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Abstract 

The craft beer industry is increasing in popularity in the United States. The craft brewing process 

typically does not use a pasteurization step, therefore the boiling process is the primary critical 

control step. Any microorganisms introduced after boiling, or those that are not killed during 

boiling, are likely to participate in fermentation and persist in the final product. Previous culture-

based studies have isolated bacteria and yeast from craft beers at specific time points, but little 

research has been done on the process as a whole. The objectives of this research are to (1) track 

bacteria development throughout the brewing process and (2) compare these results to 

environmental samples. Two craft breweries in Arkansas were used. Five beer styles were 

sampled, each for two batches. Swab samples were taken of the mash tun, boil kettle, and the 

fermentation tank. Samples of the raw material include the grain, hops, and any additional 

ingredient added during the process. Beer samples were taken at each stage of the brewing 

process, starting at the mash tun and ending with the final product. High throughput sequencing 

using the Illumina MiSeq was used to identify bacterial DNA. Results show that there were few 

differences between the breweries. Equipment swab microbiota was similar in bacterial 

composition to the beer microbiota associated with that process. Most of the bacteria found in the 

malt is typically isolated from soil and the environment. The boiling step reduced some bacteria 

abundance, but some bacteria were introduced after this step. Filtering had no impact on 

reducing microbial abundance. This research provides the first extensive microbiota research of 

craft beers in Northwest Arkansas, allows craft brewers to have a better understanding of the 

microbiology of their product, and will initiate further research about the role that 

microorganisms play on the quality of the beer. 
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1. Overview of craft brewing specificities and potentially associated microbiota 
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1. Introduction 

 Beer is the third most popular drink worldwide after tea and coffee, and is the most 

preferred alcoholic beverage (Swot, 2016). In contrast with wine or other spirits, beer (including 

non-alcoholic types in countries that forbid alcohol consumption and sales) is produced and easily 

available commercially in most countries (Jernigan, 2000). China produced the largest volume of 

beer in 2014 at 44,933,300 kiloliters with the United States ranked at number two, producing 

22,547,400 kiloliters (Anonymous, 2015a). Beer consumption per capita ranges from less than 50 

liters to more than 150 liters in Ireland and Czech Republic. The United States consumes around 

75 liters per capita. (Alcázar et al., 2002). Overall, the brewing industry is a global business 

dominated by a few multinational companies and thousands of smaller producers, producing tens 

of billions of liters and generating several hundred billion dollars in global revenues (Anonymous, 

2015b; Jernigan, 2009). 

 Most beer consumed in the United States is produced by large, industrial breweries which 

rely on very stringent practices to limit spoilage risk and variation in the final product (Vrellas and 

Tsiotras, 2015). While the economic benefits of these industrial processes are numerous, many 

consumers have been drawn to craft beer due to their novel organoleptic properties. Increased 

demand for original beer products has resulted in a drastic increase in the home-brewing and 

microbrewery markets (Aquilani et al., 2015). 

 As a fermented beverage, beer inherently relies on microbial metabolism for production. 

Traditionally, the yeast Saccharomyces cerevisiae is almost always the primary fermentation 

microorganisms involved in ethanol and carbon dioxide production (Lodolo et al., 2008). It is also 

known that S. cerevisiae imparts sensory characteristics through a variety of other metabolic 

pathways (Cocolin et al., 2011). Industrial beer production processes, especially pasteurization of 
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the final product, are purported to reduce the presence of other microbes to less than detectable 

levels (Jeon et al., 2015). On the other hand, craft brewing processes are known to only limit the 

development of such microbes. Common beer spoilage microbes are relatively well described, but 

very little is known about the arguably more diverse and variable microbiota associated with craft 

beer. 

The objective of this chapter is to review current literature about the craft brewing industry 

from a microbiology perspective. The craft brewing specificities will be delineated in relation with 

the potential for uncontrolled microbes’ establishment. Potential sources of contamination and 

strategies to reduce microbial load will be presented. Furthermore, the types of microorganisms 

and their detection methods will be discussed. This review will emphasize the limited knowledge 

on craft beer microbiology and the need for further research. 

 

2. Evolution of beer production and craft brewing emergence  

2.1 Historical perspective 

Modern beer is an alcoholic beverage made from four main ingredients: malted grain, 

water, hops, and yeast; which has been perfected through time (Meussdoerffer, 2009). The origin 

of fermented beverages is unclear, and it is argued that they may have been consumed by nomadic 

Neolithic populations. Between the years 2000 and 4000 B.C., the Egyptians and Sumerians 

developed the process for brewing beverages that more closely resemble modern beer, though a 

variety of fermented beverages based from different food were independently developed by other 

civilizations (Correa-Ascencio et al., 2014; McGovern et al., 2004; Paul Ross et al., 2002). Beer 

brewing remained largely artisanal until the industrial revolution, with a few European countries 

(Germany, Belgium, and England) taking the lead in mastering brewing processes and developing 
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specific styles. With the discovery of America, German immigrants brought with them lager beer 

recipes (Meussdoerffer, 2009). Lager was the preferred beer style because of its light color and 

flavor (Olson et al., 2014). Many people also distrusted the quality of the water, therefore beer was 

the preferred beverage (Beuchat, 1978).  

Although the discovery of yeast as the fermenter didn’t occur until 1860, fermentation was 

used as early as 700 BC in China to preserve foods and beverages  (McGovern et al., 2004; Sicard 

and Legras, 2011). Early fermented beverages are assumed to have utilized airborne or plant yeast 

(Meussdoerffer, 2009). The yeast Saccharomyces cerevisiae was and currently is used to ferment 

beer, but also wine and bread. The history of the domestication of yeast is not completely known. 

This is mainly because very few yeast strains have been isolated from nature (Sicard and Legras, 

2011). This leads to the common belief that Saccharomyces cerevisiae has been domesticated as a 

result of mankind’s use of the yeast in fermented alcoholic beverages and bread (Fay and 

Benavides, 2005). 

 

2.2 Craft brewing emergence 

As mentioned, lagers were originally the beer of choice in the United States dating back to 

its discovery. However, today there has been an increase in popularity of beers with rich flavors 

and aromas that utilize new ingredients (Aquilani et al., 2015; Canonico et al., 2014). The market 

share of craft beers has been gaining on that of international and national breweries, with most 

attention on microbreweries and brew pubs (Murray and O'Neill, 2012). Craft beer does not have 

a specific definition or clear boundaries, but the Brewer’s Association describes a craft brewery as 

small, independent, and traditional (Anonymous, 2016). A craft brewery has an annual production 

of no more than 6 million barrels of beer. No more than 25% of the brewery can be owned by an 
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alcohol industry member that is not a craft brewer. Finally, a craft brewery is traditional in that 

most of the beverage alcohol by volume comes from beer brewed with traditional or innovative 

ingredients and is fermented by yeast (Anonymous, 2016). The addition of fruits, herbs, and spices 

can transform ordinary beer into specialty beer, along with other flavorings and fermentable 

substrates (Aquilani et al., 2015).  Craft breweries are focused on the production of traditional ales, 

lagers, and even beer styles that do not fit in any of the two main styles; and compete on the market 

on the criteria of high quality and diversity (Marongiu et al., 2015). 

The craft brewing industry has become increasingly popular in the United States just in the 

last several years. Craft breweries in the United States are seeing large growth in production, sales, 

brewing capacity, and employment (Marongiu et al., 2015; Anonymous, 2016).  There was a 

16.2% increase in the number of craft breweries nationally from 2015 to 2016, with a total of 5,234 

in 2016. Craft breweries account for 98.7% of the total number of breweries in the United States, 

as of 2016 (Anonymous, 2016). 

In Arkansas, as of 2015, there are twenty-six craft breweries with 1.2 breweries per 100,000 

21 and older adults. This number increased drastically from six breweries in 2011. About 24,623 

barrels of craft beer are produced in the state per year. This trend is similar among the rest of the 

states in the country, and it appears to be continually increasing as craft beer becomes more popular 

(Anonymous, 2016). A beer is considered craft when it is produced in small breweries and follows 

traditional recipes without pasteurization. Pasteurization is usually a practice only found in 

commercial production breweries (Jeon et al., 2015). This makes craft beer more vulnerable to 

microbial contamination than industrial beers (Giovenzana et al., 2014).  
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3. Craft brewing process specificities 

In this section, the emphasis will be on the differences between craft brewing process 

compared to industrial-scale processes which are well described and reviewed elsewhere (Beuchat, 

1978; Priest and Campbell, 2003). 

 

3.1 Raw ingredients and mashing 

Beer has commonly been produced from barley and less often from wheat. However, novel 

consumer trends have led to the evaluation of different grain types for beer production. To develop 

gluten-free beers (Hager et al., 2014), sorghum (Agu and Palmer, 1998; Owuama, 1997) and rice 

(Teramoto et al., 2002) are now used by several craft breweries. Other grains or seeds used by craft 

brewers include rye, millet, spelt, and buckwheat (De Meo et al., 2011; Phiarais et al., 2010). While 

rhizosphere microbiota (Lindow and Brandl, 2003; Bulgarelli et al., 2015) and plant pathogens 

(Beattie and Lindow, 1995; Goodwin et al., 2011) have been studied extensively, there is only 

limited indirect knowledge on the commensal microbiota associated with cereals and grain crops 

(Sultan et al., 2016; Duniere et al., 2017; Granzow et al., 2017). It is suspected that grain associated 

microbes may end up to a certain extent in final beer products, but this has not been demonstrated.  

The grains used contain large amounts of starches and sugars which will later serve as 

nutrients for brewing yeast and sometimes bacteria (Mascia et al., 2014). Starches are converted 

into fermentable sugars and polysaccharides through germination enzymes released through grain 

germination, the main step of malting. Malting consists of steeping (increasing humidity), 

germination, and kilning (heat treatment to dry malted grains). While industrial beer relies on 

standard malting processes, a staggering diversity of malts is now produced and made available to 

home and craft brewers (Anonymous, 2015c). The most important variation in malts’ processing 
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are the intensity of kilning, which is sometimes described as roasting when very high heat is used 

(Hämäläinen and Reinikainen, 2007). Steeping and kilning can greatly influence grain-associated 

microbiota dynamics in composition. 

It is also known that barley varieties will strongly influence fermentation and final product 

properties (Hager et al., 2014; Kihara et al., 1998) and possibly indirectly microbiota. Malts are 

milled and/or crushed by the malting company or on site by brewers, and diluted in hot water to 

become the mash. Milling and crushing may influence grain-associated microbiota, though they 

should be relatively resilient to coarse mechanical treatments (Manthey et al., 2004). 

 

3.2 Sparging and boiling 

After the sugars are made available, the sweet liquid, also known as wort, is separated from 

the spent grains. During this process, wort is pumped through to the boil kettle as the spent grains 

are sparged, or sprayed with hot water, to extract any other dissolved substances (Beuchat, 1978). 

The wort is then boiled at a temperature between 103 and 110°C for approximately one hour 

(Ormrod, 1986). Hops are added during the boil, at different times depending on the desired use 

of the hops. Boiling isomerizes the hops, causes proteins to coagulate for easy removal, 

concentrates the liquid, causes Maillard reactions to enhance the color and flavor of the wort, and 

drives off sulfur componds which could lead to a cooked corn or cabbage aroma in beer if not 

removed (Beuchat, 1978; Vriesekoop et al., 2012). Boiling can also drastically reduce the 

microbial load in wort to undetectable levels. After boiling, the wort is cooled and microorganisms 

can increase in abundance due to its high sugar content and lower temperature (Kim et al., 2015). 
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3.3 Fermentation and final stages 

The cooled wort is transferred to a fermentation tank in which yeast is added and left to 

ferment for several days up to one week. Yeast is often re-pitched in a craft brewery, meaning 

the yeast from one batch of beer is used to ferment a future batch. Re-pitching yeast is generally 

limited to less than ten times to avoid yeast quality degradation (Jenkins et al., 2003). Yeast in 

better condition will produce less fusel alcohols and more sulfite than old or contaminated yeast 

(Guido et al., 2004). The practice of re-pitching yeast can cause deterioration by cross 

contamination with other cultures or wild microorganisms, causing genetic changes to the 

original culture or causing physiological changes due to stress (Lodolo et al., 2008). While 

genetic drift and eventual speciation of novel strains/species could be expected, it has been 

reported that Saccharomyces strains used for brewing are genetically stable (Powell and Diacetis, 

2007). Pitching rate of yeast also affects final quality of beer. Higher pitching rates allow for an 

increased rate of fermentation, but it creates large quantities of yeast biomass. Excessive pitching 

rates can degrade the health of the yeast culture (Kucharczyk and Tuszyński, 2015). 

Some beers are filtered for clarity before packaging, depending on the brewer’s preferences 

and style. Filtering can be done using cellulose fibers or particles of diatomite as a medium (Gan 

et al., 2001; Niemsch and Heinrich, 2000). Isinglass can also be used as a fining agent to clarify 

beer (Walker et al., 2007).  Simple filtering removes flocculant yeast but has no effect on reducing 

bacterial load (Sensidoni et al., 2011). However, more elaborate alternative methods, such as high 

hydrostatic pressure, have shown potential to reduce microbial load in beer as efficiently as 

pasteurization (Buzrul et al., 2005). Industrial breweries may use pasteurization to sterilize beer, 

and fill the beer into sterilized containers (Dilay et al., 2006). In a craft brewery there is usually 

not a pasteurization process, though. Unpasteurized beer has a more appealing and fresh taste to 
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modern consumers (Asano et al., 2007), but this makes craft beer more prone to bacterial spoilage. 

For example craft brewers have reported loss of canned beers due to gas production of unidentified 

microbes (personal communication).  

 

4. Beer parameters and impact on microbial load 

4.1 Beer styles defined  

Beer is classified in numerous styles based on their properties including alcohol content, 

color, bitterness, clarity, flavor, and ingredients. Alcohol content is measured in alcohol by volume 

(ABV). ABV is calculated using the original and final gravity of the beer. Beer ABV typically 

ranges from 3 to 14% when normal fermentation is used, but the most commonly consumed styles 

don’t exceed 6%. Alcohol content has traditionally been considered an inherent antimicrobial, 

however it has become known that several microbes are able to tolerate low to medium alcohol 

content (Ingram, 1990). Alcohol tolerance in Saccharomyces is a trait that has been considered 

beneficial and sought after, especially in winemaking (Fujita et al., 2006). 

Bitterness is measured in International Bitterness Units, or IBUs. IBU is calculated using 

the percentage of alpha acids, the utilization of iso-α-acids based on the strength of the wort 

(original gravity), the boil time, and the volume of the recipe (Anonymous, 2012). A higher alpha 

acid hop will result in a more bitter beer and a longer boil will also increase IBUs. Hops provide 

antimicrobial properties, to be described in detail in section 4.2. 

The color of a beer can be measured by the Standard Reference Method, or the SRM scale. 

The colors correspond to a number ranging from 1 to 40. The rating is based on the absorbance of 

turbidity free beer in a ½ inch cell at a wavelength of 430 nm (Anonymous, 1958). A light beer 
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such as a lager will have an SRM of 2 to 4. A dark imperial stout beer has an SRM of 40 (Strong 

and England, 2015). 

Gruit (a mixture of herbs and spices) previously was the distinguishing factor of ales from 

other fermented beverages, whereas today beers are categorized as ales and lagers by the yeast 

used for fermentation. Ales are brewed with top-fermenting yeast, typically Saccharomyces 

cerevisiae strains, with fermentation conducted at 20°C (Beuchat, 1978). Common styles in craft 

breweries include: American Pale Ale, Wheat beers, India Pale Ale (often abbreviated as IPA), 

American Brown Ale and Belgian Golden Ale. (Strong and England, 2015). 

Saccharomyces pastorianus (or Saccharomyces carlsbergensis) is generally accepted as 

the fermentation yeast used for lagers and fermentation is carried out at 13°C. Lager yeasts 

congregate at the bottom of fermentation tanks and result in a lighter, cleaner flavor than ales 

(Beuchat, 1978). Lager and ale yeasts have specific fermentation temperature ranges and an 

increase in temperature could deteriorate the yeast, reduce foam stability, decrease pH, and reduce 

bittering compounds (Solgajová et al., 2013). 

Ales and lagers are the most common beer styles today, however, there are several other 

different variations of the beverage. For example, lambic beers are those that use spontaneous 

fermentation, rather than inoculation with a yeast strain. These beers are fermented and aged 

anywhere from one to three years in oak barrels and are native to Belgium. The unique flavors of 

this style are fruity and sometimes sour (De Keersmaecker, 1996). During the first couple months, 

Enterobacteriaceae are the most prominent bacteria, but disappear later in fermentation. The first 

yeast to appear, Kloeckera, occurs within the first couple of weeks after wort boiling. This yeast 

is quickly taken over by Saccharomyces, which perform the main fermentation over the next 

several months (Van Oevelen et al., 1977). Finally, Brettanomyces takes over as the last main yeast 
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to impart characteristic flavors and aromas (Van Oevelen et al., 1976). Although lambic beers have 

a diverse microbiota at the beginning stages of fermentation, the diversity and quantity of 

microorganisms stabilizes by 18 months (Spitaels et al., 2014). 

In the United States, a similar lambic-style beer is being brewed called the American 

coolship ale. This style is an attempted replica of a lambic beer utilizing spontaneous fermentation 

and using the same production practices as the brewers in Belgium of lambic beers. The 

successions found in American coolship ales closely mimic those of the lambic beers, with 

Enterobacteriaceae being the starting bacteria and Lactobacillaceae taking over. Saccharomyces 

is the starting yeast with the disappearance of it coinciding with the growth of Brettanomyces 

(Bokulich et al., 2012a).  

Barley and wheat are the most common grains used in brewing, but several other fermented 

beverages are made using different starch sources. Although these beverages are described 

elsewhere (Blandino et al., 2003), there are notable characteristics of the microbiota of some. For 

example, ‘cauim’ is a fermented beverage produced in South America made from cassava root. 

This beverage starts as a porridge and ferments for a couple of days. Typical microbiota of the 

‘caium’ beverage is predominately lactic acid bacteria and species belonging to Enterobacter, 

Serratia, Pseudomonas, and Streptococcus genera. Yeast begin playing a role in this product’s 

fermentation after the first day (Almeida et al., 2007). Chicha beer is another traditional South 

American beer produced from corn, cassava, or palm. The bacterial community of chicha beer 

consists mainly of Lactobacillus fermentum, Lactococcus lactis, Leuconostoc mesenteroides, and 

Streptococcus salivarius, with other bacteria species being less abundant (Freire et al., 2016). A 

similar microbiota has been shown for a rice-based Brazilian beer, with Bacillus, Enteroccocus, 

Leuconostoc, and Lactobacillus being in highest abundance (Puerari et al., 2015). 
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4.2 Antimicrobial properties  

 There are several factors that contribute to the preservation of beer which have been studied 

extensively. These characteristics include intrinsic factors such as pH and ethanol concentration, 

the use of hops, and sanitation in the brewery. 

 The two most important intrinsic antibacterial properties of beer are pH and ethanol. Most 

pathogenic microorganisms prefer a more neutral environment and beer ranges in pH between 3.8 

and 4.7 (Jespersen and Jakobsen, 1996). Lower pH values allow for acidification of cells, destroys 

enzyme systems, and reduces nutrient uptake (Vriesekoop et al., 2012). Alcohol is usually found 

in a concentration of 0-8% alcohol by volume (ABV) (Jespersen and Jakobsen, 1996). Most 

microorganisms do not tolerate high ethanol concentrations because it can inhibit cell growth and 

metabolism (Fujita et al., 2006).  

Carbon dioxide that is produced by the yeast and added by the brewers can be an 

antimicrobial hurdle. Carbon dioxide is typically found in a concentration of 0.5% weight by 

volume (Jespersen and Jakobsen, 1996). Carbon dioxide helps to provide an anaerobic 

environment, decreases pH, and has a direct inhibitory effect on cell growth (Vriesekoop et al., 

2012). A reduction in CO2 concentration in beer can ultimately reduce shelf life (Brocklehurst and 

Lund, 1990). 

Fermentation yeast are often competitive with other microorganisms, thus eliminating the 

contaminants from the final product. There are only trace amounts of substances for yeast nutrition, 

so the yeast will consume the sugars before any other bacteria or yeast can (Sakamoto and Konings, 

2003; Vriesekoop et al., 2012). 
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4.3 Hops 

Hops were originally used in beer because of their bitterness. However, it was eventually 

discovered that hops were a big factor in controlling spoilage. Hops contain alpha acids which 

isomerize into iso-α-acids during boiling, in concentrations of 17-55 mg, of which impart 

bitterness and antimicrobial properties (Jespersen and Jakobsen, 1996). Hops dissipate the 

transmembrane pH gradient to prevent spoilage organism growth in beer, acting as protonophores 

(Simpson, 1993). However, hops have a bactericidal effect on Gram positive bacteria only 

(Shimwell, 1937). Some lactic acid bacteria have developed resistance to hops and can grow in 

beer (Richards and Macrae, 1964; Sakamoto and Konings, 2003). 

 

4.4 Heat treatment and sanitation 

The overall brewing process affects the microbiological status of beer. Because mashing 

is a temperature intense process, most microorganisms present in the raw materials are unlikely 

to be transferred in large numbers to the final product (Couto et al., 2005; Kim et al., 2015). 

However, aerobic bacteria, lactic acid bacteria, coliforms, Pseudomonas, and yeast can still be 

present in low numbers after the mashing process (O'Sullivan et al., 1999). The boiling process 

also uses high heat, so pathogens that could be present before boil are not likely to remain post- 

boil. In one study where Salmonella Typhimurium, Staphylococcus aureus, Listeria 

monocytogenes, and Bacillus cereus were inoculated in wort before boiling showed that all 

pathogens were reduced to undetectable levels by culture dependent methods (Kim et al., 2015). 

Many craft breweries often utilize additional ingredients such as fruit juices and flavoring 

ingredients in innovative beers. These extra ingredients are often heat treated before being added. 

Many of the fermentation tanks in small breweries require multiple batches to fill. Because of 
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this, the yeast is pitched with the first batch of wort, to protect the beer from bacterial growth 

(Priest and Campbell, 2003). 

The microbiological safety of beer also depends on proper cleaning and sanitation practices 

in the brewery. Cleaning uses a detergent and removes soil from the substrate, whereas disinfection 

refers to the destruction of microorganisms to reduce the microbial load to a level that is not 

harmful to health or quality. Equipment in the brewery is made of stainless steel and the equipment 

is closed off to the environment (Priest and Campbell, 2003). The equipment is also designed for 

easy cleaning. For example, the fermentation tanks have a cone shape at the bottom, which is 

mainly used for harvesting yeast after fermentation, but is also helpful in removing sanitizer and 

cleaning agents straight out of the bottom (de Oliva Neto et al., 2004). Breweries utilize cleaning-

in-place (CIP), cleaning loops, and tank recirculation systems (Bremer et al., 2006; Chen et al., 

2012). Cleaning is usually done immediately after use, while sanitization occurs immediately 

before use to be the most effective. Disinfectants that are used should be compatible with plant 

materials, tolerant of hard water, non-foaming, nonirritating, economical, and have a low 

environmental impact. Hot caustic soda is the most common cleaning agent, used in a cycle of pre- 

rinse, cleaning with caustic, and a post- rinse (Manzano et al., 2011). Little research has been done 

on the effectiveness of current brewery cleaning practices on reducing/eliminating microbial 

contamination. 

 Even with these control measures to prevent spoilage in beer, some bacteria and yeast 

proliferate in the beverage imparting off-flavors and aromas. This can be desirable or undesirable 

depending on the style. As mentioned previously, lambic beers thrive on the diverse microbiota 

and depend on it to provide unique flavors and aromas (Van Oevelen et al., 1977). However, in 
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typical ales and lagers, any microorganisms present in the final product are considered 

contaminants.  

 

5. Sources of beer microbiota 

 It is generally accepted that beer is safe of pathogens, however, it is not uncommon for 

beer to be colonized with undesirable microorganisms. Sources of contamination can be from the 

raw materials, the process, and from the brewery environment. 

 

5.1 Raw materials 

The raw materials used in craft brewing include water, hops, malted grain, and yeast. Due 

to an increased market for special beers (Yeo and Liu, 2014), some additional ingredients can be 

used to add unique flavors and aromas to the beer such as fruit additives, spices, and flavoring 

ingredients. The microbiota of the ingredients is likely to influence the microbiota of the final 

product. 

 Barley is the most commonly used grain for brewing beer. In fact, 10% of the world barley 

crop is used for the production of beer (Kaur et al., 2015). The barley grain is covered in a husk 

that is normally inhabited by Eubacteria, Actinomycetes, filamentous fungi, and yeasts (Priest and 

Campbell, 2003). The grain is malted, milled, and mashed for the starch to convert to sugar to be 

used for fermentation. Lactic acid bacteria are naturally present on barley, so they can be found 

throughout the brewing process (Giusto et al., 2006). Cereal grains and fruits used in beer 

production can be contaminated in the field, during storage, or malting by mycotoxin-producing-

fungi (Kaaya and Kyamuhangire, 2006). Spores can be found in the air when the conditions for 

temperature, moisture, and oxygen are favorable. The spores then grow and produce mycotoxins. 
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Mycotoxins are generally thermostable and can remain in crops when all signs of the fungi itself 

have been removed (Inoue et al., 2013). 

Craft breweries use pre-malted grain as the starting point for brewing. This grain can be 

stored for months before use, which can affect the microbiota of the beer. At high water activities 

(0.8-0.9), visible mold can develop on the malted grain after just one month of storage. At slightly 

lower water activities (0.693), visible mold will appear after three months of storage. Malted grain 

can last up to 12 months of storage at low water activities below 0.529 (Hoff et al., 2014). 

 Many toxins have been known to metabolize into less toxic compounds or decrease in 

concentration due to adsorption of the spent grain during brewing. Zearalenone and patulin are 

two of the mycotoxins that were metabolized during the beer fermentation process, posing little 

risk to contamination in the final product. Aflatoxins B1 and B2, along with Fusarium1 and 

Orchatoxin A decreased in residual concentrations to less than 20% during the mashing process 

when inoculated artificially into the raw materials. This led to the disappearance of the toxins 

throughout the rest of the brewing process, showing that they are only of small health risk in beer 

(Inoue et al., 2013). Although these particular mycotoxins were not a threat to the final product in 

this study, other toxins can be of concern. 

During the brewing process, Aflatoxin B1 and Fumonisin B1 present on barley can 

contaminate beer. Although fermentation has antimicrobial effects, it does not decrease the amount 

of Fumonisin B1 when the toxin is found in the barley. Clarification processes fail to reduce 

amount of the toxin as well. Fumonisin has a high solubility in water and is relatively stable to 

heat treatments, therefore it can be found in finished beer products when it is present on the raw 

material (Pietri et al., 2010).  
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Grain is not the only source of unwanted microorganisms in the raw ingredients. Fruits are 

sometimes used in brewing because they can be a source of natural yeasts that ancient brewers 

utilized for fermentation (McGovern et al., 2004; McGovern, 2009). However, in the controlled 

craft brewing atmosphere today, these natural yeasts can be unwanted contaminants. Yeasts such 

as Geotrichum candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, Metschnikowia 

pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae are commonly 

isolated from fruits (Vadkertiova et al., 2012).  

 Spices can also contain microorganisms that could persist in the brewing environment. 

Spices can be contaminated from the environment by unsanitary conditions or when hygienic 

handling is not carried out. High microbial levels in spices are not acceptable to use in ready-to-

eat foods, and they can be a source of intoxication when added to foods in which pathogen 

growth is favorable (Sospedra et al., 2010).  

Although the brewing process includes many control steps to eliminate microorganism 

growth (mashing, boiling, and fermentation), some flavor additives are often added at the final 

step of craft brewing in the bright tank. Fruit juices, honey, and other flavoring ingredients can be 

added to craft beer to provide a unique flavor profile, but also their own foodborne microbes 

(Janisiewicz et al., 2014; Abdelfattah et al., 2016). Some of these may be heat treated before 

adding, however, the increased amount of sugar could increase the overall susceptibility of the 

beer to spoilage. After the beer is finished aging in the bright tank, it usually is immediately 

packaged, thus if there are any microorganisms present in the ingredients added here, it will persist 

in the finished product. 
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5.2 Brewery environment  

 The last major source of contamination in a brewery is the brewery environment. Air, 

pipework, and equipment can all be potential sources. The microbiota of a brewery can be quite 

diverse and most equipment shows distinct microbial clustering based on function. For example, 

fermenter samples cluster around Bacillaceae whereas wort prep is associated with 

Enterobacteriaceae, Leconostocaceae, Candida, Pichia, and Rhodotorula found in one study 

(Bokulich et al., 2015). Sources of surfaces’ microbiota were predicted using the Bayesian 

technique source tracker (Knights et al., 2011). Grains contributed mostly to the mash, pre- boil, 

and post- boil stage microbiota whereas hops contributed to fermentation areas and equipment. 

Outdoor air, soil, human skin, saliva, and feces  were all shown to play a very minor contribution 

to the microbiota of the brewery environment (Bokulich et al., 2015).  

 Seasonality plays a role in determining microorganism presence in the brewery as well. 

Saccharomyces cerevisiae is primarily found during fermentation and packaging areas in the fall, 

however, in the spring and summer the yeast is found throughout the entire brewery. Candida 

santamariae was found clustered around the mash and boil steps in fall, but in the cellar during 

the spring and summer months (Bokulich et al., 2015). 

Contaminants within the brewery will play a role on the microbiota of the product during 

the process. Thermotolerant bacteria and yeast that are present during mashing and boiling could 

attach and survive on these vessels in a biofilm (Fielding et al., 2007) and thus contaminate other 

batches.  During the mash process, airborne contaminants can drift from the mill to fermentation 

vessels, bright tanks, and packaging equipment. Microorganisms can also blow in from outside 

depending on the set up of the brewery (Priest and Campbell, 2003). Contaminated wort could 
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further infect the pipes that carry the wort throughout the brewery. Leaking or contaminated heat 

exchangers could cause an unsanitary work environment in the brewery (Bokulich et al., 2015). 

 

6. Types of microbes associated with beer 

The craft brewing industry faces spoilage contamination problems similar to those of early 

brewers in the nineteenth century (Priest and Campbell, 2003). Many different microorganisms 

can be introduced during the brewing process and cause spoilage. Spoilage in a brewery is defined 

as any organism not introduced intentionally (Bokulich et al., 2012b). Some microorganisms 

present may not influence the flavor or taste of the final product, but they can retard the progress 

of fermentation (Takahashi et al., 2015).  

The types of microorganisms found depend on the beer style and process. The microbial 

community of fermenting beer is often diverse and bacteria could survive in it. In a study designed 

to trace microbial diversity in a pilot scale brewing process using next generation sequencing and 

quantitative polymerase chain reaction detected that the bacterial population decreased during 

boiling, increased at early fermentation, slightly increased at late stage fermentation, and slightly 

increased again by filtration (Takahashi et al., 2015). These spoilage organisms can be divided into 

bacteria and fungi, and bacteria further dived by phylum. 

 

6.1 Firmicutes 

Firmicutes are a phylum of Gram positive bacteria. Gram positive bacteria are classified 

by their thick single layer of peptidoglycan, which stains purple by performing a Gram stain. The 

two classes of Firmicutes commonly reported in beer are Bacilli and Negativicutes. 
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Lactic acid bacteria belong to the Bacilli class and can cause spoilage characterized by 

silky, turbid aspect and/or a buttery flavor caused by diacetyl production. Lactobacillus brevis is 

the most common beer spoiler. It is generally hop tolerant and grows at 30°C and between pH 4 

and 5 (Sakamoto and Konings, 2003). Lactobacillus lindneri has been isolated from lagers and 

grows at 19°C (Priest and Campbell, 2003). Other spoilage strains include L. maloefermentans, L. 

paracbuchnerie (Farrow et al., 1988) L. collinoides, and L. paracasei subsp. paracasei (Hollerova 

and Kubizniakova, 2001). Streptococcus lactis can produce slime and gas in final products 

(Banwart, 1979). Spoilage is also characterized by an acidic off-flavor (Storåards et al., 1998). 

Pediococci are another genus among Bacilli. In beer, P. damnousus and P. inopinatus are 

spoilers that produce diacetyl (Dobson et al., 2002). Other Pediococci that have been found in 

breweries include P. acidilactici, P.dextrinicus, and P. halophilus (Collins et al., 1990). These 

bacteria can adapt to the brewery environment. Pediococcus damnousus is also very resistant to 

the iso-α-acids in hops. Acid formation and the buttery aroma of diacetyl formation is associated 

with contaminant strains of Pediococcuss in beer. Ropiness is also an unfavorable characteristic 

caused by Pediococcus (Priest and Campbell, 2003). Although Pediococcus is responsible for beer 

spoilage, the incidence of this has decreased recently due to improved sanitation conditions 

(Sakamoto and Konings, 2003).  

The third most common Gram positive bacteria that causes spoilage in beer is Leuconostoc. 

This is a heterofermentative cocci or oval, short rod. They are found in pairs or short chains. The 

natural reservoir for Leuconostoc is vegetables and fruits, but they can occur rarely in breweries 

(Priest and Campbell, 2003). In beer, they are also diacetyl producers (Speckman and Collins, 

1968). 
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Pectinatus and Megasphaera are two beer spoilers among the Negativicutes. Pectinatus 

frisingensis has been isolated from pitching yeast. Pectinatus can grow in beer with ethanol 

concentrations lower than 5% ABV and in pH above 4.3 (Jespersen and Jakobsen, 1996; Lee et 

al., 1980). Megasphaera causes cloudiness and unpleasant odors. Both genera also form butyric 

acid, but are sensitive to alcohol production and low pH. Because modern brewery practices 

include reduction of oxygen to as low as possible, these aerobic bacteria are not as prominently 

found in beer today (Jespersen and Jakobsen, 1996). 

 

6.2 Proteobacteria 

A major phylum of Gram negative bacteria is the Proteobacteria. Gram negative bacteria, 

rather than a thick layer of peptidoglycan, have a multilayered envelope that contains a thin layer 

of peptidoglycan and a hydrophobic outer membrane (Priest and Campbell, 2003). Acetic acid 

bacteria are a large group of Gram negative bacteria that are rod shaped and can convert ethanol 

into acetic acid. They can grow in and spoil beer, but only under aerobic conditions (Sakamoto 

and Konings, 2003). Acetic acid bacteria are used in the food industry to make vinegar, soft drinks, 

and alcoholic beverages (Camu et al., 2007; Wu et al., 2012). In general, acetic acid bacteria spoil 

beer by producing acid, off-flavors, turbidity, and ropiness. They are resistant to hops, low pH, 

and ethanol. This group of bacteria is further divided into Acetobacter and Gluconobacter. 

Acetobacter can oxidize ethanol into acetate, CO2, and water. Gluconobacter is similar to 

Acetobacter but reduces ethanol to acetic acid (Priest and Campbell, 2003) and is responsible for 

ropy texture in beer (Banwart, 1979).  

Another class of Gram negative spoilers is Enterobacteriaceae, which are facultative 

anaerobic rods. They are indirect beer spoilers because they are not normally found in the finished 
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product but can cause negative characteristics if present throughout the process. Characteristics of 

spoilage by Enterobacteriaceae include fermentation retardation or acceleration and off-flavor and 

aroma production (Prest et al., 1994). 

Enterobacteriaceae include Citrobacter, Enterobacter, Hafnia, Klebsielia, 

Obesumbacterium, Proteus, Rahnella, and Serratia that have all been isolated from breweries. 

Obesumbacterium proteus is a bacterium that has only been isolated from brewery environments 

and is often found in pitching yeast (Koivula et al., 2006). This Enterobacteriaceae can result in a 

beer with a high final specific gravity and pH and can give fruity odors or flavors (Keevil et al., 

1979). Rahnella aquatilis can grow well in hopped or unhopped wort. It also survives the brewing 

process when the wort has normal gravity (Hamze et al., 1991). Rahnella aquatilis can increase 

levels of acetaldehyde and methyl acetate and can give a fruity, milky, or sulfur taste and aroma 

(Priest and Campbell, 2003). Hafnia protea is found strictly in breweries (Priest et al., 1974). 

Other characteristics of anaerobic Gram negative spoilage include acetic acid and propionic 

acid production. (Priest and Campbell, 2003). Anaerobic bacteria incidence has increased due to 

the practice of non-pasteurized beer and improved technology to reduce oxygen in the brewery 

(Jespersen and Jakobsen, 1996). 

 

6.3 Other bacterial phyla 

 Although Firmicutes and Proteobacteria are the most common of the brewery phyla, some 

others have been detected. Micrococcus, belonging to the Actinobacteria phylum, have been 

reported in breweries (Sakamoto and Konings, 2003). Using next generation sequencing to detect 

microorganisms in beer, other phyla besides Firmicutes and Proteobacteria have been identified in 
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beer. Acidobacteria, Actinobacteria, Bacteroidetes, Chlamydiae, and Planctomycetes can all be 

present in low numbers throughout the brewing process (Takahashi et al., 2015). 

 

6.4 Fungi 

The third category of spoilage microorganisms found in beer is contamination fungi, which 

include yeast and mold. Before the boiling process, yeasts are of little concern to the brewery 

because yeast are not thermotolerant and cannot survive even the briefest of boiling procedures. 

There are four separate groups that wild yeasts can fall into: fermentative contaminants, killer 

yeasts, wrong type of culture yeast, or nonfermentative yeasts (Priest and Campbell, 2003).  

Contamination yeast sometimes grow slightly faster than the pitching yeast and will take-

over the pitching yeast culture through successive fermentations. In a study that aimed at detecting 

wild yeast in lager breweries, wild yeasts were detected in 41 out of 101 brewery yeast samples 

(van der Aa Kühle and Jespersen, 1998). Killer yeast attack sensitive yeast cultures and become 

the dominant yeast in fermentation. It is unlikely that these yeast will be detected in a brewery 

until the killer yeast has completely taken over the pitching yeast. Contamination yeast cultures 

can affect the rate of fermentation, final attenuation, and the production of flavor by-products.  

Typically, contamination yeasts are divided into Saccharomyces and non-Saccharomyces 

wild yeasts.  Non-Saccharomyces wild yeasts include a variety of species. Brettanomyces produces 

acetic acid (Coton et al., 2006; Gray et al., 2011) and has a high level of resistance to carbonation 

(Ison and Gutteridge, 1987). Pichia and Williposis can produce esters in beer. The most common 

characteristics of a spoiled beer by yeast is off-flavor, turbidity due to the nonflocculent properties 

of wild yeast, production of surface film, and granular deposits (Priest and Campbell, 2003). 

Candida is another contamination yeast that can produce fruity off-flavors and turbidity (Banwart, 
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1979). The fermentation yeast can also be considered a contaminant after the beer is filtered 

(Manzano et al., 2011). 

Mold and toxins can sometimes be found on raw materials and negatively impact the 

barley. Usually, fungi causes deterioration of grain which results in discoloration, decreased 

germination, formation of mycotoxins, and mustiness (Banwart, 1979). Mycotoxins are produced 

by Fusarium and are fairly heat stable. They are common contaminants of corn, wheat, sorghum, 

and fruits (Shale et al., 2012). More information on the types of mold and toxins found on the raw 

material can be found in the sources of contamination section. 

 

6.5 Beer as a pre-probiotic food 

There are a few health benefits from beer drinking, which may contribute to the increase 

in popularity. For example, beer can reduce the risk of cardiovascular disease (Grønbæk et al., 

1995), reduce blood cholesterol levels, and reduce the risk for dementia (Ruitenberg et al., 2002). 

Beer can also be a source of minerals, vitamins, fiber, and polyphenols which are good for human 

health (Yeo and Liu, 2014). Future research could involve adding functional ingredients in beer 

such as chitosan, which would inhibit the growth of lactic acid bacterial strains without affecting 

the viability of yeast (Gil et al., 2004). Using the beverage as a vehicle for delivering probiotics 

would be another example of furthering the functionality of beer (Yeo and Liu, 2014).  

 

7. Microbiota detection techniques 

In the quality control department of breweries, if they have one, the main tasks are to 

confirm sterility, determine that the microbiological count does not exceed the limit to cause 

spoilage, and examine for presence of specific organisms (Priest and Campbell, 2003). Analysis 
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in the brewery is predominately retrospective, meaning that the brewers typically expect a 

quality product and the objective is to confirm this. 

 

7.1 Culture dependent methods  

 Culturing is a method of using specific media to grow and enumerate bacteria. It is the 

preferred method used by craft breweries to detect spoilage organisms, however it does not provide 

specificity and sensitivity (Jespersen and Jakobsen, 1996; Manzano et al., 2011). Species-specific 

media has been developed to detect beer microorganisms (Manzano et al., 2011), but there is not 

one single media that can be used to detect all beer spoilage specific microorganisms (Jespersen 

and Jakobsen, 1996). MRS (de Man, Rogosa and Sharpe) agar can be used to detect Lactobacillus 

and Pediococcus bacteria and is often supplemented with cycloheximide to prevent yeast and mold 

growth. The detection of Pectinatus and Megasphaera can be accomplished with a beer 

enrichment step and using one or more types of media such as Universal Beer Agar (UBA), 

Nachweismedium für bierschädliche Bakteriën agar (NBB), and Raka-Ray media (Sakamoto and 

Konings, 2003). UBA has been used to isolate Enterobacter agglomerans from lager beer (van 

Vuuren et al., 1978). Some media, along with detecting the desired microorganisms, can also detect 

non-spoilage species. Although there are compounds that can be added for selectivity, this could 

require longer incubation times (Sakamoto and Konings, 2003). 

It is understood that less than 1% of microbiota in high diversity environments can be 

cultured using these traditional methods (Amann et al., 1995; Torsvik et al., 1990). Cultivating the 

microorganisms can also be a long and tedious process (Manzano et al., 2011). It can take a week 

or more for bacteria to form visible colonies on agar plates or to develop turbidity in broths 

(Sakamoto and Konings, 2003). Detection is also difficult because microorganisms present in beer 
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are found in low numbers (Jespersen and Jakobsen, 1996). Product that is found to have been 

contaminated with a spoilage organism has likely already been released for sale, which can lead 

to recalls and economic damages to a brewery (Sakamoto and Konings, 2003). Therefore, there is 

a need for the development of faster methods to detect microorganisms in beer. Other reasons for 

a need of improved methods of detection include an increased awareness of the consumer in the 

area of product quality, tightened government regulations, increased competition among brewers 

(in particular, craft breweries of the same region), growing market volumes for non-pasteurized 

beer in cans and bottles, more low or non-alcoholic beers, increasing numbers of flavored 

sweetened type beverages, and technological advancements (Priest and Campbell, 2003). 

 

7.2 Culture Independent Methods 

Several molecular methods have been identified for the use of detecting spoilage 

organisms in beer. Molecular methods involve analysis of deoxyribonucleic acid (DNA), 

ribonucleic acid (RNA), proteins, or lipids. Nucleic acids are informational macromolecules that 

have defined sequences which serve as blueprints for the cells (Priest and Campbell, 2003). 

Polymerase chain reaction (PCR) methods have been developed for the use of fast detection and 

can be used to detect Megasphaera and Pectinatus in beer (Satokari et al., 1998). Real time PCR 

can be used for early detection and quantification of contaminant yeast species, such as Dekkera, 

during fermentation and testing in final beer and beverage products (Gray et al., 2011). 

Anaerobic beer spoilage Clostridia bacteria have been targeted and detected in beer using real 

time PCR methods (Juvone et al., 2008). Random Amplification of Polymorphic DNA 

polymerase chain reaction (RAPD PCR) has been used to develop primers and genetic markers 



27 
 

to distinguish between beer spoilage and non-spoilage strains of Lactobacillus (Fujii et al., 

2005). 

Temporal Temperature Gradient Electrophoresis (TGGE) and Denaturing Gradient Gel 

Electrophoresis (DGGE) are different fingerprinting methods that can be performed after PCR 

(Manzano et al., 2011). The principle behind gel electrophoresis is that DNA will migrate through 

a gel under the influence of an electric field (Priest and Campbell, 2003). DGGE and TGGE 

separates sequences of DNA according to different melting conditions and forms a gradient on a 

polyacrylamide gel (Fischer and Lerman, 1983; Muyzer and Smalla, 1998).  TGGE and DGGE 

have been used to compare microbiota of beer before and after a cleaning process, and also to 

distinguish different strains of Saccharomyces (Manzano et al., 2011). Terminal restriction 

fragment length polymorphism (TRFLP) is also a fingerprinting method that is used for rapid 

profiling of complex microbial populations. This method has been used to compare barley 

microbiota from different geographical regions (Kaur et al., 2015). Microarrays can be used as a 

fast, sensitive, and specific method to identify different bacterial species in a sample. For example, 

one study used this method to detect viable spoilage bacteria in beer (Weber et al., 2008). 

 Whole Genome Sequencing (WGS) gives the most complete understanding of the genetic 

information of a single microorganism, such as the beer fermentation yeast Saccharomyces 

cerevisiae, and can provide the most in-depth comparisons between related species (Chen et al., 

2016). High throughput sequencing (HTS) has been proven to profile highly complex and diverse 

communities from a wide variety of sources, such as those of fermentation products (Reuter et al., 

2015). Sequencing techniques have the accuracy of a using digital system. HTS uses publicly 

available databases which are continually enhanced (Priest and Campbell, 2003). Sequencing 
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methods have been used to determine potential hop resistance genes in order to develop new 

methods of detecting beer spoilage Lactobacilli (Sami et al., 1997). 

 In a study that evaluated the microbial diversity in a brewing process by culture 

dependent and independent methods, culture dependent methods detected 88 genera from the 

most diverse sample of beer. Almost all bacteria that were recovered belonged to Proteobacteria 

or Firmicutes. However, more than 190 different genera belonging to several phyla were 

detected using culture independent methods. The most predominate genera belonged to the 

Firmicutes and Proteobacteria phyla (Takahashi et al., 2015). The specificity, sensitivity, and 

time reduction of molecular methods is preferred over the cost efficient and ease of culturing 

techniques. 

 

8. Conclusions 

 Beer is a microbiological product, but a diversity and abundance of microbes is typically 

considered a defect. In contrast with industrial brewing, craft brewing is characterized by less 

stringent processes to limit microbial load. A few limited studies have confirmed that craft or 

micro brewed beer harbor relatively diverse and abundant fungal and bacterial microbiota.   

These observations challenge the common belief that the combination of antimicrobial properties 

such as alcohol content, acidity and the use of hops should significantly limit microbial load, 

especially in the final product. 

 There is a need for further research studies to better understand the normal and detrimental 

impacts of microbes in the craft brewing industry. The microbiota of malted grain and hops that 

are ready for use by breweries is virtually unknown. Although some research has been done on the 

flora of raw barley, brewers do not know the microbiological status of pre-malted grain and the 
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potential differences in microbiota imparted by different varieties, grain types, or malting 

processes. Hops are known to be inhibitive of Gram positive bacteria, but it is theoretically possible 

that they are harboring their own distinct microbiota. There is also little information on the 

potential for seeding of brewery-resident microbes to brewing products at different production 

stages. Finally, the impact of the different brewing steps on microbiota dynamics is largely 

unknown with the exception of the intuitive microbial load reduction incurred by wort boiling. 

 For economic reasons, small-scale brewers are limited to culture-dependent tests to 

confirm the safety of beer for consumption and potentially track back the origin of recurrent 

spoilage. However, such methods are not sufficient to study the full microbiota profiles and 

dynamics along the brewing process, which may play a role in the organoleptic characteristics and 

shelf life of the beer. There is a clear need for more culture-independent studies, especially using 

HTS to explore the role of this microbiota. The few studies conducted on specific beer styles have 

demonstrated that very diverse bacterial and fungal communities are present along the brewing 

process. However, the sources of microbes and the parameters driving microbial dynamics in 

typical craft brewing are unknown. 
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Abstract 

The craft brewing industry has recently seen a surge in popularity. Beer is a microbiological 

product relying on stringent cleaning practices, intrinsic antimicrobial hurdles (pH, ethanol, and 

hops), and intense heat processing (mash and boil). The potential beer microorganisms have been 

studied, but not at a craft brewery or during the brewing process. The objectives of this research 

are to track bacteria development throughout the brewing process and observe the brewery 

environment for sources of microorganisms. Samples were collected at two local breweries of 

five beer styles, each of two distinct batches. DNA was extracted from the raw material, wort 

and finished beer product, and environmental swab samples. The bacteria (16S) v4 region of the 

DNA was amplified and high throughput sequencing was used to analyze the DNA found in the 

samples. Sequences were analyzed with Mothur. Data were analyzed using Past 3.15 for NMDS 

with Bray-Curtis index. Kruskal Wallis and Mann-Whitney tests with p<0.05 were used to 

determine statistical significance. Results showed an abundance of environmental bacteria found 

in the malt and mash samples. A small percentage of hop samples contained bacterial DNA and 

were diverse in genera. Mashing and boiling had some effect on the bacteria present in the 

samples, but filtering had no significant effect on reducing microbial abundance. Spoilage 

bacteria were found in different stages throughout the brewing process. Overall, these were in 

low abundance. Final samples had a composite microbiota of four main phyla: Actinobacteria, 

Firmicutes, Bacteroidetes, and Proteobacteria. Different genera in the final product were a 

combination of bacteria originating in the raw materials, bacteria introduced through the process, 

and bacteria potentially originating from human contact.  

 

Keywords: bacteria, DNA sequence, brewing process, high throughput sequencing 
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Introduction 

 Bacteria are ubiquitous in food produced for human consumption (Forsythe, 2000). 

Furthermore, bacteria are primary players in most fermented foods with only beer, bread, and wine 

to a lesser extent produced through yeast fermentation (Bourdichon et al., 2012). In beer products, 

bacteria are generally considered to be a flaw and many processes are employed to prevent 

bacterial proliferation, typically by pasteurization in mass-produced beer (Manzano et al., 2011). 

However, the emerging trends of home and craft brewing rely on less stringent bacterial control 

and even in a few cases, attempts to favor controlled growth of lactic acid bacteria for different 

organoleptic properties (Canonico et al., 2014; Aquilani et al., 2015). While bacterial spoilage of 

beer is well known and reviewed elsewhere (Jespersen and Jakobsen, 1996; Sakamoto and 

Konings, 2003), there is limited information on the commensal bacterial microbiota that is likely 

to be associated with craft beer. 

 Craft brewers are faced with similar microbiological issues as brewers in the 19th and early 

20th centuries (Priest and Campbell, 2003), with better access to efficient sanitation procedures. 

Therefore, the most common spoilage bacteria reported by craft brewers are lactic acid bacteria, 

acetic acid bacteria, (Sakamoto and Konings, 2003), and Enterobacteriaceae (Koivula et al., 2006). 

Bacterial spoilage can occur at different brewing steps and viable bacteria can be found in the final 

product leading to the production of undesired metabolites and organoleptic properties (Fielding 

et al., 2007). Cereals and grains used for brewing are known to harbor a fungal microbiota (Priest 

and Campbell, 2003; Kaaya and Kyamuhangire, 2006) but little is known on the bacterial 

composition. Water and pitching yeast should harbor a limited bacterial load (Furukawa et al., 

2011) and hops are known for their antibacterial properties (Simpson, 1993). It has been shown 

that brewery resident bacteria can be transferred to the wort at different stages, a desired trait in 



44 
 

the brewing of coolship ale and lambics (Van Oevelen et al., 1976; Bokulich et al., 2012). Since 

bacteria are resilient to environmental stresses, it is known that they can persist and form biofilms 

in vessels used for brewing (Fielding et al., 2007). Therefore, bacteria can be seeded from different 

sources, and the wort and beer bacterial microbiota may contain plant-associated and 

environmental taxa.  

 In the brewing industry, especially at the small-scale level of craft breweries, 

microbiological quality testing relies on culture dependent methods. However, it is well known 

that such methods do not provide the sensitivity and specificity necessary to detect and identify 

every bacterium present in beer (Jespersen and Jakobsen, 1996; Manzano et al., 2011). Indeed, in 

one study comparing culture dependent and independent methods, 454 pyrosequencing revealed a 

large number of genera not detected by culture methods that were never reported in beer before 

(Takahashi et al., 2015). While bacteria are unlikely to inhibit yeast fermentation, there are 

numerous examples where bacteria impart different organoleptic properties: malolactic 

fermentation (Davis et al., 1985) or the sour, fruity flavors produced by bacteria in lambic and 

gueuze beers (Van Oevelen et al., 1977; De Keersmaecker, 1996). In addition, there is growing 

evidence that food fermentations are characterized by bacterial successions (Nie et al., 2015; Piao 

et al., 2015; Van Oevelen et al., 1977) due to the changes in physiochemical properties; but whether 

bacterial successions occur in the brewing process is unknown. 

 The objectives of this research are to analyze the bacterial microbiota throughout the 

brewing process and determine the contributions of raw materials and vessel-associated microbiota 

to the bacterial content of the final product. Samples from different styles and different batches 

were collected from two local breweries.  
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Materials and Methods 

Experimental design 

 For this experiment, five beer styles from two craft breweries in the Fayetteville-

Springdale-Rogers Metropolitan Statistical Area (Arkansas, United States) were studied. Samples 

of an India Pale Ale (IPA) and a Belgian Golden Ale (BGA) were collected at Brewery 1; samples 

of a Pale Ale (PA), Brown Ale (BA), and Hoppy Wheat (HW, unfiltered) were collected at 

Brewery 2. Samples were collected along the brewing process for two distinct batches of each 

style. Samples of the raw materials, malts and other grains, and hops used for each beer styles were 

collected. During the brewing process a sample was collected during the mash, pre- boil, post-  

boil, after cooling, fermentation day 0, mid fermentation, pre- filter, post- filter steps, and from the 

final package. Environmental swabs samples were collected with two repetitions on each vessel 

from the mash tun, the boil kettle, and the fermentation tanks. The alcohol by volume (ABV), 

International Bitterness Units (IBU), and Standard Reference Method (SRM) for color were 

reported by the breweries and the final pH was measured using pH strips for each style (Table 2.1). 

 

Sample collection 

 Raw material samples, processed hop pellets and pre- malted grain, were aseptically 

collected in sterile 50 milliliter centrifuge tubes and stored at room temperature until analysis. 

Wort and beer samples were collected in sterile 50 milliliter centrifuge tubes and were stored at 

4°C if analysis was to be conducted within 24 hours, or -20 °C if analyzed later. The samples 

taken of the raw materials, from the mash process, pre- boil, post- boil, after cooling, and 

fermentation day 0 were taken on the initial day of sample collection. Samples were placed on 

ice for the duration of sample collection. Fermentation day 2/3, pre-filter, post-filter and final 
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product samples were collected when those steps were conducted at the breweries. Final product 

samples were collected in the containers chosen by the brewery, whether it was cans, bottles or 

kegs. Keg samples were pumped directly from the tap into the centrifuge tubes. Final products 

from cans were cleaned with an ethanol wipe, opened, and poured aseptically into the 50 ml 

centrifuge tube. The pH of liquid samples was measured before microbial DNA extraction. 

 Swab samples were collected using the Environmental Sampling Kit (Puritan Diagnostics, 

United States) polyester tipped swabs with a neutralizing buffer solution directly before the beer 

came into contact with the vessel. A square 25cm x 25cm swab stencil template was made 

(Ronnqvist et al., 2013). Before swabbing the surface, scissors and the template were cleaned with 

ethanol. The swab was removed from the buffer and the template was placed in the vessel. The 

vessel was swabbed diagonally in the template on one side of the cotton swab. The cotton swab 

was rotated and swabbed diagonally in the opposite direction on the inside of the template. The tip 

of the cotton swab was cut into a tube containing 0.1 g of 0.1 mm diameter and 0.1 g of 0.5 mm 

diameter zirconia/silica beads. InhibitX buffer from the QIAamp Fast DNA Stool Mini Kit 

(Qiagen, Germany) was then added to the swab/bead mixture. The samples were stored on ice until 

further analysis.  

 

Microbial DNA extraction 

 All DNA from raw material samples (hops, malted grain, and coriander) was extracted 

using the PowerPlant Pro DNA Isolation Kit (Mo Bio Laboratories, United States) following the 

manufacturer’s protocol with few modifications. For step 1, the maximum 50 mg of the sample 

was weighed into the provided bead tubes. The samples were homogenized using the vortex 

method. For the elution step, 50 µL of Solution PD7 was used instead of 200 µL. 
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 Centrifuge tubes containing ~ 50 ml of wort or beer were centrifuged at 4,000 xg for 15 

minutes at 4°C (Bokulich et al., 2012). The supernatant was discarded and pellets from samples 

collected on or after fermentation day 2 were subject to a decanting step. The decanting step 

consisted of resting the tubes containing the DNA pellets in a fume hood with the air blowing 

and the cap off for thirty minutes to evaporate any residual ethanol. A sterile bead mixture 

consisting of 0.1 g of 0.1 mm diameter and 0.1 g of 0.5 mm diameter zirconia/silica beads was 

added to the pellet. One milliliter of InhibitX Buffer (Qiagen, Germany) was added to the bead 

and pellet tube. The mixture was bead-beated with a FastPrep-24TM (MPBiomedicals, United 

States) three times, each for twenty seconds. The DNA was extracted using the QIAamp Fast 

DNA Stool Mini Kit (Qiagen, Germany) per the manufacturers protocol. However, instead of 

eluting with 200 µL of ATE buffer, 50 µL was used.  

 Environmental swabs were extracted using the QIAamp Fast DNA Stool Mini Kit (Qiagen, 

Germany). The swab, buffer, and bead mixture was bead-beated as described previously. The swab 

was then removed from the buffer and DNA was extracted following the manufacturers protocol. 

Elution was also performed using 50 µL of ATE buffer.  

 The concentration of all DNA samples were measured using the Nanodrop (Thermo 

Scientific, United States). Samples with a concentration over 30 ng/ µL were diluted to ~30ng/ µL.  

 

Universal polymerase chain reaction 

 A universal PCR targeting 16S genes were used to amplify the DNA and confirm the 

presence or absence of bacteria (16S). A mastermix was made using 12.5 µL of GoTaq (Promega, 

United States), 7.5 µL of sterile, nuclease free water, 1 µL of the forward primer 8F, and 1 µL of 

the reverse primer 1541R (Carbonero et al., 2014). Three microliters of DNA were added to 22 µL 
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of the mix for a total PCR reaction of 25 µL. The PCR reaction consisted of 30 cycles of 

denaturation at 98°C for 30 seconds, annealing at 55°C for 30 seconds, and elongation at 72°C for 

1 minute using the Eppendorf thermocycler.  

The DNA was separated by molecular size using gel electrophoresis. An agarose gel 

consisting of 2% agarose (Fisher BioReagents, United States) mixture in TAE 1X buffer (50X 

from Amresco, United States) and 1 µL of SYBR Safe DNA stain (EDVOTEK, United States) 

was used. The gel was placed in the chamber surrounded by TAE 1X buffer. Five µL of the PCR 

reaction were loaded on a gel electrophoresis with conditions of 120 Volts and 300mAmps for 45 

minutes. Target amplicon length was 1,500 base pairs.  

 

Index polymerase chain reaction 

 Index PCR was performed according to the approach developed by Kozich et al. (2013) 

using primers covering the V4 region: 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R 

(5′-GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2011); with addition of pad, link and 

index leading to 16 forward primers and 24 reverse primers allowing up to 384 samples to be 

assigned a specific index combination.. The mastermix consisted of 22 µL of Accuprime 

(Invitrogen, United States), 2 µL of each primer  (each reaction having a different combination 

of primers), and 3 µL of DNA for a total reaction of 27 µL. Denaturation was done at 95°C for 

30 seconds, annealing at 55°C for 30 seconds, and elongation at 72°C for one minute using the 

Eppendorf thermocycler. Random reactions were chosen from the PCR plate to load on an 

agarose gel to verify that the amplification was successful. Gel electrophoresis was performed as 

described in the Universal PCR protocol. Target amplicon size was 250 base pairs. 
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Amplicon libraries preparation and quality control 

 The SequalPrep Normalization Plate (96) Kit (Invitrogen, United States) was used to purify 

and normalize the PCR product reactions from the index PCR. The protocol was followed per the 

manufacturer’s instructions with minor modifications. During the elution step, instead of 

incubating for 5 minutes the plate was left to incubate overnight. The purified DNA was pooled 

the following morning.  

 The two bacterial pools were analyzed for length of the amplicon fragments on a 

TapeStation (Agilent, United States). The concentrations of the pools were determined using 

quantitative PCR and the PerfeCta NGS Library Quantification Kit for Illumina (Quanta 

Biosciences, United States) according to the manufacturers protocol. This qPCR reaction involved 

making a master mix and using five standards to create a standard curve. Efficiency of the 

standards was 92.71%. The qPCR reaction was 35 cycles of denaturation at 95°C for 15 seconds, 

annealing at 60°C for 20 seconds, and extension at 72°C for 45 seconds. A final melting curve was 

added at the end of the reaction. 

 

Sequencing 

 Both amplicon pools were diluted to 0.083 nM with 0.2 N fresh NaOH and HT1 buffer 

according to the MiSeq System Guide. Denatured DNA was combined with 20% PhiX control v3. 

Final concentration of the reagent and library was 20 pm. Index primer, Read 1, and Read 2 

sequencing primers along with the samples were loaded into a v3 Illumina MiSeq reagent cartridge 

(Kozich et al., 2013). 
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Sequence and statistical analysis 

The sequencing reads were downloaded from the Illumina Basespace server in Fastq files 

format. The sequences were demultiplexed in Read 1 and Read 2 with approximately 250 base 

pairs in length. The sequencing analyses were carried out using SILVA database as reference for 

assignation of operational taxonomic units (OTUs) with 97% of identity. Further analysis was done 

using Mothur 1.39.5 pipeline (Schloss et al., 2009). Non-metric multidimensional scaling (NMDS) 

plots and analysis of similarities (ANOSIM), both based on the Bray-Curtis index, were obtained 

using PAST 3.15. In addition Kruskal Wallis and Mann-Whitney tests were performed to detect 

significant differences in bacterial taxa between samples and time points (by convention, 

differences were considered significant when p<0.05). 

 

Results and Discussion 

The purpose of this research was to provide a survey of the bacterial populations that 

could be present in craft breweries using HTS. Table 2.2 shows the total number and percentage 

of samples that were positive for bacterial DNA based on 16S PCR. Overall, 56% of the samples 

were positive. Only 15% of environmental swabs contained bacterial DNA, which could be a 

result of effective cleaning practices in the brewery or extraneous methodology issues. The 

majority of malted grain samples were positive, supporting the hypothesis that plant-associated 

microbiota may play an important role in seeding communities in subsequent stages. Five out of 

28 hop samples also contained bacterial DNA, which is in line with a previous report (Bokulich 

et al., 2015). Bacteria were found all along the brewing process with some intriguing findings: 

more positive samples were obtained from post- boil samples than pre- boil ones. A low number 

of samples taken during active fermentation (Fermentation day 2) were positive, which may be 
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due to an over-representation of Saccharomyces DNA in the DNA extract inhibiting successful 

16S rRNA gene sequence amplification. The vast majority of post fermentation samples, 

including final products, were positive, suggesting the presence of viable bacteria in craft beer, 

since it is unlikely that extracellular DNA left from bacterial cell death are likely to be degraded 

by yeasts’ DNAses or denatured by high temperature (Nielsen et al., 2007). 

 Amplicon sequencing yielded high quality sequences for 125 samples, for a total of 

6,681,355 reads (52,198±80,973). Notably, malts and other grain samples yielded very 

significant higher numbers of reads. 

 

1. Microbiota profiles by sample type 

1.1. Raw materials 

 The raw materials in brewing consist of water, malted grain, hops, and yeast. For the 

purpose of this study, the malted grain and hops were analyzed for their microbiota. The 

microbiota of the hops and malts are separate and distinct (Figure 2.2). 

 

1.1.1. Malts  

 Looking at clusters of data can allow an overview of the differences. Though the malts 

divided by Brewery 1 and Brewery 2 show no significant differences, there does appear to be a 

core microbiota shared between the two (Figure 2.3). The NMDS plot for the four types of malt 

show a very distinct microbiota for the wheat malt and smaller, somewhat linked groups for the 

barley malts (Figure 2.4). 

Overall, the malts bacterial microbiota were dominated by Proteobacteria (50%), 

followed by Actinobacteria, Firmicutes and Bacteroidetes (Figure 2.5), a profile resembling 
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reported plant associated bacterial microbiota (Bulgarelli et al., 2013). Specifically, several 

genera were found to be more prominent in the malted grain samples. Arthrobacter was the 

prominent Actinobacteria (Figure 2.6), and is found primarily in soil (Conn and Dimmick, 1947; 

Busse, 2016), so the abundance of this bacteria in malt is not surprising. Brachybacterium is 

another bacterium found in the environment (Singh et al., 2016; Liu et al., 2014b) that was 

present predominately in malt samples. This bacterium has also been isolated from corn steep 

liquor (Takeuchi et al., 1995). Other malt-borne Actinobacteria included Corynebacterium, 

unclassified Microbacteriaceae, Brachybacterium, and Sanguibacter. Corynebacterium include 

species involved in diphtheria disease (Bolt et al., 2010), however plant-associated species are 

typically only plant pathogens (Vidaver, 1982). Sanguibacter has been reported as a non-

pathogenic blood resident (Pascual et al., 1996) as well as to be present in marine samples, but 

not from plants (Huang et al., 2005). Of note, a significantly greater abundance of 

Brachybacterium was found in malt samples from Brewery 2 compared to Brewery 1 (Figure 

2.7). 

Other bacteria that were found in high abundance in the malt samples were Bacteroides, 

Sphingobacterium, and Prevotella (Figure 2.8). Prevotella (Ueki et al., 2007) and 

Sphingobacterium (Choi and Lee, 2012) are found in the environment and in the malt samples. 

Bacteroides is known as being part of a healthy gut microbiome (Eckburg et al., 2005) but is 

found in malt samples, more predominant in Brewery 2, although not significant. 

 DNA from Pseudomonas, Stenotrophomas, Xanthomas, and Methylobacterium were 

recovered from malt samples as well (Figure 2.9). These bacteria are also found in high 

abundance in the environment (Jun et al., 2016; Dow et al., 2009; Jones et al., 2011; Madhaiyan 

and Poonguzhali, 2014; Tani and Sahin, 2013). Between the two breweries, Brewery 1 had a 
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significantly greater abundance of Pseudomonas and Stenotrophomas; Brewery 2 had a 

significantly greater abundance of Methylobacterium. 

Four different types of specific malts were used in the beer styles: pale ale base malt, 

pilsner malt, wheat malt, and acidulated malt. Some of the malts had significantly different 

microbiota from others. Arthrobacter was higher in abundance in the pilsner malt than the other 

three malts (Figure 2.10). However, Weissella was in lower abundance in the pilsner malt than 

the other three (Figure 2.11). Weissella is found in many different food fermentations such as 

chocolate (Snauwaert et al., 2013) and cheese (Settanni et al., 2012). Wautersiella, a rare human 

pathogen (Velden et al., 2012; Giordano et al., 2016), was found to be significantly lower in 

abundance in the acidulated malt, which coincides with its optimum pH for growth of 7.0-7.5 

and the fact that an acidulated malt will have a lower pH (Zhang et al., 2014) Pedobacter, 

another environmental bacterium (Yoon et al., 2007; Zhou et al., 2012), was found in lower 

abundance in the white wheat malt than in the barley malts (Figure 2.12). 

 

1.1.2. Hops 

 Hops are the bittering ingredient added in beer, but they are also used as an antimicrobial 

(Simpson, 1993) to target Gram positive bacteria (Shimwell, 1937). The microbiota of hop 

samples in this study consisted of several different phyla with Actinobacteria, Bacteroidetes, 

Firmicutes, and Proteobacteria being the most dominant (Figure 2.13). Other phyla consisting of 

Acidobacteria, Chloroflexi, and Fusobacteria made up only a very small percentage of the 

bacteria found in the samples. Actinobacteria were very diverse in the hop samples, with 

Leucobacter being the predominant genus (Figure 2.14).  Leucobacter is an environmental 

bacteteria that has been isolated from soil and cow manure (Weon et al., 2012; Her and Lee, 
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2015). There appears to be no clustering of the microbiota of the hop samples, presumably 

because of important PCR biases due to low bacterial counts in the samples (Figure 2.15). It is 

well known that using high templates of DNA reduces risk of observing biased microbiota 

profiles because of unbalanced amplification of DNA strands (Polz and Cavanaugh, 1998). 

Nested PCR has commonly been used to remedy this issue, however it has also been shown to 

introduce significant biases (Fan et al., 2009). 

 CTZ hops were used in the three beers from Brewery 2 and were responsible for two out 

of the five positive hop samples. Soonwooa and Larkinella were two bacteria that were 

significantly more abundant in the CTZ hops than the other hop samples averaged. (Figure 2.16). 

Soonwooa, which belongs to the Flavobacteriaceae family, has been isolated from seawater 

(Joung et al., 2010) and Larkinella has been isolated from bovine products (Anandham et al., 

2011). Both of these bacteria are Gram negative. 

 Bokulich, et al. found hop pellet samples to contain lactic acid bacteria populations, 

which is not surprising considering lactic acid bacteria’s ability to develop hop resistance 

(Bokulich et al., 2015; Richards and Macrae, 1964; Sakamoto and Konings, 2003). Hops were 

also cited as a contributor of microorganisms to the cellar fermentation areas and fermentation 

equipment in breweries and could be possible vectors of spoilage organisms (Bokulich et al., 

2015). 

 

1.2. Mash tun  

 The first step of the brewing process is mashing. The malted grain gets steeped in hot 

water to release the starches and convert them to sugars. The mash process is completed between 

64.5 and 70°C, so the mash tun is not cleaned as frequently as other brewing equipment. One out 
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of 20 mash tun swabs were positive for bacteria DNA. Although significant differences cannot 

be shown for one swab sample, the microbiota of the swab closely resembles that of the mash 

samples from the IPA beer (Figure 2.17). 

 There were only four bacteria that showed a significant difference in the samples of the 

mash: Legionella, Carnobacterium, Novosphingobium, and Xanthomonadaceae unclassified 

(Figure 2.18). Brewery 1 had a greater abundance of Carnobacterium, the other three were more 

prominent in Brewery 2. However, the four bacteria were present at less than 0.1% abundance in 

the samples, so the likelihood of any of the four bacteria playing a major role in the microbiota 

of craft beer is limited. 

 Few significant differences were found between the mash tun samples according to style. 

Arthrobacter was found to be in significantly higher abundance in the Belgian Golden Ale, the 

Pale Ale, and the Hoppy Wheat mash tun samples (Figure 2.19). Corynebacterium was found in 

lowest abundance in the Pale Ale mash tun sample. This bacterium has been isolated from cows 

and sheep ill with mastitis (Fernandez-Garayzabal et al., 1997; Hommez et al., 1999) mastitis. 

Sanguibacter and Rhodococcus are both environmental bacteria, isolated from water sources 

(Hong et al., 2008; Kämpfer et al., 2014). Chryseobacterium and Pedobacter are two other 

environmental organisms (Kämpfer et al., 2014; Yoon et al., 2007; Zhou et al., 2012) found in 

significantly different abundances (Figure 2.20).  

 

1.3. Boil kettle  

 The boiling process of brewing consists of the wort being boiled and hops being added at 

different time periods according to their use. Environmental swabs were taken of the boil kettle. 

Wort samples were taken from the kettle pre- boil, post- boil, and after flowing through the wort 
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chiller. The post- boil and the environmental swabs had a distinct microbiota from the wort 

samples (Figure 2.21).  

 Several bacteria were impacted by the boiling process. For example, combining all of the 

beer samples together, Bacteroides, Lachnospiraceae, Ruminococcaceae, and 

Porphyromonadaceae were more abundant in post- boil and after cooling samples than the pre- 

boil samples (Figure 2.22). Bacteroides (Eckburg et al., 2005), Ruminococcaceae (Ze et al., 

2012), and Lachnospiraceae are commonly known as good gut microorganisms (Kittelmann et 

al., 2013; Gosalbes et al., 2011), so it is more relevant that they are found after the pre- boil step 

and throughout the brewing process, possibly from human origin, rather than in the raw 

materials. 

 Enterobacteriaceae, Acinetobacter, Pseudomonas, Pantoea, and Stenotrophomonas had 

the opposite effect of the previous four bacteria, decreasing in abundance from pre- boil to post- 

boil (Figure 2.22). Acinetobacter and Pantoea are environmental bacteria (Nemec et al., 2016; 

Brady et al., 2009) that likely originated in the raw materials. 

 Beer spoilage bacteria was found in low abundance during the boil stage (Figure 2.23). 

Leuconostoc is a bacteria commonly isolated from fruits and vegetables (Priest and Campbell, 

2003), but can produce diacetyl in beer (Speckman and Collins, 1968). This bacterium was 

negatively affected by the boil step, decreasing in abundance in the post- boil sample. 

Lactobacillus is the most common beer spoiler, providing silky and turbid characteristics, and is 

growing in hop resistance (Sakamoto and Konings, 2003). Lactobacillus increased in relative 

abundance from pre- boil samples to post- boil samples. This is most likely caused by a 

reduction in the abundance of other bacteria present in these samples. 
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The IPA, Pale Ale, Brown Ale, and Hoppy Wheat showed very few significant 

differences during the boiling process, but the Belgian Golden Ale displayed significant 

differences in bacteria abundance between the pre- boil, post- boil, and after cooling stage. The 

Belgian Golden Ale showed a significant increase in abundance of Bacteroides, Blautia, 

Paenibacillus, Tumebacillus, and Clostridium XI after the boil (Figure 2.24). Blautia is known as 

a good gut microorganism (Park et al., 2012). Both Paenibacillus and Tumebacillus are isolated 

from the environment, specifically plant root and soil respectively (Kim et al., 2015; Her et al., 

2015). Tumebacillus has also been isolated from wastewater (Wang et al., 2013) and river water 

(Prasad et al., 2015), therefore the source of the bacteria may potentially be from the water used  

by the brewery or the wastewater that is produced by the brewery. Xanthomonas significantly 

decreased to very low abundance during the boil. 

 The pre- boil stage showed few significant differences between the two breweries in 

relation to abundance of bacteria (Figure 2.25). Arthrobacter, Weissella, and Ochrobactrum were 

significantly higher in abundance in the pre- boil samples of Brewery 2. Ochrobactrum is 

another environmental bacterium that has been isolated form soil and wheat root (Lebuhn et al., 

2000). Brewery 1 had a higher abundance of Lachnospiraceae and Ruminococaceae at the pre- 

boil stage.  

 Three significant differences were found between the two breweries at the post- boil step 

(Figure 2.26). Clostridiales and Blautia were significantly greater in abundance in Brewery 1 

than Brewery 2; and Bacilliales was more abundant in Brewery 2. 

 Environmental bacteria Acinetobacter, Pseudomonas, and Stenotrophomonas were found 

in higher abundance after cooling in Brewery 2 (Figure 2.27). Prevotellaceae and Clostridium IV 



58 
 

were significantly more abundant after cooling in Brewery 1. Overall, the microbiota of samples 

post- boil and after cooling were similar. 

 

1.4. Fermenter 

 Fermentation samples were taken on the brewing day (Day 0) and mid fermentation for 

four styles: IPA, Belgian Golden Ale, Pale Ale, and Brown Ale. Day 0 and end of fermentation 

samples were taken for the Hoppy Wheat, since there was no filter step with this style. Four 

bacteria were shown to be significantly different in abundance between Fermentation Day 0 and 

Mid Fermentation (Figure 2.28). Arthrobacter, Paenibacillus, and Bacillales all decreased in 

relative abundance during the fermentation process, and Clostridiales increased in abundance. 

This is likely due to the fermentation yeast competing for nutrients, with some bacteria more so 

than others. 

The Hoppy Wheat beer showed significant differences for bacteria between Fermentation 

Day 0 and End of Fermentation samples (Figure 2.29). Lactococcus, Chryseobacterium, and 

Betaproteobacteria all significantly increased in abundance during fermentation, and 

Streptococcus was eliminated during fermentation. Again, this is likely due to the competition of 

specific bacteria with the fermentation yeast decreasing in relative abundance. 

 Between the styles, there were some differences in abundance of bacteria (Figure 2.30). 

The Hoppy Wheat beer had a significantly higher abundance of Corynebacterium than the 

Belgian Golden Ale. Chryseobacterium was in significantly higher abundance in the Brown Ale 

than in the Pale Ale and Belgian Golden Ale.  
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1.5. Filtering 

 Filtering is mainly a clarifying process in brewing but is sometimes considered a critical 

control step to reduce microbial load, typically targeting the brewing yeast (Manzano et al., 

2011). Filtering in the craft breweries from this research consists of using a plate and frame filter. 

Beer is pumped from the fermentation tank through filter plates and travels to the bright tank. 

Overall there is no significant effect of filtering on the microbial abundance in the beer styles 

sampled (Figure 2.31). With all beer styles combined, there were only three significant 

differences in bacteria abundance pre- and post-filter (Figure 2.32). Blautia, Streptococcus, and 

Clostridium IV all significantly increased in abundance after filtering, which could be a result of 

contamination in the brewery or the decreasing relative abundance of other bacteria. However, 

these bacteria were in abundance at less than 2.5% in the beer, so the possibility that they play a 

major role in the final microbiota is small. 

 The Belgian Golden Ale also showed very minor significant changes during the filter 

stage (Figure 2.33). Both Ruminococcus and Proteobacteria unclassified decreased significantly 

by filtering. Again, both of these bacteria were found in very low abundance, so it is unlikely that 

they participate strongly in the final product microbiota.  

 

1.6. Final products 

 The four phyla that predominate the final product samples were Actinobacteria, 

Bacteroidetes, Firmicutes, and Proteobacteria (Figue 2.34). Actinobacteria made up a small 

abundance of the final product, and most of the phylum was composed of Arthrobacter, and a 

smaller percentage of Corynebacterium and Microbateriaceae (Figure 2.35). Bacteroidetes in the 

final product were fairly diverse, with most consisting of Porphyromonadaceae, Prevotellacea, 
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and Chryseobacterium. Microbacteriaceae are environmental microorganisms, having been 

isolated from salty soil (Kook et al., 2014) and salt marshes (Fidalgo et al., 2016) (Figure 2.36). 

There were many highly prominent Firmicutes present in the final samples, some being 

important beer spoilers like Leuconostoc, Lactococcus, and Lactobacillus (Figure 2.37). Of the 

Proteobacteria, Enterobacteriaceae, Acinetobacter, and Pseudomonas were found in the highest 

abundance in the final products (Figure 2.38). 

The microbiota of the final products differed between styles (Figure 2.39). For example, 

the Belgian Golden Ale had a significantly higher abundance of Porphyromonadaceae, 

Prevotellaceae, and Lactobacillus. The Brown Ale had a greater abundance of 

Chryseobacterium, Leuconostoc, and Lactococcus.  

 Between the two breweries, there were significant differences as well (Figure 2.40) 

Microbacteriaceae, Chryseobacterium, Lactococcus, Enterobacteriaceae, and Sphingomonas 

were all in significantly greater abundance in Brewery 2. 

 

2. Bacterial dynamics and style/brewery specificities 

2.1. General dynamics 

 The dynamics of the 5 beer styles combined shows that the most of the beer microbiota 

throughout the process was encompassed by four phyla: Actinobacteria, Bacteroidetes, 

Firmicutes, and Proteobacteria (Figure 2.41). The raw ingredients and samples taken before the 

boil were dominated by Proteobacteria, but after boiling showed an overtake of the Firmicutes 

phylum. The final product microbiota appears to be more evenly distributed between the three 

phyla: Firmicutes, Bacteroidetes, and Proteobacteria; with Actinobacteria being abundant in a 

relatively small amount.  
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 Although most of the bacterial DNA present in the samples belonged to four phyla, there 

were several other phyla represented in low abundance (Figure 2.42). None of these phyla 

encompassed more than 10% of the total microbiota, however they could prove to be of 

importance throughout the brewing process. Verrucomicrobia were relatively abundant in the 

boil kettle swab, after cooling, in the fermenter, and the final product. This phylum is isolated 

almost exclusively from soil (Janssen et al., 2002; Zhang and Xu, 2008).  

 Tenericutes were found in samples after boiling and in the swab of the fermentation tank. 

Mollicutes are the only class belonging to the phylum (sometimes included in the Firmicutes 

phylum) and have been isolated from a diverse range of plants and animals. Most predominantly 

they have been isolated from humans, cows (Anaeroplasma), pigs, goats, and insects and are 

parasitic to their hosts (Weisburg et al., 1989). Only very trace amounts were shown to be 

present in the final product. Plantomycetes make up over 6% of the microbiota of the 

fermentation tank swab. This phylum is largely associated with aquatic environments, isolated 

from the Arctic Mid Ocean Ridge and the Southern Mariana Trough (Kato et al., 2010; 

Storesund and Øvreås, 2013). 

 

2.2. Dynamics by breweries and styles 

2.2.1. Breweries 

 The two breweries showed very similar microbial profiles, with bacteria that were 

predominant in the malt decreasing throughout the process, and bacteria that were more abundant 

during the process being more likely to end up in the final product. Some bacteria were in 

significantly greater abundance in one brewery than the other (Figure 2.43). Two subgroups of 

Acidobacteria, Gp 17 and Gp 10, were found exclusively in Brewery 1, and Thermosporothrix 
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was found exclusively in Brewery 2. Other significant differences included the increased 

abundance of Arthrobacter, Chryseobacterium, Leuconostoc, and Curtobacterium in Brewery 2. 

Brewery 1 had a greater abundance of Lactobacillus, Ralstonia, Thermus, and Alistipes. 

Ralstonia is an environmental bacterium (Yabuuchi et al., 1995) and can create biofilms (Liu et 

al., 2014a) which may explain its significantly greater presence in one brewery. Alistipes is a 

natural part of the human microbiota (Rautio et al., 2003; Song et al., 2006), so the origin of this 

bacterium in Brewery 1 could be from operators. 

 Brewery 1 consisted of the IPA and the Belgian Golden Ale beers. Arthrobacter and 

Acinetobacter, Leuconostoc, and Pseudomonas were all found in high abundance in the malt 

samples (Figure 2.44). These four bacteria slowly decreased through the process, and increased 

in abundance in the final product, presumably a result of decreasing abundances of other 

bacteria. Lactobacillus and Akkermansia were not found abundant in the malts, but throughout 

the process. Akkermansia is known as a good gut microorganism (Derrien et al., 2004; Hatayama 

et al., 2014), so it is possible the bacteria originated from human contamination.  

 Brewery 2 showed similarities in abundant bacteria and trends throughout the process 

(Figure 2.45). Again, Arthrobacter, Acinetobacter, and Pseudomonas were abundant most in the 

malts and decreased through the process. Brevibacillus became highly abundant after boiling and 

persisted through fermentation, with an increase after filtering. This bacterium is predominately 

found in the environment (Hatayama et al., 2014). Paenibacillus steadily increased through the 

brewing process as well, but was present in very low abundance in the final product. Just as in 

Brewery 1, Akkermansia also increased steadily through the brewing process. 
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2.2.2. Style 

The dynamics on the phylum level for each individual style based on two repetitions 

shows similarity to the combined data (Figure 2.46). Firmicutes and Proteobacteria were the 

dominating phyla with Bacteroidetes and Actinobacteria being the third and fourth most 

abundant. Other phyla make up a small portion of total microbiota. Actinobacteria seem to be 

more prominent in malts, decreasing in number throughout the process, and again increasing in 

abundance in the final product samples. Verrumicrobia is primarily limited to hop samples and 

samples taken after boiling. 

The IPA beer from Brewery 1 has some distinct characteristics found during the brewing 

process in reference to the bacteria present (Figure 2.47). This style had a significant amount of 

Gluconobacter found during the filter step but eliminated in the final product, which could 

possibly be a contamination in the process. Gluconobacter is a beer spoiler that reduces ethanol 

to acetate and creates a ropy texture (Banwart, 1979). Staphylococcus had a high abundance 

(26%) in the hops of the IPA, but was not found throughout the rest of the process. Acinetobacter 

and Arthrobacter were in higher abundance in the malt, but slowly decreased throughout the 

process with little remaining in the final product.  

The Belgian Golden Ale from Brewery 1 had similar dynamics of Arthrobacter as was 

seen in the IPA (Figure 2.48). Pseudomonas was another bacterium in high abundance in the 

malt, but slowly decreased in abundance through the process. However, Prevotellaceae, 

Lachnospiraceae, and Akkermansia were all absent in the raw materials for this beer, but 

introduced later in the process and participated in the final microbiota.  

 The beer styles from Brewery 2 showed similar profiles of the bacteria present in malt, 

but some other distinct bacteria were found in variety throughout the brewing process. The Pale 
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Ale had a high abundance of Chryseobacterium and Leuconostoc in the malts, but by post- filter 

were almost eliminated (Figure 2.49). Streptococcus was found in greater abundance during 

fermentation, but by the final product was in very low abundance. During the boil stage, 

Flavobacterium was found in greatest abundance, but was eliminated by the fermentation. This 

microorganism is environmental, having been isolated from soil (Dong et al., 2013). 

Lactobacillus showed the most dramatic change through the Pale Ale brewing process, not being 

present in the malt or mash, but increasing in abundance during the boil stage and again at 

fermentation. The abundance of Lactobacillus, a beer spoiler, was about 7.5% in the final 

product. Clostridium XI also increased in abundance steadily throughout the process.  

 The Brown Ale showed a dramatic decrease in abundance of several malt – dominating 

bacteria during the boiling process (Figure 2.50). Again, Arthrobacter was highest in abundance 

in the malt samples, with a near zero abundance after boiling. Pantoea was also prominent in the 

malt and mash and eliminated during the boil step. Lactococcus, Sphingobacterium and 

Leuconostoc were found in the malt samples, decreased during boiling, and increased in 

abundance again during fermentation. Stenotrophomonas was found more abundant in the mash 

samples, but again, decreased during the boil process. 

 The last style from Brewery 2 was the Hoppy Wheat beer. The dynamics of this style 

were very sporadic (Figure 2.51). Chryseobacterium and Acinetobacter were present in the 

malts, and increased and decreased in abundance throughout the process. Stenotrophomonas and 

Pantoea also had sporadic increases and decreases in abundance. Lactococcus steadily slightly 

decreased in abundance during brewing. Akkermansia was not present in the samples until the 

post- boil stage, and it persisted through fermentation. 
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Conclusions 

 The microbiota of the brewing process was diverse at the genera level between the five 

styles and two breweries. Overall, there were no major differences between the two breweries, 

and bacteria that were present in one brewery and not the other were in very low abundance. 

Between the styles there were also minor differences in bacteria present. One difference was that 

the IPA had a greater abundance of Gluconobacter, which was likely to be a contamination at the 

one step of the process during that one batch of beer. 

 The raw material microbiota contributed greatly to the bacteria in the mash tun and the 

mash tun swab. Most of the bacteria that were in high abundance in the raw material are typically 

isolated from the environment, and were reduced in abundance during the boiling process. The 

presence of identical bacteria in the raw material and final product samples could lead one to 

believe that the microbiota of the raw material is important for the final product, even with as 

intense brewing processes as mashing and boiling, and intrinsic hurdles including low pH (3.8-

4.7) and ethanol concentration (0-8% ABV) (Jespersen and Jakobsen, 1996). 

 Bacteria not present (or in low relative abundance) in the raw material that were 

potentially introduced during the process were more likely to persist in the final product. The 

presence of bacterial spoilers such as Lactobacillus and Leuconostoc were in low abundance 

throughout the process, but had some persistence in the final product. Some bacteria that were 

present on the swabs of the brewing equipment are biofilm formers, which explains their 

persistence on the brewing equipment. Ralstonia was found on swabs of the boil kettle and the 

fermenter, and its biofilm forming abilities (Liu et al., 2014a) explain its low abundance in malt 

samples but high abundance throughout the process. Actinomyces was also found on the swab of 

the boil kettle and is able to form biofilms on teeth (Li et al., 2004). 
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 Mashing and boiling were fairly effective at reducing microbial abundance from the raw 

material, however filtering had no significant impact. Filtering is predominately used as a 

clarifying practice in craft breweries, and sometimes to remove flocculant yeast. However, in this 

research, it was shown to be ineffective at reducing bacterial abundance. 

 Final product microbiota consisted mainly of four phyla: Actinobacteria, Bacteroidetes, 

Firmicutes, and Proteobacteria. The genera of each were diverse, and were a composite of 

bacteria found in the raw material that were reduced during boiling and increased in abundance 

during fermentation, and bacteria that were more abundant during the brewing process. The data 

obtained confirms that the bacterial microbiota are associated with the raw materials, the brewing 

environment, and the craft beer final product. It further shows relatively consistent bacterial 

successions along the brewing process, including the critical control steps of mashing, boiling, 

and filtering. 

 Throughout this study, some limitations were considered and should be discussed. One of 

the greatest obstacles was working with brewers and having limited access to the brewery 

environment and the brewing schedule. Some samples were not collected because of this 

limitation. The sample size for this study was two batches per brewery style. For future studies, 

increasing the number of batches could improve repeatability and statistical significance. Finally, 

since this research was the one of the first to use HTS to track bacteria development throughout 

the process, method optimization was not necessarily achieved prior to the study due to time 

constraints.  

Even with these limitations, this research provides the first extensive microbiota research 

of craft beer throughout the process. It will initiate other research on the potential organoleptic 
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properties that these diverse bacteria are may provide to the craft beer and the role that the 

microbiota plays on the quality of craft beer. This research also allows craft brewers to have a 

better understanding of their product.  
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Figure 2.1: The brewing process. 

 

 

Table 2.1: Specificities of the beer styles. 

Beer Brewery ABV IBU SRM Final pH 

Belgian Golden Ale 1 6.3% 36 3 4.0 

Brown Ale 2 6.0% 18 20-25 4.0 

Hoppy Wheat 2 5.5% 50 5-8 4.25 

IPA 1 5.5% 56 10 4.25 

Pale Ale 2 5.5% 35 10-15 4.0 

 

ABV – alcohol by volume; IBU – International Bitterness Units; SRM – Standard Reference 

Method (beer color) 

 

Mash Tun
Malted grain is 

steeped in hot water
Sweet wort is pumped 

to boil kettle
Spent grain is 

sprayed with water

Boil Kettle Wort is boiled
Hops are 

added

Cooling
Wort is pumped though 

wort chiller

Fermen-
tation

Wort is pumped to 
fermentation tank

Yeast is 
added 

Fermentation occurs for 
between one to two weeks

Bright 
Tank

Beer is further aged after 
fermentation

Other ingredients and 
flavors can be added

Filtering
Beer may be filtered for 

clarity

Final 
Product

Beer is packaged into 
cans, bottles, or kegs
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Table 2.2: Positive bacteria samples determined by Universal PCR. 

Sample # % 

Malted Grain 43/51 84.3% 

Hops 5/28 17.9% 

Environmental Swabs 9/60 15% 

From Mash Tun 10/10 100% 

Pre-Boil 6/10 60% 

Post-Boil 9/10 90% 

After Cooling 10/10 100% 

Fermentation Day 0 8/10 80% 

Fermentation Day 2 2/10 20% 

End of Fermentation 2/2 100% 

Pre-Filter 4/5 80% 

Post-Filter 7/7 100% 

Final Product 9/10 90% 

Total 124/223 55.6% 
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Figure 2.2: Raw material NMDS plot with Bray-Curtis index. Blue represents the malts, red 

represents hops. 

 

 

Figure 2.3: NMDS plot with Bray-Curtis index for the malts of the two breweries. Open squares 

represent Brewery 1, filled squares represent Brewery 2. 
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Figure 2.4: NMDS plot with Bray-Curtis index for the different types of malts. Green represents 

the wheat malt and the blue clusters are the pilsner, pale ale, and acidulated malt. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.5: Abundance of phyla in malt samples for all styles. 
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Figure 2.6: Abundance of specific genera in all malt samples (A-D) 

A) 
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D) 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Differences in Arthrobacter, Brachybacterium, and Microbacterium in the malts of 

the two breweries. Letters denote significant differences within genera at p<0.05.   
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Figure 2.8: Differences in Bacteroides, Sphingobacterium, and Prevotella in the malts of the two 

breweries.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Differences in Pseudomonas, Stenotrophomas, Xanthomonas, and Methylobacterium 

in the malts of the two breweries. Letters denote significant differences within genera at p<0.05. 
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Figure 2.10: Arthrobacter, Corneybacterium, and Brachybacterium abundance for four malt 

types. Letters denote significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Lactoccus, Weissella, Saccharibacillus and Enterococcus abundance for four malt 

types. Letters denote significant differences within genera at p<0.05 
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Figure 2.12: Sphingobacterium, Chryseobacterium, Wautersiella, Pedobacter, and 

Flavobacterium abundance for four malt types. Letters denote significant differences within 

genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Abundance of different phyla in all hop samples. 
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Figure 2.14: Abundance of specific genera of Actinobacteria in hop samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: NMDS with Bray-Curtis index plot of the five hop samples.  
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Figure 2.16: Bacteria abundance in CTZ hops and other hop samples. Letters denote significant 

differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: IPA mash tun swab sample microbiota compared to the IPA beer during the mash 
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Figure 2.18: Legionella, Carnobacterium, Novosphingobium, and Xanthomonadaceae 

unclassified abundances shown for samples of the mash tun of the two breweries. Letters denote 

significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Arthrobacter, Croynebacterium, Sanguibacter, and Rhodococcus abundance in 

mash samples of the five styles. Letters denote significant differences within genera at p<0.05. 
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Figure 2.20: Chryseobacterium, Wautersiella, Flavobacteriaceae unclassified, and Pedobacter 

abundance in mash samples of the five styles. Letters denote significant differences within 

genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: NMDS plot with Bray-Curtis index of the boil kettle swabs (red crosses) pre- boil 

(green), post- boil (red open square), and after cooling (red filled square) samples.  
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Figure 2.22: Abundance of bacteria combined for all beer styles during the boil stage. Letters 

denote significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: Abundance of spoilage bacteria for all beer styles during the boil stage. Letters 

denote significant differences within genera at p<0.05. 
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Figure 2.24: Abundance of bacteria during the boiling process of the Belgian Golden Ale. 

Letters denote significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25: Arthrobacter, Lachnospiraceae unclassified, Ruminococaceae unclassified, 

Weissella, and Ochrobactrum differences during pre- boil stage. Letters denote significant 

differences within genera at p<0.05. 
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Figure 2.26: Clostridiales unclassified, Blautia, and Bacilliales differences during post- boil 

stage. Letters denote significant differences within genera at p<0.05. 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2.27: Bacteria abundance differences after cooling. Letters denote significant differences 

within genera at p<0.05. 
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Figure 2.28: Bacteria abundance during fermentation of IPA, Belgian Golden Ale, Brown Ale, 

and Pale Ale combined. Letters denote significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29: Hoppy Wheat bacteria during fermentation. Letters denote significant differences 

within genera at p<0.05. 
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Figure 2.30: Abundance of bacteria during fermentation in four styles. Letters denote significant 

differences at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31: NMDS plot with Bray-Curtis index of filtering. Pre- filter is represented by crosses, 

post- filter is represented by open circles.  
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Figure 2.32: Abundance of Blautia, Streptococcus, and Clostridium IV in pre- and post- filter 

samples for all beer styles. Letters denote significant differences within genera at p<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33: Ruminococcus and Proteobacteria unclassified abundance in the Belgian Golden 

Ale during filtering. Letters denote significant differences within genera at p<0.05. 
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Figure 2.34 Final product phyla for all styles combined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35 Actinobacteria genera in final samples for all styles combined.  
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Figure 2.36: Bacteroidetes genera for final product samples combined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.37: Firmicutes genera for final product samples combined.  
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Figure 2.38: Proteobacteria genera for final product samples combined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.39: Final product differences in abundance of the five styles. Letters denote significant 

differences within genera at p<0.05. There was only one positive final product of the Hoppy 

Wheat, therefore there is no standard error bar or letters of significance. 
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Figure 2.40: Bacteria abundance in the final product of the two breweries. Letters denote 

significant differences within genera at p<0.05.  
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Figure 2.41: Overall beer dynamics by phylum for styles combined. 

Figure 2.42: Rare phyla found throughout the brewing process. 
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Figure 2.43: Significant differences in bacteria abundance between the two breweries. 
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Figure 2.44: Bacteria dynamics of Brewery 1 through the process. 
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Figure 2.45: Bacteria dynamics of Brewery 2 through the process. 
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Figure 2.46: Beer dynamics by phyla for each style. 
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Figure 2.47: IPA dynamics through the process. 
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Figure 2.48: Belgian Golden Ale dynamics through the process. 
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Figure 2.49: Pale Ale dynamics through the process. 
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Figure 2.50: Brown Ale dynamics through the process. 
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Figure 2.51: Hoppy Wheat dynamics through the process. 
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