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Abstract 

Silicon-based materials and optoelectronic devices are of great interest as they could be 

monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) 

processes. The integration of optoelectronic components on the CMOS platform has long been 

limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly 

desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) 

lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a 

completely new avenue from the traditional III-V integration approach.   

In this work, the material and optical properties of GeSn alloys were comprehensively 

studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical 

vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done 

for thin GeSn films (thickness < 200 nm) with Sn compositions from 0 to 12%, and for thick 

GeSn films (thickness > 400 nm) with Sn composition 5 to 17.5%. The room temperature 

photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks 

towards longer wavelength as Sn composition increases. Strong PL intensity and low defect 

density indicated high material quality. Moreover, the PL study of n-doped samples showed 

bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn 

compositions. 

Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 

μm were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The 

achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit 

using similar deposition chemistry. The highest lasing temperature was measured at 180 K with 

an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the 



 

achievement of high material quality and a robust fabrication process.  The results reported in 

this work show a major advancement towards Si-based electrically pumped mid-infrared laser 

sources for integrated photonics.  
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1 

Chapter 1. Introduction 

1.1   Motivation  

            Silicon-based materials and their optoelectronic devices are of great interest due to the 

scalable incorporation with current Si complementary metal-oxide-semiconductor (CMOS) 

processes [1].  The development of optoelectronic integration with CMOS has long been limited 

by the unavailability of monolithic Si-based laser sources [2-3]. Tremendous efforts have been 

made to overcome this technical barrier. An all-Si Raman laser was reported in 2005 [4] which 

relies on stimulated Raman scattering rather than band-to-band transition. The development of 

Ge techniques has led to optically and electrically pumped Ge lasers [5-6]. The energy difference 

of ~136 meV between the direct Γ-valley and the indirect L-valley was compensated by heavily 

n-type doping or tensile strain Ge layer, which either resulted in a high threshold or technical 

fabrication difficulties [7, 8]. The hybrid integration of III-V lasers on Si has been investigated 

extensively [9-11]. The III-V materials feature efficient light emission, and the recent hybrid 

integration-based results show significantly improved material quality [12-13]. This route 

requires either a wafer-bonding process or direct growth of III-V on Si techniques.  

Among the various material systems that could be integrated on Si, the Ge1-xSnx alloy has 

attracted much attention recently due to the following reasons: (1) capability of monolithic 

integration on Si [14]; (2) availability of direct bandgap material [15]; and (3) tunable bandgap 

covering broad shortwave- and mid-infrared (IR) wavelength range [16].  

Theoretically, by incorporating Sn into Ge lattice, the direct and indirect bandgap 

energies could be reduced and eventually a direct bandgap material is attainable [17-20].  This 

was experimentally proven by the report of the direct bandgap GeSn in 2014 [15], followed by 

the demonstration of an optically pumped GeSn laser in 2015 [21].  Moreover, for the past five 



 

2 

years, the GeSn-based optoelectronic devices including light emitting diodes (LEDs), 

photoconductive detectors, photodiode detectors, and modulators have been investigated by 

research groups all over the world [22-28] indicating the great potential of the GeSn technique in 

the area of Si photonics.  Particularly, for the GeSn photodetector, some results [29- 30] 

indicated that a key figure of merit, such as specific detectivity, could potentially get close to that 

of the current market-dominating infrared detectors such as InGaAs and InAs [31, 32].   

The inordinate characteristics of GeSn, such as directness and tunability of the bandgap, 

reaching high Sn composition, high-quality materials, and covering a broad range of wavelength, 

make GeSn the best candidate for light emitting devices especially lasers.  

 

1.2   Indirectness of bandgap group IV semiconductor 

            Semiconductor materials include two types: direct and indirect bandgap. Group III-V and 

some of group II-VI materials are direct bandgaps. The energy level of direct material is located 

vertically at the lowest point between the conduction and valence bands in the momentum (k) 

space. The transition occurs between Г Valley and valence band. However, the nature of group 

IV is indirect bandgap. There are Г and L and/or X valleys in the conduction band. Therefore, 

the transition occurs from the lowest level of energy, which is L valley as shown in Figure 1.1. 

Among group IV elements, Ge is the best candidate to become a direct material due to the lowest 

difference between Г and L valleys – about 136 meV. Several techniques were used to shrink the 

bandgap of Ge and reduce the Г valley to be lower than the L point. The first technique used was 

applying tensile strain on Ge layer to reduce the distance between Г and the valence band. The 

second method was heavily doped Ge material. The doping reduces the direct bandgap to lower 

than the indirect bandgap which depends on the level of doping. Many emitting devices  
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have been demonstrated demonstrated using direct Ge material [34-35]. 

 

 

Figure 1.1. Band structure in momentum space for Ge. (a) Indirect bandgap, (b) indirect bandgap 

of Ge with tensile strain, and (c) direct bandgap under strain, doping, or alloying with Sn [33].  

 

            Nonetheless, neither method is desirable. The tensile strain affects the structure of Ge 

material and increases defect levels. Also, the doping process is costly and it is not appropriate 

for large scale. These methods, which are hindered by technical fabrication difficulties, are less 

than satisfactory for the community.  

 

1.3   Group IV lasers 

            The Si-based laser is desirable for several reasons. First, the laser can be integrated with 

optoelectronics and electronics components due to its compatibility with COMS processing. 

Second, monolithic growth on Si substrates can reduce the cost much more than other 

semiconductor lasers grown on expensive substrates. Third, the emitting light of these lasers 
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covers the desirable range of wavelength in short and mid-infrared. Finally, they can be 

electrically pumped to avoid using an extra light source [36]. The development of Si photonics 

has suffered from the indirect bandgap of Si, Ge, and their alloys, which led to low efficiency of 

group IV-based light emitters. Various routes have been explored to improve the performance of 

light emitters on Si.  

            The early investigations on Si-based laser were done on Si with different methods 

including porous silicon [37], erbium-doped silicon [38], and silicon Raman lasers with both 

pulse and continuous operation [39-41]. These methods do not rely on bandgap emission and 

cannot be operated under direct electrical pumping. Moreover, the efficiency of these lasers is 

very low due to the high loss inside the lasing cavity. Then, more attention was paid in the last 

few years to integration of III-V lasers on Si [9-10]. The III-V lasers show high efficiency, but 

the growth of III-V materials on Si substrate is a challenge due to crystal structure differences. 

Recently, new methods of hybrid integration were applied to improve material quality [11-13, 

42-44].  Moreover, Ge laser on Si substrate has attracted several groups to investigate and 

demonstrate Ge lasers with different techniques. In order to obtain lasing from Ge, the Ge must 

be a direct bandgap material. As discussed previously in Section 1.2, the Ge becomes a direct 

bandgap material by applying strain and/or heavy doping. Both optically and electrically injected 

Ge lasers were demonstrated in the last decade [45-52]. Figure 1.2 presents the optically pumped 

edge-emitting Ge laser.  

            Three spectra at different pumping powers show the spontaneous, threshold, and laser 

emission of Ge laser (Figure 1.2). The n-type doped concentration was 1x1019 cm-3 and with 

0.24% applied tensile strain. The direct bandgap energy of Ge is 0.8 meV which corresponds to 

the wavelength of 1.55 µm, the most common wavelength in telecommunications. 



 

5 

 

Figure 1.2. Optically pumped edge-emitting Ge laser using 1064 nm laser to show the spectra of 

spontaneous, lasing threshold, and laser emission SEM image of device and setup diagram [5].  

 

 

1.4   Germanium-tin direct bandgap  

            Germanium is considered a potential candidate for photonic devices due to the lowest 

energy difference between its Γ-conduction bands and valence bands, which is about 136 meV.  

Alloying Sn to Ge reduces the energy difference between L and Γ-valleys, which leads to change 

in the GeSn alloy to become direct bandgap material; this depends on Sn composition and strain 

of the GeSn film. During the early 1990s, many theoretical studies indicated that GeSn could be 

a direct bandgap material [53-55]. Later, many research groups studied alloying Sn into Ge 

theoretically and experimentally [56-59]. However, the direct GeSn bandgap was experimentally 

reported in 2014 [15]. During the last decade, GeSn was investigated for basic material study and 

different types of devices. GeSn devices such as photodetectors [60-67], GeSn modulators [68, 

69], and light emitting diodes [70-76] have been explored, which make up a complete set of 

components for Si photonics. For these prototype devices, the material characteristics have 

become the decisive factor for the performance of the device. Figure 1.3 presents evidence of 
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GeSn as a direct bandgap at a Sn composition around 10%. The linewidth is reduced as the Sn 

composition increases as shown in Figure 1.3(a). The three samples were selected with a 

composition of 8, 9, and 10% Sn. The sample with 10% Sn shows the lowest FWHM, and it was 

reduced as the temperature decreased. Figure 1.3(b) presents the bandgap of GeSn theoretically 

and experimentally from different groups. From 0 to 7% Sn, there are clearly two peaks that are 

corresponding to the indirect and direct transition.  At 8-9% Sn composition, there is overlap 

between direct and indirect bandgap with broad spectra. However, there is only one peak with 

narrower linewidth.  

 

Figure 1.3 Evidence of GeSn a direct bandgap. (a) FWHM is reduced with increasing Sn 

composition up to 10%. (b) Bandgap of GeSn versus Sn composition [15]. 

 

 

1.5   Germanium tin lasers 

            Si-based monolithically grown lasers have attracted many research groups especially 

after proving the concept that GeSn can be a direct bandgap material with alloying Sn at a 

particular Sn percentage. The GeSn laser was theoretically investigated for several types of 

structures such as double heterostructure (DHS), and quantum wells (QWs). Sun et al. 

theoretically studied a SiGeSn/GeSn/SiGeSn DHS design for electrically pumped devices. The 
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modeling and simulation showed that GeSn could be lased at a temperature range of 100 to 200 

K. The lasing threshold of this designed structure was too high at 300 K [77]. Later, the same 

team designed and calculated GeSn/SiGeSn multi-QW with type-I band diagram to operate at 

room temperature (RT). The Sn composition was selected to be 10% as a direct bandgap and the 

barriers with compositions of Ge0.75Si0.1Sn0.15. The lasing wavelength of this design was 2.3 µm. 

The model gain increased with pumping density and increasing the number of wells due to 

increasing the optical confinement [78-79]. Chang et al. theoretically studied MQW of 

GeSn/SiGeSn lasers with Sn composition at 16%. The barriers were with both n-doped 

Si0.08Ge0.78Sn0.14 and p-doped Si0.08Ge0.78Sn0.14 as a cap. The barriers and QWs were grown on a 

strain-relaxed Ge0.88Sn0.12 buffer. Figure 1.4 presents the GeSn MQW structure and the model 

gain at different carrier densities.  

Figure 1.4 (a) Schematic of designed GeSn MQW. (b) Model gain of GeSn MQW as a function 

of injected surface density [80]. 

 

  

            The calculated lasing wavelength of this structure was 2.883 µm. For 500 µm of cavity 

length, the threshold carrier density was 4.3 x 1018 cm-3, and lasing threshold current was 9.78 

kA/cm3 [80]. Several other groups investigated the modeling and simulation of GeSn lasers to 

estimate lasing wavelength, threshold, mode gain, loss, lifetime, and temperature operation [81-

83].  
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The first optically pumped GeSn laser demonstrated experimentally was reported by 

Wirths et al. in 2015 [21]. A direct bandgap GeSn laser with 12.6% Sn composition and 2.25 µm 

of lasing wavelength was achieved. The lasing threshold of 1 mm of cavity length was 325 

kW/cm2 at 20 K with temperature operation at 90 K as shown in Figure 1.5 [21]. Figure 1.5(a) 

presents the spectrum of GeSn laser device at different power density for 1 mm cavity length. 

The intensity increases rapidly as the power density increases. The temperature-dependent PL 

show that the temperature operation of the laser is 90 K. Figure 1.5(b) illustrates the light-in-

light-out (L-L) curves at different cavity lengths that indicate the intensity increases for longer 

cavity length. Inset of Figure 1.5(b) shows the FWHM at various power density. The FWHM is 

large before lasing and then reaches the minimum value at lasing. Then it slightly increases with 

increasing the power density due to heating. Figure 1.5(c) presents the Fabry-Perot cavity modes 

for 250 and 500 µm of cavity length at power density 500 kW/cm2 and 20 K.  

 

Figure 1.5. Optically pumped GeSn waveguide laser with (a) laser spectrum, (b) L-L curves for 

different cavity lengths, and (c) Fabry-Perot modes for different devices [21]. 

 

 

            The same group demonstrated an optically pumped GeSn microdisk lasers with lasing 

threshold 220 kW/cm2 and temperature operation 140 K [84]. After that, an optically pumped 

GeSn laser with 2.5 µm of lasing wavelength and 110 K of temperature operation was reported 

by Al-Kabi et al. in 2016 [85]. There was a significant reduction of lasing threshold, 68 kW/cm2 
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at 10 K and with lower Sn composition, 10.9%, compared to the first GeSn laser reported in Ref. 

21.  

 

1.6   Fundamentals of semiconductor lasers 

            Understanding the concepts of the laser is very significant to explain any experimental 

results of lasers. The word LASER means “Light Amplification by Stimulated Emission of 

Radiation.” There are several requirements to build a laser system. These requirements are gain 

medium, a pump source, and optical resonator (optical cavity). Lasers are classified according to 

the gain medium that is used to generate lasing, such as solid, liquid, gas, and semiconductor 

lasers. In this study, the background mainly explains how semiconductor lasers work.  

Since the first semiconductor laser (GaAs) was demonstrated in 1962, semiconductor 

lasers have attracted numerous researchers to investigate and develop these lasers.  The unique 

characteristics of semiconductor lasers, such as availability of materials, small size, low cost, low 

power input, a variety of engineered structures, and covering a wide range of wavelengths make 

them desirable for many applications [86]. 

 

1.6.1 Semiconductor laser system 

            As with other types of lasers, semiconductor laser system involves a gain medium, an 

optical resonator, and a pump source. First, the gain medium is semiconductor materials that are 

alloyed with two or more semiconductor elements. Second, one of the differences between a 

semiconductor and other types of lasers is the optical cavity. The optical cavity in many lasers 

includes two mirrors with different reflectivity to amplify stimulated radiation that is generated 

from the gain medium. However, the optical resonator of the semiconductor laser is different in 
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that it can be made by cleaving both sides (facets) of the semiconductor waveguide. The 

reflectivity of facets depends on the refractive index of the gain materials and outside the 

waveguide such as air. Sometimes facets are polished to increase the reflectivity inside the cavity 

to reduce the loss. Third, there are two types of pumping that are used to pump semiconductor 

lasers; these are optical and electrical pumping. The usage of these pumping types depends on 

how the semiconductor laser structure is designed and fabricated.  

There are several types of material structures that are used for a semiconductor laser: for 

instance, bulk, quantum well(s), nanowire, and quantum dots. These laser structures are designed 

to be used for different reasons and applications. The lasing wavelength, threshold, temperature 

operation, power consumption, and size of devices are the main reasons for using different 

structures of semiconductors.  

Moreover, there are two types of device structures in semiconductor lasers. These are 

edge- and surface-emitting laser devices that depending on how the laser light is emitted from 

laser devices. For edge-emitting laser devices, the light pump source is incident perpendicular to 

the top of the device and laser light is emitted from one of the edges of devices and parallel to the 

surface of the device. However, emitted laser light from the surface of the device and pump light 

incident are diagonal at a particular angle which increases the output emitted light from the 

surface. Also, surface-emitting laser device can be electrically injected. Edge-emitting laser 

devices with bulk materials were chosen to be studied in this research study [87-89].  

 

1.6.2 Generation and recombination processes 

            Understanding the physics of the processes inside the active region and how it is reacting 

with incident photons it is very significant to explain how the laser is generated and behaves. 
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First, there is a need to comprehend the generation and recombination processes inside the gain 

medium. The carrier generation and recombination processes divide into the radiative and 

nonradiative processes. The radiative generation-recombination processes create photons. 

However, the nonradiative processes do not generate photons, and it is due to defects (Shockley-

Read-Hall), impurities, and Auger processes. The energy that is produced by these nonradiative 

processes increases the degradation of the device and excited phonons. To calculate the 

generation and recombination rate, the following equations are used: under the assumption of 

optical rate generation rate, Gnis uniform 

Gn = Gn(t), (Equation 1.1) 

and the total recombination rate 𝑅(𝑛) is, 

R(n) = An + Bn2 + Cn3 =  
n

τ(n)
(Equation 1.2) 

where An is nonradiative recombination (HSR) at defects, Bn2 is the radiative recombination 

from spontaneous emission of photons, Cn3 is the Auger processes. From Equation 1.2, the 

carrier lifetime can be calculated, 

τ(n) = (An + Bn2 +  Cn3)−1, (Equation 1.3) 

where τ(n)the carrier lifetime, and B is the bimolecular recombination coefficient. The carrier 

lifetime equation includes two parts; the first part is related to the radiative recombination,  

τr =  
1

Bn
, (Equation 1.4) 

where τr is the radiative lifetime. The second part is for nonradiative recombination, 

τnr =  
1

A + Cn2
, (Equation 1.5) 

where τnr is the nonradiative lifetime.  
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            Therefore, the total recombination rate depends on carrier concentration and total 

lifetime, 

 R(n) =  
n

τ(n)
. (Equation 1.6) 

The carrier concentration at any time is given by: 

𝑑𝑛(𝑡)

𝑑𝑡
= 𝐺𝑛(𝑡) − 𝑅(𝑛). (Equation 1.7) 

At the steady state Gn(t) = G0. The amount of excess carrier concentration is, 

nc = G0τ(n), (Equation 1.8) 

or 

G0 =
nc

τn
. (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.9)

The carrier concentration in the active region is determined by the rate equation:  

dn(t)

dt
= ηin

J(t)

qd
− R(n) − vg g(n)S(t). (Equation 1.10) 

The first term on the right-hand accounts for the carrier injection into the active region with a 

thickness d, where ηin is the intrinsic quantum efficiency, J is the current density, d is thickness 

of active region, and q is electron charge. The second term, R(n), accounts for the carrier 

recombination due to both radiative (spontaneous emission) and nonradiative processes. The last 

term is the carrier loss due to the stimulated emission process; S(t) is the photon density (the 

number of photons per unit volume), vg  is the group velocity [ vg  = c/ng] where ng is the group 

index, and c is the speed of light.  

Intrinsic quantum efficiency (𝜂𝑖𝑛) is the ratio of the radiative rate to the total 

recombination rate. The intrinsic quantum efficiency can be calculated using the following 

equation: 
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ηin =  

1
τr

1
τr 

+
1

τnr

 =  
τnr

τr +  τnr

(Equation 1.11) 

At steady state below threshold, the carrier concentration n is determined by injected 

density,  

ηin

J

qd
=  

n

τ
, (Equation 1.12) 

n = ηin

Jτ

qd
. (Equation 1.13) 

A, B, and C coefficients (from Equation 1.2) for lasers structures can be estimated from 

experimental data or theoretical model.  

The total electron and hole concentration in the active region can be determined using the 

following equations. The quasi-Fermi level Fn in active region is determined by, 

n = NcF1
2⁄ (

Fn −  Ec

KBT
) , (Equation 1.14) 

where Fn is the quasi-Fermi level. 

Nc = 2 (
me

∗ KBT

2πℏ2
)

3
2⁄

= 2.51 ∗ 1019  (
me

∗

mo
 

T

300
)

3
2⁄

𝑐𝑚−3, (Equation 1.15) 

and 

p = NvF1
2⁄ (

 Ec − Fp 

KBT
) , (Equation 1.16) 

where Fp is the quasi-Fermi level. 

Nv = 2 (
KBT

2πℏ2
)

3
2⁄

(mhh
∗ 3

2⁄
+  mlh

∗ 3
2⁄

) = 2.51 ∗ 1019  (
mh

∗

mo
 

T

300
)

3
2⁄

𝑐𝑚−3, (Equation 1.17) 

From known electron and hole concentrations, n and p, or the quasi-Fermi levels, Fn and Fp, the 

gain can be calculated directly using the band structure [87]. 
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1.6.3 Absorption, spontaneous, and stimulation emission 

            There are three major processes that take place to generate a laser – absorption,   

spontaneous, and stimulation emission. Absorption is the first process when light or current is 

applied to a gain medium. In both optical and electrical injection, energy is absorbed by the 

carriers. Then, these carriers are excited to higher levels. The absorption inside the material can 

be measured by determining absorption coefficient. Optical absorption coefficient, α (1/cm), is 

α =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎
, 

α(ℏω) =
R

P
ℏω⁄

=  
ℏω

(
nrcε0ω2A0

2

2 )

R (Equation 1.18)
 

where R is the net upward transition rate per unit volume, P is the power density, ℏω is the 

energy of the photon, ℏ is Planck constant, ω is angular frequency, nr is the refractive index, and 

ε0  is the permittivity of the vacuum.  

Optical absorption spectrum is given by, 

α(ℏω) = C0| .e
^  PCV|

2
[

1

2π2
(

2mr
∗

ℏ2
)

3
2

(ℏω − Eg)
1

2⁄
] , (Equation 1.19) 

where   

C0 =  
πe2

nrcεomo
2ω

, (Equation 1.20) 

mr
∗  is the reduced effective mass ( 1/mr

∗= 1/me
∗ + 1/mh

∗ ), me
∗  and mh

∗  are the effective masses of 

electrons and holes, respectively, m and e are the mass and charge of the electron, Eg is the 

energy of bandgap of material, | .e
^  PCV|

2
,  is the matrix element. For bulk material, 

| .e
^  PCV|

2
= Mb

2 =  
mo

6
Ep, (Equation 1.21) 
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where Ep is the energy parameter that is taken from experiental data.  

Rewriting Equations 1.20 and 1.21 in Equation 1.19, the optical absorption spectrum 

equation becomes 

α(ℏω) = (
πe2

nrcεomo
2ω

) (
mo

6
Ep) [

1

2π2
(

2mr
∗

ℏ2
)

3
2

(ℏω − Eg)
1

2⁄
] . (Equation 1.22) 

The total upward transition rate is given by, 

𝑅12 = 𝐵12𝑆(𝐸21), (Equation 1.23) 

where 𝑆(𝐸21) is the number of photons per unit volume,  

𝑆(𝐸21) = 𝑁(𝐸21)𝑛𝑝ℎ 𝑎𝑛𝑑 𝑛𝑝ℎ =  
1

𝑒
𝐸21

𝑘𝐵𝑇⁄
− 1

, (Equation 1.24) 

𝑛𝑝ℎ is the number of photons per state, and 𝐸21is an optical energy between level 2 and 1 and 

equals to E2 –E1.  

Spontaneous emission rate per unit volume (𝑅21
𝑠𝑝𝑜𝑛

) can be calculated using the following 

equation: 

𝑅21
𝑠𝑝𝑜𝑛 =  𝑟21

𝑠𝑝𝑜𝑛(𝐸)𝑑𝐸 =  𝐴21𝑓2(1 − 𝑓1) (Equation 1.25) 

And, the spontaneous emission rate per unit volume (𝑅21
𝑠𝑡𝑖𝑚) is given by: 

𝑅21
𝑠𝑡𝑖𝑚 =  𝑟21

𝑠𝑡𝑖𝑚(𝐸)𝑑𝐸 =  𝐵21𝑓2(1 − 𝑓1)𝑆(𝐸21), (Equation 1.26) 

where 𝑓1 and  𝑓2 are the Fermi-Dirac distribution of level 1 and 2, respectively. B21, B21, and A21 

are Einstein’s coefficients between two levels. From Equations 1.25 and 1.26, the spontaneous 

emission rate does not depend on the photon density, 𝑆(𝐸21).  

 

1.6.4 Gain, loss, and threshold conditions 

            The gain in the laser is one of the important functions in the lasing processes. There are   
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two types of gain – material gain and optical gain. First, material gain is opposite to absorption 

with a negative sign. Material gain is the ability of material to absorb energy and provide 

carriers. Second, optical gain is the net gain when the gain becomes higher than the loss inside 

the laser cavity. Therefore, there are three areas for gain and loss mechanism domination: below, 

at, and above the threshold. The loss is higher than the gain inside the cavity below the lasing 

threshold. The emitted light in this stage is spontaneous emission. At threshold, the loss equals to 

the gain, and there is no lasing. The gain becomes higher than the loss in the laser cavity above 

the lasing threshold. The emitted light is a stimulated emission, and there are optical gain and net 

of gain increases with increasing gain [87].  

The relation between gain and carrier concentrations is: 

g(n) = g΄ (n − ntr), (Equation 1.27) 

where g(n) is peak gain as function of carrier concentration,  g΄ is the differential gain (dg/dn),  n 

is the carrier concentration, and ntr is the transparency concentration. 

g(n)

g΄ 
= n − ntr (Equation 1.28) 

𝑛 =  𝑛𝑡𝑟 +  
𝑔(𝑛)

𝑔΄ 
(Equation 1.29)   

and at threshold condition, 

Gth = Гgth = αi +  αm, (Equation 1.30) 

where Gth is the optical gain and Г is the confinement factor defined as the part of the power that 

is guided by the waveguide. Its value is between 0 to 1, and the best conditions of waveguide is 

when Г is close to 1. The confinement factor depends on the dimensions of the waveguide and 

refractive index inside and outside the waveguide. By knowing the Г and thickness (d) of active 

medium, the effective thickness of optical mode can be calculated by (d/Г); 𝑔𝑡ℎ is the gain at 

threshold condition, αi is the internal loss, and αm is the mirror loss. 
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gth =
αi +  αm

Г
(Equation 1.31) 

By using Equations 1.29 and 1.31, carrier density at threshold becomes: 

𝑛𝑡ℎ =  𝑛𝑡𝑟 +  
𝛼𝑖 +  𝛼𝑚

Г𝑔΄ 
 (Equation 1.32) 

αm =  
1

2L
ln (

1

R1R2
) (Equation 1.33) 

where R1 and R2 are reflectivities of each facet of the cavity.  

R1 ≅  R2 =
(n1 − n2)2

(n1 + n2)2
 (Equation 1.34) 

where n1 is the refractive index of the gain material and n2 the refractive index of outside the 

waveguide (air in most structures). The internal loss includes two parts as given by:  

αi =  α(FCA) + αs (Equation 1.35) 

where αi is the internal loss that includes the free carrier absorption α(FCA) and αs is the 

scattering loss.  

The free carrier absorption can be calculated using  

α(FCA) =  
e3λ2nc

4π2c3εonr mc
∗2μc

 (Equation 1.36) 

where λ is lasing wavelength and μc is the carrier mobility. The carrier mobility is associated 

with the scattering time and effective mass of carriers [36, 87].  

At threshold condition, Equation 1.10 becomes: 

ηin

Jth

qd
= (Anth + Bnth

2 +  Cnth
3 ) (Equation 1.37) 

Jth =
qd

ηin
(Anth + Bnth

2 +  Cnth
3 ) (Equation 1.38) 

Jth =
qd

ηin

nth

τ(nth)
(Equation 1.39) 
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1

τ(nth)

=  
1

τr
+  

1

τnr
=  

1

τr
+ (

1

τSRH
+

1

τAug
) . (Equation 1.40) 

Rewriting Equations 1.39 and 1.40, injected current density becomes:   

Jth =
qd
τnr

τr +  τnr
 
nth (

1

τr
+  

1

τnr
) (Equation 1.41) 

Jth =
qd

τnr 
nth (

1

τr
+  

1

τnr
) (τr + τnr) (Equation 1.42) 

                                        Jth =
qd

τnr 
nth

 ( τr +  τnr)

τrτnr

(τr + τnr)                                      (Equation 1.43)  

Jth = qd
( τr +  τnr)2 

τrτnr
2

 nth (Equation 1.44) 

Using equation 1.32 and 1.44,  

                                               Jth = qd
( τr +  τnr)2 

τrτnr
2

 (ntr +  
αi +  αm

Гg΄ 
)                         (Equation 1.45) 

 

1.6.5 Light power output and efficiency  

            The output emission is mostly spontaneous and amplified spontaneous emission below 

the threshold. However, as the injected current increases above the threshold level, the emitted 

light becomes a stimulated emission.  Equation 1.10 can be written as: 

ηin

Jth

qd
= R(nth) + vg g(nth)S (Equation 1.46) 

ηin

J

qd
= (Anth + Bnth

2 +  Cnth
3 ) + vg gthS (Equation 1.47) 

S =  ηin

J − Jth

qdvg gth

(Equation 1.48) 

where S is photon density. 
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1

τp
=  vg(αi +  αm) =  vgГgth (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.49) 

where τp is photon lifetime.  

The output intensity (Pout) is given by: 

𝑃𝑜𝑢𝑡 =  𝜂𝑖

ℏ𝜔

𝑞

𝛼𝑚

𝛼𝑖 + 𝛼𝑚

(𝐼 − 𝐼𝑡ℎ), (Equation 1.50) 

where the current 𝐼 = (wLJ), L is the cavity length, and w the width of the device. The external 

efficiency (𝜂e) can be calculated by:  

𝜂𝑒 =  

𝑑𝑃𝑜𝑢𝑡

𝑑𝐼
ℏ𝜔
𝑞

= 𝜂𝑖

𝛼𝑚

𝛼𝑖 + 𝛼𝑚
= 𝜂𝑖

ln (
1
𝑅)

𝛼𝑖𝐿 + ln (
1
𝑅)

. (Equation 1.51) 

The external efficiency depends on the internal efficiency, internal loss, and external loss of 

cavity.  

 

1.7   Research statement 

            The goal of this study is to investigate the optical characterization of GeSn material and 

demonstrate optical pumped edge-emitting GeSn lasers. Alloying tin into germanium at different 

Sn compositions establishes a new class of direct material from group IV semiconductors with 

great monolithic features and compatibility with CMOS processing Si-based lasers for integrated 

photonics. A systematic study for GeSn at different Sn composition and GeSn layer(s) thickness 

is necessary to develop high quality of GeSn material with a direct bandgap for laser devices. 

Due to the tunability of the GeSn bandgap, there are tremendous opportunities to achieve GeSn 

lasers covering a wide range of wavelength in the short- and mid-infrared for optoelectronic 

applications.  
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1.8   Outline of dissertation 

The motivation and basic information about group IV material, directness and 

indirectness of the bandgap, and Si-based group IV lasers have been explained in the 

introductory chapter. The remainder of the dissertation is divided into six chapters. Chapter 2 

includes growth information, material and optical characterization techniques and setups. 

Moreover, the design, fabrication, and device characterization with setups are included. Chapter 

3 describes a systematic study of thin GeSn alloys up to 12% with a complete 

photoluminescence (PL) and Raman study. Furthermore, n-type doped GeSn films studies are 

included. Chapter 4 shows the material and optical study of thick GeSn films with high-quality 

material for high performance emitting devices. Chapter 5 describes the initial optically pumped 

GeSn laser. The growth of GeSn samples with material and optical studies are contained within. 

The edge-emitting GeSn laser devices fabrication and characterization are described. Chapter 6 

presents a complete set of GeSn laser samples with different thicknesses and Sn compositions. 

The material and optical characterization of GeSn are described. The GeSn laser device 

fabrication, characterization, and performance are included. Chapter 7 gives the summary, 

conclusion, and suggested future work.   
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Chapter 2. Growth, fabrication, and experimental setup 

In this chapter GeSn growth method, material and optical characterization techniques, 

device fabrication and characterization processes, and characterization setups are presented.  

 

2.1   Growth and material characterization  

2.1.1   Growth information  

The thin and thick GeSn films in this study were grown using an ASM Epsilon® 2000 

Plus reduced pressure chemical vapor deposition (RPCVD) system [ASM America, Phoenix, 

AZ, http://www.asm.com/]. Different growth parameters such as carrier and precursor gases, 

growth temperature, growth pressure and growth time have been implemented to achieve 

samples with various thickness, composition, and doping levels. 

 

2.1.1.1   Thin and doped GeSn films 

The thin Ge1-xSnx films investigated in this study were grown on a 700 nm strain-relaxed 

Ge buffer layer on Si substrate. The growth temperature was kept below 450 °C to be compatible 

with Si CMOS processing. GeH4 and SnCl4 were used as Ge and Sn precursor gases, respectively. 

For the n-type doped samples,  PH3 precursor gas was employed. Details of the growth information 

are reported in Ref. 90. 

 

2.1.1.2   Thick GeSn films  

Thick GeSn films were also grown in a similar process on a 700 nm strain-relaxed Ge 

buffer on Si substrate, followed by the growth of thick GeSn layer using a pre-calibrated growth 

recipe below 450 °C.  The growth was completed with a 10 nm Ge cap layer as a cap on top of the 
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structure.  It is noteworthy that the samples were grown in a single run epitaxy process.  The thick 

GeSn samples were between 400 to 1100 nm. In order to achieve relaxed GeSn film and reach a 

higher Sn composition, two or more layers of GeSn were grown on some samples. The detailed 

information about the material growth is reported elsewhere [91-92]. 

 

2.1.2   Material characterization  

2.1.2.1   Transmission electron microscopy (TEM) 

            A high-resolution field emission TEM with a 300 kV acceleration voltage was used for 

investigating the crystal structure, layer thickness, and the defect characteristics of Ge1-xSnx films. 

The correcting lenses allow imaging at a resolution ~0.1 nm by correcting the aberration. The TEM 

technique provides information about material quality, thickness, and the number of layers for 

each sample. The TEM images present four layers: Si substrate, Ge buffer, defective GeSn, and 

defect free GeSn layers as shown in Figure 2.1.  

 

Figure 2.1. TEM image showing the different layers of GeSn/GeSn/Ge/Si structure of thick 

Ge0.919Sn0.081 sample [92] 
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2.1.2.2   X-ray Diffraction (XRD)  

The crystallinity, lattice constant, Sn composition, and strain of the films were investigated 

by analysis of the data measured by a Phillips X'pert PRO XRD system [PANalytical, USA, 

http://www.panalytical.com/Xray-diffractometers.htm]. The 2θ-ω (rocking curve) XRD scan was 

used to show the peaks of different layers of a GeSn/Ge/Si sample. The peaks from (004) plane 

scan represent Si substrate, Ge buffer, and GeSn layers from 69º to 64.5º. The lower angle refers 

to higher lattice constant according to Bragg’s law. Reciprocal-space mapping (RSM) XRD was 

performed to calculate the lattice constant, strain, and relaxation of GeSn films. Both 2θ-ω and 

RSM measurements are presented in Figure 2.2. Figure 2.2(a) shows the peaks belonging to Si 

substrate, Ge buffer, and GeSn layers. The RSM measurements from the (2̅2̅4) plane provides 

information about in-plane (aǁ) and out-of-plane (a┴) lattice constants that can be used to calculate 

the lattice constant of GeSn layer as shown in Figure 2.2(b). Additionally, the contour plot 

illustrates the relaxation of the GeSn films as it can be seen in the figure there are two layers of 

GeSn formed on Ge buffer layer.  The bottom layer has lower Sn composition than the top one. 

Both layers show a high degree of relaxation.  

 

Figure 2.2. XRD measurements of relaxed thick Ge0.882Sn0.118 sample. (a) 2θ-ω XRD scan from 

(004) plane; the peak at 69º shows Si substrate, 66º is the Ge buffer, and 64.5º is the 

Ge0.882Sn0.118 peak. (b) RSM contour plot from (2̅2̅4) plane represents the superposition of 

bottom and top GeSn layers, which are both almost relaxed. 
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2.1.2.3 Secondary ion mass spectrometry  

Secondary ion mass spectrometry (SIMS) is one of the most powerful techniques that is 

used to analyze the composition of semiconductors and other solid materials. It is considered the 

most sensitive technique for depth profiling with lower detection limits in the range of 1014 to 1015  

cm-3.  SIMS was used to determine the composition of Si, Ge, and Sn in GeSn films, and the 

thickness of each layer for multilayer GeSn samples. Figure 2.3 illustrates the composition and 

thickness of Ge and Sn in a Ge0.825Sn0.175 sample.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. SIMS results show the mole fraction versus depth of Si, Ge, and Sn in a Ge0.826Sn0.174 

sample.  Also, SIMS shows the atomic concentrations of oxygen and carbon incorporated in the 

film through the growth process.  

 

 

2.1.3   Optical characterization and setups 

            There are different types of techniques are used to characterize optical properties of 

materials, such as photoluminescence, ellipsometry, transmission spectroscopy, absorption 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1E15

1E16

1E17

1E18

1E19

1E20

1E21

1E22

Depth (m)

O
, 
C

 C
o

n
c
e
n

tr
a
ti

o
n

 (
a
to

m
s
/c

c
)

0.0

0.2

0.4

0.6

0.8

1.0

O

Si

Sn

C

S
i,
 G

e
, 
S

n
 c

o
n

c
e
n

tr
a
ti

o
n

 (
a
to

m
 f

ra
c
ti

o
n

 %
)

Ge



 

25 

spectroscopy, Raman spectroscopy, and reflectance. These techniques are used to provide 

information about bandgap energy, intensity, incorporation of elements in the alloys, refractive 

index, absorption coefficient, etc. Many of these measurements were used for this study. However, 

the main focus was on PL and Raman spectroscopy.  

 

2.1.3.1   Raman spectroscopy and Raman setup 

Raman spectroscopy 

             Raman spectroscopy is a technique that is used to measure the crystallinity of solids. It is 

used to detect the strain in semiconductor materials or devices. The interaction between incident 

light and materials generates scattered light that contains both incident light and the scattered 

light with a small difference in the wavelengths that comes from the interaction between light 

and materials. Raman scattering is the interaction between the incident light and optical phonons. 

Raman scattered light is very weak; therefore, the monochromatic light resource is used for 

Raman spectroscopy measurements. Lasers with low power are mainly used as light sources for 

Raman measurements [93].  

 

Raman setup 

            Raman spectroscopy was performed at room temperature using a He:Ne laser operating at 

632.8 nm with the output power of 10 mW. Moreover, a diode-pumped solid-state (DPSS) 

continuous-wave (CW) laser operating at 532 nm with output power of 50 mW was used for 

Raman measurements. A nitrogen cooled Si-CCD array was used as a detector with wavelength 

coverage from 190 to 800 nm. The fluorescent background impacts Raman measurements; 

therefore, the setup was covered to eliminate the room light and enhance the intensity. Figure 2.4 
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illustrates Raman spectroscopy setup. Many optical components, such as mirrors and lenses, were 

used to control the path of lasers and optimize the collected scattered light from samples. Filters 

were used to avoid the detector damage.   

 

 

Figure 2.4. Schematic diagram of Raman spectroscopy setup. 

 

Raman measurements were done for all GeSn alloys to show the effect of Sn 

compositions and strain on Raman peak shift of the GeSn films. By increasing Sn at%, the Ge-

Ge Raman peak shifted to higher wavenumbers. Figure 2.5(a) and (b) show that the Raman peak 

was shifted from 4.96 cm-1 in a 7.3% Sn sample to 11.2 cm-1 for a Sn composition of 17.5%. 
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These samples were selected fully strain relaxed to show the Sn composition effect on Raman 

peak as Sn% was increased. 

 

Figure 2.5. Raman shifts for thick relaxed GeSn samples from 7.3% to 17.5% at room temperature. 

(a) Decrease in the intensity of Raman peaks by increasing Sn incorporation. (b) Normalized 

Raman intensity showing the shift toward shorter wavenumbers by increasing Sn incorporation. 

 

 

2.1.3.2   Photoluminescence characterization and PL setup 

Photoluminescence (PL)  

             Photoluminescence (PL) is defined as a non-destructive technique. It is used to study and 

determine the impurities in semiconductors. Much information regarding different types of 

impurities can be provided using PL. However, the only photons that are generated by radiative 

recombination can be detected using the PL technique. Non-radiative recombination processes 

such as Shockley-Read-Hall and Auger do not emit light. Electron-hole pairs that are optically 

generated by radiative recombination process can be measured by the internal efficiency.  

The internal PL efficiency (𝛈int) can be written as 
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𝜂𝑖𝑛𝑡 =  ∫
∆𝑛

𝜏𝑟𝑎𝑑

𝑑

0

exp(−𝛽𝑥) 𝑑𝑥 ≈ ∫
∆𝑛

𝜏𝑟𝑎𝑑

𝑑

0

𝑑𝑥 (Equation 2.1) 

where ∆𝑛 is the excess minority carrier density, 𝑑 is the sample thickness, 𝛽 is the absorption 

coefficient, and 𝜏𝑟𝑎𝑑 is radiative recombination lifetime.  

             The excess minority carrier density depends on flux density of photons, reflectance, and 

mechanisms of recombination processes. Moreover, the absorption coefficient is different 

depending on the type of materials and wavelength of excited optical sources such as lasers. The 

penetration depth of excited source increases with increasing the wavelength [93].  

 The internal efficiency of indirect bandgap semiconductors is low due to the Shockley-Read-Hall 

and Auger recombination that takes place with a high percentage of the total recombination 

processes. Moreover, non-radiative recombination has more impact at room temperature. 

Therefore, low-temperature PL measurements are preferred to characterize emission light from 

semiconductors because, at low temperature, the radiative recombination dominates compared to 

non-radiative recombination.  

 

PL setup 

A diode-pumped solid-state (DPSS) continuous-wave (CW) laser operating at 532 nm 

with output power of 500 mW was used as an excitation source.  In order to further investigate 

the optical transition characteristics, a high-frequency laser with 5 ns pulse width at 45 kHz 

repetition rate operating at 1064 nm was used as the pumping source, which featured deeper 

penetration depth and provided higher carrier injection compared to a 532 nm CW laser. A CW 

fiber laser with 1550 nm was used to study PL at higher penetration depth and for samples with 

many layers in the structure.  Moreover, a femtosecond laser with tunable wavelength provided 
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more opportunities to explore the emission at several excitation wavelengths. Emissions from 

samples were collected by a spectrometer, and the collected light was then sent to the detector.   

Three different detectors were employed to cover all ranges of emission: first, an 

extended indium gallium arsenide (InGaAs) photodetector (high signal-to-noise ratio) with cut-

off 2.3 μm; second, a lead sulfide (PbS) detector (low signal-to-noise ratio) covered the range 

from 0.3 to 3 µm; third, an indium antimonide (InSb) detector (high signal-to-noise ratio) with a 

cut-off wavelength 5 µm.  Both InGaAs and InSb detectors were cooled using liquid nitrogen 

(N2). A lock-in technique was used to amplify the electric signal that was generated by detectors. 

In addition, a long-pass filter was placed in front of the spectrometer entrance to eliminate the 

scattered laser light. For temperature-dependent PL measurements, a closed cycle cryostat with 

helium gas was used. The schematic diagram of PL setup is shown in Figure 2.6.  

Figure 2.6. Schematic diagram of PL setup with several lasers sources. 
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PL measurements provide information about bandgap energy, directness and indirectness 

of transitions, and quality of materials. PL was intensively used to investigate GeSn alloys from 0 

to 17.5% Sn compositions. The peak position of normalized PL intensity of GeSn films shifted to 

longer wavelength (red shift) with increasing the Sn composition as shown in Figure 2.7. The PL 

spectra range was from around 1.55 µm at 0% Sn composition to 3.4 µm for 17.5% Sn GeSn alloys 

at room temperature. At Sn composition less than 6%, there were two peaks  corresponding to 

indirect and direct transitions of GeSn alloys. At 6% to less than 10%, there was only one peak, 

but it was broad because of the indirect and direct transition overlap. However, there was only one 

peak for samples with Sn higher than 10%.  There were extra peaks shown at 2600 and 3000 nm 

due to the water absorption.  

Figure 2.7. Normalized PL intensity of different Sn compositions from 0 to 17.5% of GeSn 

alloys at 300 K. 

 

2.2.   Fabrication processes of GeSn laser devices 

2.2.1 Device design 
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            Optically pumped lasers were designed into strip waveguides.  Five waveguide widths 

were designed with a width of 1 to 5 µm. The separation between each two strips was 200 µm. 

This design provided a good opportunity to study different waveguide widths for each set of 

measurements. Figure 2.8 presents the fabricated waveguides using the designed mask.    

 

Figure 2.8 Schematic diagram showing the fabricated GeSn waveguides using the designed mask 

with several widths (1, 2, 3, 4, and 5 µm). 

 

2.2.2 Wet etching  

            The samples were fabricated into a ridge waveguide with 1, 2, 3, 4, 5 μm widths for optical 

pumping characterization. A low-temperature wet chemical etching process was used for this 

research. Using a mixture of HCl:H2O2:H2O=1:1:10 at 0 °C, smooth sidewalls were achieved.  The 

average etching rate was ~20 nm/min. The etching depth was 800 nm. Due to the lateral etch, the 

waveguide widths at the top were measured to be between 2.5 to 3.5 μm, while the bottom was 5 
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μm for 5 μm width devices. Moreover, similar lateral etch behavior was observed for narrower 

devices (1, 2, 3, and 4 μm). An extensive etching study showed that the etching rate was almost 

constant at 20 nm/min regardless of the Sn composition. However, it did provide a smooth sidewall 

that could slightly reduce optical scattering loss for the waveguide structure. Therefore, the wet 

etching process developed in this study offered a robust recipe for the fabrication of GeSn-based 

devices. In Figure 2.9, scanning electron microscope (SEM) images show the Ge0.882Sn0.118 laser 

device for both sidewalls and facets. (More SEM images for GeSn laser devices are shown in 

Chapter 6.) 

 

Figure 2.9. SEM images using wet etching method for the Ge0.882Sn0.118 laser device for both 

sidewalls and facets.  

 

2.2.3 Dry etching  

            Inductively coupled plasma (ICP) etching was performed using an SLR ICP system 

[Plasma-Therm, USA, http://www.plasma-therm.com/about.html].  The pressure was set to 10 

mTorr.  The N2 and BCl3 flow rates were 25 sccm and 20 sccm, respectively.  The bias power 

was 100 W and ICP power was 500 W.  The etching rate was 175 nm/min. Figure 2.10 illustrates 
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the facets and sidewalls of a Ge0.903Sn0.097 laser device that was fabricated using dry etching. By 

comparison between wet and dry etching results in Figures 2.9 and 2.10, the dry etching 

provided parallel sidewalls which meant the width of the top waveguide was the same as the 

bottom. A waveguide width as low as 1 µm could be achieved using this dry etch method.  In 

comparison, the wet etch waveguide would lose the pattern with widths below 3 µm (More SEM 

images for GeSn laser devices are shown in Chapter 6.)  

 

Figure 2.10. SEM images using dry etching method for the Ge0.903Sn0.097 laser device for both 

sidewalls and facets. 

 

2.3  Lapping and cleaving processes  

            After the fabrication processes, the fabricated samples (1cm x 1cm) were lapped from the 

backside (Si substrate) to below 100 µm of thickness. The purpose of lapping was to cleave the 

laser devices to obtain better facets and could be easily done.  From the cleaving practice, it was 

found that flat facets were difficult to obtain on small samples (1 cm x 1 cm) after cleaving.  This 

was due to the uneven pressure applied onto the sample.  This issue could be resolved by using 

samples with thinner thickness, typically below 100 µm for Si. After that, the devices were 
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cleaved to different cavity lengths which depended on the target of measurements. The GeSn 

laser devices characterized in this study were cleaved from 250 to 2000 µm as cavity lengths. 

Scribes and sharp knives were used for cleaving waveguides of GeSn.         

 

2.4  Optical pumping setup and device characterization  

            Optically pumped GeSn laser devices were measured using the optical pumping setup 

shown in Figure 2.11(a) and (b). A set of GeSn laser devices were loaded inside the cryostat. The 

cryostat was connected to the pump station to create a vacuum environment that helped for low-

temperature measurements. Both liquid helium (He) and liquid nitrogen (N2) were used for low-

temperature measurements. Several lasers shown in Figure 2.11(a) were used to test the devices. 

However, the optically pumped GeSn laser results were achieved using a pulse laser with 1064 nm 

wavelength and 45 kHz repetition rate. The pulse width of this laser was 6 ns. Both InGaAs and 

InSb photodetectors were used for the measurements of the devices. The type of detector used 

depended on the wavelength range of laser devices being tested. Several steps were taken to 

achieve better alignment and high intensity from the devices. 

             Edge-emitting GeSn laser devices were measured in this research. The optically pumped 

technique was used to test GeSn laser devices for several characteristics, such as L-L curves, 

spectrum, modes, and temperature operation. The GeSn laser devices were designed with different 

cavity lengths and widths to achieve lasing and investigate the threshold, optical gain, and to 

optimize device behavior. Two types of etching were used to fabricate the devices, wet and dry 

etching. Furthermore, several compositions, thicknesses, and number of layers of GeSn were 

explored to understand the behavior of GeSn lasers.  
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Figure 2.11. Schematic diagram illustrating (a) optical pumping setup for laser device 

measurements and (b) how a GeSn laser device was uploaded and measured inside the cryostat. 
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Chapter 3. Optical characterization of thin GeSn films 

3.1   Introduction  

            Silicon-based materials and their optoelectronic devices are of great interest due to the 

scalable incorporation with current Si complementary metal-oxide-semiconductor (CMOS) 

processes [14]. Among the various material systems that could be integrated on Si, the Ge1-xSnx 

alloy has attracted much attention recently due to the following reasons; (1) capability of 

monolithic integration on Si; (2) availability of direct bandgap material [15]; and, (3) tunable 

bandgap covering broad shortwave- and mid-infrared (IR) wavelength range. The preliminary 

study in the analysis of optical properties of Ge1-xSnx alloy has been reported by several research 

groups [94-100].  However, the overall results are still less satisfactory due to the lack of 

systematic investigation on a set of Ge1-xSnx alloys with uniform material quality and various Sn 

compositions. 

            In this chapter, a systematic study of high-quality Ge1-xSnx thin films is presented. The 

thickness and strain of the thin film, the Sn composition, and the defect spreading were 

investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and 

secondary ion mass spectrometry (SIMS). Optical characterization for unintentionally (boron) 

doped Ge1-xSnx alloys with Sn compositions from 0 to 12% was performed. Room temperature 

Raman and photoluminescence spectra showing a gradually shifted peak towards smaller 

wavenumber and longer wavelength, respectively, as Sn composition increased were obtained 

indicating the bandgap was altered by the Sn incorporation. Temperature-dependent PL spectra 

showing the variation of peak position and intensity were analyzed, which revealed the bandgap 

structure properties (indirectness or directness). Moreover, the n-type doped Ge1-xSnx alloy 

samples were studied to compare with the unintentionally doped samples (similar Sn 
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composition). The bandgap narrowing for n-type doped samples was observed. Understanding 

the fundamental optical properties of Ge1-xSnx alloy could provide a strong guidance for the 

design of future Ge1-xSnx based optoelectronic devices [16].  

 

3.2    Material characterization 

            A typical cross-sectional TEM image of a Ge0.9Sn0.1 sample is shown in Figure 3.1. The Si 

substrate, Ge buffer, and GeSn layer are clearly identified. The film thicknesses of Ge buffer and 

GeSn layers were measured at 700 and 150 nm, respectively. It can be seen that the threading 

dislocations were localized at the Ge/GeSn interface, resulting in the low defect density in the 

GeSn film. The high quality of the material is attributed to the optimized growth recipe.   

 

Figure. 3.1. Cross-sectional TEM image of Si/Ge/Ge0.9Sn0.1 film shows that the threading 

dislocations are trapped at the Ge/GeSn interface, resulting in a high-quality GeSn layer [16]. 

 

            The 2θ-ω XRD scan of the GeSn samples from (004) plane is shown in Figure 3.2(a) and 

(b), for the unintentionally doped and n-type doped samples, respectively. The peaks at 69° and 

66° are attributed to the Si substrate and the Ge buffer layer, respectively. The peaks that were 

observed between 66°-64° are from Ge1-xSnx thin films. The clearly resolved peak shifted toward 
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lower angles as the Sn composition increased. Since the position of the peak was determined by 

both the Sn composition and the strain, the peak of the 7% Sn sample was located at a higher 

angle than that of the 6% Sn sample due to the smaller compressive strain in the 7% sample [16].   

 

 

Figure 3.2. 2θ-ω XRD scan from (004) plane for (a) unintentionally doped and (b) n-type doped 

samples.  The peak at 69º shows Si substrate and the peaks between 66-64º belong to Ge1-xSnx 

films [16]. 

 

The lattice constant of the GeSn films was calculated from the reciprocal space map (RSM, 

not shown here), based on the strain that could be determined, as listed in Table 3.1. The negative 
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value of strain indicated compressive strain, which was observed for each sample. As the Sn 

composition increased, the compressive strain increased due to the increased lattice constant of 

GeSn. On the other hand, the sample with thicker GeSn film exhibited lower strain because of the 

gradual relaxation as the layer thickness increased.   

Table 3.1. Summary of measurement results of samples [16]. 

Sn 

Composition 

GeSn 

Thickness (nm) 
Strain Doping 

Doping 

Concentration 

 (cm-3) 

0 (Ge) 300 (Ge) 0 

 

 

Unintentionally 

p-type doped 

(boron) 

 

1E17 

1% 327 -0.0002 

2% 40 -0.0022 

3% 128 -0.0024 

4% 70 -0.0050 

5% 83 -0.0052 

6% 96 -0.0082 

7% 100 -0.0045 

8% 90 -0.0080 

9% 117 -0.0101 

10% 59 -0.0116 

12% 150 -0.0093 

5% 225 -0.0054 n-type 

doped 

(phosphorus) 

6.5E19 

8% 276 -0.0059 1E19 

10% 338 -0.0050 2.9E18 

 

 

3.3    Raman spectroscopy 

            Raman spectroscopy measurements were taken for each sample. Figure 3.3(a) and (b) 

show the Raman spectra for unintentionally and n-type doped samples, respectively. In Figure 
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3.3(a), as Sn composition increased, the Ge-Ge peak shifted from 299.9 cm-1 (0% Sn) to 292.6 

cm-1 (12% Sn). This can be explained by the change of the bond energy of the Ge atoms in the 

lattice due to the incorporation of Sn. The Ge-Sn peaks were identified ranging from 260.3 cm-1 

(3%) to 254.3 cm-1 (12%). For samples with Sn compositions of 1 and 2%, the intensity of Ge-Sn 

peak was relatively weak and therefore could not be identified. In Figure 3.3(b), the shift of Ge-

Ge peak was observed, and Ge-Sn peaks can be identified. Increasing the Sn composition shifted 

the peak toward smaller wavenumbers; while the compressive strain shifted the Raman peaks 

toward higher wavenumbers. Therefore, the relaxed GeSn sample with 12% Sn would have a 

smaller wavenumber peak than a compressively strained one. The similar Raman peak shift 

tendency was also reported in Refs. 101-102. 

 

 

 

Figure 3.3. Raman spectroscopy for (a) unintentionally doped and (b) n-type doped samples.  

The Ge peak position is located at around 299.9 cm-1, while the GeSn peak was identified 

ranging from 260.3 cm-1 to 254.3 cm-1 [16]. 

 

Also, the peak position showed a slight difference compared to the unintentionally doped 

sample with the similar Sn composition, which may be due to the heavy doping that alters the Ge 

atoms bond energy. The peak position of each sample is summarized in Table 3.2. 
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Table 3.2. Raman shift of Ge-Ge and Ge-Sn bonds for unintentionally and n-type doped samples 

[16]. 

Sn composition Doping Ge-Ge(cm-1) Ge-Sn(cm-1) 

0% 

Unintentionally     

p-type doped 

(boron) 

299.9 N.A. 

1% 299.8 N.A. 

2% 299.8 N.A. 

3% 298.4 260.3 

4% 295.9 257.9 

5% 298.6 261.6 

6% 298.1 261.8 

7% 298.2 260.7 

8% 297.9 262.0 

9% 297.7 262.1 

10% 297.9 259.2 

12% 292.6 254.3 

5% 

n-type doped 

(phosphorus) 

294.9 257.9 

8% 295.9 258.7 

10% 292.8 255.7 

  

3.4   Photoluminescence of thin GeSn films 

            Normalized PL spectra of the unintentionally doped GeSn thin films with Sn 

compositions from 0 to 12% at room temperature are shown in Figure 3.4(a). As Sn composition 

increased, the PL peak shifted toward longer wavelengths, indicating the reduced bandgap 

energy due to the incorporation of Sn.  
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Figure 3.4. (a) Normalized PL spectra of the unintentionally doped GeSn thin films with Sn 

compositions from 0 to 12% at room temperature. (b) PL peak position attributed to the bandgap 

as a function of Sn composition [16]. 

 

For the samples with lower Sn compositions (less than 8%), two emission peaks were 

clearly observed, corresponding to the indirect and the direct bandgap transitions, respectively. 

While for the samples with higher Sn compositions, the indirect and direct peaks could not be 

identified due to the small separation between the indirect and direct bandgap energies, resulting 
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in a single peak PL spectrum with broad peak line-width. In addition, the indirect-to-direct 

transition occurs at the Sn composition of 10% [15], beyond that the GeSn alloy becomes the 

direct bandgap material, and therefore only direct peak with narrowed peak line-width can be 

observed. Note that the noisy PL spectra of GeSn samples with Sn compositions from 8 to 12% 

was due to the use of PbS detector, which features 3.0 μm cut-off but with low signal-to-noise 

ratio. The GeSn sample with 12% Sn composition had lower quality compared to other samples. 

Therefore, the room temperature PL spectrum looks noisier compared to the rest of the samples.  

Low signal to noise ratio caused a fluctuation in the room temperature PL of that sample. 

However, for extracting the PL peak position with Gaussian function, only one peak was 

considered based on theoretical study [16]. 

Using a Gaussian fitting method, the PL peak position was extracted for each sample, 

which indicates the bandgap energy of Ge1-xSnx, as shown in Figure 3.4(b). The solid and open 

symbols were extracted by Gaussian fitting and the linear lines were fitted curves showing the 

indirect-to-direct transition. As Sn composition increased, both indirect and direct bandgap 

energies reduced with a more rapid decrease of direct bandgap than indirect bandgap, leading to 

the reduced bandgap energy separation from 89.5 meV (0% Sn) to 12.6 meV (7% Sn). Only one 

peak could be observed for the samples with Sn compositions from 8 to 12%, which was due to 

the large spectra overlap of indirect and direct bandgap transitions (8 and 9% Sn samples) or the 

directness of the GeSn material (10 and 12% Sn samples). The indirect-to-direct transition point 

was located at the Sn composition slightly below 10%, which agrees well with Ref. 15; however, 

for relaxed GeSn samples, the transition point could happen for Sn compositions around 6%. The 

deviation between the Gaussian fitting points and the fitted lines was mainly due to the strain of 

the samples. 
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            Figure 3.5(a) and (b) show the typical temperature-dependent PL spectra for 

unintentionally doped GeSn samples with Sn compositions of 5 and 12%, respectively. Each 

curve is stacked for clarity. In Figure 3.5(a), at 300 K, a high energy peak at 0.648 eV and a low 

energy shoulder at 0.606 eV were observed, which are associated with the direct and indirect 

bandgap transitions, respectively. The strong direct peak indicates that the direct bandgap 

transition dominated the PL at room temperature. As the temperature decreased, both the direct 

and indirect peak decreased with the direct peak dropping more rapidly than the indirect peak, 

resulting in the indirect bandgap transition dominating the PL below 200 K.  At 10 K, the direct 

peak almost disappeared and only the indirect peak was observed. This can be explained by the 

fact that less electrons occupy the Г-valley as a result of reduced thermal excitation from the 

lower L-valley at lower temperature.  

The PL peak position and integrated PL intensity against temperature are plotted in 

Figure 3.5(c). The bandgap energy increased as temperature decreased, which follows the 

Varshni relation [103]. The integrated PL intensity decrease at low temperature was observed. 

While GeSn with 5% Sn is an indirect bandgap material, this PL intensity drop was expected. 

Although at low temperatures the defects are less active and radiative recombination should be 

enhanced, the number of available phonons for the indirect bandgap recombination decreased 

leading to a reduction of the PL intensity. A peak at 2250 nm was observed and its position and 

intensity were unchanged with temperature. That peak may be related to a defect, such as 

dislocation in the Ge buffer layer [104, 105]. Further investigation is needed to understand the 

type of the defect and the source of the emission. In Figure 3.5(b), at 300 K, a single peak at 

0.558 eV was observed, which is assigned to the direct bandgap transition. At 300 K, non-

radiative recombination centers suppress the PL intensity. As the temperature decreased, the line-
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width kept decreasing while the peak intensity increased. At 10 K, a single peak with narrow 

peak line-width was observed. The PL peak position and integrated PL intensity against 

temperature are plotted in Figure 3.5(d), which reveals the direct bandgap material of GeSn with 

12% Sn [15]. Since the Г-valley minimum is lower than that of L-valley in direct bandgap GeSn, 

most electrons tend to populate on Г-valley. Therefore, the indirect transition was dramatically 

reduced, resulting in the single peak PL spectra [16]. 

 

 

 

 

 

Figure 3.5. Temperature-dependent PL for GeSn samples with several Sn compositions. (a) 5% 

and (b) 12%. Extracted bandgap energy and integrated PL intensity as a function of temperature 

for samples with Sn compositions of (c) 5% and (d) 12% [16].    
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3.5   The impact of n-type doing on bandgap and intensity  

The PL behavior of the n-type doped GeSn samples with Sn compositions of 5, 8, and 

10% was investigated. Normalized room temperature PL spectra of n-type doped GeSn samples 

and their comparison with unintentionally doped samples with similar Sn composition are shown 

in Figure 3.6(a), (b) and (c), respectively. The direct bandgap shrinkage due to the n-type doping 

was observed as 42, 23 and 36 meV for 5, 8 and 10% Sn samples, respectively.  

 

 

Figure 3.6. Comparison of the normalized PL spectra between the unintentionally doped and n-

type doped GeSn samples with Sn compositions of (a) 5%, (b) 8%, and (c) 10% at room 

temperature.  The indirect and direct bandgap shrinkages are summarized in (d) [16]. 

 

            For 5% Sn sample, indirect bandgap shrinkage of 27 meV was obtained as well. The 

bandgap comparison is summarized in Figure 3.6(d). It is worthy to point out that since this was 

the first time that the doping induced bandgap shrinkage in the GeSn material has been observed, 
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more investigation is needed for further understanding of the mechanism. It can be seen that the 

Sn composition, material strain, and doping concentration all play a part for the bandgap altering 

[16]. 

 

 

 

Figure 3.7. Temperature-dependent PL spectra for n-type doped GeSn samples with several Sn 

compositions. (a) 5%, (c) 8%, and (e) 10%.  The corresponding bandgap shift and integrated PL 

intensity against temperature are plotted in (b), (d) and (f), respectively [16]. 
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Furthermore, temperature-dependent PL spectra were obtained for n-type doped GeSn 

samples, as shown in Figure 3.7(a), (c) and (e) for Sn compositions of 5, 8, and 10%, respectively.  

Each curve is stacked for clarity. The temperature-dependent PL peak positions and integrated PL 

intensities were extracted by Gaussian fitting and are plotted in Figure 3.7(b), (d) and (f) for each 

sample, respectively. All samples exhibited bandgap increase as the temperature decreased which 

follows the Varshni relation. The fluctuation of data shown in Figure 3.7(d) and (f) are mainly due 

to the fitting error of Gaussian distribution.   

For the 5% Sn sample, the integrated PL intensity decreased as temperature decreased, 

indicating the indirectness of the material. While for the 8 and 10% Sn samples, the integrated 

PL intensities increased at low temperature, showing the direct bandgap material behavior, which 

suggests the directness of the material. Specifically, the integrated PL intensity of the 10% Sn 

sample at 10 K is more than 40 times higher than that at room temperature. This fact may be 

favorable for the design of a GeSn laser [16]. 

 

3.6   Summary 

            Material and optical characteristics were studied for both unintentionally doped and n-

type doped Ge1-xSnx samples with Sn compositions up to 12%. TEM and XRD show that the 

grown samples were consistent with the growth target in terms of the film thickness and Sn 

composition. The room temperature PL spectra exhibited gradual shifts of emission peaks toward 

longer wavelengths as Sn composition was increased. The temperature-dependent PL spectra 

revealed the indirectness and directness of the GeSn material. Moreover, the bandgap shrinkage 

was observed for the n-type doped GeSn sample for the first time.  
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Chapter 4. Thick GeSn Films with High Quality and Material Gain 

4.1   Introduction  

            In order to improve the performance of the GeSn-based optoelectronic devices, which is 

mainly determined by the material quality, optimization of material growth method is the major 

decisive factor. Generally speaking, the deterioration of GeSn material quality takes place when: 

1) the Sn composition becomes high (~10%); and/or, 2) the film thickness increases (larger than 

the critical thickness, which is determined by the Sn composition). However, the high Sn 

composition and the thick film are desired due to the following reasons: 1)  the high composition 

of Sn results in more directness of the material, therefore, the direct bandgap transition is enhanced 

which provides a favorable radiative recombination for the emitters such as LEDs and lasers; 2) 

the high composition of Sn allows the operation wavelength of the devices to cover broader 

infrared range; 3) the thicker GeSn layer offers a favorable light absorbance, which is desirable for 

the photo-detection devices including photoconductors and photodiodes; and, 4) the thicker layer 

leads to the relaxation of the material. Compared to the compressively strained material, the GeSn 

devices fabricated with strain-relaxed films feature longer wavelength operation with the same Sn 

composition. 

In this chapter, GeSn alloys grown on Ge-buffered Si substrate using a unique reduced 

pressure chemical vapor deposition (RPCVD) technique with SnCl4 and GeH4 as Sn and Ge 

precursors, respectively, are discussed. The material characterized by transmission electron 

microscopy (TEM) and x-ray diffraction (XRD) showed that the GeSn layers with the thickness 

ranging from 400 nm to 1 μm and Sn composition up to ~11% were obtained.  The low defect 

density indicated the high material quality. Moreover, the temperature-dependent 

photoluminescence (PL) spectra showed that a longer emission wavelength was achieved due to 
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the strain relaxation compared to thin GeSn film (< 200 nm) samples with the same Sn 

composition. The PL intensity of the thick GeSn samples was enhanced compared to the 

previously studied thin GeSn films [16]. 

 

4.2   Material Characterization 

Figure 4.1 shows a typical cross-sectional TEM image of sample C, Ge0.9195Sn0.0805. For 

the Ge buffer layer; it is clear that most of the defects were trapped at the Ge/Si interface and not 

propagated across the Ge layer, resulting in high material quality. For the GeSn layer, two distinct 

layers were clearly observed. The 150 nm-thick bottom layer over the Ge buffer layer was 

defective with a high density of threading dislocations.  

 

Figure 4.1. Cross-sectional view TEM image of sample C, Ge0.9195Sn0.0805. 

(Sample C) 
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            This was mainly due to the lattice mismatch between the GeSn alloy and the Ge buffer. 

However, the formation of threading dislocation loops prevented propagation of the defects to the 

480 nm-thick GeSn top layer, resulting in an almost defect-free GeSn layer with high quality. Note 

that the Sn compositions in GeSn bottom and top layers were measured as 6.89% and 8.05%, 

respectively. The Sn composition of the layers was calculated using Vegard’s law, after finding 

the lattice constant of the top and bottom layers. The lattice constant of the bottom layer was found 

by fitting the peak in the shoulder of the 2θ-ω curve, as well as locating the peak position for the 

bottom layer in the RSM contour plot. The higher Sn composition in the top GeSn layer was 

attributed to the ease of Sn incorporation in a relaxed GeSn lattice. As shown in Table 4.1, the 

two-layer characteristic of GeSn alloy was not observed in sample A with 5% Sn, while it was 

formed in samples B, C, D, and E.  

 

Table 4.1. Summary of GeSn sample, composition, thickness and relaxation [106]. 

Sample # 

Sn composition (%) 
Total GeSn thickness 

(nm) 
Relaxation (%) 

GeSn bottom 

layer 
GeSn top layer 

A Single GeSn layer with 5.12% Sn 420 72 

B 6.43 6.92 500 80 

C 6.89 8.05 630 85 

D 8.81 9.73 700 96 

E 8.95 10.90 970 84 

 

Formation of this layer is due to the presence of compressive strain before reaching the 

critical thickness. Higher Sn content films have larger lattice mismatch with the Ge buffer layer 
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and, therefore, induce higher compressive strain in the films. As a result, more Sn incorporation is 

observed after relaxation; while for low Sn composition films, since the critical thickness has not 

been reached, the formation of two-layers is not observable [107].  

However, as a slight gradient in the Sn composition was observed, it was negligible to be 

considered as two layers in the 5% sample. Therefore, the intermediate layer did not form in the 

5% Sn sample (A), was slightly formed in the 7% (B), and increased as the Sn incorporation 

increased up to 11% (E) [106].   

A 2θ-ω XRD scan was performed on the GeSn samples from the (004) plane, as shown in 

Figure 4.2. The peaks were aligned at 69° which showed the reflection from the Si substrate. The 

peak at 66° referred to the Ge buffer layer. The Ge-cap layer peak was observed as a shoulder on 

the right side of the Ge buffer layer peak. The shifts in Ge-cap peak position to higher angle was 

due to the pseudomorphic growth of Ge on larger lattice size GeSn layer that caused a reduction 

in the out-of-plane lattice constant of the Ge cap layer. The GeSn peaks were observed at the angles 

from 64° to 66o depending on the Sn composition. As Sn composition increased, the GeSn peak 

shifted toward a lower angle. A shoulder was observed at the higher angle side of the GeSn peaks 

for samples B, C, D, and E, which reflects the formation of two GeSn layers. In order to calculate 

the film relaxation, the in-plane and out-of-plane lattice constants of each layer were obtained by 

performing a reciprocal space map (RSM) scan. The typical RSM contour plot of sample D is 

shown in Figure 4.2 inset.  The Ge cap layer was observed as a separate plot from the Ge buffer 

since it experienced tensile strain. The broadened contour plot of GeSn indicated the existence of 

two layers, as annotated in Figure 4.2 inset. The GeSn layer was almost fully relaxed according to 

the calculation of lattice constant [106]. 



 

53 

 

Figure 4.2.  The 2θ-ω XRD scan from (004) plane for GeSn samples.  The peak at 69º shows Si 

substrate and the peaks between 65.5-64º belong to GeSn films. (Inset) RSM plot of sample D 

samples showing the relaxation of GeSn layer [106].  

 

4.2   Optical characterization of thick GeSn film 

Figure 4.3 shows the normalized PL spectra of samples A-E at room temperature. The PL 

peak clearly shows the red shift toward longer wavelengths as the Sn composition increased, which 

is due to the reduced bandgap energy when more Sn is incorporated. The PL peak position shifted 

from 2120 nm to 2520 nm for samples A to E, respectively. Since the energy separation between 

direct and indirect bandgaps is small for each sample according to the theoretical calculation, the 

PL peaks associated with the direct and indirect bandgap transitions could not be distinguished 

from the PL spectra.  Based on previous study on GeSn PL spectra [96], at room temperature the 

direct transition dominates the PL, i.e., the PL intensity of direct peak is much stronger than that 

of the indirect peak; therefore, the main peaks in Figure 4.3 are assigned to the direct bandgap 

transitions for all samples. Moreover, as the Sn composition increased, the integrated PL intensity 

(data not shown here) increased. This can be explained by the following: as the Sn composition 
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increases the direct bandgap edge reduces at a faster rate than the indirect bandgap edge, leading 

to more electrons populating the Γ valley in the conduction band (CB), which enhances the 

emission from the direct bandgap transition and, consequently, enhances the integrated PL 

intensity. On the other hand, for samples B, C, D, and E, since the Sn composition of GeSn bottom 

layer was lower than that of the GeSn top layer, the GeSn bottom layer could serve as a barrier 

layer to confine the carriers in the GeSn top layer. Therefore, the PL emission was mainly from 

the GeSn top layer. In Figure 4.3, a peak at 2660 nm was observed in PL spectra of samples D and 

E, which was due to the high order diffraction of the 532 nm laser source [106].   

 

 

Figure 4.3. Normalized PL spectra of samples A-E at 300 K.  As the Sn composition increased, 

the PL peak shifted toward longer wavelength due to the reduced bandgap energy.  The main peaks 

are assigned to the direct bandgap transitions for all samples [106]. 

 

Figure 4.4a shows the comparison of PL spectra between sample C (8.05% Sn for the GeSn 

top layer) and GeSn thin film (90 nm thickness) with 8% Sn at 10 K and 300 K. The thin film 

GeSn sample was grown in the same chemical vapor deposition (CVD) reactor with the same 

precursors and gas flow rate [15]. Since two samples feature very close Sn composition, their 
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separations of PL peak positions are mainly determined by the strain of the layers. For 8% Sn thin 

film sample, which experienced the 0.8% compressive strain, PL peaks at 1950 nm and 1970 nm 

were observed at 10 K and 300 K, respectively. The PL intensity at 10 K is lower than that at 300 

K, suggesting an indirect bandgap material. While for sample C, since the relaxed GeSn layer 

features the smaller bandgap energy compared to the compressively strained one, the PL peaks at 

a longer wavelength, i.e., 2100 nm and 2250 nm at 10 K and 300 K were observed, respectively. 

The PL intensity was considerably higher than 8% Sn thin sample, particularly at 10 K. This was 

because the narrower bandgap resulted in more injected electrons populating the Γ valley at 10 K 

and 300 K, leading to the increased PL emission intensity. Unlike the 8% Sn thin film sample, the 

PL intensity at 10 K of sample C was significantly higher than that at 300 K, and the peak linewidth 

was much narrower at 10 K which indicated that sample C was a direct bandgap material.  

Achieving direct bandgap GeSn with 8% Sn composition revealed that film relaxation pushed 

down the gamma valley in the CB lower than the L valley while it was not the case for the 8% 

strained GeSn thin film [106].  

The comparison of PL spectra between thick film which sample D (9.73% Sn for the GeSn 

top layer) and GeSn thin film (thickness 59 nm and strain 1.16% in Ref. [16]) with 10% Sn at 10 

K and 300 K is shown in Figure 4.4b. For the 10% Sn sample, PL peak positions of 2160 nm and 

2200 nm were observed at 10 K and 300 K, respectively. This sample showed more directness of 

bandgap characteristic (higher PL intensity at a lower temperature) since higher Sn was 

incorporated. For sample D, PL peaks at 2240 nm and 2450 nm were obtained at 10 K and 300 K, 

respectively. Compared to the emission spectra measured in Ref. 21, which reported a PL peak 

position of 2250 nm at 20 K with 12.6% Sn sample, sample D in this study showed a similar 

wavelength of PL peak but with much lower Sn composition; this was attributed to the relaxation 
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of GeSn material. Moreover, the significantly increased PL intensity at 10 K indicated that sample 

D was a direct bandgap GeSn material [106]. 

  

Figure 4.4. Comparison of the PL spectra between the GeSn thin and thick films at 10 K and 300 

K.  (a)  Sample C and 8% Sn sample (90 nm thick); (b) Sample D and 10% Sn sample (59 nm 

thick) [106]. 

 

 

Temperature-dependent PL measurements were performed on each sample to study the PL 

characteristics further. The PL spectra at temperatures from 300 K to 10 K of sample A are shown 

in Figure 4.5a.  The PL peak blue-shift at lower temperature was observed as expected nature of 

temperature-dependent bandgap variation. As the temperature decreased from 300 K, the PL 

intensity featured a decrease, followed by an increase at temperatures below 100 K. This PL 

behavior can be explained as follows: since sample A was an indirect bandgap GeSn with small 

separation energy (less than 1 kT) between the direct and indirect bandgaps at room temperature, 

the electrons which populated the L valley could be transferred to Γ valley via thermal activation, 

leading to the strong PL emission at 300 K. As temperature decreased, the number of thermally 

excited electrons reduced, and, therefore, the PL intensity decreased. Below 100 K, the non-

radiative recombination velocity dramatically reduced, resulting in the band filling at L valley 
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which overcompensated the reduced thermally excited electrons and, consequently, the PL 

intensity increased [106].     

Figure 4.5b shows the PL spectra at temperatures from 300 K to 10 K of sample E. It is 

clear that the PL intensity features a monotonic increase as the temperature decreases and the peak 

linewidth dramatically reduced at the lower temperature, confirming that sample E was direct 

bandgap GeSn. The smooth curve and strong PL emission shown in Figure 4.5b reflect the high 

material quality. 

 

 

Figure 4.5. Temperature-dependent PL spectra from 300-10 K for (a) sample A and (b) sample 

E.  

 

 

4.4   The impact of GeSn layer thickness on the material gain and intensity enhancement 

Since based on estimation using the absorption coefficient measured via ellipsometry 

[108], the penetration depth of 532 nm laser is less than 100 nm, only a small portion of the incident 

light could reach the GeSn bottom layer. In order to further understand the optical transition 

characteristic of the samples studied, a 1064 nm high-frequency laser with a penetration depth of 

~800 nm was used as the pumping source. Sample E was selected for further analysis as it featured 



 

58 

the highest Sn composition and material quality. Figure 4.6a shows the temperature-dependent PL 

spectra under the optical injection level of 270 kW/cm2.     

 

 

Figure 4.6. (a) Temperature-dependent PL spectra of sample E using 1064 nm high-frequency laser 

with 5 ns pulse width at 45 kHz repetition rate as the pumping source.  The PL of Ge is also plotted 

for comparison. (b) Pumping power-dependent PL of sample E at 10 K.  PL emissions from both 

GeSn top and bottom layers were observed at high optical injection level [106]. 

 

 

The PL of the Ge wafer reference sample is also plotted for comparison. The PL peak 

positions were obtained with the same 532 nm CW laser as the pumping source. Note that at the 

temperatures below 100 K, a shoulder at the higher energy side of the main peak was observed 

(2150 nm). This feature was assigned to the optical transition in GeSn bottom layer (8.95% Sn). 

Although the GeSn bottom layer was defective, at a low temperature most defects that act as 

recombination centers are frozen resulting in the enhanced radiative recombination and, therefore, 

the emission from GeSn bottom layer contributed to the PL spectra as well. Furthermore, the PL 

intensity of sample E at 10 K could compete with that of the bulk Ge sample, indicating the 

extremely high material quality [106].  

Power-dependent PL measurement at 10 K was conducted to further confirm the transition 

from GeSn bottom layer, as shown in Figure 4.6b. At low injection level, only a single peak was 
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observed that was associated with the emission from the GeSn top layer. As the pumping power 

exceeded 270 kW/cm2, a peak at 2250 nm could be observed and became stronger as the pumping 

power increased. Thus, this peak was assigned to the emission from GeSn bottom layer, at 

relatively low optical injection, almost all photo-generated carriers were confined in a GeSn top 

layer, which featured narrower bandgap. As injection level increased, more incident photons were 

absorbed in GeSn bottom layer, leading to radiative recombination occurring in the GeSn bottom 

layer before all the carriers transferred to GeSn top layer. However, the major contribution of PL 

was always from the optical transitions in the GeSn top layer, as can be seen in Figure 4.6b. 

Furthermore, the peak wavelength shown in Figure 4.6b featured red-shift compared to that shown 

in Figure 4.6a, which might have been due to the local heating under the high pumping power 

[106]. 

 

4.5   Summary  

In conclusion, GeSn films with a thickness range of 400 nm to 1 μm were grown using an 

industry standard CVD system with commercially available precursors. The material study 

revealed the existence of two GeSn layers, i.e., bottom defective layer and almost defect-free top 

layer. Relaxation of strain in the first layer allowed higher Sn incorporation in the top layer. 

Temperature-dependent PL study showed that the emission wavelength shifted toward longer 

wavelengths compared to the thin film sample with the same Sn composition. Due to the 

relaxation of the material, direct bandgap GeSn was achieved with a lower Sn composition of 

~8%. The dramatically enhanced PL intensity indicates extremely high material quality. 

Furthermore, the power-dependent PL study identified the optical transition from both GeSn top 

and bottom layers.   
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Chapter 5. Initial optically pumped GeSn edge-emitting lasers  

5.1   Introduction   

Studies on group-IV GeSn alloys open a venue for the development of gain medium 

monolithically integrated on Si for laser applications [109-110]. Theoretical calculations 

revealed that the incorporation of Sn into the Ge lattice reduces the energies between the Γ- and 

L-valley, and eventually could convert GeSn to a direct bandgap material [19, 111]. A direct 

bandgap GeSn alloy with Sn composition of 10% was experimentally demonstrated in 2014 [15]. 

Recent breakthrough on an optically pumped GeSn laser indicated major progress toward a 

fully integrated solution on the Si photonics platform [21]. The reported edge-emitting devices 

show lasing operation up to 90 K and have a threshold intensity of 325 kW/cm2 at 20 K, all 

pumped with a 1064 nm nano-second pulsed laser. In 2016, the same team obtained the optically 

pumped GeSn microdisk laser [84] with improved performance such as a reduced threshold of 

220 kW/cm2 at 50 K. 

This chapter presents the demonstration of optically pumped GeSn edge emitting lasers 

based on the Ge/GeSn/Ge double heterostructure (DHS) grown on Si. The significantly lower 

lasing threshold of 68 kW/cm2 at 10 K (pumped with a 1060 nm nanosecond pulsed laser) is 

attributed to the intrinsically relaxed high-quality GeSn alloys grown in a unique chemical vapor 

deposition (CVD) process using GeH4 rather than other high order Ge-based hydrides as the 

precursor. The device showed lasing operation up to 110 K, and the laser characteristic 

temperature (T0) was extracted to be 65 K [85, 112]. 

 

5.2   Material and optical characterization 

5.2.1   Material characterization  
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After growth, the material quality, the layer thickness, the Sn composition, and the strain 

of the sample were carefully analyzed using TEM and high-resolution XRD techniques. Figure 

5.1(a) shows a TEM image of the Ge0.891Sn0.109 sample. For the Ge buffer layer, the majority of 

defects were localized at the Ge/Si interface, indicating the high material quality. For the GeSn 

alloy, two distinct layers can be clearly observed. i) A 210 nm-thick bottom GeSn layer over the 

Ge buffer. This layer is defective due to the high density of threading dislocations, which arose 

mainly from the lattice mismatch between the Ge buffer and the GeSn alloy. The Sn composition 

in this layer was measured as 8.95%. ii) A 760 nm-thick high quality top GeSn layer above the 

bottom GeSn layer. Since the threading dislocation loop is formed in the bottom GeSn layer and 

does not propagate to the top GeSn layer, the top GeSn layer exhibits extremely high material 

quality. Threading dislocation densities (TDDs) of 3×106 cm-2 for the top GeSn layer and 2×107 

cm-2 for Ge buffer layer (in a separate control sample with the same Ge thickness) were obtained 

based on the etch pit density measurement [85]. 

 

 
 

Figure 5.1. (a) Cross-sectional view TEM image (field emission electron gun with accelerating 

voltage of 300 kV, resolution of ~0.1 nm) showing two distinct GeSn layers: the bottom layer is 

defective and with lower Sn composition of 8.95% while the top layer is almost defect-free and 

with higher Sn composition of 10.90%. (b) RSM contour plot showing the superposition of 

bottom and top GeSn layers, which are both fully relaxed [85]. 
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The Sn composition in the top GeSn layer was measured as 10.90%, which is ~1/5 more 

than that of the bottom GeSn layer. The higher Sn composition in the top GeSn layer might have 

been due to the ease of Sn incorporation when the underneath layer is relaxed [113]. The 

reciprocal space map (RSM) of the sample is shown in Figure 5.1(b). The broadened contour 

plot of GeSn indicated the existence of two layers. The part annotated by dashed ellipse 

corresponds to the bottom GeSn layer, whereas the solid ellipse part featuring full relaxation is 

associated with the top GeSn layer. The XRD rocking curve (data not shown here) showed a 

clear peak at 64.6o and a shoulder at 64.9o, corresponding to the top and bottom GeSn layers, 

respectively. The broadened GeSn peak (full-width half maximum of 0.21o) compared to that of 

Ge peak (0.15o) was due to the superposition of two GeSn layers with different Sn compositions 

[85]. 

 

5.2.2   Photoluminescence characterization    

The temperature-dependent photoluminescence (PL) characterization was conducted to 

investigate the material quality. The PL measurements were performed using a standard off-axis 

configuration with a 532 nm continuous wave (CW) laser as an excitation source. The detailed 

PL setup description can be found in Ref. [16]. The PL spectra at temperatures from 300 to 10 K 

showed that as the temperature decreased, the PL peak intensity significantly increased, (Figure 

5.2 inset, top right) revealing a typical characteristic of a direct bandgap material [96]. The PL 

emission wavelength of 2510 nm was observed at 300 K (no other emission was observed below 

1800 nm), which featured a longer wavelength compared to a previous PL study of this group for 

a thin film sample with the same Sn composition [16]. This was mainly due to the relaxation of 

the GeSn resulting in a narrower bandgap. As the temperature decreased, the PL peak blue-shift 
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was observed, as shown in the Figure 5.2 inset (bottom, only selected temperatures shown for 

clarity). The full width at half maximum (FWHM) of each peak, extracted using Gaussian fitting, 

monotonically decreased as the temperature decreased. At 10 K, the extracted PL spectrum 

FWHM was 133 nm (28 meV) and was 1/4 of that of 300 K.  

 

Figure 5.2. L-L curves of the 600 μm-long edge-emitting device at 10 and 90 K. Inset: (top left) 

SEM image of ridge waveguide device fabricated by a wet etching process; (top right) 

Temperature-dependent integrated PL intensity indicates the direct bandgap material of GeSn; 

(bottom) Optically pumped lasing spectra at 90 K. The PL spectra of the bulk sample at 10, 100, 

and 300 K are also plotted for comparison [85]. 

 

5.3   Fabrication process and device preparation 

The sample was fabricated into a ridge waveguide with 5 μm width for optical pumping 

characterization. A low-temperature wet chemical etching process was developed in this study. 
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By using a mixture of HCl: H2O2: H2O=1:1:10 at 0 °C, smooth sidewalls were achieved as 

shown in Figure 5.2 inset (top left). The average etching rate was ~20 nm/min. The etching depth 

was 800 nm. Due to the lateral etch, the waveguide width at the top was measured as 3 μm, while 

at the bottom was measured as 5 μm. Extensive etching study showed that the etching rate was 

almost constant at 20 nm/min regardless of the Sn composition. In addition, the wet chemical 

etching process did provide a smooth side wall, which could slightly reduce optical scattering 

loss for the waveguide structure. Therefore, the wet etching process developed in this work 

offered a robust recipe for the fabrication of GeSn-based devices. After etching, the sample was 

lapped down to ~70 μm followed by cleaving to form the mirror-like facets [85].  

 

5.4   GeSn laser devices measurements  

Devices with cavity lengths of 300, 600, and 1100 μm were investigated in an optical 

pumping experiment. The optical pumping characterization was performed using a pulsed laser 

operating at 1060 nm with 45 kHz repetition rate and 6 ns pulse width. The laser beam was 

collimated to a narrow stripe (~20 μm width and 0.3 cm length) via a cylindrical lens to pump 

the GeSn waveguide structure. Since the spatial intensity profile of the laser beam featured 

Gaussian distribution, the knife-edge technique was applied to determine the pumping power 

density [114-115]. The device was first mounted on a Si chip carrier and then placed into a 

continuous flow cryostat for low-temperature measurement. The emission from the facet was 

collected by a spectrometer and then sent to a thermoelectric-cooled lead sulfide (PbS) detector 

with the cut-off at 3.0 μm. The integrated emission intensity was measured by setting the grating 

at zero order. 
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5.5   Evidence of achieving GeSn lasers 

Figure 5.2 shows the laser-output versus pumping-laser-input (L-L) curves of the 600 

μm-long device at 10 and 90 K. The threshold characteristic was clearly observed. The threshold 

values were measured as 68 and 166 kW/cm2 at 10 and 90 K, respectively. The low resolution (1 

nm) directional emission spectrum measured at 3 times the threshold at 90 K is plotted in Figure 

5.2 inset (red peak). The FWHM of the peak is 26 nm (5.1 meV). Compared to the FWHM of the 

PL peak at 10 K (28 meV), the dramatically reduced line-width further confirmed the lasing 

characteristic. The emission spectrum measured at 10 K (not shown) also revealed a similar 

FWHM of 28 nm (5.6 meV), which is comparable with that of previously reported GeSn lasers 

[21]. The laser operating wavelengths were determined as 2476 and 2503 nm at 10 and 90 K, 

respectively [85]. 

In order to further investigate the lasing mode characteristics, the device with a cavity 

length of 300 μm was studied. The L-L curve of the device at 10 K is plotted in Figure 5.3 shows 

a threshold of 106 kW/cm2. The high-resolution spectrum (0.1 nm, spectrometer limit) 

measurement was performed for the device operating at 2x and 5x threshold (Figure 5.3 inset). 

Due to the relative large area of the cavity facet, the device spectra showed a typical multimode 

lasing characteristic. The spectrum taken under 2x threshold showed multi-peaks located 

between 2400 to 2500 nm. As the pumping power increased to 5x the threshold, most peaks grew 

and the overall intensity increased. 

 The 1100 μm-long device was selected for a detailed temperature dependent 

characteristic study since the longer length cavity reduced the mirror loss and therefore enabled 

the exhibition of the intrinsic characteristics of the material. The L-L curve showed that the 

lasing operation could reach as high as 110 K, as shown in Figure 5.4. The measured thresholds 
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ranged from 87 to 396 kW/cm2 at temperatures from 10 to 110 K. The characteristic temperature, 

T0, was further studied. By fitting the temperature-dependent lasing threshold, T0 was extracted 

as 65 K, as shown in Figure 5.4 inset. T0 was also extracted from L-L curves of 300 and 600 μm-

long devices as 78 and 90 K, respectively [85]. 

 

 
 

Figure 5.3. L-L curves of the 300 μm-long edge-emitting device at 10 K. Inset: The high-

resolution spectra under 2× and 5× threshold pumping power [85]. 

 

 

Since many factors such as facet quality, waveguide quality, and cavity length could 

cause variation of T0, 65 K was conservatively chosen as the feature T0 for the GeSn laser in this 

study. The characteristic temperature measured at low-temperature range provides useful 
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information to benchmark the material with the early phase development of III-V material for 

laser applications. For example, according to earlier studied III-V optically pumped lasers, the 

reported T0 were 100 and 129 K for InP/InGaAsP/InP and GaAs/AlGaAs/GaAs DHS devices, 

respectively [116,117]. 

 

 
 

Figure 5.4. L-L curves of the 1100 μm-long edge-emitting device taken at the temperatures from 

10 to 110 K. Inset: Laser threshold versus temperature for the purpose of fitting T0 [85]. 

 

 

5.6   Band structure and modes profile 

To shed light on lasing behavior, the band structure and the waveguide mode profile were 

calculated. Figure 5.5(a) shows the band structure of the sample at 300 K (not to scale) obtained 

using the effective mass and 6-band K·P method [80, 118]. It is clear that both GeSn top and 

bottom layers are direct bandgap. The conduction band (CB) barrier heights at Ge buffer/bottom 

GeSn, bottom/top GeSn, and top GeSn/Ge cap interfaces were calculated as 24, 37 and 55 meV, 
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respectively, indicating that the DHS provides electron confinement at both Γ- and L-valleys. 

However, considering the thermal energy at room temperature (~26 meV), the barrier of Ge 

buffer layer does not offer sufficient electron confinement [85].  

 
 

Figure 5.5. (a) Band structure of the sample at 300 K (not to scale; unit for the numbers: meV). 

(b) Profile of the fundamental transverse electric (TE0) mode. The refractive index of each layer 

is plotted to indicate the optical confinement. Inset: cross-sectional profile of TE0 mode [85]. 

 

 

Within the valence band (VB), the heavy holes (HHs) were confined in GeSn with barrier 

heights of 87 and 135 meV between the Ge buffer/GeSn layers, and the GeSn/Ge cap layers, 

respectively. However, due to the 1.5% tensile strain of Ge cap layer, the light-hole (LH) band 

was lifted well above the HH band, resulting in insufficient LH confinement since the LH 

minimum of Ge cap layer was 46 meV above the HH minimum of the top GeSn layer. But since 

the thickness of Ge cap layer was as thin as 10 nm, only a small fraction of LHs is confined in 

this layer. Hence, the majority of transitions took place in GeSn layers. 

Figure 5.5(b) shows the pattern of fundamental transverse electric (TE0) mode obtained 

using a 2D mode solver. The input parameters for the calculation were the layer stack of the 

waveguide with an etching depth of 800 nm and the refractive index of each layer, which was 
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obtained from ellipsometry spectroscopy study, as shown in Figure 5(b). Since the wet etching 

process produced the inclined sidewall, the gradually increased waveguide width from 3 to 5 μm 

(from top to bottom of 800 nm etch depth) was used for the calculation, as shown in Figure 

5.5(b) inset. Due to the relatively thick GeSn layer, the overlap of TE0 mode with GeSn layers 

was calculated to be 85%, with optical field confinement factors of 67% and 18% for top and 

bottom GeSn layers, respectively. Since the refractive index of Ge is close to that of GeSn, the 

optical field penetrates into the Ge buffer layer, resulting in an overlap of the optical mode with 

Ge buffer layer of 14% [85]. 

 

5.7   GeSn laser devices performance 

Analysis of the merits of material growth and the device structures leading to the 

lasing achievement are summarized as follows: 

First, the use of GeH4 in GeSn growth provides a favorable relaxation of material, which 

not only improves the material quality but also makes the direct bandgap GeSn achieved with 

lower Sn composition. 

Second, based on ellipsometry study, the refractive index of GeSn is slightly higher than 

that of Ge, therefore, the relatively thicker GeSn (~1 μm) and thinner Ge buffer (700 nm) 

configuration, rather than thin GeSn active layer and thick Ge buffer layer structure, could offer 

a better optical field confinement in GeSn layer, which increases modal gain. 

Third, the Ge/GeSn/Ge DHS structure offers an improved carrier confinement according 

to the band structure analysis. Note that since the bottom GeSn layer features lower Sn 

composition compared to the top GeSn layer, at a lower temperature, its wide bandgap confines 

the carriers in the top GeSn layer and, therefore, prevents them from recombining in the 
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defective bottom GeSn layer, resulting in more effectively injected carriers and enhanced 

radiative recombination.  

On the other hand, issues regarding the laser performance included: 

1- The operating temperature. The maximum lasing temperatures reported in Refs. [21] and 

[84] with GeSn bulk structure and high-Q micro-disk cavity are 90 K and 130 K, 

respectively, thus the maximum operating temperature of 110 K with DHS in this work is 

very reasonable. Since theoretical prediction for the highest achievable lasing 

temperature for DHS laser is 200 K, [78], there is a little room to increase the operating 

temperature by optimizing the DHS. 

2-  The carrier lifetime. So far there has not been systematic work reporting the carrier 

lifetime of GeSn. Recently, a ultra-fast pumping probe method was used to study the 

carrier dynamics in GeSn, [119] however, results obtained were inconclusive. A 

preliminary study was conducted in this research group (Dr. Shui-Qing Yu) on carrier 

bulk lifetime by using a photoconductor based testing structure, which revealed that the 

average carrier lifetime ranged from a few tens to hundreds of nanoseconds for bulk 

GeSn sample with the layer thickness of 500 nm and Sn composition of 9% at different 

temperatures [120]. 

3-  The cavity length-dependent lasing behavior. Theoretically, longer cavity features lower 

mirror loss compared to the shorter cavity. The threshold of the 1100 μm-long cavity 

device should be lower than that of the 600 μm-long cavity device at the same 

temperature. However, since the reflection facet of the cavity was formed by sample 

cleaving and the facet plane was not parallel to the growth direction (~35.3o relative to 

the growth direction) due to the epitaxy layer grown on (100) Si wafer, the facet 
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conditions for different devices could be different. It is believed that the lower quality 

facet of the 1100 μm-long cavity device resulted in its higher threshold. Moreover, due to 

the different conditions of facet cleaving for each device and the complexity of 

multimode lasing, it was quite difficult to identify the mode spacing in this study. 

4-  The external quantum efficiency (EQE). The EQE is a key figure of merit in an emitter 

device. However, since the output emission power could not be accurately measured due 

to instrument limitations, EQE was not discussed in this work.  

5-  The mode confinement. The overlaps of fundamental TE mode with the defective bottom 

GeSn and Ge cap layers were 18% and 14%, respectively, which led to optical loss. This 

could be improved by growing a relative thicker cap layer to increase the mode overlap 

with the high quality top GeSn layer. 

6-  The carrier confinement in the top GeSn layer. The barrier between the top and bottom 

GeSn layers did not offer sufficient carrier confinement at a higher temperature. This 

resulted in the thermally activated carrier transfer from top to bottom GeSn layer which 

led to the non-radiative recombination in the defective GeSn layer and, therefore, 

increased the laser threshold. At a temperature above 110 K, no lasing was observed due 

to the dramatically enhanced non-radiative recombination. A viable solution for this issue 

would be the insertion of a wide-bandgap interlayer between the top and bottom GeSn 

layers to enhance the carrier confinement in the top GeSn layer. 

7-  The cap layer selection. The tensile-strained Ge cap layer could not provide effective 

hole confinement, as the LH minimum of Ge cap layer was above the HH minimum of 

the top GeSn layer. This increased the recombination process occurring in the Ge cap 

layer and, consequently, increased the lasing threshold. This issue can be solved by using 
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an alternative cap layer such as SiGeSn alloy, whose lattice constant and bandgap energy 

can be engineered separately. The Type-I band alignment with sufficient barrier heights 

can be achieved by using optimized SiGeSn/GeSn/SiGeSn DHS according to the 

theoretical study [121]. 

 

5.8   Summary  

In summary, the Ge/GeSn/Ge DHS laser sample was grown using an industry standard 

CVD reactor and low cost commercially available precursors in a single run epitaxy process. The 

use of GeH4 provided a favorable relaxation for the GeSn material. TEM images showed a two 

layer GeSn film where a defect-free top GeSn layer was obtained. A wet chemical etching 

process was developed to fabricate the ridge waveguide with smooth sidewalls achieved. 

Temperature-dependent characteristics of laser-output versus pumping-laser-input were 

investigated. Unambiguous lasing operation was observed up to 110 K. The laser mode was 

analyzed via high-resolution PL spectra, which revealed the multimode operation of the laser. 

The lasing threshold and operation wavelength were measured as 68 kW/cm2 and 2476 nm at 10 

K, respectively. Based on the temperature-dependent threshold, a characteristic temperature of 

65 K was extracted. According to the band structure calculation and the lasing mode profile 

analysis, an optimized solution for laser structure was proposed which could reduce the lasing 

threshold and increase the operating temperature. The capability of producing the GeSn laser in 

a “manufacture ready” process (industry reactor, low-cost precursor, and single run epitaxy 

process) indicates the great potential of GeSn to be easily adopted by a future foundry for 

integrated photonics applications when the material is mature. 
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Chapter 6. Systematic study of GeSn edge-emitting lasers 

6.1   Introduction  

             In the last few years, great achievements were made in Si-based lasers, such as Si Raman 

laser, Er-doped Si, and Ge lasers that are compatible with CMOS processes [122-123]. However, 

monolithically Si-based lasers with high efficiency are a challenge. Development of new growth 

techniques offers opportunities to achieve GeSn lasers with high efficiency. Growing a direct 

bandgap GeSn with high Sn composition, tunable bandgap, and high material quality provides 

more control to build GeSn lasers with desirable wavelengths to be involved in complete 

components of integrated photonics.  

             In this chapter, demonstration of optically pumped GeSn lasers with a complete set that 

cover from 2 to 3 µm of wavelength range is presented. Thick and relaxed GeSn films with high 

quality materials were grown for laser devices. The composition range of Sn in GeSn alloys was 

from 7.3% to 17.5%. Material characterization was performed on these samples using TEM, 

XRD, and SIMS techniques. Moreover, temperature-dependent PL was studied to confirm 

directness and high quality of targeted GeSn samples. GeSn laser devices with several cavities, 

lengths, and widths were fabricated using both wet and dry etching. Optical pumping 

measurements were done at different temperatures to characterize the edge-emitting GeSn laser 

devices. Temperature operation, temperature characteristic, threshold, and modes were explored. 

 

6.2   Growth information, material, and optical characterization  

6.2.1   Growth information    

Eight GeSn samples were grown using an ASM Epsilon® 2000 (RPCVD) system. The 

thickness of GeSn layers was from 500 to 1100 nm, and the Sn composition was in the range of 
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7.3% to 17.5%. The samples included either two or three GeSn layers. There were two 

approaches used to grow the samples. First, spontaneous-relaxation-enhanced (SRE) 

incorporation process of Sn was used. The nominal Sn composition was targeted and Sn 

incorporation up to 12% was reached due to the GeSn relaxation. The second approach was 

using GeSn as a virtual substrate (VS) to assist the increase of the Sn composition up to 17.5% 

with high-quality material. Samples A - C were grown with the VS method and samples D - J 

using the SRE approach. More details of growth techniques were reported in Ref. 92. Table 6.1 

shows the information about the thickness of the Ge buffer, Ge cap if it was included, and the 

thickness and composition of each GeSn layer for each GeSn sample discussed in this chapter. 

 

Table 6.1. Summary of GeSn samples information including Ge buffer thickness, thickness and 

composition of each layer of GeSn, and Ge cap thickness.  

Sample Ge Buffer 

Thickness 

(nm) 

1
st

 layer 2
nd

 layer 3
rd

 layer Ge 

Cap 

(nm) Sn 

% 

Thickness 

(nm) 

Sn% Thickness 

(nm) 

Sn% Thickness 

(nm) 

A 670 5.6 210 7.3 680    

B 620 8.3 280 9.9 850   10 

C 540 9.4 180 11.4 660   10 

D 650 10.5 250 14.4 670    

E 640 11.6 210 15.9 450    

F 783 9.8 160 12.7 680 16.6 290  

I 680 10 210 13 450 16.9 170  

J 640 11.9 310 15.5 550 17.5 260  
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Each sample in Table 6.1 contained a defective layer on the bottom less than 250 nm in 

thickness. The second GeSn layer was relaxed and almost free of defects. Moreover, the second 

GeSn layer had a higher Sn composition and thickness compared to the first GeSn layer. The F, 

I, and J samples consisted of three GeSn layers. The third GeSn layer had a higher Sn 

composition than the two bottom layers as shown in Figure 6.1. The highest Sn composition that 

was achieved was 17.5%.  The variety of Sn composition in GeSn samples provided an 

opportunity to investigate the impact of Sn composition on GeSn lasers to optimize the 

composition of GeSn active layers according to desirable wavelength and laser output.  

 

Figure 6.1 Sn composition and GeSn layers for each sample discussed in Chapter 6.  

 

6.2.2   Material characterization 

             Material characterization such as TEM, XRD, and SIMS was done for all samples in this 

study to confirm the composition, thickness, and material quality. Figure 6.2 presents the TEM 
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images for two samples. Figure 6.2(a) shows the TEM image of Sample J with Si, Ge buffer, and 

GeSn layers. From the TEM image, the interface between Si and Ge shows the majority of 

defects, and the Ge buffer with 640 nm thickness appears to be high-quality material. The bottom 

layer of GeSn is a defective layer due to the threading dislocations of lattice mismatch between 

Ge and GeSn. The TEM image of Sample J shows three distinguishable GeSn layers. The 

thickness of the defective layer is about 210 nm and 12% Sn composition. The second GeSn 

layer had higher Sn composition at 15.5% and thickness of about 540 nm. The third GeSn layer 

was ~ 270 nm thick and had the highest composition of Sn, 17.5%.  By using TEM and etch pit 

density measurements, a TDD of 106 cm-2 was obtained for the GeSn top layer while the TDD of 

Ge buffer layer was measured as 107 cm-2.  

 

 

Figure 6.2. (a) The cross-sectional TEM image (field emission electron gun with accelerating 

voltage of 300 kV, resolution of ~0.1 nm) shows two distinct GeSn layers of Sample J. (b) EDX 

plot presents the thickness and layer composition of Ge buffer, and three GeSn layers with 

different thickness and Sn % of Sample J.     

 

The EDX in Figure 6.2(b) presents three layers of GeSn layers and provides information 

about composition and thickness of each layer of Sample J. There is a distinguishable interface 
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with high defects between the first and second GeSn layers. However, the interface between the 

second and third GeSn layers is not defective due to the gradient of Sn composition from 15.5 to 

17.5% and the lattice constant of both layers being close. 

TEM and EDX were done for other Samples from A to I (not shown) to investigate the 

quality and confirm thickness and composition. High-quality materials for both two and three 

GeSn layers of Samples A to I were determined through TEM images. Other material 

characterization such as XRD, RSM, and SIMS (not shown) were done for all samples to study 

strain, relaxation of the films, lattice constants, and composition. However, these type of 

measurements for high quality and thickness and strain-free GeSn films were thoughtfully 

studied in Chapter 4 and 5. Information using these techniques is provided for Samples A to J in 

Table 6.1.  

 

6.2.3   Photoluminescence characterization    

             Achieving lasing from bulk GeSn alloys requires many significant factors to be tested 

and studied. First, the GeSn samples must be direct bandgap materials. Second, the material 

quality must be good to reduce the defects. Third, the GeSn film must be thick enough to provide 

sufficient gain and enhance the confinement of carriers. 

            PL results at room temperature indicate that the peak position shifted to longer 

wavelengths as the Sn composition increased as illustrated in Figure 6.3(a). From the PL study, 

all GeSn samples in Figure 6.3 were direct bandgap with only one main peak for the transition 

from Г valley to the valence band. The peak position of direct bandgap GeSn films of these 

samples at RT covers a wide range of wavelengths starting from 2286 nm for 7.3% (Sample A) 

to 3225 nm for 17.5% Sn (Sample J). With optimization of the Sn composition and thickness, 
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wavelengths longer than 3500 nm can be covered. The additional peaks at 2600 and 3000 nm 

were due to the atmosphere and water absorption. The PL results at 10 K show high intensity 

with narrower FWHM compared to RT measurements. The peak position at 10 K shifted to a 

shorter wavelength than the wavelength at RT for the same samples as presented in Figure 

6.3(b).  

 

Figure 6.3. Normalized PL spectra of samples A-J at (a) 300 K and (b) 10 K. As the Sn 

composition increases, the PL peak shifts towards longer wavelength due to the reduced bandgap 

energy.  The main peaks are assigned to the direct bandgap transitions for all samples. 

 

 

Temperature-dependent PL measurements were done to investigate GeSn samples at 

different temperatures.  The temperature-dependent PL indicated that the intensity at low 

temperature was tens of times higher than the PL intensity at RT. The FWHM of all samples 

from A to J at low temperature was narrower than at higher temperatures. The single peak of 

transition, higher intensity, and narrower FWHM at low temperature are considered as evidence 

for the directness of the GeSn film bandgap. The temperature-dependent PL for Sample A and J 

are presented in Figure 6.4. The temperature-dependent PL results of other GeSn Samples from 

B to I (not presented in this chapter) showed a similar behavior of increasing the PL intensity and 
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reducing FWHM at a lower temperature. Figure 6.4(a) and (c) illustrate the temperature-

dependent of Samples A and J. The integrated PL intensity at 10 K was 40 times greater than 300 

K for Sample A and 48 times more for Sample J. Moreover, the integrated PL intensity and 

FWHM versus temperature of Samples A and J are shown in Figure 6.4(b) and (d). The FWHM 

at 10 K was three times less than at 300 K for Sample A (around 60.9 meV at 300 K to 16.6 meV 

at 10 K) and two and a half times less for Sample J (88.6 and 39.9 meV at 300 and 10 K 

respectively). The integrated PL intensity for both samples increased with decreasing 

temperature.  

 

Figure 6.4. Temperature-dependent PL spectra of GeSn for (a) Sample A, (c) Sample J.  The 

corresponding FWHM and integrated PL intensity against temperature are plotted in (b) Sample 

A, (d) Sample J.  

 

 

6.3   Device fabrication and measurement conditions 

             Samples from A-J were fabricated using wet and dry etching at different etching depths 

depending on sample thickness, structure, and refractive index to optimize etching depth and 
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obtain a high confinement factor. As a comparison, the width of the top of the device was less 

than the bottom of the device when the wet etching technique was used. However, using the dry 

etching method, both the top and bottom sides of the device were almost the same. The etching 

depth was between 500 to 900 µm using both wet and dry etching techniques. Figure 6.5 shows 

some SEM images for selected samples to show the facets and sidewalls for both wet and dry 

etching. The SEM images in Figure 6.5(a) and (b) present the wet etching for Sample C, and (c) 

and (d) for Sample J. Furthermore, dry etching of Sample B is shown in Figure 6.5(e) and (f).  

 

 

Figure 6.5. SEM images for GeSn laser devices for facets and sidewalls. (a) and (b) wet etching 

of Sample C; (c) and (d) wet etching of Sample J; and, (e) and (f) dry etching of Sample B. 

 

 

After the devices were fabricated, lapping processes were applied to reduce the thickness 

of samples to a few tens of microns. Lapping the samples provided better results with cleaving 



 

81 

processes and was done easily. Cleaving was done for several cavity lengths, such as 250, 300, 

400, 500, 600, 750, 1000, 1200 µm, and longer.  

 A pulse 1064 nm laser was used for optically pumped measurements. The repetition rate of the 

laser was 45 kHz, and the pulse width was 6 ns. Each set of devices with 1, 2, 3, 4, and 5 µm of 

width was cleaved with the same cavity length on the same piece of sample. Then three pieces 

with different cavity lengths were uploaded to the cryostat at the same time. The entire 15 

devices were measured under the same conditions to compare the results each time that devices 

were loaded inside the cryostat. The cryostat was pumped to reduce pressure to assist with the 

stability of temperature for low-temperature measurements. Both liquid helium and nitrogen 

were used to test the devices from 10 K or 77 K to the higher temperature operation possible for 

each device.  

 

6.4   Lasing at different Sn compositions 

The samples selected to study the lasing from GeSn samples were with several Sn 

compositions from 7.3% to 17.5%. The wavelengths corresponding to these GeSn laser samples 

range from around 2 to 3 µm as shown in Figure 6.6. The lasing wavelength of Sample A was 

2070 nm and 2827 nm for Sample J, both at 77 K. The spectra for samples A-J in Figure 6.6(a) 

were measured from 77 K to 180 K. All samples were lasing at 77 K. However, some samples 

stopped lasing as the temperature increased. Samples A and I were not lasing at 110 K, and only 

five samples were lasing at 140 K. Figure 6.6 shows only Sample D and J were lasing at 160 K. 

The maximum temperature operation was reached by Sample J at 180 K and corresponding 

wavelength 2987 nm. The lasing wavelength of all samples are summarized in Table 6.2.  
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Table 6.2. Summary of GeSn laser devices measurements including a lasing wavelength at 77 K, 

the threshold value at 77 K, temperature characteristic, and temperature operation.  

Sample Laser 

wavelength 

(nm) 

Threshold 

(kW/cm2) 

T
0 

(K) Temperature 

operation 

(K) 

A 2070 300 N.A. 90 

B 2400 80  76 140 

C 2461 160 103 140 

D 2627 138 73 160 

E 2660 267 N.A. 100 

F 2767 150 84 140 

I 2704 96 N.A. 110 

J 2827 171 73 180 

 

The reduction of FWHM of GeSn laser spectrum for Samples D and E compared to the 

linewidth of bulk GeSn spectrum for the same sample and at the same temperature was 3.5 times, 

and higher. Other samples A-J showed similar behavior. Figure 6.6(b) and (c) illustrates the 

reduction of FWHM of lasing of Sample D and E comparing to PL of the same sample at 77 K. 

The FWHM of PL of Sample D was 4.5 times broader than laser spectrum (40.1 meV of PL 

spectrum to 8.8 meV of laser spectrum). The reduction of linewidth is evidence for lasing 

behavior. The spectrum laser of Sample J at 180 K had a wavelength operation at 2987 nm. This 

wavelength was the longest operation wavelength from GeSn lasers was achieved. 

 

6.5   GeSn lasing threshold        

             The lasing threshold is one of the key points for any laser device. With a lower lasing 

threshold, the device is more desirable to reduce power consumption and be used for different 
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applications. There are several factors that can affect the threshold value of any laser such as the 

type of material, structure, thickness, device dimensions, facets, etc. The threshold values of 

GeSn laser samples are different depending on thickness, compositions, facets, and sidewalls of 

the devices. 

 

 
Figure 6.6. GeSn laser performance characterization. (a) Spectra of GeSn lasers fabricated from 

samples A to J at temperatures from 77 to 180 K. (b) and (c) Lasing spectra at 77 K of samples D 

and E compared with PL spectra. The lasing peak blue-shifted due to the typical band filling 

effect. 

 

            Figure 6.7(a) presents the lasing threshold of all samples from A-J at the same 

temperature (77 K). These GeSn laser devices were selected because they had better facets and 

sidewalls compared to other devices for each sample. At 77 K, the lasing thresholds for all 

samples were obtained ranging from 80 to 300 kW/cm2.  
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Figure 6.7. (a) L-L curves of Samples A, B, C, D, E, F, I and J versus power density (kW/cm2) at 

77 K. (b) L-L curves of Sample B at 10 K.  

 

 

 

The lowest lasing threshold was from Sample B at 80 kW/cm2 that came from the highest 

thickness of GeSn active region. The highest threshold was from Sample A at 300 kW/cm2; 

sample A had the lower composition, 7.3% Sn. From L-L curve at 10 K, the lowest lasing 

threshold value was 45 kW/cm2 at 10 K for Sample B (dry etching) as shown in Figure 6.7(b) 

with a reduction of 30% below the last lowest reported value 68 kW/cm2 [85]. 

 

6.6   The impact of GeSn film thickness on the GeSn lasers       

Studying the impact of the thickness of the GeSn film on the lasing behavior of these 

materials was important to optimize the structure of each sample with targeted Sn composition. 

Four GeSn samples, B, D, E, and I, were selected to study the impact of thickness on the lasing 

behavior. The total thickness of the GeSn layers for these samples were 1000, 910, 590, and 830 

nm, respectively. Figure 6.8 presents the laser output versus pumping laser-input (L-L) curves at 

77 K to demonstrate the impact of GeSn layer thickness on the lasing performance.  
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Figure 6.8 L-L curves of Samples B, D, E, and I versus power density (kW/cm2) at 77 K shows 

the impact of thickness on threshold and intensity.  

 

 

From Figure 6.1 and Table 6.1, Sample B had lower Sn composition (9.9%) compared to 

Samples D, E, and I. Nevertheless, Sample B with greater total thickness (1130 nm) and 850 nm 

of top GeSn layer showed the lowest lasing threshold of 80 kW/cm2. In contrast, Sample E, 

which was the thinner sample with 660 nm of total thickness and 450 nm of top GeSn layer, had 

the highest threshold, around 267 kW/cm2. Furthermore, the intensity of Sample B was highest, 

two times more than Sample D, four times more than Sample I, and 16 times more than Sample 

E as presented in Figure 6.8. The reasons that thicker GeSn layers show higher intensity and 

lower threshold can be explained as: (1) the confinement factor becomes greater with increasing 

the thickness of GeSn active layer for provided refractive index values of similar structures as 

presented in Figure 5.5 (b); (2) the penetration depth of the 1064 nm laser is more than 1000 nm 

at low temperature. Therefore, the absorption increases with increasing the thickness, and more   

carriers are generated.  

 

6.7   Power dependence of lasing spectrum  

             The GeSn laser spectrum was sensitively studied for Sample A-J at different  
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temperatures and excited laser power. The measurements of the spectrum of laser provide 

numerous details about the GeSn laser device performance, such as the intensity, operating 

wavelength, linewidth, and threshold area. The device of Sample C with 1 mm cavity length and 

5 µm width was selected due to the highest value of intensity distinguished FWHM reduction 

below, at, and above the threshold as shown in Figure 6.9.  

 

Figure 6.9. The spectrum measurements of Sample C at 10 K. (a) The power-dependent lasing 

spectrum from 45 to 454 kW/cm2 of power density. (b) The FWHM of the spectrum at several 

power densities. (c) The spectrum around the threshold area is changing from spontaneous to 

stimulated emission of spectrum below above the threshold. (d) The L-L curve shows the output 

intensity from laser device below, at, and above threshold areas.  

 

 

The wavelength of laser operation of this device was 2449 nm at 10 K.  The intensity 

increased rapidly with increase in the excited laser power of the laser source as presented in 

Figure 6.9(a). The integral of the spectra (area under the curve) at 453 kW/cm2 was 540 times 

higher than at 45 kW/cm2. 
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Figure 6.9(b) shows the linewidth reduction as the power density increased. The FWHM 

of laser spectra was high below threshold (around 38 meV) and reduced as the threshold level 

was reached to become a minimum value (10.5 meV) at the lasing point. Then it increased to 

11.5 meV as the excited power increased due to the heating effect. The change of spectrum 

shape, intensity, and linewidth below and around threshold level are illustrated in Figure 6.9(c). 

Below threshold from 45 to 80 kW/cm2, the spectrum was due to spontaneous emission. The 

power density was not enough to inject enough carriers to generate lasing. Therefore, the 

linewidth was broad, and the intensity was low. Moreover, the internal and external loss was 

more than gain inside the device.  Around 80 kW/cm2, there was a change in spectrum shape and 

linewidth, but there was still no lasing. This value was the threshold level. Above the threshold 

value (80 kW/cm2), the lasing started, the linewidth became narrower, and the intensity rapidly 

increased as illustrated in Figure 6.9(d). In this range of power density above the threshold, the 

net optical gain became higher than the total loss.  

 

6.8   Study of the modes of GeSn lasers 

             Lasing modes are important to be investigated as evidence of lasing for any laser devices. 

The modes are generated inside the laser cavity (Fabry-Perot) when the gain becomes more than 

the loss just above the lasing threshold. There are a lot of modes separated by the distance that 

can be calculated from the equation: 

∆𝜆 =  
𝜆2

2𝑛𝑔𝐿
(Equation 6.1) 

Where ∆λ is the mode spacing, λ is the mode wavelength, 𝑛𝑔is the group refractive index, and 𝐿 

is the cavity length. The spacing mode decreases with increasing cavity length. Therefore, due to 

the limitations of spectrometer resolution, the mode spacing is difficult to calculate for longer 
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cavity lengths. Moreover, cleaving a short cavity less than 250 µm was a challenge. The modes 

of GeSn lasers were studied for different samples and at several temperatures and at several 

resolutions of the spectrometer. The modes at low resolution were measured with cavity lengths 

between 250 to 500 µm. Figures 6.10 and 6.11 present the modes of Samples B, D, and I at 

different power densities and temperatures.  

 

 

Figure 6.10. The GeSn laser modes at low resolution for Sample I. (a) Spectra at different power 

excitation to show the modes. (b) Spectra at 113 kW/cm2. (c) Spectra at 136 kW/cm2. (d) Spectra 

at 158 kW/cm2. 

 

The modes of Sample I at 77 K are shown in Figure 6.10. The low resolution 

measurements (increment = 2 nm) of Sample I at several power densities are presented in Figure 

6.10(a). Below threshold (96 kW/cm2), the spectra were spontaneous emission and there were no 

mode oscillations inside the cavity. Nevertheless, lasing modes of GeSn started to appear just 

above lasing threshold with many modes. Then, the intensity of the modes increased as the 
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power density increased. All power densities were selected between 0.8Pth (76.8 kW/cm2) to less 

than 2Pth (192 kW/cm2) to show the modes close to threshold area. As, the power density was 

increased more than 2Pth, there was only one peak (modes overlap) of lasing emission shown. 

Figure 6.10(b), (c), and (d), present individual spectra at 113, 136, and 158 kW/cm2 of power 

density respectively to demonstrate clear low resolution modes. At a pumping power density 

slightly higher than the lasing threshold, the multi-peaks revealing the lasing modes can be 

observed clearly.  As the pumping power increased, the modes became more pronounced and 

most peaks grew, resulting in the overall lasing intensity increase. 

Figure 6.11 presents low resolution (2 nm) for multimodes of Samples B and D at 

different temperatures and power densities. These multimodes were measured above the lasing 

threshold at several temperatures to show the modes of GeSn lasers at various operation 

temperatures. Figure 6.11(a) illustrates the multimodes of Sample B at 158 kW/cm2, and 110 K. 

Due to the shift of peak position (red shift) with increasing the temperature, the main peak of 

lasing wavelength was different at each temperature. Figure 6.11(b) and (c) presents the low 

resolution multimode of Sample D at 136 and 680 kW/cm2 and 77 and 150 K, respectively. The 

linewidth of the mode was around 3 nm as shown in Figure 6.11(b).   

The extra PL peak on the left shoulder of spectrum at 2550 nm in Figure 6.11(c) 

corresponds to the lower GeSn layer due to the high power density of laser source around 680 

kW/cm2. High resolution (0.5 nm) cavity modes for Sample C at 340 kW/cm2 of power density 

and 10 K are presented in Figure 6.11(d). The slit width of the entrance and exit of the 

spectrometer was reduced for high-resolution measurements 1/7 the slit width at low resolution. 

The spacing between the cavity modes (the distance between the center of two neighbor modes) 

of GeSn laser device of Sample C was 0.36 meV. This value of spacing between modes is  
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comparable with the value reported in Ref 21. 

 

Figure 6.11. The modes measurements of GeSn lasers. At low resolution; (a) Sample B at 

110 K. (b), (c) Sample D at 77 and 150 K, respectively. (d) High resolution measurements  

and 1 mm slit width for Sample C at 10 K. 

  

 

6.9   Temperature operation of edge-emitting GeSn lasers  

             Obtaining a laser from a new material such as GeSn is an interesting achievement. 

However, one of the important factors is to achieve a laser operating at high temperature up to 

room temperature and higher. Therefore, studying the operating temperature of GeSn lasers was 

necessary. From theoretical calculations, the maximum operating temperature for GeSn laser 

from the bulk structure is around 200 K [78].  
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             All samples A-J were measured at different temperatures to understand the trend of GeSn 

lasing with changing temperature and, also, the maximum temperature that each sample could 

reach. The first temperature operation of the bulk GeSn laser was reported as 90 K [21], then 110 

K [85]. Three samples were selected to show higher temperature operation than what was 

reported in previous studies. These three, presented in Figure 6.12, were Samples C, D, and J. 

The maximum temperature operation was 140, 160, 180 K for Samples C, D, and J respectively. 

The temperature operation of other GeSn laser samples are summarized in Table 6.2.  Figure 

6.12(a), (c), and (e) show the L-L curves with a range of intensity to demonstrate how the 

intensity reduces with increasing temperature of the same sample due to nonradiative 

recombination processes that increase with temperature. The L-L curves also illustrate the 

threshold increases as the temperature increases because of loss increases (especially internal 

loss that is related to free carrier absorption). For instance, the threshold of Sample C increases 

from 122 kW/cm2 at 10 K to 505 kW/cm2 at 140 K. Sample C was measured from 10 to 140 K 

using liquid He. However, both Samples D and F were measured using liquid N2 due to non-

availability of liquid He at the time of the measurements. 

            The characteristic temperature, T0, of a GeSn laser is one of the indications of device 

performance at different temperatures. A large value of T0 is desirable because the threshold does 

not change much with temperature. It can be calculated using the following equation, 

𝑃𝑡ℎ(𝑇) =  𝑃𝑡ℎ(𝑇𝑎) 𝑒
(𝑇−𝑇𝑎)

𝑇0
⁄

, (Equation 6.2) 

where 𝑃𝑡ℎis the power at the threshold and 𝑇𝑎 is a chosen temperature. T0 can be experimentally 

determined by plotting the threshold versus temperature. The y-axis is plotted as log scale and T0 

is equal to 1/slope as shown in Figure 6.12(b), (d), and (f). Temperature-dependent 

measurements were done from 10 to 140 K for Sample C using liquid helium and from 77 K to 
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160 K and 77 K to 180 K for Sample D and J, respectively, using liquid nitrogen. The 

characteristic temperature was 103 K for Sample C and 73 K for Samples D and J.  

 

 

Figure 6.12. Temperature-dependent L-L curves presented for samples (a) C, (c) D, and (e) J. 

The characteristic temperature shown for samples (b) C, (d) D, and (f) J.  
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6.10   Band diagram calculation 

           The band diagram was calculated for Samples D and J using the effective mass and 6-

band k∙p method at 300 K as shown in Figure 6.13(a) and (b). These calculations were based on 

Sn composition, thickness, and strain of GeSn layers. The calculation was done for Ge buffer and 

two layers of GeSn for Sample D, and for Ge and three GeSn layers of Sample J. The EcL, EcΓ, 

Evhh, and Evlh represent energy levels of L- and Γ-valleys at conduction band (CB), and heavy 

hole (hh) and light hole (lh) at valence band (VB), respectively. The direct bandgap energy of 

0.476 eV of Sample D agrees well with the measured PL peak position of 2610 nm. For Sample 

J, there were four layers – Ge buffer, and three GeSn layers with different thickness and Sn 

composition. The three GeSn layers of Sample J were direct bandgap.  

 

  

Figure 6.13. Band diagram calculation for Samples (a) D and (b) J at 300 K. 

 

            The bandgap energy of the third GeSn layer was less than that of the second layer and the 

bandgap of the second GeSn layer was less than that of the first GeSn layer as shown in Figure 

6.13(b). Therefore, the wavelength corresponding to those layers increased going up to the top 

layers. Furthermore, there was agreement between the measured and calculated bandgap energy 
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of the top GeSn layer with PL peak position, 3225 nm.  Based on the results of theoretical 

calculations, Samples A-J show a type-I band alignment with carrier confinement in the top 

GeSn layer. 

 

6.11   Lasing mode pattern calculation 

           A 2D mode solver [124] was used to calculate the lasing mode pattern to study the 

fundamental transverse electric field (TE0) mode. Figure 6.14 (a) shows the mode pattern of 

Sample D. The device was etched down to 800 nm of 1 µm total thickness of GeSn layers; the 

top of the waveguide width was 2 µm and bottom width was 5 µm. The refractive index (n) of 

Ge is 4.09 and for Si is 3.45. The refractive index of GeSn was chosen from Ref. 108 to be 4.25 

for GeSn as presented in Figure 6.14(a). The confinement factor in the GeSn layer was around 

85.2%, and 14.4% in the Ge layer for Sample D. Using these refractive index values for Si, Ge, 

and GeSn, the pattern mode for ideal case (dry etching) with top and bottom device width of 5 

µm was calculated for comparison – see Figure 6.14(b).  

 

  

Figure 6.14. Calculated pattern of the fundamental transverse electric mode. (a) An actual device 

by wet etching and, (b) an ideal of waveguide with 90o sidewall.  The Neff is the effective index.  

The mode overlap difference with the GeSn layer is only 0.7% between two structures. 
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            The confinement in the ideal case was 85.9% in the GeSn layer and 13.9% in the Ge 

layer. The difference in confinement between the ideal case and the real device of sample D was 

only 0.7%.  

 

6.12   The performance of GeSn laser devices. 

            There were hundreds of devices that were tested to check the performance of GeSn lasers 

using samples with different compositions, thicknesses, and cavity lengths and widths. The 

longest wavelength operation was achieved from Sample J. The lowest threshold value was 

obtained from Sample B. The highest temperature operation was 180 K for Sample J; moreover, 

this is the highest temperature operation for GeSn lasers reported.  Sample C showed the highest 

characteristic temperature at 103 K. The performance of edge-emitting GeSn laser devices is 

summarized in Table 6.2. Measuring the output power for GeSn laser devices is important as 

evidence for laser device performance. In the early stage of achieving lasing from new materials, 

it is difficult to measure output power because of its low value. Some GeSn laser devices showed 

very high intensity. However, due to the powermeter lower limit of measurement being a few 

tens of µW and having a high level of noise for the signal, output power measurements were 

difficult in the range of a few tens of µW.  There is work in progress by this research group to 

measure the output power from GeSn   laser devices and will be reported in future publications. 

 

6.13   Summary 

            Optically pumped edge-emitting GeSn laser devices were investigated with several Sn 

compositions and active layer thicknesses. All GeSn samples discussed in this chapter were 

selected to be direct bandgap from 7.3% to 17.5% Sn composition. Some of these samples 

included two GeSn layers and others had three layers. The total thickness of GeSn layers was 
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from 500 to 1100 nm. Material characterization such as TEM, EDX, SIMS, XRD, and RSM 

were used to provide information about thickness, composition, lattice constant, and material 

quality. The top GeSn layer(s) showed very high material quality. Temperature-dependent PL 

was done to study the bandgap, enhancement of the intensity, and linewidth of the spectrum of 

each sample. The wavelengths corresponding to the PL of spectra of these samples covered a 

wide range from 2 to 3.4 µm. The integrated PL intensity of these samples at 10 K was more 40 

times higher than at 300 K for all samples. The GeSn laser devices were designed with 

waveguide widths from 1 to 5 µm. The GeSn laser devices were fabricated using both wet and 

dry etching techniques with different etching depths. Several cavity lengths were targeted to be 

cleaved for each sample to study the behavior of GeSn lasers. The GeSn laser devices were 

characterized at different temperatures to determine the lasing threshold, lasing wavelength, 

intensity, temperature operation, and characteristic temperature for each sample. The GeSn 

lasing wavelengths covered from 2070 nm for Sample A to 2827 nm for Sample J at 77 K. The 

longest lasing wavelength observed was 2987 nm at 180 K for Sample J. The lowest threshold 

was obtained from Sample B with 80 kW/cm2 at 77 K. The highest temperature operation was 

180 K for Sample J. Furthermore, the characteristic temperature of 103 K for Sample C was the 

highest value for all samples.  
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Chapter 7. Summary and future work 

7.1   Summary   

The primary focus of this study was on GeSn alloys. The GeSn alloys were investigated 

from a fundamental understanding of the material to the device level such as lasers.  

 

7.1.1   Thin GeSn films 

             A systematic study was done for thin GeSn films below 200 nm of thickness and from 0 

to 12% Sn composition. Material characterization such as TEM and XRD were used to confirm 

thickness, strain information, and the composition of each sample. Strain had an impact on the 

quality of GeSn samples and bandgap as did Sn composition. Raman spectroscopy showed the 

impact of alloying Sn to Ge. From the PL study for thin GeSn films, GeSn became a direct 

bandgap at 10% Sn. The bandgap of GeSn reduced as Sn composition increased, and peak 

position shifted to a longer wavelength. The temperature-dependent PL indicated that the 

intensity decreased at low temperature for indirect bandgap GeSn and increased for direct 

bandgap. As the temperature decreased, the wavelength shifted to shorter wavelengths (blue 

shift). The FWHM decreased as the temperature decreased.  

 

7.1.2   Doped thin GeSn films 

N-type doped GeSn films were investigated to show the doping effect on the behavior of 

GeSn alloys.  Material and optical characterization was done for doped GeSn films similar to un-

doped GeSn films. Three samples at different Sn compositions and doping concentrations were 

compared to undoped films with the same % Sn. The bandgap shrunk for doped samples and 

peak position shifted to the longer wavelength. There was a large enhancement of PL intensity 
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for doped GeSn samples compared to undoped ones. High PL intensity at low temperature 

indicates that doped GeSn films are a good candidate for emitting devices.  

 

7.1.3   Thick GeSn film 

             When the direct bandgap was achieved, next step was to find better material quality of 

GeSn with enhancement of PL and material gain for emitting device. Thick GeSn films with a 

thickness greater than 400 nm were thoroughly studied. The thickness of GeSn samples was 

selected between 400 to 1100 nm. Thick GeSn films showed a high material quality due to the 

relaxation of film confirmed by material characterization such as TEM (shown in Chapters 4, 5, 

and 6). From PL study, thick GeSn films showed direct bandgap material behavior at 7.3% Sn 

composition. Temperature-dependent PL showed very high enhancement in PL intensity. 

Integrated PL intensity at 10 K was more than 40 times higher at RT. Several laser sources with 

different penetration depths were used to investigate the effect of thickness on the PL and 

increase the material gain from thick GeSn films. The power-dependent PL using a 1064 nm 

laser demonstrated that the intensity was very strong with increasing power density due to the 

increased absorption inside the GeSn films. These characteristics make GeSn good for achieving 

lasers.  

 

7.1.4   Optically pumped edge-emitting GeSn laser 

             Developing new growth approaches, such as spontaneous-relaxation-enhanced (SRE) 

deposition or using GeSn as a virtual substrate (VS), provided high material quality of GeSn with 

high Sn compositions. These techniques led to growing a strain relaxed GeSn films from 8 to 

17.5% with a total thickness of GeSn layers from 500 to 1100 nm. The GeSn samples were 
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characterized using both material and optical characterization to provide the needed information 

about composition, thickness, the number of layers, material quality, bandgap, strain, and 

intensity of each sample. The GeSn device was designed to be from different strips of width 

from 1 to 5 µm and the same separation distance between each device. The GeSn devices were 

fabricated using both dry and wet etching techniques. The calculated mode confinement for both 

wet and dry etching devices showed there was a small difference between both structures of 

around 0.7%. The GeSn devices were cleaved for several cavity lengths, depending on the aim of 

the measurements, to study the impact of cavity length on device performance such as intensity, 

lasing threshold, and saturation level.  

The edge-emitting GeSn laser devices were characterized using both liquid He and liquid 

N2 to study the temperature-dependence of these devices. Some devices were measured starting 

from 10 K to maximum temperature operation of each sample. However, other devices were 

measured from 77 K to the maximum temperature that device could reach due the unavailability 

of liquid He during a portion of the research. All devices were compared at 77 K to confirm the 

device performance at the same temperature. The range of lasing wavelengths from samples with 

7.3% to 17.5% Sn was from 2070 to 2827 nm at 77 K. The maximum lasing wavelength was 

2987 nm at 180 K from 17.5% Sn sample, which is longest lasing wavelength which has been 

reported. The lowest lasing threshold was 45 kW/cm2 from 9.9% ample at 10 K, and 80 kW/cm2 

at 77 K, which is the lowest threshold reported in literature for GeSn lasers. The highest 

temperature operation of GeSn laser device was 180 K for 17.5% Sn sample. Moreover, the 

highest characteristic temperature was 103 K for 11.4% Sn sample. Low and high-resolution 

modes were studied. The spacing mode of sample C was 0.36 meV at power density 340 kW/cm2 

and 10 K.  
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7.1.5   Summary of Key Observations  

 Thin GeSn film with a thickness below 150 nm is a direct bandgap around 10% Sn 

composition alloying to Ge. 

 The PL intensity of thin GeSn films increased at low temperature for direct bandgap and 

decreased for indirect bandgap.  

 The linewidth of GeSn spectra decreased with decreasing temperature for direct bandgap.  

 Raman spectroscopy showed a Raman shift to shorter wavenumber with increasing 

incorporation of Sn due to the change of lattice constant of GeSn alloys.  

 N-type doping shrinks the bandgap of GeSn compared to the same composition of Sn in 

undoped GeSn films. 

 The PL intensity of doped GeSn film is higher than un-doped GeSn film at the same Sn 

composition.  

 The thick GeSn films above 400 nm of thickness shows high-quality material compared 

to lower than 400 nm thickness due to the relaxation of GeSn film with increasing the 

thickness of the GeSn layer.  

 Most of the defects were seen in the first layer of GeSn around 200 nm of thickness; the 

top GeSn layer(s) was almost strain- and defect-free.  

 There was a big enhancement in the PL intensity of thick GeSn films; some samples 

showed the integrated PL intensity at 10 K was 50 times more than the value at RT. 

 GeSn material of more than 400 nm thickness was a direct bandgap at 7.3% Sn due to the 

relaxation of films.  
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 Thick GeSn samples (> 400 nm) indicated that GeSn films are a good candidate for 

lasing because of the high gain through increasing the power excitation injection of the 

laser source.   

 Optically pumped edge-emitting GeSn lasers were achieved from thick bulk GeSn as 

active regions. 

 GeSn lasers were achieved at different Sn compositions and GeSn thicknesses. 

 The laser wavelength operation covered from 2 to 3 µm. The longest GeSn laser 

operation wavelength was 2987 nm at 180 K.  

 The lowest lasing threshold value achieved, 45 kW/cm2 at 10 K, was 30% lower than the 

previous lowest reported value, 68 kW/cm2 [85]. 

 The highest temperature operation of GeSn laser was 180 K.  

 The highest value of characteristic temperature was 103 K.  

 

7.2   Future work 

            Achieving lasers from group IV semiconductors will require a lot of attention in 

developing these lasers.  Optically pumped lasers from bulk GeSn are the first main step. There 

are several directions which need to be followed and are explained in the following suggestions.  

 

7.2.1 Optimize the bulk GeSn lasers using DHS 

There are many factors that impact the bulk GeSn lasers, such as the thickness of each 

layer and the composition of the active region. From experimental results of GeSn lasers, the 

samples that have structures with a Ge cap show better results due to the enhancement of carrier 

confinement. However, optimizing the thickness of Ge layer can improve the performance of 
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DHS of bulk GeSn lasers. The enhanced carrier confinement is the main factor in reducing lasing 

threshold and increasing the efficiency and output power of devices.  

 

7.2.2 Study of doped GeSn lasers 

From PL study, doping strongly impacts the PL intensity and shrinks the bandgap of 

GeSn. Therefore, the study of the doped GeSn lasers is attractive for several reasons. First, the 

lasing wavelength from doped GeSn is longer than that for undoped GeSn of the same Sn 

composition. Second, the temperature operation can be increased toward a room temperature.   

 

7.2.3 Quantum Wells GeSn lasers 

The QW structure is desirable for semiconductor lasers. There are many interesting 

characteristics for QWs to be used as the active region of lasers.  First, QWs have better carrier 

confinement. Second, the lasing threshold of QW lasers is very low compared to the bulk 

structure.  Third, it can operate at room temperature. Fourth, the linewidth of the laser is 

narrower due to the transition between the very defined quantized energy of levels in the well 

area. Several types of GeSn QW laser structures have been theoretically designed and 

investigated. These structures are designed to obtain Type-I band diagram direct bandgap GeSn 

to be used as an active region for lasers. Many groups have experimentally investigated both 

single and multi- QW GeSn with different types of barriers, such as GeSn, SiGeSn, or Ge. The 

barriers increase quantum confinement. However, the barrier should be designed with the exact 

composition of each element to be lattice matched between wells. The quantum well structures 

help with reducing lasing threshold and reaching to RT operation. Demonstrating QW GeSn 

lasers will be a great achievement for developing integrated photonic applications.  
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7.2.4 Electrically injected GeSn lasers  

Obtaining electrically injected GeSn lasers is the final target for all previous 

achievements of GeSn lasers. Electrically injected lasers are more complicated due to the need 

for doping and building of NIP or PIN structures. Many NIP/PIN GeSn structures were 

investigated for LEDs applications [109]. However, no electrically injected GeSn laser has been 

demonstrated yet.  There is a need for direct bandgap GeSn layers with enough doping 

concentration for n- and p-type doping. However, recent achievement of optically pumped GeSn 

for bulk and micro-disk will lead toward to demonstrating the first electrically injected GeSn 

laser.  
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Appendix A. Knife-Edge Method to Calculate the Gaussian Beam Size of Laser 

The power density was calculated based on the knife-edge technique that is detailed in 

the Refs. 1 and 2. In order to calculate the power density, two parameters need to be determined: 

1) the peak power of the pumping laser, and 2) the effective laser spot area that was 

homogenously shined on the waveguide device. The peak power was calculated by dividing the 

average power (read by power meter) over the duty cycle (2.7 × 10-4 s) of the pumping laser. 

The following method was used to calculate the effective laser spot area: the focused laser beam 

after the cylindrical lens has a rectangular shape. The well-known knife-edge technique was 

exploited to realize the focused laser beam uniformity profile. The transmitted laser power was 

measured while sliding a micrometer-mounted sharp-edge blade through the focused beam. 

Thus, the laser spot area that has a uniform distribution of the power was measured. Based on the 

measurement, the area was calculated as 6 × 10-4 cm2. 
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Appendix B: Description of Research for Popular Publication. 

Si-based technology has been developed very fast in the last few decades. It is involved 

in numerous fields in the semiconductor industry. Integrated optoelectronic and photonics is one 

of the most important areas due to the reduction of size in a lot of applications. The main 

challenge is to integrate many optoelectronic components on a chip and still be compatible with 

CMOS processing Emitting devices such as LEDs and lasers are strongly needed in integrated 

photonics. Group IV elements, that are compatible structures to Si, have low efficiency for light 

emitting applications due to the nature of the indirectness of their bandgaps. Several approaches 

have been taken to make lasers from group IV materials such Si-Raman lasers, and heavy doped 

Ge lasers. However, there were many weaknesses such as low efficiency, high cost for doping, 

and high input power due to the high losses for these lasers. Even though III-V lasers are good 

light sources, integrating them on Si substrates requires different integration approaches such as 

wafer-bonding or direct growth and are still expensive.  

In the last few years, it was theoretically proven that GeSn could be a direct bandgap 

material with Sn composition of 6 to 10%. After that, it was experimentally reported. Achieving 

direct bandgap material from group IV opens new interesting opportunities for integrated 

photonics for different reasons: (1) compatible with CMOS process; (2) monolithically grown on 

Si; (3) low cost; and, (4) covers a wide range of wavelengths in short and mid-infrared due to 

tunability of GeSn with change of the Sn composition.  

Optically pumped edge-emitting lasers were demonstrated by Sattar Al-Kabi who is a 

Ph.D. candidate in the Microelectronics-Photonics graduate program at the University of 

Arkansas. The GeSn lasers cover 2 to 3 µm wavelength with the highest temperature operation, 

180 K, and lowest lasing threshold, 45 kW/cm2. This superior laser performance can lead 
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forward into electrically injected GeSn for room temperature operation. There are several groups 

around the world who work on SiGeSn/GeSn, however, the University of Arkansas group is one 

of the main leaders in this area. A direct bandgap GeSn was experimentally proven by Dr. Yu’s 

group. Dr. Shui-Qing (Fisher) Yu, Professor of Electrical Engineering, has led the group for 

many breakthrough achievements. Tens of peer-reviewed papers have been published in 

scientific journals and conferences that show the impact of this group in the GeSn/SiGeSn field.  
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Appendix C: Executive Summary of Newly Created Intellectual Property  

1- Demonstrated GeSn lasers covering 2 to 3 µm of wavelengths with the lowest lasing 

threshold and highest temperature operation using high quality GeSn grown with several 

Sn compositions up to 17.5 %. 

2- Integrated many laser sources for photoluminescence and optical pumping setups 

measurements with an easy method to switch between laser sources and cryostats. 
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Appendix D: Potential Patent and Commercialization Aspects of Listed Intellectual 

Property Items  

D.1 Patentability of Intellectual Property (Could Each Item be Patented)  

1. ASM company is the owner of the intellectual property for the growth of high-quality 

GeSn.  

2. The integration of many lasers and optics setup for PL and optical pumping 

measurements could not be patented since it would be obvious to researchers skilled 

in this field.  

D.2 Commercialization Prospects (Should Each Item Be Patented) 

1. ASM has a patent of the high-quality GeSn growth techniques. 

(#US20170154770 A1). 

2. Not applicable 

D.3 Possible Prior Disclosure of IP        

1. The results of a demonstration of the optically pumped GeSn lasers were publicly 

disclosed in a journal article (Applied Physics Letters 109, 171105, (2016)). 

Furthermore, other optically pumped GeSn lasers results that cover 2 to 3 µm of 

wavelength and with high Sn composition up 17.5% are under submission to Nature 

Photonics (2017).  

2. Not applicable   
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Appendix E: Broader Impact of Research  

E.1. Applicability of Research Methods to Other Problems  

Achieving optically pumped edge-emitting GeSn lasers results in this dissertation led to 

developing GeSn lasers with different structures, such as DHS and QWs for optically and 

electrically injected lasers. Moreover, it can be applied to achieving optically pumped SiGeSn 

lasers for short infrared applications.  

E.2. Impact of Research Results on U.S. and Global Society  

Monolithically and direct bandgap lasers from group IV is an interesting achievement to 

provide new methods for integrated photonics. Normally, GeSn is a cheap material which 

enables development for future laser applications in short and mid-infrared range. The number of 

research groups investigating SiGeSn/GeSn has increased in the last few years due to the 

importance of this area. Optimization of the GeSn lasers and achieving RT lasing operation of 

this material will make a big change in the industry for laser applications due to the low cost and 

wide range that can be covered using GeSn lasers.  

E.3. Impact of Research Results on the Environment  

 The GeSn lasers with 2 to 3 µm range are very important for sensing applications. The 

absorption of many gases, such as CO, CO2, C2H2, and CH4 is located at wavelengths between 2 

to 3.4 µm. This range can be covered with GeSn lasers, so can be used as sensing for these gases. 

Making cheap GeSn lasers for sensing these gases can help in controlling emission of the gases 

into the environment.  
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Appendix F: Microsoft Project for Ph.D. MicroEP Degree Plan  
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Appendix H: Identification of All Software Used in Research and Dissertation Generation 

Computer #1: 

Model Number: Sony 

Serial Number: SVS131190X 

Location: Personal Laptop 

Owner: Sattar Al-Kabi 

Software #1:  

Name: Microsoft Office 2016 

Purchased by: Electrical Engineering Department, University of Arkansas 

Software #2:  

Name: Microsoft Project 2016 

Provided by: Microelectronics-Photonics, University of Arkansas 

Software #3:  

Name: Matlab R2016a Student Version 

Provided by: University of Arkansas 

Software #4:  

Name: Origin Lab 

Serial Number (2013-2014): GA3S4-6089-7208492 

Serial Number (2015): GA3S4-6089-7210853 

Serial Number (2016): GA3S4-6089-7211957 

Serial Number (2017): GA3S4-6089-7218359 

Purchased by: Sattar Al-Kabi  

Software #5:  

Name: 1D and 2D TEM Solver 

Provided by: Free online link available  

Computer #2: 

Model Number: Dell Inspiron 

Serial Number: 52M6XK1 

Location: ENRC Room 2923 

Owner: Dr. Shui-Qing Yu 

Software #1:  

Name: SynerJY with built-in Origin software 

Purchased by: Dr. Shui-Qing Yu 

Software #2:  

Name: LabVIEW 2016 

Purchased by: Electrical Engineering Department, University of Arkansas 

Computer #3: 

Model Number: Dell Vostro 

Serial Number: 52M6XK1 

Location: ENRC Room 2923 

Owner: Dr. Shui-Qing Yu 

Software #1:  

Name: SynerJY with built-in Origin software 

Purchased by: Dr. Shui-Qing Yu 

Software #2:  
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Name: LabVIEW 2016 

Purchased by: Electrical Engineering Department, University of Arkansas 
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