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Finite Rank Z
d Actions and the Loosely Bernoulli

Property

Aimee S� A� Johnson and Ay�se A� S�ahin

Abstract� We dene nite rank for Zd actions and show that those nite
rank actions with a certain tower shape are loosely Bernoulli for d � ��
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�� Introduction

In 	�
� the authors show that rank � Zd transformations are loosely Bernoulli�
extending the Z result from 	�
� D� Ornstein� D� Rudolph� and B� Weiss also show
in 	�
 that all �nite rank transformations are loosely Bernoulli� In this paper we
give the Zd generalization of this result�

Intuitively� a zero entropy loosely Bernoulli LB� action has one name up to the
f metric on processes cf 	�� �
�� The proof in 	�
 rests on the fact that for a rank
one action most large enough names are well covered by towers of various sizes�
Given two large names we use this fact to identify towers in one name who have a
same size tower close by in the second name� We use these pairs of neighbours to
show that the names are f close�

In the rank r case with r � �� it is still true that large names are well covered
by towers of many sizes� but now each size tower is of r di�erent types� Hence�
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while it is still possible to �nd close by towers� the methods of 	�
 do not guarantee
that nearby towers are of the same type� In this paper we generalize the matching
argument of 	�
 to address this issue�

The next two sections contain the necessary de�nitions� There is then a section
containing a Generalized Matching Lemma� The �nal section uses this lemma to
prove the result�

�� Background

Let X�A� �� be a Lebesgue probability space� Take T to be an ergodic Zd

action on X�A� ��� We can think of T as being generated by d commuting measure
preserving ��dimensional transformations on X � fT�e� � ���� T�edg� where f�e�� � � � � �edg is
the standard basis for Zd� Then T�vx� � T v�

�e�
� � � � � T vd

�ed
x�� where �v � v�� ���� vd��

We call X�A� ��� T a Zd�dynamical system� Often we will simply write X�T ��
Let P be a �nite label set� or equivalently� a �nite measurable partition P �

fp�� ���� phg on X � T� P � is then the usual process associated with T and the
partition P � Set jj�vjj � max fjvij � � � i � dg� and for n � N�

Bn � f�v � v�� � � � � vd� � Zd � � � vi � ng�
For each x we can then de�ne its Pn�name to be Pnx� � Bn � P by Pnx��v� � i if
T�vx� � pi� In order to de�ne a loosely Bernoulli process we start with � � Bn � Bn�
a permutation of the indices in Bn� and de�ne a size for this permutation� This
idea is de�ned and extended in 	�
 and 	�
�

De�nition ���� Let � � Bn � Bn be a permutation of the indices of Bn� We say
� is of size �� denoted by m�� 	 �� if there exists a subset S of Bn satisfying

i� jSj � �� ��jBnj� where jSj is the cardinality of the set S�
ii� jj��u� ��v � �u� �v�jj 	 �jj�u� �vjj for every �u��v � S�

De�nition ���� Given two Pn�names 
 and �� we de�ne the fn�distance between
them to be

fn
� �� � inff� � � � there exists a permutation � of Bn such that

i� m�� 	 �

ii� d
 � �� �� 	 �g�
Here d�� �� denotes the Hamming metric which simply gives the proportion of lo�
cations of Bn on which the two names disagree�

Informally� we will think of � as rearranging the name 
 to make it d close to the
name � and we will often refer to � as acting on a name instead of the technically
correct� set of indices� If �� 
� and � satisfy ii� of the above de�nition we say �
matches a �� ���proportion of 
 and ��

Intuitively� a zero entropy loosely Bernoulli process has one name up to f � For�
mally�

De�nition ���� A zero entropy process T� P � is loosely Bernoulli LB� if for any
� � � there exists an integer N� such that for any n � N� and ��a�e� atoms � and
�� of

W
�v�Bn

T�vP �

fn�� �
�� 	 ��
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De�nition ���� We say X�A� ��� T is LB if for every partition P of X � T� P � is
LB�

�� Finite Rank

De�nition ���� Let r � N� We say X�A� ��� T is a Zd rank r transformation

if there exists a sequence of sets F j
i 	 X � � � j � r� and F�lner sequences Dj

i �

� � j � r� of subsets of Zd� such that for each i� fT�vF j
i g are pairwise disjoint for

�v � Dj
i and � � j � r� and the partitions

Pi � fT�vF j
i � �v � Dj

i and � � j � r� X �
rj�� 
�v�Dj

i
T�vF

j
i g

converge to A as i � �� We also assume that r is the smallest integer for which
the above sets can be found�

For each i� we will have r disjoint towers� 
�v�Dj

i
T�vF

j
i � where � � j � r� which

will be denoted by  ji � As in the one dimensional case� any transformation which
is rank r is ergodic and has zero entropy 	�� �
�

In this paper we restrict our attention to rank r transformations with a special
tower shape�

De�nition ���� X�A� ��� T is a Zd uniform square rank r transformation if it is

rank r and there exists � � � such that for all i and j� the sets Dj
i of De�nition ���

satisfy�

�� Dj
i is a rectangle of dimensions flj�i

�
� ���� lj�id g�

�� If sj�i � min
k�����d

flj�ik g and bj�i � max
k�����d

flj�ik g� and we set

si � min
j�����r

fsj�ig� bi � max
j�����r

fbj�ig

then si

bi
� �

�
�

Let vsi � si�
d� the smallest possible volume of a tower at stage i� and vbi � bi�

d� the

biggest possible volume of a tower at stage i� Note then
vsi
vbi
� �

�
� where � � �d � ��

De�nition ���� Given a rectangle R 	 Z
d of size l� � � � � � ld� the ��interior of R

is the collection of indices in R which are at least a distance �lk from the kth edge
of R� The ��collar of R is the complement of the ��interior and corresponds to the
set of indices within �lk of the kth edge in the boundary of R�

Denote the volume of Dj
i by vji � lj�i

�
� � � � � lj�id and notice that the volume of

the ��interior of Dj
i is �� ���lj�i

�
� � � � � �� ���lj�id � �� ���dvji � Notice also that

by De�nition ��� we have that for � � j� k � r

�

�
� vsi

vbi
� vji

vki
� vbi

vsi
� ��

�� The Matching Lemma

The following result is a generalization of the Matching Lemma in 	�
� We have
already discussed the di�erence between the rank � case and the case with rank r
with r � �� To deal with this di�erence the proof of this result uses two applications
of the ergodic theorem� We pick a tower stage k such that there is some k�tower
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which has measure approximately �

r
� By the ergodic theorem we know that most

large enough names will visit this tower approximately �

r
of the time� We match

even larger names which visit the previous large names frequently enough� This
second use of the ergodic theorem guarantees that there is �randomness� in the
location of the di�erent types of towers�

Lemma ��� The Generalized Matching Lemma�� Let � and c 	 �

r
be �xed� Let

a � �

��
�� ���d�� ���dc��

There is an integer K�� c� � � such that for all k � K�� c�� if Pk is the partition

associated with the kth towers� then there exist integers Nk� and mk� such that

for all n � Nk�� we can �nd a set W with �W � � ��� and for �� ��� Pk�n�names

of two points x� x� � W � there exists a permutation � � Bn � Bn such that

d� � �� ��� 	 �� a�

and the action of � can be described as follows�

a� � translates all the indices of Bn by a vector �v� with k�vk 	 mk�� except for
those indices i for which i � �v �� Bn� On these� �i� is de�ned to be one of

the indices vacated by the translation�

b� For a subset of the  jk �s occurring in �� � moves the ��interiors of these towers

by an additional amount which can vary for each tower but is always less in

magnitude than �sk� The resulting location of the ��interiors of these towers

matches perfectly with the corresponding interior of a  jk in ���

Proof� Let � and c be given� Pick �� satisfying

� 	 �� 	 min

�
�

�
�
�

�

�

r
� c�

�
���

�� satisfying

� 	 �� 	
�

���
���

d�� �������

and choose K such that for all k � K �
� 
rj��  jk� � �� ��

�
� Fix some k � K�

For � � j � r setmj � � jk � and notice that for some j we must havemj � �

r
� ��

�
�

Say this is true for j � ��
Choose n� � N such that

bk

n�
	

��
�d

��

and there is a set U with �U � �� �� such that for all x � U �

jf�v � Bn� � T�vx� � �kgj
nd
�

�
�

r
� �����

Next� choose N � n� large enough so that for every n � N

n�
n

	
��
�d
���
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and there is a set W with �W � �� � so that for all x � W

jf�v � Bn � T�vx� � Ugj
nd

� �� �����

jf�v � Bn � T�vx� � 
rj�� jkgj
nd

� �� �����

jf�v � Bn � T�vx� � �kgj
nd

�
�

r
� �����

Fix such an integer n and a set W � Thus points in W have n�names which are
all but ��� full of k�towers� are all but ��� full of U � and see �k with frequency at
least �

r
� ���

Take two points in W and let � and �� be their n�names� We will de�ne a per�
mutation between them satisfying the statement of the lemma� Roughly speaking�
to do this we will �rst identify the towers in � which have a tower of the same type
occurring close by in ��� We will be able to match a subset of these towers�

Consider all the towers which occur in �� Notice that by conditions �� and ��
a proportion

� �� ������

of � lies in a complete tower which is a distance at least n� away from the boundary
of ��

Enumerate these complete towers in �� Denote the position of the base point of
tower t by �zt � Bn� Consider B�sk � the box of size �sk � � � � � �sk� centered at �zt in
��� We will say tower t is a good tower if the corresponding B�sk box in �� contains
the base point of an n��name from U �

Create an array whose rows correspond to complete towers in � that lie at least
n� away from the boundary of �� and whose columns are the elements of Bn� listed
in some order� A row in this array corresponding to a good tower will be called a
good row�

Fix a good row of the array� say row t� So tower t in � is a good tower� namely
there is an occurrence of a base point of a name from U in the B�sk box at position
�zt in �

�� Now shift this box in �� by each �v � Bn� � In entry t� �v� of the array� place
a  if the box shifted by �v contains the base point of a tower of the same type as
tower t in ��

Suppose the array is c� full of  marks� for some c � �� Then there will be a
column� say column �v � Bn� such that at least c� of the column will be full of 
marks�

The towers in the  marked rows of column �v will be the ones we will match�
We will de�ne the permutation � from � to �� as follows� � will �rst translate all
indices in Bn by the vector �v� except for those in the n��collar of Bn which are
dislocated by the translation� These indices can be mapped into the indices in the
n��collar which are vacated by the translation� Note that the towers represented
in the array are still intact after this translation� Further� the towers whose entry
in column �v has a  are now within �sk of a tower of the same type in ��� � will
shift the ��interiors of these towers by the amount needed to give an exact match
to that tower in ���
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This construction will give mk� � n�� and the permutation � will have matched
a proportion at least

percentage of � covered by complete towers within n� of the boundary�

�the percentage of these towers moved close to a like tower in �� by �v�

�the percentage of a tower inside its ��interior��

By equation �� and the de�nition of an ��interior� this is at least

�� ����� percentage of array which is full of �� �� ���d����

Letting c be as above� we will �nd a lower bound for c by computing the

percentage of rows of the array which correspond to good towers of type ��

�the proportion of such a row which is �lled with � marks��

To �nd the �rst quantity� �rst note that by ��� ��� and �� less than

��
�

���

of the rows in the array are bad rows�
Next� note that by conditions �� and �� we have a proportion

� �

�

�

r
� ����

of the rows of the array corresponding to towers of type � in �� Call these type �
rows�

Hence the rows which are both good and of type � take up at least a proportion

�

�

�

r
� ����� ��

�
�

�

�

�

r
� ����

of the array� To �nd a bound for c all we are missing is the proportion of a type �
row which is guaranteed to be �lled by  marks�

For this computation we note that by conditions �� and �� we have that a name
from U sees at least

 �
r
� ����n

d
�

v�k

base points of towers of type �� Hence a good row of type � is a proportion at least

 �
r
� ����

v�k
�dvsk �

�

�

�

r
� �����

d

full of  marks�
So the entire array is

�
�

��

�

r
� ����

�

r
� �����

d �
�

��

�

r
� ����

��d���

full of  marks�
Finally� we plug ��� in for c in ��� to conclude that we have matched a pro�

portion

� �� ����
�

��

�

r
� ����

��d�� ���d
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of �� By our choice of �� in �� this is

� �� ��
�

��
c��d�� ���d � a�

�

�� The Theorem for Finite Rank

Theorem ���� Let r � N� If T is a uniform square rank r Zd action on a Lebesgue

probability space X�M� �� then T is LB�

Proof� Let Q be an arbitrary partition on X and consider the process T�Q�� Let
� � � be �xed�

We will show that there is an integer N such that for all n � N we can �nd a
set W with �W � �� � such that for all x� x� � W if �� �� are the Qn�names of x
and x� then

f�� ��� 	 �����

Let � � ��

��d���
� Pick c 	 �

r
and let a � �

��
�� ���d�� ���dc��

For ease of exposition we assume � � a�� 	 �
�
� The proof of the general case

can be constructed directly from our argument� The idea will be to apply the
Generalized Matching Lemma GML� to obtain an integer K�� c� and to �nd two
tower sizes K�� c� 	 k� 	 k� so that the partition Q is well approximated byWt
i�� Pi� for some t � k�� If W is the set from the GML associated to k�� and �� ��

are two 
Wt
i�� Pi�n�names from W � then for large enough n the GML guarantees

the existence of a permutation �� such that

d� � ��� ��� 	 �� a�

The trick is to choose k� and k� such that if �k� satis�es ��k�� � �

r
� and Gc is the

set of unmatched indices of � � ��� then for some n�� G
c sees n��names which visit

�k� approximately �

r
of the time� This is exactly the setup of the GML� and we can

construct a permutation �� of Gc as in that lemma which will match a percent of
Gc�

We now choose our parameters and give the details of the argument�
Apply the GML with � and c to obtain an integer K�� c� as in the statement of

that lemma� Pick �� satisfying

� 	 �� 	 min

�
�

�
�
�

�

�

r
� c�

�
���

and �� satisfying

� 	 �� 	
�

���
���

d�� ��������

Pick k� � K such that

�
rj�� jk�� � �� ��
�

��
�

If mj � � jk� �� then for some j we must have

mj �
�

r
� ���

��
�

�

r
� ��

�
�
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Say this happens for j � ��
Choose n� � N such that

bk�

n�
	

��
�d

���

and such that there is a set U with �U � �� ��
�

�
such that for all x � U

jf�v � Bn� � T�vx� � �k�gj
nd
�

�
�

r
� ��

�
����

Next choose k� � k� such that mk�� � n� and

n�
sk�

	
��
�

��d�
����

Choose t � N such that t � k� and there is a partition Qt 	
Wt
i�� Pi such that

dQ�Qt� 	
�
�
� Then pick n � Nk�� large enough so that we can �nd a set W

which not only satis�es the statement of the GML� but in addition� for all x � W
we have

jf�v � Bn � T�vx� � Ugj
nd

� �� ��
�

���

jf�v � Bn � T�vx� � 
rj�� jk�gj
nd

� �� �

�
��
�

���

mk�� � n�
n

	
��
�

��d
���

and the Qt�n�name of x and the Qn� name of x di�er less than �
�
of the time�

Consider �� �� two 
Wt
i�� Pi�n�names of points in W � We will de�ne a permutation

� � Bn � Bn such that

d� � �� ��� 	
�

�
and m�� 	 ��

We can then use this same � on Q names� and by our choice of t� we will have
obtained ����

Let �� �� be as above and apply the GML to � and �� with tower k� and � to
obtain a permutation �� � Bn � Bn such that a� and b� of that lemma hold� Let
G be the set of matched indices of � � ���

If jGcj
nd

	 �
�
then to complete the proof we need only show that m��� 	 ��

Suppose that

jGcj
nd

� �

�
����

We have already chosen �� and �� appropriately in ��� and ��� respectively�
and have chosen our parameters to guarantee ������� and ���� So to construct
a permutation �� as in the GML it remains to show that Gc is all but ��� full of
occurrences of U � is all but ��� full of occurrences of k� towers and visits �k� all but
�

r
� �� of the time� These estimates will be the analogs of ����� and ���
For all these estimates we will need to know what proportion of the indices in

Gc lie in an mk�� � �n���collar around the boundary of Gc� The boundary of Gc

consists of the boundary of Bn� and the disjoint union of boundaries of boxes of
dimensions at most �� ���bk� � � � � � �� ���bk� � Using ���� ���� ���� and the
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fact that the largest number of k� towers matched is 	 nd

vs
k�

� we see that the number

of indices within mk�� � �n� of the boundary of Gc is at most

���
�
jGcj����

Using ���� ���� ���� ���� and ��� we have that for both � � �� and ��

jf�v � Gc � �v is the base point of an n��name from Ugj
jGcj � �� �������

Further� by ��� ���� ���� and ����

jf�v � Gc � �v is in a k� tower gj
jGcj � �� �������

We also claim that a proportion

� �� ������

of � � �� is covered by complete towers who are further than n� to the boundary
of � � ��� To see this note that the suspect indices are exactly those who are in a
�n� collar of Bn� By ��� this is a set of indices of proportion less than ���

�
�

Finally� we claim that by ���� ���� and ���

jf�v � Gc � �v lies in a �k� towergj
jGcj �

�

r
� ������

Matching up conditions �������� �������� �������� and ��� with their analogs
in the proof of the GML� we see that the conditions for that argument are satis�ed
and we proceed as in the proof of that lemma to obtain a permutation �� which is
the identity on G� satis�es a� and b� of the GML on Gc with mk�� � n�� and
matches a� of Gc with the corresponding indices in ���

Set � � �� � �� � Bn � Bn� It follows from our construction that d� � �� ��� 	
��a�� 	 �

�
� To �nish the proof� it remains to show that m�� 	 �� We need� then�

to show that there is a set C 	 Bn such that jCj � �� ��nd� and for all �u��v � C�
k��u� ��v � �u� �v�k 	 �k�u� �vk�

Recall that �� matches the ��interiors of some k��towers� and �� matches the
��interiors of some k� towers� Let C� be the indices in the

p
��interiors of the

boxes matched by ��� and de�ne C� similarly� As in the rank one argument we set
C � C�
C�� The rest of the argument is identical to the rank one case� we include
it below for completeness� sake�

To compute jCj
jBnj we count the indices which were matched by �� but are not in

C� The
p
��collar we removed from the ��interiors is a proportion

�X
i��

�d
p
�the proportion of the n�name matched by �i� 	 �d

p
��

So by our choice of �� jCj
jBnj � �� �

�
� �d

p
� � �� � �

Now pick �u��v � C� Suppose �rst that �u and �v were both matched by ��� Then�
if they are in the same k� tower we have

k��u� ��v � �u� �v�k � ��



��� Aimee S� A� Johnson and Ay�se A� S�ahin

Otherwise� they lie in di�erent k� towers� so k�u��vk � �
p
�sk� � On the other hand�

k��u� ��v � �u� �v�k 	 ��bk�

�
��bk�
k�u� �vkk�u� �vk 	 ��bk�

�
p
�sk�

k�u� �vk

	 �k�u� �vk�
The argument for the case where �u and �v are both matched by �� is similar�
Now suppose �u is matched by �� and �v is matched by ��� Then k�u��vk �

p
�sk� �

and

k��u� ��v � �u� �v�k 	 �bk� �mk�� � �bk�

� �bk� � n� � �bk� �

But bk� 	
��
�d
n� which by ��� is

	
��
�d

���
��d�

sk� 	
��
�d

���
��d�

bk� �

So we have that

k��u� ��v � �u� �v�k 	 ��bk�

�
��bk�
k�u� �vkk�u� �vk 	 ��bk�p

�sk�
k�u� �vk

	 �k�u� �vk�
�

References

��� J�R� Hasfura�Buenaga� The Equivalence theorem for Zd�actions of positive entropy� Ergodic
Theory Dynam� Systems �� ������� ��	
����

��� J� Feldman� New K�automorphisms and a problem of Kakutani� Israel Journal of Mathematics
�� ������� ��
���

��� N� Friedman� Introduction to Ergodic Theory� Van Nostrand Reinhold Mathematical Studies�
No� ��� Van Nostrand� New York� �����

��� A� Johnson and A� S�ahin� Rank one and loosely Bernoulli actions in Zd� Ergodic Theory
Dynam� Systems� to appear�

�	� J� Kammeyer and D� Rudolph Restricted orbit equivalence for Zd actions� I� Ergodic Theory
Dynam� Systems �� ������� ����
�����

��� A� Katok Monotone equivalence in ergodic theory� Math� USSR Izvestija� �� ������� ��
���
��� D� Ornstein� D� Rudolph� and B� Weiss� Equivalence of Measure Preserving Transformations�

Mem� Amer� Math� Soc�� no� ���� Amer� Math� Soc�� Providence� �����
��� K�K� Park� E�A� Robinson� Jr�� The Joinings within a class of Z� actions� Journal d�Analyse

Mathematique �� ������� �
���

Department of Mathematics and Statistics� Swarthmore College� Swarthmore�

PA �����

aimee�cc�swarthmore�edu

Department of Mathematics� North Dakota State University� Fargo� ND �����

sahin�plains�nodak�edu http���www�math�ndsu�nodak�edu�faculty�sahin

This paper is available via http���nyjm�albany�edu������j�������A����html�


	Finite Rank Zᵈ Actions And The Loosely Bernoulli Property
	Recommended Citation

	Finite Rank Zd Actions and the Loosely Bernoulli Property

