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INTRODUCTION 

 
 

 Contamination of ground water has been a major concern in recent years of local, 

state and federal agencies involved with the management, quality, and quantity  of water 

and their relationships with human health. The Springfield Plateau aquifer, which lies 

beneath the study area in northwest Arkansas, has been shown to have higher nitrate-N 

(NO3-N) concentrations than the national median. The dominant landuse (LULC) of this 

area is agriculture (primarily pasture/cattle and woodlands) and an encroaching 

urbanization. The major sources of nitrogen in the study area are poultry/cattle wastes, 

inorganic fertilizers (Peterson et. al., 1998) and septic filter fields. Many of the soils in 

the Ozark Region are highly permeable and well drained and the geology is karst. The 

probability of pollution occurring at a given location is a function not only of its 

hydrogeologic setting but also of anthropogenic pollution in the area (Evans, 1990).  

  Delineation of vulnerable areas and selective applications of animal 

wastes/fertilizer in those areas can minimize contamination of ground water. Assessment 

of ground water vulnerability from agricultural inputs and the understanding of spatial 

and temporal variabilities of the most important parameters affecting vulnerability is 

imperative before undertaking monitoring, rehabilitation or regulatory efforts at the 

watershed or regional scales. However, assessment of ground water vulnerability or 

delineation of the monitoring zones is not easy since contamination depends upon 

numerous and complex interacting parameters. Uncertainty is inherent in all methods of 

assessing ground water vulnerability and arises from errors in obtaining data, the natural 
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spatial and temporal variability of the hydrogeologic parameters in the field, and in the 

numerical approximation and computerization (National Research Council, 1993).  

Existing ground water vulnerability assessment methods may be grouped into 

three categories: overlay and index, statistical, and process-based simulation models. 

Overlay and index methods have been developed because of limitations in process-based 

models and lack of monitoring data required for statistical methods (National Research 

Council, 1993). Despite common use at the regional scale, overlay and index methods do 

not have built in mechanisms to deal with uncertainties, nor do these models consider 

spatial and temporal variability of parameters affecting ground water vulnerability. Most 

models based on overlay and index methods use physiographic parameters and do not 

consider LULC and management.  

Corwin, et.al., (1996) suggested that an integrated system of advanced 

information technologies such as Global Positioning System  (GPS), Geographic 

Information systems (GIS), geostatistics, remote sensing, solute transport modeling, 

neural networks (NN), fuzzy logic, and uncertainty analysis could provide a framework 

from which real-time or simulated assessment of non point source (NPS) pollution can be 

made. 

This research not only expanded modeling capability of an overlay and index 

models by addressing meaningful and relevant interactions of soil properties and LULC 

on ground water quality of watersheds in a karst region, but also used GPS, GIS, remote 

sensing, NN and fuzzy logic. The Neuro-fuzzy models developed in this study have the 

inherent capability to deal with uncertainties in the data, tolerate imprecision and can 

extract information from incomplete datasets. Expert knowledge, which is a valuable 
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source of information on the physical, chemical and biological parameters that are hard to 

measure, as well as experimental information were used in this research project.  

 

GOALS AND OBJECTIVES 

 
The overall purpose of this research was to innovatively extend the capability of 

overlay and index methods of modeling ground water vulnerability to agricultural 

chemicals in northwest Arkansas by using Neuro-fuzzy techniques in a Geographic 

Information Systems (GIS) platform. The specific objective was to develop models using 

Neuro-fuzzy techniques with GIS to predict ground water vulnerability in a relatively 

large watershed in northwest Arkansas having mixed LULC, and variably permeable 

soils over the Boone Formation. 

 
 
 
 

JUSTIFICATION FOR THIS RESEARCH 

 
Development of a simple and flexible model that has inherent capabilities to deal 

with uncertainty and incomplete data sets in a GIS will be useful for delineation of 

ground water vulnerability at the regional scale. A Neuro-fuzzy system is a fuzzy system 

that is trained by a learning algorithm from NN theory. 

Neuro-fuzzy modeling is an approach where the fusion of NN and Fuzzy Logic 

find their strengths. These two techniques complement each other. This approach 

employs heuristic learning strategies derived from the domain of NN theory to support 

the development of a fuzzy system. It is possible to completely map NN knowledge to 

Fuzzy Logic (Khan, 1999). A marriage between the NN and Fuzzy Logic techniques 
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should help overcome the short comings of both techniques The fuzzy system provides a 

computational approach to human thinking and behavior (Zadeh, 1965). Nauck et. al. 

(1997) mentioned that experts can do their job without developing and using a 

mathematical model. Experts obtain experience by solving problems. The use of fuzzy 

systems allows experts to specify the actions or the relationships among the input 

parameters in the form of linguistic rules. These rules are translated into a framework of 

fuzzy set theory providing a calculus which can simulate the opinion and behavior of the 

expert (Nauck et al., 1997). The translation into fuzzy set theory is not formalized and 

arbitrary choices can be made while defining the shape of the membership functions. This 

posses uncertainties in the process of building a fuzzy system, however, these 

uncertainties mostly causes a minor system design problem that can be overcome by the 

heuristic tuning processes (Nauck et al., 1997). The major contribution of fuzzy set 

theory is that it tolerates imprecision of the real world. Unlike two valued logic, this 

approach uses multivalued logic to represent real world situations where ‘classes’ do not 

have sharp boundaries. It is designed to deal with properties that are represented as a 

matter of degree (Yager et al., 1987).  

NN are systems that try to make use of some of the known or expected organizing 

principles of the human brain. The neural nets are composed of neurons and are 

connected by weights. NN can solve difficult problems by using a learning procedure that 

depends on the NN models and the given problem, but are black box (Nauck et al., 1997). 

NN are multi-input and multi-output nonlinear models and can represent the complex 

interactions among the input/output parameters (Fausett, 1994). NN outperform 

conventional statistical techniques in extracting information when datasets are diverse 
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and relationships are poorly defined. Although in recent years NN has been successfully 

used in solving difficult hydrological and environmental problems, it is not possible to 

determine how the solution was found due to the inherent black box nature of the NN. 

Nauck et al., (1997) mentioned  that it is also not possible to insert prior knowledge to a 

NN, however, in a Neuro-fuzzy system the combination of the learning ability of the NN 

and the linguistic rule handling of the fuzzy systems results in a self tuning system which 

is interpretable and in which prior knowledge can be inserted.  

Simple and easily available parameters were used in the models in this research to 

ensure global application of the models. The model developed used soil properties such 

as hydrologic group, soil structure, and thickness of the soil horizons and LULC as input 

data. In selection of parameters it was assumed that since the underlying geology is the 

Boone Formation, which is highly fractured, the variability of water and contaminant 

transmitting properties of soils as well as attenuation processes of the overlying soils will 

govern the vulnerability of the ground water. Once the contaminant moves beyond the 

soil zone, it will eventually reach the ground water due to extensive presence of fractures, 

low consumption capabilities and the considerable amounts of water flowing in this 

humid region. Therefore, only soils and LULC related parameters were used in this 

research. However, in other regions without the Boone Formation, adoption of this 

modeling approach may need to include more geological inputs along with the soil 

properties and LULC, because geology may pose some resistance to contaminant 

transport.  

The output from the Neuro-fuzzy model was displayed in the form of a map that 

shows regions of ground water in the Savoy Experimental Watershed (SEW) and its 
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surrounding area having more or less potential vulnerability to NO3-N. Also, a table was 

developed to present the areal extent of the vulnerability categories. Coincidence reports 

were generated indicating interactions among major model parameters.  

The Neuro-fuzzy model predictions were compared with the water quality data 

sets (field data) to obtain information on relative suitability of the modeling techniques 

for predicting ground water vulnerability in the watershed. It should be noted that due to 

the point nature of the water quality data and inherent variability associated with the 

water quality data, a comparison of well data (point) and vulnerability maps (spatial) is 

not suitable for determining the best modeling approach in an absolute sense.  However, 

the research showed how a Neuro-fuzzy technique can be used in a GIS to predict  

ground water vulnerability.  

Methodologies employed in this project are applicable and readily transferable to 

other watersheds to delineate ground water vulnerability. This research served as a model 

for regional-scale assessments of ground water vulnerability in other states, which may 

reduce their monitoring costs and increase the accuracy of the prediction.  For a  more 

detailed discussion of the results the reader is referred to the work reported by Dixon 

(2001). 

STUDY AREA 

 
Location 

The Neuro-fuzzy models were developed based on the characteristics of the four 

sub-basins of the Illinois River Watershed and SEW. The study area, which is located 

east of the Arkansas-Oklahoma border (Figure 1), is an intensely monitored watershed in 

northwest Arkansas. SEW is a University of Arkansas (U of A) property of 
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approximately 1250 hectares located in the Illinois River watershed, 24 km west of the U 

of A campus in Fayetteville. The study area (watershed) has an area of about 109,000 ha 

(270,000 acres). An integrated research effort between the U of A, Arkansas Water 

Resources Center (AWRC), the U.S. Geological Survey (USGS), Arkansas Department 

of Environmental Quality (ADEQ), Agricultural Research Service (USDA-ARS), and the 

Natural Resources and Conservation Service (USDA-NRCS) has been established for the 

SEW. 

 

 

Figure 1. Location of the study area in northwest Arkansas. 

 
 
Physical Characteristics of the Study Area 

Sub-basins 
 

The study area (watershed) has diverse soils, LULC and karst terrane and is 

affected by urban encroachment. There are four sub-basins in the study area. The names 

of the sub-basins and their 10 digit hydrologic units are: Osage Creek (1111010303), 
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Clear Creek (1111010302), Flint Creek (1111010306) and Middle Illinois River 

(1111010305) (Figure 2). The Osage Creek sub-basin covers about 52% or 57,052 ha of 

the study area, followed by the Clear Creek sub-basin, which covers about 18% or 19,839 

ha of the study area. The Flint Creek and Middle Illinois River sun-basins occupy about 

16% (17,927 ha) and 13% (14,460 ha) of the study area, respectively.    

 

Osage Creek
Flint Creek

Middle Illinois
Clear Creek

0                                                30 km
 

Figure 2.  Location of the major watersheds and SEW in the study area. 

 
Soils 

 

The study area has 44 soil series. The two most dominant soil series of the study 

area are Nixa and Captina. These soils occupy about 21% and 18% of the study area, 

respectively (Table 1). Nixa soils are found mainly in the north and northeast part of the 

watershed whereas Captina soils are found more in the eastern part (Figure 3). Small 

patches of Captina soils are also found in the western part of the study area. In addition, 

Clarksville soils comprise about 16% of the study area and are found in the central part of 

the watershed.  Peridge soils comprise about 2% of the study area and are found mainly 
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along the streams valleys. A few patches of Peridge soil also occur in the eastern part of 

the watershed.   

 

 

Figure 3. Spatial distribution of major soil series in the watershed. 

 

Table 1. Areal distribution of the major soils in the watershed. 
Major Series acres ha % Hydrologic Group Pedality classes 
Captina 49,684 20,107 18.4 C Moderately high 
Clarksville 42,903 17,363 15.9 B Very high 
Elsah 6,182 2,502 2.3 B Moderately high 
Jay 8,206 3,321 3.1 C High 
Nixa 56,476 22,856 20.9 C High 
Noark 7,064 2,859 2.6 B Moderately high 
Peridge 6,422 2,599 2.4 B Low 
Razort 6,029 2,440 2.2 B Moderately high 
Secesh 11,317 4,580 4.2 B High 
Tonti 18,774 7,596 6.9 C Moderately High 
Other soil series 55,759 22,565 20.7 B,C,D  
Water 1,186 480 0.4 N.A.  
Total 270,002 109,268 100   
 
 
LULC  

 

The watershed is characterized by mixed LULC. Agriculture, particularly pasture, 

covers about 64% of the study area (Table 2). About 23% of the study area is covered by 
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forests that are found in the central part of the watershed. Urban LULC, which covers 

about 10% of the study area, is found mainly in eastern part of the study area (Figure 4).  

 

Urban

Agriculture

Forest

Brush and shrubs

Water

0                                       30 km

 

Figure 4. Spatial distribution of LULC in the watershed. 

 

Table 2. Areal distribution of LULC in the watershed.  
LULC acres ha %
Urban 28,241 11,429 10.5
Agriculture 171,922 69,576 63.7
Shrubs and Brush 5,288 2,140 1.9
Forest 61,022 24,694 22.6
Water 1,120 454 0.4
Confined Animal Operation 2,409 975 0.9
Total 270,002 109,268 100

 

Geology 
 

The major rock unit, which occupies 88% of the study area, is the Mississippian 

age Boone Formation (Figure 5). The Boone Formation is a limestone with varying 

amounts of densely interbedded chert ranging between 30 and 60% by volume. In NW 

Arkansas, the Boone Formation typically occurs between 300 – 350 feet or 91 – 106 m 
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(Croneis, 1930).  The Upper Mississippian Formation, which is a combination of Pitkin 

limestone, Fayetteville shale and the Batesville sandstone, occupies about 8% of the 

study area (Table 3). This geological formation is found in patches all over the study 

area. The primary porosity of the Boone Formation is low but the secondary porosity of 

this formation is high due to the presence of numerous fractures (Curtis, 2000; Chitsazan, 

1980; Razaie, 1979). 

 

 

Figure 5. Spatial distribution of geology in the watershed. 

Table 3. Areal distribution of geology in the watershed.  
Geology acres ha %
Atoka Formation 397 161 0.1
Bloyd Member of the Hale  5,806 2,350 2.2
Cane Hill Member of Hale 114 46 0
Upper Mississippian Formation 22,793 9,224 8.4
Boone Formation 237,159 95,976 87.8
Chattanooga Shale 3,733 1,511 1.5
Total  270,002 109,268 100

  
 
Slopes 

 

The slopes in the watershed vary from 0 to > 31 degrees. The slopes were 

classified according to the scheme used by Hays (1995). About 39% of the study area has 

 15



slopes that are classed as nearly level (0 – 2 degrees) and are found further away from the 

stream beds (Figure 6). Gently sloping and strongly sloping categories of slopes occupy 

about 27- and 23 % of the study area, respectively (Table 4).    

 

 

Figure 6. Spatial distribution of slope in the watershed. 

 

Table 4. Areal distribution of slopes in the watershed.  
Slopes (degrees) acres ha % 
Nearly level (0 - 2) 104,142 42,146 38.6 
Gently sloping (3 - 4_ 74,144 30,006 27.5 
Strongly sloping (5 - 9) 62,334 25,226 23.1 
Moderately steep (10 - 16) 25,224 10,208 9.3 
Steep (17 - 30) 4,099 1,659 1.5 
Very steep (> 31) 59 23 0 
Total 270,002 109,268 100 
 
 
Elevation 

 

Elevation in the watershed ranges from 280 to 526 m. The higher elevations occur 

away from the stream valleys whereas the lower elevations occur along the stream 

valleys (Figure 7). About 19% of the study area has an elevation > 400 m (Table 5). 

Elevations ranging from 280 to 340 m occupy about 13% of the study area and are found 

along the stream beds.    
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Figure 7. Spatial distribution of elevation in the watershed. 

 

Table 5. Areal distribution of the elevation in the watershed.  
Elevation (m) acres ha % 
280 - 299 3,973 1,608 1.5 
300 - 310 4,440 1,797 1.6 
311 - 320 6,212 2,512 2.3 
321 - 330 8,157 3,301 3.1 
331 - 340 11,786 4,770 4.4 
341 - 350 19,731 7,985 7.3 
351 - 360 29,336 11,872 10.9 
361 - 370 29,729 12,031 11 
371 - 380 34,102 13,801 12.6 
381 - 390 40,067 16,216 14.8 
391 - 400 31,962 12,935 11.8 
> 400 50,507 20,440 18.7 
Total 270,002 109,268 100 
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METHODOLOGY 

 

Data Development 

This study used both primary and secondary data layers as model inputs. The 

primary data layers were used to generate coincidence reports for the models and 

secondary data were used as inputs in the models (Tables 6 - 7). The primary data layers 

included (i) soil series, (ii) LULC, (iii) geology, and (iv) digital elevation models 

(DEMs). The secondary data layers included (i) soil hydrologic group, (ii) depth of the 

soil profile, and (iii) soil structure of the A horizon.  

Table 6.  Description of primary data layers. 
Primary Data layers Source Scale/resoluti

on  
Comments 

Watershed boundaries NRCS 1:100,000 Digital 
Location of 
Springs/wells 

Field determined N. A. GPS 

Water Quality data Collected at SEW and 
surroundings 

N. A. ADEQ and AWRC            
Publication 

Geology Arkansas Geological 
Commission 

1:24,000 Digital 

Soils NRCS* and Iowa State  1:24,000 Mylar for primary and 
Tabular for secondary 
attributes 

LULC Oklahoma State University 
(1985) and CAST* (1992) 

1:24,000 
30 m 

Mylar 
Digital 

DEMs USGS 30 m Digital 
*CAST : Center for Advanced Spatial Technologies, University of Arkansas 
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Table 7. Primary and secondary data layers and their use in the study. 
Primary data Secondary data          Model Inputs Validation Fine-Tune 
  Preliminary Final   
Soils Hydrologic groups ✔  ✔    
 Structure ✔  ✔    
 Depth of the profile ✔  ✔    
LULC LULC ✔  ✔   ✔  
DEMs Slope    ✔  
 Elevation     
Location of wells/springs    ✔   
Water quality    ✔   

 

 

The Soil Survey Geographic Database (SSURGO) level soil maps were obtained 

from the Natural Resources Conservation Service (NRCS) and digitized in the Soil 

Physics Laboratory at the University of Arkansas. Tabular data for soil hydrologic groups 

were obtained from the SSURGO database for each soil map unit. Soil map units were 

reclassified into appropriate categories to generate maps for hydrologic groups  (Table 1). 

The data layers for the soil map units were then reclassified into a series level map. This 

step was necessary because SSURGO level data did not contain information on depth of 

the profile and soil structure that are required by the Neuro-fuzzy models. Soils data for 

depth of the profile and soil structure were obtained from the Official Soil Series 

Description database of Iowa State (http://www.statlab.iastate.edu/soils/nsdaf/;  viewed 

6/16/00). The soil series map was reclassified to generate maps for soil structure and 

depth of the profile. Soil structure, specifically pedality, was classified according to the 

classification scheme of pedality points developed by Lin et, al. (1999) to indicate water 

transmitting properties of the soils. The depth of the profile was estimated by excluding 

Cr and R horizons. The GRASS (4.2) command ‘r.reclass’ were used for all 

reclassification routines. The secondary data layers used in the models are in the form of 
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maps of (i) soil structure surface horizon (A), (ii) total depth of the horizon, (iii) 

hydrologic group and (iv) LULC. For more detailed discussion of the input data layers 

see Dixon (2001). 

The water quality data were obtained from two different sources: ADEQ and 

AWRC. The water quality data provided by ADEQ were collected with respect to storm 

events during 1998 and 1999 for 24 different wells/springs. These data were analyzed by 

ADEQ lab personnel for about 40 different ions and compounds. In this study, NO3-N is 

the water quality parameter used to compare the validity of  the models. The discharge 

records and contamination level of NO3-N data for springs and only contamination data 

for wells were stored in a relational table. Quality control and quality assurance (QC/QA) 

procedures were followed according to the internal guidelines of the agency. In addition, 

AWRC provided a set of historical data consisting of 20 wells (Smith and Steele, 1990) 

for the study area. These wells were sampled during the wet season of 1990 and analyzed 

for NO3-N and other ions and compounds in the AWRC water quality lab. The addition 

of historical data added temporal variability as well as uncertainty in the data. However, 

the data from AWRC complemented the data set provided by ADEQ. All of the ADEQ 

wells/springs were clustered in one zone of the watershed whereas the historical data 

were not. In essence, although addition of historical data (Smith and Steele, 1990)  added 

temporal variability in the data set it reduced the clustering of the locations of the wells if 

only the ADEQ data set were used.   
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Model Development 

The software NEFCLASS-J developed by Nauck, et. al, (1999) was used in the 

study for Neuro-fuzzy techniques (Figure 8). This software was written in JAVA and the 

output function was customized to tie the model in a GIS. From the view point of the 

NEFCLASS architecture and the flow of data, the fuzzy sets were trained by a 

backpropagation-like algorithm (Nauck et. al., 1999). Backpropagation means errors  

from computation are propagated backwards through the architecture from the output 

units towards the input units. However, the NEFCLASS does not use the gradient descent 

approach common with NN.  

 

 

 21



 
Figure 8. Schematics of the Neuro-fuzzy model used in this study, x=inputs, µ = weight, R = rules and 
C=output class. 

 
 

For this research, NEFCLASS-J was used with trapezoidal membership functions. 

This parameterized membership function, which was chosen because of its simplicity, not 

only reduces system design time, but facilitates the automated tuning of the system by 

desired changes (Yen and Langari, 1998). The trapezoid membership function uses four 

parameters and the peak of the membership function is 1. The desired change of the 

membership function for the trapezoidal function can be obtained from the widening or 

narrowing of the membership function and the corresponding changes of the related 

parameters (Yen and Langari, 1998). This simple membership function facilitated an 

important principle underlying the theories of fuzzy logic: exploring cost effective 
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approximate solutions. All training datasets were reclassified according to the following 

ground water vulnerability categories: high, moderately high, moderate and low potential. 

Application of Neuro-fuzzy techniques was a two step process. First, the training data set 

was used with the Neuro-fuzzy software to generate classifiers, fuzzy sets and rule bases. 

Second, once the software was trained, the application data set was used with the Neuro-

fuzzy models. The outputs from the models then were used to generate maps. 

The training data sets were obtained for the entire watershed from the GIS 

software GRASS command r.stats. Four input parameters to the command r.stats 

included the data sets used in the Neuro-fuzzy model, viz. soil hydrologic groups, LULC, 

depth of the profile and structure (pedality) of the soils as it indicates water transmitting 

properties. This GRASS command generated a table presenting all of the possible 

combinations of input parameters in the data sets. There were 202 patterns found for the 

entire watershed from the four input parameters. The output table from GRASS was 

imported in Dbase (IV) and the data were classified based on expert’s opinion. The 

format of the input Dbase table is presented in Table 8. The first 4 columns represented 

input parameters such as soil hydrologic group, LULC, depth of the soil horizon and soil 

structure. The remaining four columns indicated the classifier. All of the training data 

sets were reclassified according to the high, moderately high, moderate and low potential 

for ground water vulnerability. 
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Table 8. Example of the classifier for potential vulnerability categories used in the 
training data sets.  

Hydrologic Group LULC Depth* Soil Structure** High Moderately High Moderate Low 
10 10 15 38 1 0 0 0 
10 10 18 38 1 0 0 0 
10 10 36 53 1 0 0 0 
10 10 60 38 0 1 0 0 
10 10 66 34 0 1 0 0 
10 10 72 20 0 0 1 0 
10 10 72 38 0 1 0 0 
10 10 78 34 0 1 0 0 
10 10 97 34 0 0 1 0 
10 50 72 20 0 0 0 1 
10 50 78 34 0 0 0 1 

*depth in inches 
** pedality points 

 

 

 
 

RESULTS AND DISCUSSION 

 
Spatial Characteristics of the Model Inputs 

This section includes discussion on characteristics of the four model input 

parameters derived from soil characteristics. All of the four model input soil parameters 

and LULC are plausible parameters that influence the transport of water and 

contaminants through the profile to the ground water.  

 
LULC  
 

The watershed is characterized by mixed LULC. Agriculture, particularly pasture, 

covers about 64% of the study area (Table 2). About 23% of the study area is covered by 

forests that are found in the central part of the watershed. Urban LULC, which covers 

about 10% of the study area, is found mainly in eastern part of the study area (Figure 4).  

 24



 
 
Soil Hydrologic Groups 
 
 

The soils in the watershed were classified into three soil hydrologic groups B, C 

and D (Figure 9). About 54% of the land area in the watershed was in soil hydrologic 

group C (Table 9). Hydrologic group C indicates that Ksat is moderately low and internal 

free water occurrence is deeper than shallow (Soil Division Staff, 1993).  Hydrologic 

group B covers about 40% of the watershed and occurs along the stream valleys. Soil 

hydrologic group B indicates Ksat is moderately high and free water occurrence is deep 

or very deep (Soil Division Staff, 1993). Hydrologic group D, which occurred in small 

patches across the watershed and indicates low Ksat value, occupies slightly more than 

5% of the land area. 

 
 

 

Figure 9. Spatial distribution of soil hydrologic groups in the watershed. 

 

Table 9. Areal distribution of soil hydrologic groups in the watershed. 
Soil Hydrologic Groups acres ha % 
Low (D) 14,118 5,713 5.2 
Moderately low (C) 145,950 59,065 54 
Moderately high (B) 106,869 43,249 39.6 
Others 1,880 761 0.7 
Water 1,185 480 0.5 
Total 270,002 109,268 100 
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Depth of the Soil Profile 
 

The depth of the soil profiles was estimated from the soil series description for the 

solum thickness excluding the Cr and R horizons. About 83% of the study area has deep 

or very deep soil profiles (Table 10). Deep soil profiles are found all over the watershed 

whereas very deep soils occur along the stream valleys (Figure 10). Moderately deep 

soils comprise 15% of the study area and occur along the stream valleys. Moderately 

shallow soils (31 – 50 inches) are found in small patches across the watershed and 

occupies about 1% of the study area.  

 
 

 

Figure 10. Spatial distribution of depth of the soil profile in the watershed.  

Table 10.  Areal distribution of depth of the profile in the watershed. 
Depth (inches) acres ha % 
Shallow (9 - 30) 1,221 494 0.5 
Moderately shallow ( 31 - 50) 2,920 1,180 1 
Moderately deep (55 - 69) 39,355 15,927 15 
Deep (70 – 85) 168,088 68,025 62 
Very deep ( > 85) 55,352 22401 21 
Others 1,880 761 0.1 
Water 1,186 480 0.4 
Total 270,002 109,268 100 
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Soil Structure (pedality) 
 

The structure (pedality) of the soil varies within the soil profile. For the Neuro-

fuzzy model of the watershed, only the structural properties or pedality of the surface 

horizon (A) was used. The soil structure of the A horizon was reclassified according to 

the pedality points suggested by Lin et. al., (1999). The final pedality points were 

obtained for each soil by adding all of the points for ped size, ped shape and ped grade. 

Pedality points were regrouped to indicate water transmission potential in the profile. 

Five pedality groups were generated based on the total pedality points. For example, 

pedality point ranging from 10 – 17 was considered low (Table 11). Low pedality points 

are found in small patches across the watershed (Figure 11). High (40 – 50) and very high 

(>51) pedality points together occupy about 49% of the watershed and are found mainly 

in the central part of the watershed.  Most of the high pedality points are associated with 

coarse textured soils found closer to the main stream bed of the watershed.  Table 11 

shows pedality points for the major soils in the study area. 

 

 

 

Figure 11. Spatial distribution of soil structure (pedality) in the watershed. 
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Table 11. Areal distribution of  pedality point for soils in the watershed. 
Soil Structure (Pedality Points) acres ha % 
Low ( 14 - 17) 14,201 5,747 5.2 
Moderate (20 - 30) 507 205 0.2 
Moderately high ( 31 - 40) 117,758 47,656 43.6 
High (40 - 50) 89,991 36,419 33.3 
Very high ( > 51) 44,480 18,001 16.5 
Water 1,186 480 0.5 
Others 1,879 760 0.7 
Total 270,002 109,268 100 
 
 
 
Coincidence Analyses for Model Parameters  

Coincidence reports were used to tabulate the mutual occurrence of the categories 

for any two raster map layers with respect to each other. Nine sets of coincidence reports 

were generated. The coincidence reports facilitated training of the classifier, formulation 

and interpretation of the rule bases and the explanation of the fuzzy sets and classifier 

used in the study. Not only were the input parameters used in the coincidence analysis, 

but the ‘fine tuning’ parameter such as slope was also used in the coincidence analyses.  

 
 
Depth of the Soil Profile and Slope 
 

Depth of the soil profile and slopes are important parameters, since depth of the 

profile influences attenuation processes and slope influences runoff and infiltration of 

water. Coincidence analyses between depth of the soil profiles and slope help fine tune 

the classifier. For example, for the Neuro-fuzzy models operators classify the training 

data set according to the expert’s opinion. This classification process involved assigning 

values to the outcome of a set of parameters based on the underlying assumptions. One 

underlying assumption of using depth of the soil profile as a plausible parameter is that 

the deeper the profile, the lower the ground water vulnerability or conversely the 
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shallower the profile, the higher the ground water vulnerability.  However, if the 

watershed is characterized by shallow profiles with steep slopes, then runoff could be a 

more dominating factor than infiltration, hence chances of the underlying ground water 

contamination should be lower. On the other hand, if a deep soil profile coincides with 

nearly level slopes, then chances of water infiltrating and transmitting through the profile 

may be higher, hence the potential contamination of the ground water will increase. If the 

operator does not include this situation in the training data set while assigning values, 

then the classification results will be less than desirable.  

In this watershed it was found that a higher proportion of the deep soils coincided 

with nearly level slopes followed by gentle slopes. About 31,456- and 20,431 ha of deep 

soil profiles coincided with nearly level and gentle slopes, respectively (Table 12). Only 

about 387 and 639 ha of moderately shallow soils coincided with nearly level and gentle 

slopes, respectively.  About 241 ha of shallow soil profiles coincided with strong slopes. 

These coincidence patterns were included in the training data set for the classifier.  

 
 
Table 12. Mutual occurrence of slopes and depth of the soil profiles in the 
watershed. Results are given in ha. 
 Slopes 
Depth Nearly level Gentle Strong Moderate Steep Very steep Total
Shallow 55 161 241 29 8 0 494
Moderately shallow 387 639 151 4 0 0 1,181
Moderately deep 5,737 5,147 3,572 1,288 182 0 15,926
Deep 31,456 20,431 12,789 3,064 284 2 68,026
Very deep 3,768 3,247 8,382 5,803 1,179 22 22,401
Others 370 324 55 8 3 0 760
Water 372 56 36 12 4 0 480
Total 42,145 30,005 25,226 10,208 1,660 24 109,268
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Depth of the Profile and LULC 
 

As mentioned earlier, training data for the classifier requires experts’ opinion. The 

initial assumption for the ground water contamination model is that the ground water in 

agricultural areas are more vulnerable to NO3-N than in forested areas. When agricultural 

(pasture) areas are associated with shallow to moderately shallow soil profiles, chances of 

ground water contamination are much higher than where the agricultural land is 

associated with very deep soils. Training of the classifier should have examples of all 

possible combinations of the input parameters to yield a reliable vulnerability map. 

 In the watershed a higher proportion of agricultural land (pasture) was associated 

with deep soils  (47,818 ha) followed by moderately deep soils (10,641 ha). About 951 ha 

of pasture was associated with moderately shallow soils (Table 13). A considerable 

proportion of the forest LULC coincided with very deep soils (11,521 ha) and deep soils 

(9,926 ha). Only about 2,906 ha of the forests coincided with moderately deep soils.  

 
Table 13. Mutual occurrence of depth of the profile and LULC in the watershed. 
The results are given in ha. 
 LULC 
Depth Urban Agriculture Shrubs Forest Water Confined 

Animal
Total

Shallow 104 198 15 176 0 1 494
Moderately shallow 125 951 30 70 0 6 1,182
Moderately deep 2,049 10,642 205 2,906 42 84 15,928
Deep 7,854 47,818 1,592 9,926 42 791 68,023
Very deep 1,129 9,361 275 11,521 38 76 22,400
Others 151 539 23 30 0 18 761
Water 18 66 0 67 329 0 480
Total 11,430 69,575 2,140 24,696 451 976 109,268
 
 
 
Depth of the Soil Profile and Hydrologic Groups 
 

The majority of the land area in soil hydrologic group B coincided with very deep 

soils followed by moderately deep soils (Table 14). About 54,358 ha of deep soils 
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coincided with hydrologic group C.  Soil hydrologic group D coincided with both deep 

and very deep soils. About 494 ha of hydrologic group D also coincided with a shallow 

soil profile.  

The coincidence report between depth of the soil profiles and soil hydrologic 

groups helps fine tune the classifier. For example, for the Neuro-fuzzy models, operators 

need to classify the training data set. The initial underlying assumptions used in the 

training data were that a combination of shallow soil profile and hydrologic group B 

indicates a greater potential for ground water contamination than a combination of very 

deep soil profile and soil hydrologic group D. However, if the majority of the watershed 

had  deep and very deep soil profiles that coincided with hydrologic group B, then the 

potential for ground water contamination will be somewhere between the previous 

assumption. The classifier for the Neuro-fuzzy models should accommodate this 

situation, otherwise, classification results will be less than appropriate.  

 

Table 14. Mutual occurrence of soil profile depth and soil hydrologic groups in the 
watershed. The results are given in ha. 
 Hydrologic Group 
Depth D C B Others Water Total
Shallow 494 0 0 0 0 494
Moderately shallow 18 0 1,164 0 0 1,182
Moderately deep 334 2,993 12,601 0 0 15,928
Deep 3,236 54,358 10,429 0 0 68,023
Very deep 1,631 1,713 19,056 0 0 22,400
Others 0 0 0 761 0 761
Water 0 0 0 0 480 480
Total 5,713 59,064 43,250 761 480 109,268
 
 
 
Soil Structure and LULC 
 

The plausible parameters, used in this study, are influential in the transmission of 

water and contaminants through the profile. During the development of the training data 
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set for the classifier it was assumed that coincidence of high pedality points and 

agricultural activity (pasture) would increase the chance of ground water contamination 

several times more than the coincidence between high pedality points and forests. About 

34,525 ha and 23,335 ha of land in agriculture coincided with moderately high and high 

pedality points, respectively (Table 15). Significant amounts of forested land coincided 

with both very high and high pedality points (Table 15). About 7,357 ha of urban LULC 

is also associated with moderately high pedality points. 

 
 
Table 15. Mutual occurrence of LULC and soil structure in the watershed. The 
results are given in ha. 

 LULC 
Pedality Points Urban Agriculture Shrubs Forest Water Confined 

Operation
Total

Low (14 - 17) 685 4,601 197 203 8    53 5,747
Moderate (20 - 30) 20 166 14 4 0 0 204
Moderately high (31 - 40) 7,357 34,525 934 4,324 37 476 47,653
High (40 - 50) 2,799 23,335 768 9,101 44 374 36,421
Very high ( > 51) 400 6,344 201 10,967 35 55 18,002
Water 18 66 0 67 329 0 480
Others 151 539 23 30 0 18 761
Total 11,430 69,576 2,137 24,696 453 976 109,268
 
 
 
Depth of the Soil Profile and Soil Structure ( Pedality Points) 
 

The initial assumptions used for the classifier were as following: deep soil profiles 

and low pedality points indicate low contamination potential and high pedality points and 

shallow profiles indicate higher ground water contamination potential. In the watershed 

soils with deep profiles coincided with moderately high (37,627 ha) and high pedality 

points (27,117 ha).  About 3,076 ha of low pedality points coincided with deep soil 

profiles (Table 16). Soils with very high pedality points coincided with very deep soils 

(17,690 ha). These coincidence patterns were included in the classifier. 
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Table 16. Mutual occurrence of soil structure (pedality points) and depth of the 
profile in the water shed. The results are given in ha.   
 Pedality Points 
Depth (inches) Low Moderate Moderately 

high
High Very 

high 
Water Others Total

Shallow (9 - 30) 0 0 494 0 0 0 0 494
Moderately shallow ( 31 - 50) 1,164 0 0 0 18 0 0 1,182
Moderately deep (55 - 69) 1,499 0 6,189 7,947 291 0 0 15,926
Deep (70 - 85) 3,076 205 37,627 27,117 0 0 0 68,025
Very deep ( > 85) 9 0 3,345 1,356 17,690 0 0 22,400
Others 0 0 0 0 0 0 761 761
Water 0 0 0 0 0 480 0 480
Total 5,748 205 47,655 36,420 17,999 480 761 109,268
 
 
 
Soil Structure (Pedality Points) and Soil Hydrologic Groups 
 

The underlying assumptions for the training classifier was that a coincidence 

between higher pedality points and soil hydrologic group B will increase potential for 

water and contaminant transport. Whereas a combination of soil hydrologic group D and 

low pedality points will transmit less water when all other factors are assumed to be 

same. Any variation of these combinations should be accommodated in the training data 

set for the classifier.  

The mutual occurrence between soil structure (pedality points) and soil 

hydrologic groups in the watershed is presented in Table 17. Soil hydrologic group C 

coincided with moderately high and high pedality points. About 17,983- and 11,924 ha of 

soils with very high and moderately high pedality categories, respectively coincided with 

soil hydrologic group B.  Only about 476- and 5,270 ha of the low pedality category 

coincided with hydrologic groups C and B, respectively.   
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Table 17. Mutual occurrence of soil  hydrologic groups and pedality points in the 
watershed. The  results are given in ha. 
 Soil hydrologic groups 
Pedality Points D C B Others Water Total 
Low ( 14 - 17) 0 476 5,270 0 0 5,746 
Moderate (20 – 30) 205 0 0 0 0 205 
Moderately high ( 31 - 40) 5,491 30,241 11,924 0 0 47,656 
High (40 - 50) 0 28,347 8,072 0 0 36,419 
Very high ( > 51) 18 0 17,983 0 0 18,001 
Water 0 0 0 0 480 480 
Others 0 0 0 761 0 761 
Total 5,714 59,064 43,249 761 480 109,268 
 
 
 
 
Slope and LULC 
 
 

For the training classifier, initially it was assumed that the agricultural (pasture) 

LULC will increase the chance of contamination more than any other LULC since 

fertilizers and animal wastes are directly applied to these fields. However, application of 

contaminant is not the only factor responsible for transport of the contaminant to the 

ground water. Water transports contaminants to the ground water. Coincidence between 

LULC and slope provided additional important information on the relation between 

agricultural land and the slope category.  Agricultural land on steeper slopes should 

transport less contaminants down the profile than the agricultural land on level slopes. 

When all other factors are the same, the steeper the slope, the higher the runoff, hence, 

less infiltration and contaminant transport. Coincidence analysis provided important 

insights into the slope -LULC relation in the watershed.   

The majority of the agricultural land in the watershed is associated with nearly 

level (0-2 degrees) to gentle (3 – 4 degrees) slopes. Therefore these areas are more 

vulnerable than the areas with strong slopes. About 13,261 ha of agricultural land is 

associated with strong slopes of 5 – 9 degrees. The majority of the forests coincided with 
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strong slopes followed by moderately steep slopes (Table 18). About 6,306 ha of urban 

LULC coincided with nearly level slopes. Confined animal operations in the watershed 

coincided with nearly level slopes (418 ha) followed by gentle slopes (335 ha).    

 
 
Table 18. Mutual occurrence of slopes and LULC in the watershed. The results are 
given in ha. 
 Slopes 
LULC Nearly level Gentle Strong Moderate Steep Very steep Total
Urban 6,306 3,212 1,584 313 15 0 11,430
Agriculture 31,528 21,596 13,261 2,901 290 1 69,577
Shrubs  1,087 544 374 122 12 0 2,139
Forest 2,484 4,266 9,765 6,817 1,340 23 24,695
Water 325 52 51 24 1 0 453
Confined operation 418 335 190 30 1 0 974
Total 42,148 30,005 25,225 10,207 1,659 24 109,268
 
 
Slope and Hydrologic Groups 
 

Coincidence between soil hydrologic groups and slopes provided valuable 

information to train the classifier. Theoretically, soil hydrologic group B should transmit 

more water through the profile than soil hydrologic group D. However, if more land with 

soil hydrologic group B coincides with relatively steep slopes then, these areas might not 

be as vulnerable as they were assumed to be. Thus, these scenarios needed to be 

incorporated in the interpretation of the results from the classifier. 

 The majority of the land area in soil hydrologic group C coincided with nearly 

level slopes (0 – 2 degrees). About 18,413 ha and 11,457 ha of land with hydrologic 

group C coincided with gentle and strong slopes, respectively. Almost equal land area 

with soil hydrologic group B coincided with nearly level and gentle slope, respectively. 

The majority of the soil hydrologic group D coincided with nearly level slopes (Table 

19).  
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Table 19. Mutual occurrence of slopes and soil hydrologic units in the watershed. 
The results are given in ha. 
 Soil hydrologic groups 
Slopes (degrees) D C B Others Water Total 
Nearly level (0 - 2) 4,781 25,928 10,694 370 372 42,145 
Gently sloping (3 - 4_ 628 18,413 10,584 324 56 30,005 
Strongly sloping (5 - 9) 266 11,457 13,413 55 36 25,227 
Moderately steep (10 - 16) 31 3,031 7,126 8 12 10,208 
Steep (17 - 30) 8 235 1,409 3 4 1,659 
Very steep (> 31) 0 1 23 0 0 24 
Total  5,714 59,065 43,249 760 480 109,268 
 
 
 
Soil Hydrologic Group and LULC 
 

For the training data, initially it was assumed that wherever land area with soil 

hydrologic group B coincided with agriculture, chances of ground water contamination 

would be higher than the coincidence between land area with soil hydrologic group D and 

agricultural land use.  The coincidence report provided insights into the relation between 

soil hydrologic groups and LULC in the watershed and was used in the interpretation of 

the classifier. The majority of the land area in agriculture (40,178 ha) coincided with soil 

hydrologic group C (Table 20). About 24,807 ha of agriculture coincided with hydrologic 

group B. a greater proportion of forested land coincided with hydrologic group B (15, 

480 ha) followed by hydrologic group C (8,782 ha). About 3,986 ha of agricultural land 

coincided with category D.   

 
Table 20. Mutual occurrence of soil hydrologic group and LULC in the watershed. 
The results are given in ha. 
 Soil Hydrologic Group 
LULC D C B Others Water Total 
Urban 1,233 8,013 2,015 151 18 11,430 
Agriculture 3,986 40,178 24,807 539 66 69,576 
Shrubs  139 1,356 621 23 0 2,139 
Forest 334 8,782 15,480 30 67 24,693 
Water 2 20 103 0 329 454 
Confined Animal Operation 20 716 222 18 0 976 
Total  5,714 59,065 43,248 761 480 109,268 
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Neuro-fuzzy Model 

The Neuro-fuzzy model was developed using the trapezoidal membership 

functions. A dataset consisting of 202 combinations of patterns from input data was used 

to train the net. These patterns are also referred to as ‘cases’. The application data set for 

the watershed consisted of 2,662,528 rows and four columns of input data consisting of  

hydrologic groups, LULC, depth of the profile and soil structure for the study area. Four 

fuzzy sets were developed for each input parameter.  

 

Characteristics of the Neuro-fuzzy Model 
 

The parameter settings used for the model are presented in the Table 21. The 

software NEFCLASS-J developed by Nauck (1999) was used for this study. 

Table 21. The parameter settings for the Neuro-fuzzy model. 
Parameters Settings 
Training data file BasinsCLASSIF.dat 
Number of fuzzy sets  4 
Type of fuzzy sets Trapezoidal 
Aggregation function Maximum 
Interpretation of classification  
        results 

Winner takes all (WTA) 

Size of rule base Automatically determined 
Learning rule procedure  Best per class 
Fuzzy sets constraints (i) Keep relative order 

(ii) Always overlap  
Rule weights Not used 
Learning rate 0.1 
Validation  Single test (50%). 50% of the data withheld from the 

         training 
Stop Control Maximum number of epochs = 100 

Minimum number of epochs = 0 
Number of epochs after optimum = 10 
Admissible classification errors = 0 
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The training data set was composed of 202 rows. Out of 202 rows 46 cases were 

classified as class 1 (high), 72 cases as class 2 (moderately high), 65 cases as class 3 

(moderate) and 19 cases as class 4 (low). The validation technique ‘single test’ which 

randomly divides the data into two sets according to a given percentage value, was used 

to develop the model. The smaller part is used for training and larger part is used for 

validation.  The training process used 49% and the validation process used 51% of all 

cases presented in the data sets. A total of 41 possible rules were found. The optimal 

consequents were determined. ‘Best per class’ rule learning strategy was used. The 

maximum numbers of rules were determined automatically. ‘Best per class’ was used for 

trimming the rule base. ‘Best per class’ option selects under the constraints of the size of 

the rule base the best per class. A final rule base with 29 rules was created. This rule base 

covered all patterns. Performance on training and validation data are presented in Tables 

22 - 24. Table 22 indicates that about 15% of the training data with high category 

coincided with high category, about 24% of moderately high category coincided with 

moderately high category, 21% of moderate category coincided with moderate and 5% of 

the low category coincided with low. For the training data sets, correct classification was 

65 (65%) and number of misclassified entries were 35 (35%). For the validation data sets 

(49% of the training sets), the correct classification was 41 (40%) and number of 

misclassified entries were 61 (59%). Examples of the rule bases and fuzzy sets used in 

this study are presented in Appendix A. Statistical characteristics and correlation analysis 

of the training data sets are presented in Tables 25 and 26. Tables 27 and 28 presented 

statistical characteristics and correlation analysis of application data, which consisted of 

2,660,864 rows. 
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Table 22 . Performance of the training data (%) for ground water vulnerability 
classes. 
Vulnerability classes High Moderately high Moderate Low Not classified Total
High   15    8     0 0 0       23 
Moderately high         5       24        7        0         0       36 
Moderate         0        5        21        2         4       32 
Low         0        2        2         5         0        0 
Total        20       39       30        7         4      100 
 
 
Table 23. Performance of the validation data (%) for ground water vulnerability 
classes. 
Vulnerabil
ity classes 

High Moderately 
high 

Moderate Low Non Classified Total 

High 10 (  9.80%) 8 (  7.84%) 1 (  0.98%) 0 (  0.00%) 4 (  3.92%) 23 ( 22.55%) 
Moderately 

high 
4 (  3.92%) 19 ( 18.63%) 4 (  3.92%) 3 (  2.94%) 6 (  5.88%) 36 ( 35.29%) 

Moderate 2 (  1.96%) 8 (  7.84%) 11 ( 10.78%) 1 (  0.98%) 11 ( 10.78%) 33 ( 32.35%) 
Low 0 (  0.00%) 4 (  3.92%) 5 (  4.90%) 1 (  0.98%) 0 (  0.00%) 10 (  9.80%) 
Total 16 ( 15.69%) 39 ( 38.24%) 21 ( 20.59%) 5 (  4.90%) 21 ( 20.59%) 102 (100.00%) 

 
 

Table 24. Characteristics of the training sets. 
Learning Procedure Patterns Misclassification Errors 
Training 100  23 55 
Validation 102 61 79 
 
 

Table 25. Statistics for training data. 
Input Variables               mean std. deviation    minimum     maximum    missing 
Var 1  Hydrologic Group     24.55 9.23 10 50 0
Var 2   LULC          32.77 16.98 10 60 0
Var 3  Depth           74.09 26.43 9 151 0
Var 4  Sructure           38.17 11.43 14 53 0
 

 

Table 26. Correlation for training data.  
Input  variables 1 2 3 4 Class 
Hydrologic groups (1) 1 0.05 0.48 0.23 0.26 
LULC (2) 1 0.05 -0.01 -0.21 
Depth (3) 1 0.23 0.47 
Structure (4) 1 -0.28 
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Table 27. Statistics for application data. 
Input Variables             mean std. deviation    minimum  maximum     missing 
Var 1  Hydrologic Group         10.81 12.52 0 50 0
Var 2  LULC 11.01 13.85 0 60 0
Var 3  Depth  35.5 40.05 0 151 0
Var 4  Structure 19.13 21.91 0 53 0

 

Table 28. Correlation for application data. 
Input variables var 1 var 2 var 3 var 4 class
var 1 Hydrologic group 1 0.86 0.94 0.92 0
var 2 LULC 1 0.86 0.88 0
var 3 Depth 1 0.95 0
var 4 Structure 1 0

 

 
Spatial Distribution of Neuro-fuzzy Model 
 

The spatial distribution of ground water vulnerability predicted from the Neuro-

fuzzy model using the four input parameters, soil hydrologic groups, LULC, depth of the 

soil profile and soil structure (pedality points) is shown in Figure 12 and summarized in 

Table 29. The high ground water vulnerability coincided with regions of hydrologic 

group B, agricultural land use, deep soils and high soil structure or pedality points 

(Appendix B).  Moderately high ground water vulnerability categories comprised  25% of 

the watershed and was distributed across watershed.  The moderate vulnerability category 

coincided with urban LULC and soil hydrologic group C.   

Non-classified categories occurred where the rule base and input data contradicted 

each other. An example of contradictory information was the occurrence of soil 

hydrologic group C with high pedality points. Details of contradictory information are 

presented in Appendix B. Fine tuning of the training data sets was required to improve 

the model’s prediction from contradictory data. About 13% of the watershed area was not 
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classified by the preliminary model. This could be attributed to the validation technique 

used in the model, i.e. the single test. The results of the learning processes provide 

information on the smallest error caused during all propagations through the classifier 

and the error of the training data of the same cycle. This does not cross-validate error 

during the training processes. 

 

 

Figure 12. Spatial distribution of ground water vulnerability from the Neuro-fuzzy models in the 
watershed. 

 

Table 29. Areal distribution of ground water vulnerability in the watershed.  
Vulnerability acres ha %
Non Classified (0) 37,375 15,125 13.8
High (1) 59,617 24,127 22
Moderately high (2) 68,975 27,914 25.8
Moderate (3) 93,277 37,748 34.5
Low (4) 10,758 4,354 3.9
Total 270,002 109,268 100
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Coincidence Reports for the Neuro-fuzzy Model 
 

Coincidence reports provided information on the mutual occurrence of the ground 

water vulnerability categories and the physical characteristics of the watershed. Seven 

sets of coincidence reports were prepared and are shown in Figures 13 – 19.  A higher 

proportion of the highly vulnerable categories coincided with the soil hydrologic group 

C.  Theoretically, highly vulnerable areas were expected to coincide with  soil hydrologic 

group B. However, in this watershed almost equal areas of soil hydrologic groups B and 

C coincided with moderately high vulnerability category (Figure 13).  

 

0
5,000

10,000
15,000
20,000
25,000
30,000

D C B Others Water

Vulnerability Categories

A
re

a 
(h

a)

Non Classified (0)
High (1)
Moderately high (2)
Moderate (3)
Low (4)

Figure 13. Mutual occurrence of soil hydrologic groups and Neuro-fuzzy-based ground water 
vulnerability categories. 

 
 

As expected, a higher proportion of the highly vulnerable areas coincided with 

agricultural landuse. About 32,000 ha of agricultural land also coincided with moderately 

vulnerable categories (Figure 14).  
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Figure 14. Mutual occurrence of LULC and Neuro-fuzzy-based ground water vulnerability 
categories. 

 
 
 

 A higher proportion of soils with deep profiles coincided with moderately high 

ground water vulnerable areas. About 10,000 ha of the very deep soils coincided with 

moderately high vulnerability categories. About 32,000 ha of the moderate vulnerability 

categories also coincided with deep soils (Figure 15). 
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Figure 15. Mutual occurrence of ground water vulnerability and depth of the soil profile.  

 43



 10,000

5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000

Low

Mod
era

te

Mod
era

tel
y h

igh High
 

Very
 hi

gh
W

ate
r

Othe
rs

Pedality Points (Structure)

A
re

a 
(h

a) Non Classified (0)
High (1)
Moderately high (2)
Moderate (3)
Low (4)

0

Cap
tin

a

Clar
ksv

ille
Elsa

h
Jay Nixa

Noa
rk

Peri
dg

e
Razo

rt

Sece
sh

Ton
ti

Othe
r s

oil
 se

rie
s
W

ate
r

Major Soils

5,000

15,000

20,000

A
re

a 
(h

a)

Non Classified (0)
High ( 1)
Moderately high (2)
Moderate (3)
Low (4)

Figure 16. Mutual occurrence of pedality points (soil structure) and ground water 
vulnerability categories. 

0Figure 17. Mutual occurrence of major soils and vulnerability categories. 

 

Almost all of the high ground water vulnerability category coincided with soil 

structure or high pedality points with high water transmitting capabilities through the 

profiles (Figure 16). The majority of the moderately vulnerable categories coincided with 

moderately high pedality points. Almost equal moderately high vulnerability category 

coincided with high and moderately high pedality points.  

Figure 17 shows mutual occurrence between dominant soils and ground water 

vulnerability categories in the watershed. The locations of the Nixa soils coincided with 

high or moderately high vulnerability categories. Almost all of Captina soil area was 

classified as moderately vulnerable. About 6,000 ha of the Clarksville soil area was 

classified as moderately high (Figure 17). 
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Figure 17. Mutual occurrence of major soils and vulnerability categories. 

Almost equal area with the highly vulnerable category coincided with nearly 

level, gentle and strong slopes (Figure 18). The nearly level slope category also coincided 

with moderately vulnerable category.  Areas with a combination of high vulnerability and 

nearly level slope have greater contamination potential than areas with high vulnerability 

but strong slopes.  

 

Figure 18. Mutual occurrence of slopes and ground water vulnerability categories.  
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Almost all of the highly vulnerable area coincided with the Boone geological 

Formation followed by the Upper Mississippian Formation. About 32,000 ha of the 

watershed mapped as the Boone Formation coincided with the moderate vulnerability 

categories. The Boone Formation covers about 87% of the study area (Figure 19). 

Primary and secondary porosity of the Boone formation are  <1% and about 3.5 % , 

respectively (J. V. Brahana, Personal Communication).   
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Figure 19. Mutual occurrence between geology and ground water vulnerability categories.  

 

Coincidence between the Neuro-fuzzy Model and Field Data. 

Water quality data for NO3-N collected from 44 springs/wells in the watershed 

were also used in the study. Of the 44 wells, 24 analyses were provided by ADEQ and 20 

analyses by AWRC. Three sets of coincidence reports were generated. First, coincidence 

was conducted between the data for 24 of the wells provided by ADEQ and vulnerability 

categories. Second, coincidence reports were generated between all of the 44 wells and 

the ground water vulnerability categories. Third, coincidence reports were generated 
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between the NO3-N contamination level classes and ground water vulnerability categories 

for all of the 44 wells.  

For the first coincidence report, out of 24 wells, the location of two springs/wells 

coincided with the high vulnerability categories having a nitrate-N contamination level 

ranging from 14.5 to 16 mg/l. Seven wells/springs with nitrate-N concentration levels 

ranging from 0.02 – 6 mg/l coincided with the moderately high vulnerability category 

(Figure 20). The vulnerability category moderate also coincided with 7 wells/springs and 

nitrate-N concentrations ranged between 0.56 – 7.7 mg/l. This could be related to the 

spatial distribution of the wells and the vulnerability categories. The available 

springs/well data obtain from ADEQ were spatially biased and represent only a small 

portion of the watershed.  Moreover, spatially, the moderately high category occupied 

about 26% whereas the moderate category occupied 35% of the watershed.    
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Figure 20. Coincidence of  vulnerability classes predicted from the model and  well locations.  
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The low ground water vulnerability category occupied only 4% of the watershed. 

Ten out of 24 wells sampled in the study area coincided with a soil profile depth of 60 

inches and 7 wells coincided with profile depth of 96 inches. Eight wells coincided with 

pedality points of 38 and 53, respectively. Only one well coincided with low pedality 

points 17.  

The results obtained from the second set of coincidence report analyses are shown 

in the Figure 21. It is interesting to note that in spite of adding 20 more wells to the water 

quality data set the general trend of the coincidence remained the same. Like the ADEQ 

data set, the moderate vulnerability category had the highest number of wells (16). Six 

and ten wells coincided with non-classified and high category, respectively. Compared to 

the data shown in Figure 20, only one more well was added to the low vulnerability 

category when the coincidence was generated with the entire data set of 44 wells. Two 

out of 44 wells coincided with low pedality points 14 and one well coincided with 

pedality point 17. Eight wells coincided with pedality points of 34. About 10 and 9 wells 

coincided with pedality points of 38 and 49, respectively. High pedality points of 53 

coincided with 9 wells. About 10 wells coincided with 60 inches deep soil profile. About 

17 wells coincided with a soil profile between 72 – 80 inches and 11 wells coincided with 

profile depth of greater than 96 inches. About 15 and 26 wells coincided with soil 

hydrologic groups C and  B, respectively. 
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Figure 21. Coincidence of  vulnerability classes predicted from the model and  the entire well data for 
nitrate-N contamination.  

 

A third set of coincidence reports was generated between vulnerability categories 

and the classes nitrate-N contamination data for all 44 wells (Figure 22). The nitrate-N 

contamination data were arbitrarily classified into four categories: low (<0.5 mg/l), 

moderate (0.5 – 3 mg/l), moderately high (3 – 10 mg/l) and high (> 10 mg/l).  Two wells 

were classified as high concentration, one well coincided with high vulnerability and the 
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Figure 22. Coincidence between well contamination level and vulnerability categories 
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other wells coincided with the moderate vulnerable category. Relatively higher number of 

wells with moderately high contamination level coincided with moderate vulnerability 

category followed by moderately high vulnerability category (Figure 22). Almost equal 

numbers of wells with moderate contamination level coincided with moderate and 

moderately high vulnerability categories.  Two wells with moderately high contamination 

level coincided with low vulnerability area. Location and nitrate-N contamination levels 

(mg/l) of wells are shown in Figure 23. 

 

 

Figure 23. Location and nitrate-N contamination levels of wells in the watershed. 

  

 Coincidence analyses between model inputs and well contamination data are 

presented in Figure 24. Only two wells sampled in the study area were categorized in the 

highly contaminated category. One of each associated with urban and agricultural LULC, 

moderately deep and deep soil profile, moderately high and high soil structure and one 

each with hydrologic groups B and C (Figure 24). The majority of the moderately high 

contamination levels are associated with agricultural landuse, moderately deep soil 
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profile, soil hydrologic group B and moderately high pedality points. As mentioned 

earlier, the well contamination data were not collected during the same time nor by the 

same agencies and were complied from different sources, therefore, this data set 

contained some additional uncertainty and variability.  As a result, the comparison 

between well data and vulnerability categories should not be considered ‘absolute’ 

parameter in determining applicability of the model.  

 

  

 

Figure 24. Coincidence between well contamination level and model inputs. 

 

The data set for water quality was not considered to be adequate to determine the 

ability of the models to predict ground water vulnerability since it had inherent 

uncertainty. This brings out an interesting aspect of solute transport modeling on a 

regional scale as pointed out by Burrough (1996). He mentioned that most of the 
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environmental data are collected on a project basis rather than in a systematic way which 

poses a problem in development of solute transport models in a regional scale. One of the 

goals of this research was to examine the usefulness of existing data in regional scale 

modeling of ground water vulnerability since this will reduce cost of modeling. Digging 

new wells to validate the model will be cost prohibitive. 

Moreover, well/spring data are point data, a validation technique that, compared 

point data with spatial data predicted by the model, has inherent uncertainty. Further 

studies are required with a larger set of water quality data collected all over the 

watershed. Use of geostatistical tools to generate contamination surface and comparison 

of that surface with the map generated by the vulnerability model could be useful in the 

assessment of the model performance. Further studies are needed to determine the 

applicability of Neuro-fuzzy techniques in modeling ground water vulnerability on a 

regional scale. This modeling approach should be used again, preferably in areas where 

water quality data are already available with less temporal variability and adequately 

characterize the watershed or the study area.  

 

CONCLUSIONS 

 
Application of Neuro-fuzzy techniques to the prediction of ground water 

vulnerability does not provide exact solutions. Fuzzy systems, which are used to exploit 

the tolerance for imprecise solutions, are useful because they are easy to use, handle and 

understand. Use of the NEFCLASS-J tool provided all necessary statistics. No further 

statistical tools or computation with statistical tools were required. The model output 

showed higher coincidence with soil structure parameters (pedality points) and 
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agricultural landuse than any other parameter. The preliminary model needed to be fine 

tuned though fine tuning of rulebase and classifier. From this research it is evident that 

the tool NEFCLASS-J could not automatically create the classifier. It supports the user 

but it cannot do all the work because a precise and interpretable fuzzy classifier can 

hardly be found by an automatic learning process.  The NEFCLASS-J needs experts’ 

opinion and tuning.  

The water quality data were not sufficient to characterize the watershed. 

Locations of the wells/spring used in the study to validate the model had a spatial bias, 

and therefore, were not practically useful in validating the Neuro-fuzzy model. Further 

study is needed.  

 

SUMMARY 

This research used Neuro-fuzzy techniques to predict ground water vulnerability 

in northwest Arkansas. These techniques allowed incorporation of expert’s opinion in the 

models, which is a valuable source of information particularly for the parameters that are 

hard to measure and vary over space and time. The models developed in this research 

used simple soil parameters including depth of the soil profile, soil hydrologic groups and 

pedality points of the A horizon and LULC to ensure global scope of the model. Since the 

underlying geology of the watershed is primarily the Boone Formation, which is highly 

fractured, it was assumed that any contaminants that reached the Boone Formation would 

also move to the ground water because this formation poses little hydraulic resistance to 

flow. 
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About 22% of the watershed was classified as highly vulnerable area and almost 

all of the highly vulnerable areas coincided with agricultural landuse, moderately deep 

and deep soils, soil hydrologic group C and high pedality points. As expected, the 

vulnerability map showed high coincidence patterns between the highly vulnerable areas 

and LULC and soil structure (pedality points) as expected. However, the coincidence 

patterns between the vulnerability categories and depth of the soil profile and soil 

hydrologic groups did not show the expected patterns of coincidence. The expected 

patterns were: the shallower the profile, the higher the vulnerability; or the higher the 

Ksat of a soil hydrologic group, the higher the vulnerability (i.e. soil hydrologic group B 

is more vulnerable than C). These discrepancies could be attributed to the fact that the 

majority of the agricultural landuse coincided with soil hydrologic group C (40,178 ha) 

followed by soil hydrologic group B (24,807 ha). About 47,818 ha of the watershed with 

deep soils coincided with agricultural landuse. Only two wells sampled in the study area 

had NO3-N concentration of greater than 10 mg/l. One of each coincided with highly and 

moderately vulnerable areas, agricultural and urban landuse, moderately deep and deep 

soil profile, soil hydrologic groups B and C and pedality points of moderately high and 

high. As mentioned earlier due to the inherent uncertainty associated with the well 

contamination data, the data set should not be considered as ‘absolute’ parameter in 

determining performance of the model. 

The proposed methodology has potential in facilitating modeling ground water 

vulnerability at a regional scale. This methodology can be used for other regions, 

however, this approach would require incorporation of appropriate input parameters 

suitable for the region. For example, if the geology of an area is different from the study 
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area, geological factors should be incorporated to account for potential resistance to water 

and contaminants transport processes. This study is the first step toward incorporation of 

Neuro-fuzzy techniques in a GIS and would require improvements for wider range of 

application. 
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APPENDIX A 
 

% NEFCLASS rule file file created by NEFCLASS-J 1.0 (c) Ulrike Nauck, Braunschweig, 1999 
 
% Filename: Z:\Iberia\Barnali_home\dissertation\model\neuro_fuzz\basins\objective 1\obj1_rul.txt 
% This file was created at April 15, 2001 7:34:13 AM CDT 
 
if Var 1 is very small and Var 2 is very large and Var 3 is very small and Var 4 is large then Class 1 
if Var 1 is small and Var 2 is very large and Var 3 is small and Var 4 is large then Class 2 
if Var 1 is very small and Var 2 is very small and Var 3 is very small and Var 4 is very large then Class 1 
if Var 1 is small and Var 2 is small and Var 3 is small and Var 4 is very large then Class 1 
if Var 1 is small and Var 2 is very large and Var 3 is small and Var 4 is very large then Class 2 
if Var 1 is small and Var 2 is small and Var 3 is small and Var 4 is large then Class 1 
if Var 1 is very small and Var 2 is very small and Var 3 is very small and Var 4 is large then Class 1 
if Var 1 is very small and Var 2 is large and Var 3 is very small and Var 4 is large then Class 1 
if Var 1 is very small and Var 2 is very small and Var 3 is large and Var 4 is large then Class 2 
if Var 1 is small and Var 2 is large and Var 3 is small and Var 4 is large then Class 2 
if Var 1 is small and Var 2 is very small and Var 3 is large and Var 4 is very large then Class 2 
if Var 1 is very small and Var 2 is small and Var 3 is small and Var 4 is large then Class 2 
if Var 1 is small and Var 2 is very large and Var 3 is large and Var 4 is very large then Class 2 
if Var 1 is small and Var 2 is small and Var 3 is large and Var 4 is very large then Class 2 
if Var 1 is very small and Var 2 is large and Var 3 is small and Var 4 is very small then Class 2 
if Var 1 is small and Var 2 is large and Var 3 is small and Var 4 is very large then Class 2 
if Var 1 is small and Var 2 is very small and Var 3 is small and Var 4 is large then Class 3 
if Var 1 is small and Var 2 is very large and Var 3 is small and Var 4 is very small then Class 3 
if Var 1 is small and Var 2 is large and Var 3 is small and Var 4 is very small then Class 3 
if Var 1 is very small and Var 2 is very large and Var 3 is large and Var 4 is large then Class 3 
if Var 1 is very small and Var 2 is small and Var 3 is large and Var 4 is large then Class 3 
if Var 1 is very small and Var 2 is small and Var 3 is small and Var 4 is very small then Class 3 
if Var 1 is very large and Var 2 is very large and Var 3 is very large and Var 4 is very large then Class 3 
if Var 1 is small and Var 2 is large and Var 3 is large and Var 4 is very small then Class 3 
if Var 1 is very large and Var 2 is very small and Var 3 is very large and Var 4 is very large then Class 3 
if Var 1 is small and Var 2 is very small and Var 3 is small and Var 4 is very small then Class 4 
if Var 1 is small and Var 2 is small and Var 3 is small and Var 4 is very small then Class 3 
if Var 1 is small and Var 2 is very small and Var 3 is large and Var 4 is very small then Class 4 
if Var 1 is very small and Var 2 is very large and Var 3 is small and Var 4 is large then Class 4 
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Var 1 = Soil hydrologic groups 

Var 2 = Landuse (LULC) 

Var 3 = Depth of the soil profile  

Var 4 = Soil Structure or pedality points 
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APPENDIX B 
 
365254.33885602(E) 4007029.56321023(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
371195.19890633(E) 4015371.53764205(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
376385.95036443(E) 4001358.22088068(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (4)Forested Land 
depth.total.rcl in mitra.ill4 (5)Very deep 
structure.layr1.rcl.final in mitra.ill4 (5)Very high 
objective1_trapez.rcl in mitra.ill4 (0)no data 
 
399519.29934823(E) 4010090.28764205(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (3) 
 
398499.15166282(E) 4002498.49076705(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (1)Urban 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (3) 
 
393428.41757947(E) 3996437.05610795(N) 
hydrogrp.fuzzy.input in mitra.ill4 (10) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (2) 
 
364264.1955143(E) 4000848.10014205(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (4)Forested Land 
depth.total.rcl in mitra.ill4 (5)Very deep 
structure.layr1.rcl.final in mitra.ill4 (5)Very high 
objective1_trapez.rcl in mitra.ill4 (0)no data 
 
373235.49427715(E) 4014111.23934659(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (4)Forested Land 
depth.total.rcl in mitra.ill4 (5)Very deep 
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structure.layr1.rcl.final in mitra.ill4 (5)Very high 
objective1_trapez.rcl in mitra.ill4 (0)no data 
 
365644.39532397(E) 4016001.68678977(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (3) 
 
360093.59174161(E) 4007299.62713068(N) 
hydrogrp.fuzzy.input in mitra.ill4 (10) 
lulc.85.30m.study in mitra.ill4 (1)Urban 
depth.total.rcl in mitra.ill4 (3)Moderately deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (0)no data 
 
361473.79155128(E) 4003638.76065341(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (3) 
 
399129.24288028(E) 4002738.54758523(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (1)Urban 
depth.total.rcl in mitra.ill4 (5)Very deep 
structure.layr1.rcl.final in mitra.ill4 (3)Moderately high 
objective1_trapez.rcl in mitra.ill4 (2) 
 
381066.62797983(E) 4017772.10582386(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (3)Moderately deep 
structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
391178.09180284(E) 4018552.29048295(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (3)Moderately deep 
structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
369304.92525396(E) 4014501.33167614(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
371705.27274904(E) 4016901.89985795(N) 
hydrogrp.fuzzy.input in mitra.ill4 (20) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (4)Deep 
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structure.layr1.rcl.final in mitra.ill4 (4)High 
objective1_trapez.rcl in mitra.ill4 (1) 
 
392048.2177698(E) 3995026.72230114(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (2)Agricultural Land 
depth.total.rcl in mitra.ill4 (3)Moderately deep 
structure.layr1.rcl.final in mitra.ill4 (1)Low 
objective1_trapez.rcl in mitra.ill4 (4) 
 
397869.06044536(E) 4011830.69957386(N) 
hydrogrp.fuzzy.input in mitra.ill4 (30) 
lulc.85.30m.study in mitra.ill4 (1)Urban 
depth.total.rcl in mitra.ill4 (4)Deep 
structure.layr1.rcl.final in mitra.ill4 (1)Low 
objective1_trapez.rcl in mitra.ill4 (4) 
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APPENDIX C 
 
 
 Source: ADEQ   
Northing Easting          Well ID NO3-N concentration (mg/l) 
 
379426.8131 3997642.065 #1 0 
379427.7591 3997674.411 #2 2 
379442.5775 3997679.138 #3 2 
383676.0906 4001220.973 #4 15 
383025.2901 4003017.085 #5 4 
383090.7579 4002307.403 #6 6 
383237.7978 4002089.712 #7 8 
385273.4467 4001045.764 #8 7 
384130.8208 4001584.739 #9 7.77 
380323.5933 4000168.522 #10 0.063 
379123.9042 3999552.647 #11 0.063 
378906.7469 3997772.214 #12 1.89 
378928.6386 3997312.415 #13 6.12 
379060.8084 3997756.214 #14 0.562 
381184.4485 3999960.158 #15 2.017 
380286.028 3998246.619 #16 0.605 
379408.9446 3997543.078 #17 4.53 
384055.444 4001554.922 #18 6.32 
384055.444 4001554.922 #19 7.7 
383676.0906 4001220.973 #20 16 
383115.3328 4002276.256 #21 5.9 
389854.5038 4001603.141 #22 4.2 
 
  

Source: Smith and Steele (1990)    
 
Northing Easting          Well ID No3-N concentration (mg/l) 
381706.1053 4021772.388 #28 0.74  
387463.6712 4021572.535 #29 9.99  
394498.1283 4021792.331 #30 26.74  
359149.5084 4013294.147 #32 0.53  
364054.1198 4012445.619 #33 1.74  
380178.314 4012239.541 #34 0.73  
373135.5475 4003463.38 #42 0.09  
379285.1649 4003622.724 #43 0.01  
368183.2069 3999869.205 #49 1.27  
362161.7228 4000116.197 #50 0.59  
365501.742 4009186.966 #51 1.21  
361099.8299 4008793.707 #52 0.89  
394985.5117 4016732.444 #53 7.68  
388551.6091 4009169.845 #54 4.86  
380507.1051 4017998.1 #55 0.53 
371735.4163 4016982.835 #56  
389117.7165 4024170.758 #58 1.68 
372527.5885 4013149.532 #66 0.1 
395078.7028 4012047.185 #67 0.08 
374718.4312 4033458.801 #72 0.3 
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