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Abstract 

Drought stress is a major global constraint for crop production, and improving crop 

tolerance to drought is of critical importance. Direct selection of drought tolerance among 

genotypes for yield is limited because of low heritability, polygenic control, epistasis effects, and 

genotype by environment interactions. Crop physiology can play a major role for improving 

drought tolerance through the identification of traits associated with drought tolerance that can 

be used as indirect selection criteria in a breeding program. Carbon isotope ratio (𝛿13C, 

associated with water use efficiency), oxygen isotope ratio (𝛿18O, associated with transpiration), 

canopy temperature (CT), canopy wilting, and canopy coverage (CC) are promising 

physiological traits associated with improvement of drought tolerance. Genome-wide association 

studies (GWAS) are one of the genomic approaches to provide a high mapping resolution for 

complex trait variation such as those related to drought tolerance. The objectives of this research 

were to identify genomic regions and favorable alleles that contribute to drought-tolerant traits. 

A diverse panel consisting of 373 maturity group (MG) IV soybean accessions was evaluated for 

𝛿13C, 𝛿18O, canopy wilting, canopy coverage, and canopy temperature in multiple environments. 

A set of 31,260 polymorphic SNPs with a minor allele frequency (MAF) ≥ 5% was used for 

association mapping of CT using the FarmCPU model. Association mapping identified 54 

significant SNPs associated with δ13C, 47 significant SNPs associated with δ18O, 61 significant 

SNPs associated canopy wilting, 41 and 56 significant SNPs associated with CC for first and 

second measurements dates, respectively, and 52 significant SNPs associated with CT. Several 

genes were identified using these significant SNPs, and those genes had reported functions 

related to transpiration, water transport, growth, developmental, root development, response to 

abscisic acid stimulus, and stomatal complex morphogenesis. Favorable alleles from significant 



 
 

SNPs may be an important resource for pyramiding genes to improve drought tolerance and for 

identifying parental genotypes for use in breeding programs.  
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Introduction 

Water deficit is one of the major constraints that reduces plant growth and crop 

productivity worldwide. Meeting the food demand for a fast-growing population is a daunting 

challenge faced by producers and agricultural scientists (Foley et al., 2011). Ray et al., (2013) 

reported that the average rate of increased cereal production yield per year (1.3%) is currently 

lower than that required (2.4%) to meet the future food demand of the projected population of 9 

billion people in 2050. Drought occurrence represents the most severe abiotic stressor, which 

causes a significant reduction in crop productivity in rain-fed areas (Toker et al., 2007), and is a 

major cause of year to year variation in soybean (Glycine max L. [Merr.]) yield (Zipper et al., 

2016). Soybean is among the most widely grown crops in the world and is valuable and 

economically important because of its high oil and protein concentrations in the seed. 

Worldwide, approximately 80% of the total arable land is rain-fed, which generates 62% of 

staple food (FAOSTAT, 2011). An increasing population in developing countries raises the 

demand for non-agricultural water uses, and expansion of the crop production area under 

irrigation makes water scarcity an even bigger problem; thus, it is difficult to address the 

challenge of food security. Developing drought-tolerant cultivars is a high priority for improving 

crop performance in water-scarce environments (Polania et al., 2016). 

Direct selection of genotypes for grain yield under water-limited environments is limited 

because of low heritability, polygenic control, epistasis effects, and genotype by environment 

interactions (Piepho, 2000). Crop physiology can play a major role for improving drought 

tolerance through the identification of traits associated with drought tolerance that can be used as 

indirect selection criteria in a breeding program (Blum, 2006). A wide range of physiological 

traits have been identified as contributing to the improvement of yield under drought-stressed 
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environments; however, only few traits have been successful in breeding programs because of 

laborious or costly screening (Passioura and Angus, 2010). Traits of interest should have high 

heritability (Blum, 2011), and additionally, there should be sufficient genetic variability for traits 

to allow selection. Selection for targeted traits should be rapid, accurate, non-destructive, and 

inexpensive.  

Water use efficiency (WUE), transpiration (T), canopy temperature (CT), canopy wilting, 

and canopy coverage are promising physiological traits associated with improvement of drought 

tolerance, which were reviewed by Tuberosa (2012). Selection of genotypes with greater WUE 

can be used to improve crop productivity in drought environments (Condon et al., 2002), but 

selection for WUE directly is difficult. Carbon isotope discrimination (Δ13C) or carbon isotope 

ratio (δ 13C) are negatively and positively associated with WUE (Farquhar et al., 1982), 

respectively, and can be used in assessing the genotypic variation of WUE. 

An increase in WUE is normally achieved through a reduction in T, which is often 

accompanied by a reduction in biomass. This interdependency of T and biomass production is a 

major constraint in the selection of high WUE by breeding programs. Thus, a weak 

interdependency between T and WUE can serve as a good source for identifying genotypes with 

high WUE, which would not be accompanied by a reduction in biomass (Sheshshayee et al., 

2005). Therefore, it is important to understand the genetic variability in WUE and T separately. 

Oxygen isotope ratio can be used to assess genetic variability in T. Genetic variation in 

stomatal conductance (gs) and T can be determined by the enrichment of the heavy oxygen 

isotope in leaf water relative to the water source (Gonfiantini et al., 1965). Higher gc associated 

with higher transpiration rate reduces the enrichment of δ18O (Farquhar et al., 2007) and results 

in a negative correlation between δ18O and either T or gc. Barbour (2007) reported a negative 
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relationship between T with δ18O in cotton (Gossypium hirsutum L.). In some cases, δ18O was 

positively associated with T when T variation was primarily due to differences in vapor pressure 

deficit (VPD) and not gc. 

Slower canopy wilting is another promising trait for drought tolerance. Carter et al., 

(2006) identified two genotypes, PI 416937 and PI 471938 that were delayed in wilting relative 

to fast-wilting genotypes. Mechanisms likely responsible for slower canopy wilting include: 

lower leaf hydraulic conductance for transpiration rate under high vapor pressure deficit (VPD) 

(Sinclair et al., 2008), lower osmotic potential due to maintaining greater leaf turgor pressure 

(Devi et al., 2013), lower osmotic potential that helped to maintain a greater leaf turgor pressure 

(Devi and Sinclair, 2013), and the conservation of soil moisture when soil moisture is plentiful 

for use later when it is depleted in fast-wilting genotypes (King et al., 2009; Ries et al., 2012). 

Pathan et al., (2014) reported that two soybean PIs (PI 567690 and PI567731) showed slow 

wilting and reduced yield loss under drought stress. 

Canopy temperature variation due to water stress can be used as an indicator for T 

difference among genotypes (Jackson et al., 1981). Genotypes with lower CT maintained higher 

T and gs when compared to other genotypes under the same field environment (Jackson et al., 

1981). Field measurement of CT of a large number of genotypes is difficult because several 

environmental factors affect leaf temperature (e.g., air temperature, humidity, wind speed, solar 

radiation, gs). Aerial infrared image analysis has an advantage over the use conventional infrared 

(IR) thermometers for screening of canopy temperature because a large number of genotypes can 

be captured simultaneously in a single image (Merlot et al., 2002). 

Early establishment of a closed canopy can also improve WUE by enhancing 

transpiration (T) relative to soil evaporation (Es). By reducing the water lost through soil 
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evaporation, quick canopy establishment may result in more stored water available for later 

developmental stages when soil moisture may be exhausted and increasingly limited for yield 

(Rebetzke et al., 2007; Richards et al., 2007; Slafer et al., 2005). Rapid establishment of canopy 

coverage also improves the canopy solar radiation interception, which is an important factor 

determining crop growth and yield (Edwards et al., 2005; Liebisch et al., 2015) and increases 

soybean competiveness, especially for weeds (Bussan et al., 1997). 

Traits related to drought tolerance are complex quantitative traits controlled by genotype, 

environment, and their interaction (Carter et al., 1999). The complexity of this trait arises from 

the segregation of alleles at many chromosomal regions, each with small additive effects on the 

phenotype, interacting with other alleles and with the environment (Tuberosa et al., 2007). Crop 

performance can be improved under drought conditions by selecting and pyramiding favorable 

alleles associated with drought-tolerant related traits into elite cultivars (Blum, 2005). Various 

genomic approaches have been used to investigate genetic control of drought stress tolerance 

(Tuberosa et al., 2007). Quantitative trait loci (QTL) identification using molecular markers is 

one way to dissect the traits associated with drought tolerance (Dixit et al., 2014). The use of 

QTL analysis can speed up the selection process for drought tolerant-related traits using marker-

assisted selection and selecting desirable genotypes in early generations of breeding during the 

phenotypic evaluations. 

Advancement in high-throughput genotyping and sequencing technologies provides fast 

and low-cost molecular markers, particularly single nucleotide polymorphisms (SNPs) (Syvanen, 

2005). Genome-wide association studies (GWAS) are an alternative approach to linkage 

mapping of bi-parental populations and can provide high mapping resolution for complex trait 

variation (Nordborg and Tavare, 2002; Risch and Merikangas, 1996). GWAS are based on 
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linkage disequilibrium (LD), due to non-random association of alleles between genetic loci 

across the genome (Zhu et al., 2008). Almost the entire USDA soybean germplasm collection 

has been genotyped with the SoySNP50K iSelect Beadchip, which serves as an important 

resource for characterizing soybean genetic diversity and linkage disequilibrium and construction 

of high resolution linkage maps (Song et al., 2013). In soybean, several GWAS have identified 

chromosomal regions associated with seed protein and oil concentrations (Hwang et al., 2014), 

carotenoids (Dhanapal et al., 2015a), δ13C ratio (Dhanapal et al., 2015b), agronomic traits (Wen 

et al., 2014), ureide concentrations (Ray et al., 2015), and the fraction of N derived from the 

atmosphere (Dhanapal et al., 2015c). 

Prior studies to investigate the genetic variability in WUE, T, canopy temperature, 

canopy wilting, and canopy closure in soybean have been limited due to small population sizes 

and relatively sparse marker density. Integrated approaches in genomics, crop physiology, and 

high throughput phenotyping are vital to improving drought tolerance in our climate-changing 

environment. GWAS can provide opportunities for rapid identification of novel SNP-based 

markers, which are associated with drought tolerant-related traits. 

 

 

 

 

 

 

 

 



7 
 

Literature Review 

1. Overview of Soybean 

A. Origin and History of Soybean 

Soybean (Glycine max (L.) Merr.) is one of the most widely grown crops and is the 

world’s largest oilseed producing crop (56% of world oilseed production). Glycine max belongs 

to the Leguminosae family and is a close relative to the wild soybean (Glycine soja Sieb. & 

Zucc.) (Joshi et al., 2013; Tian et al., 2010). Grain yield, seed color, seed oil, protein 

concentration, seed size, and resistance to various abiotic and biotic stresses are major 

differences between cultivated and wild soybean (Joshi et al., 2013). Soybean originated in 

northeast Asia, specifically China (Hymowitz, 1991; Qiu and Chang, 2010). China, Korea, Japan 

and the far eastern part of Russia are areas where wild soybean can still be found (Qiu and 

Chang, 2010). Approximately 5,000 years ago, soybean plants were first domesticated in China 

as a food crop and were then spread across other Asian countries (NCSPA, 2014). Samuel 

Bowen, a former sailor in the East India Company, first introduced soybean in North America, 

which was mainly used for hay purpose (Hymowitz and Harlan, 1983; Hymowitz and Bernard, 

1991). Soybean began to be grown for food and other industrial products in the US in the early 

20th century. 

Currently, soybean is the second largest crop in the U.S. (USSEC, 2008). The largest 

collection of soybean germplasm is maintained in the U.S. by the USDA, which contains 21,810 

accessions including 19,626 cultivated soybeans and 2,184 wild and perennial species (USDA, 

ARS). This germplasm collection contains a great deal of genetic diversity including 

morphological, physiological, biochemical, and qualitative traits, which can serve as a source of 

new genetic traits for crop improvement (Boerma and Specht, 2004; Carter et al., 2004). 
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B. Today’s Soybean 

Today, soybean is one of the most valuable and economically important crops in the 

world because of its high oil (18-23%) and protein concentration (38-44%). In addition, soybean 

is a legume and does not require N fertilizer because of its symbiotic relationship with 

Bradyrhizobium japonica. In 2013, the global production of soybean was 284 million metric 

tons. The U.S. is the largest soybean producer (89.5 million metric tons), followed by Brazil 

(87.5), Argentina (54.0) and China (12.2) (www.soystats.com). 

Soybean is a short-day plant, which starts flowering in response to short photoperiods 

(Garner and Allard, 1920). Soybean is sensitive to the photoperiod, and is adapted to different 

latitudes. Soybean genotypes are classified into different maturity groups (MGs) ranging from 

000 to X based on the adaptation to specific latitudes (McWilliams et al., 1999). Typically, 

soybean cultivars grown in Arkansas belong MGs III, IV, V, and VI.  

Soybean plants are categorized as either determinate or indeterminate growth habit. 

Determinate varieties are mainly from MGs V to X and indeterminate cultivars are from MGs 

000 to IV. However, in recent years, numerous varieties from MG IV are determinate and from 

MG V are indeterminate. A main difference between determinate and indeterminate genotypes is 

that determinate genotypes stop vegetative growth on the main stem when flowering starts, 

whereas indeterminate genotypes do not stop producing nodes on the main stem until the 

beginning of seed fill. Determinate genotypes have a terminal raceme that results in a cluster of 

pods under good growing conditions at the uppermost main stem node, but under stressed 

conditions, some or all of the pods may abort and the terminal raceme appears as a notched spine 

at the top of the plant. Determinate genotypes also typically have leaves at the topmost three or 

four nodes that are similar in size. In contrast, indeterminate genotypes lack a terminal raceme, 
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and the nodes at the top of the plant tend to form a zigzag pattern. Leaves of indeterminate 

genotypes progressively decrease in size beginning at about the fifth node from the top to the 

plant’s terminal (Purcell et al., 2014). 

2. Soybean Yield and the Impact of Drought 

A. Soybean Yield 

From historical records, it is evident that there is an increasing trend in soybean yield in 

the U.S. due to the improvement in genetic and cultural practices (http://soystats.com/u-s-yield-

production-yield-history). Average yield of soybean in the U.S. was 3,215 kg ha-1 (47.8 bu ac-1) 

in 2014 (USDA, 2015). There was a range of genetic gain of 10 to 30 kg ha-1 yr-1 for cultivar 

development when old cultivars were compared to new US soybean cultivars (Specht et al., 

1999).  

Most of the agricultural area, approximately (90%), in U.S is non-irrigated (Board and 

Kahlon, 2011), but in Arkansas, approximately 82% soybean of production area was irrigated in 

2014 (USDA, 2014). In 2013, irrigated soybean yield (3,531 kg ha-1) was 935 kg ha-1 greater 

than non-irrigated soybean yield (2596 kg ha-1) in Arkansas (USDA, 2014). In 2012, there was 

the most severe drought, the U.S. had experienced within the last 25 years; non-irrigated soybean 

yield in Arkansas was 1594 kg ha-1 less than irrigated yield (USDA, 2013). A large gap of yield 

under drought stress from the optimal conditions is a severe problem for agricultural systems. 

Therefore, drought stress is considered one of the most important abiotic factors restricting 

soybean yield (Heatherly and Elmore, 1986). 

 

 

 

http://soystats.com/u-s-yield-production-yield-history
http://soystats.com/u-s-yield-production-yield-history
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B. Drought Effect on Soybean 

Drought Effects at Different Developmental Stages 

Drought stress affects seed number, seed weight, and ultimately yield at different 

developmental stages to varying degrees. Poor germination and emergence of seedlings due to 

drought stress can result in inadequate plant population (Board and Kahlon, 2011). Drought 

stress affects vegetative development by diminishing cell and leaf expansion, resulting in 

decreased light interception (LI) and leaf area index (LAI) that ultimately reduces the crop 

growth rate and yield (Raper and Kramer, 1987). Meckel et al. (1984) reported that the flowering 

and post flowering periods were the most critical for soybean yield loss under a water-stressed 

environment. When drought occurs during flowering and early seed fill, soybean seed yield is 

reduced about 24-50% (Frederick et al., 2001). Brown et al. (1985) demonstrated in a field 

experiment that moisture stress initiated at the R2 or R4 stages significantly reduced seed yield. 

Eck et al., (1987) reported that drought stress throughout the seed development period (R5-R7 

stages) resulted in more severe yield loss (45% -88%) than at earlier development stages. 

Physiological Responses of Soybean to Drought 

During drought stress, plants have lower leaf water potential, relative water content, and 

transpiration rate, with higher leaf and canopy temperature (Siddique et al., 2001). Egilla et al. 

(2005) reported that water deficit decreased the relative water content, turgor potential, T, gc, and 

WUE. However, several studies reported higher WUE under water limited conditions than well-

watered conditions, which was mainly associated with stomatal closure and a decreased gc and T 

(Abbate et al., 2004; Lazaridou and Koutroubas, 2004). Water deficit conditions reduce the total 

nutrient uptake, nutrient assimilation by roots, and nutrient transportation to shoots, and results 
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decreased plant nutrient concentrations, plant growth, and biomass accumulation (Garg, 2003; 

McWilliams, 2003).  

Drought stress reduces leaf expansion, CO2 uptake due to stomatal closure, Rubisco 

enzyme activity, and consequently decreased photosynthesis, crop growth, and production 

(Anjum et al., 2003; Bota et al., 2004; Wahid and Rasul, 2005). Stomatal closure is one of the 

first responses of plants to drought, which reduces the water loss (Cornic and Massacci, 1996). 

The closure of stomates during drought is associated with chemical signals, such as abscisic acid 

(ABA), that accumulate in leaves and that are secreted by dehydrating roots in response to soil 

drying (Morgan, 1990; Taylor, 1991; Turner et al., 2001). Drought stress also affects the 

translocation of assimilates with enhanced allocation of dry matter to the roots at the expense of 

allocation to developing seed (Leport et al., 2006). 

Drought stress not only affects photosynthesis in soybean, but it is also affects symbiotic 

N2 fixation (Serraj and Sinclair, 1996). Water deficit thereby reduces the supply of nitrogen for 

protein production, which is an important seed product of soybean, and results in reduced yield 

under water-limited conditions (Purcell and King, 1996). Numerous factors are associated with 

inhibition of symbiotic N2 fixation under drought conditions including reduced carbon flux to 

nodules, reduction in oxygen availability, reduced nodule synthase activity, and enhanced 

ureides and free amino acids in plants (King and Purcell, 2006). Drought stress also increases 

generation of reactive oxygen species, including superoxide anion radicals, hydroxyl radicals, 

hydrogen peroxide, alkoxy radicals, and singlet oxygen, and resulting in increased the 

peroxidation of membrane lipids and degradation of nucleic acid, and both structural and 

functional proteins (Blokhina et al., 2003; Sairam et al., 2005). 
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C. Drought Resistance  

Drought resistance refers to the ability of plants to mitigate the negative effects of water 

deficit conditions (Levitt, 1972). Plant breeders define drought resistance as the ability of plants 

to produce an economic product with minimum loss in water-limited conditions (Mitra, 2001). 

There are different types of mechanisms or strategies for drought resistance that allow plants to 

adapt to specific habitats for proper growth and development. Ludlow (1989) described three 

broad strategies for drought resistance: tolerance, avoidance, and escape. Among the different 

strategies, drought tolerance and drought avoidance are the major ones for drought resistance 

(Yue et al., 2006). In drought avoidance, plants adjust certain morphological structures or growth 

rates to maintain normal physiological mechanisms under mild or moderate water deficit 

conditions. Drought avoidance is primarily associated with the ability of plants to maintain high 

water potentials in water deficit conditions. For example, deep extensive root systems can 

increase the capacity for water uptake to maintain high water potential under drought (Bonos and 

Murphy, 1999). Drought tolerance refers to the ability of plants to survive low water content by 

adjusting the metabolic processes under drought. Osmotic adjustment is an example of drought 

tolerance traits (DaCosta and Huang, 2006). 

Drought escape refers to the natural or artificial adjustment of a growth period, planting 

time, or life cycle of plants to prevent the growing season from encountering drought stress. 

Water deficit conditions usually start sometime in June and extend until September in 

midsouthern U.S. (Heatherly et al., 1998; Purcell et al., 2003). In Arkansas, planting dates range 

from April 1 to July 15 and reproductive stages of cultivars, most sensitive to drought stress, 

occur from mid-July through mid-September when cultivars need large amounts of water and 

evaporative demand is high (Purcell et al., 2003). To escape drought, farmers may plant early-
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maturing cultivars in late March to mid-April in the midsouthern U.S. to avoid drought and heat 

(Heatherly, 2015).  

3. Breeding for Drought Tolerance in Soybean 

In breeding programs, improvement of drought tolerance, through direct selection of 

yield is not easy or cost effective, and genetic gain from these selections is very low under water 

deficit conditions because of low heritability, polygenic control, epistasis effects, and genotype 

by environment interactions (Piepho, 2000). Tuberosa and Salvi (2006) indicated that 

identification of physiological traits that limit yield could serve as indirect selection criteria in 

the breeding program.  

There is a wide range of physiological, morphological, and biochemical traits that 

contribute towards the improvement of yield under drought-stressed environment; however, only 

a few of those traits have been successful due to costly screening or extensive labor requirements 

(Passioura, 2007). To be successful, traits must improve crop performance under drought, have 

high heritability, and be rapid, accurate, and inexpensive for improving drought tolerance (Blum, 

2011; Monneveux and Ribaut, 2006). 

Several different analytical models have been proposed to dissect crop yield under 

drought into smaller components. Passioura (1977, 1996) proposed an important conceptual 

framework for improving grain yield under water-limited environments: 

                                               Y = T × WUE × HI                                                            [1] 

where yield (Y) can be expressed as a product of the amount of water used by the crop through 

T, WUE, and harvest index (HI, Eq. 1). Traits associated with the subcomponents in Eq. [1] are 

targets that can be used in breeding and genetic dissection of drought tolerance mechanisms. 

Equation 1 indicates that plant biomass is determined by the product of WUE and T (Passioura 



14 
 

1977), and in drought environments, high WUE in some wheat genotypes increased crop 

productivity (Richards et al., 2002). 

A. Target Traits from Yield Framework for Drought Tolerance 

Carbon Isotope Discrimination 

There are several ways to define WUE. At the leaf scale, it is defined as the ratio of net 

CO2 assimilated by photosynthesis (A) and the amount of water transpired (T) in the same period 

(Eq. 2), and this is known as instantaneous WUE (µmol CO2 mmol H2O m-2s-1)  (Polley, 2002) 

or transpiration efficiency (TE).   

                                                      WUE = TE = 
𝐴

𝑇
                                                             (2) 

Instantaneous WUE may also be expressed as a ratio of A (µmol m-2s-1) and gs (mol m-2 

s-1). Agronomists and crop physiologists define WUE as the ratio of accumulated biomass (BM) 

and water used by the crop in the same period (Abbate et al., 2004).  

The net CO2 assimilated by photosynthesis (A) is a product of gs
CO

2 for CO2 and the 

concentration gradient of CO2 between the outside (Ca) and inside the leaf (Ci) Eq. [3]. 

Transpiration is a product of stomatal conductance for H2O vapor (gs 
H

2
O) and the concentration 

gradient of H2O vapor between the inside (Wi) and outside the leaf (Wa) Eq. [4]. The ratio of 

gs
CO

2 to gs 
H

2
O is 0.6, and TE can be simplified as shown in Eq. [5]. Here, A/T or transpiration 

efficiency, TE, is negatively related to the ratio of Ci to Ca (Farquhar and Richards, 1984). Two 

factors, stomatal conductance of CO2 and Rubisco, control the Ci/Ca. For unstressed plants, a 

typically value for Ci/Ca is 0.7 for C3 plant species (Farquhar, 1989).  

                                              A= gs
CO

2 (Ca-Ci)                                                                  (3) 

                                            T = gs 
H

2
O (Wi-Wa)                                                                (4) 

                                           TE=  
0.6 𝐶𝑎 (1−

𝐶𝑖

𝐶𝑎
) 

(𝑊𝑖−𝑊𝑎)
                                                                    (5) 
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Selection of genotypes with greater WUE or TE can be used to improve crop productivity 

under a water-stressed environment (Condon et al., 2004). However, examples of improving 

drought tolerance by selecting for higher WUE or TE is limited in breeding programs because 

field screening for WUE and TE is difficult and time consuming for a large number of genotypes 

(Wright et al., 1994). Several studies reported the relationship between carbon isotope 

composition and TE, by measuring carbon isotope discrimination (Δ13C) (Condon et al., 1990; 

Rebetzke et al., 2002). Farquhar et al., (1982) proposed that Δ13C could be used as a surrogate 

measure of WUE negatively correlated with WUE in different crop species including wheat 

(Triticum aestivum L.) (Condon et al., 1990), bean (Phaseolus vulgaris L.) (White, 1993), 

cowpea (Vigna unguiculata [L.] Walp.) (Ismail et al., 1994), and peanut (Arachis hypogea L.) 

(Wright et al., 1994). An alternative expression of 13C data is the molar ratio of 13C to 12C (𝛿 13C) 

and is referred to as the 13C ratio, which is positively correlated with WUE. Both Δ13C and 𝛿 13C 

provide a time-averaged measurement of WUE, which can be used in assessing the genotypic 

variation of WUE.  

The proportion of 13C in the biosphere is sufficiently large enough that very small 

variation in the 13C/12C can be measured accurately. Plant 13C/12C isotope ratio is different from 

the atmosphere with plants having less 13C and more 12C than the atmosphere and hence, there is 

variation in 13C/12C ratio in plant dry matter (Werner et al., 2012). Accurate measurement of the 

C13 isotope composition is difficult due to the very low presence of 13C. Therefore, the isotopic 

composition (𝛿 𝐶)
13

12  is expressed as molar abundance ratio, 13C/12C of plant sample (Rp) relative 

to the molar abundance of the international standard, Pee Dee belemnite (Rs). 

                                         𝛿 𝐶
13

12  = 
(𝑅𝑝−𝑅𝑠)

𝑅𝑠
 = 

𝑅𝑝

𝑅𝑠−1
                                                              (6) 
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where the isotopic composition of air relative to Pee Dee belemnite is -8 x 10-3 (Hubick 

and Farquhar, 1989). 

An increase in WUE is normally achieved through a reduction in T, which is often 

accompanied by a reduction in biomass. This interdependency of T and biomass production is a 

major constraint in the selection of high WUE by breeding programs. Thus, a weak 

interdependency between T and WUE can serve as a good source for identifying genotypes with 

high WUE, which would not be accompanied by a proportionally large reduction in biomass 

(Sheshshayee et al., 2005). Therefore, it is important to understand the genetic variability in 

WUE and T separately.  

Oxygen Isotope Ratio 

While δ13C is used to determine the genetic variability of WUE, the isotope ratio between 

18O and 16O (δ18O) can be used to assess genetic variability of stomatal conductance and T. 

Genetic variation in stomatal conductance and T can be determined by the enrichment of the 

heavy oxygen isotope in leaf water relative to the water source (Gonfiantini et al., 1965). There 

are three naturally occurring stable oxygen isotopes, 16O, 17O, and 18O, with approximate 

concentrations of 99.74, 0.05, and 0.21% respectively. The absolute isotope composition is 

difficult to measure, so isotope ratios are generally compared with that of a standard, the Vienna-

Standard Mean Oceanic Water (VSMOW), 2.0052 x 10-3 (Gonfiantini, 1965). Plant isotope 

composition or ratio is expressed as the relative deviation from VSMOW, and denoted δ18O = 

Rp/Rst -1 where Rp is isotopic ratio of plant and Rst is isotopic ratio of standard.  

Enrichment of 18O at the evaporation sites occurs because the diffusivity and vapor 

pressure of the heavier H2
18O molecule is less than the H2

16O molecule (Gonfiantini et al., 1965). 

When water transpires from the leaf, heavier molecules of water tend to be left behind and enrich 
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the leaf depending on the gs. Higher gs associated with higher transpiration rate reduces the 

enrichment of δ18O (Farquhar et al., 2007) and results in a negative correlation between δ18O and 

either T or gs. Barbour and Farquhar (2000) reported a negative relationship between T with δ18O 

in cotton (Gossypium hirsutum L.) after treating plants with abscisic acid (ABA). The increased 

concentration of ABA reduced the gs and T and increased the δ18O. Barbour and Farquhar (2000) 

also found that δ18O extracted from whole-leaf material and cellulose were strongly correlated (r 

= 0.986), indicating that analyzing whole-leaf tissue will give similar results as analyzing 

cellulose. Similarly, Cernusak et al., (2003) reported a negative correlation between δ18O and T 

in Eucalyptus globulus (L.). However, several other reports found that δ18O was positively 

associated with T (Gan et al., 2002; Sheshshayee et al., 2005; Yakir et al., 1990). Farquhar et al., 

(2007) concluded that δ18O was typically negatively correlated with T except in those conditions 

under which T variation was primarily due to differences in vapor pressure deficit (VPD) and not 

gs. In this case, δ18O was positively associated with T (Gan et al., 2002; Sheshshayee et al., 2005; 

Yakir et al., 1990). The δ13C and δ18O in plants are informative measures to separate effects of 

photosynthesis capacity on WUE from the effects of gs and T. 

High-throughput Phenotyping for Canopy Temperature 

Stomatal conductance regulates T to maintain the plant water balance (Gollen et al., 

1986). An early response of plants to drought stress is a stomata closure, which serves to reduce 

water loss through transpiration (Cornic and Massacci, 1996). Porometry is a method to screen 

stomatal response; however, this approach is slow and laborious for a large number of genotypes 

in a breeding program (Jones,1979; Leport et al., 1999). Evaporative cooling through T is related 

to gs and variation in CT can be used as an indicator for T and gs differences among genotypes 

(Jackson et al., 1981; Jones et al., 2009).  
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Infrared thermography remote sensing provides a quantitative approach to measure crop 

water status (Blum et al., 1982). Field measurement of CT of a large number of genotypes is 

difficult because many environmental factors such as air temperature, humidity, wind speed, 

solar radiation, as well as stomatal aperture affect leaf temperature. Several studies have shown 

that IR thermography can be used as effective tool in evaluation of water stress in different crops 

such as soybean and cotton (O’Sgaughnessy et al., 2011), and maize (Zia et al., 2011). Aerial 

thermal images provide a more rapid and accurate measurement of CT than ground-based 

images, and it does not interfere with stomatal responses (Jones et al., 2009; Guilioni et al., 

2008). 

There are different aerial platforms that have been used for remote sensing applications 

including unmanned aerial system (UAS), balloon, and kite platforms (Aber et al., 2002; Boike 

and Yoshikawa, 2003; Miyamoto et al., 2004; Primicerio et al., 2012; Chapman et al., 2014). A 

UAS is the most commonly used aerial platform for high throughput field-based phenotyping 

including estimation of ground cover in sorghum [Sorghum bicolor (L.) Moench], canopy 

temperature in sugarcane [Saccharum officinarum L.], crop lodging in wheat (Triticum aestivum 

L.), and classification of wetland vegetation in Japan (Boike and Yoshikawa, 2003; Chapman et 

al., 2014; Miyamoto et al., 2004). 

Canopy wilting 

Visual rating of canopy wilting has also been used to identify genetic differences in soil 

moisture availability. Screening of exotic germplasm for drought tolerance in North Carolina 

indicated that slow wilting genotypes, PI 416937 and PI 471938, were delayed in wilting relative 

to other genotypes (Carter et al., 2006). Pathan et al., (2014) identified two additional accessions 

(PI 567690 and PI 567731) that were slow wilting and had reduced yield loss under drought 
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stress.  King et al., (2009) and Ries et al., (2012) determined that slow wilting was due to the 

conservation of soil moisture when soil moisture was plentiful that could then be used when soil 

moisture in fast wilting genotypes had been depleted. Sinclair et al., (2008) reported that slow 

wilting in PI 416937 was mainly associated with lower leaf hydraulic conductance for T under 

high vapor pressure deficit (VPD). Carter et al., (2006) and Pathan et al., (2014) reported that 

slow-wilting genotypes had yield advantages over the fast wilting genotypes under water deficit 

conditions. Based on these reports, slow wilting can be used a potential trait to improve the crop 

yield under drought environment. 

Canopy Coverage using Digital Images 

Water evaporation from the soil surface is a loss that is not used for crop biomass 

production. Soil evaporation can be reduced through early establishment of a closed canopy and 

will thereby improve WUE by enhancing T relative to soil evaporation (Es). By reducing the 

water lost through Es, quick canopy establishment may result in more stored water available for 

later developmental stages when soil moisture may be exhausted and increasingly limiting for 

yield (Purcell and Specht, 2004; Rebetzke et al., 2007; Richards et al., 2007; Slafer et al., 2005).  

Improving canopy solar radiation interception is a second advantage offered by rapid 

establishment of canopy coverage. Improved solar radiation interception of canopy is positively 

associated with crop growth and yield (Edwards et al., 2005; Liebisch et al., 2015). The 

intercepted radiation of the canopy provides the energy, which is required for a number of 

physiological processes including photosynthesis and transpiration (Liebisch et al., 2015). Rapid 

establishment of closed canopy maximizes the interception of solar radiation, resulting in 

improved crop yield (Edwards and Purcell, 2005; Edwards et al., 2005).  
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Faster establishment of a closed canopy can also increase soybean competiveness, 

especially against weeds (Bussan et al., 1997). The number of herbicide resistant weeds are 

increasing, which is becoming a large problem in crop production (Green and Owen, 2011). 

Alternative and sustainable approaches are needed to manage these herbicide resistant weeds. 

Rapid canopy development can serve as a cultural control to suppress early-season weed growth 

(Fickett et al., 2013; Jannink et al., 2000, 2001). 

Digital-image analysis provides an inexpensive and rapid way of measuring canopy 

coverage over other methods of light interception estimation (Campillo et al., 2008; Fiorani et 

al., 2012; Purcell, 2000). Canopy coverage may be measured as a fraction of green pixels relative 

to the total number of pixels in an image, and this canopy coverage is approximately equivalent 

to the fraction of radiation intercepted.  

B. Drought Tolerant-Related Traits are Complex and Quantitative 

Quantitative Trait Loci Mapping 

Traits related to drought tolerance are controlled by genotype, environment and their 

interactions (Carter et al., 1999). The complexity of traits such as δ13C arises from the 

segregation of alleles at many chromosomal regions, each with small additive effects on the 

phenotype, and interacting with other alleles and with the environment (Tuberosa et al., 2007). 

Crop performance can be improved under drought conditions by selecting and pyramiding 

favorable alleles associated with drought-tolerant related traits into elite cultivars (Blum, 2005). 

Various genomic approaches have been used to investigate genetic control of drought tolerance 

(Tuberosa et al., 2007). Quantitative trait loci (QTL) identification using molecular markers is 

one way to dissect the traits associated with drought tolerance (Dixit et al., 2014). QTLs are 

defined as the genomic regions that control phenotypic variation.  
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Several types of molecular markers have been developed, including morphological, 

isozyme, restriction fragment length polymorphism (RFLP), random amplified polymorphic 

DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR), 

and single nucleotide polymorphism (SNP), which are used for QTL mapping. Currently, SNPs 

are the markers of choice for mapping because of their abundance in the genome as well as high 

throughput methods of detection of QTLs. In soybean, few QTLs have been reported which are 

associated with drought tolerant-related traits. Specht et al., (2001) identified five QTLs for Δ13C 

in soybean but these were also coincident with maturity QTLs. Charlson et al., (2009) identified 

four QTLs for wilting using a mapping population of 92 RILs (KS4895 and Jackson). Abdel-

Haleem et al., (2012) identified seven QTLs for wilting. Du et al., (2009) used a mapping 

population of 184 RILs from the cross of Kefeng1 x Nannong1138-2 to identify two QTLs for 

wilting coefficient that were present on the chromosomes Gm08 and Gm20. Recently, Hwang et 

al., (2015) used the results of QTLs for wilting from five mapping populations to identify 

clusters of eight QTLs that were present in at least two populations, and a meta-analysis of these 

eight clusters identified nine meta-QTLs in eight chromosomal regions (Hwang et al., 2016). 

Similarly, QTLs associated with WUE were identified using a mapping population of 116 F2 

from the cross of S-100 × Tokyo, and five QTLs were identified using a mapping population of 

120 RILs from the cross of Young × PI416937 (Mian et al., 1996 and 1998). 

Advancement in high throughput genotyping provides fast and inexpensive genomic 

information, which can be used to study genetic diversity and for fine QTL mapping. The USDA 

soybean germplasm collection has been genotyped with the SoySNP50K iSelect Beadchip, 

which has allowed characterization of soybean genetic diversity, linkage disequilibrium (LD), 

and the construction of high resolution linkage maps (Song et al., 2013).  
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Genome-Wide Association Studies 

Genome-wide association mapping is an alternative approach to traditional QTL mapping 

of bi-parental population and is widely used in plant and human genetics (Nordborg and Tavare, 

2002; Risch and Merikangas, 1996). This mapping method is often referred to as GWAS 

(genome-wide association studies) and based on linkage disequilibrium (LD), due to non-random 

association of alleles between genetic loci across the genome (Zhu et al., 2008). Main advantages 

of GWAS over the traditional linkage mapping (LM) include increased mapping resolution, 

reduced research time, and greater allele number (Yu et al., 2006). Connecting genotype to 

phenotype is a fundamental aim of both GWAS and LM, which detect the functional variants 

(alleles, loci) that control the phenotypic variation (Botstein and Risch, 2003). The detection of 

QTL through GWAS depends on the level of LD between functional loci and markers. Faster LD 

decay over physical distance, as compared to slower LD decay, requires higher marker density 

over the genome to capture association between marker and phenotype (Yu et al., 2006).  

Statistical Models for GWAS 

Most commonly used statistical models in traditional LM are single marker analysis, 

interval mapping, multiple interval mapping, and Bayesian interval mapping (Doerge, 2002; 

Zeng, 2005). In contrast, under ideal situations, GWAS include basic statistics for analysis such 

as linear regression, analysis of variance, t-test or chi-square test. A major problem in GWAS is 

population stratification that can induce false positives. Population stratification can be from 

either population structure or family relatedness. Population structure problems result when there 

are allele frequency differences among individuals due to geographical diversification. Family 

relatedness problems result when there are allele frequency differences among individuals due to 
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recent co-ancestry (Yu et al., 2006). These confounding factors can generate spurious 

associations between markers and traits.  

There are a number of statistical models that effectively control these confounding factors 

and simultaneously improve statistical power and reduces computing time. Statistical methods 

used for association mapping that range from simple to complex include: (i) single marker 

regression, analysis of variance, t-test or chi-square test, (ii) GLM with Q matrix (population 

membership estimates) (Larsson et al., 2013), (iii) GLM with PCA (Principle Component 

Analysis) (Price et al., 2006), (iv) MLM with Q + K (Kinship matrix for family relatedness 

estimates) (Yu et al., 2006), (v) MLM with PCA + K (Price et al., 2006), (vi) compressed MLM 

(Zhang et al., 2010), (vii) enriched compressed MLM (Li et al., 2014), (viii) Settlement of MLM 

Under Progressively Exclusive Relationship (SUPER) (Wang et al., 2014), and (ix) Fixed and 

random model Circulating Probability Unification (FarmCPU) (Liu et al., 2016) to correct the 

false positives without compromising the true positives.  

Objectives 

The objective of this study was to identify alleles that contribute to drought-tolerant traits, 

which can then be used for pyramiding and stacking in elite germplasm. A diverse collection of 

soybean genotypes was evaluated for 𝛿13C, 𝛿18O, canopy wilting, canopy coverage, and canopy 

temperature in this study as potential metrics of drought tolerance.  

Genome-wide association analysis was used to connect genotype to phenotype for 

identifying specific functional variants (loci, alleles) linked to phenotypic variation of traits 

related to soybean drought tolerance in a panel of 373 diverse accessions. The overall objective 

of this study was to identify the SNP markers and QTLs associated with drought-tolerance-
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related traits and to search for drought tolerant genotypes.  This dissertation is divided into four 

subsequent chapters that detail the specific aims of this research.  

Specific Aims 

1. To identify genomic regions and genes associated with 𝛿 13C and 𝛿 18O. 

2. To identify genomic regions and genes associated with canopy wilting, confirm those regions 

with QTLs reported previously, and identifying extreme genotypes for canopy wilting.  

3. To identify genomic and genes regions associated with canopy coverage using digital 

images. 

4. To identify genomic regions and genes associated with canopy temperature using high 

throughput phenotyping. 
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Abstract 

Water deficit stress is a major factor limiting soybean [Glycine max (L.) Merr.] yield. 

High water use efficiency (WUE) offers a means to potentially ameliorate drought impact, but 

increased WUE is often associated with a reduction in transpiration (T) and an accompanied 

reduction in photosynthesis. This interdependence of T and photosynthesis is a major constraint 

in selection for high WUE by breeding programs. Measurement of genetic variability in WUE 

and T through carbon isotope ratio (δ13C) and oxygen isotope ratio (δ18O), respectively, could be 

important in identifying genotypes with high WUE that also have relatively high T, and hence, 

higher rates of biomass production. This study’s objective was to identify genomic regions 

associated with δ13C and δ18O. A diverse collection of 373 soybean genotypes was grown in four 

field environments and whole-plant samples collected at early reproductive growth were 

characterized for δ13C and δ18O. After quality assessment, 31,260 polymorphic SNP markers 

with a minor allele frequency (MAF) ≥ 5% were used for association analysis. Genome-wide 

association analysis identified 54 environment-specific SNPs associated with δ13C and 47 SNPs 

associated with δ18O. These SNP markers tagged 46 putative loci for δ13C and 21 putative loci 

for δ18O, and may represent an important resource for pyramiding favorable alleles for drought 

tolerance and identifying genotypes with high WUE.  
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Introduction 

Water deficit is one of the major constraints that reduce plant growth and crop 

productivity worldwide. Meeting the food demand for a fast-growing population is a daunting 

challenge faced by producers and agricultural scientists (Foley et al., 2011). Ray et al. (2013) 

reported that the average rate of cereal yield increase per year (1.3%) was currently below the 

required rate to meet the food demand of the projected population of 9 billion people in 2050. 

Drought occurrence represents the most severe abiotic stressor, which causes a significant 

reduction in crop productivity in rain-fed areas (Toker et al., 2007), and is a major cause of year 

to year variation in soybean (Glycine max L. [Merr.]) yield (Zipper et al., 2016). Soybean is 

among the most widely grown crops in the world and is valuable because of its high oil and 

protein concentration in the seed. An increasing population in developing countries raises the 

demand for non-agricultural water uses, and expansion of the crop production area under 

irrigation makes water scarcity an even bigger problem; thus, it is difficult to address the 

challenge of food security. Effective use of water can be a major target to improve crop 

production under water-limited environments (Polania et al., 2016).  

Passioura (1977, 2004) proposed an important conceptual framework for improving grain 

yield under water-limited environments, where yield (Y) can be expressed as a product of the 

amount of water used by the crop through transpiration (T), water use efficiency (WUE), and 

harvest index (HI; Eq. [1]). Traits associated with the individual terms in Eq. [1] can be used in 

breeding and for genetic dissection of drought tolerance mechanisms. 

                                                          𝑌 = 𝑇 × 𝑊𝑈𝐸 × 𝐻𝐼                                                        (1) 

There are several ways to define WUE. At the leaf scale, WUE is defined as the ratio of net CO2 

assimilated by photosynthesis (A) and the amount of water transpired (T) in the same period, and 
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this is known as instantaneous WUE (WUEinst; µmol CO2 mmol-1 H2O). Agronomists and crop 

physiologists often define WUE as the ratio of accumulated biomass (BM) and the water used by 

the crop in the same period (Stanhill, 1986). 

The net CO2 assimilated by photosynthesis (A) is a product of stomatal conductance for 

CO2 (gc) and the concentration gradient of CO2 between the outside (Ca) and inside of the leaf 

(Ci) (Gaastra, 1959). Transpiration (T) is a product of stomatal conductance of H2O vapor (gw) 

and the concentration gradient of H2O vapor between the inside (Wi) and outside of the leaf 

(Wa). The ratio of gc to gw is 0.6, and WUEinst can be simplified as shown in Eq. [2]. Here, 

WUEinst is negatively related to the ratio Ci/Ca (Farquhar and Richards, 1984). Two factors, 

stomatal conductance of CO2 and Rubisco, primarily control the Ci/Ca. 

𝑊𝑈𝐸𝑖𝑛𝑠𝑡 =
𝐴

𝑇
=

𝑔𝑐(𝐶𝑎−𝐶𝑖)

𝑔𝑤(𝑊𝑖−𝑊𝑎)
=

0.6 𝐶𝑎(1−
𝐶𝑖
𝐶𝑎

)

(𝑊𝑖−𝑊𝑎)
  

Selection of genotypes with greater WUE can be used to improve crop productivity in 

drought environments (Condon et al., 2002). However, examples of improving drought tolerance 

by selecting for higher WUE are limited in breeding programs because field screening for WUE 

is difficult and time consuming (Wright et al., 1994). Several studies in wheat (Triticum aestivum 

L.) (Condon et al., 1990), bean (Phaseolus vulgaris L.) (White, 1993), cowpea (Vigna 

unguiculata [L.] Walp.) (Ismail et al., 1994), and peanut (Arachis hypogea L.) (Wright et al., 

1994) have reported a close relationship between carbon isotope composition and WUEinst by 

measuring either carbon isotope discrimination (CID) or carbon isotope ratio (δ13C) (Condon et 

al., 1990; Rebetzke et al., 2002). The difference between CID and δ13C is the mathematical 

expression of the isotopes; CID is negatively related to WUEinst, and δ13C is positively related to 

WUEinst. Carbon isotope composition, hence, provides a time-averaged measurement of WUEinst, 

which can be used in assessing the genotypic variation of WUEinst. 
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An increase in WUEinst is normally achieved through a reduction in gc, which decreases 

both transpiration and photosynthesis and, hence, biomass. This interdependency of T and 

biomass production is a major constraint in the selection of high WUEinst by breeding programs. 

Thus, a weak interdependency between T and WUEinst can serve as a good source for identifying 

genotypes with high WUEinst, which would not be dominated by a reduction in biomass 

(Bindumadhava et al., 2006). Therefore, it is important to understand the genetic variability in 

WUEinst and T separately.  

While δ13C is used to determine the genetic variability of WUEinst, the isotope ratio 

between 18O and 16O (δ18O) can be used to assess genetic variability of stomatal conductance and 

T. Genetic variation in stomatal conductance and T can be determined by the enrichment of the 

heavy oxygen isotope in leaf water relative to the water source (Gonfiantini et al., 1965). 

Enrichment of 18O at the evaporation sites occurs because the diffusivity and vapor pressure of 

the heavier H2
18O molecule is less than the H2

16O molecule (Gonfiantini et al., 1965). When 

water transpires from the leaf, heavier molecules of water tend to be left behind and enrich the 

leaf depending on the stomatal conductance. Higher stomatal conductance associated with higher 

transpiration rate reduces the enrichment of δ18O (Farquhar et al., 2007) and results in a negative 

correlation between δ18O and either T or stomatal conductance. Barbour and Farquhar (2000) 

reported a negative relationship between T with δ18O in cotton (Gossypium hirsutum L.) after 

treating plants with abscisic acid (ABA). The increased concentration of ABA reduced the 

stomatal conductance and T and increased the δ18O. Barbour and Farquhar (2000) also found that 

δ18O extracted from whole-leaf material and cellulose were strongly correlated (r = 0.986), 

indicating that analyzing whole-leaf tissue will give similar results as analyzing cellulose. 

Similarly, Cernusak et al. (2003) reported a negative correlation between δ18O and T in 
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Eucalyptus globulus (L.). The δ13C and δ18O in plants are informative measures to separate 

effects of photosynthesis capacity on WUEinst from the effects of stomatal conductance and T.  

However, several other reports found that δ18O was positively associated with T (Gan et 

al., 2002; Sheshshayee et al., 2005; Yakir et al., 1990). Farquhar et al., (2007) concluded that 

δ18O was typically negatively correlated with T except in those conditions under which T 

variation was primarily due to differences in vapor pressure deficit (VPD) and not gc. In this 

case, δ18O was positively associated with T (Gan et al., 2002; Sheshshayee et al., 2005; Yakir et 

al., 1990).  

Traits related to drought tolerance are complex quantitative traits and depend upon 

genotype, environment, and their interaction (Blum, 2011). Crop performance can be improved 

under drought conditions by selecting and pyramiding favorable alleles associated with drought-

tolerant related traits into elite cultivars (Blum, 2005). Various genomic approaches have been 

used to investigate genetic control of drought stress tolerance (Tuberosa et al., 2007). Quantitative 

trait loci (QTL) identification using molecular markers is one way to dissect the traits associated 

with drought tolerance (Dixit et al., 2014).  

Advancement in high throughput genotyping provides fast and low-cost genomic 

information that enables scientists to fine map QTLs for complex traits (Zhu et al., 2008). 

Genome wide association studies (GWAS), which are based on linkage disequilibrium, have 

emerged as a powerful tool to map the complex trait variation and to identify the genes 

associated with those traits (Nordborg et al., 2002). Almost the entire USDA soybean germplasm 

collection has been genotyped with the SoySNP50K iSelect Beadchip, which serves as an 

important resource for characterizing soybean genetic diversity and linkage disequilibrium and 

construction of high resolution linkage maps (Song et al., 2013). Recently, GWAS analyses in 
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soybean identified several significant single nucleotide polymorphism (SNP) markers controlling 

seed protein and oil content (Hwang et al., 2014), carotenoid content (Dhanapal et al., 2015a), 

agronomic traits (Wen et al., 2014), and ureide concentration (Ray et al., 2015). 

To date, no markers for δ18O-ratio associations have been reported in soybean. In 

addition, there have not been any association or mapping studies of δ18O ratios in other crop 

species. Previously, Dhanapal et al. (2015b) conducted GWAS of δ13C with 12,347 SNP markers 

on 373 MG IV soybean accessions and identified 39 markers likely tagging 21 loci associated 

with δ13C. In the present study, GWAS analysis was conducted on the same phenotypic data as 

Dhanapal et al. (2015b), but using the complete SNP dataset from the SoySNP50K iSelect 

Beadchip, providing 31,260 SNP markers after filtration and with MAF > 5 %, thus increasing 

marker density about three times compared to the previous study (Dhanapal et al., 2015b). In the 

present research, the δ18O ratios were evaluated on the same accessions from the same 

experiment using the complete SNP dataset along with δ13C ratios. The main objectives of the 

present research were to identify novel genomic associations with δ18O in a diverse panel of 373 

soybean accessions, and reanalyze the δ13C data used by Dhanapal et al. (2015b) with an 

increased genomic coverage.  
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Materials and Methods 

Germplasm Collection and Field Trails 

Dhanapal et al. (2015b) fully described the germplasm evaluated in this study.  The 

phenotypic data for δ13C and δ18O isotope ratios of 373 soybean genotypes were evaluated for 

two years, 2009 and 2010, at two locations, the Bradford Research and Extension Center near 

Columbia, MO (38°53’N, 92°12’W) and the Rice Research Experiment Station near Stuttgart, 

AR (34°30’N, 91°33’W). The soil at Columbia was a Mexico silt loam with deep, gently sloped, 

poorly drained soils formed in loess over loamy sediments, and at Stuttgart, a Crowley silt loam 

with deep, poorly drained slowly permeable soils formed in clayey fluviomarine deposits. After 

tillage, 25 seeds m−2 were sown at a 2.5 cm depth. Plots consisted of four rows at Columbia with 

rows 4.87 m in length and with 0.76 m between rows. At Stuttgart, plots were single rows that 

were 6.1 m in length and 0.76 m apart. The Columbia experiment was evaluated under rainfed 

conditions, while furrow irrigation was provided at Stuttgart as needed. Soil test analyses were 

conducted to provide application of P and K as recommended by the University of Missouri 

(Columbia) and the University of Arkansas (Stuttgart). Herbicides and insecticides were applied 

as needed and as described previously (Dhanapal et al., 2015b). 

Phenotypic Evaluations 

The above-ground portion of five individual plants was harvested at beginning bloom 

(R1) to full bloom (R2) (Fehr and Caviness, 1977) from each plot. Plant samples were dried at 

60 oC in an oven, and then ground using a three-step process (Dhanapal et al., 2015b) to obtain 

finely-powdered samples. Two aliquots of each powdered plant material were sent to UC Davis 

for isotope analysis, one for δ13C (~3 mg) and one for δ18O (~200 µg). Measurement of the 

absolute isotope composition is difficult; therefore, δ13C and δ18O ratios were expressed relative 
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to the international standard of the 13C/12C ratio V-PDB (Vienna PeeDee Belemnite), and 18O/16O 

ratio VSMOW (Vienna-Standard Mean Oceanic), respectively. The website of the Stable Isotope 

facility provides more information and details 

(http://stableisotopefacility.ucdavis.edu/13cand15n.html). All 373 genotypes had complete data 

for δ13C in each of the four environments while for δ18O, 346 genotypes had complete data after 

removing 20 genotypes with missing data and seven genotypes with unusual values (outliers).  

Descriptive Statistics and Analysis of Variance 

The four field experiments (two years and two locations) were considered as four 

separate environments and were designated as Columbia (CO) or Stuttgart (ST) in 2009 (09) and 

2010 (10). For each environment, the experiment was conducted as a randomized complete block 

design with two replications. Descriptive statistics, Pearson correlation analysis, and analysis of 

variance (ANOVA) for δ13C and δ18O compositions were computed using the PROC 

UNIVARIATE, PROC CORR and PROC MIXED procedures (α = 0.05) of SAS version 9.4 

(SAS, Institute, 2013), respectively. For this study, genotype was treated as a fixed effect and 

replication within an environment was considered as a random effect. 

Broad sense heritability was estimated using the PROC VARCOMP with the REML method 

(Restricted Maximum Likelihood Estimation) (SAS, Institute, 2013). To reduce the error 

variance, the Best Linear Unbiased Predictions (BLUP) values for each independent environment 

and across all environments were estimated by using the PROC MIXED procedure (SAS, 

Institute, 2013) and then used in GWAS analysis. 

Genotyping and Quality Control 

Single nucleotide polymorphism marker data for all 373 genotypes were obtained from 

Soybase (www.soybase.org ) based upon the Illumina Infinium SoySNP50K iSelect SNP 

http://stableisotopefacility.ucdavis.edu/13cand15n.html
http://www.soybase.org/
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Beadchip (Song et al., 2013). After obtaining the 42,509 SNPs for all 373 genotypes, 

monomorphic markers, markers with minor allele frequency (MAF) < 5 % and markers with a 

missing rate >10% were removed, leaving 31,260 polymorphic SNPs after filtering. Remaining 

missing data in the filtered 31,260 SNPs were imputed using a LD-kNNi method, which is based 

on a k-nearest-neighbor-genotype imputation (Money et al., 2015). Filtered and imputed SNPs 

were then used for association testing to identify the significant SNPs. 

Linkage Disequilibrium Estimation  

Squared correlation coefficients (r2) of alleles were used to compute the pairwise linkage 

disequilibrium (LD) between markers using TASSEL 5.0 software (Bradbury et al., 2007). 

Pairwise LD between markers were calculated separately in euchromatic and heterochromatic 

regions to determine the difference in recombination rate. For each chromosome, physical 

distance of euchromatic and heterochromatic regions were obtained from Soybase 

(www.soybase.org). Nonlinear regression curves, as described by Hill and Weir (1988), were 

used to estimate the LD decay with distance using an R script. The decay rate of LD was 

determined as the physical distance between markers where the average r2 dropped to half its 

maximum value. 

Model for Association Analysis 

Population stratification can induce false positives in GWAS. There are a number of 

statistical models that effectively control these false positives by incorporating population 

structure and kinship among genotypes. Commonly used models to reduce false positives 

include: i) GLM with Q matrix (population membership estimates) (Larsson et al., 2013), ii) 

GLM with PCA (Principle Component Analysis) (Price et al., 2006), iii) MLM with Q + K 

(Kinship matrix for family relatedness estimates) (Yu et al., 2006), iv) MLM with PCA + K 

http://www.soybase.org/
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(Price et al., 2006), v) compressed MLM (Zhang et al., 2010), vi) enriched compressed MLM (Li 

et al., 2014), and vii) Settlement of MLM Under Progressively Exclusive Relationship (SUPER) 

(Wang et al., 2014). Incorporation of population structure and kinship matrix in the above 

models adjust association tests to control false positives; however, these adjustments also 

compromise true positives (Liu et al., 2016). Hence, these models can induce false negatives due 

to over fitting of the model where some potentially important associations can be missed. Fixed 

and random model Circulating Probability Unification (FarmCPU) is one of the models that 

effectively corrects for false positives without compromising true positives (Liu et al., 2016). All 

models listed above were compared using the qualitative trait of flower color, and the results 

were evaluated by examining quantile-quantile (Q-Q) plots (results not shown).  Based on those 

results, the FarmCPU model was chosen for the association analysis reported herein. 

Association analysis was conducted using the FarmCPU model in the R package (Liu et 

al., 2016). In FarmCPU, the Multiple Loci Linear Mixed Model (MLMM) is divided into two 

parts: a Fixed Effect Model (FEM) and a Random Effect Model (REM) which are used 

iteratively. To avoid model over-fitting, REM estimates the multiple associated markers that are 

used to obtain kinship. The FEM tests markers one at a time and kinship from REM as covariates 

to control false positives and negatives. At each iteration, P-values of testing markers and 

multiple associated markers are unified. 

A threshold value (-Log10 (P) ≥ 3.5), which is equivalent to P-value ≤ 0.0003, was used 

to declare a significant association of SNPs with δ13C and δ18O. This threshold value is more 

stringent than that reported in other soybean GWAS studies (Dhanapal et al., 2015a and 2015b; 

Hao et al., 2012; Hwang et al., 2014; Zhang et al., 2015).  To identify the common significant 

SNPs present in more than one environment, a threshold value of P ≤ 0.05 was used, but only 
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those SNPs which had a lower association threshold (P ≤ 0.0003) in one environment were 

considered common.  

Candidate Gene Identification 

Candidate genes were identified for those SNPs that were highly significant (P ≤ 0.0003) 

in each environment. Candidate genes and their associated functional annotation were evaluated 

within ± 10 kb using Glyma1.1, Glyma1.0 and NCBI RefSeq gene models in Soybase 

(www.soybase.org) with consideration for those that may have direct association with WUE or T 

on the basis of biological function. 

 

  

http://www.soybase.org/
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Results 

Environment and Phenotype Descriptions  

Environmental conditions, including temperature, rainfall, and solar radiation, were 

described in a detail by Dhanapal et al., (2015b). ST10 was the warmest of the four environments 

followed by ST09, CO10 and CO09. For both years, average rainfall was higher in Columbia 

than Stuttgart, although Stuttgart was irrigated as needed and CO09 had higher rainfall than 

CO10. Compared to the other environments, ST10 had a higher daily solar radiation followed by 

ST09, CO10 and CO09. 

A broad range in both δ13C and δ18O values were observed within each environment. The 

δ13C ranged by 1.86 (CO09), 1.46 (CO10), 1.59 (ST09), and 1.70 ‰ (ST10) (Figure 2_2_1a). 

Values of δ18O ranged by 2.29 (CO09), 3.09 (CO10), 3.35 (ST09), and 2.82 ‰ (ST10). The 

average δ13C was highest in ST10 and lowest in ST09 (Figure 2_2_1a). The average δ18O was 

higher in Stuttgart than Columbia in both years (Figure 2_2_1b). Analysis of variance indicated 

that genotype, environment, and their interaction had significant effects (P ≤ 0.05) on both δ13C 

and δ18O. Significant positive correlations for δ13C were found between environments which 

ranged from r =0.36 between ST09 and ST10 to r =0.61 between CO09 and CO10. However, for 

δ18O, the association between environments was positive, negative or there was no correlation. 

For instance, CO09 and ST09 showed a significant positive correlation (r = 0.13), but ST09 and 

ST10 showed a significant negative correlation (r = -0.18) at P-value ≤ 0.05. Correlation 

between δ13C and δ18O was only significant for the CO09 (r = 0.23) and ST10 (r = 0.13) 

environments.  

Estimation of broad sense heritability using the REML method indicated higher 

heritability for δ13C and δ18O. Heritability of δ13C was 65% (CO09), 59% (CO10), 59% (ST09), 
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and 71% (ST10). Across the two Columbia environments, heritability was 75%, and across the 

two Stuttgart environments, heritability was 52%. Combined across all environments, heritability 

was 76%. For δ18O, heritability was 49%, 20%, 33%, and 11% for the CO09, CO10, ST09, and 

ST10 environments, respectively. Across the two Columbia environments, heritability was 12% 

and across the two Stuttgart environments, heritability was 0%. The heritability for δ18O was 2.3 

% when considered across all four environments. 

Marker Distribution and Linkage Disequilibrium  

After eliminating monomorphic markers and missing data, 31,260 SNPs with MAF ≥ 5% 

remained for use in association analysis. The highest proportion of markers had minor allele 

frequencies between 0.05 and 0.10 (22 %) and between 0.10 and 0.15 (15%) (Figure 2_2). The 

other seven minor allele frequency classes represented between 8 and 10 % each of the total 

markers. Distribution of SNPs was calculated separately in euchromatic and heterochromatic 

regions across the chromosomes. Out of 31,260, 75.4 % of the SNPs were present in the 

euchromatic region while 24.6 % of the SNPs were found in the heterochromatic region. The 

SNPs were widely distributed across the genome, ranging from 42 SNPs per Mb for Gm19 to 65 

SNPs per Mb for Gm09 in the euchromatic region. For the heterochromatic regions, SNP density 

ranged from 4 SNPs per Mb for Gm20 to 36 SNPs per Mb for Gm18 (Table 2_2_1). LD analysis 

demonstrated that the decay rate of LD was much greater in euchromatic regions than 

heterochromatic regions (Figure 2_3). In the euchromatic region, average LD across all 

chromosomes decayed to r2 = 0.25 at 150 kb in comparison to the heterochromatic region in 

which average LD across all chromosomes decayed to r2 = 0.25 at 5,000 kb (Figure 2_3). Hence, 

the euchromatic region had higher rates of recombination than the heterochromatic region, 

consistent with results of Dhanapal et al. (2015b) and Hwang et al. (2014). 
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Model for Association Analysis 

Eight different models were compared by testing for associations with the easily 

phenotyped qualitative trait for flower color. The FarmCPU model indicated that a single, highly 

significant SNP, BARC_1.01_Gm_13_4559799_A_G, (-Log10 (P) > 34.0) on Gm13 was 

associated with flower color, which was present close (2,000 bp) to a published gene, W1, known 

for flower color. In contrast, other models falsely identified significant markers located on other 

chromosomes. The Q-Q plot of the FarmCPU model resulted in a sharp deviation from the 

expected P-value distribution in the tail area, indicating that false positives were adequately 

controlled whereas Q-Q plots from other models did not show a sharp deviation (results not 

shown). Based on the outcomes of this model comparison, the FarmCPU model was selected for 

GWAS for this study. 

Genome-wide Association Analysis 

Association analyses using 31,260 SNP markers and δ13C and δ18O BLUP values 

identified significant SNPs in each environment and SNPs that were common in at least two 

environments. The FarmCPU model identified 54 SNPs associated with δ13C ‰ (-Log10(P) ≥ 

3.5; P ≤ 0.0003) in at least one of the four environments (Figure 2_4). Significant SNPs that 

were present in a LD block on the same chromosome, were considered one locus. The 54 SNPs 

comprised 46 putative loci (Table 2_2). The allelic effect was calculated by taking the difference 

between the mean of the genotypes with the major allele and genotypes with the minor allele, 

which indicates the effect of the minor allele relative to major allele. The allelic effect for the 54 

SNPs ranged from -0.21 to 0.35 ‰ (Table 2_2). Out of the 54 significant SNPs, 11 SNPs were 

significant in at least two environments. The list of all 54 SNPs, and their corresponding MAF, 

allelic effect, and common environments are provided in Table 2_2. 
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A total of 47 SNPs were associated with δ18O ‰ at the significance level of -Log10(P) ≥ 

3.5; P ≤ 0.0003 (Figure 2_5). These 47 SNPs for δ18O comprised 21 putative loci (Table 2_3). 

The allelic effect for these markers ranged from -0.34 to 0.45 ‰ (Table 2_3). Out of 47 SNPs, a 

total of 13 significant SNPs were present in at least two environments. These 47 SNPs, their 

corresponding MAF, allelic effect, and common environments are provided in Table 2_3. 

Candidate Gene Identification 

The 54 significant SNPs associated with δ13C at -Log10 (P) ≥ 3.5; P ≤ 0.0003, and 47 

significant SNPs associated with δ18O at -Log10 (P) ≥ 3.5; P ≤ 0.0003 were used to identify 

candidate genes. A total of 54 genes for δ13C and 47 genes for δ18O were identified within ± 10 

kb of the respective SNPs. A list of these genes and their corresponding details are provided 

(Tables 2_4 and 2_5). This identification revealed that 23 significant SNPs out 54 for δ13C and 

12 significant SNPs out 47 for δ18O were located within genes and remaining significant SNPs 

were present within ± 10 kb of the respective SNPs on genomic regions (Tables 2_4 and 2_5).  
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Discussion 

Water use efficiency and transpiration are affected by environmental factors such as soil 

moisture availability, vapor pressure deficit, temperature, wind, and radiation (Hopkins, 1999). A 

broad range of δ13C and δ18O values within each environment indicated a wide phenotypic range 

for both WUE (related to δ13C) and transpiration (related to δ18O), which is required for 

dissecting complex traits through association analysis (McCarthy et al., 2008). Genome-wide 

association analysis has an advantage over traditional QTL mapping because it has high mapping 

resolution and is able to dissect the complex phenotypic variation at the nucleotide level (Zhu et 

al., 2008).  

Given that δ13C is closely associated with WUE, the high heritability for δ13C indicates 

that δ13C could be useful for selecting genotypes with superior WUE. In contrast, there was little 

correspondence in δ18O among environments and the heritability generally was low, indicating 

that the environment greatly affected this trait. Ripullone et al. (2008) also noted that different 

environmental conditions, including relative humidity, irradiance, and temperature, induced large 

variation in δ18O response, which can be seen for δ18O in this study. Two environments, CO09 

and ST10, showed positive correlations between δ13C and δ18O. Flanagan and Farquhar (2004) 

also reported a positive correlation between δ13C and δ18O when stomatal conductance was the 

primary cause of variation in δ13C. Under these conditions, decreased stomatal conductance 

would increase δ13C and result in decreased transpiration and an associated increase in δ18O. 

Marker density varied across genomic regions, with fewer gaps in euchromatic regions 

than the heterochromatic regions (Table 2_1). Higher marker density in euchromatic regions is 

not surprising due to a higher recombination rate as compared to the heterochromatic regions 

(Talbert and Henikoff, 2010; Westphal and Reuter, 2002). Gene identification using GWAS for a 
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trait depends on the extent of LD (Kim et al., 2005). Faster LD decay represents a higher 

recombination rate in euchromatic regions (Figure 2_3), which is also seen in other crop species 

(Paterson et al., 2009). Most SNPs identified in euchromatic regions occurred within genes 

instead of in close vicinity as seen in heterochromatic regions. 

The 54 SNPs significantly associated with δ13C and 47 SNPs associated with δ18O likely 

tagged 46 and 21 different loci, respectively. Among these significant SNPs, 11 SNPs were 

associated with δ13C and 13 SNPs were associated with δ18O in more than one environment. 

These markers are likely more stable than markers identified in a single environment as 

discussed previously by Ray et al., (2015).  Lowering the relatively stringent threshold employed 

in this study increased the number of SNPs that were significant in more than one environment 

(data not shown), but it would also likely have increased the number of false positive 

associations. 

For 35 of the 54 SNPs associated with δ13C, the major allele was associated with an 

increase in the δ13C (positive value of allelic effect indicates that the major allele was associated 

with increased δ13C; Table 2_2). One SNP on Gm02 associated with the major allele resulted in 

the largest increase in δ13C (0.27‰) and was present in more than one environment. This SNP 

was present close to a gene, Glyma02g40863, which is annotated as a universal stress protein 

having biological function of response to stress (Table 2_4). For 19 out of 54 SNPs associated 

with δ13C, the minor allele was associated with an increase in δ13C (negative value of allelic 

effect indicates that the minor allele was associated with increased δ13C; Table 2_2). A SNP on 

Gm15 associated with the minor allele had the largest increase in δ13C (-0.21‰; Table 2_2) and 

was located close to a gene, Glyma15g03850, that encodes a transcription Factor GT-2 Proteins 

(Table 2_4). Based on the reported biological functions from Soybase such as photosynthesis, 
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root hair elongation, signal transduction, phosphorylation, response to stresses, and carboxylase 

enzymes, there are some genes in Table 2_4 that may represent genes underlying differing δ13C 

phenotypes. 

For 33 out of 47 SNPs associated with δ18O, the major allele was associated with an 

increase in δ18O (positive value of allelic effect indicates that major allele associated with 

increased δ18O; Table 2_3). An additional 14 SNPs were spaced closely on Gm06 and likely 

represent one locus, with the major allele being associated with the largest increase in δ18O and 

allelic effects of these 14 SNPs ranged from 0.32‰ to 0.45‰ (Table 2_3). Out of 14, three SNPs 

at this locus were present in the coding region of genes and remaining SNPs were located within 

a range of ± 10 kb of the genes (Table 2_5). For 14 out of 47 SNPs associated with δ18O, the 

minor allele was associated with an increase in δ18O (negative value of allelic effect indicates 

that minor allele associated with increased δ18O; Table 2_3). Out of 47 identified genes, there 

were some genes, based on their biological functions reported in Soybase (including water 

transport, response to ABA stimulus and water deprivation, and root hair elongation), which may 

underlay differing δ18O phenotypes. A detailed list of these genes and their corresponding 

associated SNPs is provided in Table 2_5. 

This study identified new loci associated with δ13C in addition to those reported by 

Dhanapal et al., (2015b). Using the same phenotypic data, Dhanapal et al. (2015b) used different 

statistical models with a smaller SNP dataset resulting in only about one-third of the average 

density of SNPs used in the present research. Association analysis with GLM in the present 

report identified all 39 SNPs that were reported by Dhanapal et al. (2015b) as well as a few 

additional SNPs. However, using the FarmCPU model in order to reduce both false-positives and 

false-negatives, we identified significant SNPs associated with δ13C that were located closer to, 
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or within, genes (Tables 2 and 4) than the previous analysis. For instance, Dhanapal et al., 

(2015b) reported a significant SNP on Gm13 that was located close to a gene having no 

annotation available; however, in the present report, a SNP in the same region was found to be 

within a gene, Glyma13g26040 (Locus 23, Table 2_4), that has biological function in response to 

water deprivation.  

Quantitative trait loci mapping for CID and WUE in soybean has been undertaken using 

different mapping populations (Mian et al., 1996 and 1998; Specht et al., 2001). In soybean, 

three independent studies for QTL mapping of CID and WUE were conducted that identified five 

QTLs for CID present on Gm06 (2), Gm13, Gm17, and Gm19 (Specht et al., 2001), five QTLs 

for WUE on Gm12 (2), Gm16 (2), and Gm18, and two QTLs for WUE on Gm04 and Gm19 

(Mian et al., 1996 and 1998). The locations of these reported QTLs and loci identified by 

Dhanapal et al. (2015b) were compared with loci associated with the δ13C identified in this study. 

Several genomic regions identified in this study were located close to reported QTLs (Figure 

2_6). Three WUE QTLs on Gm04 and Gm16 (2) and one CID QTL on Gm06 were located close 

to putative loci identified herein (Figure 2_6). Most of the δ13C loci identified by Dhanapal et al., 

(2015b) were present close to or at the same genomic positon as the δ13C loci identified in this 

study (Figure 2_6). Differences are attributable to different statistical models and significance 

thresholds used in the two studies. 

There has been no previous study of QTL analysis in soybean or any other crop for δ18O. 

Of the 47 SNPs, which were identified for δ18O, one was located close to a previously reported 

QTL for WUE on Gm04 (Figure 2_6). Previously reported QTLs for CID and WUE used a 

limited number of markers (Main et al., 1996 and 1998; Specht et al., 2001) and identified QTL 

covering large genomic regions. Comparing loci of δ13C to loci of δ18O identified in this study, 
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four genomic regions were found on Gm07, Gm09, Gm17, and Gm19 where loci of δ13C and 

δ18O were coincident (Figure 2_6) and these loci have candidate genes that are related to 

transpiration and WUE (Tables 4 and 5). These closely located δ13C and δ18O loci may indicate 

the stability and importance of these SNPs for improving WUE and transpiration and may 

highlight the important regions of the genome for further investigations. 
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Conclusions 

The FarmCPU model was employed for association analyses using 31,260 SNPs (MAF ≥ 

5%) with δ13C and δ18O. These association analyses identified 54 and 47 significant SNPs 

associated with δ13C and δ18O at -Log10(P) ≥ 3.5, respectively. Eleven significant associations of 

SNPs with δ13C out of 54, and 13 significant associations of SNPs with δ18O out of 47 were 

present in at least two environments. The 54 SNPs of δ13C and 47 SNPs of δ18O likely tagged 46 

and 21 different loci, respectively. Five significant loci for δ13C and one significant locus for 

δ18O were located close to four previously reported QTLs for WUE and CID. Examination of 

δ13C and δ18O loci revealed six that were coincident. Single nucleotide polymorphisms that were 

significant in more than one environment and were located close to previously reported QTLs, 

may represent the most promising markers for improving selection for WUE and thereby, 

soybean drought tolerance. 
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Table 2_1. Single nucleotide polymorphism (SNPs) number and density in euchromatic and heterochromatic regions of each 

chromosome. 

Chromosome 

Number 

of SNPs  

Number of 

SNPs in 

euchromatic 

region 

Number of 

SNPs in 

heterochromatic 

region 

Total Sequence 

Length (bp) 

Sequence 

length of 

euchromatic 

region (bp) 

Sequence length 

of 

heterochromatic 

region (bp) 

SNP density in 

euchromatic 

region 

(SNPs/Mb) 

SNP density in 

heterochromat

ic region 

(SNPs/Mb) 

1 1,238 849 389 55,915,595 14,841,727 41,073,868 57 9 

2 1,924 1,618 306 51,656,713 26,316,426 25,340,287 61 12 

3 1,292 1,115 177 47,781,076 18,879,713 28,901,363 59 6 

4 1,415 1,031 384 49,243,852 18,855,914 30,387,938 55 13 

5 1,352 1,119 233 41,936,504 22,797,076 19,139,428 49 12 

6 1,360 1,163 197 50,722,821 22,083,366 28,639,455 53 7 

7 1,593 1,427 166 44,683,157 27,609,531 17,073,626 52 10 

8 1,884 1,461 423 46,995,532 31,208,512 15,787,020 47 27 

9 1,448 1,151 297 46,843,750 17,602,854 29,240,896 65 10 

10 1,622 1,172 450 50,969,635 24,219,274 26,750,361 48 17 

11 1,220 1,113 107 39,172,790 24,367,505 14,805,285 46 7 

12 1,094 959 135 40,113,140 17,140,105 22,973,035 56 6 

13 2,019 1,851 168 44,408,971 29,558,651 14,850,320 63 11 

14 1,587 998 589 49,711,204 20,344,958 29,366,246 49 20 

15 1,911 1,263 648 50,939,160 23,378,504 27,560,656 54 24 

16 1,436 1,134 302 37,397,385 17,708,632 19,688,753 64 15 

17 1,586 1,086 500 41,906,774 20,240,737 21,666,037 54 23 

18 2,595 974 1,621 62,308,140 16,848,141 45,459,999 58 36 

19 1,624 1,143 481 50,589,441 27,373,488 23,215,953 42 21 

20 1,060 945 115 46,773,167 17,784,173 28,988,994 53 4 

Total 31,260 23,572 7,688 950,068,807 439,159,287 510,909,520     
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Table 2_2. List of significant SNPs associated with δ13C (‰) composition for four environments, Columbia in 2009 (CO09) and 2010 

(CO10), and Stuttgart 2009 (ST09) and 2010 (ST10) using FarmCPU model with a threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 

Locus CHR† Location SNP_ID -LOG10 (P) MAF‡ Allelic Effect§ ENV Common ENV§§ 

1 1 4,267,470 BARC_1.01_Gm_01_4267470_A_G 4.60 0.33 -0.17 CO09 CO09/CO10 

2 2 4,478,306 BARC_1.01_Gm_02_4478306_A_C 6.00 0.19 0.06 ST10  

3 2 10,039,622 BARC_1.01_Gm_02_10039622_A_C 5.82 0.31 0.1 ST10  

4 2 42,187,111 BARC_1.01_Gm_02_42187111_G_T 4.73 0.26 0.1 CO09 CO09/CO10 

5 2 44,143,867 BARC_1.01_Gm_02_44143867_T_C 4.59 0.26 -0.17 ST09  

6 2 45,573,752 BARC_1.01_Gm_02_45573752_A_G 4.67 0.08 0.21 ST10  

  2 46,078,891 BARC_1.01_Gm_02_46078891_C_T 8.69 0.09 0.27 CO10 CO09/CO10 

7 3 21,175,765 BARC_1.01_Gm_03_21175765_T_G 4.76 0.37 0.05 CO10  

8 4 2,045,637 BARC_1.01_Gm_04_2045637_T_C 4.07 0.33 0.12 ST10  

9 4 8,730,102 BARC_1.01_Gm_04_8730102_C_T 3.60 0.10 0.14 CO10 CO10/ST09 

10 4 45,999,196 BARC_1.01_Gm_04_45999196_C_A 6.29 0.33 0.14 CO09  

11 4 47,016,634 BARC_1.01_Gm_04_47016634_T_C 6.03 0.17 0.2 CO10  

12 5 40,012,787 BARC_1.01_Gm_05_40012787_A_C 4.10 0.44 -0.01 CO09  

13 5 41,535,396 BARC_1.01_Gm_05_41535396_T_C 4.17 0.08 -0.1 ST10  

14 6 1,609,551 BARC_1.01_Gm_06_1609551_C_T 5.82 0.47 0.17 CO10  

15 6 9,752,252 BARC_1.01_Gm_06_9752252_G_A 6.68 0.24 -0.18 ST09 ST09/CO09 

16 7 808,215 BARC_1.01_Gm_07_808215_G_A 4.86 0.43 0.01 CO10 CO09/CO10 

  7 944,506 BARC_1.01_Gm_07_944506_C_T 5.27 0.16 0.03 ST10  

17 7 36,678,744 BARC_1.01_Gm_07_36678744_C_T 4.06 0.21 -0.01 CO10 CO09/CO10 

18 9 948,977 BARC_1.01_Gm_09_948977_T_C 3.64 0.06 0.24 CO09  

  9 1,931,752 BARC_1.01_Gm_09_1931752_A_C 3.50 0.11 0.18 ST09  

  9 1,972,697 BARC_1.01_Gm_09_1972697_C_T 3.50 0.12 0.18 ST09  

19 9 3,461,454 BARC_1.01_Gm_09_3461454_T_C 6.45 0.20 0.19 ST09  

20 9 7,427,107 BARC_1.01_Gm_09_7427107_T_C 4.25 0.16 0.08 CO09  

21 10 49,325,827 BARC_1.01_Gm_10_49325827_G_A 4.59 0.19 0.18 CO10  

22 11 8,089,635 BARC_1.01_Gm_11_8089635_T_C 5.74 0.22 -0.14 CO09  

  11 8,134,052 BARC_1.01_Gm_11_8134052_G_A 4.77 0.46 -0.06 CO09 CO09/CO10 

6
0
 

 



61 
 

Table 2_2. (Cont.)         

Locus CHR† Location SNP_ID -LOG10 (P) MAF‡ Allelic Effect§ ENV Common ENV§§ 

24 13 31,079,210 BARC_1.01_Gm_13_31079210_G_A 7.39 0.27 -0.18 ST09  

25 14 29,084,638 BARC_1.01_Gm_14_29084638_T_C 4.39 0.23 0.03 CO09  

26 15 1,735,436 BARC_1.01_Gm_15_1735436_G_A 6.99 0.17 0.23 ST10  

  15 1,842,053 BARC_1.01_Gm_15_1842053_G_T 4.22 0.22 -0.05 ST09  

  15 2,698,450 BARC_1.01_Gm_15_2698450_G_A 5.06 0.17 -0.21 CO09  

27 15 7,718,600 BARC_1.01_Gm_15_7718600_A_G 5.55 0.13 -0.08 CO09  

28 15 9,145,025 BARC_1.01_Gm_15_9145025_A_G 5.38 0.10 0.13 ST09  

29 16 1,333,772 BARC_1.01_Gm_16_1333772_A_G 3.54 0.25 -0.18 ST09  

30 16 31,450,046 BARC_1.01_Gm_16_31450046_A_G 5.88 0.12 0.24 CO09  

31 16 36,544,070 BARC_1.01_Gm_16_36544070_G_A 3.56 0.32 0.04 ST09  

32 17 5,437,401 BARC_1.01_Gm_17_5437401_T_C 6.68 0.10 0.2 CO09  

33 17 8,956,091 BARC_1.01_Gm_17_8956091_G_A 3.99 0.42 -0.1 ST10  

34 17 11,280,806 BARC_1.01_Gm_17_11280806_T_C 4.33 0.38 -0.01 ST10  

35 17 13,673,778 BARC_1.01_Gm_17_13673778_C_T 4.08 0.24 0.18 ST09  

  17 14,439,502 BARC_1.01_Gm_17_14439502_G_A 4.21 0.36 0.03 ST09 ST09/CO09 

36 17 28,876,774 BARC_1.01_Gm_17_28876774_G_A 4.55 0.40 -0.15 CO10  

37 17 35,299,304 BARC_1.01_Gm_17_35299304_A_C 4.52 0.18 0.1 ST09  

38 17 36,772,094 BARC_1.01_Gm_17_36772094_G_A 4.13 0.47 0.13 CO09  

39 18 702,847 BARC_1.01_Gm_18_702847_C_T 4.44 0.49 0.14 CO10  

40 18 11,764,850 BARC_1.01_Gm_18_11764850_T_C 3.86 0.31 0.11 ST09 ST09/ST10 

41 18 57,699,960 BARC_1.01_Gm_18_57699960_G_A 6.73 0.19 0.01 CO09  

42 19 1,051,648 BARC_1.01_Gm_19_1051648_G_A 6.09 0.44 -0.06 CO09 CO09/CO10 

43 19 6,782,546 BARC_1.01_Gm_19_6782546_A_G 3.88 0.06 0.13 CO10  

44 20 3,203,827 BARC_1.01_Gm_20_3203827_C_A 5.48 0.37 0.05 CO10  

45 20 36,691,003 BARC_1.01_Gm_20_36691003_G_A 5.16 0.40 0.08 CO10  

46 20 43,843,387 BARC_1.01_Gm_20_43843387_C_T 3.58 0.17 0.18 CO10  

† CHR: Glycine max chromosome number. 

‡ MAF: Minor allele frequency.  
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§ Allelic effect: Difference in mean δ13C (‰) composition between genotypes with major allele and minor allele. Positive sign 

indicates that allele is associated with increased δ13C (‰). Negative sign indicates that allele is associated with reduced δ13C (‰). 

§§ The highlighted markers were present in more than one environment. 
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Table 2_3. List of significant SNPs associated with δ18O (‰) composition for four environments, Columbia in 2009 (CO09) and 2010 

(CO10), and Stuttgart 2009 (ST09) and 2010 (ST10) using FarmCPU model with a threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 

Locus CHR† Location SNP_ID -LOG10(p) MAF‡ Allelic Effect§ ENV 
Common 

ENV§§ 

1 1 477,469 BARC_1.01_Gm_01_477469_G_A 3.47 0.34 -0.18 ST09  

2 2 40,164,571 BARC_1.01_Gm_02_40164571_T_C 4.10 0.16 -0.22 CO10  

 2 40,196,900 BARC_1.01_Gm_02_40196900_T_C 4.22 0.14 -0.22 CO10  

 2 40,235,878 BARC_1.01_Gm_02_40235878_G_A 3.92 0.14 -0.22 CO10  

 2 40,284,206 BARC_1.01_Gm_02_40284206_G_A 3.77 0.15 -0.22 CO10  

 2 40,366,833 BARC_1.01_Gm_02_40366833_C_T 3.59 0.09 -0.26 CO10  

3 2 50,315,317 BARC_1.01_Gm_02_50315317_A_C 3.74 0.06 0.40 ST10  

 2 50,321,249 BARC_1.01_Gm_02_50321249_C_T 3.77 0.05 0.42 ST10  

4 3 10,408,873 BARC_1.01_Gm_03_10408873_C_T 3.60 0.12 0.28 ST10  

 3 10,516,774 BARC_1.01_Gm_03_10516774_G_A 3.55 0.11 0.29 ST10  

5 4 41,528,634 BARC_1.01_Gm_04_41528634_C_A 3.96 0.46 0.20 CO09  

6 5 8,169,551 BARC_1.01_Gm_05_8169551_G_T 3.54 0.07 -0.34 ST09 ST09/ST10 

7 5 32,621,766 BARC_1.01_Gm_05_32621766_T_C 3.70 0.38 0.20 CO09 CO09/CO10 

8 6 17,757,554 BARC_1.01_Gm_06_17757554_T_C 4.70 0.08 0.40 ST10 ST10/CO09 

  6 17,818,127 BARC_1.01_Gm_06_17818127_G_A 4.70 0.07 0.40 ST10 ST10/CO09 

  6 17,853,524 BARC_1.01_Gm_06_17853524_G_A 4.70 0.08 0.40 ST10 ST10/CO09 
 6 17,899,479 BARC_1.01_Gm_06_17899479_A_G 4.15 0.05 0.45 ST10  

 6 17,931,024 BARC_1.01_Gm_06_17931024_A_G 4.15 0.05 0.45 ST10  

  6 17,955,804 BARC_1.01_Gm_06_17955804_G_A 4.52 0.08 0.38 ST10 ST10/CO09 
 6 18,072,886 BARC_1.01_Gm_06_18072886_C_T 4.30 0.05 0.44 ST10  

  6 18,327,906 BARC_1.01_Gm_06_18327906_C_T 4.22 0.05 0.44 ST10 ST10/CO09 
 6 18,916,841 BARC_1.01_Gm_06_18916841_T_G 3.72 0.07 0.37 ST10  

 6 19,057,405 BARC_1.01_Gm_06_19057405_G_A 4.40 0.07 0.41 ST10  

 6 19,282,687 BARC_1.01_Gm_06_19282687_A_G 4.22 0.07 0.40 ST10  

 6 19,316,184 BARC_1.01_Gm_06_19316184_A_G 4.30 0.07 0.40 ST10  

  6 19,540,686 BARC_1.01_Gm_06_19540686_C_T 3.66 0.09 0.32 ST10 ST10/CO09 
 6 19,614,585 BARC_1.01_Gm_06_19614585_T_C 4.40 0.06 0.42 ST10  

9 7 4,968,383 BARC_1.01_Gm_07_4968383_C_T 3.48 0.26 -0.19 ST09  
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Table 2_3. (Cont.)         

Locus CHR† Location SNP_ID -LOG10(p) MAF‡ Allelic Effect§ ENV 
Common 

ENV§§ 

10 7 15,951,021 BARC_1.01_Gm_07_15951021_G_A 3.48 0.36 0.15 CO10  

  7 16,381,823 BARC_1.01_Gm_07_16381823_T_C 3.92 0.12 0.25 CO10 CO10/CO09 

11 7 37,193,303 BARC_1.01_Gm_07_37193303_C_T 3.66 0.28 0.21 CO09 CO09/CO10 

12 9 820,441 BARC_1.01_Gm_09_820441_A_G 4.52 0.07 0.40 ST10  

 9 823,462 BARC_1.01_Gm_09_823462_A_C 4.52 0.07 0.40 ST10  

 9 850,718 BARC_1.01_Gm_09_850718_G_A 4.52 0.07 0.40 ST10  

 9 909,865 BARC_1.01_Gm_09_909865_G_A 4.00 0.10 0.32 ST10  

 9 998,472 BARC_1.01_Gm_09_998472_G_A 3.72 0.11 0.30 ST10  

13 9 14,923,108 BARC_1.01_Gm_09_14923108_C_A 3.82 0.30 -0.19 ST09  

14 15 13,358,960 BARC_1.01_Gm_15_13358960_C_T 3.62 0.38 0.19 CO09  

15 17 8,109,237 BARC_1.01_Gm_17_8109237_A_C 3.52 0.43 -0.17 ST09 ST09/ST10 

  17 8,136,369 BARC_1.01_Gm_17_8136369_T_C 3.92 0.42 -0.18 ST09 ST09/ST10 

  17 8,146,152 BARC_1.01_Gm_17_8146152_A_C 3.59 0.42 -0.17 ST09 ST09/ST10 

16 18 51,666,337 BARC_1.01_Gm_18_51666337_A_G 4.70 0.08 0.33 CO10  

17 18 53,052,069 BARC_1.01_Gm_18_53052069_A_G 3.46 0.38 0.15 CO10  

18 19 6,562,292 BARC_1.01_Gm_19_6562292_T_G 3.52 0.11 0.23 CO10  

19 19 8,629,858 BARC_1.01_Gm_19_8629858_A_G 3.60 0.49 0.17 ST09  

20 20 1,802,200 BARC_1.01_Gm_20_1802200_C_T 3.47 0.15 -0.20 CO10  

21 20 33,686,169 BARC_1.01_Gm_20_33686169_A_G 4.05 0.09 -0.27 CO10  

† CHR: Glycine max chromosome number. 

‡ MAF: Minor allele frequency. 

§ Allelic effect: Difference in mean δ18O (‰) composition between genotypes with major allele and minor allele. Positive sign 

indicates that allele is associated with increased δ18O (‰). Negative sign indicates that allele is associated with reduced δ18O (‰). 

§§ The highlighted markers were present in more than one environment. 
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Table 2_4. List of significant SNPs associated with δ13C (‰) composition and potential genes based on 54 identified SNPs from 

Soybase.  

Locus SNP_ID Gene Name† Functional Annotation (Biological Function) 

1 BARC_1.01_Gm_01_4267470_A_G Glyma01g04630§ Protein of Unknown Function (N-terminal protein myristoylation) 

2 BARC_1.01_Gm_02_4478306_A_C Glyma02g05595 Heterogeneous Nuclear Ribonucleoprotein R (mRNA splicing) 

3 BARC_1.01_Gm_02_10039622_A_C Glyma02g11800§ Predicted Mitochondrial Carrier Protein (ATP transport) 

4 BARC_1.01_Gm_02_42187111_G_T  Glyma02g36753 Calcineurin B (Mitochondrion localization) 

5 BARC_1.01_Gm_02_44143867_T_C Glyma02g38790§ Kinase-related protein (Unknown) 

6 BARC_1.01_Gm_02_45573752_A_G Glyma02g40340 Serine/Threonine Protein Kinase (protein phosphorylation) 
 BARC_1.01_Gm_02_46078891_C_T  Glyma02g40863 Universal Stress Protein Family (response to stress) 

7 BARC_1.01_Gm_03_21175765_T_G Glyma03g16660 Proteasome Endopeptidase Complex (response to zinc ion) 

8 BARC_1.01_Gm_04_2045637_T_C Glyma04g02840§ Ran GTPase Binding (Unknown) 

9 BARC_1.01_Gm_04_8730102_C_T Glyma04g10520§ Serine/Threonine-Protein Kinase (protein phosphorylation) 

10 BARC_1.01_Gm_04_45999196_C_A Glyma04g39850§ Nodulin Mtn21 Like Transporter Family Protein (Transporter) 

11 BARC_1.01_Gm_04_47016634_T_C Glyma04g41150§ RNA Recognition motif (Unknown) 

12 BARC_1.01_Gm_05_40012787_A_C Glyma05g36110§ CCCH-Type Zn-Finger Protein (response to oxidative stress) 

13 BARC_1.01_Gm_05_41535396_T_C Glyma05g38130 Thaumatin Family (response to salt stress) 

14 BARC_1.01_Gm_06_1609551_C_T Glyma06g02400§ Thioredoxin Superfamily Protein (Unknown) 

15 BARC_1.01_Gm_06_9752252_G_A Glyma06g12586 Pentatricopeptide Repeat (PPR) Superfamily Protein (Unknown) 

16 BARC_1.01_Gm_07_808215_G_A Glyma07g01270§ Protein of Unknown Function (Unknown) 

17 BARC_1.01_Gm_07_944506_C_T Glyma07g01470 Zinc Finger (Unknown) 
 BARC_1.01_Gm_07_36678744_C_T Glyma07g31700 Serine/Threonine/Tyrosine Kinase (protein phosphorylation) 

18 BARC_1.01_Gm_09_948977_T_C  Glyma09g01501 Transcriptional Adapter (response to cytokinin stimulus) 

19 BARC_1.01_Gm_09_1931752_A_C Glyma09g02800 Oxidoreductase Activity (oxidation-reduction process)  

20 BARC_1.01_Gm_09_1972697_C_T Glyma09g02860 Serine/Threonine Protein Kinase (regulation of unidimensional cell growth) 
 BARC_1.01_Gm_09_3461454_T_C Glyma09g04640 Polygalacturonase Activity (carbohydrate metabolic process) 
 BARC_1.01_Gm_09_7427107_T_C Glyma09g08300 MYM-type Zinc finger with FCS sequence motif (water transport) 

21 BARC_1.01_Gm_10_49325827_G_A Glyma10g42360§ RNA Polymerase II Transcription Elongation Factor (DNA methylation) 

22 BARC_1.01_Gm_11_8089635_T_C Glyma11g11350 Major facilitator superfamily protein (circadian rhythm) 
 BARC_1.01_Gm_11_8134052_G_A Glyma11g11410§ Serine-type endopeptidase activity (regulation of meristem growth) 

23 BARC_1.01_Gm_13_29265240_A_G Glyma13g26040§ Calcium Ion Binding (response to water deprivation)  
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Table 2_4. (Cont.)    

Locus SNP_ID Gene Name† Functional Annotation (Biological Function) 

24 BARC_1.01_Gm_13_31079210_G_A Glyma13g27970 Protein of Unknown Function (Unknown) 

25 BARC_1.01_Gm_15_1735436_G_A Glyma15g02531§ Transcription Regulator Activity (regulation of transcription) 

26 BARC_1.01_Gm_15_1842053_G_T Glyma15g02690§ 3'-5' Exonuclease (zinc ion binding) 

27 BARC_1.01_Gm_15_2698450_G_A Glyma15g03850 Transcription Factor GT-2 And Related Proteins (regulation of transcription) 
 BARC_1.01_Gm_15_7718600_A_G Glyma15g10620 Squamosa Promoter Binding Protein-Like 7 (root hair cell differentiation) 
 BARC_1.01_Gm_15_9145025_A_G Glyma15g12370§ Nitrate, Fromate, Iron Dehydrogenase (chlorophyll catabolic process) 

28 BARC_1.01_Gm_16_1333772_A_G Glyma16g01780 RNA-binding family protein (response to water deprivation) 

29 BARC_1.01_Gm_16_31450046_A_G Glyma16g27380§ Serine/Threonine Protein Kinase (regulation of meristem growth) 

30 BARC_1.01_Gm_16_36544070_G_A Glyma16g33710§ Trypsin and Protease Inhibitor (response to salicylic acid stimulus) 

31 BARC_1.01_Gm_17_5437401_T_C Glyma17g07440 Serine/Threonine Protein Kinase (protein phosphorylation) 

32 BARC_1.01_Gm_17_8956091_G_A Glyma17g11910§ 
Clathrin Assembly Protein AP180 And Related Proteins (clathrin coat 

assembly) 

33 BARC_1.01_Gm_17_11280806_T_C Glyma17g14530 tRNA-Nucleotidyltransferase 1 (response to abscisic acid stimulus) 

34 BARC_1.01_Gm_17_13673778_C_T Glyma17g16870 Auxin Efflux Carrier Family Protein (auxin polar transport) 

35 BARC_1.01_Gm_17_14439502_G_A Glyma17g17550 Protein of Unknown Function (Unknown) 

36 BARC_1.01_Gm_17_18900389_A_C Glyma17g20290§ Oxidoreductase Activity (metabolic process) 

37 BARC_1.01_Gm_17_28876774_G_A Glyma17g27370 F-Box Domain (Unknown) 

38 BARC_1.01_Gm_17_35299304_A_C Glyma17g32061 Ring Finger and Protease Associated Domain-Containing (Unknown) 
 BARC_1.01_Gm_17_36772094_G_A Glyma17g33100 Plant Protein of Unknown Function (Unknown) 

39 BARC_1.01_Gm_18_702847_C_T Glyma18g01340§ 
NADH-Ubiquinone Reductase Complex 1 MLRQ Subunit (root hair 

elongation) 

40 BARC_1.01_Gm_18_11764850_T_C Glyma18g12600§ Serine-Threonine Protein Kinase (leaf senescence) 

41 BARC_1.01_Gm_18_57699960_G_A Glyma18g48220§ Acyl-CoA Thioesterase (hydrolase activity) 

42 BARC_1.01_Gm_19_1051648_G_A Glyma19g01420 Zinc Finger, C3HC4 Type (Unknown) 

43 BARC_1.01_Gm_19_6782546_A_G Glyma19g06080 DNA-Directed RNA Polymerase (tRNA transcription) 

44 BARC_1.01_Gm_20_3203827_C_A Glyma20g03395 Uncharacterized Protein (Unknown) 

45 BARC_1.01_Gm_20_36691003_G_A Glyma20g27550 Serine/Threonine Protein Kinase (response to abscisic acid stimulus) 

46 BARC_1.01_Gm_20_43843387_C_T Glyma20g35570 Oxidoreductase Activity (oxidation-reduction process) 

† All genes and their functional annotations are from the Glyma1.1 assembly (www.soybase.org).  

§ Significant SNPs were present within coding regions of these genes.  
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Table 2_5. List of significant SNPs associated with δ18O (‰) composition and potential genes based on 47 identified SNPs from 

Soybase.  

Locus SNP_ID Gene Name† Functional Annotation (Biological function) 

1 BARC_1.01_Gm_01_477469_G_A Glyma01g00820 CCCH-Type Zinc Finger Family Protein (response to oxidative stress) 

2 BARC_1.01_Gm_02_40164571_T_C Glyma02g35380 Serine/Threonine Protein Kinase (water transport/root hair elongation) 
 BARC_1.01_Gm_02_40196900_T_C Glyma02g35400 COBRA-Like Protein (water transport/root hair elongation) 
 BARC_1.01_Gm_02_40235878_G_A Glyma02g35443 Ubiquitin-Protein Transferase Activity (intracellular signal transduction) 
 BARC_1.01_Gm_02_40284206_G_A Glyma02g35443 Ubiquitin-Protein Transferase Activity (intracellular signal transduction) 
 BARC_1.01_Gm_02_40366833_C_T Glyma02g35450 Homeobox Domain (response to abscisic acid stimulus) 

3 BARC_1.01_Gm_02_50315317_A_C Glyma02g46330 O-Glycosyl Hydrolases Family 17 Protein (hydrolase activity) 
 BARC_1.01_Gm_02_50321249_C_T Glyma02g46330 O-Glycosyl Hydrolases Family 17 Protein (hydrolase activity) 

4 BARC_1.01_Gm_03_10408873_C_T Glyma03g09050 Galactosyltransferase Activity (intracellular signal transduction) 
 BARC_1.01_Gm_03_10516774_G_A Glyma03g09080 Protein of Unknown Function (Unknown) 

5 BARC_1.01_Gm_04_41528634_C_A Glyma04g35190 Trehalose-Phosphatase (response to sucrose stimulus) 

6 BARC_1.01_Gm_05_8169551_G_T Glyma05g08200§ Serine/Threonine Kinase Receptor (protein phosphorylation) 

7 BARC_1.01_Gm_05_32621766_T_C Glyma05g26710§ Protein of Unknown Function (Unknown) 

8 BARC_1.01_Gm_06_17757554_T_C Glyma06g21240§ F-Box Domain Protein (Unknown) 
 BARC_1.01_Gm_06_17818127_G_A Glyma06g21280 F-Box Domain Protein (Unknown) 
 BARC_1.01_Gm_06_17853524_G_A Glyma06g21280 F-Box Domain Protein (Unknown) 
 BARC_1.01_Gm_06_17899479_A_G Glyma06g21320§ MazG Nucleotide Pyrophosphohydrolase (Unknown) 
 BARC_1.01_Gm_06_17931024_A_G Glyma06g21350 Plant Protein of Unknown Function (Unknown) 

 BARC_1.01_Gm_06_17955804_G_A Glyma06g21383 
Pentatricopeptide Repeat-Containing Protein (thylakoid membrane 

organization) 
 BARC_1.01_Gm_06_18072886_C_T Glyma06g21510 Remorin family protein (Unknown) 
 BARC_1.01_Gm_06_18327906_C_T Glyma06g21770§ Protein of Unknown Function (Unknown) 
 BARC_1.01_Gm_06_18916841_T_G Glyma06g22160 Exocyst Complex Component 7 (salicylic acid biosynthetic process) 
 BARC_1.01_Gm_06_19057405_G_A Glyma06g22250 Protein of Unknown Function (Unknown) 
 BARC_1.01_Gm_06_19282687_A_G Glyma06g22440 Glycogenin Glucosyltransferase Activity (cell wall organization) 
 BARC_1.01_Gm_06_19316184_A_G Glyma06g22440 Glycogenin Glucosyltransferase Activity (cell wall organization) 
 BARC_1.01_Gm_06_19540686_C_T Glyma06g22771 18S Pre-Ribosomal Assembly Protein Gar2-Related (Unknown) 
 BARC_1.01_Gm_06_19614585_T_C Glyma06g22804 Metallopeptidase Activity (gravitropism)  
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Table 2_5. (Cont.)    

Locus SNP_ID Gene Name† Functional Annotation (Biological function) 

9 BARC_1.01_Gm_07_4968383_C_T Glyma07g06240 ATP-Dependent RNA Helicase (helicase activity) 

10 BARC_1.01_Gm_07_15951021_G_A Glyma07g16260§ Serine/Threonine Protein Kinase (response to salicylic acid stimulus) 
 BARC_1.01_Gm_07_16381823_T_C Glyma07g16690 Dynein Light Chain Type 1 (root development) 

11 BARC_1.01_Gm_07_37193303_C_T Glyma07g32283§ Cellulose Synthase (polysaccharide biosynthetic process) 

12 BARC_1.01_Gm_09_820441_A_G Glyma09g01330§ F-Box Family Protein (negative regulation of defense response) 
 BARC_1.01_Gm_09_823462_A_C Glyma09g01330 F-Box Family Protein (negative regulation of defense response) 
 BARC_1.01_Gm_09_850718_G_A Glyma09g01380§ Inositol Monophosphatase (phosphatidylinositol phosphorylation) 
 BARC_1.01_Gm_09_909865_G_A Glyma09g01446 NADH-Ubiquinone Oxidoreductase Complex I (photorespiration) 
 BARC_1.01_Gm_09_998472_G_A Glyma09g01556§ Microtubule-Associated Proteins (xylem and phloem pattern formation) 

13 BARC_1.01_Gm_09_14923108_C_A Glyma09g13480 2-Hydroxyacid Dehydrogenase (Unknown) 

14 BARC_1.01_Gm_15_13358960_C_T Glyma15g17060 ATP-Dependent RNA Helicase (response to hypoxia) 

15 BARC_1.01_Gm_17_8109237_A_C Glyma17g10780§ Activating Signal Cointegrator 1 (positive regulation of cell proliferation) 
 BARC_1.01_Gm_17_8136369_T_C Glyma17g10820 Myb-Like DNA-Binding Domain (response to abscisic acid stimulus) 
 BARC_1.01_Gm_17_8146152_A_C Glyma17g10820 Myb-Like DNA-Binding Domain (response to abscisic acid stimulus) 

16 BARC_1.01_Gm_18_51666337_A_G Glyma18g42530 Zuotin And Related Molecular Chaperones (regulation of transcription) 

17 BARC_1.01_Gm_18_53052069_A_G Glyma18g43510 Leucine-Rich Repeat Receptor-Like Protein Kinase (signal transduction) 

18 BARC_1.01_Gm_19_6562292_T_G Glyma19g05900 Translation Initiation Factor (regulation of catalytic activity) 

19 BARC_1.01_Gm_19_8629858_A_G Glyma19g07320 Mitochondrial Domain of Unknown Function (Unknown) 

20 BARC_1.01_Gm_20_1802200_C_T LOC102661387 Serine/Threonine-Protein Phosphatase 7 Long Form  

21 BARC_1.01_Gm_20_33686169_A_G Glyma20g23960§ WD40 Repeat Protein (Unknown) 

†All genes and their functional annotations are from the Glyma1.1 assembly (www.soybase.org). 

 § Significant SNPs were present within coding regions of these genes.  
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Figure 2_1. Boxplot showing difference in (a) 𝛿 13C (‰) and (b) 𝛿 18O (‰) compositions across 

four environments, Columbia in 2009 (CO-09) and 2010 (CO-10), and Stuttgart 2009 (ST-09) 

and 2010 (ST-10). Box edges represent the upper and lower quartile with median value shown as 

a bold line near the middle of each box. Mean values are represented by the red circle and the 

upper and lower whiskers represent the extreme values. 
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Figure 2_2 Single nucleotide polymorphism (SNPs) distribution with minor allele frequency in 

this population panel. 
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Figure 2_3 Genome-wide average LD decay across all chromosomes in heterochromatic (green) 

and euchromatic regions (blue). 
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Figure 2_4 Manhattan plot of -Log10 (P) vs. chromosomal position of SNP markers associated 

with 𝛿 13C (‰) composition from FarmCPU model for four environments; (a) Columbia 2009, 

(b) Columbia 2010, (c) Stuttgart 2009, and (d) Stuttgart 2010. Red line represents the association 

threshold (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 
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Figure 2_5 Manhattan plot of -Log10 (P) vs. chromosomal position of SNP markers associated 

with  𝛿 18O (‰) composition from FarmCPU model for four environments; (a) Columbia 2009, 

(b) Columbia 2010, (c) Stuttgart 2009, and (d) Stuttgart 2010. Red line represents the association 

threshold (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 
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Figure 2_6. Location of putative loci significantly associated with δ13C and δ18O with previously 

identified QTLs for CID (Specht et al., 2001) and WUE (Mian et al., 1998) as shown in Soybase 

(www.soybase.org, [Grant et al., 2013]).  
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CHAPTER III 

Genome-Wide Association Mapping of Canopy Wilting in Diverse Soybean Genotypes 
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Abstract 

Drought stress is a major global constraint for crop production, and slow canopy wilting 

is a promising trait for improving drought tolerance. The objective of this study was to identify 

genetic loci associated with canopy wilting and confirm those loci with previously reported 

canopy wilting QTLs. A panel of 373 maturity group (MG) IV soybean genotypes was grown in 

multiple environments to evaluate canopy wilting. Statistical analysis of phenotype indicated 

wide variation for the trait, with significant effects of genotype (G), environment (E) and G x E 

interaction. Over 42,000 SNP markers were obtained from the Illumina Infinium SoySNP50K 

iSelect SNP Beadchip. After filtration for quality control, 31,260 SNPs with a minor allele 

frequency (MAF) ≥ 5% were used for association mapping using the Fixed and random model 

Circulating Probability Unification (FarmCPU) model. There were 61 environment-specific 

significant SNP-canopy wilting associations, and 21 SNPs that associated with canopy wilting in 

more than one environment. There were 34 significant SNPs associated with canopy wilting 

when averaged across environments. Together these SNPs tagged 23 putative loci associated 

with canopy wilting. Six of the putative loci were located within previously reported 

chromosomal regions that were associated with canopy wilting through bi-parental mapping. 

Identified significant SNPs were located within a gene or very close to genes that had a reported 

biological connection to transpiration or water transport. Favorable alleles from significant SNPs 

may be an important resource for pyramiding genes to improve drought tolerance and for 

identifying parental genotypes for use in breeding programs.  
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Introduction 

Soybean [Glycine max (L.) Merr.] is among the most widely grown crops in the world 

and is valuable because of its high oil and protein concentrations. The United States is the 

leading soybean-producing country, followed by Brazil, Argentina, and China (USDA-FAS, 

2016). Over the last 60 years, there has been an increasing trend in soybean yield in the US due 

to improvement in genetic and cultural practices (Irwin and Good, 2015). Fox et al., (2013) 

reported that soybean breeding produced more than 500 cultivars over the last 60 years in North 

America that contributed to a 25% increase in yield.  

Drought occurrence represents a severe abiotic stress and causes a reduction in soybean 

productivity in rain-fed areas. Drought adversely affects soybean yield to some degree at most 

developmental stages, particularly, during reproductive development (Oya et al., 2004).  Drought 

is a major cause in the variation of soybean yield from year to year (Zipper et al., 2016) and is 

projected to be more intense with global climate change. Climate change, not only affects 

temperature, but it also affects the magnitude and distribution of rainfall, resulting in a potential 

decrease in water availability for critical times of the crop cycle (Feng et al., 2013). Climate 

change also decreases the predictability of rainfall and leads to increased frequency of drought 

and flooding conditions (Douglas et al., 2008). Genetic improvement of soybean for drought 

tolerance is a cost-effective approach to stabilize yield for rain-fed areas. 

Slow canopy wilting is a promising trait for improving drought tolerance. Screening of 

exotic germplasm for drought tolerance in North Carolina identified several slow wilting 

genotypes, including PI 416937 and PI 471938 (Carter et al., 1999, 2006). Several mechanisms 

are likely to be responsible for slower canopy wilting. Sinclair et al., (2008) reported that slow 

wilting in PI 416937 was mainly associated with lower leaf hydraulic conductance for 
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transpiration rate under high vapor pressure deficit (VPD). Devi and Sinclair (2013) reported that 

slow wilting in PI 471938 was associated with a lower osmotic potential that helped to maintain 

a greater leaf turgor pressure. Slow wilting may also be associated with maintaining greater leaf 

turgor, transpiration, and CO2 exchange rates during drought conditions (Carter et al., 2006; 

Fletcher et al., 2007; Sadok and Sinclair 2009; Sloane et al., 1990). King et al., (2009) and Ries 

et al., (2012) determined that slow wilting was due to the conservation of soil moisture when soil 

moisture was plentiful. The conserved soil moisture could then be used when soil moisture in 

fast wilting genotypes had been depleted.  

Drought-tolerant related traits are complex quantitative traits that are controlled by 

genotype, environment, and their interaction (Blum, 2011). Under water-limited environments, 

crop performance can be improved by selecting and pyramiding favorable alleles associated with 

drought-tolerant related traits into elite cultivars (Blum, 2005). Various genomic approaches have 

been used to dissect genetic control of drought stress tolerance (Tuberosa et al., 2007). Quantitative 

trait loci (QTL) identification using molecular markers is one way to dissect the traits associated 

with drought tolerance (Dixit et al., 2014). Several different mapping populations have been used 

for QTL mapping of canopy wilting, which identified several genomic regions associated with 

canopy wilting variation. Charlson et al., (2009) identified four QTLs for canopy wilting on 

chromosomes Gm08, Gm13, Gm14, and Gm17 using a mapping population of 93 RILs (KS4895 

and Jackson). Du et al., (2009) used a mapping population of 184 RILs from the cross of Kefeng1 

and Nannong1138-2 to identify two QTLs for canopy wilting that were present on Gm8 and Gm20. 

Abdel-Haleem et al., (2012) identified seven QTLs for canopy wilting on Gm02, Gm04, Gm05, 

Gm12, Gm14, Gm17, and Gm19 using a mapping population of 150 RILs (Benning and PI 

416937). Hwang et al., (2015) used the results of QTLs for wilting from five mapping populations 
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to identify clusters of eight QTLs that were present in at least two populations, and a meta-analysis 

of these eight clusters identified nine meta-QTLs in eight chromosomal regions (Hwang et al., 

2016). 

Genome wide association studies (GWAS) have emerged as a powerful tool to map and 

unravel complex trait variation down to the sequence level and to identify the genes associated 

with those traits (Nordborg et al., 2002; Zhu et al., 2008). The USDA soybean germplasm 

collection has been genotyped with the SoySNP50K iSelect Beadchip, which has allowed 

characterization of soybean genetic diversity, linkage disequilibrium, and the construction of 

high resolution linkage maps (Song et al., 2013). Recently, several GWAS in soybean identified 

significant SNP markers associated with seed protein and oil concentrations (Hwang et al., 

2014), carotenoids (Dhanapal et al., 2015a), δ13C ratio (Dhanapal et al., 2015b), agronomic traits 

(Wen et al., 2014), and ureide concentrations (Ray et al., 2015).  

In the present research, 42,509 SNP markers (www.soybase.org), were utilized for 

GWAS of canopy wilting on a panel of 373 diverse MG IV accessions. The objectives of this 

study were to explore the genetic variation of canopy wilting present within this select panel of 

soybean genotypes, to identify significant SNPs associated with canopy wilting, and to confirm 

those SNPs with previously reported chromosomal regions associated with canopy wilting 

variations.    

  

http://www.soybase.org/
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Materials and Methods 

Field Experiments 

Field experiments were conducted in four environments including the Pine Tree Research 

Station, AR (35°7’N, 90°55’W) in 2016 (PT16), Rohwer Research Station, AR (33°48’N, 

91°17’W) in 2016 (RH16), Salina, KS (38°70’N, 97°60’W) in 2015 (SA15) and 2016 (SA16). 

At each environment, the 373 accessions were sown in a randomized complete block design with 

two replications. Along with the 373 accessions, two check genotypes, slow-wilting (PI 416937) 

and fast-wilting (A5959), were evaluated in each environment. PI 416937 and A5959 were 

confirmed as slow and fast-wilting in previous research (Hwang et al., 2015, 2016; King et al., 

2009). These 373 accessions were obtained from the Soybean Germplasm Collection, USDA-

ARS based on GRIN (Germplasm Resources Information Network, www.ars-grin.gov) data as 

reported by Dhanapal et al., (2015b). These accessions originated from 11 different nations, 

which increased the genetic diversity.  

Phenotypic Evaluations and Descriptive Statistics 

Phenotypic evaluation of canopy wilting was scored using a visual rating based on a scale 

from 0 (no wilting) to 100 (plant death) (King et al., 2009). Canopy wilting was rated two times 

at PT16, and three times each at RH16, SA15, and SA16 environments within two hours of solar 

noon under a clear sky. For all rating dates, plant development ranged between late vegetative 

stages to R4. For each environment, the average of all the canopy wilting scores per plot were 

determined for further analysis. Genotype was treated as a fixed effect and replication within the 

environment was considered as a random effect. Descriptive statistics and Pearson correlation 

analysis, for the average canopy wilting scores for each environment were computed using the 

PROC UNIVARIATE and PROC CORR procedures (α = 0.05) of SAS version 9.4 (SAS, 

https://aaes.uark.edu/research-locations/pinetree.aspx
https://aaes.uark.edu/research-locations/pinetree.aspx
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Institute 2013), respectively. For analysis of variance (ANOVA), the PROC MIXED procedure 

(α = 0.05) of SAS 9.4 was used with a model as suggested by Bondari (2003). The model for the 

phenotypic trait was 𝑦𝑖𝑗𝑘 =  𝜇 +  𝐺𝑖 + 𝐸𝑗 + (𝐺𝐸)𝑖𝑗 +  𝐵𝑘(𝑖𝑗) +  𝜀𝑖𝑗𝑘, where 𝜇 is the total mean, 

𝐺𝑖 is the genotypic effect of the 𝑖𝑡ℎ genotype, 𝐸𝑗 is the effect of the 𝑗𝑡ℎ environment, (𝐺𝐸)𝑖𝑗 is 

the interaction effect between the 𝑖𝑡ℎ genotype and the 𝑗𝑡ℎ environment,  𝐵𝑘(𝑖𝑗) is the effect of  

replication within the 𝑗𝑡ℎ environment, and 𝜀𝑖𝑗𝑘 is a random error following 𝑁(0, 𝜎𝑒
2).  

Broad sense heritability on an entry-mean basis was calculated as 𝐻2 =  𝜎𝐺
2 / (𝜎𝐺

2 +

(
𝜎𝐺𝐸

2

𝑘
) + (

𝜎𝜀
2

𝑟𝑘
)), where 𝜎𝐺

2 is the genotypic variance, 𝜎𝐺𝐸
2  is the genotype by environment variance, 

𝜎𝜀
2 is the residual variance, k is the number of environments, and r is the number of replications. 

The PROC VARCOMP of SAS 9.4 with the REML method (Restricted Maximum Likelihood 

Estimation) was used to estimate the above variance components. To reduce the environmental 

variation, the Best Linear Unbiased Prediction (BLUP) values for each independent environment 

and across all environments were estimated by using the PROC MIXED procedure, and these 

values were then used in GWAS analysis. 

Genotyping and Quality Control 

Marker data, available from Soybase (www.soybase.org ), provided data on 42,509 SNP 

markers for all 373 genotypes. Polymorphic markers of 31,260 were obtained after performing 

quality control checks by eliminating monomorphic markers, markers with minor allele 

frequency (MAF) < 5 % and markers with a missing rate higher than 10%. Imputation of 

remaining marker data was applied using a LD-kNNi method, which is based on a k-nearest-

neighbor-genotype (Money et al., 2015). After filtration and imputation, the remaining 31,260 

SNPs were used for association testing to identify significant SNPs. 

 

http://www.soybase.org/
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Linkage Disequilibrium Estimation  

Pairwise linkage disequilibrium (LD) between markers was measured by squared 

correlation coefficients (r2) of alleles in the TASSEL 5.0 software (Bradbury et al., 2007). To 

understand the difference in recombination rate, LD was calculated separately for euchromatic 

and heterochromatic regions. Information of physical distance of euchromatic and 

heterochromatic regions for each chromosome were obtained from Soybase (www.soybase.org ). 

Nonlinear regression curves, as described by Hill and Weir (1988), were used to estimate the LD 

decay with distance. The decay rate of LD was determined as the physical distance between 

markers where the average r2 dropped to half its maximum value. 

Genome-wide Association Analysis 

Population stratification can induce false positives in GWAS. There are a number of 

statistical models that effectively control these false-positives by incorporating population 

structure and kinship among genotypes. The most commonly used model for association analysis 

is the mixed linear model (MLM) that accounts for the family relatedness and population 

structure (Yu et al., 2006; Zhang et al., 2010). Incorporation of population structure and family 

relatedness in the MLM models adjust association tests to control false positives; however, these 

adjustments also compromise true positives (Liu et al., 2016). Hence, these models can induce 

false-negatives due to over fitting of the model to a degree where potentially important 

associations can be missed. Fixed and random model Circulating Probability Unification 

(FarmCPU) effectively corrects false positives without compromising true positives (Liu et al., 

2016). Both MLM and FarmCPU models were compared using average canopy wilting across all 

environments and results were evaluated based on quantile-quantile (Q-Q) plots. Based on 

http://www.soybase.org/
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results as described subsequently, the FarmCPU model was chosen for the association analysis 

reported herein. 

In FarmCPU, Multiple Loci Linear Mixed Model (MLMM) is divided into two parts: a 

Fixed Effect Model (FEM) and a Random Effect Model (REM) which are used iteratively (Liu et 

al., 2016). To avoid model over-fitting, REM estimates the multiple associated markers that are 

used to obtain kinship. The FEM tests markers, one at a time, and kinship from REM as 

covariates to control false-positives and false-negatives. At each iteration, P-values of testing 

markers and multiple associated markers are unified. 

A threshold value (-Log10(P) ≥ 3.5), which is equivalent to a P-value ≤ 0.0003, was used 

to declare a significant association of SNPs with canopy wilting. This threshold value is more 

stringent than that reported in other soybean GWAS studies (Dhanapal et al., 2015a, b; Hao et 

al., 2012; Hwang et al., 2014; Zhang et al., 2015).  To identify the common significant SNPs 

present in more than one environment, a threshold value of P ≤ 0.05 was used but only if the 

representative SNP had an association of P ≤ 0.0003 in a second environment. 

Genetic merit for each accession was determined using genomic best linear unbiased 

prediction (gBLUP), which utilizes genomic relationship matrix and phenotype data (Clark and 

Werf 2013; Zhang et al., 2007) and breeding values for genotypes. The gBLUP values were 

calculated in a GAPIT program (Lipka et al., 2012). The breeding value of each accession was 

calculated from the allelic effects of all significant SNPs. The allelic effect was calculated by 

taking a difference in mean canopy wilting between genotypes with the major allele and those 

with the minor allele. Alleles from either the major or minor class were considered as favorable 

if they were associated with a reduction in the canopy wilting. To estimate the breeding value for 

each accession, the absolute value of the allelic effect of each significant SNP was considered as 
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a negative value if an accession had a favorable allele of a significant SNP at that location, (i.e.  

if the allelic effect decreased canopy wilting). Otherwise, if the allelic effect was unfavorable 

(i.e., increased canopy wilting), the allelic value for a SNP was considered as a positive value. 

All positive and negative allelic values were summed to estimate the breeding value of each 

accession.  

Candidate Gene Identification 

Significant SNPs at level of -Log10(P) ≥ 3.5 were used to identify the candidate genes in 

each environment and across all environments. Candidate genes, their associated functional 

annotation, and biological function were identified using Glyma1.1, Glyma1.0 and NCBI RefSeq 

gene models in Soybase (www.soybase.org) with consideration for those candidate genes that 

may have a direct biological connection with canopy wilting, transpiration, rooting or water 

transport. 

  

http://www.soybase.org/
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Results 

Phenotype Descriptions  

A broad range of canopy wilting within each environment indicated wide phenotypic 

variation. Canopy wilting scores had a range of 25 (PT16), 25 (RH16), 30 (SA15), and 38 

(SA16) (Table 3_1). The Shapiro–Wilk test of normality was performed, which indicated that 

canopy wilting data were normally distributed within each environment and skewness and 

kurtosis also indicated a normal distribution (Table 3_1). Analysis of variance indicated that 

genotype, environment, and their interaction had significant effects (P ≤ 0.05) on canopy wilting. 

A significant positive correlation for canopy wilting between environments ranged from r =0.40 

between PT16 and SA15 to r =0.66 between RH16 and SA16. Broad sense heritability of canopy 

wilting on an entry-mean basis was moderate to high for PT16 (59%), RH16 (74%), SA15 

(69%), and SA16 (84%). When considering all environments, heritability was 80%. 

Genomic best linear unbiased prediction (gBLUP) values were calculated utilizing the 

genomic-relationship matrix and phenotypic data of 373 accessions to estimate the genomic 

breeding values. The 373 accessions were ranked from lowest to highest based on the average 

gBLUP values of canopy wilting across all environments. Based on the average gBLUP values 

ranking, the 15 accessions with lowest gBLUP for canopy wilting and 15 accessions with highest 

gBLUP for canopy wilting were selected (Table 3_2). Ranking of these 30 accessions was 

consistent with ranking of average phenotypic data of canopy wilting across all environments 

(Table 3_2). PI 592940 had the lowest canopy wilting for both gBLUP and phenotypic data, and 

PI 507407 had the highest canopy wilting scores for both gBLUP and phenotypic data. These 

genotypes likely represent the most consistent extremes for canopy wilting.  
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Slow-wilting extreme PI 592940 had an average wilting score across environments of 11; 

in comparison, the slow wilting check (PI 416937) had an average wilting score across 

environments of 20. Fast-wilting extreme PI 507407 had an average wilting score across 

environments of 39; in comparison the fast wilting check (A5959) had an average wilting score 

across environments of 33. The 15 accessions with lowest gBLUP values and canopy wilting 

scores averaged across all environments were from China (8 accessions), South Korea (6 

accessions), and Taiwan (1 accession) (Table 3_2).  The 15 accessions with the highest gBLUP 

values and canopy wilting scores averaged across all environments were from Japan (9 

accessions), South Korea (5 accessions), and Georgia (1 accession). The breeding value and 

number of favorable alleles of these 30 accessions were calculated using allelic effects of 

significant SNPs.  Slow-wilting accessions had large negative breeding values associated with 

reduced canopy wilting (-73 to -4). In contrast, fast-wilting accessions had large positive 

breeding values (38 to 106) associated with increased canopy wilting. Slow-wilting accessions 

had more favorable alleles (29 to 41) as compared to fast-canopy wilting accessions (10 to 24).  

Markers Distribution and Linkage Disequilibrium  

Of the 31,260 markers used for association analysis, 22% of the markers had a MAF 

between 0.05 and 0.1 and 15% of the markers had a MAF between 0.10 and 0.15 (Table 3_3). 

Markers were more densely distributed in euchromatic (75.4%) than heterochromatic regions 

(24.6%) across the chromosomes. Out of a total of 950.1 Mb in the soybean genome, SNP 

density in euchromatic region ranged from 42 SNPs/Mb for Gm19 to 65 SNPs/Mb for Gm09. 

For the heterochromatic regions, SNP density ranged from 4 SNPs/Mb for Gm20 to 36 SNPs/Mb 

for Gm18. The average 𝑟2 between markers in the euchromatic region declined to 0.25 within 

150 kb whereas the r2 in the heterochromatic region declined to 0.25 within 5,000 kb (data not 
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shown). These LD estimated results were consistent with results of Dhanapal et al., (2015b) and 

Hwang et al., (2014), indicating considerably greater LD for the euchromatic region than the 

heterochromatic region. 

Genome-wide association analysis 

The FarmCPU and MLM models were compared using the average canopy wilting data 

across all environments. The Q-Q plot of the FarmCPU model resulted in a sharp deviation from 

the expected P-value distribution in the tail area, indicating that false positives and negatives 

were adequately controlled whereas Q-Q plots from MLM models did not show a sharp 

deviation (Figure 3_1). These results indicated that FarmCPU was a better choice than MLM 

model for association testing in this study. 

Association analysis identified 61 significant SNPs in four environments associated with 

canopy wilting at the level of -Log10(P) ≥ 3.5; P ≤ 0.0003 (Figure 3_2). Out of 61 SNPs, 21 

SNPs were present in at least two environments. One significant SNP on Gm20 was present in 

all four environments (Table 3_4). Significant SNPs, which were present within the same LD 

block, were considered as one locus, and out of the 61 significant SNPs identified across 

environments, there were 51 putative loci. Two putative loci on Gm06 and Gm16 were identified 

by three closely spaced SNPs, and five putative loci on Gm09, Gm13, Gm18, and Gm20 (2) 

were identified by two closely spaced SNPs, while the remaining loci were identified by one 

SNP. The allelic effect (difference in mean canopy wilting between genotypes with major allele 

and minor allele) for these significant SNPs ranged from -7.40 to 5.18. A positive value indicates 

that the minor allele was the favorable allele associated with reduced canopy wilting and a 

negative value indicates that the major allele was the favorable allele associated with reduced 

canopy wilting. Information of the 61 significant SNPs, their corresponding MAF, major or 
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minor allele, allelic effect, and common environments are listed in Table 3_4. These 61 

significant SNPs from four environments were used to identify 61 genes within ± 10 kb of the 

respective SNPs. A list of these genes and their corresponding functional annotations 

(www.soybase.com) are provided (Table 3_6). 

Association analysis of canopy wilting averaged across all environments identified 34 

significant SNP associations at -Log10(P) ≥ 3.5; P ≤ 0.0003 (Figure 3_3_2). Of these 34 SNPs, 

seven were common to the 61 significant SNPs identified from four environments and among 

these seven SNPs, five SNPs were present in more than one environment (Table 3_5). Based on 

the closely spaced significant SNPs within the LD blocks, the 34 SNPs comprised 23 putative 

loci. The putative locus 1 on Gm01 was identified by 10 closely spaced SNPs, and locus 2 on 

Gm01 and locus 21 on Gm20 were identified by two closely spaced SNPs, while the remaining 

loci were all identified by one SNP. The allelic effect (difference in mean canopy wilting 

between genotypes with major allele and minor allele) for these significant SNPs ranged from -

4.82 to 3.13. Information for these 34 significant SNPs, their corresponding MAF, major or 

minor allele, allelic effect, and common environments are listed in Table 3_5. These 34 

significant SNPs from four environments were used to identify 34 genes within ± 10 kb of the 

respective SNPs. A list of these genes and their corresponding functional annotations are 

provided (Table 3_7). 
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Discussion 

This research evaluated canopy wilting in a panel of 373 MG IV soybean accessions in 

four environments along with slow-wilting (PI 416937) and fast-wilting (A5959) check 

genotypes. Canopy wilting had a wide range of phenotypic variation within each environment, 

which is important for dissecting complex traits through association mapping (McCarthy et al., 

2008). In the panel of 373 accessions, genotypes were found with canopy wilting scores more 

extreme than any previous reports. Two genotypes, PI 416937 and A5959, which were used in 

this study as checks, were also confirmed as slow and fast-wilting in previous research (Hwang 

et al., 2015, 2016; King et al., 2009). In the present research, PI 416937 and A5959 had average 

wilting scores across environments of 20 and 33, respectively (Figure 3_3a). In comparison to 

the two checks, the average wilting score of slow wilting PI 592940 was 11, and the average 

wilting score of the fast wilting extreme PI 507407 was 39 (Table 3_3_2). Overall, 185 

genotypes had lower average wilting scores across environments than did the slow wilting check 

(PI 416937) but only two genotypes (PI507424 and PI507407) were higher than the fast wilting 

check. The genotypes with lower average wilting scores represent new genetic sources for the 

slow wilting trait with potential alternative alleles or different mechanisms to achieve slow 

wilting. 

Carter et al., (2006) and King et al., (2009) reported the accessions PI 416937 and PI 

471938 as slow wilting. The breeding values of these previously reported slow-wilting genotypes 

were 24 (PI 416937) and 20 (PI 471938) (Figure 3_3b). Also, the number of favorable alleles for 

these genotypes were 29 (PI 416937) and 24 (PI 471938) (Figure 3_3c). In comparison, the most 

extreme slow-wilting accessions in this study had breeding values as low as -67 and as many as 

41 favorable alleles (Table 3_3, Figure 3_3b, 3c). The 15 accessions that were considered as 
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lowest wilting in ranking also had considerably lower breeding values and more favorable alleles 

than PI 416937 and PI 471938. In contrast, the 15 accessions that were considered as fastest 

wilting in ranking had breeding values as high as 104 with only 10 favorable alleles.  Hence, 

there is considerably greater variation in canopy wilting among genotypes than has been 

previously reported. 

Significant positive correlations for canopy wilting between environments and a 

moderate to high heritability indicated that canopy wilting is a relatively stable trait across 

environments. Similar results of heritability were reported in several different mapping studies 

(Abdel-Haleem et al., 2012; Charlson et al., 2009; Hwang et al., 2015). 

An advantage of GWAS over traditional QTL mapping is that it is possible to map 

complex trait variation down to the nucleotide level. Out of 61 significant SNPs associated with 

canopy wilting, the minor alleles of 35 of these SNPs were favorable and associated with a 

decrease in the canopy wilting. One SNP with the minor allele associated with the largest 

reduction in the canopy wilting (5.18) was present on Gm18. This SNP was present within the 

coding region of Glyma18g14740, which encodes a protein functioning as a serine-glyoxylate 

amino-transaminase, and having a biological function involved with water transportation 

(www.soybase.com) (Table 3_6). Interestingly, the SNP associated with the minor allele having 

the second largest reduction in canopy wilting was on Gm06 and was present in the coding 

region of Glyma06g45120. This region encodes the auxin-responsive GH3 family protein having 

a biological function associated with response of abscisic acid stimulus (Table 3_5).  

For 26 out of 61 SNPs associated with canopy wilting, the minor alleles of these SNPs were 

unfavorable and associated with an increase in canopy wilting (negative value of allelic effect 

indicates that minor allele was associated with an increase in canopy wilting in Table 3_4). One 

http://www.soybase.com/
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SNP on Gm08 had an allelic effect of -7.4 indicating that the major allele was favorable and 

associated with decreased canopy wilting. This SNP was present in the coding region of acyl-

CoA synthetase gene, which functions in long-chain fatty acid metabolism. Table 3_6 provides 

information on 61 genes associated with identified SNPs that may have some association with 

canopy wilting, which can be directly or indirectly related to transpiration for improving drought 

tolerance.  

Several QTL mapping studies of canopy wilting have been conducted using different 

mapping populations to identify the chromosomal regions associated with canopy wilting 

variation. The studies found four QTLs (on chromosomes Gm08, Gm13, Gm14, and Gm17; 

Charlson et al., 2009), two QTLs (on chromosomes Gm08 and Gm20; Du et al., 2009), seven 

QTLs (on chromosomes Gm02, Gm04, Gm05, Gm12, Gm14, Gm17, and Gm19; Abdel-Haleem 

et al., 2012), and 22 QTLs (on chromosomes Gm02, Gm05, Gm11, Gm17, and Gm19; Hwang et 

al., 2015). Recently, meta-QTL analysis of canopy wilting by Hwang et al., (2016) reported nine 

meta-QTLs in eight chromosomal regions. Location of these reported chromosomal regions was 

compared with significant SNPs associated with canopy wilting from four environments and 

from the average across all environments (Figure 3_4). Six different putative loci on five 

chromosomes Gm02 (2), Gm11, Gm17 (2), and Gm19 were located within six chromosomal 

regions that were identified by meta-QTL analysis of Hwang et al., (2016). These six putative 

loci consisted of nine significant SNPs, and six SNPs out of these nine had the minor allele 

associated with a decrease in the canopy wilting (Figure 3_4). Putative loci, which were located 

within previously reported chromosomal regions of meta-QTLs of canopy wilting, may indicate 

the stability and importance of these loci for improving drought tolerance and may highlight 

important regions of the genome for further investigations.  
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Conclusions 

In this study, high density marker data of 31,260 SNPs with MAF ≥ 5 % were used in 

GWAS to map the genomic regions controlling canopy wilting variation. Association analysis 

identified 61 significant SNPs associated with canopy wilting variation from four environments 

and 34 significant SNPs associated with average canopy wilting across all environments at a 

significance level of -Log10 (P) ≥ 3.5. Twenty-one significant associations of SNPs with canopy 

wilting out of 61 were present in at least two environments. The 61 SNP-canopy wilting 

associations and 34 SNPs identified from the average of canopy wilting across environments 

likely tagged 51 and 23 different loci, respectively. Six different putative loci were located 

within seven chromosomal regions that were previously reported as meta-QTLs for canopy 

wilting. Ultimately, significant SNPs that were present in more than one environment and those 

located within chromosome regions that were reported previously, are potential alleles for 

improving soybean drought tolerance. The genotypes identified with a large number of favorable 

slow-wilting alleles represent new genetic sources for crop improvement. 

 

 

 

 

 

 

 

 



 
 

Table 3_1. Descriptive statistics of canopy wilting score from Pine Tree in 2016 (PT16), Rohwer in 2016 (RH16), Salina in 2015 

(SA15), 2016 (SA16), and the average across environments (AAE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   PT16  RH16 SA15 SA16 AAE 

Descriptive statistics   
 

    

Number  373  373 373 373 373 

Minimum  13  8 8 8 10 

Maximum  38  33 38 46 39 

Range  25  25 30 38 29 

Median  25  20 17 16 20 

Average  24.7  19.7 18.0 17.1 19.8 

Variance  17.0  19.7 21.7 41.4 15.6 

Std. deviation  4.12  4.44 4.66 6.44 3.95 

Coef. variation  0.17  0.23 0.26 0.38 0.20 

Skewness  -0.002  -0.066 0.545 0.339 0.739 

Kurtosis  0.103  0.237 0.619 -0.060 1.700 

9
9
 



 
 

Table 3_2. The 15 accessions with the lowest and highest ranking (gRank) for canopy wilting score based on gBLUP values averaged 

across all four environments, Pine Tree in 2016 (PT16), Rohwer in 2016 (RH16), Salina in 2015 (SA15), 2016 (SA16), and average 

across all four environments (AAE). 

  Accession Province Country PT16 RH16 SA15 SA16 AAE pRank gBLUP gRank BVa Favb 

Slow Wilting         ------Canopy wilting (Score)------     

 PI592940 Sichuan China 18 8 9 8 11 3 11 1 -66.91 41 

 PI603543B Shanxi China 16 13 13 8 12 5 13 2 -45.00 34 

 PI404199 unknown China 19 12 12 8 13 6 13 3 -40.12 37 

 PI408211B Kyongsang Nam South Korea 18 13 10 9 13 8 13 4 -41.83 41 

 PI424533 Kyongsang Nam South Korea 15 8 10 11 11 2 13 5 -41.83 41 

 PI567753C Jiangsu China 18 9 9 11 12 4 13 6 -38.98 33 

 PI567532 Shandong China 16 11 14 11 13 10 14 7 -17.11 29 

 PI561289 unknown Taiwan 20 13 12 9 14 17 14 8 -23.02 30 

 PI407735 Beijing China 16 13 11 10 13 7 14 9 -73.41 38 

 PI592937 Sichuan China 20 12 9 11 13 11 14 10 -37.99 29 

 PI407727 Beijing China 21 11 13 9 14 16 15 11 -40.01 32 

 PI424232A Kyonggi South Korea 13 8 10 9 10 1 13 12 -4.10 31 

 PI597480B unknown South Korea 18 17 13 8 14 19 14 13 -27.01 33 

 PI597480A unknown South Korea 20 18 10 10 14 18 15 14 -22.11 32 

 PI408295A Kyongsang Nam South Korea 16 13 10 12 13 9 14 15 -12.87 35 

Fast Wilting              

 PI417180 Tohoku Japan 28 21 29 34 28 361 26 359 38.49 23 

 PI507382 Kanto Japan 28 28 20 31 27 350 26 360 81.01 17 

 PI424381 Chungchong Puk South Korea 31 32 19 36 29 367 26 361 48.44 24 

 PI594160 Akita Japan 32 28 25 23 27 351 27 362 57.04 18 

 PI417171 Tohoku Japan 33 28 27 27 29 365 27 363 89.87 15 

 PI442012B Kyonggi South Korea 29 31 22 33 28 362 26 364 61.33 19 

 PI398995 Kyongsang Puk South Korea 29 26 29 37 30 368 27 365 56.97 19 

 PI424247B Kangwon South Korea 26 27 30 34 29 366 27 366 28.80 24 

 PI404159 unknown Georgia 28 28 21 34 28 360 27 367 56.77 19 

 PI273483C Seoul South Korea 29 31 21 34 29 364 28 368 64.14 16 
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Table 3_2. (Cont.)              

  Accession Province Country PT16 RH16 SA15 SA16 AAE pRank gBLUP gRank BVa Favb 

Slow Wilting         ------Canopy wilting (Score)------     

 PI423890C Akita Japan 31 30 25 36 31 370 29 369 99.25 14 

 PI507367 Tohoku Japan 30 28 25 38 30 369 29 370 71.52 13 

 PI506867 Tohoku Japan 31 29 23 41 31 371 30 371 82.20 12 

 PI507424 Kanto Japan 32 29 35 43 35 372 33 372 40.34 23 

  PI507407 Kanto Japan 38 33 38 46 39 373 36 373 106.49 10 

pRank ranking based on the phenotype averaged across all environments, gRank ranking based on the genomic best linear unbiased 

prediction (gBLUP) values averaged across all environments  
a BV: Breeding value for each genotype was determined by adding up favorable and unfavorable allelic effects of all significant SNPs. 
b Fav: Number of favorable alleles in each genotype. Favorable allele means that allele of a significant SNP in a genotype was 

associated with reduction in canopy wilting.  

  

 

 

 

 

 

 

 

 

 

 

 

1
0
1
 



 
 

Table 3_3. Single nucleotide polymorphism (SNPs) distribution with minor allele frequency (MAF) in this population panel. 

MAF  Number of Markers Percentage (%) 

0.05-0.10 6,866 22 

0.10-0.15 4,752 15 

0.15-0.20 3,146 10 

0.20-0.25 2,800 9 

0.25-0.30 2,724 9 

0.30-0.35 3,103 10 

0.35-0.40 2,631 8 

0.40-0.45 2,503 8 

0.45-0.50 2,735 9 
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Table 3_4. List of significant SNPs associated with canopy wilting score for four environments, Pine Tree in 2016 (PT16), Rohwer in 

2016 (RH16), Salina in 2015 (SA15), and 2016 (SA16) using FarmCPU model with threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 

Locus CHR Location SNP_ID Allelea MAF -log10 (P) Allelic Effectb ENV Common ENVc 

1 1 49,221,509 ss715579941 T/C 0.13 3.50 4.22 SA16  

2 1 51,757,381 ss715580275 G/A 0.45 5.25 1.90 SA16 SA16/RH16 

3 2 1,398,489 ss715581237 G/A 0.15 4.59 3.42 SA16 SA16/RH16 

4 2 8,534,133 ss715584029 C/T 0.29 5.69 3.26 SA16  

5 2 47,125,519 ss715583067 A/G 0.4 4.09 0.40 SA16 SA16/RH16/SA15 

6 4 43,684,652 ss715588380 A/G 0.38 5.64 2.48 RH16 RH16/PT16/SA15 

7 4 46,303,501 ss715588702 T/G 0.14 6.94 3.15 SA15  

8 4 48,605,996 ss715588986 A/G 0.48 3.78 2.16 PT16 PT16/RH16 

9 5 31,506,466 ss715590697 T/C 0.43 5.99 2.30 RH16  

10 6 46,120,240 ss715594557 G/A 0.48 5.32 2.15 SA15 SA15/SA16 

  6 47,366,118 ss715594808 T/C 0.46 3.98 -2.25 SA16 SA16/RH16 

 6 48,546,282 ss715594992 T/C 0.11 8.81 4.98 SA16  

11 7 3,348,131 ss715597215 C/T 0.23 3.54 0.74 RH16  

12 7 7,438,231 ss715598616 T/C 0.09 4.63 4.26 SA15 SA15/RH16 

13 7 15,060,167 ss715596345 G/A 0.06 4.97 -4.79 RH16 RH16/PT16 

14 8 2,545,667 ss715601195 C/T 0.3 4.98 0.75 RH16 RH16/SA15 

15 8 16,267,207 ss715599792 C/T 0.34 3.87 -2.05 SA15  

16 8 20,848,665 ss715600567 C/T 0.24 3.53 -0.12 SA16  

17 8 44,751,317 ss715602310 C/T 0.08 8.38 -7.40 SA16 SA16/SA15 

18 9 645,519 ss715605287 G/T 0.24 3.50 0.07 RH16  

  9 800,177 ss715605406 A/G 0.07 3.64 -0.92 PT16 PT16/SA15 

19 9 38,734,941 ss715604057 C/T 0.11 3.83 2.98 SA15  

20 9 41,050,459 ss715604448 A/G 0.49 4.41 1.38 RH16  

21 10 13,156,084 ss715605590 C/A 0.08 6.20 0.36 SA15 SA15/PT16 

22 11 16,828,050 ss715609383 A/G 0.43 6.42 -2.45 SA15  

23 12 3,099,373 ss715612081 G/A 0.08 4.69 3.37 SA15  

 12 3,154,461 ss715612105 A/G 0.15 4.84 1.41 SA16  
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Table 3_4. (Cont.)          

Locus CHR Location SNP_ID Allelea MAF -log10 (P) Allelic Effectb ENV Common ENVc 

24 12 35,299,006 ss715612555 C/T 0.16 3.69 -0.78 SA15  

25 12 37,350,484 ss715612745 A/G 0.18 8.34 -3.33 RH16  

26 13 1,267,672 ss715613794 T/C 0.32 6.05 -1.04 PT16  

  13 1,333,785 ss715613810 T/G 0.18 5.00 -0.70 RH16 RH16/SA16 

27 13 6,885,534 ss715617011 G/A 0.29 4.37 0.70 SA15  

28 13 24,562,842 ss715614246 G/A 0.42 7.31 1.20 PT16  

29 14 1,167,509 ss715617539 G/A 0.26 5.67 -2.24 PT16  

30 15 3,919,945 ss715621801 G/A 0.2 5.67 0.22 SA15  

31 15 4,911,708 ss715622572 G/T 0.27 5.17 -2.38 PT16  

32 15 50,563,545 ss715622782 T/C 0.19 4.41 2.19 PT16 PT16/RH16 

33 16 28,824,975 ss715624050 G/A 0.27 8.60 -3.83 SA16  

34 16 33,788,018 ss715624676 T/C 0.28 3.50 -2.37 SA16 SA16/RH16 

  16 33,796,065 ss715624678 A/G 0.28 3.77 -2.62 SA16 SA16/RH16 

  16 33,798,911 ss715624680 A/G 0.31 3.50 -2.65 SA16 SA16/RH16 

35 17 3,910,147 ss715627532 G/A 0.1 5.09 1.49 PT16  

36 17 4,602,622 ss715627923 T/C 0.14 9.61 3.78 SA15  

37 17 38,537,983 ss715627431 T/C 0.48 6.66 -0.69 RH16  

38 18 3,715,229 ss715630406 A/G 0.44 6.02 1.57 SA15  

39 18 14,364,080 ss715628966 A/G 0.11 5.44 5.18 SA16  

40 18 51,029,562 ss715631145 T/C 0.21 3.99 1.16 RH16  

41 18 54,546,234 ss715631574 T/C 0.36 3.57 2.10 RH16 RH16/SA15 

42 18 58,389,632 ss715631991 G/T 0.22 4.15 0.92 PT16  

 18 58,428,893 ss715631996 G/T 0.17 4.42 2.06 SA16  

43 18 62,119,973 ss715632507 G/A 0.37 6.20 1.41 RH16  

44 19 40,380,295 ss715635012 A/G 0.26 4.41 -3.87 SA16  

45 19 41,824,086 ss715635146 G/A 0.16 3.57 0.50 PT16  

46 19 45,443,066 ss715635509 C/T 0.09 4.65 -0.68 PT16  

47 19 47,211,510 ss715635661 T/C 0.49 5.04 -1.93 SA15  

48 20 34,185,231 ss715637551 T/C 0.13 3.83 -1.43 SA16  
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Table 3_4. (Cont.)          

Locus CHR Location SNP_ID Allelea MAF -log10 (P) Allelic Effectb ENV Common ENVc 

49 20 35,776,455 ss715637771 G/A 0.14 8.92 -1.74 SA16  

50 20 41,741,442 ss715638354 G/T 0.19 5.01 -2.96 RH16  

  20 41,785,522 ss715638360 A/G 0.24 4.07 -2.48 PT16 PT16/SA16 

51 20 46,730,763 ss715638945 T/G 0.1 4.24 4.95 SA16  

  20 46,763,584 ss715638952 A/G 0.39 6.57 -0.90 SA16 SA16/PT16/SA15/RH16 

CHR Glycine max chromosome number, MAF Minor allele frequency 
a Allele Major/Minor alleles of Single Nucleotide Polymorphism 
b Allelic effect: Difference in mean canopy wilting between genotypes with major allele and minor allele. Negative sign indicates that 

major allele is associated with reduced canopy wilting. Positive sign indicates that minor allele is associated with reduced canopy 

wilting. 
 c Common ENV: Indicates that SNP is present in more than one environment.  
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Table 3_5. List of significant SNPs associated with average canopy wilting across all environments using FarmCPU model with 

threshold P value (-Log10(P) ≥ 3.5; P ≤ 0.0003). 

Locus CHR Location SNP_ID Allelea MAF -log10(P) Allelic Effectb Common ENVc 

1 1 39,724,988 ss715579315 A/G 0.12 3.5 1.58  

 1 40,195,425 ss715579336 G/T 0.13 4.13 1.55  

 1 41,403,051 ss715579384 C/T 0.13 4.04 1.52  

 1 41,528,259 ss715579390 C/A 0.13 3.92 1.59  

 1 41,604,325 ss715579393 G/A 0.16 3.7 1.28  

 1 41,624,978 ss715579394 A/G 0.16 3.7 1.28  

 1 41,770,769 ss715579397 G/A 0.13 4.04 1.52  

 1 41,993,098 ss715579404 C/T 0.16 3.6 1.34  

 1 42,197,808 ss715579413 T/G 0.13 4.04 1.52  

 1 42,227,647 ss715579414 A/C 0.13 4.04 1.52  

2 1 51,757,381 ss715580275 G/A 0.45 3.5 1.02 SA16/RH16 

 1 52,263,952 ss715580344 T/C 0.07 3.5 0.89  

3 4 43,684,652 ss715588380 A/G 0.38 4.59 2.38 RH16/PT16/SA15 

4 5 33,176,582 ss715590864 G/A 0.32 3.57 -2.61  

5 5 35,457,247 ss715591195 T/C 0.08 5.17 0.97  

6 5 37,633,385 ss715591531 T/C 0.44 4.17 0.52  

7 6 46,125,913 ss715594559 G/A 0.11 3.76 3.13  

8 8 16,250,528 ss715599784 T/G 0.27 4.73 -2.56  

9 8 44,751,317 ss715602310 C/T 0.08 7.17 -4.18 SA16/SA15 

11 9 43,747,612 ss715604746 T/C 0.14 3.77 1.26  

10 9 800,177 ss715605406 A/G 0.07 5.73 0.04 PT16/SA15 

12 11 9,169,618 ss715611285 A/G 0.15 3.72 -0.9  

13 13 1,510,323 ss715613866 G/A 0.16 5.64 -0.79  

15 15 11,501,154 ss715620333 G/A 0.06 3.92 -3.1  

14 15 823,441 ss715623120 G/T 0.15 5.03 2.17  

16 16 30,277,617 ss715624305 C/T 0.18 5.21 1.82  

17 17 4,661,453 ss715627925 T/G 0.14 4.28 3  
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Table 3_5. (Cont.)         

Locus CHR Location SNP_ID Allelea MAF -log10(P) Allelic Effectb Common ENVc 

18 18 59,162,269 ss715632103 C/T 0.06 4.26 -4.82  

19 19 40,380,295 ss715635012 A/G 0.26 3.55 -2.49 SA16 

20 20 2,390,368 ss715637028 C/A 0.38 5.2 1.4  

21 20 34,225,208 ss715637556 C/T 0.14 6.43 -0.76  

 20 35,317,061 ss715637687 G/A 0.1 4.22 -0.83  

22 20 41,741,442 ss715638354 G/T 0.19 4.5 -2.98 SA16 

23 20 46,763,584 ss715638952 A/G 0.39 3.64 -0.13 SA16/PT16/SA15/RH16 

CHR Glycine max chromosome number, MAF Minor allele frequency 
a Allele Major/Minor alleles of Single Nucleotide Polymorphism 
b Allelic effect: Difference in mean canopy wilting between genotypes with major allele and minor allele. Negative sign indicates that 

major allele is associated with reduced canopy wilting. Positive sign indicates that minor allele is associated with reduced canopy 

wilting. 
c Common ENV: Indicates that SNP is present in at least one of the four environments.  
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Table 3_6. List of significant SNPs associated with canopy wilting scores and nearby genes based on 61 identified SNPs from 

Soybase.  

Locus SNP_ID Gene Namea Functional Annotation (biological function) 

1 ss715579941 Glyma01g36801 Winged-Helix DNA-Binding Transcription Factor Family Protein (Leaf Senescence) 

2 ss715580275 Glyma01g39935 4f5 Protein Family (Unknown) 

3 ss715581237 Glyma02g01920 Fumarate Hydratase (Response to Oxidative Stress) 

4 ss715584029 Glyma02g10620 Plant Protein 1589 Of Unknown Function (Developmental Process) 

5 ss715583067 Glyma02g42030 Myb-Like DNA-Binding Domain (Response to Abscisic Acid Stimulus) 

6 ss715588380 Glyma04g37320 Nodulin-Like Protein (Unknown) 

7 ss715588702 Glyma04g40170 Alpha/Beta Hydrolase Related Protein (Shoot Development) 

8 ss715588986 Glyma04g42990 EamA-Like Transporter Family (Transporter) 

9 ss715590697 Glyma05g25380 Putative Hydroxy indole-O-Methyltransferase (Unknown) 

10 ss715594557 Glyma06g42820 Trehalose-Phosphatase (Glucose Catabolic Process) 

 ss715594808 Glyma06g44440 Zinc Ion Binding (Zinc Ion Binding) 

 ss715594992 Glyma06g45120 Auxin-responsive GH3 family protein (Response to abscisic acid stimulus) 

11 ss715597215 Glyma07g04550 Dihydropyridine-Sensitive L-Type Calcium Channel (Cytokinin Metabolic Process) 

12 ss715598616 Glyma07g08910 Glycosyl Transferase Family 8 (Regulation of Meristem Growth) 

13 ss715596345 Glyma07g15210 Glycosyl Transferase Family 8 (Regulation of Meristem Growth) 

14 ss715601195 Glyma08g03590 Sequence-Specific DNA Binding Transcription Factor Activity (Regulation of Transcription) 

15 ss715599792 Glyma08g21430 Calmodulin-Binding Transcription Activator (Unknown) 

16 ss715600567 Glyma08g26520 UDP-Glucose 6-Dehydrogenase (Oxidation-Reduction Process) 

17 ss715602310 Glyma08g45320  Auxin-Induced Protein (Unknown) 

18 ss715605287 Glyma09g01110 Aminocyclopropanecarboxylate Oxidase (Salicylic Acid Biosynthetic Process) 

 ss715605406 Glyma09g01300 Rho GDP-Dissociation Inhibitor (Root Epidermal Cell Differentiation) 

19 ss715604057 Glyma09g32170 Aldehyde Dehydrogenase (Oxidation-Reduction Process) 

20 ss715604448 Glyma09g34750 Amino Acid Transporter (Polyamine Transport) 

21 ss715605590 Glyma10g12210 Sterol Regulatory Element-Binding Protein (Regulation of Transcription) 

22 ss715609383 Glyma11g20020 Acyl-CoA Synthetase (Jasmonic Acid Biosynthetic Process) 

23 ss715612081 Glyma12g04680 Myb-Like DNA-Binding Domain (Regulation of Transcription) 

 ss715612105 Glyma12g04780 Serine/Threonine Protein Kinase (Protein Phosphorylation)  
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Table 3_6. (Cont.)    

Locus SNP_ID Gene Namea Functional Annotation (biological function) 

24 ss715612555 Glyma12g31740 Predicted Nucleic-Acid-Binding Protein (Unknown) 

25 ss715612745 Glyma12g34180 2-Hydroxyacid Dehydrogenase (Unknown) 

26 ss715613794 Glyma13g01570 EamA-Like Transporter Family (Unknown) 

 ss715613810 Glyma13g01651 Serine-Threonine Protein Kinase (Regulation of Signal Transduction) 

27 ss715617011 Glyma13g06715 Iron/Ascorbate Family Oxidoreductases (Salicylic Acid Biosynthetic Process) 

28 ss715614246 Glyma13g21070 Unknown Function 

29 ss715617539 Glyma14g01990 CCCH-Type Zn-Finger Protein (Salicylic Acid Mediated Signaling Pathway) 

30 ss715621801 Glyma15g05530 EamA-Like Transporter Family (Positive Regulation of Transcription) 

31 ss715622572 Glyma15g07050 Zinc Ion Binding (Protein Ubiquitination) 

32 ss715622782 Glyma15g43060 Thaumatin Family (Unknown) 

33 ss715624050 Glyma16g24850  Unknown Protein (Unknown) 

34 ss715624676 Glyma16g30130  L-Ascorbic Acid Binding (Oxidation-Reduction Process) 

 ss715624678 Glyma16g30140 Predicted Lipase/Calmodulin-Binding Heat-Shock Protein (Lipid Metabolic Process) 

 ss715624680 Glyma16g30140 Predicted Lipase/Calmodulin-Binding Heat-Shock Protein (Lipid Metabolic Process) 

35 ss715627532 Glyma17g05570 Ubiquinone Biosynthesis Protein Coq9 (Unknown) 

36 ss715627923 Glyma17g06450 Calmodulin Binding (Response to Chitin) 

37 ss715627431 Glyma17g34540 Heat Shock Transcription Factor (Response to Hypoxia) 

38 ss715630406 Glyma18g04960 Glutathione Transferase (Response to Oxidative Stress) 

39 ss715628966 Glyma18g14740 Alanine-Glyoxylate Transaminase Activity (Water Transport) 

40 ss715631145 Glyma18g42111 3'-5' Exonuclease (Nucleobase-Containing Compound Metabolic Process) 

41 ss715631574 Glyma18g44810 Cation Binding (Seed Germination) 

42 ss715631991 Glyma18g48990 Glycosyltransferase 14 Family Member (Oligopeptide Transport) 

 ss715631996 Glyma18g49000 Histidine Acid Phosphatase (Oxidation-Reduction Process) 

43 ss715632507 Glyma18g53836 Ubiquitin-Protein Ligase Activity (Pollen Tube Development) 

44 ss715635012 Glyma19g32630 Cytochrome P450 (Oxidation-Reduction Process) 

45 ss715635146 Glyma19g34200 O-Linked N-Acetyl Glucosamine Transferase (Meristem Maintenance) 

46 ss715635509 Glyma19g38550 Unknown Protein 

47 ss715635661 Glyma19g40935 Unknown Protein 

48 ss715637551 Glyma20g24540 Vesicle-Associated Membrane Protein (Transport)  
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Table 3_6. (Cont.)    

Locus SNP_ID Gene Namea Functional Annotation (biological function) 

49 ss715637771 Glyma20g26280 Phosphatidylinositol-3 (Peptidyl-Tyrosine Dephosphorylation) 

50 ss715638354 Glyma20g33120 Acetylglucosaminyltransferase Ext2/Exostosin 2 (Unknown) 

 ss715638360 Glyma20g33170 Unknown Protein 

51 ss715638945 Glyma20g39460 Unknown Protein 

  ss715638952 Glyma20g39510 Hydroxyproline-Rich Glycoprotein Family Protein (Unknown) 
a All genes were identified within ± 10 kb of the respective SNPs using Glyma1.1, Glyma1.0 and NCBI RefSeq gene models in 

Soybase (www.soybase.org). 
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Table 3_7. List of significant SNPs associated with average canopy wilting scores across all environments and nearby genes based on 

34 identified SNPs from Soybase.  

Locus SNP_ID Gene Namea Function Annotation (biological function) 

1 ss715579315 Glyma01g29470 Adenosine Monophosphate Deaminase (Response to Abscisic Acid Stimulus) 

 ss715579336 Glyma01g29820 Signal Peptide Peptidase (Unknown) 

 ss715579384 Glyma01g30610 Ca2+/H+ Antiporter VCX1 And Related Proteins (Calcium Ion Transport) 

 ss715579390 Glyma01g30670 Phosphatidylethanolamine-Binding Protein (Positive Regulation of Transcription) 

 ss715579393 Glyma01g30880 Prolyl 4-Hydroxylase Alpha Subunit (Unknown) 

 ss715579394 Glyma01g30880 Prolyl 4-Hydroxylase Alpha Subunit (Unknown) 

 ss715579397 Glyma01g30920 Ammonia Permease (Abscisic Acid Mediated Signaling Pathway) 

 ss715579404 Glyma01g31180 Protein of Unknown Function (Unknown) 

 ss715579413 Glyma01g31320 Abscisic Acid Receptor PYR/PYL Family (Abscisic Acid Mediated Signaling Pathway) 

 ss715579414 Glyma01g31341 TRICHOME BIREFRINGENCE-LIKE 34 (Xylan Biosynthetic Process) 

2 ss715580275 Glyma01g39935 4F5 Protein Family (Unknown) 

 ss715580344 Glyma01g40560 Serine/Threonine Protein Kinase (Protein Phosphorylation) 

3 ss715588380 Glyma04g37320 Nodulin-Like Protein (Unknown) 

4 ss715590864 Glyma05g27260 Pyruvate Dehydrogenase (Polyamine Catabolic Process) 

5 ss715591195 Glyma05g30030 Serine-Threonine Protein Kinase (Protein Phosphorylation) 

6 ss715591531 Glyma05g32820 Protein of Unknown Function (Photosystem II Assembly) 

7 ss715594559 Glyma06g42820 Trehalose-Phosphatase (Trehalose Biosynthetic Process) 

8 ss715599784 Glyma08g21410 50s Ribosomal Protein L10E (Unknown) 

9 ss715602310 Glyma08g45320 Glucose-6-Phosphate/Phosphate and Phosphoenolpyruvate/Phosphate Antiporter (Unknown) 

10 ss715605406 Glyma09g01300 Rho GDP-Dissociation Inhibitor (Root Epidermal Cell Differentiation) 

11 ss715604746 Glyma09g38370 Protein Kinase (Regulation of Transcription) 

12 ss715611285 Glyma11g12820 Protein of Unknown Function (Unknown) 

13 ss715613866 Glyma13g01840 MYOSIN HEAVY CHAIN-RELATED (Reciprocal Meiotic Recombination) 

14 ss715623120 Glyma15g01350 Lysophospholipase (Unknown) 

15 ss715620333 Glyma15g15043 HCP-Like Superfamily Protein (Hyperosmotic Salinity Response) 

16 ss715624305 Glyma16g26100 MLO Protein (Proline Transport) 

17 ss715627925 Glyma17g06520 Calcium-Transporting ATPase (Calcium Ion Transport)  
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Table 3_7. (Cont.)    

Locus SNP_ID Gene Namea Function Annotation (biological function) 

18 ss715632103 Glyma18g49840 Pentatricopeptide Repeat-Containing Protein (Unknown) 

19 ss715635012 Glyma19g32630 Cytochrome P450 (Oxidation-Reduction Process) 

20 ss715637028 Glyma20g02800 GDP-Fucose Protein O-Fucosyltransferase (Unknown) 

21 ss715637556 Glyma20g24600 Myb-Like DNA-Binding Domain (Heat Acclimation) 

 ss715637687 Glyma20g25670 Amino Acid Transporters (Gamma-Aminobutyric Acid Transport) 

22 ss715638354 Glyma20g33120 Acetylglucosaminyltransferase EXT2/Exostosin 2 (Unknown) 

23 ss715638952 Glyma20g39510 Hydroxyproline-Rich Glycoprotein Family Protein (Unknown) 
a All genes were identified within ± 10 kb of the respective SNPs using Glyma1.1, Glyma1.0 and NCBI RefSeq gene models in 

Soybase (www.soybase.org). 
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Figure 3_1. Quantile-quantile (QQ) plot of the mixed linear model (MLM) and FarmCPU model 

using average canopy wilting data across all environments. 
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Figure 3_2. Manhattan plots of -Log10 (P) vs. chromosomal position of significant SNP 

associations and respective Quantile-quantile (QQ) plots of canopy wilting for four 

environments; (a) Salina 2015, (b) Salina 2016, (c) Pine Tree 2016, and (d) Rohwer 2016, and 

(e) average canopy wilting across all environments (AAE) using the FarmCPU model. Red line 

represents the association threshold (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 
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Figure 3_3. Distribution of average canopy wilting score across all environments (a), breeding 

values of accessions (b), and number of favorable alleles (c). 
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Figure 3_4. Location of SNPs significantly associated with canopy wilting in four environments 

and across environments with previously identified QTLs for canopy wilting as shown in 

Soybase (www.soybase.org, [Grant et al. 2013]).  

 

 



117 
 

References 

Abdel-Haleem, H., T.E. Carter Jr, L.C. Purcell, C.A. King, L.L. Ries, P. Chen, W. Schapaugh Jr, 

T.R. Sinclair, and H.R. Boerma. 2012. Mapping of quantitative trait loci for canopy-wilting 

trait in soybean (Glycine max L. Merr). Theor. Appl. Genet.125: 837–846. 

Blum, A., 2005. Drought resistance, water-use efficiency, and yield potential-are they compatible, 

dissonant, or mutually exclusive? Aust. J. Agric. Res. 56: 1159–1168. 

Blum, A., 2011. Drought resistance – is it really a complex trait? Funct. Plant Biol. 38(10): 753-

757. 

Bondari, K., 2003. Statistical analysis of genotype × environment interaction in agricultural 

research. Paper SD15, SESUG: The Proceedings of the SouthEast SAS Users Group, St 

Pete Beach. 

Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, and E.S. Buckler. 2007. 

TASSEL: software for association mapping of complex traits in diverse samples. 

Bioinformatics 23: 2633–2635. 

Carter, T.E.Jr., P.I. De Souza, and L.C. Purcell. 1999. Recent advances in breeding for drought 

and aluminum resistance in soybean. In: H. Kauffman, ed. Proceedings of the sixth World 

Soybean Research Conference, Chicago, IL, pp. 106–125. Superior Printing, Champaign, 

IL. 

Carter, T.E.Jr., J.H. Orf, L.C. Purcell, J.E. Specht, P. Chen, T. Sinclair, and T.W. Rufty. 2006. 

Tough times, tough plants – new soybean genes defend against drought and other stresses. 

In: Proceedings of the 33rd Soybean Seed Research Conference, Chicago, IL, 5–8 Dec. 

2006. 

Charlson, D.V., S. Bhatnagar, C.A. King, J.D. Ray, C.H. Sneller, T.E. Carter Jr and L.C. Purcell. 

2009. Polygenic inheritance of canopy wilting in soybean [Glycine max (L) Merr]. Theor. 

Appl. Genet. 119:587–594. 

Clark, S.A., and J. van der Werf. 2013. Genomic best linear unbiased prediction (gblup) for the 

estimation of genomic breeding values. In: Genome-Wide Association Studies and 

Genomic Prediction, Springer, Berlin, pp. 321–330. 

Devi, M.J., and T.R. Sinclair. 2013. Nitrogen fixation drought tolerance of the slow-wilting 

soybean PI 471938. Crop Sci. 53:2072–2078. 

Dhanapal A.P., J.D. Ray, S.K. Singh, V. Hoyos-Villegas, J.R. Smith, L.C. Purcell, C.A. King, and 

F.B. Fritsch. 2015a. Association mapping of total carotenoids in diverse soybean genotypes 

based on leaf extracts and high-throughput canopy spectral reflectance measurements. 

PLoS ONE 10(9): e0137213. 

Dhanapal, A.P., J.D. Ray, S.K. Singh, V. Hoyos-Villegas, J.R. Smith, L.C. Purcell, C.A. King, and 

P.B. Cregan, Q. Song, and F.B. Fritsch. 2015b. Genome-wide association study (GWAS) 



118 
 

of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] 

Genotypes. Theor. Appl. Genet. 128: 73–91. 

Dixit, S., B.E. Huang, M.T. Sta Cruz, P.T. Maturan, J.C.E. Ontoy, A. Kumar. 2014. QTLs for 

tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated 

approach. PLoS ONE 9: e109574. 

Douglas, I., K. Alam, M. Maghenda, Y. McDonnell, L. McLean, and J. Campbell. 2008. Unjust 

waters: climate change, flooding and the urban poor in Africa. Environ. Urban 20:187–

205. 

Du, W., D. Yu, and S. Fu. 2009. Detection of quantitative trait loci for yield and drought tolerance 

traits in soybean using a recombinant inbred line population. J. Integr. Plant Biol. 51:868–

878. 

Feng, X., A. Porporato, and I. Rodriguz-Iturbe. 2013. Changes in rainfall seasonality in the tropics. 

Nat. Clim. Change 3: 811–815. 

Fletcher, A.L., T.R. Sinclair, and L.H. Allen Jr. 2007. Transpiration responses to vapor pressure 

deficit in well-watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Bot. 

61:145– 151. 

Fox, C.M., T.R. Cary, A.L. Colgrove, E.D. Nafziger, J.S. Haudenshiel, G.L. Hartman, J.E. Specht, 

and B.W. Diers. 2013. Estimating soybean genetic gain for yield in the northern United 

States-Influence of cropping history. Crop Sci. 53:2473–2482. 

Hao, D., H. Cheng, Z. Yin, S. Cui, D. Zhang, H. Wang, and D. Yu. 2012. Identification of single 

nucleotide polymorphisms and haplotypes associated with yield and yield components in 

soybean (Glycine max) landraces across multiple environments. Theor. Appl. Genet. 124: 

447–458. 

Hill, W.G., and B.S. Weir. 1988. Variances and covariance of squared linkage disequilibria in 

finite populations. Theor. Popul. Biol. 33: 54–78. 

Hwang, E., Q. Song, G. Jia, J.E. Specht, D.L. Hyten, J. Costa, and P.B. Cregan. 2014. A genome-

wide association study of seed protein and oil content in soybean. PLoS Genet. 15:1. 

Hwang, S., C.A. King, P. Chen, J.D. Ray, P.B. Cregan, T.E. Carter Jr, Z. Li, H. Abdel-Haleem, 

K.W. Matson, W. Schapaugh Jr, and L.C. Purcell. 2015. Confirmation of delayed canopy 

wilting QTLs from multiple soybean mapping populations. Theor. Appl. Genet. 128:2047–

2065. 

Hwang, S., C.A. King, P. Chen, J.D. Ray, P.B. Cregan, T.E. Carter Jr, Z. Li , H. Abdel-Haleem, 

K.W. Matson, W. Schapaugh Jr, and L.C. Purcell. 2016. Meta-analysis to refine map 

position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. 

Mol. Breeding 36: 91.  

 Irwin, S., and D. Good. 2015. Forming Expectations for the 2015 U.S. Average soybean yield: 

what does history teach us? Farmdoc daily (5):51, Department of Agricultural and 

Consumer Economics, University of Illinois at Urbana-Champaign, March 19, 2015. 



119 
 

King, C.A., L.C. Purcell, and K.R. Brye. 2009. Differential wilting among soybean genotypes in 

response to water deficit. Crop Sci. 49:290–298. 

Lipka, A.E., F. Tian, Q. Wang, J. Peiffer, M. Li, P.J. Bradbury, M.A. Gore, E.S. Buckler, and Z. 

Zhang. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics 

28: 2397–2399. 

Liu, X., M. Huang, B. Fan, E.S. Buckler, and Z. Zhang. 2016. Iterative usage of fixed and random 

effect models for powerful and efficient genome-wide association studies. PLoS Genet. 

12(2): e1005767. 

McCarthy, M.I., G.R. Abecasis, L.R. Cardon, D.B. Goldstein, J. Little, J.P.A. Ioannidis, and J.N. 

Hirschhorn. 2008. Genome-wide association studies for complex traits: consensus, 

uncertainty and challenges. Nature Rev. Genet. 9(5): 356–369. 

Money, D., K. Gardner, Z. Migicovsky, H. Schwaninger, G.Y. Zhong, and S. Myles. 2015. 

LinkImpute: Fast and accurate genotype imputation for non-model organisms. G3 

5(11):23383–23390. 

Nordborg, M., J. Borevitz, J. Bergelsom, C. Berry, J. Chory, J. Hagenbland, M. Kreitman, J. 

Maloof, T. Noyes, P. Oefner, E. Stahl, and D. Weigel. 2002. The extent of linkage 

disequilibrium in Arabidopsis thaliana. Nat. Genet. 30(2): 190-193. 

Oya, T., A.L. Nepomuceno, N. Numaier, J.R.B. Farias, S. Tobita, and S. Ito. 2004. Drought 

tolerance characteristics of Brazilian cultivars – evaluation and characterization of drought 

tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129–137. 

Ray, J.D., A.P. Dhanapal, S.K. Singh, V. Hoyos-Villegas, J.R. Smith, L.C. Purcell, C.A. King, D. 

Boykin, P.B. Cregan, Q. Song, and F.B. Fritschi. 2015. Genome-wide association study of 

ureide concentration in diverse maturity group IV soybean [Glycine max (L.) Merr.] 

Accessions. G3 5(11): 2391–2403. 

Ries, L.L., L.C. Purcell, T.E. Carter Jr, J.T. Edwards, and C.A. King. 2012. Physiological traits 

contributing to differential canopy wilting in soybean under drought. Crop Sci. 52:272–

281. 

Sadok, W., and T.R. Sinclair. 2009. Genetic variability of transpiration response to vapor pressure 

deficit among soybean [Glycine max (L.) Merr.] cultivars. Crop Sci. 49:955–960. 

SAS Institute. 2013. The SAS System for Windows. Version 9.3. SAS Inst. Inc., Cary, NC. 

Sloane, R.J., R.P. Patterson, and T.E. Carter Jr. 1990. Field drought tolerance of a soybean plant 

introduction. Crop Sci. 30:118–123. 

Sinclair, T.R., M.A. Zwieniecki, and N.M. Holbrook. 2008. Low leaf hydraulic conductance 

associated with drought tolerance in soybean. Physiol. Plant 132:446–451. 

Song, Q., D.L. Hyten, G. Jia, C.V. Quigley, E.W. Fickus, R.L. Nelson, and P.B. Cregan. 2013. 

Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. 

PLoS ONE 8(1): e54985. 



120 
 

Tuberosa, R., S. Salvi, S. Giuliani, M.C. Sanguineti, M. Bellotti, S. Conti, and P. Landi. 

2007. Genome-wide approaches to investigate and improve maize response to 

drought. Crop Sci. 47:120–141. 

USDA-FAS. 2016.  https://apps.fas.usda.gov/psdonline/circulars/production.pdf. 

Wen, Z., R. Tan, J. Yuan, C. Bales, and W. Du. 2014. Genome-wide association mapping of 

quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15: 809.  

Yu, J., G. Pressoir, W.H. Briggs, B.I. Vroh, M. Yamasaki, J.F. Doebley, M.D. McMullen, B.S. 

Gaut, D.M. Nielsen, J.B. Holland, S. Kresovich, and E.S. Buckler. 2006. A unified mixed-

model method for association mapping that accounts for multiple levels of relatedness. Nat. 

Genet. 38: 203–208. 

Zhang, Z., R.J. Todhunter, E.S. Buckler, and L.D. Van Vleck. 2007. Technical note: Use of 

marker-based relationships with multiple-trait derivative-free restricted maximal 

likelihood. J. Anim. Sci. 85:881–885. 

Zhang, Z., E. Ersoz, C.Q. Lai, R.J. Todhunter, H.K. Tiwari, M.A. Gore, P.J. Bradbury, J. Yu, D.K. 

Arnett, J.M. Ordovas, and E.S. Buckler. 2010. Mixed linear model approach adapted for 

genome-wide association studies. Nat. Genet. 42: 355–360. 

Zhang, J., Q. Song, P.B. Cregan, R.L. Nelson, X. Wang, J. Wu, and G.L. Jiang. 2015. Genome-

wide association study for flowering time, maturity dates and plant height in early maturing 

soybean (Glycine max) germplasm. BMC Genomics 16: 217.  

Zhu, C., M.A. Gore, E.S. Buckler, and J. Yu. 2008. Status and prospects of association mapping 

in plants. Plant Genome 1: 5-20. 

Zipper, S.C., J. Qiu, and C.J. Kucharik. 2016. Drought effects on US maize and soybean 

production: spatiotemporal patterns and historical changes. Environ. Res. Lett. 11: 094021. 

  

https://apps.fas.usda.gov/psdonline/circulars/production.pdf


121 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 

Association Mapping Identifies Loci for Canopy Coverage in Diverse Soybean Genotypes 

 

 

 

 

 

 

 

 

 

 

 



122 
 

Abstract 

Rapid establishment of canopy coverage decreases soil evaporation relative to 

transpiration (T), improves water use efficiency (WUE) and light interception, and increases 

soybean competitiveness against weeds. The objective of the study was to identify genomic loci 

associated with canopy coverage (CC) and the canopy coverage rate of increase (CCR). Canopy 

coverage was evaluated using a panel of 373 MG IV soybean genotypes that was grown in five 

environments. Digital image analysis was used to determine canopy coverage two times (CC1 

and CC2) during vegetative development approximately 7 to 14 days apart for each environment. 

After filtration for quality control, 31,260 SNPs with a minor allele frequency (MAF) ≥ 5% were 

used for association mapping with the FarmCPU model. Association analysis identified 

significant SNP-canopy coverage associations including 41 for CC1, 56 for CC2, and 35 for 

CCR. Six SNPs for CC1, 11 SNPs for CC2, and six SNPs for CCR were present in at least two 

environments. The significantly SNP-associations likely tagged 38, 50, and 30 different loci, for 

CC1, CC2, and CCR respectively. Twelve putative loci were identified in which chromosomal 

regions associated with canopy coverage from both CC1 and CC2 were coincident. Genes 

identified using these significant SNPs included those with reported functions associated with 

growth, developmental, and light responses. Favorable alleles from significant SNPs may be an 

important resource for pyramiding genes to improve canopy coverage and for identifying 

parental genotypes for use in breeding programs. 
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Introduction 

Genome-wide association analysis is an alternative approach to traditional quantitative 

trait loci (QTL) mapping of bi-parental populations and is widely used in plant and human 

genetics (Nordborg and Tavare, 2002a; Risch and Merikangas, 1996). Advancement in high-

throughput genotyping and sequencing technologies provides fast and low-cost molecular 

markers, particularly single nucleotide polymorphisms (SNPs) (Syvanen, 2005). Genotyping 

diverse lines provides thousands of SNPs across the genome that enables scientists to fine map 

complex trait variation down to nucleotide level by exploiting historical recombination events 

(Zhu et al., 2008). Main advantages of genome-wide association studies (GWAS) over the 

traditional linkage mapping (LM) include increased mapping resolution, reduced research time, 

and greater allele number (Yu et al., 2006). Connecting genotype to phenotype is a fundamental 

aim of both GWAS and LM, which detect the functional variants (alleles, loci) that control the 

phenotypic variation (Botstein and Risch, 2003). The detection of QTL through GWAS depends 

on the level of linkage disequilibrium (LD) between functional loci and markers. Faster LD 

decay over physical distance, as compared to slower LD decay, requires higher marker density 

over the genome to capture associations between marker and phenotype (Yu et al., 2006). 

Soybean [Glycine max (L.) Merr.] is among the most widely grown crops in the world and is 

valuable because of its high oil and protein concentrations. In soybean, GWAS have identified 

chromosomal regions associated with seed protein and oil concentrations (Hwang et al., 2014), 

carotenoids (Dhanapal et al., 2015a), δ13C ratio (Dhanapal et al., 2015b), agronomic traits (Wen 

et al., 2014), and ureide concentration (Ray et al., 2015). GWAS in soybean are likely to increase 

due to recent genotyping of more than 19,000 accessions of the USDA-ARS Soybean 
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Germplasm collection that provided over 50,000 SNP markers that are available at Soybase 

(www.soybase.org). 

Early establishment of a closed canopy can improve water use efficiency (WUE) by 

enhancing transpiration (T) relative to soil evaporation (Es). By reducing the water lost through 

soil evaporation, quick canopy establishment may result in more stored water available for later 

developmental stages when soil moisture may be exhausted and increasingly limiting for yield 

(Purcell and Specht, 2003; Rebetzke et al., 2007; Richards et al., 2007; Slafer et al., 2005).  

A second advantage offered by rapid establishment of canopy coverage is improved canopy solar 

radiation interception, which is an important factor determining crop growth and yield (Edwards 

and Purcell, 2005; Edwards et al., 2005; Liebisch et al., 2015). The interception of radiation by 

the canopy provides the energy required for physiological processes including photosynthesis 

and transpiration (Liebisch et al., 2015). Capacity of the crop canopy to intercept solar radiation 

determines yield, which depends on the available leaf area, structure, and its efficiency (Gifford 

et al., 1984).  

Rapid establishment of canopy closure also increases soybean competiveness, especially 

for weeds (Bussan et al., 1997). Herbicide resistant weeds are becoming a large problem in crop 

production (Green and Owen, 2011), which is mainly due to the high selection pressures 

imposed by widespread use of mono-herbicide culture (Shaner, 1995). As the number of 

herbicide resistant weeds increase, there is a need for alternative and sustainable approaches to 

weed management. Faster canopy development can suppress early-season weeds (Fickett et al., 

2013; Jannink et al., 2000 and 2001), and rapid canopy development can, therefore, serve as a 

cultural control method to suppress weed growth by increasing soybean competiveness.  

http://www.soybase.org/
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Purcell (2000) described a method of analyzing digital image that offers a simple and 

effective way to determine canopy coverage. Canopy coverage was measured as a fraction of 

green pixels relative to the total number of pixels in an image, and canopy coverage was 

approximately equivalent to the fraction of radiation intercepted. Digital-image analysis provides 

an inexpensive and rapid way of measuring canopy coverage over other methods of light 

interception estimation (Campillo et al., 2008; Fiorani et al., 2012). 

Canopy coverage is a quantitative trait that is influenced by genotype, environment, and 

their interaction (Xavier et al., 2017). The complexity of this trait arises from the segregation of 

alleles at many chromosomal regions, each with small additive effects on the phenotype, and 

interacting with other alleles and with the environment (Tuberosa et al., 2007). Therefore, 

investigation of genetic control of canopy coverage may be used to improve crop performance by 

selecting and pyramiding favorable loci associated with faster establishment of the canopy into 

elite cultivars (Xavier et al., 2017).  

To date, Xavier et al. (2017) have conducted the only genetic evaluation of canopy 

coverage in soybean. They phenotyped the soybean nested association mapping (SoyNAM) 

population for canopy coverage with a relatively small set of markers (4,077 SNPs) and found 

six genomic regions that were associated with canopy coverage. The SoyNAM panel was 

developed from crossing 40 genotypes to one hub parent, and from each crossing, 140 RILs were 

developed. Although the SoyNAM panel was selected for diversity, it is likely that these 41 

genotypes may be somewhat limited in capturing the wide diversity of phenotypes that would 

impact canopy coverage. In the present research, 31,260 polymorphic SNPs were utilized for 

GWAS of canopy coverage, and canopy coverage was assessed on a panel of 373 diverse 

maturity group (MG) IV accessions. The objective of this study was to use GWAS to explore the 
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genetic variation of canopy coverage and the rate of canopy coverage increase present within this 

panel by identifying significant loci associated with these traits. 
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Materials and Methods 

Germplasm Collection and Field Experiments 

A panel of 373 MG IV soybean accessions were selected from the Soybean Germplasm 

Collection, USDA-ARS based on genetic diversity and agronomic characteristics 

(www.ars.grin.gov). A thorough description of genotype selection criteria was provided by 

Dhanapal et al. (2015b).  

Field experiments were conducted in five environments including the Main Arkansas 

Agricultural Research Center, Fayetteville, AR (FY; 36°9’N, 94°17’W) in 2016 on a Captina silt 

loam, Pine Tree Research Station, Colt, AR (PT; 35°7’N, 90°55’W) in 2016  on a Calloway silt 

loam, Rohwer Research Station, Rohwer, AR (RH; 33°48’N, 91°17’W) in 2016 on a Sharkey 

silty clay, Salina, KS (SA; 38°70’N, 97°60’W) in 2016 on a Hord silt loam, and at the Rice 

Research and Extension Center, Stuttgart, AR (ST; 34°47’N, 91°51’W) in 2015 on a Crowley silt 

loam. Planting dates were 8 June 2015 for ST, 23 May 2016 for RH, 1 June 2016 for FY, 2 June 

2016 for PT, 15 June 2016 for SA. Seeds were planted at a density of 37 m-2 at a 2.5-cm depth. 

At ST, plots were 4.57 m long and two rows wide with 0.76 m row spacing. At FY, single row 

plots were 5.48 m in length with a 0.76-m row spacing. At SA, there were two-row plots that 

were 3.65 m in length within a 0.76-m row spacing. At PT and RH, seeds were sown with a drill 

(19 cm row spacing) and plots were 1.52 m wide and 4.57 m long. At each environment, the 

experiment was conducted as a randomized complete block design with two replications.  

For each environment, soil water deficit was estimated for each day beginning at planting 

as described by Purcell et al. (2007). Potential evapotranspiration (Eto) for a given day was 

determined using a modified Penman-Monteith approach (Allen et al., 1998) and multiplied by 

the fraction of radiation intercepted by the crop which served as a crop coefficient (equivalent to 

http://www.ars.grin.gov/
https://aaes.uark.edu/research-locations/pinetree.aspx
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canopy coverage). Estimated soil-water deficits were cumulated and adjusted with rainfall 

additions as needed. 

Canopy Coverage Determination 

Canopy coverage was determined by analyzing digital images that were taken of the 

canopy with a camera mounted on a monopod (Purcell, 2000). Digital images were taken at 160 

cm above the plots at a resolution of 1280 x 960 pixels. For ST, FY, and SA, images consisted of 

a single row, and for PT and RH, images were taken above the center of the plots and were 

composed of 7 rows. The first set of pictures (CC1) were taken 23 to 28 days after emergence 

when plants were between V2 and V3. A second set of pictures (CC2) were taken 10 to 21 days 

later. Digital images were analyzed using SigmaScan Pro (v. 4.0, SPSS, Inc., Chicago, IL) with a 

macro that utilizes batch analysis (Karcher and Richardon, 2005). Software measured the number 

of green pixels of each image as a fraction of the total pixel count in the frame. Canopy coverage 

rate (CCR) was calculated by dividing the difference between CC2 and CC1 by the number of 

days between measurements.  

Statistical Analysis 

Genotype and environment were treated as fixed effects and replication within 

environment was considered a random effect for analysis of variance (ANOVA). The PROC 

MIXED procedure (α = 0.05) of SAS 9.4 was used for ANOVA with a model suggested by 

Bondari (2003): 

𝑦𝑖𝑗𝑘 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + (𝐺𝐸)𝑖𝑗 +  𝐵𝑘(𝑖𝑗) + 𝜀𝑖𝑗𝑘 

where 𝜇 is the total mean, 𝐺𝑖 is the genotypic effect of the 𝑖𝑡ℎ genotype, 𝐸𝑗 is the effect of the 𝑗𝑡ℎ 

environment, (𝐺𝐸)𝑖𝑗 is the interaction effect between the 𝑖𝑡ℎ genotype and the 𝑗𝑡ℎ environment,  

𝐵𝑘(𝑖𝑗) is the effect of  replications within the 𝑗𝑡ℎ environment, and 𝜀𝑖𝑗𝑘 is a random error 
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following 𝑁(0, 𝜎𝑒
2). Analysis of variance was independently applied to CC1, CC2, and CCR. 

Descriptive statistics and Pearson correlation analysis for canopy coverage were performed using 

the PROC UNIVARIATE and PROC CORR procedures (α = 0.05) of SAS version 9.4 (SAS, 

Institute, 2013), respectively. Broad sense heritability on an entry-mean basis was calculated as:  

𝐻2 =  𝜎𝐺
2 / (𝜎𝐺

2 + (
𝜎𝐺𝐸

2

𝑘
) + (

𝜎𝜀
2

𝑟𝑘
)) 

where 𝜎𝐺
2 is the genotypic variance, 𝜎𝐺𝐸

2  is the genotype by environment variance, 𝜎𝜀
2 is the 

residual variance, k is the number of environments, and r is the number of replications. The 

PROC VARCOMP of SAS 9.4 with the REML method (Restricted Maximum Likelihood 

Estimation) was used to estimate the above variance components. For each environment, the 

Best Linear Unbiased Predictions (BLUP) values were estimated using PROC GLIMMIX 

procedure to reduce effects of environment variation and then used in association analysis.   

Genotyping and Association Analysis 

A total of 42,509 SNP markers for all 373 genotypes were obtained from the Illumina 

Infinium SoySNP50K iSelect SNP Beadchip (Song et al., 2013), which are available at Soybase 

(www.soybase.org). Genotype quality controls were applied by eliminating monomorphic 

markers, markers with minor allele frequency (MAF) < 5 % and markers with missing rate 

higher than 10%. The remaining missing markers in a set of 31,260 SNPs were imputed using a 

LD-kNNi method, which is based on a k-nearest-neighbor-genotype (Money et al., 2015) and 

then used in association analysis. Population structure is a confounding factor in GWAS that 

induces false associations. Commonly, the mixed linear model (MLM) is used to reduce these 

false associations. However, these adjustments also compromise true positive associations. As 

described by Kaler et al., (2017), the Fixed and random model Circulating Probability 

Unification (FarmCPU) model, developed by Liu et al., (2016), effectively controlled false 

http://www.soybase.org/
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positives and false negatives using this same genotype panel. Therefore, FarmCPU was used for 

association analysis in the present research. 

To declare a significant association between SNPs and canopy coverage, a threshold 

value (-Log10(P) ≥ 3.5), which is equivalent to a P-value ≤ 0.0003, was used. This threshold 

value is more stringent than that reported in other soybean association mapping studies of 

soybean (Hao et al., 2012; Hwang et al., 2014; Zhang et al., 2015; Dhanapal et al., 2015a, 

2015b). A threshold value of P ≤ 0.05 was used to identify the common significant SNPs present 

in more than one environment but only if representative SNPs met a lower association of P ≤ 

0.0003 in at least one other environment. 

Candidate Gene Identification 

Candidate genes were considered when they were within ± 10 kb of a SNP with a 

significant association. This distance was chosen because it approximates the average distance 

between SNPs (18 kb). Candidate genes and their associated functional annotation and biological 

function were determined using Glyma1.1, Glyma1.0 and NCBI RefSeq gene models in Soybase 

(www.soybase.org) with consideration for those that may have an association with growth, 

developmental, and light responses.   

  

http://www.soybase.org/
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Results 

Phenotype Statistics 

Canopy coverage was measured for 373 MG IV soybean accessions over five 

environments (ST, FY, SA, RH, and PT). For silt-loam soils in our study (ST, PT, and SA), 

irrigation is typically recommended when soil-moisture deficits exceed 35 mm, and for the clay 

soil at RH, irrigation is recommended when soil moisture deficits exceed 50 mm (Purcell et al., 

2007). Using these irrigation thresholds as indicators of stress, the week prior to CC1, soil 

moisture was adequate for ST, RH, and SA but was limiting for FY (3 out of 7 days) and PT (7 

out of 7 days). Between CC1 and CC2, soil moisture was adequate at ST every day but limiting 

at FY (3 out of 14 days), PT (5 out of 15 days), SA (9 out of 11 days), and RH (5 out of 9 days). 

The differences in soil-moisture availability among environments and between CC1 and CC2 

may have caused differences in responses.  

There was a broad range of CC1, CC2, and CCR values observed within each 

environment. Within each environment, over all 373 PI’s, the fractional canopy coverage at CC1 

ranged by 0.27 (FA), 0.17 (PT), 0.45 (RH), 0.30 (SA), and 0.23 (ST) (Table 4_1). The fractional 

canopy coverage at CC2 ranged by 0.40 (FA), 0.28 (PT), 0.62 (RH), 0.30 (SA), and 0.50 (ST). 

Values of CCR (fractional increase d-1) ranged by 0.034 (FA), 0.019 (PT), 0.057 (RH), 0.032 

(SA), and 0.018 (ST). Analysis of variance indicated that genotype, environment, and their 

interaction had significant effects (P ≤ 0.05) on CC1, CC2, and CCR. Correlations of canopy 

coverage between environments for CC1 and CC2 were significantly positive (0.09 ≤ r ≤ 0.39) 

except for the correlation between RH and ST for CC1 (data not shown). Correlations between 

CC1 and CC2 within environments averaged 0.59 and ranged from 0.76 (FY) to 0.30 (PT). For 

CCR, association between environments were significantly positive, negative, or not significant. 
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For instance, RH and PT showed a significant positive correlation (r = 0.32), but ST16 and FY 

showed a negative correlation (r = -0.12). Broad sense heritability by environment on an entry-

mean basis indicated low-to-moderate heritability for CC1 and CC2 (0.21 ≤ H2 ≤ 0.54) and low 

heritability for CCR (0.09 ≤ H2 ≤ 0.39) (Table 4_1). 

Genome-wide association analysis 

Genome-wide association analysis of canopy coverage with 31,260 SNPs (MAF ≥ 5%) 

identified 41 SNPs significantly associated with CC1 at level of -Log10 (P) ≥ 3.5; P ≤ 0.0003 

(Figure 4_1). Out of these 41 SNPs, six were significant in at least two environments. Significant 

SNPs that were present in a LD block on the same chromosome were considered as one locus. 

Thus, the 41 significant SNPs comprised 38 putative loci (Table 4_3). For CC2, there were 56 

significant SNPs associated with canopy coverage at a level of -Log10(P) ≥ 3.5; P ≤ 0.0003 

(Figure 4_2). Eleven SNPs out of these 56 were significant in at least two environments. These 

56 significant SNPs comprised 47 putative loci (Table 4_4). The allelic effect (fractional change 

in canopy coverage for the major compared to the minor allele) for these significantly SNPs for 

CC1 ranged from -0.050 to 0.068 (Table 4_3) and for CC2 ranged from -0.048 to 0.086 (Table 

4_4). The positive sign indicates that the minor allele was associated with increased canopy 

coverage. The list of all 38 significant loci for CC1 and 47 significant loci for CC2, their 

corresponding MAF, major or minor allele, allelic effect, and common environments are listed in 

Table 4_3 and S2, respectively. Table 4_2 shows the list of significant SNPs associated with 

CC1 and CC2 that were present in more than one environment, common to both CC1 and CC2, 

and coincident with previously reported QTLs for canopy coverage (Xavier et al., 2017).  

There were 35 SNPs associated with CCR at a significance level of -Log10(P) ≥ 3.5; P ≤ 

0.0003 (Figure 4_3). Out of 35 SNPs, six significant SNPs were present in at least two 
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environments. These 35 significant SNPs comprised 30 putative loci (Table 4_5). For CCR, the 

allelic effect (fractional change in canopy coverage for the major compared to the minor allele) 

for these significantly SNPs ranged from -0.003 to 0.003 (Table 4_5). Information on these 30 

significant loci for CCR, their corresponding MAF, major or minor allele, allelic effect, and 

common environments are listed in Table 4_5.  

Candidate Gene Identification 

Based on the significant SNPs, 41 genes for CC1, 56 genes for CC2, and 35 genes for 

CCR were identified. These genes, their associated functional annotation, and biological function 

were evaluated within ± 10 kb of the respective SNPs using Glyma1.1, Glyma1.0 and NCBI 

RefSeq gene models in Soybase (www.soybase.org) with consideration for those that may have 

association with growth, developmental, and light response. This analysis identified that 19 

significant SNPs out of 41 for CC1 (Table 4_6), 21 significant SNPs out of 56 for CC2 (Table 

4_7), and 17 significant SNPs out of 35 for CCR (Table 4_8) were located within genes. The 

remaining genes were present within ± 10 kb of the respective SNPs. Based on their biological 

function of growth, developmental, and light response that were reported in the Soybase 

(www.soybase.org), 13 genes for CC1, 19 genes for CC2, and 11 genes for CCR are potential 

candidate genes for establishing faster canopy coverage.   

  

http://www.soybase.org/
http://www.soybase.org/
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Discussion 

There was wide phenotypic variation of canopy coverage for both CC1 and CC2 within 

each environment, which is important for dissecting complex traits through association mapping 

(McCarthy et al., 2008). That there were significant positive correlations for canopy coverage 

between environments for both, CC1 and CC2, and moderate heritability indicate that canopy 

coverage can be improved, which has implications for increasing T relative to Es, light 

interception, and competitiveness for weeds. However, there was considerably more variability 

for CCR than for CC1 and CC2, and the correlation of CCR between environments ranged from 

positive to negative and had low heritability, which may limit the utility of this trait. 

Some of the variability between CC1 and CC2 within environments and among canopy coverage 

measurements across environments may be related to soil-moisture availability prior to 

measurements. Drought decreases leaf area development and leaf expansion rate (Clauw et al., 

2015; Manandar et al., 2017; Tardieu et al., 2010). The week before CC1 measurements there 

were no soil-moisture limitations at ST, RH, or SA, but soil-moisture deficits exceeded the 

threshold for irrigation for 3 or 7 days before CC1 at FY and PT, respectively. Between CC1 and 

CC2 measurements, ST was the only environment in which daily soil-moisture deficits were 

above the irrigation threshold. The low heritability of CCR may also be related to the differences 

in soil-moisture availability prior to CC1 and CC2 measurements. 

For CC1, 19 major alleles out of 41 were linked with an increase in canopy coverage 

(positive value of allelic effect indicates that major allele was associated with an increase in 

canopy coverage) (Table 4_3). One SNP on Gm08, that had the largest positive allelic effect 

(0.07), was present within the coding region of a gene, Glyma08g13160, which codes a 

chaperone binding protein that has a biological function associated with photosynthesis (Tables 
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4_3 and 4_6). A SNP on Gm16 that had the second largest positive allelic effect (0.05), was also 

present within the coding region of a gene, Glyma16g25880, which codes a root phototropism 

protein that has a biological function involved with response to light stimulus (Tables 4_3 and 

4_6). Out of 41 SNPs, minor alleles of 22 were associated with an increase in canopy coverage 

(negative value of allelic effect indicates that minor allele was associated with an increase in 

canopy coverage) (Table 4_3). One SNP on Gm02, that had a large negative allelic effect (-

0.03), was present within the coding region of a gene, Glyma02g40960, which codes an early 

growth response protein (Tables 4_3 and 4_6). 

For CC2, there were 38 out of 56 SNPs for which the major allele associated with an 

increase in canopy coverage (Table 4_4). A SNP on Gm18 that had the largest positive allelic 

effect (0.09) was present within ± 5 kb range of a gene, Glyma18g00530, that codes a DNA 

repair protein (RAD50) that has a biological function involved with meristem structural 

organization (Tables 3 and 6). Out of 56 SNPs, the minor alleles of 18 were associated with an 

increase in canopy coverage (Table 4_4). One SNP on Gm09, with the largest negative allelic 

effect (-0.05) was present within ± 10 kb range of a gene, Glyma09g30370, that codes a protein 

functioning as a glutamine synthetase clone R1 that has a biological function involved with leaf 

senescence (Tables 4_4 and 4_7). 

For CCR, 38 major alleles out of 56 were associated with an increase in canopy coverage 

(Table 4_5). A SNP on Gm11 had the largest positive allelic effect (0.004) and was present 

within ±10 kb range of a gene, Glyma11g31515, which codes a protein having a function as a 

serine kinase. Out of 56 SNPs, minor alleles of 18 were associated with an increase in canopy 

coverage (Table 4_5). A SNP on Gm19 had the largest negative allelic effect (-0.003) and was 

present within coding region of Glyma19g40810, which codes a protein functioning as a S-
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Adenosylmethionine synthetase that has a biological function involved in the ethylene 

biosynthetic process (Tables 4_5 and 4_8). 

Xavier et al., (2017) identified seven SNPs associated with canopy coverage, but two of 

the SNPs on Gm10 were close to one another, which they considered as one QTL. They, 

therefore, reported six QTLs for canopy coverage using the SoyNAM population. Location of 

the CC1 and CC2 chromosomal regions identified in this study were compared with QTLs 

reported by Xavier et al., (2017) for canopy coverage. Likewise, we compared genomic regions 

of CC1 and CC2 to see if they were coincident (Table 4_2, Figure 4_4). Four out of six QTLs 

reported by Xavier et al., (2017) were located close to genomic regions that were associated with 

CC1 and CC2 in this study (Table 4_2, Figure 4_4). Twelve putative loci on Gm02 (2), Gm06, 

Gm07, Gm09 (3), Gm11, Gm16 (3), and Gm20 were identified where chromosomal regions 

associated with both CC1 and CC2 (Table 4_2, Figure 4_4). These chromosomal regions have 

candidate genes with a direct function associated with response to auxin, response to gibberellic 

acid, meristem growth, light regulated protein, early growth response protein, and response to 

light intensity (Tables 4_6, 4_7, 4_8). These putative loci may indicate the stability and 

importance for improving faster canopy coverage and may highlight the important regions of the 

genome for further investigations. 
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Conclusions 

A high marker density of 31,260 SNPs with a MAF ≥ 5 % were used in this study for 

association mapping of canopy coverage at two dates (CC1 and CC2) and five environments as 

well as for the rate of canopy coverage increase between the two sampling dates (CCR). There 

were 41 significant SNPs associated with CC1, 56 significant SNPs associated with CC2, and 35 

significant SNPs for CCR at a significance level of -Log10 (P) ≥ 3.5. Six significant SNPs for 

CC1, 11 SNPs for CC2, and six SNPs for CCR were present in at least two environments. The 41 

SNPs for CC1 and 56 SNPs for CC2, and 35 SNPs for CCR likely tagged 38, 50, and 30 

different loci, respectively. Four different putative loci were located within four genomic regions 

that were previously reported (Xavier et al., 2017) as QTLs for canopy coverage. Twelve 

putative loci were identified, where chromosomal regions associated with CC1 and CC2 were 

coincident. Several of these loci were close to or within genes related to growth and 

development. Significant SNPs that were present in more than one environment, and where 

chromosomal regions associated for both CC1 and CC2 were found within the same genomic 

location could be useful markers for improving faster canopy coverage.   
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Table 4_1. Descriptive statistics of canopy coverage over 373 MG IV Plant Introductions 

measured at two time points during vegetative development, CC1 and CC2, and canopy coverage 

rate (CCR) for experiments conducted at Fayetteville, AR (FY), Pine Tree, AR (PT), Rohwer, 

AR (RH), Salina, KS (SA), and Stuttgart, AR (ST). 

Trait ENV Minimum Maximum Mean Heritability 

CC1  
    

  FY 0.06 0.33 0.18 0.38 

 PT 0.04 0.21 0.11 0.52 

 RH 0.08 0.53 0.34 0.54 

 SA 0.43 0.73 0.58 0.51 

 ST 0.12 0.35 0.21 0.52 

    overall 0.58 

CC2      
  FY 0.41 0.81 0.62 0.46 

 PT 0.24 0.52 0.38 0.21 

 RH 0.35 0.97 0.80 0.46 

 SA 0.69 0.98 0.90 0.33 

 ST 0.27 0.77 0.50 0.49 

    overall 0.51 

CCR      
  FY 0.020 0.045 0.034 0.27 

 PT 0.010 0.028 0.019 0.19 

 RH 0.026 0.085 0.057 0.15 

 SA 0.014 0.045 0.032 0.09 

 ST 0.008 0.033 0.018 0.39 

        overall 0.11 
 

 

 

 

 

 

 

 

 



 
 

Table 4_2. Significant SNPs associated with canopy coverage over 373 Plant Introductions at the first (CC1) and second (CC2) 

measurement dates and at both measurement date (CC1/CC2) at Stuttgart in 2015 (ST), Fayetteville in 2016 (FY), Pine Tree in 2016 

(PT), Rohwer in 2016 (RH), and Salina in 2016 (SA) using FarmCPU model with threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003).  

Trait SNP_ID 

Allelic 

Effectc 

Common 

ENVd Gene Namee Functional Annotation (Biological Function) 

CC1      

 BARC_1.01_Gm_01_51957108_T_Ga -0.022 

Xavier et al., 

2017 Glyma01g39090 Serine/Threonine Kinase Activity (meristem growth) 

 BARC_1.01_Gm_01_54917573_A_C 0.020 ST15/FA16 Glyma01g42890 JUMONJI Domain Containing Protein (meristem growth) 

 BARC_1.01_Gm_02_5326823_A_Gb -0.015  Glyma02g06610 Protein of Unknown Function 

 BARC_1.01_Gm_02_43094876_T_Cb -0.033  Glyma02g40960 Early Growth Response Protein 

 BARC_1.01_Gm_05_3268626_T_C 0.014 PT16/SA16 Glyma05g02130 Zinc Finger (response to high light intensity) 

 BARC_1.01_Gm_05_37611048_C_Ta 0.020 Xavier et al., 2017 Glyma05g32380 Phosphoenolpyruvate DiKinase Protein (meristem growth) 

 BARC_1.01_Gm_06_7988088_G_Tb -0.012  Glyma06g10540 Glycosidases (plant-type cell wall organization) 

 BARC_1.01_Gm_07_18047081_A_Gb 0.048  Glyma07g18210 Isoamyl Acetate-Hydrolyzing Esterase (lipid metabolic process) 

 BARC_1.01_Gm_08_9597333_T_C 0.068 RH16/SA16 Glyma08g13160 Chaperone Binding Protein (photosynthesis) 

 BARC_1.01_Gm_09_786303_A_Gb -0.002 FA16/RH16 Glyma09g01270 Fumarylacetoacetase (chlorophyll catabolic process) 

 BARC_1.01_Gm_09_3855506_T_Gab -0.022 

Xavier et al., 

2017 Glyma09g05020 

Peripheral-Type Benzodiazepine Receptor (abscisic acid 

stimulus) 

 BARC_1.01_Gm_11_8840866_G_Ab 0.035  Glyma11g12341 Plant Protein of Unknown Function (DUF825) 

 BARC_1.01_Gm_15_1626629_C_T 0.017 FA16/ST16 Glyma15g02420 Actin Binding Protein Family 

 BARC_1.01_Gm_16_5005273_G_Ab 0.026  Glyma16g05640 

Glycerophosphoryl Diester Phosphodiesterase (metabolic 

process) 

 BARC_1.01_Gm_16_7364708_A_Gb 0.046  Glyma16g07960 Myb-Like DNA-Binding Domain (gibberellic acid signaling) 

 BARC_1.01_Gm_16_30401273_C_Tb 0.049  Glyma16g25880 Root Phototropism Protein (response to light stimulus) 

 BARC_1.01_Gm_17_8482479_G_A -0.024 FA16/PT16 Glyma17g11670 Glycosyl Hydrolase Family 79 (plant-type cell wall growth) 

 BARC_1.01_Gm_20_45740785_C_Tb -0.010  Glyma20g36530 Phosphatase 2a Regulatory Subunit-Related (meristem growth) 

CC2           

 BARC_1.01_Gm_01_4267470_A_G -0.037 

FA16/PT16/ 

SA16 Glyma01g04616 AUX/IAA Protein (auxin stimulus) 

 BARC_1.01_Gm_02_4479807_T_Cb 0.014  Glyma02g05530 Auxin Responsive Protein (auxin stimulus) 

 BARC_1.01_Gm_02_44256235_A_Gb -0.002  Glyma02g42290 Amino Acid Transporters (multidimensional cell growth) 

 BARC_1.01_Gm_02_44522295_G_A -0.003  Glyma02g42560 Vesicle Coat Protein Clathrin (vesicle-mediated transport) 
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Table 4_2. (Cont.)      

Trait SNP_ID 

Allelic 

Effectc 

Common 

ENVd Gene Name Functional Annotation (Biological Function) 

 BARC_1.01_Gm_04_3250504_T_C 0.063 

RH116/FA16/PT

16 Glyma04g04300 Poly-Adenylate Binding Protein (response to cadmium ion) 

 BARC_1.01_Gm_05_33832783_T_G 0.063 RH16/PT16 Glyma05g27670 Myb-Like DNA-Binding Domain 

 BARC_1.01_Gm_06_6880019_A_Gb 0.019  Glyma06g09340 Serine/Threonine Protein Kinase (histone phosphorylation) 

 BARC_1.01_Gm_06_12426395_T_G 0.009 SA16/ST16 Glyma06g15755 AAA-Type ATPASE Family Protein (chloroplast organization) 

 BARC_1.01_Gm_06_14105376_A_Ga -0.042 

Xavier et al., 

2017 Glyma06g17710 Fist C Domain 

 BARC_1.01_Gm_07_18047081_A_Gb 0.021  Glyma07g18210 Isoamyl Acetate-Hydrolyzing Esterase (metabolic process) 

 BARC_1.01_Gm_07_38128536_G_A 0.034 SA16/PT16 Glyma07g33260 Ca2+/Calmodulin-Dependent Protein Kinase (meristem growth) 

 BARC_1.01_Gm_08_46871422_G_A 0.062 ST16/SA16 Glyma08g47090 Galactose Oxidase/Kelch Repeat Superfamily Protein 

 BARC_1.01_Gm_09_773488_T_Cb 0.003  Glyma09g01250 Plastocyanin-Like Domain (root hair elongation) 

 BARC_1.01_Gm_09_3023789_T_Cb -0.001  Glyma09g04060 Betaine Aldehyde Dehydrogenase (metabolic process) 

 BARC_1.01_Gm_10_38900522_T_C 0.053 RH16/FA1616 Glyma10g29490 Lipoxygenase (growth) 

 BARC_1.01_Gm_11_8557505_T_C 0.035  Glyma11g11990 Mate Efflux Family Protein (transmembrane transport) 

 BARC_1.01_Gm_13_36385708_G_A -0.003 SA16/RH16 Glyma13g33290 Gibberellin 2-Beta-Dioxygenase (gibberellin catabolic process) 

 BARC_1.01_Gm_15_50563545_T_C 0.020 PT16/SA16 Glyma15g42330 Hexosyltransferases (meristem growth) 

 BARC_1.01_Gm_16_4707461_C_Tb -0.005  Glyma16g05380 Aspartate Kinase (metabolic process) 

 BARC_1.01_Gm_16_6702694_C_Tb -0.001  Glyma16g07300 Thioredoxin – Related Protein 

 BARC_1.01_Gm_16_30654649_C_Tb 0.034  Glyma16g26100 Mlo Family Protein (leaf senescence) 

 BARC_1.01_Gm_18_194608_C_A 0.086 

FA16/RH16/ 

SA16 Glyma18g00530 DNA Repair Protein Rad50 (meristem structural organization) 

 BARC_1.01_Gm_20_45740785_C_Tb -0.023  Glyma20g36530 Protein Phosphatase 2 Regulatory Subunit (meristem growth) 

 

CC1/CC2         

 BARC_1.01_Gm_07_18047081_A_Gb 0.048  Glyma07g18210 Isoamyl Acetate-Hydrolyzing Esterase (lipid metabolic process) 

  BARC_1.01_Gm_20_45740785_C_Tb -0.023   Glyma20g36530 Protein Phosphatase 2 Regulatory Subunit (meristem growth) 
a Genomic regions where identified SNPs were coincident with QTLs identified by Xavier et al., (2017) 
b Genomic regions where both CC1 and CC2 were coincident. 
c Allelic effect: Difference in mean canopy coverage between genotypes with major allele and minor allele. Positive sign indicates that 

major allele is associated with increased canopy coverage. Negative sign indicates that minor allele is associated with increased 

canopy coverage. 
d Common ENV: Indicates that SNP is present in more than one environment.  
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Table 4_3. Significant SNPs associated with canopy coverage over 373 plant introductions from the first measurement date (CC1) at 

Stuttgart in 2015 (ST), Fayetteville in 2016 (FY), Pine Tree in 2016 (PT), Rohwer in 2016 (RH), and Salina in 2016 (SA) using 

FarmCPU model with threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003). Shaded entries indicate that SNP was significant in multiple 

environments. 

Locus CHRa Location SNP_ID Allele -Log10 (P) Allelic Effect
b
 ENV Common ENVc 

1 1 51,957,108 BARC_1.01_Gm_01_51957108_T_G G/T 3.51 -0.022 SA  

2 1 54,917,573 BARC_1.01_Gm_01_54917573_A_C C/A 4.47 0.020 ST ST/FA 

3 2 5,326,823 BARC_1.01_Gm_02_5326823_A_G A/G 5.80 -0.015 FA  

4 2 10,814,437 BARC_1.01_Gm_02_10814437_T_C T/C 4.47 -0.006 FA  

5 2 43,094,876 BARC_1.01_Gm_02_43094876_T_C C/T 6.10 -0.033 SA  

6 3 38,033,846 BARC_1.01_Gm_03_38033846_C_T T/C 4.51 0.043 RH  

7 3 42,959,913 BARC_1.01_Gm_03_42959913_G_A G/A 4.28 0.017 PT  

8 5 3,268,626 BARC_1.01_Gm_05_3268626_T_C T/C 5.48 0.014 PT PT/SA 

9 5 37,611,048 BARC_1.01_Gm_05_37611048_C_T C/T 3.62 0.020 SA  

10 6 7,988,088 BARC_1.01_Gm_06_7988088_G_T G/T 6.86 -0.012 SA  

11 7 1,088,454 BARC_1.01_Gm_07_1088454_T_G G/T 6.91 -0.013 RH  

12 7 18,047,081 BARC_1.01_Gm_07_18047081_A_G A/G 3.65 0.048 SA  

13 7 33,763,951 BARC_1.01_Gm_07_33763951_T_C C/T 4.22 0.023 PT  

14 8 9,597,333 BARC_1.01_Gm_08_9597333_T_C C/T 5.36 0.068 RH RH/SA 

15 8 43,212,289 BARC_1.01_Gm_08_43212289_G_T T/G 4.45 0.004 SA  

16 9 786,303 BARC_1.01_Gm_09_786303_A_G A/G 3.56 -0.002 FA FA/RH 

17 9 3,855,506 BARC_1.01_Gm_09_3855506_T_G T/G 4.69 -0.022 SA  

18 9 7,769,872 BARC_1.01_Gm_09_7769872_G_T G/T 4.04 0.002 SA  

19 9 16,513,681 BARC_1.01_Gm_09_16513681_A_G A/G 4.65 -0.006 PT  

20 9 38,807,856 BARC_1.01_Gm_09_38807856_G_A G/A 4.12 -0.031 FA  

21 10 49,965,800 BARC_1.01_Gm_10_49965800_G_A A/G 4.81 -0.043 SA  

22 11 8,840,866 BARC_1.01_Gm_11_8840866_G_A G/A 4.10 0.035 RH  

23 12 37,811,256 BARC_1.01_Gm_12_37811256_G_A A/G 3.64 -0.005 FA  

24 13 25,490,010 BARC_1.01_Gm_13_25490010_T_C C/T 3.68 0.006 PT  

25 13 41,072,931 BARC_1.01_Gm_13_41072931_A_G G/A 3.76 0.000 SA  

26 15 863,423 BARC_1.01_Gm_15_863423_A_C C/A 4.61 0.006 FA  
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Table 4_3. (Cont.)         

Locus CHRa Location SNP_ID Allele -Log10 (P) Allelic Effect
b
 ENV Common ENVc 

  15 1,626,629 BARC_1.01_Gm_15_1626629_C_T T/C 3.78 0.017 FA FA/ST 

27 16 5,005,273 BARC_1.01_Gm_16_5005273_G_A A/G 4.62 0.026 FA  

28 16 7,364,708 BARC_1.01_Gm_16_7364708_A_G G/A 3.63 0.046 RH  

 16 7,851,145 BARC_1.01_Gm_16_7851145_G_A A/G 4.71 0.046 FA  

29 16 30,401,273 BARC_1.01_Gm_16_30401273_C_T C/T 4.03 0.049 ST  

30 16 33,212,261 BARC_1.01_Gm_16_33212261_C_T C/T 6.02 0.023 SA  

31 16 36,521,935 BARC_1.01_Gm_16_36521935_A_G A/G 4.14 -0.014 ST  

32 17 8,482,479 BARC_1.01_Gm_17_8482479_G_A G/A 4.21 -0.024 FA FA/PT 

33 17 39,317,889 BARC_1.01_Gm_17_39317889_C_A C/A 4.04 -0.013 PT  

 17 39,618,212 BARC_1.01_Gm_17_39618212_C_T C/T 5.55 -0.009 ST  

34 18 9,819,931 BARC_1.01_Gm_18_9819931_T_C C/T 4.37 -0.004 SA  

35 19 34,376,803 BARC_1.01_Gm_19_34376803_G_A G/A 9.55 -0.017 PT  

36 19 40,088,295 BARC_1.01_Gm_19_40088295_C_A C/A 5.68 -0.050 SA  

37 19 48,957,790 BARC_1.01_Gm_19_48957790_T_C C/T 5.28 -0.004 ST  

38 20 45,740,785 BARC_1.01_Gm_20_45740785_C_T T/C 4.59 -0.010 ST   
a CHR: Glycine max chromosome number. 

 Allele: Major/Minor alleles of Single Nucleotide Polymorphism. 
b Allelic effect: Difference in mean canopy coverage between genotypes with major allele and minor allele. Positive sign indicates that 

major allele is associated with increased canopy coverage. Negative sign indicates that minor allele is associated with increased 

canopy coverage. 
c Common ENV: Indicates that SNP is present in more than one environment. Grey color represents the common environment. 
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Table 4_4. Significant SNPs associated with canopy coverage from the second measurement date (CC2) at Stuttgart in 2015 (ST), 

Fayetteville in 2016 (FY), Pine Tree in 2016 (PT), Rohwer in 2016 (RH), and Salina in 2016 (SA) using FarmCPU model with 

threshold P value (-Log10 (P) ≥ 3.5; P ≤ 0.0003). Shaded entries indicate that SNP was significant in multiple environments. 

Locus CHRa Location SNP_ID Alleles -Log10 (P) Allelic Effectb ENV Common ENVc 

1 1 4,267,470 BARC_1.01_Gm_01_4267470_A_G A/G 3.90 -0.037 FA FA/PT/SA 

2 2 4,479,807 BARC_1.01_Gm_02_4479807_T_C C/T 3.80 0.014 ST  

3 2 14,894,202 BARC_1.01_Gm_02_14894202_A_C A/C 5.73 -0.006 FA  

4 2 44,256,235 BARC_1.01_Gm_02_44256235_A_G A/G 4.37 -0.002 RH  

 2 44,522,295 BARC_1.01_Gm_02_44522295_G_A G/A 4.24 -0.003 SA  

5 2 50,175,034 BARC_1.01_Gm_02_50175034_G_A A/G 9.57 0.031 SA  

6 3 3,936,105 BARC_1.01_Gm_03_3936105_T_G G/T 5.48 0.037 FA  

7 3 31,444,763 BARC_1.01_Gm_03_31444763_C_T T/C 4.53 0.035 ST  

8 4 3,250,504 BARC_1.01_Gm_04_3250504_T_C C/T 5.60 0.063 RH RH/FA/PT 

 4 4,011,757 BARC_1.01_Gm_04_4011757_A_G G/A 3.57 0.016 PT  

9 4 14,813,923 BARC_1.01_Gm_04_14813923_T_C C/T 4.30 -0.012 FA  

10 4 42,843,069 BARC_1.01_Gm_04_42843069_C_T C/T 3.73 0.019 PT  

 4 42,850,248 BARC_1.01_Gm_04_42850248_T_C T/C 3.73 0.019 PT  

 4 42,903,125 BARC_1.01_Gm_04_42903125_G_A G/A 3.62 0.019 PT  

11 5 8,736,763 BARC_1.01_Gm_05_8736763_G_A G/A 3.77 0.015 SA  

12 5 33,832,783 BARC_1.01_Gm_05_33832783_T_G T/G 5.99 0.063 RH RH/PT 

13 5 39,811,863 BARC_1.01_Gm_05_39811863_A_G A/G 3.77 -0.025 ST  

14 6 6,880,019 BARC_1.01_Gm_06_6880019_A_G A/G 3.63 0.019 FA  

15 6 12,426,395 BARC_1.01_Gm_06_12426395_T_G G/T 5.31 0.009 SA SA/ST 

16 6 14,105,376 BARC_1.01_Gm_06_14105376_A_G G/A 7.35 -0.042 SA SA/PT 

17 6 15,640,480 BARC_1.01_Gm_06_15640480_T_C C/T 4.90 0.048 ST  

18 7 18,047,081 BARC_1.01_Gm_07_18047081_A_G A/G 3.50 0.021 PT  

19 7 38,128,536 BARC_1.01_Gm_07_38128536_G_A G/A 6.49 0.034 SA SA/PT 

20 8 46,871,422 BARC_1.01_Gm_08_46871422_G_A A/G 4.28 0.062 ST ST/SA 

21 9 773,488 BARC_1.01_Gm_09_773488_T_C T/C 4.01 0.003 FA  

22 9 3,023,789 BARC_1.01_Gm_09_3023789_T_C T/C 4.18 -0.001 RH  

23 9 39,794,648 BARC_1.01_Gm_09_39794648_A_C A/C 3.98 -0.048 ST  

1
4
3
 



 
 

Table 4_4. (Cont.)         

Locus CHRa Location SNP_ID Alleles -Log10 (P) Allelic Effectb ENV Common ENVc 

 9 40,780,576 BARC_1.01_Gm_09_40780576_T_G T/G 4.04 0.022 FA  

24 9 46,050,482 BARC_1.01_Gm_09_46050482_G_A G/A 4.06 0.061 FA  

25 10 2,937,441 BARC_1.01_Gm_10_2937441_T_C T/C 6.08 0.020 FA  

26 10 38,900,522 BARC_1.01_Gm_10_38900522_T_C C/T 4.90 0.053 RH RH/FA 

27 11 8,557,505 BARC_1.01_Gm_11_8557505_T_C T/C 11.05 0.035 SA  

28 12 30,527,017 BARC_1.01_Gm_12_30527017_T_C C/T 4.72 0.028 FA  

29 13 36,385,708 BARC_1.01_Gm_13_36385708_G_A G/A 3.88 -0.003 SA SA/RH 

30 14 656,104 BARC_1.01_Gm_14_656104_A_G G/A 5.92 0.015 SA  

31 14 10,088,646 BARC_1.01_Gm_14_10088646_C_T C/T 5.71 -0.006 SA  

32 14 36,236,609 BARC_1.01_Gm_14_36236609_T_C T/C 3.61 0.015 PT  

33 15 7,424,431 BARC_1.01_Gm_15_7424431_G_A G/A 3.78 0.027 SA  

 15 7,719,822 BARC_1.01_Gm_15_7719822_C_T T/C 4.55 0.055 FA  

34 15 14,535,373 BARC_1.01_Gm_15_14535373_A_G G/A 5.20 0.065 RH  

35 15 50,563,545 BARC_1.01_Gm_15_50563545_T_C T/C 4.10 0.020 PT PT/SA 

 15 50,829,911 BARC_1.01_Gm_15_50829911_A_G A/G 3.86 0.001 SA  

36 16 4,707,461 BARC_1.01_Gm_16_4707461_C_T C/T 4.39 -0.005 SA  

37 16 6,702,694 BARC_1.01_Gm_16_6702694_C_T T/C 4.48 -0.001 SA  

38 16 30,654,649 BARC_1.01_Gm_16_30654649_C_T C/T 4.42 0.034 PT  

39 17 13,673,778 BARC_1.01_Gm_17_13673778_C_T C/T 3.51 -0.009 SA  

40 18 194,608 BARC_1.01_Gm_18_194608_C_A C/A 4.34 0.086 FA FA/RH/SA 

41 18 22,278,189 BARC_1.01_Gm_18_22278189_T_C C/T 3.68 -0.011 ST  

42 18 50,206,645 BARC_1.01_Gm_18_50206645_C_A C/A 4.47 0.033 FA  

43 18 54,969,812 BARC_1.01_Gm_18_54969812_A_G G/A 5.40 0.012 SA  

44 19 47,211,510 BARC_1.01_Gm_19_47211510_C_T T/C 4.23 0.048 RH  

45 20 38,645,511 BARC_1.01_Gm_20_38645511_C_T C/T 3.52 0.017 PT  

46 20 41,681,249 BARC_1.01_Gm_20_41681249_T_C C/T 3.97 0.060 RH  

47 20 44,707,884 BARC_1.01_Gm_20_44707884_A_G G/A 4.27 -0.028 SA  

 20 45,740,785 BARC_1.01_Gm_20_45740785_C_T T/C 4.27 -0.023 ST  

  20 46,574,547 BARC_1.01_Gm_20_46574547_T_C C/T 4.08 -0.024 RH   
a CHR: Glycine max chromosome number.  
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 Allele: Major/Minor alleles of Single Nucleotide Polymorphism. 
b Allelic effect: Difference in mean canopy coverage between genotypes with major allele and minor allele. Positive sign indicates that 

major allele is associated with increased canopy coverage. Negative sign indicates that minor allele is associated with increased 

canopy coverage. 
c Common ENV: Indicates that SNP is present in more than one environment. Grey color represents the common environment. 
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Table 4_5. Significant SNPs associated with canopy coverage rates (CCR) at Stuttgart in 2015 (ST-15), Fayetteville in 2016 (FY), 

Pine Tree in 2016 (PT), Rohwer in 2016 (RH), and Salina in 2016 (SA) using FarmCPU model with threshold P value (-Log10 (P) ≥ 

3.5; P ≤ 0.0003). Shaded entries indicate that SNP was significant in multiple environments. 

Locus CHR
a
 Location SNP_ID Allele -Log10 (P) Allelic Effectb ENV Common ENVc 

1 1 47,064,939 BARC_1.01_Gm_01_47064939_A_G A/G 5.04 0.0021 ST  

2 2 4,479,807 BARC_1.01_Gm_02_4479807_T_C C/T 3.80 -0.0024 SA SA/ST 

3 2 42,737,643 BARC_1.01_Gm_02_42737643_C_T C/T 3.82 0.0006 PT  

4 3 1,069,751 BARC_1.01_Gm_03_1069751_A_G A/G 3.61 -0.0004 ST  

5 4 4,001,585 BARC_1.01_Gm_04_4001585_G_A A/G 5.20 0.0030 SA  

  4 4,468,019 BARC_1.01_Gm_04_4468019_A_G G/A 4.44 0.0002 PT PT/RH 

  4 5,034,406 BARC_1.01_Gm_04_5034406_T_C T/C 3.52 0.0013 FA FA/SA 

6 4 39,674,528 BARC_1.01_Gm_04_39674528_T_C T/C 5.09 -0.0007 ST  

7 5 1,522,606 BARC_1.01_Gm_05_1522606_C_T T/C 3.61 -0.0009 SA  

8 5 3,268,626 BARC_1.01_Gm_05_3268626_T_C T/C 6.63 0.0009 PT  

9 6 11,824,346 BARC_1.01_Gm_06_11824346_T_G T/G 4.54 0.0006 ST  

10 6 14,118,318 BARC_1.01_Gm_06_14118318_C_T T/C 3.68 -0.0003 PT  

11 6 48,622,010 BARC_1.01_Gm_06_48622010_T_C T/C 3.80 0.0016 PT  

12 7 1,421,810 BARC_1.01_Gm_07_1421810_A_G A/G 5.59 -0.0024 FA  

13 7 5,213,223 BARC_1.01_Gm_07_5213223_G_A G/A 4.82 -0.0006 PT  

14 7 19,154,944 BARC_1.01_Gm_07_19154944_C_T T/C 5.22 0.0012 PT PT/RH 

15 9 2,900,863 BARC_1.01_Gm_09_2900863_C_T C/T 3.99 -0.0005 PT  

16 11 18,730,941 BARC_1.01_Gm_11_18730941_A_G A/G 6.98 -0.0020 FA  

17 11 27,944,976 BARC_1.01_Gm_11_27944976_T_C T/C 3.70 0.0034 SA  

18 12 1,505,914 BARC_1.01_Gm_12_1505914_A_C A/C 4.27 -0.0008 SA  

19 13 23,459,258 BARC_1.01_Gm_13_23459258_C_T C/T 3.56 -0.0007 ST ST/SA 

20 13 29,870,401 BARC_1.01_Gm_13_29870401_A_G A/G 3.79 -0.0002 FA  

21 13 38,550,854 BARC_1.01_Gm_13_38550854_A_C A/C 4.49 -0.0008 SA  

 13 38,796,711 BARC_1.01_Gm_13_38796711_T_C T/C 3.89 -0.0012 ST  

22 14 6,354,474 BARC_1.01_Gm_14_6354474_T_C C/T 3.85 -0.0005 ST  

23 16 7,086,781 BARC_1.01_Gm_16_7086781_G_T T/G 4.65 0.0003 FA  

24 16 32,901,885 BARC_1.01_Gm_16_32901885_T_C T/C 4.14 0.0003 ST  
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Table 4_5. (Cont.)         

Locus CHR
a
 Location SNP_ID Allele -Log10 (P) Allelic Effectb ENV Common ENVc 

 16 32,915,485 BARC_1.01_Gm_16_32915485_G_A G/A 3.84 0.0010 FA  

 16 33,758,283 BARC_1.01_Gm_16_33758283_A_G A/G 4.62 -0.0008 FA  

25 17 13,636,189 BARC_1.01_Gm_17_13636189_T_C T/C 5.54 0.0015 FA  

26 18 347,275 BARC_1.01_Gm_18_347275_C_A A/C 4.57 -0.0005 PT  

27 18 61,323,738 BARC_1.01_Gm_18_61323738_A_C C/A 4.23 -0.0017 SA  

28 19 8,243,440 BARC_1.01_Gm_19_8243440_T_C C/T 6.18 0.0028 SA  

29 19 47,254,555 BARC_1.01_Gm_19_47254555_T_C C/T 5.08 -0.0030 ST  

30 20 45,796,566 BARC_1.01_Gm_20_45796566_A_G G/A 4.23 0.0002 ST ST/FA 
a CHR: Glycine max chromosome number. 

 Allele: Major/Minor alleles of Single Nucleotide Polymorphism. 
b Allelic effect: Difference in mean canopy coverage between genotypes with major allele and minor allele. Positive sign indicates that 

major allele is associated with increased canopy coverage. Negative sign indicates that minor allele is associated with increased 

canopy coverage. 
c Common ENV: Indicates that SNP is present in more than one environment. Grey color represents the common environment. 
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Table 4_6. Significant SNPs associated with canopy coverage from the first measurement date (CC1) and potential genes based on 41 

identified SNPs from the Soybase. 

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

1 BARC_1.01_Gm_01_51957108_T_G Glyma01g39090 Serine/Threonine Kinase Activity (vegetative to reproductive phase transition of meristem) 

2 BARC_1.01_Gm_01_54917573_A_C Glyma01g42890 JUMONJI Domain Containing Protein (vegetative to reproductive phase transition of meristem) 

3 BARC_1.01_Gm_02_5326823_A_G Glyma02g06610 Protein of Unknown Function 

4 BARC_1.01_Gm_02_10814437_T_C Glyma02g12460 Zinc Finger DHHC Domain Containing Protein (regulation of meristem growth) 

5 BARC_1.01_Gm_02_43094876_T_C Glyma02g40960 Early Growth Response Protein 

6 BARC_1.01_Gm_03_38033846_C_T Glyma03g32251 Lecithin-Cholesterol Acyltransferase-Related (leaf senescence) 

7 BARC_1.01_Gm_03_42959913_G_A Glyma03g38660 Myb-Like DNA-Binding Domain (response to auxin stimulus) 

8 BARC_1.01_Gm_05_3268626_T_C Glyma05g02130 Zinc Finger (response to high light intensity) 

9 BARC_1.01_Gm_05_37611048_C_T Glyma05g32380 Phosphoenolpyruvate DiKinase-Related Protein (regulation of meristem growth) 

10 BARC_1.01_Gm_06_7988088_G_T Glyma06g10540 Glycosidases (plant-type cell wall organization) 

11 BARC_1.01_Gm_07_1088454_T_G Glyma07g01660 Myo-Inositol Oxygenase (syncytium formation) 

12 BARC_1.01_Gm_07_18047081_A_G Glyma07g18210 Isoamyl Acetate-Hydrolyzing Esterase (lipid metabolic process) 

13 BARC_1.01_Gm_07_33763951_T_C Glyma07g29183 Uncharacterized Protein (leaf morphogenesis) 

14 BARC_1.01_Gm_08_9597333_T_C Glyma08g13160 Chaperone Binding Protein (photosynthesis) 

15 BARC_1.01_Gm_08_43212289_G_T Glyma02g25290 Fumarylacetoacetate Hydrolase (chlorophyll catabolic process) 

16 BARC_1.01_Gm_09_786303_A_G Glyma09g01270 Fumarylacetoacetase (chlorophyll catabolic process) 

17 BARC_1.01_Gm_09_3855506_T_G Glyma09g05020 Peripheral-Type Benzodiazepine Receptor (response to abscisic acid stimulus) 

18 BARC_1.01_Gm_09_7769872_G_T Glyma09g08521 Vacuolar Sorting Protein 35 (intracellular protein transport) 

19 BARC_1.01_Gm_09_16513681_A_G Glyma09g14090 Serine/Threonine-Protein Kinase Plk1 (multicellular organismal development) 

20 BARC_1.01_Gm_09_38807856_G_A Glyma09g29330 Trypsin and Protease Inhibitor (response to high light intensity) 

21 BARC_1.01_Gm_10_49965800_G_A Glyma10g42420 InterPro Domain protein (regulation of cell cycle) 

22 BARC_1.01_Gm_11_8840866_G_A Glyma11g12341 Plant Protein of Unknown Function (DUF825) 

23 BARC_1.01_Gm_12_37811256_G_A Glyma12g34660 Wound-Induced Protein (response to wounding) 

24 BARC_1.01_Gm_13_25490010_T_C Glyma13g20540 Suppressor of Auxin Resistance1 Protein (maintenance of meristem identity) 

25 BARC_1.01_Gm_13_41072931_A_G Glyma13g39230 GTPase Activating Protein (signal transduction) 

26 BARC_1.01_Gm_15_863423_A_C Glyma15g01410 Alpha/Beta Hydrolase Related 

 BARC_1.01_Gm_15_1626629_C_T Glyma15g02420 Actin Binding Protein Family 

27 BARC_1.01_Gm_16_5005273_G_A Glyma16g05640 Glycerophosphoryl Diester Phosphodiesterase Family (glycerol metabolic process)  
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Table 4_6. (Cont.)    

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

28 BARC_1.01_Gm_16_7364708_A_G Glyma16g07960 Myb-Like DNA-Binding Domain (gibberellic acid mediated signaling pathway) 

 BARC_1.01_Gm_16_7851145_G_A Glyma16g08360 Glycine and Proline Rich Protein  

29 BARC_1.01_Gm_16_30401273_C_T Glyma16g25880 Root Phototropism Protein (response to light stimulus) 

30 BARC_1.01_Gm_16_33212261_C_T Glyma16g28770 Leucine Rich Repeat (signal transduction) 

31 BARC_1.01_Gm_16_36521935_A_G Glyma16g32921 Ac-Like Transposase-Related (post-embryonic development) 

32 BARC_1.01_Gm_17_8482479_G_A Glyma17g11670 Glycosyl Hydrolase Family 79 (plant-type cell wall growth) 

33 BARC_1.01_Gm_17_39317889_C_A Glyma17g35610 F-Box Domain (positive regulation of gibberellic acid mediated signaling pathway) 

 BARC_1.01_Gm_17_39618212_C_T Glyma17g35930 No Apical Meristem (Nam) Protein 

34 BARC_1.01_Gm_18_9819931_T_C Glyma18g10930 Protein of Unknown Function 

35 BARC_1.01_Gm_19_34376803_G_A Glyma19g27060 Glycerophosphoryl Diester Phosphodiesterase Family (glycerol metabolic process) 

36 BARC_1.01_Gm_19_40088295_C_A Glyma19g32090 Leucine Rich Repeat (salicylic acid biosynthetic process) 

37 BARC_1.01_Gm_19_48957790_T_C Glyma19g43070 Conserved Wd40 Repeat-Containing Protein (lateral root formation) 

38 BARC_1.01_Gm_20_45740785_C_T Glyma20g36530 Phosphatase 2a Regulatory Subunit-Related (regulation of meristem growth) 
a All genes are from the Glyma1.1 assembly (www.soybase.org). 
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Table 4_7. Significant SNPs associated with canopy coverage from the second measurement date (CC2) and potential genes based on 

56 identified SNPs from the Soybase.  

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

1 BARC_1.01_Gm_01_4267470_A_G Glyma01g04616 AUX/IAA Protein (response to auxin stimulus) 

2 BARC_1.01_Gm_02_4479807_T_C Glyma02g05530 Auxin Responsive Protein (response to auxin stimulus) 

3 BARC_1.01_Gm_02_14894202_A_C Glyma02g16280 Zinc Finger Protein (zinc finger protein) 

4 BARC_1.01_Gm_02_44256235_A_G Glyma02g42290 Amino Acid Transporters (multidimensional cell growth) 

 BARC_1.01_Gm_02_44522295_G_A Glyma02g42560 Vesicle Coat Protein Clathrin (vesicle-mediated transport) 

5 BARC_1.01_Gm_02_50175034_G_A Glyma02g48210 SWIM Zinc Finger (response to red or far red light) 

6 BARC_1.01_Gm_03_3936105_T_G Glyma03g03980 Expansin B Protein (multidimensional cell growth) 

7 BARC_1.01_Gm_03_31444763_C_T Glyma03g26120 Glycyl-tRNA Synthetase Beta Subunit (chloroplast organization) 

8 BARC_1.01_Gm_04_3250504_T_C Glyma04g04300 Poly-Adenylate Binding Protein (response to cadmium ion) 

 BARC_1.01_Gm_04_4011757_A_G Glyma04g05210 Transcription Factor Meis1 And Related HOX Domain Proteins (meristem initiation) 

9 BARC_1.01_Gm_04_14813923_T_C Glyma04g13990 Family of Unknown Function (Duf566) 

10 BARC_1.01_Gm_04_42843069_C_T Glyma04g33900 Ribosomal Protein S4 (translation) 

 BARC_1.01_Gm_04_42850248_T_C Glyma04g33911 Plant Invertase/Pectin Methylesterase Inhibitor 

 BARC_1.01_Gm_04_42903125_G_A Glyma04g33950 Sugar Transporter (transmembrane transport) 

11 BARC_1.01_Gm_05_8736763_G_A Glyma05g07020 Cytochrome C1 Family (electron carrier activity) 

12 BARC_1.01_Gm_05_33832783_T_G Glyma05g27670 Myb-Like DNA-Binding Domain 

13 BARC_1.01_Gm_05_39811863_A_G Glyma05g36740 DNAJ/HSP40 (protein folding) 

14 BARC_1.01_Gm_06_6880019_A_G Glyma06g09340 Serine/Threonine Protein Kinase (histone phosphorylation) 

15 BARC_1.01_Gm_06_12426395_T_G Glyma06g15755 AAA-Type ATPASE Family Protein (chloroplast organization) 

16 BARC_1.01_Gm_06_14105376_A_G Glyma06g17710 Fist C Domain 

17 BARC_1.01_Gm_06_15640480_T_C Glyma06g19380 Protein of Unknown Function (Duf1645) 

18 BARC_1.01_Gm_07_18047081_A_G Glyma07g18210 Isoamyl Acetate-Hydrolyzing Esterase (lipid metabolic process) 

19 BARC_1.01_Gm_07_38128536_G_A Glyma07g33260 Ca2+/Calmodulin-Dependent Protein Kinase (vegetative to reproductive phase transition of meristem) 

20 BARC_1.01_Gm_08_46871422_G_A Glyma08g47090 Galactose Oxidase/Kelch Repeat Superfamily Protein 

21 BARC_1.01_Gm_09_773488_T_C Glyma09g01250 Plastocyanin-Like Domain (root hair elongation) 

22 BARC_1.01_Gm_09_3023789_T_C Glyma09g04060 Betaine Aldehyde Dehydrogenase (metabolic process) 

23 BARC_1.01_Gm_09_39794648_A_C Glyma09g30370 Glutamine Synthetase clone R1 (leaf senescence) 

 BARC_1.01_Gm_09_40780576_T_G Glyma09g31470 Zn-Finger Protein (cellular response to iron ion starvation)  
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Table 4_7. (Cont.)    

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

24 BARC_1.01_Gm_09_46050482_G_A Glyma09g37290 Gibberellin Regulated Protein (response to gibberellin stimulus) 

25 BARC_1.01_Gm_10_2937441_T_C Glyma10g03930 Para/Mind ATPASE Like 

26 BARC_1.01_Gm_10_38900522_T_C Glyma10g29490 Lipoxygenase (growth) 

27 BARC_1.01_Gm_11_8557505_T_C Glyma11g11990 Mate Efflux Family Protein (transmembrane transport) 

28 BARC_1.01_Gm_12_30527017_T_C Glyma12g26322 Zinc Knuckle 

29 BARC_1.01_Gm_13_36385708_G_A Glyma13g33290 Gibberellin 2-Beta-Dioxygenase (gibberellin catabolic process) 

30 BARC_1.01_Gm_14_656104_A_G Glyma14g01231 Apoptotic ATPASE (N-terminal protein myristoylation) 

31 BARC_1.01_Gm_14_10088646_C_T Glyma14g11780 Endosomal Membrane Proteins (N-terminal protein myristoylation) 

32 BARC_1.01_Gm_14_36236609_T_C Glyma14g26170 Calmodulin Related Calcium Binding Protein (actin filament-based movement) 

33 BARC_1.01_Gm_15_7424431_G_A Glyma15g10180 Cytochrome P450 (cellular response to water deprivation) 

 BARC_1.01_Gm_15_7719822_C_T Glyma15g10610 Dehydrogenase Related (leaf morphogenesis) 

34 BARC_1.01_Gm_15_14535373_A_G Glyma15g18047 ATP-Dependent DNA Ligase Iv (response to x-ray) 

35 BARC_1.01_Gm_15_50563545_T_C Glyma15g42330 Hexosyltransferases (vegetative to reproductive phase transition of meristem) 

 BARC_1.01_Gm_15_50829911_A_G Glyma15g42590 Glycoside Hydrolases (carbohydrate metabolic process) 

36 BARC_1.01_Gm_16_4707461_C_T Glyma16g05380 Aspartate Kinase (metabolic process) 

37 BARC_1.01_Gm_16_6702694_C_T Glyma16g07300 Thioredoxin – Related Protein 

38 BARC_1.01_Gm_16_30654649_C_T Glyma16g26100 Mlo Family Protein (leaf senescence) 

39 BARC_1.01_Gm_17_13673778_C_T Glyma17g17100 Basic Region Leucine Zipper (regulation of transcription) 

40 BARC_1.01_Gm_18_194608_C_A Glyma18g00530 DNA Repair Protein Rad50 (meristem structural organization) 

41 BARC_1.01_Gm_18_22278189_T_C Glyma18g20577 Helicase-Like Protein 

42 BARC_1.01_Gm_18_50206645_C_A Glyma18g44761 MEKK And Related Serine/Threonine Protein Kinases (photoperiodism) 

43 BARC_1.01_Gm_18_54969812_A_G Glyma18g49930 ATP-Dependent CLP Protease (chloroplast organization) 

44 BARC_1.01_Gm_19_47211510_C_T Glyma19g40770 Short Chain Dehydrogenase (metabolic process) 

45 BARC_1.01_Gm_20_38645511_C_T Glyma20g28620 Cytochrome P450 Monooxygenase (electron carrier) 

46 BARC_1.01_Gm_20_41681249_T_C Glyma20g31966 Para-Aminobenzoate (PABA) Synthase Abz1 (metabolic process) 

47 BARC_1.01_Gm_20_44707884_A_G Glyma20g35310 Protein of Unknown Function (Duf1012) 

 BARC_1.01_Gm_20_45740785_C_T Glyma20g36530 Protein Phosphatase 2 Regulatory Subunit (regulation of meristem growth) 

  BARC_1.01_Gm_20_46574547_T_C Glyma20g37600 Copper Transport Protein Atox1-Related (metal ion transport) 
a All genes are from the Glyma1.1 assembly (www.soybase.org).  
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Table 4_8. Significant SNPs associated with canopy coverage rates and potential genes based on 35 identified SNPs from the 

Soybase.  

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

1 BARC_1.01_Gm_01_47064939_A_G Glyma01g33920 Transmembrane Protein 15-Related (salicylic acid mediated signaling pathway) 

2 BARC_1.01_Gm_02_4479807_T_C Glyma02g05530 Auxin Responsive Protein (response to auxin stimulus) 

3 BARC_1.01_Gm_02_42737643_C_T Glyma02g40550 Thiamine Pyrophosphate Enzyme (para-aminobenzoic acid metabolic process) 

4 BARC_1.01_Gm_03_1069751_A_G Glyma03g01300 Serine/Threonine Protein Kinase (brassinosteroid mediated signaling pathway)  

5 BARC_1.01_Gm_04_4001585_G_A Glyma04g05200 Homeobox Associated Leucine Zipper (regulation of transcription) 

 BARC_1.01_Gm_04_4468019_A_G Glyma04g05810 Chaperone DNAJ-Domain Superfamily Protein 

 BARC_1.01_Gm_04_5034406_T_C Glyma04g06540 Wd40 Repeat Protein (RNA Splicing) 

6 BARC_1.01_Gm_04_39674528_T_C Glyma04g32130 Cobra-Like Protein (auxin polar transport (multidimensional cell growth)) 

8 BARC_1.01_Gm_05_3268626_T_C Glyma05g02130 Ubiquitin-Protein Ligase Activity (ubiquitin-protein ligase activity) 

7 BARC_1.01_Gm_05_1522606_C_T Glyma05g07540 Peptidase Family S49 (response to light intensity) 

9 BARC_1.01_Gm_06_11824346_T_G Glyma06g15010 Purine Permease (purine nucleobase transport) 

10 BARC_1.01_Gm_06_14118318_C_T Glyma06g17720 Inosine-5-Monophosphate Dehydrogenase Related 

11 BARC_1.01_Gm_06_48622010_T_C Glyma06g45171 Gar1/Naf1 RNA Binding Region (protein import into nucleus) 

12 BARC_1.01_Gm_07_1421810_A_G Glyma07g02031 Leucine Zipper-EF-Hand Containing Transmembrane Protein 

13 BARC_1.01_Gm_07_5213223_G_A Glyma07g06440 Formin Homology 2 Domain Protein (multidimensional cell growth) 

14 BARC_1.01_Gm_07_19154944_C_T Glyma07g19170 Proteasome Subunit Alpha/Beta (glycolysis) 

15 BARC_1.01_Gm_09_2900863_C_T Glyma09g03920 DNA-Binding Superfamily Protein  

16 BARC_1.01_Gm_11_18730941_A_G Glyma11g27386 Transcription Factor S-Ii (TFIIS) (regulation of transcription) 

17 BARC_1.01_Gm_11_27944976_T_C Glyma11g31515 

Serine Protein Kinase (transmembrane receptor protein tyrosine kinase signaling 

pathway) 

18 BARC_1.01_Gm_12_1505914_A_C Glyma12g02385 Porphobilinogen Deaminase (leaf morphogenesis) 

19 BARC_1.01_Gm_13_23459258_C_T Glyma13g18220 Cgi-141-Related/Lipase Containing Protein (lipid metabolic process) 

20 BARC_1.01_Gm_13_29870401_A_G Glyma13g18230 HR-Like Lesion-Inducing (response to high light intensity) 

21 BARC_1.01_Gm_13_38550854_A_C Glyma13g36030 GH3 Auxin-Responsive Promoter (unidimensional cell growth) 

 BARC_1.01_Gm_13_38796711_T_C Glyma13g36360 Gibberellin 2-Beta-Dioxygenase (gibberellin metabolic process) 

22 BARC_1.01_Gm_14_6354474_T_C Glyma14g08220 GYF Domain Containing Proteins (response to abscisic acid stimulus) 

23 BARC_1.01_Gm_16_7086781_G_T Glyma16g07691 ABC Transporter Transmembrane Region (chlorophyll catabolic process) 

24 BARC_1.01_Gm_16_32901885_T_C Glyma16g28447 Leucine Rich Repeat (signal transduction) 

 BARC_1.01_Gm_16_32915485_G_A Glyma16g28480 Leucine Rich Repeat (signal transduction)  
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Table 4_8. (Cont.)    

Locus SNP_ID Gene Namea Functional Annotation (Biological Function) 

 BARC_1.01_Gm_16_33758283_A_G Glyma16g29450 Chaperone Binding Protein (auxin mediated signaling pathway) 

25 BARC_1.01_Gm_17_13636189_T_C Glyma17g17051 Thioredoxin Superfamily Protein (oxidation-reduction process) 

26 BARC_1.01_Gm_18_347275_C_A Glyma18g00760 Rho GDP-Dissociation Inhibitor (cell tip growth) 

27 BARC_1.01_Gm_18_61323738_A_C Glyma18g54070 Microtubule Associated Protein (microtubule nucleation) 

28 BARC_1.01_Gm_19_8243440_T_C Glyma19g07000 Zinc Finger FYVE Domain Containing Protein (lipid metabolic process) 

29 BARC_1.01_Gm_19_47254555_T_C Glyma19g40810 S-Adenosylmethionine Synthetase (ethylene biosynthetic process) 

30 BARC_1.01_Gm_20_45796566_A_G Glyma20g36600 Cell Division Control Protein (defense response signaling pathway) 
aAll genes are from the Glyma1.1 assembly (www.soybase.org) 
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Figure 4_1. Circular Manhattan plot of -Log10 (P) vs. chromosomal position of SNP markers 

associated with canopy coverage taken first time (CC1) from FarmCPU model for five 

environments; (a) Fayetteville 2016, (b) Stuttgart 2015, (c) Salina 2016, (d) Rohwer 2016, and 

(e) Pine Tree 2016. Red-dotted line represents the association threshold (-Log10 (P) ≥ 3.5; P ≤ 

0.0003). 

 

 

 



155 
 

Figure 4_2. Circular Manhattan plot of -Log10 (P) vs. chromosomal position of SNP markers 

associated with canopy coverage taken second time (CC2) from FarmCPU model for five 

environents; (a) Fayetteville 2016, (b) Stuttgart 2015, (c) Salina 2016, (d) Rohwer 2016, and (e) 

Pine Tree 2016. Red-dotted line represents the association threshold (-Log10 (P) ≥ 3.5; P ≤ 

0.0003). 
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Figure 4_3. Circular Manhattan plot of -Log10 (P) vs. chromosomal position of SNP markers 

associated with canopy coverage rates (CCR) from FarmCPU model for five environments; (a) 

Fayetteville 2016, (b) Stuttgart 2015, (c) Salina 2016, (d) Rohwer 2016, and (e) Pine Tree 2016. 

Red-dotted line represents the association threshold (-Log10 (P) ≥ 3.5; P ≤ 0.0003). 
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Figure 4_4. Location of putative loci significantly associated with canopy coverage for both 

measurement dates, CC1 and CC2, and canopy coverage rates, and previously reported six QTLs 

for canopy coverage. 
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High-Throughput Genotyping and Phenotyping to Dissect Canopy Temperature in 
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Abstract 

Drought stress is a major global constraint for crop production, and improving crop 

tolerance to drought is of critical importance. Because transpiration cools a crop canopy, a cool 

canopy under drought indicates a genotype is still transpiring and has access to soil moisture.  

Our objectives in this research were to identify genomic regions associated with canopy 

temperature (CT) and to identify extreme genotypes for CT. A diverse panel consisting of 345 

MG IV soybean accessions were evaluated in multiple environments for CT. A set of 31,260 

polymorphic SNPs with a minor allele frequency (MAF) ≥ 5% were used for association 

mapping of CT using the FarmCPU model. Association mapping identified 52 significant SNPs 

associated with CT and these SNPs likely tagged 34 different genomic regions. Averaged across 

all environments (AAE), eight genomic regions showed significant associations with CT. Plant 

introduction (PI) PI 592940 had a relatively cooler CT, lowest true breeding value (TBV) and 

lowest genomic estimated breeding value (GEBV) for CT among genotypes in our GWAS panel. 

Several of the identified genes associated with significant SNPs had reported functions related to 

transpiration or water acquisition including root development, response to abscisic acid stimulus, 

water deprivation, stomatal complex morphogenesis, and signal transduction. Favorable alleles 

from significant SNPs may be an important resource for pyramiding genes and several genotypes 

were identified as sources of drought tolerance alleles that could be used in breeding programs 

for improving drought tolerance. 
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Introduction 

Drought is a major global constraint for crop productivity in rain-fed areas, which will 

make difficult to meet predicted food demand for a population that will be doubled by 2050 

(Foley et al., 2011). Currently, the average rate of increased cereal production yield per year 

(1.3%) is lower that required (2.4%) to meet the future food demand (Ray et al., 2013). Climate 

change, not only affects temperature, but it also affects the magnitude and distribution of rainfall, 

which results in a decrease in water availability for critical times of the crop cycle (Feng et al., 

2013). Climate change also decreases the predictability of rainfall and leads to increased 

frequency of drought and flooding conditions (Douglas et al., 2008). Worldwide, approximately 

80% of the total arable land is rain-fed, which generates 62% of staple food (FAOSTAT, 2011). 

Developing drought-tolerant cultivars are a high priority for improving crop performance in 

water-scarce environments. Soybean [Glycine max (L.) Merr.] is among the most widely grown 

crops in the world and is valuable because of its high oil and protein concentration. Drought 

adversely affects soybean yield to some degree at most developmental stages, particularly, 

during reproductive development (Oya et al., 2004). 

Direct selection of genotypes for grain yield under water-limited environments is limited 

because of low heritability, polygenic control, epistasis effects, and genotype by environment 

interactions (Piepho, 2000). Stomatal conductance regulates transpiration to maintain the plant 

water balance (Gollen et al., 1986). An early response of plants to drought stress is stomata 

closure which serves to reduce water loss through transpiration (Cornic and Massacci, 1996). 

Porometry is a method to screen stomatal response, however, this approach is slow and laborious 

for a large number of genotypes in a breeding program (Jones, 1979; Leport et al., 1999). 

Evaporative cooling through transpiration is related to stomatal conductance and variation in 
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canopy temperature (CT) can be used as an indicator for transpiration and stomatal conductance 

differences among genotypes (Jackson et al., 1981; Jones et al., 2009). Genotypes that have a 

faster growing and deeper rooting system may extract water from deeper in the soil profile where 

more soil moisture is available than genotypes with more shallow roots. Access to soil moisture 

deep in the profile may thereby stabilize yield in water-scarce environment (Blackman and 

Davis, 1985).  

Field measurement of CT of a large number of genotypes is difficult because many 

environmental factors such as air temperature, humidity, wind speed, solar radiation, as well as 

stomatal aperture affect leaf temperature. Aerial infrared image analysis has an advantage over 

the use of conventional IR thermometers for screening of canopy temperature because a large 

number of genotypes can be captured in a single image (Merlot et al., 2002). Aerial thermal 

images provide more rapid and accurate measurements of canopy temperature than ground-based 

images, and this method does not also interfere with stomatal responses (Jones et al., 2009; 

Guilioni et al., 2008). Therefore, CT can be used as a selection criterion to screen genotypic 

variation in stomatal conductance in a breeding program under drought stress conditions. 

Infrared thermography has been effective in evaluating drought in different crops including 

soybean and cotton (Gossypium hirsutum L.) (O’Sgaughnessy et al., 2011), and maize (Zea mays 

L.) (Zia et al., 2011).  

Canopy temperature is a complex and multi-genic trait that interacts with the 

environment (Blum, 2011). Complexity is mainly due to segregation of alleles at many 

chromosomal regions, each with small additive effect, and their interaction with other alleles and 

with the environment (Tuberosa et al., 2007). Dissection of genetic control of CT can identify the 

loci controlling CT variation and can be used to improve crop productivity by selecting and 
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pyramiding those favorable loci into elite cultivars (Blum, 2005). The identification of QTLs is 

one way to dissect the genetic control associated with CT (Dixit et al., 2014). 

Advancement in high-throughput genotyping and sequencing technologies provides fast 

and low-cost molecular markers, particularly single nucleotide polymorphisms (SNPs) (Syvanen, 

2005). Genome-wide association studies (GWAS) are an alternative approach to linkage 

mapping of bi-parental populations and can provide high mapping resolution for complex trait 

variation (Nordborg and Tavare, 2002; Risch and Merikangas, 1996). GWAS are based on 

linkage disequilibrium (LD), due to non-random association of alleles between genetic loci 

across the genome (Zhu et al., 2008). The detection of QTL through GWAS depends on the level 

of LD between functional loci and markers. In soybean, several GWAS have been reported that 

identified chromosomal regions associated with seed protein and oil concentrations (Hwang et 

al., 2014), carotenoids (Dhanapal et al., 2015a), δ13C ratio (Dhanapal et al., 2015b), agronomic 

traits (Wen et al., 2014), ureide concentrations (Ray et al., 2015), and the fraction of N derived 

from the atmosphere (Dhanapal et al., 2015c). The GWAS in soybean are likely to increase due 

to recent genotyping of more than 19,000 accessions of the USDA-ARS Soybean Germplasm 

collection that provided approximating 50,000 SNP markers (Song et al., 2013), which are 

available at Soybase (www.soybase.org). 

To date, there has been no report of mapping CT either in bi-parental populations or 

GWAS in soybean. However, there are mapping studies of CT in other crop species including 

wheat (Triticum aestivum L.; Rebetzke et al., 2013), rice (Oryza sativa L.; Liu et al., 2005) and 

maize (Zea mays L.; Liu et al., 2011). In this research, a set of 31,260 polymorphic SNPs were 

used for GWAS. Our objectives of this research were to use association mapping to explore the 

http://www.soybase.org/
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genotypic variation of CT in a panel of 345 diverse MG IV accessions, to identify the significant 

SNPs associated with CT, and identify extreme genotypes for CT.  

  



168 
 

Materials and Methods 

Field Experiments 

A panel of 373 MG IV soybean accessions was evaluated in three environments 

including the Pine Tree Research Station, AR (35°7’N, 90°55’W) in 2016 (PT16), Rohwer 

Research Station, AR (33°48’N, 91°17’W) in 2016 (RH16), and Salina, KS (38°70’N, 97°60’W) 

in 2016 (SA16). These accessions were selected from the USDA-ARS Soybean Germplasm 

Collection based on GRIN (Germplasm Resources Information Network, www.ars-grin.gov) 

data. Genotypes were selected for geographic diversity and for having fairly acceptable 

agronomic traits for yield, lodging, and shattering as discussed by Dhanapal et al., (2015b). 

These diverse accessions originated from 10 different nations including South Korea, China, 

Japan, North Korea, Georgia, Russia, Taiwan, India, Mexico and Romania. 

The 345 accessions were grown in a randomized complete block design with two 

replications at each environment. These accessions were sown on May 23rd, 2016 at RH16 on a 

Sharkey silty clay, June 2nd, 2016 at PT16 on a Calloway silt loam, and June 15, 2016 at SA16 

on a Hord silt loam. Seeds were planted at a density of 37 m-2 at a depth of 2.5 cm. At SA16, 

there were two-row plots that were 3.65 m in length with 0.76 m row spacing. At PT16 and 

RH16, plots consisted of seven rows, 19-cm apart and 4.57 m in length. Herbicides and 

insecticides were applied as recommended to control weeds and insects. 

Soil water deficit was estimated for each environment from the day of planting as 

described by Purcell et al., (2007). The Penman-Monteith approach was used to determine 

potential evapotranspiration (Eto) for a given day (Allen et al., 1998), and Eto was multiplied by 

the estimated fraction of radiation intercepted by the crop for that day, which served as a crop 

https://aaes.uark.edu/research-locations/pinetree.aspx
http://www.ars-grin.gov/
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coefficient (equivalent to canopy coverage). Estimated soil-water deficits were cumulated and 

adjusted with rainfall additions as needed. 

Canopy Temperature Evaluation 

Aerial thermal infra-red image analysis was implemented to evaluate the CT. At PT16 

and RH16, a tethered balloon, which was approximately 2 m in diameter with a lifting capacity 

of 1.5 kg when filled with helium (www.giant-inflatables.com), was used as an aerial platform to 

take infrared images from a height of approximately 75 m when wind speed was ≤ 2 m s-1. A 

thermal infrared camera, FLIR Tau 2 640 (FLIR, Goleta CA) with 640 x 512 resolution with a 13 

mm lens, collected data for wavelengths from 7.5 to 13.5 µm. This camera is small and light 

weight (110 g) with a Noise Equivalent Differential Temperature (NEdT) less than 50 mK at 

f/1.0 with FLIR proprietary noise reduction. The video was recorded using a digital video 

recorder (www.foxtechfpv.com, model DV02) that was mounted on a picavet 

(http://www.armadale.org.uk/kitebasic.htm), which reduced the motion of the camera when 

suspended from the balloon. Images were evaluated based on the 256 different shades of gray 

values that differed by approximately 0.05 oC (i.e., 50 mK), with a range of approximate 12.8 oC 

(256 *0.05 °C) at a specific focal plane temperature. Due to high sensitivity, the FLIR Tau 2 640 

can detect small differences in temperature, but does not provide absolute temperature values. 

Aerial canopy temperature at Salina was measured on August 16th at 3:00 p.m. using a 

DJI S1000 octocopter outfitted with a FLIR VUE Pro R (FLIR, Goleta CA) with a 13 mm lens 

and 640 x 512 resolution that recorded wavelengths from 7.5 to 13.5 µm.  The FLIR VUE Pro R 

was recorded 14-bit TIFF images in one second intervals and tagged images with GPS location 

using the GPS onboard the DJI S1000.  Flight was conducted using autonomous flight mode with 

altitude set to 120 meters above ground level, 85 % side overlap for flight lines, and a forward 

http://www.giant-inflatables.com/
http://www.armadale.org.uk/kitebasic.htm
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flight speed of 4 m s-1.  Ground control points were established at the corners of and throughout 

the study area using tiles approximately 1 m2 to ensure accurate extraction of plot-level canopy 

temperature measured in brightness values.  Plot thermal brightness values were extracted from 

each plot using ArcMAP 10.5 (ESRI 2017. ArcGIS Desktop: Release 10.5 Redlands, CA: 

Environmental Systems Research Institute). 

Because canopy temperature was measured differently at SA16, data were normalized for 

all environments on a scale from 0 to 1. Normalized CT (nCT) were calculated as: 

𝑛𝐶𝑇 =  
𝑥𝑖 −min(𝑥)

max(𝑥)−min (𝑥) 
, 

where 𝑥𝑖  represents the ith  CT measurement in environment X and min(x) and max(x) represent 

the minimum and maximum CT values for environment X, respectively.  

Phenotype Statistics 

Descriptive statistics and Pearson correlation analysis for nCT were performed using the 

PROC UNIVARIATE and PROC CORR procedures (α = 0.05) of SAS version 9.4 (SAS, 

Institute, 2013), respectively. Genotype was treated as a fixed effect and replication within the 

environment was considered as a random effect. Analysis of variance (ANOVA) was conducted 

using the PROC MIXED procedure (α = 0.05) of SAS 9.4, based on a model as suggested by 

Bondari (2003), 𝑦𝑖𝑗𝑘 =  𝜇 +  𝐺𝑖 + 𝐸𝑗 + (𝐺𝐸)𝑖𝑗 +  𝐵𝑘(𝑖𝑗) +  𝜀𝑖𝑗𝑘, where 𝜇 is the total mean, 𝐺𝑖 is 

the genotypic effect of the 𝑖𝑡ℎ genotype, 𝐸𝑗 is the effect of the 𝑗𝑡ℎ environment, (𝐺𝐸)𝑖𝑗 is the 

interaction effect between the 𝑖𝑡ℎ genotype and the 𝑗𝑡ℎ environment,  𝐵𝑘(𝑖𝑗) is the effect of  

replication within the 𝑗𝑡ℎ environment, and 𝜀𝑖𝑗𝑘 is a random error following 𝑁(0, 𝜎𝑒
2).  

On an entry-mean basis, broad sense heritability was calculated as 𝐻2 =  𝜎𝐺
2 / (𝜎𝐺

2 +

(
𝜎𝐺𝐸

2

𝑘
) + (

𝜎𝜀
2

𝑟𝑘
)), where 𝜎𝐺

2 is the genotypic variance, 𝜎𝐺𝐸
2  is the genotype by environment variance, 
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𝜎𝜀
2 is the residual variance, k is the number of environments, and r is the number of replications. 

These variance components were estimated using the PROC VARCOMP procedure of SAS 9.4 

with the REML method (Restricted Maximum Likelihood Estimation). The Best Linear 

Unbiased Prediction (BLUP) values for each independent environment and across all 

environments were estimated by using R package “lme4”, and were used in GWAS analysis. 

Genotyping 

The Illumina Infinium SoySNP50K iSelect SNP Beadchip provided 42,509 SNPs for the 

345 genotypes used in this experiment (www.soybase.org ). Markers with monomorphism, with 

minor allele frequency (MAF) < 5 %, and with a missing rate larger than 10% were excluded, 

leaving 31,260 SNPs for further analysis. Imputation of remaining missing SNPs of the 31,260 

SNPs used in the analysis was applied using a LD-kNNi method, which is based on a k-nearest-

neighbor-genotype (Money et al., 2015). These 31,260 polymorphic SNPs were then used for 

association testing to identify SNPs significantly associated with nCT.  

Genome-wide Association Analysis 

Association analysis using a diverse population can induce false positive due to 

population stratification. A mixed linear model (MLM) is most commonly used to reduce false 

positives by incorporating the family relatedness and population structure in the model (Yu et al., 

2006; Zhang et al., 2010). However, these adjustments also compromise true positive 

associations. (Liu et al., 2016). Previously, we reported that the Fixed and random model 

Circulating Probability Unification (FarmCPU), developed by Liu et al., (2016), effectively 

controlled both false positives and false negatives (Kaler et al., 2017), and this model was used 

in the present research. A threshold value (-Log10(P) ≥ 3.5), which is equivalent to a P-value ≤ 

0.0003, was used to declare a significant association of SNPs with nCT. This threshold level is 

http://www.soybase.org/


172 
 

more stringent than that reported in other soybean GWAS studies (Dhanapal et al., 2015a and 

2015b; Hao et al., 2012; Hwang et al., 2014; Zhang et al., 2015). Significant SNPs present in 

more than one environment were identified using a threshold value of P ≤ 0.05 but only those 

SNPs were considered as common when they had an association of P ≤ 0.0003 in a second 

environment. 

Extreme Genotypes Identification 

Extreme genotypes for nCT were selected based on the genetic merit of the genotypes. A 

genetic merit for each accession was determined using genomic estimated breeding values 

(GEBVs), which utilizes a genomic-relationship matrix and phenotype data (Clark and Werf, 

2013; Zhang et al., 2007) and breeding values for genotypes. The GEBVs were estimated using 

Efficient Mixed Model Association (EMMA) algorithms in “sommer” R package (Covarrubias-

Pazaran, 2016). Allelic effects of all significant SNPs were used to calculate the breeding value 

of each accession. Allelic effects were calculated by taking a difference in mean nCT between 

genotypes with major allele and minor allele. Alleles from major and minor were considered as 

favorable if they were associated with a reduction in the nCT. To estimate the true breeding 

value (TBV) for each accession, the absolute value of the allelic effect of each significant SNP 

was considered as a negative value if an accession had a favorable allele of a significant SNP at 

that location (that is, if the allelic effect decreased nCT). Otherwise, if the allelic effect was 

unfavorable (i.e., increased nCT), the allelic effect for a SNP was considered as a positive value. 

All positives and negatives allelic values were summed to estimate the breeding value of each 

accession.  
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Candidate Gene Identification 

All significant SNPs at level of -Log10(P) ≥ 3.5 were used to identify candidate genes for 

each environment and across all environments. Candidate genes, their associated functional 

annotation, and biological function were identified using Glyma1.1, Glyma1.0 and NCBI RefSeq 

gene models in Soybase (www.soybase.org) with consideration for those that may have direct 

association with CT, transpiration, and water transport.  

  

http://www.soybase.org/


174 
 

Results 

Phenotype Descriptions  

Measurements of canopy coverage were made on 345 MG IV soybean accessions for 

three environments including, SA16, RH16, and PT16. Environmental conditions including solar 

radiation, maximum and minimum temperature, and daily rainfall were collected at each 

environment. During the day of measurement, maximum and minimum temperature was 34 0C 

and 23 0C at PT16, 35 0C and 24 0C at RH16, and 34 0C and 26 0C at SA16, respectively. On the 

measurement date, photosynthetically active radiation was 26.2 MJ m-2 at PT16, 27.8 MJ m-2 at 

RH16, and 29.5 MJ m-2 at SA16. Prior to CT measurement, there had been no rainfall for 13 days 

at PT16, 19 days at RH16, and 9 days at SA16. This resulted in an estimated soil moisture deficit 

exceeding 52 mm at RH16, 60 mm at PT16, and 50 at SA16. Irrigation is recommended at 35 

mm for silt loam soils (PT16, SA16) and 50 mm for clay soils (RH16) (Purcell et al., 2007); 

hence, there was considerable drought at all locations on the measurement days. 

Canopy temperature was normalized in the range [0, 1] so that data have the same scale 

for each environment. There was a broad range of nCT within each environment, indicating wide 

phenotypic variation. Table 5_1a showed that nCT data were normally distributed for each 

environment and when averaged across environments. BLUP values of nCT for each 

environment and averaged across all environments were calculated to reduce the effect of 

extreme values. These BLUPs were also normally distributed but had less variation than 

phenotypic values (Table 5_1b). Analysis of variance indicated that genotype, environment, and 

their interaction had significant effects (P ≤ 0.05) on nCT (data not shown). There was a weak 

significant positive correlation for nCT between SA16 and PT16 (r = 0.13); however, there was 

no significant correlation for nCT between SA16 and RH16 or between PT16 and RH16. Broad 
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sense heritability of nCT was 45% for PT16, 55% for RH16, 26% for SA16, and 19% for across 

all environments. 

The GEBVs were estimated using a genomic-relationship matrix and phenotypic data of 

345 accessions. The 345 accessions were ranked from lowest to highest based on the average 

GEBVs of nCT across all environments (Table 5_1). Based on the average GEBV ranking, the 

15 accessions with lowest GEBV for nCT and 15 accessions with highest GEBV for nCT were 

selected. Cooler-CT accessions had large negative TBVs (-2.33 to -0.08) associated with reduced 

nCT, and in contrast, warmer nCT accessions had large positive TBVs (1.65 to 3.02) associated 

with increased with nCT (Table 5_1). One extreme, PI 592940 that had large negative GEBV (-

0.09), had relatively cooler nCT (0.35) and large negative TBV (-1.27) (Table 5_1). In contrast, 

PI 398640 had a large positive GEBV (0.06), relatively warmer nCT (0.64), and large positive 

TBV (2.64) (Table 5_1). The 15 accessions with lowest GEBVs and cooler nCT averaged across 

all environments were from China (9 accessions), South Korea (2 accessions), and one each from 

Mexico, North Korea, Japan, and Georgia (Table 5_2).  The 15 accessions with the highest 

GEBVs and warmer nCT averaged across all environments were from South Korea (11 

accessions), Japan (3 accessions), and Georgia (1 accession) (Table 5_2).  

Genome-wide association analysis 

Association mapping of nCT identified 52 significant SNPs in three environments 

associated with BLUP values of nCT at a significance level of -Log10(P) ≥ 3.5; P ≤ 0.0003 

(Table 5_3). Out of 52 SNPs, four SNPs were present in more than one environment. Significant 

SNPs that were closely spaced and present within the same LD block, were considered as one 

locus, and out of the 52 significant SNPs identified across environments, there were 34 putative 

loci (Table 5_2). Two putative loci on Gm03 and Gm04 were identified by four closely spaced 
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SNPs; three putative loci on Gm14, Gm15, and Gm18 were identified by three closely spaced 

SNPs; six putative loci on Gm02, Gm03, Gm04, Gm07, Gm08, and Gm14 were identified by 

two closely-spaced SNPs. The remaining loci were identified by one SNP (Table 5_2). The 

allelic effect (difference in mean nCT between genotypes with major allele and minor allele) for 

these significant SNPs ranged from -6.0 to 15.5 (Table 5_2). A positive sign of allelic effect 

indicates that the minor allele was favorable and associated with reduced nCT, and a negative 

sign indicates that the major allele was favorable and associated with reduced nCT.  

Association analysis of nCT averaged across all environments (AAE) identified eight 

significant SNP associations at -Log10 (P) ≥ 3.5; P ≤ 0.0003 (Table 5_2).  Out of these eight 

SNPs, three significant SNPs were common to the 52 significant SNPs identified in the four 

individual environments (Table 5_2). These SNPs likely tagged eight different loci (Table 5_2). 

The allelic effect (difference in mean nCT between genotypes with major allele and minor allele) 

of nCT for these SNPs ranged from -1.45 to 8.57 (Table 5_2). The list of 52 significant SNPs in 

three environments and eight significant SNPs averaged across environments, their 

corresponding MAF, major or minor allele, allelic effect, and common environments are listed in 

Table 5_2.  

Candidate Gene Identification 

A total of 52 significant SNPs associated with nCT from three environments and eight 

identified SNPs for AAE were used to identify the potential genes within ± 10 kb of the 

respective SNPs in Soybase (www.soybase.org) using gene models including Glyma1.1, 

Glyma1.0 and NCBI RefSeq.  Based on these significant SNPs, 52 genes for SNPs identified 

from three environments and eight genes for SNPs identified for AAE were identified. A list of 

closely located SNP ID, gene symbols, their associated functional annotation, and biological 

http://www.soybase.org/
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function are reported in Table 5_3. Based on this identification, 23 significant SNPs out of 52 

and three significant SNPs out of eight for AAE were located within genes, and the remaining 

SNPs were present within ± 10 kb of the genes on genomic regions. Genes potentially associated 

with nCT included annotated biological function for root hair elongation, root development, 

response to abscisic acid stimulus and water deprivation, stomatal complex morphogenesis, and 

signal transduction (Table 5_3).    
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Discussion 

In this research, a panel of 345 MG IV soybean accessions were evaluated for nCT in 

three environments. There was wide phenotypic variation within each environment for nCT and 

this variation was important for dissecting complex traits through association mapping 

(McCarthy et al., 2008). The 15 accessions with cooler nCT in ranking also had considerably 

lower GEBVs (-0.09) and large negative TBVs (-2.33, Table 5_1). In contrast, the 15 accessions 

with warmer nCT in ranking had considerably higher GEBVs (0.06) and large TBVs (3.02, 

Table 5_1).  

Extreme genotypes were selected using TBVs and GEBVs of nCT and these genotypes 

were also extremes for canopy wilting (Kaler et al., 2017). In addition to CT measurement, we 

also rated canopy wilting (CW) at each of these experiments using a scale from 0 (no wilting) to 

100 (severe wilting with dead plants). There was a significant positive correlation between CW 

and nCT when phenotypic data were averaged over environments (r = 0.25). The correlation 

coefficient between CW and nCT increased when using GEBV (r = 0.35) and TBV (r = 0.47). 

One genotype, PI 592940, had relatively cooler nCT (0.35), lowest GEBV (-0.09), and a large 

negative TBV (-1.27), and this genotype also had slowest canopy wilting and lowest GEBV (-

5.53) for canopy wilting (Table 5_1; Table 5_2). On the other extreme, PI 398640 had warmer 

nCT (0.64), large GEBV for nCT (0.06), and large TBV (2.94); this accession also had a high 

canopy wilting score with highest GEBV (4.72) (Table 5_1; Table 5_2). The genotypes with low 

average nCT represent new genetic sources for the cool-canopy temperature trait with potential 

alternative alleles or different mechanisms to achieve cool canopy temperature.  

Out of 52 significant SNPs associated with nCT, there were 44 SNPs that had minor 

alleles associated with a decrease in the nCT (positive sign of allelic effect indicates that minor 
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allele was associated with a decrease in the CT) (Table 5_2). There was a SNP on Gm08 with a 

minor allele, that had the largest positive allelic effect (15.50), and that was present within the 

coding region of a gene, Glyma08g45425. This gene codes a eukaryotic translation initiation 

factor (4 GAMMA protein) that has a biological function associated with the response to abscisic 

acid stimulus (www.soybase.com, Table 5_3). Eight SNPs out of 52 had a major allele that was 

associated with reduction in nCT (Table 5_2). A SNP with the major allele on Gm01 was 

associated with the largest reduction in nCT (-6.00). This SNP was present within the coding 

region of Glyma01g29615, which has a leucine rich repeat protein and has a biological function 

involved with stomatal complex morphogenesis (Table 5_3). Out of eight significant SNPs for 

AAE, six of the SNPs with the minor allele were associated decreased nCT. While two SNPs 

with the major allele were associated with decreased in nCT (Table 5_2). Based on the reported 

biological functions from Soybase, SNPs from GWAS identified genes with functions including 

root hair elongation, root development response to abscisic acid stimulus and water deprivation, 

stomatal complex morphogenesis, and signal transduction.  

There has been no previous study of QTL mapping in soybean for nCT, although there 

have been several reports mapping QTLs for delayed wilting in soybean (Abdel-Haleem et al., 

2012; Charlson et al., 2009; Du et al., 2009; Hwang et al., 2016). Previously, Kaler et al., (2017) 

described the genomic regions that were associated with canopy wilting variation in the same 

GWAS panel reported in the present research. The genomic regions associated with canopy 

wilting were compared with SNPs associated with nCT to see if they are located at the same 

chromosomal regions (Table 5_4). In this study, there were 15 chromosomal regions on Gm01, 

Gm02, Gm04 (2), Gm07 (2) Gm08, Gm09 (2), Gm14, Gm16, Gm17, and Gm18 where loci of 

canopy wilting and nCT were coincident (Table 5_4). These regions contain genes that have 

http://www.soybase.com/
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annotated functions associated with crop water balance including stomatal complex 

morphogenesis, ABA stimulus, root hair elongation, and root developmental (Table 5_3). These 

loci, where chromosomal regions for nCT and canopy wilting were coincident, may indicate the 

stability and importance of these loci for improving drought tolerance and may highlight these 

regions of genome for further investigations. 
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Conclusions 

This research used the high-density marker data of 31,260 SNPs with MAF ≥ 5 % to 

explore nCT variation in soybean with GWAS. There were 52 significant SNPs associated with 

nCT variation from three environments and eight significant SNPs associated with nCT averaged 

across all environments at a significance level of -Log10(P) ≥ 3.5. These 52 SNP-nCT 

associations likely tagged 34 different loci. Out of 52 SNPs, four were present in more than one 

environment. Based on the breeding values and GEBVs of accessions, PI 592940 was the 

genotype that ranked very low for nCT and slow canopy wilting compared to other genotypes. 

Genomic regions for nCT with regions for canopy wilting variation were coincident at 15 

chromosomal regions. Several genotypes were identified as potential donors for alleles leading to 

cool canopies and delayed wilting during drought. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table 5_1. The 15 accessions with the lowest and highest ranking for canopy temperature (CT) based on average genomic estimated 

breeding values (GEBVs) of averaged normalized canopy temperature (nCT) across all environments (AAE). 

 Accession Province Country AAE TBV† GEBVs Rank CW§ 

Cooler Canopy Temperature                 

 PI 592940 Sichuan China 0.35 -1.27 -0.09 1 -5.53 

 PI 567620B Henan China 0.42 -1.94 -0.09 2 -4.89 

 PI 592937 Sichuan China 0.33 -2.27 -0.09 3 -8.94 

 PI 602501 Jiangsu China 0.36 -2.33 -0.08 4 -6.77 

 PI 432359 Jalisco Mexico 0.35 -0.66 -0.08 5 -3.82 

 PI 603174A unknown North Korea 0.38 -1.23 -0.08 6 0.24 

 PI 424405B Cholla Puk South Korea 0.31 -0.63 -0.08 7 -4.93 

 PI 424159B Kyongsang Puk South Korea 0.35 -1.33 -0.08 8 -4.56 

 PI 404167 unknown China 0.53 -1.04 -0.08 9 -4.07 

 PI 567540A Shandong China 0.32 -2.29 -0.08 10 -5.12 

 PI 567500 Hebei China 0.37 -1.98 -0.07 12 -3.85 

 PI 417278 Unknown Japan 0.51 -1.98 -0.07 11 -3.84 

 PI 603543B Shanxi China 0.42 -0.20 -0.07 13 -8.84 

 PI 407735 Beijing China 0.35 -1.32 -0.07 14 -6.69 

 PI 567201D unknown Georgia 0.46 -0.08 -0.07 15 -5.31 

Warmer Canopy Temperature                 

 PI 398772 Chungchong Nam South Korea 0.68 2.76 0.04 331 -0.69 

 PI 423890C Akita Japan 0.63 2.72 0.04 332 15.12 

 PI 423888 Akita Japan 0.63 1.65 0.04 333 9.90 

 PI 398298 Kyonggi South Korea 0.55 2.79 0.04 334 -2.17 

 PI 424381 Chungchong Puk South Korea 0.58 2.88 0.04 335 13.80 

 PI 442012B Kyonggi South Korea 0.63 3.02 0.04 336 12.90 

 PI 404159 unknown Georgia 0.68 2.72 0.05 337 15.36 

 PI 424549A Kyongsang Puk South Korea 0.71 2.79 0.05 338 -1.92 

 PI 423796B Kangwon South Korea 0.65 3.02 0.05 339 -1.67 

 PI 399036 Kyongsang Nam South Korea 0.64 3.02 0.05 340 7.91 

 PI 424435 Cholla Nam South Korea 0.66 2.63 0.05 342 5.17 
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Table 5_1. (Cont.)         

 Accession Province Country AAE TBV† GEBVs Rank CW§ 

Cooler Canopy Temperature                 

 PI 398939 Cholla Puk South Korea 0.60 2.63 0.05 341 5.18 

 PI 274423 Miyagi Japan 0.58 2.63 0.05 343 5.20 

 PI 424263 Kangwon South Korea 0.64 3.02 0.06 344 -1.97 

  PI 398640 Chungchong Puk South Korea 0.64 2.94 0.06 345 4.72 

† TBV: True Breeding Values 

§ CW: Genomic estimated breeding values for canopy wilting 
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Table 5_2. List of significant SNPs associated with normalized canopy temperature (nCT) in three environments, Pine Tree in 2016 

(PT09), Rohwer in 2016 (RH16), and Salina in 2016 (SA16) using the FarmCPU model with threshold P value of (-Log10(P) ≥ 3.5; P 

≤ 0.0003). 

  Locus CHR† Location SNP_ID Allele§ -Log10 (P) 
Allele 

Effect⁋ 
ENV 

Common 

ENV⁋⁋ 

Single ENV                 

 1 1 32,846,138 BARC_1.01_Gm_01_32846138_A_G A/G 4.30 0.079 RH16  

 2 1 39,939,520 BARC_1.01_Gm_01_39939520_A_G A/G 10.60 -0.070 PT16  

 3 2 9,744,668 BARC_1.01_Gm_02_9744668_T_C T/C 4.30 0.060 RH16  

  2 9,776,807 BARC_1.01_Gm_02_9776807_G_A G/A 4.80 0.066 RH16  

 4 3 164,959 BARC_1.01_Gm_03_164959_T_G T/G 5.20 0.074 RH16  

  3 168,228 BARC_1.01_Gm_03_168228_A_G A/G 4.30 0.063 RH16  

 5 3 2,456,859 BARC_1.01_Gm_03_2456859_A_G G/A 3.50 -0.028 SA16  

 6 3 3,827,087 BARC_1.01_Gm_03_3827087_G_A A/G 7.10 0.102 PT16  

 7 3 4,957,847 BARC_1.01_Gm_03_4957847_T_G G/T 4.50 -0.010 SA16  

 8 3 40,278,033 BARC_1.01_Gm_03_40278033_G_A G/A 4.40 0.081 RH16  

  3 40,466,433 BARC_1.01_Gm_03_40466433_C_T C/T 4.60 0.082 RH16  

  3 40,467,180 BARC_1.01_Gm_03_40467180_G_A G/A 4.60 0.082 RH16  

  3 40,516,071 BARC_1.01_Gm_03_40516071_A_G A/G 4.30 0.080 RH16  

 9 4 7,957,588 BARC_1.01_Gm_04_7957588_G_T T/G 4.30 0.060 RH16  

  4 8,017,920 BARC_1.01_Gm_04_8017920_T_C C/T 4.30 0.062 RH16  

  4 8,019,074 BARC_1.01_Gm_04_8019074_G_A A/G 4.90 0.065 RH16  

  4 8,023,658 BARC_1.01_Gm_04_8023658_C_T T/C 4.30 0.062 RH16  

 10 4 43,390,997 BARC_1.01_Gm_04_43390997_A_C C/A 4.00 -0.005 PT16  

 11 4 46,083,177 BARC_1.01_Gm_04_46083177_C_T T/C 4.60 0.059 RH16  

  4 46,086,046 BARC_1.01_Gm_04_46086046_G_A A/G 4.60 0.059 RH16  

 12 6 12,426,395 BARC_1.01_Gm_06_12426395_T_G G/T 3.50 0.021 SA16  

 13 7 3,234,327 BARC_1.01_Gm_07_3234327_T_G G/T 4.00 0.113 SA16  

  7 3,851,184 BARC_1.01_Gm_07_3851184_A_G A/G 6.00 0.120 PT16  

 14 7 7,536,244 BARC_1.01_Gm_07_7536244_C_A C/A 4.40 0.112 RH16  

 15 8 45,270,892 BARC_1.01_Gm_08_45270892_A_G G/A 3.80 0.013 PT16  
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Table 5_2. (Cont.)          

  Locus CHR† Location SNP_ID Allele§ -Log10 (P) 
Allele 

Effect⁋ 
ENV 

Common 

ENV⁋⁋ 

Single ENV                 

  8 45,671,888 BARC_1.01_Gm_08_45671888_A_C C/A 4.00 0.161 SA16  

 16 9 5,057,308 BARC_1.01_Gm_09_5057308_C_T T/C 4.00 0.019 PT16 PT16/RH16 

 17 9 40,407,114 BARC_1.01_Gm_09_40407114_C_T T/C 4.40 0.013 SA16  

 18 9 43,595,722 BARC_1.01_Gm_09_43595722_A_G A/G 4.10 0.038 PT16  

 19 10 38,249,878 BARC_1.01_Gm_10_38249878_T_G G/T 4.20 0.062 RH16  

 20 10 41,100,669 BARC_1.01_Gm_10_41100669_A_G G/A 4.40 0.069 RH16  

 21 11 7,251,966 BARC_1.01_Gm_11_7251966_C_T T/C 6.80 0.097 PT16  

 22 11 36,244,289 BARC_1.01_Gm_11_36244289_A_G A/G 4.20 0.008 PT16 PT16/RH16 

 

23 14 2,221,273 BARC_1.01_Gm_14_2221273_T_C T/C 4.60 0.059 RH16  

  14 2,311,158 BARC_1.01_Gm_14_2311158_G_A G/A 5.00 0.067 RH16  

 24 14 4,064,786 BARC_1.01_Gm_14_4064786_C_T C/T 4.80 0.067 RH16  

  14 4,430,386 BARC_1.01_Gm_14_4430386_G_T G/T 5.20 0.084 RH16  

  14 4,853,955 BARC_1.01_Gm_14_4853955_A_G G/A 4.30 -0.041 PT16  

 25 14 7,052,209 BARC_1.01_Gm_14_7052209_A_G A/G 5.50 -0.068 PT16  

 26 14 47,305,241 BARC_1.01_Gm_14_47305241_T_G T/G 5.70 0.035 SA16  

 27 15 15,726,428 BARC_1.01_Gm_15_15726428_C_T T/C 5.50 0.090 RH16 RH16/PT16 

  15 15,729,124 BARC_1.01_Gm_15_15729124_T_C C/T 5.50 0.090 RH16 RH16/PT16 

  15 15,742,691 BARC_1.01_Gm_15_15742691_C_A A/C 4.20 0.081 RH16  

 28 16 35,807,551 BARC_1.01_Gm_16_35807551_G_A G/A 4.50 -0.033 SA16  

 29 17 11,546,048 BARC_1.01_Gm_17_11546048_A_G A/G 5.50 0.019 PT16  

 30 17 38,712,454 BARC_1.01_Gm_17_38712454_G_A A/G 4.90 0.096 PT16  

 31 18 11,947,921 BARC_1.01_Gm_18_11947921_C_T C/T 5.20 0.107 RH16  

 32 18 13,037,246 BARC_1.01_Gm_18_13037246_G_A G/A 4.20 0.088 RH16  

  18 13,041,332 BARC_1.01_Gm_18_13041332_G_A G/A 4.20 0.088 RH16  

  18 13,117,752 BARC_1.01_Gm_18_13117752_G_T G/T 4.30 0.088 RH16  

 33 18 46,218,075 BARC_1.01_Gm_18_46218075_G_A A/G 4.20 0.059 RH16  

  34 18 60,748,254 BARC_1.01_Gm_18_60748254_C_T C/T 5.30 -0.053 PT16   
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Table 5_2. (Cont.)          

  Locus CHR† Location SNP_ID Allele§ -Log10 (P) 
Allele 

Effect⁋ 
ENV 

Common 

ENV⁋⁋ 

AAE                   

 1 1 4,720,160 BARC_1.01_Gm_01_4720160_C_T C/T 7.30 0.074 AEE  

 2 3 3,497,393 BARC_1.01_Gm_03_3497393_A_C C/A 4.60 -0.014 AEE  

 3 4 8,019,074 BARC_1.01_Gm_04_8019074_G_A A/G 10.60 0.052 AEE  

 4 7 43,182,856 BARC_1.01_Gm_07_43182856_G_A G/A 6.70 0.013 AEE  

 5 13 24,858,209 BARC_1.01_Gm_13_24858209_A_G A/G 4.30 0.000 AEE  

 6 13 34,845,629 BARC_1.01_Gm_13_34845629_A_G G/A 3.50 0.095 AEE  

 7 15 15,729,124 BARC_1.01_Gm_15_15729124_T_C C/T 5.20 0.074 AEE  
  8 18 13,037,246 BARC_1.01_Gm_18_13037246_G_A G/A 4.00 0.078 AEE   

† CHR: Glycine max chromosome number. 

§ Allele: Major/Minor alleles of Single Nucleotide Polymorphism. 

‡ MAF: Minor allele frequency. 

⁋ Allelic effect: Difference in mean nCT between genotypes with major allele and minor allele. Negative sign indicates that major 

allele is associated with reduced nCT. Positive sign indicates that minor allele is associated with reduced CT. 

⁋⁋ Common ENV: Indicates that SNP is present in more than one environment. Highlighted area represents the common environment. 
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Table 5_3. List of significant SNPs associated with normalized canopy temperature (nCT) and potential genes based on 52 identified 

SNPs from three environments and eight identify SNPs for nCT averaged across all environment (AAE) from Soybase. Highlighted 

areas represent that identified SNPs were located within genes. 

  Locus SNP_ID Gene Symbol Functional Annotations (Biological function) 

Single 

Environment         

 1 BARC_1.01_Gm_01_32846138_A_G Glyma01g24915 

NAD(P)-linked oxidoreductase superfamily protein (response to water 

deprivation) 

 2 BARC_1.01_Gm_01_39939520_A_G Glyma01g29615 Leucine Rich Repeat (stomatal complex morphogenesis) 

 3 BARC_1.01_Gm_02_9744668_T_C Glyma02g11540 Ribosomal protein S9 (translation) 

  BARC_1.01_Gm_02_9776807_G_A Glyma02g11586 WDSAM1 protein (ubiquitination) 

 4 BARC_1.01_Gm_03_164959_T_G Glyma03g00370 RNA-Binding Protein 

  BARC_1.01_Gm_03_168228_A_G Glyma03g00380 Syringolide-induced protein 

 5 BARC_1.01_Gm_03_2456859_A_G Glyma03g02661 Uncharacterized protein 

 6 BARC_1.01_Gm_03_3827087_G_A Glyma03g03883 Topoisomerase-Related Protein (embryo development) 

 7 BARC_1.01_Gm_03_4957847_T_G Glyma03g04870 Peroxidase (response to oxidative stress) 

 8 BARC_1.01_Gm_03_40278033_G_A Glyma03g34990 Uncharacterized protein (cell differentiation) 

  BARC_1.01_Gm_03_40466433_C_T Glyma03g35166 Inosine-Uridine Preferring Nucleoside Hydrolase (uridine catabolic process) 

  BARC_1.01_Gm_03_40467180_G_A Glyma03g35166 Inosine-Uridine Preferring Nucleoside Hydrolase (uridine catabolic process) 

  BARC_1.01_Gm_03_40516071_A_G Glyma03g35230 Ribonuclease (aging) 

 9 BARC_1.01_Gm_04_7957588_G_T Glyma04g09600 Aryl-Alcohol Dehydrogenase (oxidation-reduction process) 

  BARC_1.01_Gm_04_8017920_T_C Glyma04g09670 Rhamnogalacturonate lyase 

  BARC_1.01_Gm_04_8019074_G_A Glyma04g09670 Rhamnogalacturonate lyase 

  BARC_1.01_Gm_04_8023658_C_T Glyma04g09670 Rhamnogalacturonate lyase 

 10 BARC_1.01_Gm_04_43390997_A_C Glyma04g34195 ENOLASE (response to abscisic acid stimulus) 

 11 BARC_1.01_Gm_04_46083177_C_T Glyma04g36420 Ribonucleoprotein (leaf morphogenesis) 

   BARC_1.01_Gm_04_46086046_G_A Glyma04g36420 Ribonucleoprotein (leaf morphogenesis) 

 12 BARC_1.01_Gm_06_12426395_T_G Glyma06g15755 AAA-TYPE ATPase family protein (chloroplast organization) 

 13 BARC_1.01_Gm_07_3234327_T_G Glyma07g04430 GRAS family transcription factor (regulation of transcription) 

  BARC_1.01_Gm_07_3851184_A_G Glyma07g05145 Pectinesterase (cell wall modification) 

 14 BARC_1.01_Gm_07_7536244_C_A Glyma07g08985 2-Hydroxyacid Dehydrogenase (oxidation-reduction process) 

1
8
7
 



 
 

Table 5_3. (Cont.)     

  Locus SNP_ID Gene Symbol Functional Annotations (Biological function) 

Single 

Environment         

 15 BARC_1.01_Gm_08_45270892_A_G Glyma08g45050 Uncharacterized protein 

   BARC_1.01_Gm_08_45671888_A_C Glyma08g45425 

Eukaryotic Translation Initiation Factor 4 Gamma (response to abscisic acid 

stimulus) 

 16 BARC_1.01_Gm_09_5057308_C_T Glyma09g06250 Plasma membrane H+-ATPase (response to water deprivation) 

 17 BARC_1.01_Gm_09_40407114_C_T Glyma09g31070 Harpin-induced protein 1 (Hin1) (root hair elongation) 

 18 BARC_1.01_Gm_09_43595722_A_G Glyma09g34504 Domain of unknown function (DUF1995) (photosynthesis) 

 19 BARC_1.01_Gm_10_38249878_T_G Glyma10g28840 Serine-Type Peptidase Activity (response to hypoxia) 

 20 BARC_1.01_Gm_10_41100669_A_G Glyma10g32120 Uncharacterized protein 

 

21 BARC_1.01_Gm_11_7251966_C_T Glyma11g10130 Hexokinase (root hair cell development) 

 22 BARC_1.01_Gm_11_36244289_A_G Glyma11g36300 Uncharacterized protein 

 23 BARC_1.01_Gm_14_2221273_T_C Glyma14g03430 Pleckstrin homology (PH) domain-containing protein (signal transduction) 

   BARC_1.01_Gm_14_2311158_G_A Glyma14g03430 Pleckstrin homology (PH) domain-containing protein (signal transduction) 

 24 BARC_1.01_Gm_14_4064786_C_T Glyma14g03550 WD domain(gravitropism) 

   BARC_1.01_Gm_14_4430386_G_T Glyma14g06040 Temperature sensing protein-related (response to heat) 

  BARC_1.01_Gm_14_4853955_A_G Glyma14g06530 Cytochrome P450 (root hair elongation) 

 25 BARC_1.01_Gm_14_7052209_A_G Glyma14g08920 

Ca2+-independent phospholipase A2 (salicylic acid mediated signaling 

pathway) 

 26 BARC_1.01_Gm_14_47305241_T_G Glyma14g38800 ABC transporter (root development) 

 27 BARC_1.01_Gm_15_15726428_C_T Glyma15g18810 Lycopene cyclase protein (stomatal complex morphogenesis) 

   BARC_1.01_Gm_15_15729124_T_C Glyma15g18810 Lycopene cyclase protein (stomatal complex morphogenesis) 

   BARC_1.01_Gm_15_15742691_C_A Glyma15g18820 Serine/Threonine-protein Kinase 38 (protein phosphorylation) 

 28 BARC_1.01_Gm_16_35807551_G_A Glyma16g32121 

Ubiquitin carboxyl-terminal hydrolase family protein (lateral root 

morphogenesis) 

 29 BARC_1.01_Gm_17_11546048_A_G Glyma17g15090 Asparagine--tRNA ligase (chloroplast stroma organization) 

 30 BARC_1.01_Gm_17_38712454_G_A Glyma17g35060 Glycosyl hydrolase family 10(xylan biosynthetic process) 

 31 BARC_1.01_Gm_18_11947921_C_T Glyma18g12700 Transposase-like protein (plasmodesma organization) 

 32 BARC_1.01_Gm_18_13037246_G_A Glyma18g13456 Receptor-like protein kinase 1 (response to jasmonic acid stimulus) 

  BARC_1.01_Gm_18_13041332_G_A Glyma18g13456 Receptor-like protein kinase 1 (response to jasmonic acid stimulus) 

  BARC_1.01_Gm_18_13117752_G_T Glyma18g13586 MATE efflux family protein (response to jasmonic acid stimulus) 
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Table 5_3. (Cont.)     

 33 BARC_1.01_Gm_18_46218075_G_A Glyma18g41570 Endoplasmic reticulum protein ERp29(systemic acquired resistance) 

  34 BARC_1.01_Gm_18_60748254_C_T Glyma18g54070 

Microtubule associated protein (MAP65ASE1) (microtubule cytoskeleton 

organization) 

AAE         

  1 BARC_1.01_Gm_01_4720160_C_T Glyma01g05050 WRKY DNA -binding domain (defense response) 

 2 BARC_1.01_Gm_03_3497393_A_C Glyma03g03685 Ribosomal protein S2 (photosynthesis) 

 3 BARC_1.01_Gm_04_8019074_G_A Glyma04g09670 Rhamnogalacturonate lyase family 

 4 BARC_1.01_Gm_07_43182856_G_A Glyma07g38510 Glycogen synthase kinase-3 (signal transduction) 

 5 BARC_1.01_Gm_13_24858209_A_G Glyma13g19880 Adenylate kinase (root development) 

 6 BARC_1.01_Gm_13_34845629_A_G Glyma13g31200 Translation initiation factor 3 (translational initiation) 

 7 BARC_1.01_Gm_15_15729124_T_C Glyma15g18810 Lycopene cyclase protein (stomatal complex morphogenesis) 

  8 BARC_1.01_Gm_18_13037246_G_A Glyma18g13456 Receptor-like protein kinase 1 (response to jasmonic acid stimulus) 

†All genes are from the Glyma1.1 assembly (www.soybase.org).  
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Figure 5_1. Distribution of the canopy temperature (CT) for each of the three environments 

(Pine Tree 2016 (PT16), Rohwer 2016 (RH16), and Salina 2016(SA16) and average across all 

environments (AAE).  The normalized means (A), Best linear unbiased predictions (BLUPs) (B). 
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Figure 5_2. Distribution of average normalized canopy temperature (nCT) across all 

environments (a), genomic estimated breeding values (b), and true breeding values of accessions 

(c). Both extreme were selected based on the canopy wilting, PI 592940 was slowest wilting 

genotype and PI 398640 was fastest wilting genotype in our GWAS panel. 
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Figure 5_3. Manhattan plots of -Log10 (P) vs. chromosomal position of significant SNP 

associations of normalized canopy temperature (nCT) for three environments; (a) Pine Tree 

2016, (b) Rohwer 2016, (c) Salina 2016, and (d) averaged nCT across all environments (AAE) 

using the FarmCPU model. Red line represents the association threshold (-Log10 (P) ≥ 3.5; P ≤ 

0.0003). 
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Figure 5_4. Location of SNPs significantly associated with normalized canopy temperature 

(nCT) in three environments and across environments with identified significant SNPs for 

canopy wilting as described by Kaler et al. (2017). Yellow circle represents the genomic regions 

where canopy wilting and nCT were coincident 
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Drought stress is one of the most severe abiotic stressors, and it can cause a significant 

reduction in crop productivity in rain-fed areas. Demand for non-agricultural water uses are 

projected to increase with a fast-growing population. Expansion of the crop production area 

under irrigation makes water scarcity an even bigger problem. Thus, it is difficult to meet the 

challenge of world-wide food security with current technology. Developing drought-tolerant 

cultivars is a high priority for improving crop performance in water-scarce environments.  

Traditional breeding programs selecting for yield under drought have not been successful 

because of the lack of diversity among genotypes used in most programs and because of low 

heritability, polygenic control, epistasis, and genotype by environment interactions of yield. 

Physiological traits that are associated with drought tolerance can be used as a source for novel 

alleles that can be incorporated into elite germplasm to improve performance in limited water 

environments. 

In this research, five physiological traits associated with drought tolerance were 

evaluated: carbon isotope ratio (𝛿13C, associated with water use efficiency), oxygen isotope ratio 

(𝛿18O, associated with transpiration), canopy temperature (CT), canopy wilting, and canopy 

coverage (CC). These traits are complex, quantitative traits controlled by genotype, environment, 

and their interaction. The ultimate goal of this research was to identify and pyramid favorable 

alleles associated with drought-tolerance related traits into elite cultivars. We used genome-wide 

association studies (GWAS) to identify and map alleles associated with drought-tolerance traits 

in a panel of 373 diverse maturity group IV accessions in several environments.  

Single nucleotide polymorphism (SNP) marker data for all 373 genotypes were obtained 

from Soybase (www.soybase.org ) based upon the Illumina Infinium SoySNP50K iSelect SNP 

Beadchip. After performing quality control checks (eliminating monomorphic markers, markers 

http://www.soybase.org/
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with minor allele frequency (MAF) < 5 %, and markers with a missing rate higher than 10%) 

31,260 polymorphic SNPs were used for association mapping of these traits. Different statistical 

models were compared for association analysis to control false positives and false negatives. 

Based on these comparisons, the FarmCPU model was found to be the most appropriate one to 

conduct association analysis in this research. A threshold value of -Log10(P) ≥ 3.5, which is 

equivalent to a P-value ≤ 0.0003, was used to declare a significant association of SNPs with 

drought-related traits. 

The 𝛿13C and 𝛿18O, experiments were conducted in four environments including 

Columbia, MO in 2009 and 2010, and Stuttgart, AR in 2009 and 2010. The above-ground 

portion of five individual plants was harvested at beginning bloom (R1) to full bloom (R2) from 

each plot. After proper drying and grinding into a fine-powder, samples were sent to UC Davis 

for isotope analysis. Association mapping identified 54 significant SNPs associated with δ13C 

and 47 significant SNPs associated with δ18O. These SNP markers tagged 46 putative loci for 

δ13C and 21 putative loci for δ18O. 

For canopy wilting, experiments were conducted in four environments including Pine 

Tree, AR in 2016, Rohwer, AR in 2016, and Salina, KS in 2015 and 2016. Phenotypic evaluation 

of canopy wilting was scored using a visual rating based on a scale from 0 (no wilting) to 100 

(plant death). Association mapping identified 61 environment-specific significant SNP-canopy 

wilting associations, and 21were SNPs that associated with canopy wilting in more than one 

environment. These SNP markers likely tagged 23 putative loci associated with canopy wilting. 

Comparing to previous reports of bi-parental mapping studies, six of the putative loci were 

located within previously reported chromosomal regions that were associated with canopy 

wilting. In this research, a large number of genotypes were identified, which had favorable slow-
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wilting alleles and these genotypes represent new genetic sources for crop improvement as 

related to canopy wilting. 

For canopy coverage (CC), experiments were conducted in five environments including 

Fayetteville, AR in 2016, Pine Tree, AR in 2016, Rohwer, AR in 2016, Salina, KS in 2016, and 

Stuttgart, AR in 2015. Digital image analysis was used to determine CC two times (CC1 and 

CC2) during vegetative development approximately 7 to 14 days apart for each environment. 

Canopy coverage rate of increase (CCR) was calculated by dividing the difference between CC2 

and CC1 by the number of days between measurements. Association analysis identified 41 

significant SNP-CC1 associations, 56 significant SNP-CC2 associations, and 35 significant SNP-

CCR associations. The significant SNP-associations likely tagged 38, 50, and 30 different loci, 

for CC1, CC2, and CCR respectively. Out of these, six SNPs for CC1, 11 SNPs for CC2, and six 

SNPs for CCR were present in at least two environments. Twelve putative loci were identified in 

which chromosomal regions from both CC1 and CC2 were coincident. Four genomic regions 

were located within previously reported chromosomal regions for CC. 

For canopy temperature (CT), experiments were conducted in three environments 

including Pine Tree, AR in 2016, Rohwer, AR in 2016, and Salina, KS in 2016. Aerial thermal 

infrared image analysis was implemented to evaluate CT. Association mapping identified 52 

significant SNPs associated with CT, and these SNPs likely tagged 34 different genomic regions. 

Averaged across all environments (AAE), eight genomic regions showed significant associations 

with CT.  Extreme genotypes were identified, which had a large number of favorable cool 

canopy temperature alleles and these genotypes represent new genetic sources for crop 

improvement. 
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In this research, several genes were identified using significant SNPs associated with 

these drought-related traits. Significant SNPs that were located within a gene or very close to 

genes that had a reported biological connection to transpiration, water transport, growth, 

developmental, root development, response to abscisic acid stimulus, and stomatal complex 

morphogenesis were identified. Favorable alleles from significant SNPs may be an important 

resource for pyramiding and stacking genes to improve drought tolerance and for identifying 

parental genotypes for use in breeding programs. 
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