Figure 40: IRLS and Bounded Influence Fits with Outlier Inconsistent with Linear 
Trend 
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As seen in Figure 41, the bootstrap approaches again fail to effectively 

manage this type of outlier and provide fits similar to that generated by the least 

squares method.  At least the Bootstrap-Observations approach provides a 

positive slope point estimate.  Both least squares and the Bootstrap-Residuals 

approach return negative slope point estimates.  

 

Figure 41:  Bootstrap Fit with Outlier 
Inconsistent with Linear Trend 

 

 

These parameter estimates and ~95% confidence intervals are shown in 

Tables A9 (intercept) and A10 (slope) in Appendix 1, and are displayed in Figure 

42. These results show the most extreme differences between fits out of all 

datasets examined thus far, indicating that this type of outlier is the most 
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problematic for the common least squares method of fitting a line to summarize 

an observed trend in a paired variable dataset.  

Figure 42:  Confidence Intervals on Intercept and Slope Parameter with 
Inconsistent Trend Outlier 
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Despite the great disparity in robustness between different methods for 

this dataset, the least-squares, the Wilcoxon, and Residual Bootstrap 

approaches did not capture the true intercept.  The least squares and Residual 

Bootstrap approaches also failed to capture the true slope. 

Also of note is that the Theil-Sen intervals are the narrowest for this 

situation for both parameters and successfully bound the true parameter values 

for both intercept and slope.  As noted above, the least squares and Residual 

Bootstrap intervals fail to capture the true parameter values, but both are actually 

two of the widest intervals.  The widest intervals are those for the Bootstrap 

Observations approach, and their width just allows them to successfully capture 

their respective parameter values.  
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Section 3:  Comparison of Alternatives on Selected Data Sets 

In this section, we will perform each of the discussed regression 

procedures on selected real datasets and compare their results.  These data sets 

will allow for the evaluation of relative performance of the various estimation 

methods in the presence of more than one outlier. 

3.1:  Math Proficiency Data 

The Educational Testing Service Study America’s Smallest School:  The 

Family (#10) evaluated relationships between student’s educational results and 

their home environments.  Earlier studies had investigated relationships between 

educational achievement and socio-economic status (e.g., educational level of 

parents, family income, parent’s occupations, etc.), but this study attempted to 

use more direct measures of the situation within the student’s home.  

Table 31 below displays average math proficiency scores for eighth-grade 

students from the 1990 National Assessment of Educational Progress, as well as 

percentages of homes with both parents present for 37 U.S. states, Washington, 

D.C., and 2 U.S. territories (Virgin Islands and Guam).  Potential outliers are 

those observations that are not states – Washington D.C., Guam, and the Virgin 

Islands – and are highlighted in red. 
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Table 31:  Average Math Proficiency Scores and Percentage of Homes 
with 2 Parents by Location 

State 
Percentage of 2-

Parent Homes 
Math Proficiency 

Alabama 75 252 

Arizona 75 259 

Arkansas 77 256 

California 78 256 

Colorado 78 267 

Connecticut 79 270 

Delaware 75 261 

D.C. 47 231 

Florida 75 255 

Georgia 73 258 

Guam 81 231 

Hawaii 78 251 

Idaho 84 272 

Illinois 78 260 
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Indiana 81 267 

Iowa 83 278 

Kentucky 79 256 

Louisiana 73 246 

Maryland 75 260 

Michigan 77 264 

Minnesota 83 276 

Montana 83 280 

Nebraska 85 276 

New Hampshire 83 273 

New Jersey 79 269 

New Mexico 77 256 

New York 76 261 

North Carolina 74 250 

North Dakota 85 281 

Ohio 79 264 

Oklahoma 78 263 
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Oregon 81 271 

Pennsylvania 80 266 

Rhode Island 78 260 

Texas 77 258 

Virgin Islands 63 218 

Virginia 78 264 

West Virginia 82 256 

Wisconsin 81 274 

Wyoming 85 272 

  

The scatterplot in Figure 43 suggests a general linear trend for the 

majority of the observations (those from the 37 states); however, the three outlier 

(red) are obvious.  Washington D.C. is an outlier in both the predictor space with 

a very low percentage of two-parent families, as well as in the response space 

with a low average math proficiency score.  The Virgin Islands is also low for both 

measures; however, this observation appears more consistent with the trend 

exhibited by the 37 states than the Washington D.C. result.  The Guam data is 

only an outlier in the response space also with a low average math proficiency 

score.  The percentage of two-parent families in Guam is, however, near the 
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middle of these values for the 37 states, so would not be considered an outlier in 

the predictor variable space. 

Figure 43:  Math Proficiency vs. Percentage of 2-Parent Homes 
 

 

The least squares fit of the data – both with and without the identified 

outliers (ie, D.C., Guam, and the Virgin Islands) – appear in Figure 44.  It is 

readily observable that the outliers have an impact when using this most 

common approach to estimating the linear relationship between these two 

variables.  When the outliers are removed, and only the state data is considered, 

the slope estimate is ~2.5.  However, with the non-state outliers included, the 

slope is much lower, near 1.5.  Moreover, this line when compared to the line fit 

without the outliers does not appear to as accurately reflect the general 

relationship between the Math Proficiency Test Score averages and the 

percentage of two-parent households. 
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Figure 44:  Least-Squares Fit for Math Proficiency Data 
 

 

When the outliers are removed from considerations, both the Theil-Sen 

and Wilcoxon fits displayed in Figure 45 provide a fit similar to the least-squares 

fit with slope estimates of ~2.4 and ~2.5, respectively.  However, both of these 

approaches also show a lower slope estimate when the outliers are included in 

the data set than when they are not, with the Wilcoxon estimate having more of a 

downward bias.  Neither approach provides an estimate as low as least squares 

(Theil-Sen ~2.1 and Wilcoxon ~1.8), but both show some marginal impact of 

these three outlying observations.   
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Figure 45:  Theil-Sen and Wilcoxon Fits for Math 
Proficiency Data 

 

 

 

Figure 46 provides an interesting result.  Only two of the IRLS and 

Bounded Influence fits appear to provide a lower slope estimate than the ~2.5 
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observed for least squares without the outliers.  So while both these approaches 

appear to – regardless of weighting scheme – appear to mimic least squares 

when there are no outliers in the data set, the Huber weighting approach appears 

to provide a lower slope estimate similar to the Wilcoxon result when the outliers 

are present (Wilcoxon and IRLS-Huber ~1.8, Bounded Influence-Huber ~1.9).  

The Bi-Square weighting function, on the other hand, for both IRLS and Bounded 

Influence approaches, appears to return slope estimates reasonably close to 2.4. 

This difference between weighting schemes seems to be most likely due 

to the Bi-Square weighting function actually providing weights of zero for both DC 

and Guam – or essentially removing them from the data set.  The Huber 

weighting scheme does down-weight these observations (IRLS - ~0.35 for DC 

and ~0.23 for Guam; Bounded Influence – ~0.23 for DC and ~0.25 for Guam), 

but the scheme never allows the weight to be zero, so these observations are 

always retained in the data set. 
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Figure 46:  IRLS and Bounded Influence Fits for 
Math Proficiency Data 
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Figure 47 displays the Bootstrap fits – both when resampling residuals, as 

well as when resampling observations.  As observed in Section 2, the bootstrap 

approaches tend to mimic what was observed for the least-squares approach.  

The approach using residuals provides a slope estimate very similar to the least 

squares estimates, and the approach using observations provides a result (~1.7) 

between the least-squares (~1.5) and the Wilcoxon (~1.8) results when the 

outliers are included in the data set. 

Figure 47:  Bootstrap Fits for Math Proficiency 
Data 
 

 

Figure 48 displays the approximate 95% confidence intervals for both the 

intercept and the slope parameter estimates for all of the fits plotted in Figures 

43-47 above.  The actual values are tables in Tables A11 (w/ outliers) and A12  
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 (w/o outliers) in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most robust estimators for the slope and the intercept are clearly the 

Bi-Square weighting function IRLS and Bounded Influence approaches.  The 

Figure 48:  Confidence Intervals on Intercept and Slope Parameters for the 
Math Proficiency Data 
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Theil-Sen estimators are reasonably robust, but the intercept estimates for the 

fits with and without the outliers would be considered significantly different from 

each other. 

None of the remaining approaches are very effective at managing this 

triumvirate of outliers.  The least-squares and Bootstrap using Residuals are 

clearly the poorest approaches here.  The Huber weighting function options, as 

well as the Wilcoxon and the Bootstrap using Observations approaches appear 

to make a marginal adjustment for the outliers.  However, for the latter two, and 

especially the Wilcoxon approach, the widths of the respective interval estimates 

are much wider than those when no outliers were present. 

While it would be reasonable to expect wider confidence intervals for the 

fits where the outliers were involved due to the inherent increase in uncertainty 

they introduce, their impact on the jackknife approach to estimate the variance of 

the Wilcoxon slope estimator was to increase the width of the interval by more 

than 2.3X.  For comparison, the increase in width for the least-squares interval 

was about 20% (or 1.2X), and all the other approaches ranged between ~3% (or 

1.03X for Theil-Sen) and ~75% (or 1.75X for Bootstrap with Observations). 

While this increase is one of the most obvious features of Figure 48, 

exploration of robust estimators for the variance of the errors was not considered 

within the scope of this work.  Reference #9 suggests an alternative, bootstrap-

based alternative estimator that appeared to provide intervals more narrow than 
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those obtained with the jackknife approach used here.  It was not utilized in this 

work due to the relative difficulty of calculations involved to produce it opposite 

that of the jackknife approach that was utilized. 

This example – with multiple outliers of different types – has demonstrated 

that the use of a weighting function that allows for the actual elimination (i.e., 

weights equal to zero) can provide more robust estimators than weighting 

functions not allowing for such “trimming” of the data set.  The Theil approach 

also provided reasonably robust parameter estimates, as well as the most stable 

confidence interval widths.  Again, the Bootstrap approaches were poor 

performers in terms of robustness opposite these types of outliers, returning 

results most similar to those obtained with the common, but known to be non-

robust, least-squares approach. 

3.2:  Belgian Telephone Volume Data 

Between 1950 and 1973, the volume of telephone calls in Belgium was 

recorded for each year (#4).  This data is given in Table 32 and displayed in 

Figure 49 below:  
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Table 32:  Number of Telephone Calls Made 
 in Belgium (Tens of Millions) (1950-1973) 

Year 
# Telephone Calls 

(Tens of Millions) 

1950 0.44 

1951 0.47 

1952 0.47 

1953 0.59 

1954 0.66 

1955 0.73 

1956 0.91 

1957 0.88 

1958 1.06 

1959 1.2 

1960 1.35 

1961 1.49 

1962 1.61 

1963 2.12 

1964 11.9 

1965 12.4 



139 
 

 

1966 14.2 

1967 15.9 

1968 18.2 

1969 21.2 

1970 4.3 

1971 2.4 

1972 2.7 

1973 2.9 

 

It is widely known that the numbers of phone calls between the years of 

1964-1969 were recorded erroneously.  The plot of the data suggests that these 

numbers were grossly over-reported.  If these points were excluded, it appears 

that the rest of the data can be fit well with a linear model.  Therefore, to limit the 

influence of these recording errors on the fitted model, consideration of a model 

that is robust against the response outliers created by these errors could be of 

value. 
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Figure 49:  Number of Belgian Telephone Calls Made 
from 1950-1973 

 

 

 The multiple gross outliers in the response space in this data set present 

another type of challenge for the robust regression methods considered here.  

Consequently, each method will be evaluated by their performance on the 

original dataset (shown above) and the same data set with outliers removed. 

As can be seen in Figure 50, the commonly utilized least-squares 

approach provides distinctly different results when the outliers are included in the 

data set than when they have been removed.  The slope estimate is 

approximately 4X larger (~0.50 vs ~0.13) when the outliers are involved.  It is 

certainly true that decisions made related to Belgian telephone call volume circa 
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1974 would have been different if the belief had been that the volume was 

increasing at 5 million calls per year rather than 1.3 million calls per year. 

 

Figure 50:  Least-Squares Fit for Belgian 
Telephone Data 

 

 

In contrast to the least-squares fits in Figure 50, the Theil-Sen and 

Wilcoxon fits displayed in Figure 51 suggest only a relatively small increase in 

annual call volume when the outliers are involved in the estimation of the model 

parameters.  The slope estimates without the 1964-1969 values are 

approximately 0.11 for both approaches, and these estimates only increase to 

~1.4 (Theil-Sen) and ~1.5 (Wilcoxon) when the over-reported years are included 

in the data set. 
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Figure 51: Theil-Sen and Wilcoxon Fits 
for Belgian Telephone Data 

 

 

 

 

Similar to what was observed for the Math Proficiency data, Figure 52 

indicates that among the IRLS and Bounded Influence approaches, the Bi-
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Square weighting function provides a virtually identical fit both with and without 

the over-reported years.  However, the Huber weighting function produced larger 

slopes with the outliers involved than when they were not. 

  

Figure 52:  IRLS and Bounded Influence Fits for 
Belgian Telephone Data 
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The Bi-Square weighting function provides slope estimates of ~0.11 both 

with and without the outliers involved, and for both IRLS and Bounded Influence 

approaches.  This is effectively the same value as the Theil-Sen, Wilcoxon, and 

Huber weighting scheme for both IRLS and Bounded Influence approaches when 

the over-reported years are removed from the data set.  On the other hand, the 

Huber weighting scheme provides slope estimates approximately 2X larger than 

this when the outliers are involved (~0.21 – IRLS and ~0.25 – Bounded 

Influence). 

Again, the difference appears to be that the Bi-Square weighting function 

allows for much lower weights to be used than the Huber weighting function.  The 

Bi-Square and Huber weights for the years 1963-1973 across both approaches 

appear in Table 33.  This period includes the over-reported years of 1964-1969, 

as well as the year immediately preceding this period, as well as the years 

following it.  The Huber weights for the years 1950-1962 are all one for both 

approaches, and the Bi-Square weights are generally close to one. 

Note that for the Bi-Square weighting function, regardless of approach, all 

the over-reported years are essentially removed from the data set (i.e., weights 

are zero), as is the immediately following year 1970.  Close observation of Figure 

49 seems to suggest that the over-reporting might have slipped into early 1970 

before being rectified, so this seems reasonable. 
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Table 33:  Huber and Bi-Square Weights for Belgian Telephone Call Data 
Models 

Year 
IRLS Bounded Influence 

Huber Bi-Square Huber Bi-Square 

1963 1 0.481 1 0.543 

1964 0.121 0 0.190 0 

1965 0.117 0 0.184 0 

1966 0.100 0 0.157 0 

1967 0.088 0 0.137 0 

1968 0.075 0 0.117 0 

1969 0.063 0 0.098 0 

1970 1 0 1 0 

1971 0.561 0.908 0.538 0.877 

1972 0.588 0.998 0.537 0.998 

1973 0.584 0.957 0.519 0.938 

 

However, the Huber weighting scheme, again, for both approaches gives 

full weight to 1970 and down-weight the years following it.  As a result, the 

observed 1970 call volume virtually determines the Huber fits. 

Again, consistent with the previous applications of the Bootstrap 

approaches, Figure 53 shows that they behave similarly to the least squares 

approach with this Belgian call volume data.  The slope estimates for these 

approaches are both near to 0.13 least squares result when the over-reported 

years are not included in the data, and they increase to 0.50 (same as least 
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squares) and 0.53 for the Residuals and Observations approaches, respectively, 

when the outliers are involved. 

Figure 53:  Bootstrap Fits for Belgian Telephone Data 
 

 

Figure 54 displays the intercept and slope estimates (point and 

approximate 95% confidence interval estimates) for the models displayed in 

Figures 50-53.  Tables A13 (w outliers) and A14 (w/o outliers) in the Appendix 

display these results to more decimal places. 
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Figure 54:  Confidence Intervals on Intercept and Slope Parameters for the 
Belgian Telephone Call Data 
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  Without the over-reported years, the point estimates for slope are 

effectively the same for the approaches with least squares and the bootstrap 

approaches suggesting an ~1.3 million annual increase in call volume, and all 

other approaches suggesting a slightly lower rate at ~1.1 million.   When the 

outliers are involved in the estimation process, only the approaches using the Bi-

Square weighting function (both IRLS and Bounded Influence) retain nearly the 

same estimate.   The Theil-Sen and Wilcoxon approaches suggest a modest 

increase in the rate at ~1.4 and ~1.5 million, respectively.  The least squares and 

bootstrap approaches provide estimates indicating much larger increases at ~5 

million (least squares and Bootstrap using Residuals) and ~5.3 million (Bootstrap 

using Observations). 

The slope estimator confidence bounds are all relatively narrow when the 

outliers are not involved, and they all overlap to some degree.  However, the 

width of these intervals increase by approximately an order of magnitude when 

the outliers are in the data set.  The smallest increase is ~8.6X for the Theil-Sen 

approach, and the largest increase is ~21.2X for the Wilcoxon approach (this 

being the largest is expected, and why is discussed in Section 3.1 above).  All 

the others lie between ~9.1X (Bootstrap on Observations) and ~15.6X (Bounded 

Influence – Bi-Square). 
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While unfortunate, such an increase is probably reasonable given the 

gross nature of the over-reporting for the years 1964-1969.  Without knowledge 

that these are truly bogus results, it would be difficult to completely ignore their 

presence and the large uncertainty bounds would be one means to acknowledge 

that presence.  Using a robust estimation approach for the fit parameters 

mitigates their impact on accurately describing the increase in annual call 

volume, but the wide intervals reflect the relative amount of certainty associated 

with those estimates.  Without knowing the true nature of the very high values in 

the 1964-1969 timeframe, the uncertainty in the estimates would be larger. 

For the Wilcoxon, and Bi-Square weighting function approaches (IRLS 

and Bounded Influence), this uncertainty would have been sufficient to seriously 

question the validity of a simple linear trend (the slope confidence intervals all 

include zero).  Such a conclusion could reasonably be considered an appropriate 

one without further information clarifying the outlier results.   

While the intercept parameter is of much less interest here (since it 

reflects the Belgian call volume in year zero), the results are reasonably 

consistent with those observed for the slope estimator.   
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3.3:  University of South Florida Salary Data 

At most major colleges and universities, administrators (i.e., presidents, 

vice-presidents, deans, and department chairs) are among the highest paid state 

employees.  In the early 1990s, a group of members of the faculty union at the 

University of South Florida (USF) in Tampa, Florida was interested in 

determining if there was any relationship between salaries for such individuals 

and their job performance. 

In order to attempt to evaluate this relationship, this group (which called 

itself the United Faculty of Florida or UFF) compared the ratings of 15 USF 

administrators to their subsequent raises in that year.  The data appear in Table 

34 below. 

The ratings in Table 34 were measured on a 5-point scale with 1 = very 

poor and 5 = very good.  These ratings were determined by surveying faculty at 

USF. 
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Table 34:  University of South Florida Salary Data 

 

Administrator RAISE($)a Average Ratingb 

1 18000 2.76 

2 16700 1.52 

3 15787 4.4 

4 10608 3.1 

5 10268 3.83 

6 9795 2.84 

7 9513 2.1 

8 8459 2.38 

9 6099 3.59 

10 4557 4.11 

11 3751 3.14 

12 3718 3.64 

13 3652 3.36 

14 3227 2.92 

15 2808 3 

a Faculty and A&P Salary Report, University of South Florida, Resource Analysis 

and Planning, 1990. 

b Administrative Compensation Survey, Chronicle of Higher Education, Jan. 

1991. 
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Figure 55 displays a plot of the data in Table 34 with the horizontal axis 

being the faculty rating and the vertical axis the respective raise for each 

administrator.  Simple inspection of this plot suggests that the relationship is an 

inverse one.  In other words, the lower the faculty rating, the higher the raise.   

This was the conclusion arrived the UFF arrived at, essentially leading them to 

summarize that poorly performing administrators were apparently more valuable 

than better performing administrators. 

 

Figure 55:  University of South Florida Salary Data 
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It happens that observation number 3 (4.4,1587) represents a faculty 

member who was promoted to a Dean position, which explains a portion of this 

individual’s raise.  This employee is distinguished from the rest in this manner 

and represents a potential outlier case.  Therefore, linear models will be 

evaluated on this dataset with and without the potential outlier. 

Figure 56 displays the least squares results for both the data sets – with 

and without Administrator 3.  Note that the negative slope becomes more 

pronounced when the potential outlier is removed.  For the UFF, this was 

desirable as they were interested in making a case that USF administrators were 

overpaid. 

 

Figure 56: Least-Squares Fit for University of South 
Florida Data 
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The slope estimate when considering all 15 administrators is ~-$1,783, 

suggesting that the raise a USF administrator receives is reduced by this amount 

for every additional favorable rating point he or she receives from USF faculty.  

This estimate increases in magnitude to an approximate $3,887 reduction for 

every additional favorable rating point, or a more than 2X increase in magnitude, 

when the potential outlying administrator is removed from the data set. 

Interestingly, as can be seen in Figures 57-59, none of the potentially 

more robust approaches seems to provide any result markedly different than the 

least squares results in Figure 56.  It appears that this “outlier” is essentially not 

regarded as such by any of the more robust approaches. 
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Figure 57: Theil-Sen and Wilcoxon Fits for 
University of South Florida Data 

 

 

 



156 
 

 

Figure 58: IRLS and Bounded Influence 
Fits for University of South Florida Data 
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Figure 59:  Bootstrap Fits for University of South 
Florida Data 

 

 

Figure 60 displays the estimated model parameters for the lines plotted in 

Figures 56-59.  Tables A15 (w outlier) and A16 (w/o outlier) display these same 

results in tabular form and provide more decimal places. 

Figure 60 clearly demonstrates the similarity of all the approaches for both 

situations – including and then not including the data for Administrator 3.  It 

appears that this observation is not regarded as an “outlier” due to the large 

amount of residual error remaining when fitting any of these models. 

Of course, the important aspect of these charts for the UFF agenda is that 

the negative slope be considered significantly different from zero, and that it be 

negative.  For the commonly applied least squares approach, this will be the 

result if Administrator 3 is removed from the data set.  This is indeed how the 
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UFF decided to evaluate the data and present their results to the entire USF 

community. 

When the entire data set is considered (including Administrator 3), all of 

the approaches indicate that there is no statistically significant relationship 

between the amount of a USF administrator’s raise and the job performance 

rating he or she receives from USF faculty.  All of the slope estimator confidence 

intervals include zero as a reasonable value for the true relationship parameter 

value. 

On the other hand, when the data for Administrator 3 is removed from 

consideration, all of the approaches, except the Wilcoxon (where the variance 

estimate is known to tend to be large) suggest that there is a statistically 

significant relationship between a USF administrator’s annual raise amount and 

the job performance rating that administrator receives from USF faculty 

members.  In addition, the nature of this relationship is that apparently the better 

job the faculty perceives the administrator is doing, the lower his or her annual 

raise.  Or stated differently, those administrators more poorly perceived by USF 

faculty tend to receive larger annual raises.  Members of UFF dubbed this result 

the “son of a bitch” factor upon completing this analysis. 
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Figure 60:  Confidence Intervals on Intercept and Slope Parameters for the 
USF Salary Data – Rating Only Model 
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What the UFF apparently failed to understand is that Human Resource 

organizations classify employees by title into salary ranges.  Even among 

administrators there are likely to be multiple salary ranges with higher ranges for 

those individuals in the upper levels of administration, as successively higher 

levels carry successively more responsibility. 

Consequently, in conjunction with awareness of the likely presence of 

multiple administrative salary levels, close observation of Figure 55 suggests 

there are at least three administrative levels represented. 

When the administrators are grouped according to their respective salary 

level (High, Low, or Middle), there actually appears to be a positive linear 

relationship between average rating and salary raise within each of the 

respective groups.  In Table 34 above, Administrators 1-3 would be considered 

members of the highest salary range, such as Deans, Provosts, and Assistant 

Provosts.  Administrators 4-8 represent the mid-level salary range, such as 

Associate Deans and Directors.  Administrators 9-15 represent the low-level 

salary range, such as those with the positions of Chair or Assistant Chair. 

Once the administrators are grouped according to their respective salary 

ranges, the data may suggest a positive linear relationship between average 

salary raise and faculty rating, in contrast to the negative relationship observed 

thus far.  Accordingly, an approach similar to a blocking scheme is proposed.  
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Therefore, we will fit attempt to fit the following model to the data using the 

proscribed methods: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖+𝜀𝑖, for 𝑖 = 1,2, … , 𝑛,  (39) 

where  𝑦𝑖 is the salary raise associated with the 𝑖𝑡ℎ administrator, 

𝛽0 is an intercept parameter, 

𝛽1 is the slope parameter for the rating variable 𝑥1𝑖, 

𝑥2𝑖 = {
1          𝑖𝑓       𝑎𝑑𝑚𝑖𝑛𝑠𝑡𝑟𝑎𝑡𝑜𝑟 "i” is in the “High” 𝑔𝑟𝑜𝑢𝑝

     0                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
, 

𝑥3𝑖 = {
1          𝑖𝑓      𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 "i” is in the “Low” 𝑔𝑟𝑜𝑢𝑝

      0                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
, 

𝛽𝑗 is an offset amount for salary group 𝑗 = 2, 3, 

and 𝜀𝑖 is a random variable error term associated with the  𝑖𝑡ℎ faculty 

member. 

This model will create three different fits for the USF data, with one fit for 

each of the three groups based on common salary level.  The coefficients 𝛽2 and 

𝛽3  represent the differences in salary levels between three different groups.  The 

𝛽1 model coefficient provides a common slope parameter for any effect faculty 

rating might have in relation to the raise amounts received once salary 

differences have been accounted for across the groups 

.  Thus, the equations for High-Level, Medium-Level and Low-Level faculty 

members’ raises are given respectively by equations (40) through (42) below: 

𝑦𝑖 = (𝛽0+𝛽2) + 𝛽1𝑥𝑖+𝜀𝑖, for 𝑖 = 1,2,3    (40) 
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𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖+𝜀𝑖, for 𝑖 = 4,5,6,7,8     (41)  

𝑦𝑖 = (𝛽0+𝛽3) + 𝛽1𝑥𝑖+𝜀𝑖, for 𝑖 = 9,10,11,12,13,14,15   (42) 

 

For all approaches except Theil-Sen and Wilcoxon, extending calculations 

to accommodate the two newly-introduced indicator variables is relatively 

straightforward, as only minor adjustments in the predictor matrix X, as given in 

equation (8), will be necessary.  The Theil-Sen and Wilcoxon approaches, 

however, cannot be effectively handled with such a simple extension. 

Instead, adjustments for administrative salary level will be made by 

subtracting group-wise medians for the observations when using these 

approaches.  Group-wise medians are chosen rather than means to preserve 

consistency with the estimators of these non-parametric approaches. 

When this is done, 𝛽2 will be estimated by the difference between the 

medians of the High and Medium-level groups, respectively, and 𝛽3 will be 

estimated by the difference between the medians of the Medium and Low-level 

groups.  This interpretation for 𝛽2 and 𝛽3, as the general difference in raise 

amounts across salary levels, will be the same for all the other approaches 

where managing the presence of these different groups is more directly managed 

with the modeling approach. 

Figures 61 displays plots of the least squares models both with and 

without the potential outlier observation (Administrator 3).  Note that the slope 
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estimate for the relationship between the raise amount and the faculty rating is 

larger at ~$1100 per rating point when the data for Administrator 3 is not 

considered.  When this observation is included in the modeling effort, the slope 

estimate is ~$230 per rating point; still positive but less than a quarter of the 

magnitude of the estimate obtained with this observation removed from the data 

set. 

Figure 61:  Least-Squares Fits for Grouped USF Data 

 
 

 

Figure 62 displays the Theil-Sen and Wilcoxon models for the grouped 

data.  These models also show a larger slope estimate when the outlier is not 
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involved; however, the increase versus when this observation is involved is not 

nearly as large.  These slopes both suggest an ~$600 increase in raise amount 

per faculty rating point, or only about 3X larger than the ~$210 increase per 

rating point when the Administrator 3 data is used. 

Figure 63 displays the models fit to the grouped data using the IRLS 

approach using both the Huber and the Bi-Square weighting functions.  It 

appears that this approach recognizes that Administrator 3 is an unusual 

observation as its final Huber weight is ~0.215, and the Bi-Square weight is zero, 

effectively removing the observation from the data set.  This approach also 

suggests that the observation for Administrator 10 is almost similarly unusual as 

it receives a Huber weight of ~0.233, and also receives a zero Bi-Square weight 

(i.e., it is also eliminated from the data set). 

However, these weighting results are sufficiently different that the Bi-

Square function essentially returns the same slope estimate (an ~$930 increase 

in raise per faculty rating point) both when Administrator 3 results are used and 

when they are not, while for the Huber weighting function, the slope estimate 

suggests a raise increase of only ~$530 per faculty rating point.  However, this 

estimate does increase to ~$940 (i.e., near the Bi-Square function estimates) 

when the Administrator 3 data is not considered. 
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Figure 62:  Theil-Sen and Wilcoxon fits for Grouped USF Data 
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            Figure 63: IRLS Fits to Grouped USF Data 
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Figure 64 is analogous to Figure 63, except the Bounded Influence 

approach is used.  The results for this approach are similar to those for the IRLS 

approach; however, the estimated slopes are marginally larger in each case.  

The Bounded Influence Huber weight applied to the outlier is lower at ~0.183 

than the corresponding IRLS weight (~0.215).  The Bounded Influence Bi-Square 

weight for Administrator 3 is again zero as observed for the IRLS Bi-Square 

weight.  However, for Administrator 10 (thrown out by IRLS Bi-Square), the 

Bounded Influence Bi-Square weight is ~0.068 (> 0, so not eliminated from the 

data set).  The Bounded Influence Huber weight for this observation is also larger 

than the corresponding IRLS weight (at ~0.286 vs ~0.233). 

Figure 65 displays the Bootstrap fits for the grouped data, both the fit 

resampling residuals, as well as the fit resampling entire observations.  When all 

the data is involved, the residuals approach is similar to least squares, which is 

consistent with applications to other data sets investigated previously in this 

work.  However, the observations approach seems to provide a slope estimate 

that is nearly twice as large as the least squares and bootstrap-residuals 

approaches. 
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                     Figure 64: Bounded Influence Fits to Grouped USF Data 
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When removing Administrator 3, the bootstrap-residuals slope estimate 

(~$460) does not mimic the corresponding least squares estimate (~$1100), but 

the bootstrap-observations slope estimate is again about twice the magnitude of 

the bootstrap-residuals estimate (~$870).  So, while the increase for both of 

these bootstrap slope estimators is ~2X when the outlier is removed from the 

data, this increase is much smaller than the almost 5X increase observed for the 

least squares approach. 

As can be seen in Figure 66, much of the discussion of these differences 

is likely to be of little significance given the relative magnitude of the associated 

confidence intervals for these slope parameters.  All of them are sufficiently wide 

to encompass all the other point estimates.  However, the intervals for the Bi-

Square weighting function approaches are sufficiently narrow to suggest a 

significantly positive relationship between the raise amount received by a USF 

administrator and their corresponding faculty rating, even when the data for 

Administrator 3 is involved (although, the Bi-Square weight throws it back out). 

When the Administrator 3 data is initially removed from the data set, all the 

approaches, except the Wilcoxon and for those using the bootstrap, suggest a 

significantly positive relationship between raises and ratings.  Note that this is 

exactly the opposite direction of the relationship between these two variables 

suggested when the data was not grouped by salary levels.   
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Figure 65:  Bootstrap Fits for Grouped USF Data 
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Figure 66:  Confidence Intervals on Ratings Slope Parameter for the USF 
Salary Data – Grouped Model 

 

 

The consistency for the Bi-Square weighting approaches (IRLS and 

Bounded Influence) again suggests that these approaches are the most robust of 

those evaluated here.  However, the clear message related to the analysis of this 

USF salary data is that the success of virtually any modeling approach is much 

more dependent upon having sufficient contextual knowledge to fit an 

appropriate model than it is related to the statistical approach used to fit the 

chosen model.  Also, the words of George Box are again relevant: “All models 

are wrong, but some are more useful than others” (#13).  The model fit without 

grouping the data by salary level and not using the Administrator 3 data was 
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indeed “useful” to the UFF in promoting their agenda of USF administrators being 

overpaid.  However, it was not a “useful” model for accurately describing a valid 

relationship between raise amounts and faculty ratings. 

The lower ratings for administrators more removed from the level of faculty 

(i.e., those at higher levels of administration) would be expected.  It reasonable to 

expect faculty to have less interaction with individuals at higher levels, and less 

understanding of their roles and responsibilities, and to, therefore, be more likely 

to assign such individuals lower ratings than the level of administrators with 

which they have more interaction and understanding.  However, within the 

respective administrative levels, it appears faculty ratings and performance are 

positively related.  Faculty apparently does have some idea of relative 

performance within level.      

The value of context and understanding that context when conducting any 

statistical analysis can rarely be underestimated.  Without this, the choice of 

statistical methods to apply in any situation is almost irrelevant. 
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Section 4:  Simulation Study 

 A simulation study was performed to provide a more general comparison 

of the performances of the regression approaches considered in this work.  The 

responses of interest in this study were defined as the SLR parameter estimates, 

confidence interval widths, and capture rates among the selected regression 

approaches.  The simulations were generated data from contaminated normal 

distributions with varying sample sizes, contamination probabilities, 

contamination variance multipliers, and predictor space outlier locations.  These 

samples formed the error terms for the model given below: 

𝑦𝑖 = 2 + 3𝑥𝑖 + 𝜀𝑖, 𝑓𝑜𝑟 𝑖 = 1,2, …𝑵,     (43) 

...where 𝜀𝑖~𝑁(0,1) with probability (1-L), and 𝜀𝑖~𝑁(0, 𝑽) with probability 

“L” for each 𝑖 = 1,2, …𝑁. 

Consequently, the simulation design involved a total of four variables, 

which are listed below: 

L, the contamination frequency, 

N, the sample size, 

V, the contaminated variance multiplier, and 

K, which determined the location of the predictor space outlier (explanation 

below). 
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Here, the predictor values (𝑥𝑖′𝑠) were chosen to be an equally partitioned 

sequence from  
1

𝑁+1
  to  

𝑁

𝑁+1
.  These were uniformly the same for all simulations, 

except that the middle predictor value (
𝑁

2(𝑁+1)
) was modified to become (

𝐾∗𝑁

2(𝑁+1)
). 

  This was done so that for certain values of K, the original median point of 

the predictor values would shift to form an outlier in the predictor space.  Values 

of 1, 4 and 8 were chosen for K, so that the original median predictor value 

enlarged to become twice or four times as large as the original maximum 

predictor value (
𝑁

𝑁+1
) when K = 4 or 8.  This allowed for comparisons in the 

presence of predictor space outliers as well as response outliers. 

Note that when K =1, this middle predictor value has a minimum leverage 

value for the respective sample size (for N = 10,  ℎ5,5 ≈ 0.103, for N = 20, ℎ10,10 ≈ 

0.050, and for N = 40, ℎ20,20 ≈ 0.025).  When K = 4, the new predictor value has 

much larger leverage; for N = 10, ℎ5,5 ≈ 0.726, for N = 20, ℎ10,10 ≈ 0.576, and for 

N = 40, ℎ20,20 ≈ 0.408.  For all these sample sizes, these leverage values are 

now the largest in the predictor variable space, and are approximately 3, 4, and 5 

times as large as the next largest leverage value, respectively. 

When K = 8, the leverage values are now given as:  for N = 10, ℎ5,5 ≈ 

0.936, for N = 20, ℎ10,10 ≈ 0.880, and for N = 40, ℎ20,20 ≈ 0.786.  These values are 

now much larger than the next largest leverage value at ~6X, ~11X, and ~19X 

larger, respectively. 
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The impact of this predictor space outlier is likely to be mitigated to some 

degree in the actual simulation since for many of the simulation iterations the 

presence of an outlier in the response may not occur at this point.  When a 

standard normal error occurs for this predictor variable value, it is likely that this 

point will effectively determine the slope estimate.  However, if a contaminated 

error occurs at this predictor variable value, then it is likely that least squares 

regression will experience issues.  It is expected that the more robust 

approaches would be less impacted in such a situation. 

The levels for each of the four simulation design variables are presented 

below: 

L = (0, 0.1, 0.2) 

N = (10, 20, 40) 

V = (2, 6, 10) 

K = (1, 4, 8). 

When L (the contamination frequency) is zero, the contamination variance 

multiplier V becomes obsolete because the simulated error terms no longer come 

from a contaminated normal distribution, but a standard normal one.  Therefore, 

when L = 0, a full factorial design was evaluated with the two remaining variables 

N (sample size) and K (predictor space outlier location).  Since there are three 

levels of each factor, simulations are performed on a total of 3x3 = 9 paired 

combinations when L = 0. 
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When L = 0.1 or 0.2, the contamination variance multiplier “V” becomes 

relevant, and a face-centered cube design is used with three variables (or 

factors).  Let “N”, “V” and “K” represent the axes of a cube, with the levels of 

each respective factor ordered from one side of the cube to the other side.  Since 

there are three levels to each of the three factors, the cube is effectively 

partitioned into 8 equally-sized smaller cubes, with the vertices of each smaller 

cube representing a specific three-way factor combination.  The face-centered 

cube design performs simulations and analysis for each factor-combination that 

represents either a corner of the cube, a center of one of its faces, or the center 

of the cube.  A cube has 8 corners, 6 faces and one “center point”, so this 

amounts to 15 different factor combinations for L = 0.1 and the same for L = 0.2.  

Therefore, adding up the number of factor combinations for each level of L 

results in 9 + 15 + 15 = 39 factor combinations for the simulation effort. 

For each of the 39 factor combinations, 1,000 data simulations were 

performed (under each regression approach) and all regression approaches 

were applied to these.  For each regression performance, the errors in parameter 

estimates (defined as 𝑏𝑖 − 𝛽𝑖, 𝑓𝑜𝑟 𝑖 = 0,1) were recorded, as well as confidence 

interval widths for the parameter estimates, and their capture rates of the true 

parameters (𝛽0 = 2 for intercept and 𝛽1 =3 for slope).   
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Capture Rates (Slope): 

Figure 67 displays boxplots of the distributions of capture rates for the 

slope parameter across all 39 factor-level combinations across all methods.  

Except for the Theil-Sen estimator, the capture rate distributions are centered 

marginally below the nominal 95% level, with all median capture rates greater 

than 0.90. 

Figure 67:  Capture Rates Across All Factor-Level Combinations 

 
   

The only approach that appears to compete favorably with least squares 

for capture rate is the Bounded Influence (Bi-Square) approach.  This approach 

even had a larger mean capture rate than least squares (0.949 vs. 0.947); 

although, a smaller median capture rate (0.948 vs. 0.952). 

Among the various factor-level combinations, the Bounded Influence (Bi-

Square) approach experienced lower slope capture rates under the opposite 

conditions than those of least squares.  The Bounded Influence (Bi-Square) 
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capture rates were always above 0.918, and 7 of the 11 instances where the 

observed capture rate was below 0.93 were on simulations with no contamination 

present.  This suggests that this approach tended to down-weight observations 

that were in no need of being down-weighted. 

By contrast, least squares capture rates were lowest (below 0.93) when 

sample sizes were small (N = 10), the contamination level was high (L = 0.20), 

there was a large predictor outlier (K = 4 or 8), contamination variance was larger 

(V = 6 or 10). 

The most notable result was the generally poor coverage for the Theil-Sen 

slope estimator where the capture rates were much lower than the nominal 

~95%.  The bulk of this capture rate deficit appears to be related to sample size.  

When N = 10, the Theil-Sen capture rate was between 70% and 80%, and when 

N = 40, the capture rate was reduced to between 40% and 50%. 

This phenomenon indicates that the common approach of finding a 

confidence for a median does not perform as expected.  This may be related to 

the distribution of the pairwise slopes used in Theil-Sen confidence intervals 

being decidedly heavy-tailed; so much so that their percentiles cannot be trusted 

to accurately reflect the ~95% confidence bounds on the pairwise slope median. 

Another consideration is that the order statistics that form the confidence 

interval bounds for Theil-Sen become proportionally closer and closer to the 

mean/median order statistic as the sample size becomes larger.  For example, 
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there are 45 pairwise slopes when N = 10, which results in confidence bounds 

which use the 16th and 30th order statistics of these pairwise slopes.  These order 

statistics differ by 14, which is a little less than one third of the overall percentile 

range.  When N = 40, there are 780 pairwise slopes, and this results in order 

statistics 363 and 418 being used as the confidence bounds.  Clearly, the interval 

from 363 to 418 represents a much narrower proportion (less than 10%) of the 

overall range of the order statistics than in the case with N = 10.  This may 

provide some insight into why the Theil-Sen capture rates decrease so heavily 

with larger sample sizes. 

 

Confidence Interval Width (Slope): 

 

Figure 68 displays the distributions of mean (slope) confidence interval 

widths across all 39 factor-level combinations.  It is readily apparent that the 

Theil-Sen confidence interval widths are noticeably lower than those for the other 

approaches.  Given the much lower capture rates of this approach, this is 

unsurprising. 

These confidence interval width distributions across simulation conditions 

for all the other approaches are similarly skewed to the high side.  However, the 

distribution of least squares widths has a marginally larger skew, and larger 

extreme values.  Both of these extreme values occur with the maximum 
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magnitude of contamination variance (V = 10) and the narrowest design matrix 

(K = 1).  These would indeed be the conditions where least squares estimators 

would be expected to experience the most difficulty. 

Figure 68:  Confidence Interval Widths Across All Factor-Level Combinations 

 
 

Disregarding the poor coverage Theil-Sen intervals, the weighted 

approaches (IRLS and Bounded Influence) have generally narrower (on average) 

interval widths across the simulation conditions.  For the Bounded Influence (Bi-

Square) approach, the largest mean width is when N = 10, L = 0.20, V = 10, and 

K = 1 (same as for least squares); however, this mean width is ~2/3 of the width 

of the least squares intervals at this combination of conditions.  Actually, for all of 

the approaches, the two largest average width results occur when N = 10, V = 

10, K = 1, and L = 0.20 (largest) and L = 0.10 (next largest).   
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While none of the estimation methods employed a particularly robust 

estimator of error variance, it does appear that the mean confidence interval 

width results are related to robustness of that estimate.  The least squares, 

bootstrap and Wilcoxon methods generally have larger mean widths, and the 

estimators employed for each of these approaches were known to be marginally 

less robust to extreme observations than those employed for the other methods.  

It should be noted again, however, that the even with apparently wider intervals, 

all of these approaches still had coverages that were marginally lower than 95%, 

on average. 

 

Bias/Error (Slope Estimates): 

 Figure 69 presents boxplots of the distributions of mean slope estimation 

bias across all factor level combinations.  Consequently, each observation 

contributing to this boxplot represents the mean bias in slope estimation across 

all 1,000 iterations for a specific factor-level combination. 

As seen in the figure, the mean bias distributions are centered near zero 

for all approaches, which is consistent with all of these estimators being 

unbiased.  The two largest mean bias results appear for the Bounded Influence 

(Bi-Square) approach (at N = 10, V = 10, L = 0.20, and K = 1 – same conditions 

as for largest confidence interval width using this approach), and for least 
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squares (at N = 40, V = 10, L = 0.20, and K = 1); however, these results are still 

less than 0.20 in magnitude. This is less than 7% of the value of the parameter 

(i.e., 3) and less than 1/5th of the magnitude of the uncontaminated error 

distribution (i.e., 1). 

Figure 69:  Slope Mean Bias Distributions Across All Factor-Level Combinations 

 
 

In summary, all the approaches have reasonably narrow mean slope 

estimate bias distributions across the space of conditions considered in the 

simulation.  Almost all the sets of conditions considered produced mean slope 

bias results within ±2% of the magnitude of the slope parameter value. 
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Inter-Quartile Ranges of Slope Estimation Bias: 

 Those approaches with more robust estimates would generally be 

expected to have less variance in their bias distributions.  To examine this 

expectation, Figure 70 displays boxplots of distributions of inter-quartile ranges 

for the slope estimates across all 39 sets of simulated conditions.  The IQR 

(inter-quartile range) of slope estimator bias results across the 1000 simulated 

results for each set of conditions provides a robust estimate of the variance or 

spread of the slope bias distribution. 

Figure 70:  Inter-Quartile Ranges of Slope Estimation Bias Across All Factor-
Level Combinations 

 
 

Figure 69 suggests that the slope mean bias distributions are all centered 

near zero, and roughly symmetric.  Examination of inter-quartile ranges should 

provide additional insight into the spread of slope estimators.  Larger variation 
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among for specific approach estimates across the simulation conditions would 

suggest less general robustness for the approach. 

 Figure 70 shows that most IQR medians are centered near one, with 

perhaps a significantly larger median for the Bootstrap (Observations) approach.  

However, least squares and both Bootstrap approaches also have highly right-

skewed IQR distributions, which is consistent with previous observations that 

these approaches produce non-robust parameter estimates.  The IQR 

distributions for all other approaches look relatively similar and are smaller in 

comparison to Least-Squares and Bootstraps overall. 

Section 5:  Conclusions 

The most robust parameter estimates for a simple linear regression model 

come from the Theil-Sen, IRLS (Bi-Square) and Bounded Influence (Bi-Square) 

approaches.  The Bootstrap (Residual) and Least-Squares approaches are 

associated with the least robust parameter estimates in the presence of outliers.   

In terms of robustness, among the iterative approaches (IRLS and 

Bounded Influence), there appears to be more separation between the selected 

weighting functions than between the use of scaled residuals (IRLS) versus the 

use of scaled deleted residuals (Bounded Influence).  The Bi-Square weighting 
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function appears to produce significantly more robust results than when using the 

Huber weighting function.  Investigation into the reasons for this occurrence 

would be of further interest; however, this result suggests that a weighting 

function that allows for an extreme observation to essentially be thrown out of the 

analysis (i.e, receive a weight of zero) would likely be preferred over a weighting 

function that always retains observations even with very small weight attached.  

Further evaluation of other weighting functions might be of some value. 

While bootstrapping approaches are distribution-free, this work 

demonstrates that they do not necessarily produce robust estimators.  Especially, 

if the estimator used for each re-sample is non-robust itself.  This is why 

throughout this work, the Bootstrap approaches appeared to behave essentially 

in concert with the common, known to be non-robust least squares estimators.  

Another avenue for further study might include the use of bootstrapping 

approaches with the utilization of one of the more robust estimation approaches 

considered here being used on each re-sample rather than least squares.   

In addition to providing non-robust parameter estimates, least squares and 

both bootstrap methods generally appear to provide larger parameter confidence 

intervals than the other methods in the presence of outliers.  This appears 

primarily due to the use of a non-robust estimator of the error distribution 

variance.  Determination and utilization of such an estimator was beyond the 

scope of this work, but this observation again suggests a path for further study. 
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The seriously poor lack of coverage observed for the Theil-Sen slope 

parameter confidence interval estimators suggests yet another area for potential 

future study.  Actually, this poor coverage was observed for all the interval 

estimation approaches that used the same basic approach (i.e, the Theil-Sen 

and Wilcoxon intercept intervals).  This suggests that this relatively common 

approach for finding a confidence interval for a population median does not 

generally produce valid intervals.  This indicates that perhaps other approaches 

to this problem might be of value. 

The simulation design essentially utilized a contaminated error distribution 

approach to the introduction of potential outliers into the problem.  In addition, 

this contaminating distribution was only distinguished by its larger variance. 

Other approaches to introducing potential outliers in simulation work might 

include a contaminating distribution that was essentially a point mass at an 

extreme value (i.e, instead of zero mean with large variance as was considered 

here, a contaminating distribution with a large mean and zero variance), or might 

even include specifically non-normal distributions (e.g., double-exponential, 

Cauchy, etc.).  Again, this might provide an area for further study in the future. 

Finally, the performance of the robust estimators on actual data sets again 

underlined the fact that regardless of the estimation approach utilized, whether 

robust to extreme observations or not, if the statistical model being applied has 

no validity, then results will generally fail to adequately summarize the true 
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information carried by the data.  Essentially, the choice of estimation approach is 

only important if the chosen statistical model is sufficiently useful in the context of 

the problem being considered.  Recognition of the over-riding importance of 

understanding the context surrounding the data opposite virtually any other 

specific estimation or analysis approach in any statistical evaluation is perhaps 

the most important realization for any statistician.  Without appropriate 

understanding of the context surrounding a problem, it is difficult for any 

statistician to provide a meaningful analysis of any value to those involved. 
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APPENDIX:  TABLES OF PARAMETER ESTIMATES 
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