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EXECUTIVE SUMMARY 

 The West Fork-White River has been and continues to be an important water resource for 

northwest Arkansas.  It is used recreationally for fishing and swimming, agriculturally as a 

source of water for livestock and irrigation of crops, it is mined for gravel, used as a receiving 

stream for municipal wastewater effluent, and contributes to Beaver Lake which provides water 

for treatment and distribution to most of northwest Arkansas.  While these uses have benefited a 

large segment of the Arkansas population, they have also contributed to the decline in 

environmental quality of the river.   To facilitate the development of appropriate management 

protocols and assess restoration potential, we provided a biological assessment of the West Fork-

White River to complement studies of its physical and chemical properties.  This holistic 

evaluation can be used presently, and to track changes in the environmental quality of the river in 

the future.    

We compared the fish assemblages that we described at eight West Fork-White River 

sites to historical information dating back to 1894 and to current conditions in other Boston 

Mountain streams that are less disturbed.  We identified 39 fish species in our survey, compared 

to 63 species from historical records.  Nine of the fish species missing in our survey are of 

particular concern because these species appear consistently in historical records of the West 

Fork-White River, have been commonly reported in Boston Mountain streams, and two 

(checkered madtom and yoke darter) are endemic to the White River basin.  We noted an 

increase in abundance of tolerant species and decline of sensitive species, which indicates that 

environmental stress is influencing the composition of the fish assemblages.  The paucity of 

desirable sportfish and sunfish (e.g. bass, crappie, catfish) also suggests that restoration is 

needed.  However, it is encouraging to note that a headwater site that we intensively sampled 

compared favorably with least-disturbed streams in the Boston Mountain ecoregion in some 

measures of environmental health including fish density, biomass, and species richness.  

The assessment of environmental quality based on macroinvertebrate assemblages is 

consonant with the assessment based on fishes.  Tolerant species again predominated, and the 

species richness was lower than what would be expected for less disturbed streams in this 

ecoregion. Meiofauna, a group of stream invertebrates smaller than macroinvertebrates, are of 

increasing interest to stream ecologists and may become important tools for future 

bioassessment.  While little is known about the influence of anthropogenic disturbance on 



meiofauna, we noted that the West Fork-White River assemblage was also dominated by tolerant 

taxa.  We provided a baseline of information on this group of organisms at this time for 

subsequent evaluations.   

 Riparian corridors were in good condition in some upstream reaches, but bank erosion 

was apparent where buffers were narrow or absent. Further downstream, extensive bank erosion 

has occurred contributing to open canopies, gravel substrate embedded with fine sediments, and 

excessive turbidity.  The site downstream from the community of West Fork municipal 

wastewater outfall was in very poor condition and was dominated by tolerant fish and 

macroinvertebrate species. 

Our overall assessment is that the biological community has been affected by the 

cumulative effect of disturbance over time, but that species richness remains moderately high 

over the course of the river, and headwater reaches have maintained sufficient biological 

integrity to suggest that restoration efforts at this time could be effective.  Attention to the 

cumulative effects of physical and chemical disturbances on the biological community can 

provide information for setting benchmarks to evaluate the success of improved management 

protocols and restoration efforts. 
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INTRODUCTION 
 

 The West Fork-White River is a Boston Mountain stream originating in Winslow, 

Arkansas, flowing north through the community of West Fork into Fayetteville, and 

emptying into the main channel of the White River downstream from Lake Sequoyah.  

Identified problems within the West Fork-White River watershed include point source 

discharges (principally municipal wastewater) as well as nonpoint sources from agricultural 

activity (conversion of forest to pasture and proliferation of confined animal operations), and 

road construction and maintenance. We performed a thorough biological assessment of the 

West Fork-White River in conjunction with the physicochemical and geomorphological 

survey by the Environmental Preservation Division of the Arkansas Department of 

Environmental Quality (ADEQ).  The goal of this collaborative effort was to determine 

baseline biological, chemical, and physical conditions of the West Fork-White River and 

assess the need for restoration. 

 Our primary objective was to provide biological data that described fishes, 

macroinvertebrates, and meiofauna of the West Fork-White River in 2002 that can be used 

for comparative purposes.   We paid particular attention to providing detailed information on 

the methods employed, the precise location of sampling, the time of the year, and the 

recording and analysis of data in order to facilitate comparison to past, present, and future 

data. 

We surveyed eight sites representing the headwaters to the mouth of the river to 

provide a database on the status of biota at sites representing different watershed sizes 

(watershed size measured as the area from sampling site upstream to the headwaters).  

Because physical and chemical conditions of rivers change from headwaters to mouth, there 

are natural differences in the biological community along a longitudinal gradient (Vannote et 

al. 1980).  While these changes are not as great for Ozark Plateau streams compared to many 

others, (Brussock and Brown 1991, Brown and Brussock1991), comparison among sites of 

different watershed sizes should not be used to assess environmental quality because natural 

differences become confounded with those that are the result of anthropogenic disturbances.  

The following comparisons avoid those confounding effects: (1) comparison of biological 
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conditions over the full course of the West Fork-White River from headwaters to mouth to 

historical conditions for the full course of the River,  (2) comparison of a West Fork-White 

River site of a specific watershed size to other Boston Mountain streams sites with 

approximately the same watershed size, (3) comparison of 2002 conditions at a particular 

West Fork-White River site to that found in the past for that particular site, and (4) 

comparison of 2002 conditions at a particular West-Fork-White river site to those found in 

the future for that particular site.  

 Specific comparisons made in this survey included a comparison of species richness 

of fishes of the West Fork-White River to historical records dating back to 1894 (Meeks 

1894, Cloutman and Olmsted 1976), a comparison of fish and macroinvertebrate 

assemblages found in 2002 at a particular West Fork-White River site to assemblages 

described at or near that site in 1963 and 1993 (ADPCE 1995), and a comparison of the fish 

assemblage of a West Fork-White River site to other Boston Mountain sites in the 5000 to 

10,000 ha watershed range (Rambo 1998, Radwell 2000). 

While we were interested in employing methods for comparative purposes, we were 

also interested in establishing appropriate methods for future bioassessment.  Information 

from previous work in Boston Mountain streams along with information on the West Fork-

White River represent a database for further development of biocriteria that could be used for 

monitoring of the West Fork-White River in the future. It is anticipated that another 

biological assessment using the same methods would be done if restoration work is deemed 

necessary and completed.  Data collected for the current project could serve as a baseline for 

determining the level of success of restoration efforts.  If restoration work is not performed, 

our results will be useful to future investigators in assessing trends in biological conditions of 

the West Fork-White River, and will increase the database of objective, quantitative 

information to establish reference conditions for bioassessment of Boston Mountain 

ecoregion rivers.  We end our report with a list of recommendations for appropriate 

bioassessment protocols for the West Fork-White River as well as other Boston Mountain 

ecoregion rivers based on our observations and examination of the state-of-the-art of 

bioassessment at this time.   
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STUDY SITES 
 

 The West Fork-White River is 50 km (31 mi.) long from headwater to mouth.  Seven 

study sites, designated Sites 1 – 7, were selected by the Environmental Preservation Division 

of the ADEQ (Figure 4).  Sites 1 and 2 represented headwater conditions, and Site 3 was on 

Winn Creek, a major tributary of the West Fork-White River.   We added Site 3P-INT, 

between Sites 2 and 4, for a more intensive study of fishes than the other sites using a three-

pass depletion technique comparable to that done at 10 other Boston Mountain ecoregion 

stream reaches studied in 1996 and 1998 (Rambo 1996, Radwell 2000).  Site 4 was south of 

the community of West Fork, and Site 5 was downstream in West Fork.  Site 6 was southeast 

of Hwy 156 near the low-water bridge known to local residents as the Tilly-Willy Bridge.  

Site 7 was west of the Dead Horse Mountain Road crossing over the West Fork-White River 

in Fayetteville.   Precise sampling locations for all sites are shown in Table 1 to facilitate 

future comparisons. 

                                  Figure 1.  Site 1 – Wooded riparian corridor 

 
 

The riparian corridors of Sites 1 – 4 were more wooded than downstream sites, with 

some reaches having dense canopies of oak, hickory and sycamore trees (Figure 1).  

However, along reaches where riparian corridors were absent or narrow, bank erosion was 

evident.  Highway 71 was in close proximity to Sites 1, 2, 3P-INT, and 4, with drainage 

structures directing storm water from the highway into the river. Site 3, on Winn Creek, was 

selected due to concerns about the impact of sediment deposition associated with 

construction of Interstate 540 (Figure 2).  Trash dumping was apparent at this site.  
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Sites 5-7 had bank destabilization and siltation associated with the absence of riparian 

buffers (Figure 3).  Turbidity and substrate embeddedness increased progressively 

downstream.  Site 5 was located immediately downstream from the West Fork municipal 

wastewater outfall, and upstream from an active gravel mining operation.  Bank erosion was 

severe above and below the site, and the river was wide and shallow.  Cattle had access to the 

river at Site 6, where bank breakdown and high sediment load were evident.  Trash dumping 

was also apparent at this site.   Site 7 was characterized by extensive bank erosion, substrate 

embeddedness, and high turbidity, reflecting the accumulation of upstream disturbances. 

 

Figure 2.  Site 3 – Interstate 540 support structures  
                near Winn Creek                                                      

  
                                                                     

                                         Figure 3.  Site 5 – Bank destabilization and erosion 
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Figure 4.  2002 West Fork-White River study sites. 
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Table 1.  West Fork-White River sampling sites for 2002 bioassessment surveys.  
 

 
Site  

Status and 
Classification* 

 

 
Location 

 
Watershed size 

 

GPS Coordinates 
Zone 15S  Datum: WGS 84 

 

 
Latitude/Longitude

 

 
Altitude 

   
1   

       
  

       
   

       
   

       
   

       
   

       
   

       

Disturbed
B-Type 

Upper 1900 ha - 7.3 sq. mi. 398237E 3964377N N 35° 49.099' 
W 94° 07.587' 

507 m. 

2 Least Disturbed
 B-Type 

Upper 2650 ha - 10.2 sq. mi. 399303E 3966735N N 35° 50.378' 
W 94° 06.899' 

472 m. 

3 Disturbed
B-Type 

Tributary 3200 ha - 12.3 sq. mi. 393961E 3969612N N 35° 51.900' 
W 94° 10.471' 

450 m. 

4 Disturbed
B-Type 

Middle 15,200 ha - 58.6 sq. mi. 393532E 3974998N N 35° 54.810' 
W 94°10.800' 

498 m. 

5 Disturbed
C-Type 

Middle 18,300 ha - 70.8 sq. mi. 393062E 3978558N N 35° 56.733' 
W 94° 11.141' 

399 m. 

6 Disturbed
C-Type 

Lower 23,8000 ha - 92.0 sq. mi. 397060E 3986218N N 36° 00.901' 
W 94° 08.541' 

375 m. 

7 Disturbed
C-Type 

Lower 30,100 ha - 116.4 sq. mi. 398757E 3990152N N 36° 03.040' 
W 94° 07.461' 

368 m. 

3P-INT** Least Disturbed  
C-Type 

Middle 8069 ha - 31 sq. mi. 396480E 3970282N N 35° 52.279' 
W 94° 08.804' 

434 m. 

  *  Stream classification based on Rosgen (1996).   
**  Sites 1 through 7 are located downstream of one another.  Site 3P-INT was selected later for comparison to other Boston Mountain 
      ecoregion stream sites in the 5000 to 10,000 ha watershed size range.  
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FISHES 

INTRODUCTION 

 Arkansas has a rich diversity of fishes, with the first records of Arkansas fishes made 

by Hernando De Soto in the earliest European exploration of Arkansas in 1541. Fishes of the 

midwestern U.S. have been one of the most studied groups of aquatic organisms since the 

late 18th century.   The most significant contributor to knowledge of Arkansas fishes before 

1900 was Seth E. Meek, Professor of Biology and Geology at the Arkansas Industrial 

University (University of Arkansas) who explored fishes of the state from 1889 to 1893 

(Meek 1894). Robison and Buchanan (1988) compiled the most comprehensive survey of 

fishes of Arkansas, reporting 217 species (including 17 introduced species) in the state.  

The usefulness of fish assemblages as indicators of biological quality has been 

recognized since the early 1900s (Forbes and Richardson (1913).  Characteristics of fish 

assemblages have been and remain a major part of aquatic study designed to evaluate the 

condition of water resources.  Fish assemblages are a highly visible aquatic component, and 

their economic and aesthetic values are widely recognized.  The availability of historical 

information enhances their usefulness for tracking changes in environmental quality over 

time.   The rationale for their use in bioassessment is based on the notion that problems that 

first occur in lower trophic groups will eventually be revealed in higher trophic groups if they 

are indeed of ecological consequence. 

 

METHODS 

 The eight study sites were sampled for fishes from 25 July to 22 August 2002.  A 

representative pool-riffle sequence including all microhabitats was sampled at Sites 1-7 using 

a Smith Root battery-powered backpack electrofishing unit.  For Sites 6 and 7, backpack 

sampling was supplemented with a boat-mounted pulsed DC electrofisher for pools that were 

not wadeable.  Fish from each pass were held in oxygenated buckets; those that could be 

identified streamside were measured for length (TL ± 1mm) and weight (± 0.1g) and 

released.  Small or unidentified fish were preserved in 10% buffered formalin, returned to the 

laboratory where they were rinsed, transferred to 70% ethanol, identified, and measured for 
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length and weight.  All fishes collected were identified to species (Robison and Buchanan 

1988).         

 Site 3P-INT was chosen for a three-pass removal sampling described by Bohlin et al. 

(1989) to estimate fish populations. A representative pool-riffle sequence was electrofished 

for 60 minutes three times with a 45-minute interval between samplings.  Fish were handled 

in the same way as those from Sites 1 to 7, except fish were returned downstream of the 

sampling area, and separate information was generated from each pass.  Estimates of density 

and biomass were computed from catch, length, and weight for each species from Site 3P-

INT using the three-pass removal, maximum likelihood method computed with Pop/Pro 

software (Seber 1982, Bohlin et al. 1989, Kwak 1992) with 2-cm size classes for each 

species. 

 

2002 FISH SURVEY 

 A total of 4229 fishes representing 39 species were sampled at the eight study sites 

(Table 2). It should be noted that Site 3P-INT was more intensively sampled than the other 

sites, and the data is presented as the sum of the three passes in contrast to a single pass for 

Sites 1-7.  Estimates computed from Pop-Pro software (Kwak 1992) for each species and 

total density and biomass at Site 3P-INT are shown in Table 3.  Species identification of 

fishes in the genera Campostoma is difficult in the field, and we chose not to sacrifice the 

1698 individuals to return them to the laboratory for definitive identification.  Since 

Campostoma anomalum (central stonerollers) and Campostoma oligolepis (largescale 

stonerollers) have been reported in the West Fork-White River, we reported them as two 

species at all eight sites.  We had a similar situation with fishes of the genera Moxostoma at 

Sites 6 and 7 and chose not to sacrifice them for definitive identification, reporting 

Moxostoma spp (black and golden redhorses) as two species representing Moxostoma 

duquesnei and Moxostoma erythrurum. 

The relative proportion of major fish taxa and their biomass differed among the eight 

sites (Figures 5 and 6).  Such differences are expected since each collection represents the 

biological assemblage that is characteristic of a particular watershed size, and each is 

influenced by a different set of anthropogenic disturbances. Data are not intended for 
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Table 2.  Fish collected at eight sites during July and August, 2002 in the West Fork-White River.  See text for a description of methods used.   

 

          2002 SITES
          

          
1 2 3 4 5 6 7 3P-INT

 
Total

Lepisosteidae Gars

   Lepisosteus osseus    Longnose Gar 0 0 0 0 0 0 1 0 1 

Clupeidae           

           

         

           

         

         

Herrings

   Dorosoma cepedianum    Gizzard shad 0 0 0 0 0 0 8 0 8 

Cyprinidae Minnows

   Campostoma spp.*     Central and largescale  
         stonerollers* 

67 257 167 218 505 15 104 365 1698

   Cyprinella whipplei    Steelcolor shiner 0 0 0 0 3 6 22 0 31 

   Luxilus pilsbryi    Duskystripe shiner 8 0 0 80 164 0 0 204 456 

   Notropis boops    Bigeye shiner 0 0 8 13 30 38 28 0 117 

   Notropis nubilus    Ozark minnow 0 3 0 2 0 6 9 0 20 

   Notropis rubellus    Rosyface shiner 0 0 0 0 0 2 6 0 8 

   Pimephales notatus    Bluntnose minnow 0 0 4 1 1 16 2 0 24 

   Semotilus atromaculatus    Creek chub 35 28 21 2 0 0 10 31 127 

Catostomidae Suckers

   Hypentelium nigricans     Northern hogsucker 1 1 7 3 4 3 11 4 34 

   Moxostoma spp.**    Black and golden  
         redhorses** 

0 0 0 0 0 69 17 0 86

Ictaluridae Freshwater catfishes
 (Continued on next page) 
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          2002 SITES
          1 2 3 4 5 6 7 3P-INT Total
   Ictalurus melas    Black bullhead  1 0 3 0 1 0 0 0 5 

   Ictalurus natalis    Yellow bullhead 1 0 7 0 0 1 0 1 10 

   Noturus albater    Ozark madtom 0 0 0 3 0 0 6 0 9 

   Noturus exilis   Slender madtom 1 37 2 46 12 1 1 25 125 

Cyprinodontidae           

           

           

         

        

Killifishes

   Fundulus olivaceus    Blackspotted topminnow 7 0 1 1 0 3 1 4 17 

Atherinidae Silversides

   Labidesthes sicculus    Brook silversides 0 0 0 0 0 0 8 0 8 

Centrarchidae Sunfishes

   Ambloplites ariommus     Shadow bass 0 0 0 0 1 0 0 2 3 

   Ambloplites constellatus    Ozark bass 0 0 0 0 0 11 1 0 12 

   Ambloplites rupestris    Rock Bass 0 0 0 0 3 0 0 6 9 

   Lepomis cyanellus    Green sunfish 19 1 28 2 15 6 10 11 92 

   Lepomis gulosus     Warmouth 0 0 0 0 0 0 1 1 2 

   Lepomis macrochirus    Bluegill 4 0 4 3 1 19 39 1 71 

   Lepomis megalotis    Longear sunfish 0 2 20 51 84 59 6 63 285 

   Lepomis sp.    Hybrid Green 
         sunfish/Bluegill 

0 0 0 0 2 21 13 0 36

   Micropterus dolomieui    Smallmouth bass 0 0 0 1 1 0 0 4 6 

 (Continued on next page)
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          2002 SITES
          1 2 3 4 5 6 7 3P-INT Total
   Micropterus punctulatus    Spotted bass 0 0 0 0 1 2 3 0 6 

   Micropterus salmoides    Largemouth bass 0 0 0 0 0 0 2 0 2 

Percidae           

           

           

           

           

Perches

   Etheostoma blennioides    Greenside darter 0 0 1 20 50 11 13 18 113 

   Etheostoma caeruleum    Rainbow darter 9 14 12 37 84 8 34 67 265 

   Etheostoma punctulatum    Stippled darter 2 0 24 25 14 1 4 24 94 

   Etheostoma spectabile    Orangethroat darter 33 76 44 70 37 4 17 86 367 

   Etheostoma zonale    Banded darter 13 2 18 14 0 2 4 12 65 

   Percina caprodes    Logperch 0 0 0 0 0 0 12 0 12 

Poeciliidae Livebearers

   Gambusia affinis    Mosquitofish 0 0 0 0 0 0 3 0 3 

Moronidae Temperate basses

   Morone saxatilis    Striped Bass 0 0 0 0 0 0 1 0 1 

Cottidae Sculpins

   Cottus carolinae    Banded Sculpin 0 0 0 1 0 0 0 0 1 

Total Individuals 202 423 374 597 1018 310 404 929 4229

Species Count           15 11 18 21 21 24 33 20

  * Campostoma anomalum and Campostoma oligolepis were not differentiated and were included as two species in the species count. 
** Moxostoma Duquesnei and Moxostoma erythrurum were not differentiated and were included as two species in the species count. 
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Table 3.  Density and biomass estimates for fishes sampled at West Fork-White River Site 3P-INT 1 
August 2002.  Values in parentheses are ± 2 SE. 
 
Species Density (fish/ha) Biomass (kg/ha) 

Campostoma spp. 
          Central (and large scale) stoneroller 

10,357  (± 2824)  
 

56.56  (± 16.03) 
 

Luxilus pilsbryi 
          Duskystripe shiner 

4595  (± 848) 
 

4.80  (± 0.69) 
 

Semotilus atromaculatus 
          Creek chub 

539* 0.90* 

Hypentelium nigricans 
          Northern hogsucker 

70 (± 9) 4.45 (± 4.82) 
 

Ictalurus natalis 
          Yellow bullhead 

17* 
 

1.35* 

Noturus exilis 
          Slender madtom 

2638 (± 19,688) 
 

10.71(± 79.97) 
 

Fundulus olivaceus 
          Blackspotted topminnow 

70 (± 9 ) 
 

0.17 (± 0.13) 
 

Ambloplites ariommus 
          Shadow bass   

35* 3.32* 

Ambloplites constellatus 
          Rock bass 

196 (± 539) 
 

20.40 (± 56.65) 
 

Lepomis cyanellus 
          Green sunfish 

322 (± 1122) 
 

11.98 (± 41.95) 
 

Lepomis gulosus 
          Warmouth    

17* 
 

1.83* 

Lepomis macrochirus 
          Bluegill 

17* 0.06* 

Lepomis megalotis 
          Longear sunfish 

1014 (± 123) 
 

12.97 (± 2.36) 
 

Micropterus dolomieui 
          Smallmouth bass 

76 (± 36) 
 

0.59 (± 0.55) 
 

Etheostoma blennioides 
          Greenside darter 

629 (± 344) 
 

2.07 (± 1.50) 
 

Etheostoma caeruleum 
          Rainbow darter 

1455 (± 387) 
 

1.46 (± 0.46) 
 

Etheostoma punctulatum 
          Stippled darter 

571 (± 366) 
 

2.25 (± 1.51) 
 

Etheostoma spectabile 
          Orangethroat darter 

3956 (± 5769) 
 

3.73 (± 4.59) 
 

Etheostoma zonale 
          Banded darter 

214  (± 25) 
 

0.21 (± 0.14)  
 

Total 26,788  (± 20,774) 139.81 (± 108.06) 

 * population not depleted; minimum summing 3 passes
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Figure 5.  Relative proportion of major fish taxonomic groups shown as a percentage of the total individuals.  These data are 
intended for comparison to data from other Boston Mountain ecoregion stream sites of comparable watershed size or to data 
collected at the same site in the future.  They are not intended for comparison among sites (i.e. to each other).  
 
* Data for Site 3P-INT based on estimates using three-pass removal, maximum likelihood method computed with Pop/Pro 
   software (Kwak, 1992). 
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Figure 6.  Relative proportion of biomass of major fish taxonomic groups shown as a percentage of the total biomass.  These data 
are intended for comparison to data from other Boston Mountain stream sites of comparable watershed size or to data collected at 
the same site in the future.  They are not intended for comparison among sites (i.e. to each other). 
 
*Data for Site 3P-INT based on estimates using three-pass removal, maximum likelihood method computed with Pop/Pro 
  software (Kwak, 1992).
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comparison among sites, but rather to other Boston Mountain ecoregion sites of comparable 

watershed size or to data collected at the same site in the future. 

The major fish taxa represented in Figures 5 and 6 respond to the natural environment 

and anthropogenic disturbance in different ways.  Campostoma (stonerollers) and some 

species of Catostomidae (suckers) are tolerant of disturbance, and may out-compete other 

species under adverse conditions.  Centrarchidae (sunfishes including bass) represent the top 

predators of stream ecosystems.  Some are very tolerant of disturbance (e.g., green 

sunfishes), and others are highly sensitive (e.g., smallmouth bass).  Most fishes in the 

Percidae family (darters) are sensitive to disturbance, with the exception of the orangethroat 

darter.      

Campostoma (stonerollers) thrive in reaches with open canopies.  The 

geomorphology of Site 2 was dominated by bedrock with shallow water open to the sunlight, 

and Campostoma were abundant.   The relative proportion of Campostoma often increases 

when riparian vegetation is reduced and sunlight and algal growth increases during 

conversion of woodland to pasture. Petersen (1998) reported higher relative proportions of 

Campostoma in agricultural watersheds and downstream from wastewater-treatment plants.  

Site 5, an agricultural site, had no canopy cover and was located immediately below the West 

Fork wastewater outfall.  Severe bank destabilization had reduced pool and riffle habitat in 

favor of a shallow run with high embeddedness from erosion.  Such conditions favored the 

Campostoma population, which comprised nearly 50% of the individuals present at that site. 

The relative biomass of major fish taxonomic groups (Figure 6) was provided as 

baseline data.  It should be noted that high biomass at a site is not necessarily indicative of 

good environmental quality because poor conditions can favor the proliferation of tolerant 

species. The relative proportion of biomass is a more meaningful measure of environmental 

conditions at a site than total biomass.        

  

HISTORICAL CHANGES IN FISH SPECIES RICHNESS 
Species richness is an important assemblage characteristic that is included in all 

bioassessment protocols that examine fish assemblages.  The White River basin is recognized 

for its high fish diversity, and various accounts of fishes in the West Fork-White River have 
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been reported.   Historical records often lack information (or the information has been lost 

over time) on exactly where, how, and when the species were collected, and quantitative 

information is frequently lacking.   However, these records provide important information 

about species richness that is useful for assessing changes over time.  

We created an inventory of fish species historically reported in the West Fork-White 

River using the following sources: (1) a compilation of fish species reported in streams and 

rivers in Washington County, Arkansas dating back to Meek’s report of 1894  (Cloutman and 

Olmsted 1976), (2) fish species reported in the West Fork-White River in 1963 and 1993 

(ADPCE 1995), (3) fish species presence pre-1960 and from 1960 to 1987 (Robison and 

Buchanan 1988), and (4) the current survey of West Fork-White River fishes sampled in 

2002.  These sources generated an historical list of 63 West Fork-White River fish species 

(Table 4). 

In contrast to the historic list of 63, our 2002 survey of eight sites generated a list of 

39 West Fork-White River species (Table 2).  Our survey contributed three species to the list 

of 63 that were not reported previously in the historical sources we used: striped bass, 

warmouth, and a hybrid of green sunfish and bluegill.   Striped bass is an introduced species 

found commonly in reservoirs, and our finding is likely an introduced refugee.  Warmouth 

are reported in Ozark streams, and the two individuals we found may have been introduced 

from elsewhere, or the species has been present historically but not reported.   Hybridization 

between Lepomis species has been reported previously in Arkansas  (Robison and Buchanan 

1988), but the specific hybrid we found was not reported in the West Fork-White River in the 

historical sources we used. 

The hybrid of green sunfish and bluegill comprised 20 percent of the fish in the 

family Centrarchidae sampled at Site 6 and 19 percent at Site 7.  Karr (1986) had initially 

included hybridization in the Index of Biotic Integrity as an indication of water quality 

degradation.  Subsequently, there were reports of hybrids at both disturbed and undisturbed 

sites, and the reliability of hybridization as an environmental indicator was called into 

question (Hughes and Oberdorff 1999, Simon and Lyons 1995).  However, Sites 6 and 7 

were the most disturbed reaches of the West Fork-White River in our survey, and 
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Table 4.  Fish species historically reported in West Fork-White River from Cloutman and 

Olmsted (1976), Robison and Buchanan (1988), ADPCE (1995), and the 2002 survey.  

  
Lepisosteidae Gars 
 Lepisosteus osseus  Longnose gar 
Clupeidae Herrings 
 Dorosoma cepedianum  Gizzard shad 
Cyprinidae Minnows 
 Campostoma anomalum  Central stoneroller 
 Campostoma oligolepis  Largescale stoneroller 
 Cyprinella whipplei  Steelcolor shiner 
 Cyprinus carpio  Common carp 
 Hybopsis amblops  Bigeye chub 
 Luxilus chrysocephalus  Striped shiner 
 Luxilus pilsbryi  Duskystripe shiner 
 Nocomis biguttatus  Hornyhead chub 
 Notropis boops  Bigeye shiner 
 Notemigonus crysoleucas  Golden shiner 
 Notropis nubilus  Ozark minnow 
 Notropis rubellus  Rosyface shiner 
 Notropis telescopus  Telescope shiner 
 Pimephales notatus  Bluntnose minnow 
 Pimephales promelas  Fathead minnow 
 Pimephales tenellus  Slim minnow 
 Semotilus atromaculatus  Creek chub 
Catostomidae Suckers  
 Catostomus commersoni  White sucker 
 Hypentelium nigricans  Northern hogsucker 
 Moxostoma carinatum  River red horse 
 Moxostoma duquesnei  Black redhorse 
 Moxostoma erythrurum  Golden redhorse  
 Minytrema melanops  Spotted sucker 
Ictaluridae Freshwater catfishes 
 Ictalurus melas  Black bullhead 
 Ictalurus natalis  Yellow bullhead 
 Ictalurus punctatus  Channel catfish 
 Noturus albater  Ozark madtom 
 Noturus exilis  Slender madtom 
 Noturus flavater  Checkered madtom 
 Pylodictis olivaris  Flathead catfish 
 
                                                                                                        (Continued on next page) 
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Table 4.  Continued. 

 

Cyprinodontidae Killifishes  
 Fundulus catenatus  Northern studfish 
  Fundulus olivaceus   Blackspotted topminnow 
Atherinidae Silversides 
 Labidesthes sicculus  Brook silverside 
Centrarchidae Sunfishes 
 Ambloplites ariommus  Shadow bass 
 Ambloplites constellatus  Ozark bass 
 Ambloplites rupestris  Rock bass 
 Lepomis cyanellus  Green sunfish 
 Lepomis gulosus  Warmouth 
 Lepomis macrochirus  Bluegill 
 Lepomis megalotis  Longear sunfish 
 Lepomis sp.  Hybrid Green sunfish/Bluegill 
 Micropterus dolomieui  Smallmouth bass 
 Micropterus punctulatus  Spotted bass 
 Micropterus salmoides  Largemouth bass 
 Pomoxis annularis  White crappie 
Percidae Perches 
 Etheostoma blennioides  Greenside darter 
 Etheostoma caeruleum  Rainbow darter 
 Etheostoma juliae  Yoke darter 
 Etheostoma punctulatum  Stippled darter 
 Etheostoma spectabile  Orangethroat darter 
 Etheostoma stigmaeum  Speckled darter 
 Etheostoma zonale  Banded darter 
 Percina caprodes  Logperch 
 Stizostedion vitreum  Walleye 
Poeciliidae Livebearers 
 Gambusia affinis  Mosquito fish 
Moronidae Temperate  Basses 
 Morone chrysops  White bass 
 Morone saxatilis  Striped bass 
Cottidae Sculpins 
 Cottus carolinae  Banded sculpin 
Petromyzontidae Lampreys 
 Ichthyomyzon castaneus  Chestnut lamprey 
 Ichthyomyzon gagei  Southern brook lamprey 
Anguillidae Freshwater eels 
 Anguilla rostrata  American eel 
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hybridization may represent reproductive dysfunction induced by environmental conditions 

in this particular situation.  

Twenty-two fish species reported historically in the West Fork-White River were not 

found in 2002 (Table 5).  Some of the missing species (e.g., chestnut and southern brook 

lamprey, and American eel) may still be present, but electrofishing may have been 

ineffective in capturing them or their seasonal migratory patterns may have precluded our 

capture at the particular time of sampling.   Other missing species (e.g., common carp and 

fathead minnow) are introduced species, and their absence cannot be construed as a 

significant loss in species richness.  

Nine species (shown with an asterisk in Table 5) of the 22 species reported 

historically that were missing in 2002 are of concern because they appear in historical 

records of the West Fork-White River, have been commonly reported in Boston Mountain 

ecoregion streams, and two are endemic to the White River basin. Cloutman and Olmsted 

(1976) report the presence of bigeye chub at five West Fork sites  (specific dates were not 

given), and Robison and Buchanan (1988) report it as widely distributed throughout clear 

streams of the upper White River system including the West Fork.  It was not collected in the 

ADPCE survey of the West Fork-White River (1995) in either 1963 or 1993.  Striped shiner, 

hornyhead chub, golden shiner, telescope shiner, speckled darter, and yoke darter, were 

reported in the West Fork in either 1963 or 1993 (ADPCE 1995) at Site 6, but they were not 

found at any of the sites we sampled in 2002. Checkered madtoms have been reported in the 

West Fork historically, but the species has not been reported in recent times.   

Because checkered madtoms and yoke darters are endemic to the White River basin, 

their possible extirpation from the West Fork is worthy of attention.  The Missouri 

Department of Conservation lists the checkered madtom as a species of concern with a state 

ranking of S3, which designates the species as rare and uncommon in the state.    Petersen 

(1998) reported checkered madtoms and yoke darters in Ozark plateau streams, but both 

species have been extirpated from the reach downstream of Beaver Dam (Quinn and Kwak 

2003), where yoke darters comprised 34% of the fishes sampled prior to closure of the dam. 

Yoke darters comprised 24% of the fish sampled in the White River near Durham in 1963,      
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Table 5.  Fish species present historically in the West Fork-White River but not found 

 in the 2002 survey. 

Cyprinidae  Minnows  
 Cyprinus carpio  Common carp 
 Hybopsis amblops  Bigeye chub* 
 Luxilus chrysocephalus  Striped shiner* 
 Nocomis biguttatus  Hornyhead chub* 
 Notemigonus crysoleucas  Golden shiner* 
 Notropis telescopus  Telescope shiner* 
 Pimephales promelas  Fathead minnow 
 Pimephales tenellus  Slim minnow 

Catostomidae  Suckers  
 Catostomus commersoni  White sucker 
 Moxostoma carinatum  River red horse 
 Minytrema melanops  Spotted sucker 

Ictaluridae  Freshwater catfishes  
 Ictalurus punctatus  Channel catfish 
 Noturus flavater  Checkered madtom*  
 Pylodictis olivaris   Flathead catfish 

Cyprinodontidae  Killifishes  
 Fundulus catenatus  Northern studfish* 

Centrarchidae  Sunfishes  
 Pomoxis annularis  White crappie 

Percidae  Perches  
 Etheostoma juliae  Yoke darter* 
 Etheostoma stigmaeum  Speckled darter* 
 Stizostedion vitreum  Walleye 

Moronidae  Temperate basses  
 Morone chrysops  White bass 

Petromyzontidae  Lampreys  
 Ichthyomyzon castaneus  Chestnut lamprey 
 Ichthyomyzon gagei  Southern brook lamprey 

Anguillidae  Freshwater  eel  
 Anguilla rostrata  American eel 

 
            * missing species of concern 
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but only 6% in 1993 (ADPCE 1995).  Two yoke darters (<1% of the fishes sampled) were 

reported in the White River near St. Paul in 1998 (Radwell 2000).  

 

SITE 6 COMPARISON OF SPECIES RICHNESS, RELATIVE ABUNDANCE 
 

The ADPCE (1995) study of the upper White River watershed includes information 

on species richness and relative abundances of fish species in the West Fork-White River at a 

site in the vicinity of Site 6 of our 2002 survey.  Fish assemblages were sampled in 1963 and 

1993, but ADPCE personnel involved in that study indicate that they were unable to sample 

the same site due to changes that occurred in the intervening 30 years.  They were, however, 

sampling in reaches with comparable watershed size to suggest that comparison of fish 

assemblages over time is justified.    Our Site 6 sampling, which we believe to be close to the 

sites surveyed in 1963 and 1993 is compared to the earlier work in Table 6.   

Changes in species richness, relative abundance, and diversity have occurred at Site 6 

from 1963 to 2002.   Species richness declined from 35 to 26 between 1963 and 1993.  While 

26 species were still found in 2002, the species differed from those present in 1993.  Striped 

shiner, duskystripe shiner, Ozark madtom, smallmouth bass, and largemouth bass were found 

in 1993, but not in 2002.  Those five species were replaced by rosyface shiner, yellow 

bullhead, Ozark bass, hybrid green sunfish/bluegill, and stippled darter in the 2002 survey, 

resulting in no change in species richness. The total fish sampled at this site was considerably 

less in 2002 (308 vs. 1088).  However, no significance should be attached to that fact since 

comparability of sampling time and effort cannot be verified.   We employed both backpack 

and boat electrofishing methods to maximize catchability, but high turbidity was a significant 

deterrent to our efforts and may account in part for the lower catch in 2002.  Our sample was 

dominated by Moxostoma spp.   

The Shannon-Wiener dominance diversity index using a log to base 2 was used to 

report species diversity in 1963 and 1993, and we reported it for the 2002 survey for 

comparative purposes (Table 6).   Diversity declined from 3.66 to 3.34 from 1993 to 1963, 

but rose to 3.54 in 2002.  The range of diversity values for the three surveys is small, and all 

three values may be described as moderate.                                                                                
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Table 6. Comparison of fishes collected from the West Fork-White River at Site 6 in 1963, 1993, and 2002. 
 
     2002 1993 1963
     

        
No. % No. % No. %

Lepisosteidae Gars
        Lepisosteus osseus 

 
        Longnose gar 

 
1 0.3 2 0.2   

Clupeidae Herrings       

      

      

      

    

         Dorosoma cepedianum 
 

        Gizzard shad 
 

    15 0.7 
Cyprinidae Minnows
        Campostoma spp.*         Central and largescale stonerollers* 15 4.9 422 38.8 313 14.7 
        Cyprinella whipplei         Steelcolor shiner 6 2 96 8.8 2 0.1 
        Luxilus chrysocephalus         Striped shiner   1 0.1 24 1.1 
        Luxilus pilsbryi         Duskystripe shiner   137 12.6 171 8 
        Nocomis biguttatus         Hornyhead chub     26 1.2 
        Notropis boops         Bigeye shiner 38 12.4 34 3.1 11 0.5 
        Notemigonus crysoleucas         Golden shiner     1 0 
        Notropis nubilus         Ozark minnow 6 2 23 2.1 48 2.2 
        Notropis rubellus         Rosyface shiner 2 0.7     
        Notropis telescopus         Telescope shiner     35 1.6 
        Pimephales notatus         Bluntnose minnow 16 5.2 12 1.1 18 0.8 
        Semotilus atromaculatus 

 
        Creek chub 

 
    3 0.1 

Catostomidae Suckers
        Hypentelium nigricans         Northern hogsucker 3 1 16 1.5 18 0.8 
        Moxostoma carinatum         River red horse     2 0.1 
        Moxostoma duquesnei         Black redhorse   30 2.8 16 1.7 
        Moxostoma erythrurum         Golden redhorse    62 5.7 7 0.3 
        Moxostoma spp.** 

 
        Black and golden redhorses** 

 
69 22.5     

Ictaluridae Freshwater catfishes
        Ictalurus natalis         Yellow bullhead 1 0.3     
        Noturus albater         Ozark madtom 

 
  27 2.5 201 9.4 

 (Continued on next page)
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Table 6.  Continued. 
 

      
    
    

2002
 

1993
 

1963
  No. % No. % No. %

        Noturus exilis         Slender madtom 1 0.3 15 1.4 150 7 
Cyprinodonidae       

      

      

    

Killifishes 
        Fundulus catenatus         Northern studfish     5 0.2 
        Fundulus olivaceus 

 
        Blackspotted topminnow 

 
3 1 3 0.3 17 0.8 

Centrarchidae Sunfishes
        Ambloplites constellatus         Ozark bass 11 3.6   4 0.2 
        Lepomis cyanellus         Green sunfish 6 2 17 1.6 22 1 
        Lepomis macrochirus         Bluegill 19 6.2 11 1   
        Lepomis megalotis         Longear sunfish 59 19.2 41 3.8 93 4.4 
        Lepomis sp.         Hybrid Green sunfish/Bluegill 21 6.8     
        Micropterus dolomieui         Smallmouth bass   3 0.3 5 0.2 
        Micropterus punctulatus         Spotted bass 2 0.7 27 2.5 35 1.6 
        Micropterus salmoides 

 
        Largemouth bass 

 
  3 0.3   

Percidae Perches
        Etheostoma blennioides         Greenside darter 11 3.6 20 1.8 69 3.2 
        Etheostoma caeruleum         Rainbow darter 8 2.6 49 4.5 591 27.7 
        Etheostoma juliae         Yoke darter     13 0.6 
        Etheostoma punctulatum         Stippled darter 1 0.3   9 0.4 
        Etheostoma spectabile         Orangethroat darter 4 1.3 9 0.8 126 5.9 
        Etheostoma stigmaeum         Speckled darter     1 0 
        Etheostoma zonale         Banded darter 2 0.7 23 2.1 75 3.5 
        Percina caprodes         Logperch 3 1 1 0.1 3 0.1 
        Stizostedion vitreum         Walleye 

 
    1 0 

 (Continued on next page)
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Table 6.  Continued. 
 

      
    
    

        

2002
 

1993
 

1963
  No. % No. % No. %

Cottidae Sculpins
        Cottus carolinae 

 
        Banded Sculpin 

 
    5 0.2 

Petromyzontidae Lampreys       

      
        Ichthyomyzon sp. 

 
        Lamprey species 
 

  4 0.4   
Species Count 26 26 35

Fish Count       

        

308 1088 2135

Diversity Index 3.57 3.34 3.66

Similarity Index  2002 vs. 1993 = 0.86 1993 vs. 1963 = 0.65 

* Compostoma anomalum and Campostoma oligolepis were not differentiated and were included as two species in the species count. 
** Moxostoma duquesnei and Moxostoma erythrurum were not differentiated and were included as two species in the species count.     
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ADPCE (1995) used a modification of Odum’s index of similarity (Appendix A) to 

compare the number of species between the 1963 and 1993 samples.   We employed the 

same method to compare our 2002 sample to the 1993 sample (Table 6).  ADPCE concluded 

that the 0.65 similarity value between the 1963 and 1993 assemblages represented a 

difference in the two assemblages.  We found a much higher similarity value (0.86) between 

the 1993 and 2002 assemblages, suggesting that the fish assemblage has remained more 

similar in recent years.  However, a comparison of the relative proportion of major fish 

taxonomic groups (Figure 7) suggests a different conclusion.  From 1993 to 2002, the percent 

of Campostoma dropped from 39% to 5%, and the percent of Catostomidae (represented 

primarily by Moxostoma sp.) increased from 10% to 23%.  The highly turbid conditions at 

Site 6 may account for the decline of Campostoma since they thrive where algae can 

proliferate.  We may be seeing the replacement of Campostoma by another tolerant species 

better adapted to the currently turbid conditions.  

 

    COMPARISON OF SITE 3P-INT TO OTHER BOSTON MOUNTAIN RIVERS 

 Fishes were sampled from 10 Boston Mountain ecoregion rivers with watersheds 

from 5000 to 10,000 ha by Rambo (1998) and Radwell (2000).    For comparison to these 

rivers, West Fork-White River Site 3P-INT, with a watershed size of 8069 ha, was selected 

for a three-pass depletion of fishes, and densities and biomass were estimated (Table 3).  

These data were compared to the North and Middle Forks of the Illinois Bayou and the 

means and range of values from the 10 Boston Mountain ecoregion rivers (Table 7).  The 

Illinois Bayou study sites were chosen for comparison because they ranked highest in 

ecological integrity of the 10 rivers based on 34 variables representing fish and 

macroinvertebrate assemblage characteristics, instream habitat, riparian vegetation, water 

quality, and watershed attributes (Radwell 2000). 

 Boston Mountain ecoregion streams are nutrient poor, and total fish density, biomass, 

and production estimates from these streams have been shown to be low compared to other 

areas (Rambo (1998).  Steedman (1988) found fish abundance to be higher at moderate levels 

of degradation (i.e. nutrient enrichment), and Yoder and Smith (1999) reported a pattern of 

increased fish density and biomass with moderate species richness in disturbed streams.  
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Figure 7.  Comparison of fish assemblages by percentage from West Fork-White River at 
Site 6 sampled in 1963, 1993, and 2002. 
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Table 7.  Comparison of fish assemblage characteristics of West Fork-White River Site 3P-INT to other Boston Mountain river reaches with comparable 
watershed size.   
 
         
 

         

Total Total 
Density  
(fish/ha) 

Biomass  
(g/ha) 

 
Species 

Richness 

 
% 

Campostoma 

% 
 Other 

Cyprinidae 

 
%  

Centrarchidae 

 
% 

Percidae 

% 
Lepomis 
cyanellus 

West Fork-White River 
      Site 3P-INT 

26,788        

        

139.81 19 38.6 19.2 6.3 25.6 1.20
 

North Fork-Illinois Bayou 18,140 89.93 15 7.3 13.9 40.4 32.8 0.26 

Middle Fork-Illinois Bayou 17,965 154.77 17 4.2 10.1 53.1 25.2 0.67 

10 Boston Mountain Rivers 
      Mean* 

22,328 117.87 14.90 22.1 15.9 22.8 30.7 2.13

10 Boston Mountain Rivers 
      Range* 

8676 - 46,150 26.82  - 202.85 10 - 19 0 – 42.1 5.7 – 34.1 0.1 – 53.1 10.0 – 61.5 0 – 5.75 
 

* Big Piney Creek, Hurricane Creek, Kings River, Middle Fork-Illinois Bayou, Mulberry River, North Fork-Illinois Bayou, Richland Creek, War Eagle   
   Creek, White River, Upper Buffalo River.  For specific location of sampling sites and watershed size, see Rambo (1998) and Radwell (2000).   
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While total fish density and biomass of Site 3P-INT are higher than the Illinois Bayou sites 

and the mean for the 10 rivers, they are moderate and compare favorably from an 

environmental quality perspective.  The species richness of 19 reported at Site 3P-INT 

matched the highest found among the 10 streams, a very favorable comparison.  However, 

the percentage of Campostoma, a very tolerant species, was high, and the percentage of 

Centrarchidae that includes top predators was low relative to the other rivers.  This 

relationship suggests a possible trophic imbalance at Site 3P-INT where predatory species 

may be not keeping the Campostoma population in check.  Cyprinids other than Campostoma 

include insectivorous minnows, the presence of which indicates a healthy macroinvertebrate 

population.  The percentage of Percidae (darters) is also a positive indicator.  Site 3P-INT 

compared favorably in percentage of Cyprinidae and Percidae to the Illinois Bayou sites, but 

was moderate compared to the range found among the 10 rivers.  Finally, Lepomis cyanellus, 

green sunfish, are a very tolerant species known to increase in abundance under degraded 

environmental conditions; the percentage at Site 3P-INT was small.   
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MACROINVERTEBRATES 

INTRODUCTION 

Macroinvertebrates are described as organisms that are retained by a number 30 U.S. 

Series screen (0.595 mm) (Lind 1985).  Benthic macroinvertebrates are an important part of 

the food web in aquatic environments and recycle organic matter by converting it to a form 

that is used by other organisms.  Within a forested stream, the majority of the organic input is 

from the surrounding terrestrial vegetation (Fisher and Likens 1973).  Boling et al. (1975) 

reported that streams are significantly dependent on allochthonous detritus.  Woodland 

streams are heterotrophic, deriving the bulk of their energy from the surrounding forest 

(Minshall 1967, Hynes 1976, Petersen and Cummins 1974, Minshall et al. 1983, Webster et 

al. 1990, Webster and Meyer 1997).  

Cummins (1977) standardized assignment of benthic macroinvertebrates to functional 

feeding groups designating four general categories: shredders, collectors, scrapers, and 

predators.  Merritt and Cummins (1996) defined six functional feeding groups: grazers, 

gatherers, miners, filterers, shredders, and predators. These groups are frequently used to 

characterize communities, and several classifications are often used within one genus to 

describe macroinvertebrate feeding habits (Merritt and Cummins 1996).  Vannote et al. 

(1980) examined the change in functional feeding groups from shredders to grazers as the 

energy sources within the stream changed from upstream to downstream.  

Macroinvertebrates are commonly used as water quality indicators.  Certain 

organisms are highly tolerant of low levels of dissolved oxygen, and their presence is often 

regarded as indicative of pollution.  Other organisms require high levels of dissolved oxygen 

(9-12 mg/L) and are considered indicators of good water quality.  Members of the orders 

Ephemeroptera, Plecoptera and Trichoptera (EPT) are generally considered intolerant of 

organic enrichment.  The presence of tolerant organisms cannot be used to justify an 

argument that the environment is degraded according to Wurtz (1955).  The absence of 

intolerant (i.e., sensitive) organisms is of primary concern.  Goodnight (1973) prepared a 

rigorous examination of the history of macroinvertebrates as indicator species in which he 

stated that macroinvertebrates are "large enough to be easily collected, show wide ranges of 

tolerance in their reactions to various degrees of pollution, are not mobile enough to leave an 
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area of pollution rapidly, and are adaptable to laboratory study without a large amount of 

specialized equipment.”  For these reasons, and because they an important element of stream 

communities, macroinvertebrates have been adopted as tools for bioassessment of 

environmental quality of streams and their watersheds. 

 

METHODS 

 Macroinvertebrates were collected twice at each of the eight sampling sites: 13-22 

July 2002 and 6-7 January 2003.  An additional sample was taken at Site 6 using the Rapid 

Bioassessment Protocol described by Platkin et al. (1989) for comparison to the sample taken 

by the ADPCE (1995).  A Hess sampler was used to obtain quantitative samples to facilitate 

future comparisons.  Three samples were collected at each site in the upper, middle, and 

lower area of riffles.  The substrate was disturbed for five minutes, and samples were washed 

into a Wisconsin bucket with a 600-�m mesh by pouring water into the net until no 

organisms were observed on the netting.  The organisms were then rinsed from the 

Wisconsin bucket into sample jars and preserved using 70% ethanol.  Samples were returned 

to the laboratory for identification. 

Organisms were identified by Robin Reese using a MEIJI model EMZ- TR 

compound light microscope and a Nikon Alphahot-2 YS2 transmitting light microscope.  The 

number of each type of organism from the three samples for each site was pooled.  All 

organisms were identified to genus when possible except Diptera:Chironomidae and 

Oligochaeta using appropriate keys (McCaffertyI981, Peckarsky et al. 1990, Stewart and 

Stark 1993, Merritt and Cummins 1996, Smith 2001, and Thorp and Covich 2001).  Early 

instars were identified to family and classified as immature.  Voucher specimens will be 

housed in the Department of Entomology Museum at the University of Arkansas.  

 

FUNCTIONAL FEEDING GROUPS  

Boston Mountain ecoregion streams present an opportunity to examine a system that 

has characteristics that are not found elsewhere.  These streams are forested but do not retain 

leaf and woody debris long after leaf fall in autumn.  Organic matter inputs in the fall are 

swept onto the banks or transported downstream with the onset of winter rains and cooler 
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temperatures.  Retention time of organic matter in this system may be much lower than other 

mountainous, forested headwater streams in the United States.  Debris dams are not common 

and high percolation rates allow water to leave the system more rapidly than other forested 

streams.  Previous studies have shown that shredders are not as important a component of the 

macroinvertebrate community in these streams as they are in other forested streams (Petty 

and Brown 1982, Brussock 1986, Burns 2001).  

Because of the uniqueness of the Boston Mountain ecoregion macroinvertebrate 

community, all members of the Class Insecta were classified according to functional feeding 

groups assigned by Merritt and Cummins (1996) (Tables 8 and 9).  Shredders-detritivores 

and collectors-detritivores were essentially absent from all sites.  None were found in the 

samples from July (Figures 8 and 9).  Proportions of functional feeding groups differed 

markedly between seasons (Figure 10).  The large proportions of predators found in January 

at Sites 1 and 2 were lsoperla sp., a predaceous plecopteran found in headwater streams.  The 

group labeled ‘varies by subfamily’ in Figures 8 and 9 were the Chironomidae.  At Sites 4, 

5,6, and 7, they comprised over 40 percent of the insects found (Figures 8 and 9) indicating 

possible influence of the effluent from the West Fork municipal wastewater treatment plant 

which discharges just downstream of Site 4.  A comparison of the average proportions of 

functional feeding groups between seasons (Figure 10) indicates that predators found in July 

were only half of the proportion found in January and collectors-gatherers followed the same 

pattern.  

 

2002 AND 2003 MACROINVERTEBRATE SURVEY  

Biological indices have been established for evaluating the relative health of aquatic 

ecosystems using benthic macroinvertebrates (Wilhm and Dorris 1968, Ransom and Dorris 

1972, Goodnight 1973, Ransom and Prophet 1974, Godfrey 1978, Benear and Ransom 

1981).  The Shannon-Wiener diversity index (H`) is an attempt to reduce the community 

structure of the organisms to a single number for comparative purposes.  Benear and Ransom 

(1981), Godfrey (1978) and Ransom and Prophet (1974) cautioned against making literal 

interpretations of index values.  According to Godfrey (1978), comparison of community 

composition is also necessary when making judgments regarding stream health. 
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Table 8.  Functional feeding groups of the insects collected from the West Fork-White River in July 2002. 
 

Order Family Genus Functional Feeding Group* 
Ephemeroptera  Leptophlebia   
 Baetidae 
  
 
 
 
 
 
  
 
 
  
  
 

 
 

  
 

 

 
 
 
 
 
 
 
  
 

Baetis  collectors-gatherers 
Caenidae
 

Brachycercus  collectors-gatherers 
Caenis  collectors-gatherers, scrapers 

Ephemeriidae Ephemera  collectors-gatherers 
Isonychiidae Isonychia  collectors-filterers 
Heptageniidae
 

 Cinygmula  scrapers, collectors-gatherers 
Stenacron   collectors-gatherers 
Stenonema  scrapers, collectors-gatherers 

Leptophlebiidae
 

 Choroterpes  collectors-gatherers, scrapers 
Leptophlebia  collectors-gatherers 
Neochorotorpes  collectors-gatherers, scrapers 
immature  

Tricorythidae
 

 Tricorythodes collectors-gatherers 
Plecoptera
 

  
Perlidae Acroneuria  predator 

Neoperla  predator 
Taeniopoterygidae
 

Strophopteryx  scrapers, collectors-gatherers 
Trichoptera
 

  
Glossosomatidae Agapetus sp. scrapers, collectors-gatherers 
Hydropsychidae
 

 Cheumatopsyche  collectors-filterers 
Smicridea collectors-filterers 

Leptoceridae Oecetis  predators 
Philopotamidae Chimarra  collectors-filterers 
Polycentropodidae
 

Cernotina   predators 
Neuroclipsis  

 
collectors-filterers.shredders-herbivores, engulfers 

Ceratopogonidae  predators, collectors-gatherers 
Chironomidae
 

 varies with subfamily 
           (Continued on next page)
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Table 8.  Continued. 
 

  
   

Order Family Genus Functional Feeding Group* 
Empididae  predators, collectors-gatherers 
Simuliidae
 

Simulium  collectors-filterers 
Prosimulium  collectors-filterers 

Tanyderidae   
Tipulidae Hexatoma  predators 

Tipula  
shredders-detritovores and herbivores, collector-
gatherers, possibly some scrapers, predators  

Coleoptera
 

  
Elmidae
 

Macronychus  collectors-detritovores 
Stenelmis  scrapers-collector, gatherers 

Hydrophilidae Berosus  piercers-herbivores, collectors-gathers, shredders 
Psephenidae
 

 Psephenus  scrapers, collectors-gatherers 
Hemiptera
 

  
Veliidae
 

Rhagovelia  
 

predators 
 Megaloptera

 Corydalidae
 

Corydalus  predators  
Nigronia  predators 

Sialidae
 

Sialis  predators 
Odonata
 

  
Coenagrionidae Argia  predators  
Gomphidae
 

Gomphus  predators 
Stylogomphus  predators 

  
  
 
 
  

  
  

 
 
 
 

 
 

 
 

 
  

 

  
 

*  All functional feeding groups as designated by Merritt and Cummins (1996) 
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Table 9.  Functional feeding groups of the insects collected from the West Fork-White River in January 2003. 

    
Order Family Genus Functional Feeding Group* 
Ephemeroptera    
 Baetidae 
  
 
 
 
 
 
  
  
 
 
  
 
 

    
 

 
 
  
 
  
 
  
  
 
 
 

Baetis  collectors-gatherers 
Caenidae
 

Brachycercus  collectors-gatherers 
Caenis  collectors-gatherers, scrapers 

Ephemeriidae Ephemera collectors-gatherers 
Isonychiidae Isonychia  collectors-filterers 
Heptageniidae
 

 Cinygmula  scrapers, collectors-gatherers 
Eperorus   
Stenacron  collectors-gatherers 
Stenonema  scrapers, collectors-gatherers 

Leptophlebiidae
 

 Choroterpes collectors-gatherers, scrapers 
Leptophlebia  collectors-gatherers 
Neochorotorpes  collectors-gatherers, scrapers 

Tricorythidae
 

 Tricorythodes collectors-gatherers 
  

Plecoptera
 Capniidae

 
Allocapnia  shredders-detritovore 
Isocapnia   

Chloroperlidae Alloperla predators 
Perlidae
 

Acroneuria  predators 
Neoperla  predators 

Perlodidae
 

Diploperla  predators 
Diura  scrapers-predators 
Isoperla s predators 
Hydroperla predators 

Pteronarcyidae Immature  
Taeniopoterygidae
 

Oemopteryx  scrapers, collectors-gatherers 
 (Continued on next page)
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Table 9.  Continued. 
 

  
  

  
Order Family Genus Functional Feeding Group* 

Strophopteryx  scrapers, collectors-gatherers 

Taeniopteryx 
shredders-detritovores, facultative collectors-
gatherers 

Leuctridae
 

Zealeutra  shredders-detritovore 
Trichoptera
 

  
Glossosomatidae Agapetus  scrapers, collectors-gatherers 
Hydropsychidae
 

 Cheumatopsychae  collectors-filterers 
Smicridea  collectors-filterers 

Leptoceridae Oecetis  predators, shredders-herbivores 
Philopotamidae Chimarra  collectors-filterers 
Polycentropodidae
 

Cernotina  predators 
Neuroclipsis  collectors-filterers, shredders-herbivores, engulfers 

Diptera   
Ceratopogonidae Dashyelea  

 
collectors-gatherers, scrapers 

Chironomidae  varies by species 
Dixidae  collectors-gatherers 
Empididae Chelifera  generally predators, some collectors-gatherers 
Simliidae
 

Cnephia  collector-filterers 
Prosimulium  collector-filterers 
Simulium  collector-filterers 

Tabanidae  generally predators 
Tanyderidae   
Tipulidae
 

Antocha  collectors-gatherers 
Hexatoma  predators 

Tipula 
shredders-detritivores, collectors-gatherers, 
predators 

Coleoptera
 

  
Elmidae
 

Ordobrevia  
 (Continued on next page)

  
  

 

 
 
 
 
 
 

  
 
 
  
  
  
 
  
  
 
  
 

  
  

 
 

 35



Table 9.  Continued. 
 

  
   

  
Order Family Genus Functional Feeding Group* 

Macronychus  collectors-detritovores 
Neoelmis  collectors-detritovores 
Stenelmis   

Psephenidae
 

 Psephenus  scrapers, collectors-gatherers 
Megaloptera
 

  
Corydalidae Corydalus  predators 
Sialidae
 

Sialis  predators 
Odonata
 

  
Coenagrionidae Argia  predators 
Gomphidae
 

Gomphus  predators 
Stylogomphus predators 

  
  
 

 
 

  
 

  
 

 *  All functional feeding groups as designated by  Merritt and Cummins (1996) 
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Figure 8.  Relative proportion of functional feeding groups July 2002.  These data are intended for comparison to data from other 
Boston Mountain ecoregion streams sites of comparable watershed size or to data collected at the same site in the future.  They are 
not intended for comparison among sites (i.e. to each other). 
 

    * Chironomidae. 
  ** Not classified by Merritt and Cummins (1996). 
*** Multiple functional feeding groups. 
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Figure 9.  Relative proportion of functional feeding groups January 2003.  These data are intended for comparison to data from 
other Boston Mountain ecoregion stream sites of comparable watershed size or to data collected at the same site in the future.  
They are not intended for comparison among sites (i.e. to each other).  
 
  *   Chironomidae. 
 **  Not classified by Merritt and Cummins (1996). 
*** Multiple functional feeding groups.                     
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Figure 10.  Average percentage of functional feeding groups by season. 
 
    * Chironomidae 
  ** Not classified in Merritt and Cummins (1996). 
*** Multiple functional feeding groups.  
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             Plafkin et al. (1989) adopted Hilsenhoff’s Biotic Index (Hilsenhoff 1987) in a 

modified form for use as a rapid bioassessment technique.  This technique uses a familial 

level of identification with assigned tolerance values along with seven other metrics to 

determine ecosystem health.  The seven metrics recommended are taxa richness, percent 

contribution of dominant taxa, EPT index, community loss index, and the ratios of EPT to 

Chironomidae, scrapers to filterers, and shredders to total organisms.  Hilsenhoff’s Biotic 

Index was not used in this study because tolerance values have not been established for the 

Boston Mountain ecoregion.  Taxa richness, EPT index, and percent Chironomidae were 

used since they are universally applicable to streams regardless of locale. 

We were unable to find historical data on macroinvertebrates in the West Fork-White 

River that could be used for comparison to our results.  Samples collected in October 2000 

and June 2001 by the Water Division of the ADEQ were collected using a five-minute kick-

net method with a d-shape net.  Their findings indicate similar species composition, but the 

use of different methodology precludes any comparisons of biological indices between their 

results and what we found.  

Macroinvertebrates found in both seasons from the eight sampling sites are 

enumerated in Tables 10 and 11.  Large proportions of short-lived Ephemeroptera (Caenis 

spp., Tricorythodes spp.) were found in July samples with Caenis spp. present in all samples.    

Tricorythodes spp. was dominant at Site 5, comprising 61% of the total sample.  As 

mentioned previously, Site 5 is directly below the West Fork municipal wastewater treatment 

plant.  Cheumatopsyche spp. and Chimarra spp. were the most common Trichopterans.  

Cheumatopsyche spp. is a tolerant species and can be found in all types of waters, even in 

severely degraded systems.  Few long-lived species such as the Odonata were found at any of 

the sites in January or July.  Even the extremely tolerant megalopterans, which are also long-

lived, were found in low numbers.  The absence of long-lived species and dominance of 

short-lived species indicates an unstable system incapable of sustaining longer-lived 

macroinvertebrate species.  Although several species of plecopterans were found, only seven 

individuals were found below Site 3.  The presence in the headwaters of Isocapnia spp., 

Alloperla spp., and Isoperla spp. gives hope that recolonization of these groups could occur 

downstream if restoration were undertaken.  Heptageniidae, Stenacron spp. and Stenonema
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Table 10. Macroinvertebrates collected by Hess Sampler in the West Fork-White River in July 2002 
            
        2002 Sites           
Order          

        
Family
 

Genus 1 2 3 4 5 6 7 3-P INT
 

6 RBA
 Ephemeroptera  

 Baetidae          
           
        
           
          
           
          
           
           
          
           
           
          

          
          

          
          

          
          

           
          
           
           
          
     

        

Baetis  1 2 29 37 29 28 110 21 2
Caenidae
 

Brachycercus  0 0 1 2 0 7 35 5 0
Caenis  26 45 230 114 320 113 29 143 10

Ephemeriidae Ephemera  0 1 0 0 0 0 0 0 0
Isonychiidae Isonychia  22 0 1 4 24 55 15 105 5
Heptageniidae
 

Cinygmula 0 0 7 4 0 6 0 1 0
Stenacron  2 16 4 35 12 2 15 84 0
Stenonema  2 2 4 38 57 15 48 123 15

Leptophlebiidae
 

Choroterpes  0 0 6 37 38 5 17 5 0
Leptophlebia  0 0 1 0 0 0 0 0 0
Neochoroterpes  0 0 0 0 0 0 0 0 0
Immature 0 0 1 0 0 0 0 0 0

Tricorythidae
 

Tricorythodes  0 0 2 2 1036 27 39 3 0
Plecoptera
 

 
Perlidae
 

Acroneuria  0 1 0 0 0 0 0 0 0
Neoperla  0 0 0 2 0 0 0 0 0

Taeniopoterygidae
 

 Strophopteryx  1 0 0 0 0 0 0 0 0
Trichoptera
 

 
Glossosomatidae Agapetus  0 0 0 0 0 0 0 0 0
Hydropsychidae
 

Cheumatopsyche  3 0 27 182 55 70 206 56 15
Smicridea  0 0 0 0 1 0 0 0 0

Leptoceridae Oecetis  1 0 0 0 0 0 0 0 0
Philopotamidae Chimarra  0 4 0 46 3 81 12 3 4
Polycentropodidae
 

 Cernotina  
 

1 0 8 2 0 0 0 10 0

       (Continued on next page)
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Table 10.  Continued.          
         2002 Sites  

 
         

Order          

           

Family Genus 1 2 3 4 5 6 7 3-P INT
 

Neuroelipsis 1 0 0 0 1 2 0 0 0
Diptera           
           
         
           
           
          
           
           
          
            

          
          

          
           
           

          
          

          
          

          
           

          
          

           
          

      

 
Ceratopogonidae  0 1 0 0 1 0 0 0 0
Chironomidae  17 83 71 94 92 170 346 13 7
Empididae  0 0 0 0 7 0 0 0 0
Simuliidae
 

Simulium  0 0 0 3 0 0 0 0 0
Prosimulium  0 0 0 0 0 0 0 0 0

Tanyderidae  1 1 1 0 0 0 0 0 0
Tipulidae
 

Hexatoma  1 5 3 1 0 0 12 2 4
Tipula  2 0 0 0 0 4 0 0 6

Diptera pupa
 

 5 0 1 7 5 6 11 4 0
Coleoptera
 

 
Elmidae
 

Macronychus  0 0 0 0 0 0 2 2 0
Stenelmis  0 0 0 0 0 1 123 1 0

Hydrophilidae Berosus  0 0 0 0 0 0 1 0 0
Psephenidae
 

Psephenus  0 0 0 0 0 3 0 29 5
Hemiptera
 

 
Veliidae
 

Rhagovelia  
 

0 0 2 0 0 0 0 1 10
Megaloptera
 Corydalidae

 
Corydalus  5 1 2 0 9 5 2 5 7
Nigronia  0 0 6 0 0 0 0 8 0

Sialidae
 

Sialis  0 0 0 0 0 0 0 0 5
Odonata
 

 
Coenagrionidae Argia  0 0 0 0 0 4 4 2 7
Gomphidae
 

Gomphus 0 7 0 0 0 0 0 0 0
Stylogomphus  0 3 0 0 0 0 0 1 0

       (Continued on next page)
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Table 10.  Continued.         
    2002 Sites 

 
       

Order          
         

Family
 

Genus 1 2 3 4 5 6 7 3-P INT
 

Order
Decapoda  
 Cambaridae

 
          

          
           

           
          

          
          

          
          

          
           

           
           

          

Orconectes  0 1 4 0 0 0 0 1 0
immature 0 0 0 0 0 0 0 1 0

Isopoda  
Asellidae
 

Lirceus  0 0 0 0 0 0 0 0 0
Veneroida
 

 
Corbiculidae
 

Corbicula fluminea 0 0 0 0 0 0 12 0 8
Gastropoda
 

 
Hydrobiidae
 

 0 0 0 2 4 0 0 0 0
Oligochaeta
 

 
Lumbricidae
 

 8 37 6 4 0 0 1 0 3
Tricladida
 Dendrocoelidae

 
0 0 0 0 3 0 0 0 0

Prostigmata
 subcohort Hydrachnidia 0 0 0 0 0 1 2 3 0
    Totals 99 210 417 618 1697 605 1042 632 113 
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Table 11.  Macroinvertebrates collected by Hess Sampler in the West Fork-White River in January 2003  
         
          2003 Sites

Order    
    

Family Genus 1
 

 2
 

 3
 

 4
 

 5 6
 

 7
 

 3P-INT
 Ephemeroptera

 Baetidae         
          
         
         
         
         
         
          
          
         
         
          
         

         
         

         
         
          
         
          
         
          
          

         
  
           

Baetis  0 4 10 1 0 0 0 0
Caenidae
 

Brachycercus  0 0 2 0 0 3 1 0
Caenis  3 11 25 16 15 5 1 0

Ephemeriidae Ephemera 0 0 0 0 0 0 0 0
Isonychiidae Isonychia  1 6 0 1 0 0 0 2
Heptageniidae
 

 Cyngymula  0 0 0 0 0 2 0 0
Eperorus  10 15 0 0 0 0 0 0
Stenacron  1 4 2 0 0 2 0 6
Stenonema  1 22 3 18 0 5 5 15

Leptophlebiidae
 

 Choroterpes  0 7 0 0 0 0 0 0
Leptophlebia  0 0 0 0 0 0 0 0
Neochoroterpes  0 0 0 0 0 0 0 0

Tricorythidae
 

 Tricorythodes  
 

0 0 1 0 0 0 0 0
Plecoptera
 Capniidae

 
Allocapnia  2 0 0 0 2 0 0 0
Isocapnia  48 38 16 0 0 0 0 27

Chloroperlidae Alloperla 11 0 0 0 0 0 0 2
Perlidae
 

Acroneuria  0 0 0 0 0 0 0 0
Neoperla  0 0 0 0 0 0 0 0

Perlodidae
 

Diploperla  0 0 0 0 0 0 0 0
Diura  0 0 0 1 0 1 0 0
Isoperla  201 32 1 0 0 0 0 0
Hydroperla 0 0 0 0 0 0 0 0

Taeniopoterygidae Oemopteryx  3 0 0 1 0 0 0 0
    (Continued on next page)
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Table 11.  Continued.         
          

     
       

 2003 Sites
Order

 
Family

 
Genus 1 2 3 4 5 6 7 3P-INT

 Strophopteryx  1 0 0 0 0 0 0 0
Taeniopteryx  0 0 1 0 0 1 1 0
immature 0 0 7 0 0 0 0 0

Leuctridae
 

Zealeutra  0 0 0 9 0 0 0 0
Trichoptera
 

 
Glossosomatidae Agapetus  33 105 22 0 0 0 0 48
Hydropsychidae
 

 Cheumatopsyche 16 3 8 13 18 10 1 10
Smicridea  0 0 0 0 0 0 0 0

Leptoceridae Oecetis  0 0 0 0 0 0 0 0
Philopotamidae Chimarra  14 0 0 24 0 0 0 7
Polycentropodidae
 

Cernotina  6 23 3 0 0 0 0 1
Neureclipsis  0 0 0 0 0 0 0 0

Diptera  
Ceratopogonidae Dashyelea  

 
0 0 0 3 0 0 0 0

Chironomidae  149 178 31 77 25 33 22 0
Dixidae  0 0 0 0 0 0 1 0
Empididae Chelifera  0 1 0 0 0 0 0 0
Simuliidae
 

Cnephia  0 0 0 1 0 1 0 0
Prosimulium  0 0 4 0 2 0 0 0
Simulium  0 0 1 0 0 0 0 0

Tabanidae  0 0 0 0 0 1 1 0
Tanyderidae  0 0 0 1 0 0 0 0
Tipulidae
 

Antocha  0 0 0 0 0 0 0 0
Hexatoma  2 0 1 0 0 7 0 0
Tipula  4 13 1 0 0 0 5 0

Diptera pupa
 

  0 1 0 0 0 0 6 0
 
     (Continued on next page) 
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Table 11.  Continued. 
 

        
         

    
   0     

 2003 Sites
 Order Family

 
Genus 1 2 3 4 5 6 7 3P-INT

 Coleoptera Elmidae Ordobrevia 0 0 0 0 1 1 0
  Macronychus 0        
          
          
         

         
        

          
         

        
          
         

          
         

         
          

         
        

         
        

          
         

          
        

         
         

0 0 0 0 2 0 0
Neoelmis  0 0 0 0 0 2 1 0
Stenelmis  2 0 0 0 0 0 0 0

Psephenidae
 

 Psephenus  5 8 1 11 0 0 0 0
Megaloptera
 

 
Corydalidae Corydalus  0 0 0 0 0 1 0 0
Sialidae
 

Sialis  0 0 0 0 0 0 0 0
Odonata
 

 
Coenagrionidae Argia  1 9 0 2 0 0 0 0
Gomphidae
 

Gomhpus  0 13 0 0 0 0 0 0
Stylogomphus 0 0 1 0 0 0 0 0

Decapoda
 

 
Cambaridae
 

 0 0 0 1 0 0 0 0
Isopoda  0 0 0 0 0 0 0 0

Asellidae
 

Lirceus  0 0 0 12 0 0 0 0
Veneroida
 

 
Corbiculidae
 

 Corbicula fluminea 0 0 0 3 0 0 1 0
Gastropoda
 

 
Hydrobiidae
 

  0 0 0 0 1 0 0 0
Oligochaeta
 Lumbricidae

 
 13 22 2 5 2 0 17 0

Tricladida
 Dendrocoelidae

 
 Procotyla  

 
0 0 0 0 4 0 0 0

Collembola
 

0 0 23 0 0 0 0 0
Totals 527 515 166 200 69 77 65 118
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 spp. were found in all sites in July and at most sites in January but at lower numbers, which 

was the general trend for all macroinvertebrate species.  

The total number of organisms decreased markedly in the January samples from 542 

individuals at Site 1 to only 72 at Site 7, the opposite of what would be expected in a healthy 

watershed.  The EPT index indicated the same pattern in January with proportions decreasing 

from 40% to only 13% from Sites 1 to 7.  Forty-six taxa were found in July, and 51 in 

January.  Taxa richness dropped to only eight at Site 5 in January, but showed some recovery 

with 16 and 15 species at Sites 6 and 7 respectively.  Taxa richness was relatively consistent 

in July with a range of 17 to 25.  The absence of tolerant organisms in the summer months 

during higher water temperatures may explain this consistency.  In July, total organisms 

increased downstream as would be expected in a healthy riverine system, but these were the 

short-lived macroinvertebrates previously mentioned.   The Shannon-Weiner diversity index 

ranged from 2.088 to 3.300 in July, and from 2.226 to 3.505 in January.  The diversity index 

was lowest at Site 5 for both months (Table 12).  

A comparison of the results of the Rapid Bioassessment Protocols from 1993 and 

2002 indicated an increase in taxa richness from 12 to 16 over the nine years (Table 13). 

There were several species in common between the two samples, but the 2002 sample had 

additional taxa: Corbiculidae Corbicula fluminea, Lumbricidae, Veliidae Rhagovelia spp., 

and Caenidae  Caenis spp., all of which are tolerant species. The Shannon-Wiener diversity 

index increased from 2.36 to 3.84 from 1993 to 2002, mainly as the result of a more evenly 

distributed community.  No single individuals of any macroinvertebrate taxa were found in 

the 2003 RBA. 
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Table 12.  Biological indices for the West Fork-White River macroinvertebrate communities. 
 

July 2002 
 

 

         
 SITE 1 

 
SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 7 3P-INT RBA 

Total Organisms         99 210 417 618 1697 605 1042 632 113
Taxa Richness

 
          

         
          

          
          

        

17 18 22 18 18 19 21 25 16
H` 3.116 2.493 2.472 3.300 2.088 3.164 3.151 3.273 3.814
% EPT 0.377 0.253 0.435 0.451 0.482 0.405 0.335 0.469 0.311
% Chironomidae 0.172 0.395 0.170 0.152 0.054 0.281 0.332 0.021 0.062

January 2003 
 

 

 
 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6 SITE 7 3P-INT RBA 

Total Organisms         528 517 169 204 74 83 72 118 * 
Taxa Richness

 
         

        
         

         

31 20 22 19 8 16 15 9 * 
H` 2.710 3.183 3.505 2.686 2.226 2.838 2.704 2.413 * 
% EPT 0.400 0.344 0.378 0.296 0.337 0.274 0.133 0.5 * 
% Chironomidae 0.282 0.344 0.183 0.377 0.338 0.398 0.306 0.000 * 

  * RBA was not performed in January 2003
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Table 13.  Comparison of the results of Rapid Bioassassment Protocols in 1993 and 
2002.  
     

Order Family Genus 
RBA         RBA     
2002         1993 

Ephemeroptera     
 Baetidae Baetis  2 0 
  Caenis  10 0 
 Isonychiidae Isonychia  5 30 
 Heptageniidae Stenonema  15 11 
Trichoptera     
 Hydropsychidae Cheumatopsyche 15 36 
 Philopotamidae Chimarra  4 14 
Diptera     
 Chironomidae  7 1 
 Tipulidae Hexatoma  4 1 
  Tipula  6 0 
Coleoptera     
 Dryopidae Helichus 0 1 
 Psephenidae Psephenus  5 2 
Hemiptera     
 Veliidae Rhagovelia  10 0 
Megaloptera     
 Corydalidae Corydalus  7 2 
 Sialidae Sialis  5 0 
Odonata     
 Coenagrionidae Argia  7 1 
Decapoda     
 Cambaridae  0 1 
Veneroida     
 Corbiculidae Corbicula fluminea 8 0 
Oligochaeta     
 Lumbricidae  3 0 
    Total numbers 113 100 
    Taxa Richness 16 12 
  Shannon H` 3.84 2.36 
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MEIOFAUNA 

INTRODUCTION 

 Meiofauna are a size class of invertebrates found in virtually all aquatic 

environments.   The word “meiofauna” was coined by Mare (1942), when she recognized a 

group of organisms smaller than macroinvertebrates that were escaping from the 1000-µ 

mesh net she was using for sampling the benthos of an estuary.   Mare defined the 

meiofaunal size class to include organisms that would pass through a 1000-µ net, but would 

be retained by a 42-µ net. Size class is an obviously arbitrary criterion for defining a group of 

organisms, and various investigators have modified the size range of meiofauna to include 

organisms from a lower limit of 42 to 80 µ to an upper limit of 500 to 1000 µ.   Organisms 

recognized as meiofauna are members of various taxonomic categories including Copepoda, 

Cladocera, Rotifera, Gastrotricha, Nematoda, Oligochaeta, Tardigrada, Ostracoda, 

Hydrachnidia, Isopoda, and Hydroidea. 

Meiofauna are now clearly recognized as distinctly different from macroinvertebrates, 

although they are believed to strongly interact with macroinvertebrates through competition 

and predation (Schmid-Araya et al. 2002).  Many macroinvertebrates are larval stages of 

insects found in the benthos of streams (e.g. mayfly, caddisfly, stonefly larvae), and they are 

widely recognized by many aquatic resource managers of lakes, reservoirs, rivers, and 

streams.  In contrast, meiofauna, which includes taxonomic categories with a different 

evolutionary history than insects, are unfamiliar to many persons working in rivers and 

streams.  Certain groups are more often recognized in marine and lake environments (e.g. 

copepods, cladocerans, rotifers).  Organisms recognized as macroinvertebrates may overlap 

in size with meiofauna, particularly in early life stages.  Organisms that eventually outgrow 

the meiofauna size class are referred to as “temporary meiofauna”, in contrast to those that 

remain in the meiofauna size class which are referred to as “permanent  meiofauna.” 

 The importance of meiofauna in stream ecosystems was overlooked for many years 

because it was generally held that they were not abundant and did not contribute substantially 

to either the biomass or ecosystem function of streams.  Recent research has dispelled those 

notions (Robertson et al. 2000, Smith et al. 2001a, b).  Meiofauna are now known to exist in 

high numbers in rivers and streams in both the benthos (benthic meiofauna) as well as within 
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the water column (planktonic meiofauna).  They are recognized as a link between the 

microbial/detrital trophic level and higher trophic levels including macroinvertebrates and 

fish (Schmid-Araya and Schmid 2000).   Recent research has addressed their role in stream 

ecosystems as facilitators of nutrient cycling (Hakenkamp and Morin 2000) and integral 

components of food webs (Borchardt and Bott 1995, Schmid-Araya  et al. 2002).  

 

RATIONALE FOR INCLUSION OF MEIOFAUNA AND SUBSTRATE COMPOSTION 

 Fish, macroinvertebrate, and periphyton assemblages have been and continue to be 

the focus of attention in biological assessment of freshwater ecosystems (Barbour et al. 

1999).  However, at least some meiofauna taxonomic groups (e.g. copepods, nematodes) are 

recognized by marine researchers as indicators of environmental quality (Coull and Chandler 

1992, Beier and Traunspurger 2001), and there is a growing interest in assessing the value of 

meiofauna as bioindicators in freshwater ecosystems (Smit and van der Hammen 1992, Di 

Sabatino et al 2000).   While such efforts are only in their infancy, information on abundance 

and assemblage structure of meiofauna may prove valuable in the future.  Hence, a survey of 

meiofauna was included in the biological assessment of the West Fork-White River, and 

represents the first known report on this size class of organisms in this river. 

 In addition to a catalog of meiofauna taxonomic categories found in the West Fork-

White River, this report includes an analysis of the substrate composition of core samples 

from which benthic meiofauna were extracted.   The concentration of silt (< 63-µ particles) is 

of particular interest because high silt concentration has been shown to adversely affect 

macroinvertebrate abundance and assemblage structure and fish egg development (Berkman 

and Rabeni 1987, Waters 1995).  Because benthic meiofauna share the same microhabitat as 

macroinvertebrates, they may also be adversely affected by the presence of high silt 

concentrations.  The information on meiofauna abundance and assemblage structure and silt 

concentration provided in this report will be analyzed in the future with similar information 

from 10 other Boston Mountain ecoregion streams to address the question of whether 

meiofauna are adversely influenced by the presence of high sediment concentrations (See 

Appendix B).   Investigators in the future may find information on sediment levels in the 

West Fork-White River useful for tracking changes over time.  
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METHODS 

Benthic meiofauna were extracted from nine core samples taken in riffles of the Site 

3P-INT. A coring device was used to collect a 0.25-L substrate sample.  Meiofauna were 

extracted by swirling and decanting using a Wisconsin bucket with an 80-µ net with a rinse 

of saturated calcium chloride to float organisms, followed by distilled water to re-adjust 

osmotic balance.  A subsample of filtrate was collected for analysis of fine sediments.  The 

contents of the Wisconsin bucket was washed into a sample container with 35 ml of buffered 

5% formalin, and Rose Bengal was added to stain the organic material in the sample.  The 

0.25-L substrate core, filtrate subsample, and the preserved meiofauna sample were returned 

to the laboratory for analysis. The substrate core sample was separated using a set of sieves 

into fines (< 63 µ), sand (> 63 µ to 1000 µ), coarse sand (> 1000 µ to 2000 µ) and gravel (> 

2000 µ).  The subsample of filtrate containing sediment collected during extraction of 

meiofauna was dried and weighed and added to the weight of the fines. 

Planktonic meiofauna were sampled using a modified Brown vacuum sampler 

(Brown et al. 1987) by filtering 300 L of water from an isolated pool at Site 3P-Int using the 

same Wisconsin net that was used for benthic sampling.  Meiofauna were preserved in 5% 

formalin, stained with Rose Bengal, and returned to the laboratory for analysis. In the 

laboratory, benthic and planktonic meiofauna samples were transferred from formalin to 70% 

ethyl alcohol.   All meiofauna within the size class between 80 µ and 1000 µ were 

enumerated and categorized into major taxonomic categories.   

 
BASELINE MEIOFAUNA DATA 

 No historical record of meiofauna in the West Fork-White River has been found for 

comparative purposes, and little is known about meiofauna in the Boston Mountain 

ecoregion.  Thus, the data included in this report constitute a baseline of information for 

future comparison.   These data will be compared to other Boston Mountain streams in an 

independent study currently underway to assess the influence of sediment size on meiofauna 

abundance and assemblage structure (Appendix B).      

Ten major meiofauna taxonomic categories were found in the nine benthic samples 

(Table 14).  The mean meiofauna density was 2045 organisms/L.  The relative abundance of  
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Table 14.  Densities of major taxonomic categories of meiofauna from  
West Fork-White River Site 3P-INT sampled 5 August 2002.      

 Taxonomic Category Organisms/L  

 Copepoda* 114  

 Rotifera 34  

 Cladocera 1  

 Ostracoda 20  

 Nematoda 83  

 Oligochaeta 90  

 Hirudinea 2  

 Hydrachnidia 303  

 Chironomidae** 1112  

 Ephemeroptera 217  

 Other*** 69  

 Mean Density = 2045 Organisms/L 
  

    *  Immature stages (nauplii and copepodites) included. 
  ** Temporary meiofauna including individuals less than l mm in any body dimension. 
*** Temporary meiofauna from Insecta orders Coleoptera, Trichoptera, Diptera, 
       and Odonata. 
 
taxonomic categories  (Figure 11) was dominated by chironomid larvae comprising 55.4% of 

the total organisms sampled.  While little is known about the response of meiofauna to 

anthropogenic disturbance in stream ecosystems, Chironomidae is known to be include 

highly tolerant species, and less taxa were represented than have been found in other streams 

in the region (Brown et al. 1989).   Hydrachnidia (water mites) was the next most abundant 

group.  Temporary meiofauna from various Insecta orders comprised 3.4% of the sample.  

 The planktonic sample had only 14 organisms including 2 cladocerans, 1 copepod 

nauplius, 1 rotifer, 2 tardigrades, 1 water mite, 3 chironomid larvae, 3 mayfly larvae, and 1 

black fly larvae. 

 The total mean concentration of fine sediments (< 63 µ-size particles) was 18.25 g/L.  
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Figure 11.  Relative proportion of major taxonomic groups of meiofauna from Site 3P-INT of 
the West Fork-White River shown as a percentage of total organisms. 
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 PHYSICAL CHARACTERIZATION OF FISH HABITAT 

INTRODUCTION 

Because biological communities and chemical water quality of streams are very 

responsive to alterations in physical structure, characterization of physical parameters is a 

critical component of the evaluation of the environmental quality of streams  (Gorman and 

Karr 1978, Kaufman et al. 1999).  The Environmental Preservation Division of the ADEQ 

measured physical characteristics of the West Fork-White River including channel 

dimensions, gradient, sinuosity, and substrate composition.  In addition, we examined 

physical characteristics specifically related to fish habitat.  

  

METHODS  

 We conducted habitat surveys of riparian vegetation, bank erosion, fish cover, and 

canopy angle March and April 2003 at the eight West Fork-White River sampling sites using 

methods outlined by Kaufmann et al. (1999), Platts et al. (1983) and Simonson et al. (1994).  

Transect lines were run perpendicular to the river channel for a 250-m reach at 25-m 

intervals.  The transect lines were equally distributed 125 m above and 125 m below the 

sampling site except at Sites 3 and 6 where fewer transects were placed above and more 

below the sampling site due to property access limitations.  At each transect line, a 50-m line 

was measured perpendicular to the left bank and to the right bank (for a total of 100-m 

riparian corridor), and riparian vegetation was expressed as a percentage of trees, shrub, grass 

and forbs, bare, rock, road, and house on each side of the river.  Canopy angle was measured 

at the midpoint of the river at each transect.  Bank erosion and fish cover (boulders, aquatic 

vegetation, woody debris, and undercut banks) were expressed as a percentage of the area 

between transects.  Measurements from each transect were averaged for each parameter 

(Table 15).     

 

RIPARIAN VEGETATION AND FISH COVER 

The proportion of trees in the riparian corridor was highest (75%) at Site 3 (Winn 

Creek).  Sites 5 and 6 had the highest proportion of grass and were bordered by pasture on at 

least one bank at each site.  At Site 6, there was evidence of cattle grazing and crossing at the 
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Table 15.  West Fork-White River habitat characteristics, fish cover, and major fish taxonomic groups.  All values are expressed as the average 
of the percentages except canopy angle that is expressed as the average of the degrees.    
 Habitat characteristics  
 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6  SITE 7  3P-INT 
Tree         0.27 0.18 0.75 0.5 0.04 0.44 0.42 0.11
Shrub          

          
          
          
          
          

         
        

   

0.32 0.31 0.08 0.21 0.20 0.03 0.08 0.13
Grass 0.23 0.38 0.04 0.13 0.46 0.45 0.40 0.47
Bare 0.06 0.06 0.12 0.16 0.29 0.01 0.10 0.07
Rock 0.01 0.02 0 0 0 0 0 0.10
Road 0.04 0.05 0 0 0 0.06 0 0.11
House 0.07 0 0 0 0 0 0 0
Canopy angle

 
71 85 77 59 3 61 34 76

Erosion 0.09 0.24 0.15 0.34 0.40 0.32 0.38 0.22
  

Fish cover
 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6  SITE 7  3P-INT 
Boulder         0.38 0.3 0.14 0.13 0.09 0 0 0.23
Aquatic Vegetation 

 
0.05 0 0 0 0.1 0.08 0.14 0.01 

Woody Debris 0.14        
         

         

0.02 0.07 0.04 0.01 0.04 0.04 0.08
Undercut Bank 0.1 0.09 0.18 0.06 0 0.07 0.04 0.03
Total Fish Cover 0.67 0.41 0.39 0.23 0.20 0.19 0.18 0.35
         
 Major fish taxonomic groups 
 SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 SITE 6  SITE 7  3P-INT 
Campostoma spp. 0.34        0.61 0.45 0.36 0.50 0.05 0.26 0.39
Cyprinidae 0.21        

         
        

         
         

0.07 0.09 0.17 0.20 0.22 0.19 0.26
Centrarchidae

 
0.11 0.01 0.14 0.10 0.11 0.39 0.19 0.10

Percidae 0.28 0.22 0.27 0.28 0.18 0.09 0.21 0.22
Catostomidae 0.00 0.00 0.02 0.01 0.00 0.23 0.07 0.00
Ictaluridae 0.02 0.09 0.03 0.08 0.01 0.01 0.02 0.03
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upstream end of the 250-m reach that was surveyed.  Site 5, with almost no canopy cover, 

had a pasture on the left bank and bare rock with few trees and shrubs on the right bank.   

The riparian corridors of Sites 1, 2, and, 3 were relatively evenly distributed with trees, 

shrubs and grass.  Fish cover was relatively high at Sites 1 and 2, 67% and 41% respectively. 

It decreased markedly moving downstream from a high of 67% at Site 1 to 18% at site 7.  

Boulders were the major component of fish cover (Table 15). 

 

PHYSICAL HABITAT AND FISH 

 The relationship between physical characteristics (riparian tree cover, erosion, fish 

cover and canopy angle) and major fish taxonomic categories: Campostoma (stonerollers), 

other Cyprinidae (minnows), Centrarchidae (sunfishes), Percidae (perches), Catostomidae 

(suckers), and Ictaluridae (freshwater catfishes) was analyzed using the Pearson product 

moment of correlation coefficients (r), (McClave and Dietrich 1991) (Table 16).  Seven 

significant correlations were found.  Erosion was negatively correlated with fish cover (r = -

0.908, P = 0.002) and canopy angle (r = -0.750, P = 0.032).  Lack of trees along the banks 

significantly increased erosion.  Fish cover was reduced where tree roots that stabilize banks 

were absent.  Catostomidae and Centrarchidae were negatively correlated with Campostoma, 

(r = -0.851, P = 0.007) and (r = -0.919, P = 0.001) respectively.  Some Catostomidae species 

and Campostoma are tolerant fishes, and these correlations suggest competition between 

them in degraded habitats, as was suggested at Site 6 in Figure 7.  Tolerant catostomids and 

Campostoma may be replacing sensitive centrarchids in the West Fork-White River.  

 The other three correlations suggest a pool/riffle habitat preference since these 

analyses were based on total fishes from both microhabitats at each site.  Percidae were 

negatively correlated with Centrarchidae (r = -0.0726, P = 0.042) and with Catostomidae (r = 

-0.804, P = 0.016).  Percidae are primarily riffle dwellers and the Centrarchidae and 

Catostomidae reside in pools.  Catostomidae and Centrarchidae were positively correlated 

and are both pool dwellers (r = 0.953, P = 0.000).               
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Table 16.  Pearson correlation between habitat variables and major fish taxonomic groups.  The r value is reported above the probability.   
 
  Tree

Cover 
 

Erosion 
Fish 

Cover 
Canopy 
Angle 

% 
Campostoma 

% Other 
Cyprinids 

% 
Centrarchidae 

% 
Percidae

% 
Catostomidae 

Erosion 
 

-0.188 
0.655 

 

        

Fish Cover 
 

-0.062 
0.885 

 

-0.908 
0.002 

       

      

     

    

   

  

Canopy Angle 
 

0.305 
0.463 

 

-0.750 
0.032 

0.560 
0.149 

%  
Campostoma 
 

-0.326 
0.431 

 

-0.186 
0.659 

0.290 
0.487 

0.078 
0.855 

% Other  
Cyprinids 
 

-0.400 
0.326 

 

0.190 
0.652 

-0.144 
0.734 

-0.329 
0.427 

-0.578 
0.133 

%  
Centrarchidae 
 

0.349 
0.396 

 

0.262 
0.531 

-0.427 
0.291 

-0.163 
0.699 

-0.919 
0.001 

0.407 
0.317 

% 
Percidae 
 

0.231 
0.582 

 

-0.514 
0.193 

0.580 
0.132 

0.317 
0.444 

0.524 
0.182 

-0.326 
0.430 

-0.726 
0.042 

%  
Catostomidae 
 

0.296 
0.476 

0.295 
0.479 

-0.446 
0.268 

-0.045 
0.916 

-0.851 
0.007 

0.254 
0.544 

0.953 
0.000 

-0.804 
0.016 

 

%  
Ictaluridae 
 

0.046 
0.913 

-0.044 
0.917 

0.078 
0.854 

0.473 
0.237 

0.523 
0.184 

-0.601 
0.115 

-0.601 
0.115 

0.430 
0.287 

-0.394 
 0.334 
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FINDINGS AND RECOMMENDATIONS 

 Biological assessment has revealed some significant impairment to the West Fork-

White River biological community.  We found a decreased diversity of fish with 22 species 

not found in our survey that were reported historically.  Nine of these are of special concern 

including two species (checkered madtom and yoke darter) that are endemic to the White 

River basin.  However, fish species richness was moderate over the course of the river, and 

one intensively sampled site compared favorably to less disturbed Boston Mountain 

ecoregion streams in fish density, biomass, and species richness. 

The macroinvertebrate assemblage was less diverse than expected in Ozark streams 

and was composed largely of pollution tolerant species (e.g., chironomids), especially during 

summer.  In the winter, however, macroinvertebrate samples from small upstream reaches 

contained more sensitive species (e.g., stoneflies) than downstream reaches, indicating better 

upstream conditions and potential for recolonization downstream after restoration.  The 

relative abundance of meiofauna taxa corroborated findings from macroinvertebrates, being 

composed largely of pollution tolerant taxa and having less diversity than expected compared 

to other streams in the region. 

Riparian corridors were very disturbed at sites in downstream reaches, and at some 

sites, stream channels were much wider than expected given their watershed area, and no 

trees remained along the banks. 

The wastewater treatment plant for the community of West Fork was obviously not 

functioning correctly, resulting in impairment of the riverine biological community. 

We strongly recommend that some restoration of the West Fork-White River be 

initiated soon while the biological community remains capable of responding in a relatively 

brief time period.  The physical structure of the stream should receive some immediate 

protection.  Biological communities are assembled on and respond directly to physical 

conditions in streams (sediments, flow conditions, percent riffle and pool, etc.), and 

impairment of these conditions has occurred.  Gravel mining should not be permitted in the 

bankfull limits of the stream channels in this basin.  Vehicular access to stream banks should 

be limited. 
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The riparian corridor should be restored and protected because it contributes to the 

physical integrity of the stream channel, retards erosion, moderates temperatures, and 

supplies organic matter for trophic support of stream biota.  Removal of riparian vegetation 

should not be permitted, and replanting of riparian woodland should be encouraged and 

subsidized.  Access to the river by livestock should be limited to control bank erosion. 

 The wastewater treatment plant for the community of West Fork should be upgraded, 

and residential septic systems near the river should be examined and repaired, if necessary.  

Removal of water from the river for any purpose should be monitored and evaluated.  The 

poorest water quality occurs during summer low flow periods, and water removal 

exacerbates the problem. 
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Appendix A.  Modification of Odum’s index of similarity to compare the number of species 

between two samples (Odum, 1971). 

 
                            

Similarity   =   Σ C / A + B + D 
                        
 
 Σ C = sum of the proportions of species common to both sample A and sample B 

 A = total proportions of sample A (=100) 

   B = total proportions of sample B (=100) 

 D = sum of the differences of the proportions of species common to sample A and B 
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Appendix B.  Synopsis of related research. 

MEIOFAUNA RESPONSES TO ANTHROPOGENIC DISTURBANCE: DOES 

SEDIMENT SIZE INFLUENCE ABUNDANCE AND ASSEMBLAGE STRUCTURE? 

Meiofauna are a size class of aquatic invertebrates (lower limit of 42 µm and upper 

limit of 1000 µm) that collectively comprise a trophic level in aquatic ecosystems that 

transfers energy from microbial/detrital levels to higher consumers.  Meiofauna assemblages 

represent one of the least studied constituents of stream ecosystems.  Dissertation research by 

Andrea Radwell is underway at the University of Arkansas designed to evaluate the response 

of meiofauna assemblages to stream/watershed anthropogenic disturbance with specific 

reference to the influence of sediment size. 

Inorganic sediment deposition from natural processes of erosion is an integral part of 

stream ecosystems.  However, excessive sediment deposition, also referred to as siltation, is 

often associated with anthropogenic disturbance and is recognized as a major pollutant of 

United States waters.  The presence of excessive sediments in streams is an important result 

of a wide range of disturbances associated with agricultural practices, logging, urbanization, 

and gravel mining.  Altered flood regimes, changed channel morphology, increased lateral 

activity, and other hydrologic alterations are often directly related to the presence of 

excessive sediment. 

Adverse effects of excessive sediment on macroinvertebrates and fishes have been 

documented.  Stream meiofauna share much of the same microhabitat as macroinvertebrates 

and are subjected to the same disturbances associated with sedimentation.  However, the 

effect of sediment on meiofauna of streambeds has received minimal attention.  An important 

goal of this research is to contribute to a better understanding of an important anthropogenic 

influence on meiofauna.  This information may be useful in development of appropriate 

management protocols for streams. 

The research consists of two components.  First, a set of artificial stream channels 

was deployed across the Illinois River with sediment size as the manipulated variable. After 

colonization, benthic core samples were taken from each channel.  Significantly fewer 

meiofauna were found in cores with high concentrations of fine sediment, and meiofauna 

assemblage structure differed among cores with varying fine sediment concentrations.  The 
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second component is a field study of headwater riffles of 11 Boston Mountain streams 

varying in degree of environmental disturbance (Big Piney Creek, Hurricane Creek, Kings 

River, Middle Fork Illinois Bayou, Mulberry River, North Fork Illinois Bayou, Richland 

Creek, Upper Buffalo River, War Eagle Creek, Main Fork White River, and West Fork 

White River).  Nine benthic core samples were taken from each stream.  Meiofauna 

abundance and assemblage structure, and percent substrate composition of each core from 

each river will be determined.  Planktonic meiofauna were also sampled in a pool at each 

site.  Data will be analyzed to determine the influence of fine sediments on meiofauna 

abundance and assemblage structure in natural channels. 
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