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ABSTRACT 

Naringenin is a flavanone naturally present in grapefruit and tomato skin, which has been 

demonstrated to have health benefits. However, because of the low water solubility and 

bioavailability, naringenin applications are limited. Starch inclusion complexes have been shown 

to improve the solubility and bioavailability of poorly water soluble bioactive compounds. The 

present study aimed to prepare and characterize complexes of naringenin with starches, including 

potato starch and high amylose corn starch (Hylon VII), which were chemically (acetylation or 

hydroxypropylation) and enzymatically modified (debranched or debrahced/β-amylase treated). 

Soluble and insoluble complexes were recovered, and their physicochemical properties were 

characterized. The treatments did not affect overall recovery, but the introduction of acetyl and 

hydroxypropyl groups significantly increased the recovery of soluble complexes. Overall, 

acetylated starches exhibited greater complexation yields than hydroxypropylated counterparts; 

Hylon VII complexes comprised greater naringenin contents than potato starch complexes. The 

naringenin content generally was greater in insoluble complexes than in soluble complexes and 

increased when β-amylase treatment was incorporated. The X-ray diffraction patterns of both 

complexes revealed a mixture of amorphous and crystalline structure. FT-IR results confirmed 

the occurrence of molecular interaction between starch and naringenin in both complexes. 

Melting properties were significantly influenced by the type and degree of substitution. The 

present results demonstrate that the complexation of starch with naringenin can be improved by a 

combination of chemical and enzymatic modifications.   
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CHAPTER 1 

INTRODUCTION  

Starch is the main carbohydrate form in plants as an energy reserve. The characteristics 

and functionality of starch differ among botanical sources and are governed by its chemical 

composition and structure. Starch is composed of two different types of polymers, amylose and 

amylopectin, both having α-(1→4) linked anhydroglucose backbone but differing in their 

molecular sizes and branching nature. Amylose is an essentially linear molecule, while 

amylopectin is a highly branched molecule consisting of branches linked through α-(1→6) 

glucosidic linkages. In aqueous solutions, amylose mainly exists as random coils and tends to 

form double helices in order to maintain a favorable energy state. The formation of double 

helices requires the interaction and alignment of two molecules, but it could be interrupted in the 

presence of suitable hydrophobic molecules, leading to the formation of a single helical complex 

also known as inclusion complex. The formed helix has a hydrophobic interior that interacts with 

non-polar molecules and a hydrophilic exterior.1,2 

Functional compounds that help to prevent and treat different diseases are known as 

nutraceuticals. The nonelectrolyte or weak electrolyte nature of these compounds contributes to 

their low water solubility3, thus resulting in a reduced bioavailability and difficulties in the 

exploitation of their properties. Naringenin is a nutraceutical compound that is naturally present 

in citrus fruits (grapefruit, orange) and tomato4 and exhibits antioxidant5, lipid peroxidation 

protection6 and antiatherogenic activity7. Yet its use is limited due to its poor water solubility and 

bioavailability. Therefore, there are attempts to improve naringenin solubility, such as 

complexation with β-cyclodextrin and its derivatives8-10, phospholipids11, and β-lactoglobulin.12 

These studies report an improvement in naringenin solubility, but the reported cylodextrin 
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toxicity9,10, the tendecncy of phospholipids to aggregate11, and the limited binding sizes in β-

lactoglobulin represent a major concern.12 

Starch inclusion complexes have been shown to exert protective action over guest 

molecules and increase their solubility13-15. Complexes of starch with fatty acid esters of 

bioactive compounds16, ferulic acid17, and genistein18 displayed an increase in the inclusion rate, 

although the complexation yield remained low, which was attributed to the tendency of native 

starch to easily re-associate. Recently, Zhu & Wang19, Arijaje et al.20, and Arijaje & Wang21 

demonstrated that chemical and enzymatic modifications were effective in improving starch 

complexation with guest molecules such as α-naphthol, stearic acid, and oleic acid. 

The goal of this study was improve the formation of inclusion complex between modified 

starches and naringenin. It was hypothesized that both starch structure and chemical modification 

impacted starch complexation capability with naringenin. The specific objectives of this study 

were 1) to investigate the effects of acetylation and hydroxypropylation in combination with a β-

amylase treatment on starch of different botanical sources to form complexes with naringenin, 

and 2) to characterize the physicochemical properties of the soluble and insoluble starch-

naringenin complexes. The development and characterization of starch and naringenin 

complexes may lead to a better understanding of the interaction between starch and naringenin 

and also to the formulation of naringenin for healthy food or non-food products. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Starch 

Starch is the second most abundant carbohydrate, after cellulose, in plants. It is widely 

used as a raw material for various industries and plays an important role in human diet because 

of its prevalent presence such as in seeds, roots, tubers, and fruits.1 The versatility of starch is 

attributed to its chemical structure, composition, and granular arrangement, which vary greatly 

from source to source.2 The main differences among major commercial starch sources are 

summarized in Table 2.1. 

 Table 2.1 Properties and Characteristics of Starch from Different Sources3,4  

 

Starch is composed of two homopolymers, amylose and amylopectin, made of 

anhydroglucose units linked by α-D-(1→4) glucosidic linkages. Amylose is essentially linear, 

while amylopectin has 4-5% branching through α-D-(1→6) glucosidic linkages. The amylose-

amylopectin ratio is characteristic of the source: ~20-35% amylose in most starches, close to 0% 

in waxy starches, and >40% in high amylose starches. Although the minor components such as 

lipids, proteins, and minerals only constitute 1-2% in starch, they exert great impacts on starch 

 maize wheat rice tapioca potato 

source cereal cereal cereal coot tuber 

shape round 

polygonal 

round 

lenticular 

angular 

polygonal 

oval 

truncated 

round 

oval 

diameter (µm) 2-30 1-40 3-8 4-45 5-100 

crystallinity type A A A A or C B 

amylose (%) 23-32 23-29 17-30 17-33 18-29 

lipids (%) 0.6-0.8 0.3-0.8 0.3-0.4 0.03-0.1 0.02-0.2 

proteins (%) 0.3-0.4 0.3 0.5 0.2 0.1-0.4 

phosphate  (nmol/mg) 0.11 0.20 0.12 1.11 23.2 
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properties. For example, the high phosphate monoesters in potato starch (Table 2.1) yield pastes 

with high clarity and viscosity upon gelatinization.2,5  

 

Figure 2.1. X-ray diffraction patterns of A, B, C, and V type starches.6 

The relationship between crystalline and non-crystalline structures greatly influences 

starch properties. Starch has a distinctive X-ray diffraction pattern (Figure 2.1) because of the 

polymeric forms of starch crystalline structures. Cereal starches exhibit the A-type pattern, tuber 

starches display the B pattern, and some other tubers, seeds and roots yield the C-type pattern. 

The differences among them obey to the geometry of the unit cells, density, bounded water, and 

chain length (CL) distribution. The A-type pattern having less water (8 water molecules per unit 

cell) is highly dense and generally presents strong peaks at reflection angles (2θ) 15.3°, 17.1°, 

18.2°, 23.5°. Starches with the B-type pattern have a hexagonal unit cell and more water per unit 

cell (36 water molecules) with strong peaks at 5.59°, 14.4°, 17.2°, 22.4°, 24.0°. Shorter average 

chain lengths (CL ~26) generally yield the A-type pattern, whilst the B-type pattern is associated 
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with longer average chain length (CL ~36). C-type pattern is considered a mixture of A and B 

patterns, but it also has been considered as a different structure rather than a mixture. The C-type 

pattern shows strong peaks at 3.73°, 15.3°, 17.3°, 23.5° and is associated with intermediate 

average chain length (CL ~28).6-8 The V-type pattern is induced by complexation of amylose 

with non-polar molecules and some organic molecules such as butanol, and displays strong peaks 

at 7.8°, 13.5°, 20.9°.6,9  

2.1.1 Amylopectin  

Amylopectin is a large molecule with 4-5% branching and molecular weight ranging 

between 106 and 109 g/mol and degree of polymerization (DP) by number (DPn) from 9,600 to 

15,900 glucose units.10-12 The molecular structure of amylopectin has been widely accepted as a 

cluster model (Figure 2.2) first introduced by French13 and refined by Hizukuri.14,15 

 

Figure 2.2. Amylopectin cluster model.15  

Amylopectin chains are classified into three main categories according to their CL and 

position. A chains are unsubstituted by other chains; B chains are attached to A and other B 

chains; C chain, only one C chain in each amylopectin, carries the only reducing group of the 

molecule. Hanashiro et al.16 further refined the polymodal distribution of amylopectin chains as 

A chains with DP 6-12, B1 chains with DP 13-24, B2 chains with DP-25-36, and B3 with DP 



 

8 

 

>37. B1 are chains connecting just one cluster, while B2 and B3 chains are connected to two or 

three clusters, respectively. 

2.1.2 Amylose 

Amylose is an essentially linear polymer with molecular weight approximately 105-106 

g/mol, and DPn 324-4,920 glucose units, which vary with botanical source. For example, high 

amylose maize starch exhibits considerable smaller molecular weight with an average DP 690- 

740 and CL 215-25517, while potato starch exhibits a DP 840–21,800 and CL 670.18 The slight 

branching nature of amylose has been demonstrated by its incomplete hydrolysis when subjected 

to β-amylase hydrolysis.17,19 

Amylose tends to re-associate to become a more ordered state through hydrogen bonds.20 

The linear nature of amylose chains promotes their rapid aggregation and subsequent double 

helices formation, which is favored with DP around 100.21 The double helices adopt a left-

handed form with either A or B diffraction pattern.22-24  In aqueous solution amylose adopts a 

random coil structure, which is unstable and tends to form helical complexes in the presence of 

molecules such as iodine, monoacyl lipids, alcohols, and flavor compounds. The formed helix 

has a hydrophobic inner cavity due to the aliment of glycoside linkages with methylene groups, 

whilst the hydroxyl groups are oriented toward the exterior to confer a hydrophilic exterior, left-

handed orientation, and depending on the size of the ligand 6, 7, or 8 glucose units per turn. The 

hydrophobic nature of the helix inner cavity allows the inclusion of hydrophobic ligands.18,25-28 

2.2 Naringenin 

Naringenin (4’,5,7-trihydroxyflavanone, Mw 272.26 g/mol) (Figure 3) is a major 

flavanone present in citrus fruits.29 Shirasaka et al.30 reported a naringenin concentration of 

0.0730 μM in grapefruit juice and 0.0101 μM in orange juice. Naringenin is soluble in solvents 
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such as ethanol, and because of its weak acid character (pKa 6.7) naringenin solubility is greater 

in basic media.31,32 

Naringenin has been shown to exhibit anti-inflammatory, anticarcinogenic, antitumor, 

and antioxidant activity.33,34 However, because of the hydrophobic ring structure, as many other 

flavonoids, naringenin exhibits low water solubility, reduced bioavailability, and unfavorable 

pharmacokinetic, which restrict its potential use as biopharmaceutical.35 Shulman et al.36 

reported naringenin solubility as 36.1 μM, whilst Löf and Nilsson37 described a rapid 

crystallization of naringenin when transferred from an organic solvent to an aqueous system. 

 

Figure 2.3. Naringenin chemical structure.38 

2.3 Cyclodextrin Inclusion Complexes 

Cyclodextrins are oligosaccharides derived from starch with a cyclic structure of 6 (α), 7 

(β) or 8 () glucose units, respectively, linked by α-D-(1→4) linkages. Cyclodextrins are 

characterized of having a truncated cone shape (Figure. 2.4) with a hydrophilic surface from 

secondary and primary hydroxyl groups and a hydrophobic inner cavity through hydrogen atoms 

and glycosidic oxygen bridges, allowing the formation of inclusion complexes with non-polar 

molecules.39,40 The ability of cyclodextrins to form inclusion complexes through host-guest 

interactions is related to various driving forces, including hydrogen bonding, Van der Walls, 

electrostatic interactions, and substitution of water molecules by the guest. The most common 
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host to guest ratio is 1:1, although more complex associations (2:1, 1:2, 2:2) are possible 

depending on the guest molecular structure.41,42 

 

 

 

 

 

 

Figure 2.4. Cyclodextrin truncated cone shape.49 

Cyclodextrins have been shown to increase the solubility and bioavailability of phenolic 

compounds such as cathechin and quercetin43, and ferulic acid.44 Nevertheless, cyclodextrins 

present limitations due to their low solubility in water and organic solvents. Derivatives, 

particularly from β-cyclodextrin, with enhanced physicochemical properties have been prepared, 

including methyl, hydroxypropyl, acetyl, and sulfobutyl- β-cyclodextrin, through substitution of 

hydroxyl groups.45,46 Yatsu et al.47 reported improved solubility of genistein by methyl-β-

cyclodextrin when compared with β-cyclodextrin. The complex of naringenin with 

hydroxypropyl-β-cyclodextrin also has been shown to exhibit 400x increase in naringenin 

solubility.36 Yang et al.48 also reported that the complex of naringenin with heptakis-(2,6-di-O-

methyl) (DMβCD) and heptakis (2,3,6-tri-O-methyl) (TMβCD)  β-cyclodextrins increased not 

only naringenin thermal stability, but also solubility from 4.38 μg/mL to a maximum of 1.60 

mg/mL. Nevertheless the high cost associated with cyclodextrin modification and the restrictions 

of the cavity size make the application of cyclodextrin limited.  
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2.4 Amylose Inclusion Complexes 

The ability of starch, especially the amylose fraction, to form inclusion complexes was 

first described by Colin and Claubry50 as a function of amylose reaction with iodine. Katz and 

Itallie51 found an X-ray diffraction pattern in bread baking and also in the reaction of starch with 

alcohols, i.e. V-pattern, which is different from the A and B forms of the native starch. Amylose 

complex can be described as the combination of a ligand within the ligand-induced amylose 

helix with a central hydrophobic cavity and six to eight glucoses per pitch, which is the distance 

between identical points in two sequential turns (Figure 2.5).52,53 

 

Figure 2.5. Amylose helix organization.54 

The complexation between amylose and iodine has been used to determine the apparent 

amylose content based on the intensity of the blue color formed. The color intensity depends on 

amylose chain length; chain lengths above 80 are required to produce the intense blue color, and 

the color shifts from purple to brown as the chain length decreases.55 Using the above mentioned 

principle, amylose has been used to form complexes with fatty acids56, flavors57, and aroma 

compounds58, demonstrating the influence of inclusion complexes in the resistance of starch to 
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amylase hydrolysis, pasting properties, and retention or release of volatile compound during 

processing. 

2.5 Factors Influencing Amylose-Inclusion Complex Formation 

2.5.1 Ligand Concentration and Solubility 

The ability of a guest molecule to form complexes with starch is affected by its size, 

shape, and hydrophobicity. Molecules with long hydrocarbon chains are believed to be included 

inside the helix, while short linear molecules such as fatty acids (C-8) or lactones (C-7) form 

unstable complexes.59-61 At low ligand ratio it has been suggested that the amylose-amylose 

interactions prevail over the interactions amylose-ligand, forming double helices of retrograded 

amylose.62,63 

The ligand solubility is affected by the solvent. Polar solvents such as methanol and 

ethanol are commonly employed to solubilize the ligand prior to the complexation reaction. The 

host-guest interaction is enhanced when the ligand is dissolved in the solvent before adding to 

the starch solution.64 The solvent should help to increase the ligand intrinsic solubility but not 

compete for the amylose cavity.65 Likewise, changes in ligand pH also alter ligand solubility. For 

example, changes in the pH of phenolic compounds cause ionization of the ligand, which greatly 

affects its intrinsic solubility and hydrophobicity. Jovanovic et al.32 suggested that changes from 

uncharged to charged forms of some flavonoids induced different behavior: the ionized forms 

tended to be more soluble, while in neutral state the hydrophobic character prevailed. Tommasini 

et al.66 used cyclodextrin to complex naringenin, and reported that when the reaction occurred at 

pH 4 the hydrophobic character of naringenin prevailed and a more stable complex was formed 

due to the affinity of naringenin for the hydrophobic cavity. In contrast, at pH 8 the solubility in 

water increased but the stability of the complex was lower. A similar behavior of genistein-
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amylose complex was described by Cohen et al.67, which suggested that at a pH as high as 8.0 

the dissolution of the complex was feasible due to an increase in the interaction between water 

and genistein.  

2.5.2 Starch Degree of Polymerization (DP) 

The complex formation has been attributed particularly to amylose chains, but 

amylopectin long (DP ≥ 20) external branches also contribute to the complex formation.68 The 

effect of amylose chain length has been extensively studied for amylose-fatty acid complexes, 

concluding that a DP around 20–400 is necessary to include fatty acids in the helix.60,69,70 Cohen 

et al.67 suggested that a minimum DP of 13 was required to form inclusion complex of amylose 

with genistein, an isoflavone with similar structure to naringenin. 

2.5.3 Incubation Temperature and Time 

Temperature plays an important role in amylose-inclusion complexes formation. Ahmadi-

Abhari1 et al.56 investigated the effects of incubation temperature and time on amylose-

lysophosphatidylcholine (LPC) complex formation, and demonstrated that heating the solution 

for 1 h increased the amount of complexed LPC from 18.7% at 20°C, to 48.8% at 50-60°C. The 

study concluded that at temperatures below starch gelatinization temperature complex formation 

was feasible but required longer times. Nevertheless, the extent of complexation increased when 

the reaction temperature increased from 20 to 50°C, which was attributed to an increase in 

amylose mobility and partial loss of the crystalline structure. On the other hand, Chang et al.71 

studied the complex of conjugated linoleic acid (CLA) with linear dextrins obtained from 

debranched waxy corn starch, and concluded that increasing the temperature from 30 to 60°C 

decreased the amount of complexed CLA from 1.67% to 1.21%. An increase in temperature may 

lead to a better solubility of both starch and guest molecule, enhancing the complex formation; 
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however excessive heat can also destabilize the formed complex. The optimum temperature for 

complex formation depends on guest structure and thermal stability. 

 2.6 Starch Modification 

 Starch is an abundant natural resource with advantages of being biodegradable, 

environmentally friendly, and cost effective.72 Nevertheless, the industrial application of native 

starch is limited because of many undesired properties, such as its tendency to retrograde, 

instability at low pHs and high temperatures, and low water solubility. Approaches to overcome 

these problems and meet the requirements for various applications include physical, chemical, 

enzymatic, and genetic modifications. Chemical modification has been shown to reduce starch 

tendency to retrogradation and to increase solubility, while enzymatically-treated starch may 

offer a more linear and favorable structure capable of forming inclusion complexes to a greater 

extent. 

2.6.1 Chemical Modification 

Substitution.  

The introduction of functional groups is employed to modify starch properties such as 

gelatinization, pasting, and retrogradation through replacement of hydroxyl groups with 

functional groups. The degree of substitution (DS), which represents the number of hydroxyl 

groups substituted per anhydroglucose unit (AGU), for commercial starches is usually less than 

0.2.73 The maximum DS that can be achieved is 3 because only C2, C3, C6 are available for 

reaction with functional groups. 

Acetylation. Acetylation is one of the most common substitutions and is commonly 

achieved through esterification of native starch with acetic anhydride or vinyl acetate in the 

presence of alkaline catalysts such as NaOH, KOH, or Na2CO3 (Figure 2.6).74-76 The introduction 
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of acetyl groups yields starches with increased swelling power and solubility, and decreased 

gelatinization temperature due to the reduction in hydrogen bond strength.77,78 In general, the 

reaction is conducted in aqueous media in the presence of a salt (NaCl or Na2SO4) to prevent 

starch gelatinization, and under these conditions acetylated starch is commercially available at a 

low DS (0.05-0.2). FDA regulations only allow addition of acetic anhydride or vinyl acetate to 

achieve up to 2.5% acetyl groups; generally available products have DS less than 0.05. 

 

Figure 2.6. Acetylation of starch by acetic anhydride. 

Hydroxypropylation. Hydroxypropylated starches are generally obtained by 

etherification of native starch with propylene oxide in the presence of an alkaline catalyst (Figure 

2.7). The introduction of hydroxypropyl groups disrupts inter and intra-molecular hydrogen 

bonds, which weakens the granule structure and confers more mobility to the amorphous 

regions.79,80 These starches are widely used in the food industry for their improved properties 

such as decreased pasting temperature, increased paste clarity, and improved freeze-thaw 

stability.76 During hydroxypropylation, the substitution of hydroxy groups occurs mainly in the 

amorphous lamellae.81 Reaction conditions and starch source affect the distribution of the 

substituents.82 

 

Figure 2.7. Hydroxypropylation of starch by propylene oxide. 
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2.6.2 Enzymatic Modification 

Common enzymes employed in starch processing include α-amylase, β-amylase, 

glucoamylase, pullulanase, and isoamylase. During the hydrolysis process enzymes attack α-

(1→4) and/or α-(1→6) linkages, depolymerizing starch into glucose, maltose, and/or 

oligosaccharides.83  

Alpha-Amylase. Alpha-Amylase belongs to the endo-amylases family, and exerts action 

on α-(1→4) glucosidic linkages in the inner part of amylose and amylopectin chain. The action 

of this enzyme is not random and the final products, including branched oligosaccharides, are 

dependent on the source of the enzyme (microbial, plant or animal). Three different hydrolysis 

mechanisms have been proposed: single chain, multichain, and multiple attacks. The single chain 

mechanism, the enzyme catalyzes the reaction in a “zipper” towards until the end of the chain; in 

the multichain action the enzyme hydrolyzes only one bond per active encounter; for the multiple 

attacks mechanism the enzyme may hydrolyze multiple bonds per encounter.84 

Beta-Amylase.  Beta-amylase is an exo-amylase and hydrolyzes starch α-(1→4) 

glucosidic linkages from the non-reducing ends inward, producing maltose and β-limit dextrin. 

The hydrolysis of amylopectin by β-amylase only reaches 50 to 60 % because of its inability to 

bypass α-(1→6) linkages, and therefore chains of reduced molecular weight containing 

branching points are produced.85  

Pullulanase-Isoamylase. Both enzymes hydrolyze α-(1→6) glucosidic linkages from 

amylopectin inner part, producing linear oligosaccharides. The difference between them: the 

chains that can be hydrolyzed. Isoamylase cleaves amylopectin chains with a DP of at least three, 

while pullulanase exert action amylopectin chains with a DP of at least 2 and β-limit dextrin.86 
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2.7 Modified Starches and Inclusion Complexes 

Starch is capable of forming inclusion complexes with hydrophobic molecules, however 

native starch displays limited capability because of its tendency to retrograde and the highly 

branched structure of amylopectin. Efforts to enhance starch complexing ability have been 

carried out through chemical and enzymatic modifications. Wulff and Kubik87,88 and Kubik and 

Wulff89 demonstrated that hydroxypropylation (DS 0.075) of amylose allowed the formation of 

soluble complexes with 4-tert-butylphenol. They concluded that hydroxypropylation of amylose 

at DS 0.06-0.075 was sufficient to from soluble inclusion complexes with organic molecules, 

although more hydrophobic compounds required higher degrees of substitution (DS ≥0.13).  

Later, Kubik et al.90 suggested that acetylated amylose complexing capability with iodine was 

slightly decreased, compared to hydroxypropylated amylose, when the DS increased. Wulff et 

al.91 also compared acetylated and hydroxyproylated amylose at similar DS levels (0.04-0.61), 

and in both cases the complexing capability with fenchone slightly decreased when the DS 

increased, which was attributed to the repulsive effect of acetyl and hydroxypropyl groups 

impeding the helical configuration. 

Enzymatic modification of starch has been used to increase the linear starch content, thus 

increasing complexing capability. Yotsawimonwat et al.92 investigated the effect of pH and 

debranching on complex formation of waxy rice and fatty acids (FA) with different chain lengths 

and saturations, and suggested that FA (10:0-18:0) complexed to a greater extent with long linear 

starch chains as measured by a decrease in iodine absorbance of the complexes.  Zhu and Wang93 

investigated the effect of chemical (hydroxypropylation and acetylation) and enzymatic 

modifications on the complex formation of high-amylose maize with α-naphthol, and concluded 

that both modifications considerably decreased the complex yield from 62.6% with Hylon VII to 
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27.5% in low acetylated Hylon VII. They suggested that this behavior may be attributed to the 

cyclic structure of α-naphtol and to the disturbance of helix formation by acetyl and 

hydroxypropyl groups. Van Hung et al.94 reported an increase in ferulic acid solubility and 

antioxidant capacity when complexed with debranched starch. They also found that an increase 

in the ratio of ferulic acid to starch resulted in increased ferulic acid in complex from 6.8 to 32.5 

mg/g of starch, concluding that there was an optimum ratio of guest molecule to starch for 

enhanced complexation. Recently Klaochanpong et al.95 investigated complexes of debranched 

waxy corn, waxy rice, and waxy potato starches with iodine and fatty acids, and demonstrated 

that starch form different sources differed in their complexing capability, and the ability of starch 

to form complex with iodine increased after debranching. From all the starches studied, 

debranched waxy potato showed the highest complexing capacity for both fatty acid and iodine, 

presumably because of its longer chains. 

Arijaje and Wang96 studied the combined effect of chemical and enzymatic modifications 

on starch and oleic acid complexation, demonstrating enhanced formation of soluble and 

insoluble complexes. Acetylation significantly increased the recovery of soluble complexes, 

while the high-acetylated debranched starch showed the highest oleic acid in complex (38.0 

mg/g). For insoluble complexes, low acetylated starch with or without the β-amylase treatment 

showed the highest complexed amount of oleic acid (37.6-42.9 mg/g). A similar trend was 

observed in a previous study for the complex of starch with stearic acid.69 
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CHAPTER 3 

ACETYLATION AND ENZYMATIC TREATMENT ON STARCH COMPLEXATION 

WITH NARINGENIN 

3.1 ABSTRACT 

Starch inclusion complexation has been shown to improve solubility of water insoluble 

molecules. This study prepared and characterized complexes of naringenin with potato starch 

and Hylon VII, which were acetylated at two levels and then debranched alone or combined with 

β-amylase hydrolysis. Both soluble and insoluble complexes were recovered and their 

physicochemical properties were characterized. The recovery of the soluble complexes and the 

naringenin content increased when starch was acetylated, and further increased when the β-

amylase treatment was included. The insoluble complexes comprised a greater naringenin 

content than the soluble counterparts for both starches. The insoluble and soluble complexes of 

potato starch exhibited B+V and A+V X-ray patterns, respectively, whereas all complexes of 

Hylon VII displayed B+V type. FTIR spectra and thermal properties as measured by differential 

scanning calorimetry confirmed that both complexes were not physical mixtures. The results 

demonstrated that acetylation combined with enzymatic treatments improved starch 

complexation with naringenin. 

KEYWORDS: acetylated starch, naringenin, β-amylase treatment, soluble complex, insoluble 

complex 
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3.2 INTRODUCTION 

Bioactive compounds such as phenolics are naturally present in many food products and 

have been shown to provide potential health benefits and therapeutic effects in preventing 

chronic diseases such as cancer or diabetes.1 Because of the number of aromatic rings and the 

position of the hydroxyl groups, many phenolic compounds exhibit low water solubility, 

instability to pH and temperature changes, and consequently poor bioavailability.2 Naringenin is 

a phenolic compound naturally present in grapefruit and tomato skin and has been reported to 

exhibit anti-oxidant3,4, anti-cancer5, and antiatherogenic activities6. However, its therapeutic 

effects are limited due to its poor water solubility and bioavailability. Delivery systems have 

been developed to improve its solubility and bioavailability through different mechanisms. 

Shpigelman et al.7 studied the binding between β-lactoglobulin and naringenin and suggested 

that the attachment of naringenin to the hydrophobic domains of β-lactoglobulin increased its 

solubility from 330 μM to 1000 μM. Nevertheless, the limited number of binding sites and the 

tendency to aggregate present a challenge of using β-lactoglobulin as a delivery system. Semalty 

et al.8 improved the water solubility of naringenin from 161 μM to 291 μM by forming 

phospholipid complex of naringenin with phosphatidylcholine.  

Cyclodextrins and amylose form inclusion complexes, which have a hydrophilic exterior 

and a hydrophobic interior where apolar guest molecules are situated.9 The solubility of 

naringenin improved by at least 10-fold when complexed with β-cyclodextrin and its 

derivatives10,11; however, concerns remain in the poor water solubility and associated toxicity of 

cyclodextrins.7 In contrast, starch chains are flexible, biodegradable, and biocompatible11-13, 

although complexation is greatly affected by starch structure. Both common corn and waxy 

maize starches formed complexes with aroma compounds, indicating that amylopectin also 
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contributed to formation of complexes.14 Gelders et al.15 prepared amylose of degree of 

polymerization (DP) 20, 60, 400, and 950 in anhydroglycose units to form complexes with 

docosanoic acid and glyceryl monostearate, and concluded that the thermal stability of the 

complexes from amylose of DP 950 was lower than those of shorter DPs and that the minimal 

DP for complex formation was 35-40.  

Starch inclusion complex is conventionally considered to be insoluble because of its 

crystalline nature. Wulff et al.16 reported starch soluble complex when hydroxypropylated potato 

amylose with a degree of substitution (DS) 0.075 was used as a host to form complex with 

sodium dodecyl sulfate (SDS). Microcalorimetric and circular dichroitic investigations of this 

hydroxypropylated amylose demonstrated that the stability of the complexes was affected by 

amylose DP. Wulff et al.17 reported that acetylated potato amylose (DP ~2600) with a DS 0.14 

and lower resulted in insoluble complexes with fenchone, and that a minimum DS 0.16 was 

necessary to form soluble complexes. A noticeable decrease in the amount of complexed 

fenchone was observed for acetylated amylose with a DS 0.43 and greater. Recently Arijaje et 

al.18 and Arijaje and Wang19,20 demonstrated that acetylation and enzymatic modification of 

starch increased complex formation of starch with stearic, oleic, and linoleic acids. The 

formation of soluble complexes between debranched starch with stearic acid increased by 8.3% 

when starch was acetylated, and increased by 154% - 245% when the DP was reduced by β-

amylase. A similar trend was observed with oleic and linoleic acid. In general, the recovery of 

insoluble complexes for these fatty acids decreased 23-52% as acetylation was combined with 

DP reduction. The amount of complexed fatty acids increased as the starch was acetylated and 

debranched18-20  



 

29 

 

Although β-cyclodextrin has been employed to improve naringenin solubility, little work 

has been done on complexation of starch with naringenin. Therefore, the objective of this study 

was to investigate the effect of acetylation and DP reduction on Hylon VII and potato starch for 

their complexing capability with naringenin. Both soluble and insoluble complexes were 

recovered and characterized for their physicochemical properties. 

3.3 MATERIALS AND METHODS 

Materials 

High amylose corn starch (~70 % amylose, Hylon VII) and potato starch were gifts from 

Ingredion (Bridgewater, NJ). Isoamylase (specific activity 240 U/mg), pullulanase (specific 

activity 34 U/mg), and β-amylase from Bacillus cereus (specific activity 2,182 U/mg) were 

purchased from Megazyme Ltd. (Wicklow, Ireland). Naringenin was purchased from Sigma-

Aldrich (St. Louis, MO). All other chemicals and reagents were of analytical grade. Because of 

its high inherent lipid content, Hylon VII was defatted by refluxing with 85% (v/v) methanol for 

24 h, dried at 40°C for 24 h, and milled using a UDY Cyclone Mill (UDY Corporation, Ft. 

Collins, CO) fitted with a 0.5-mm sieve. 

Acetylation of Starch 

Potato starch and defatted Hylon VII were acetylated according to the procedure 

described by Wang and Wang21. Starch (100 g, db) was weighed into a 1-L reaction vessel and 

added with water to reach 35% solid (w/w). The mixture was hydrated for 30 min with stirring 

and added with 1 M NaOH to adjust the pH to 8.5. Acetic anhydride (4 or 8% based on starch 

db) was added dropwise while maintaining the pH at 8-8.5 using 1 M NaOH. The reaction was 

completed 60 min after the addition of acetic anhydride. The pH was adjusted to 5.5 with 1 M 

HCl, washed with a three-fold volume of deionized water, vacuum filtered through a Whatman 
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No. 1 filter paper, dried in a convection oven at 40°C for 24 h, and milled as described 

previously. The acetyl content was determined by the colorimetric method of McComb and 

McCready22 and expressed as degree of substitution (DS) according to Wurzburg.23 

Debranching of Starch 

Native and acetylated starches were debranched by following the procedure of Arijaje et 

al.18 with modifications. A mixture of 15 g (wb) and 200 mL deionized water (3.75% w/w) was 

heated in boiling water for 1 h to complete starch gelatinization. The solution was cooled down 

to 40°C, and adjusted to pH 5.0 with 0.5 M HCl. Isoamylase and pullulanase (1.33% each, starch 

db) were added, and the solution was incubated at 40°C for 48 h with stirring at 110 rpm. The 

debranched starch was precipiatated with four-fold volume of pure ethanol, centrifuged at 7000 

×g for 15 min, dried in a forced air oven at 40°C for 48 h, and milled using the UDY Cyclone 

Mill.  

β-Amylase Treatment of Starch 

After debranching and as indicated by the method of Arijaje et al.18, the starch solution 

was adjusted to pH 6.5 with 0.5 M NaOH, β-amylase (0.5% v/w starch db) was added, and the 

solution was incubated at 40°C for 4 h with constant stirring. The reaction was terminated by 

boiling for 15 min, and the resultant starch was recovered by precipitating with 4-fold volume of 

pure ethanol and centrifuged as before. The resulting precipitate was dried at 40 °C for 48 h and 

milled using the UDY cyclone mill. 

Preparation of Starch-Naringenin Complex 

The method described by Arijaje et al.18 was used with modifications to prepare starch-

naringenin complexes. After debranching or debranching/β-amylase treatment, the starch 

solution (3.75% w/v) was adjusted to pH 7.0, and the temperature was gradually increased from 
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40 to 80°C. Naringenin (20 % starch db) that was previously dissolved in warm ethanol (6% 

w/v) was slowly added to the starch solution and allowed to react at 80°C for 30 min. The 

temperature was decreased to 45°C, and the reaction continued for 24 h with constant stirring. 

The slurry was centrifuged at 7,000 ×g for 15 min to recover insoluble complex in the precipitate 

and soluble complex in the supernatant. Both complexes were dried at 40°C for 48 h and then 

ground using the UDY Cyclone Mill. Uncomplexed naringenin was removed by vortexing both 

soluble and insoluble complexes (10% w/v) in 95% ethanol for 30 s and then rotating them using 

a labquake shaker (Barnstead/ thermolyne, Dubuque, IA) for 15 min. The resulting slurry was 

centrifuged at 20,000 ×g for 10 min, the supernatant was decanted, and a second wash was 

performed under the same conditions. The final precipitate was dried at 40°C for 24 h and then 

ground using mortar and pestle. The complex recovery was expressed as the complex weight 

recovered over the initial starch and naringenin weight. 

Characterization of Inclusion Complexes 

Starch Molecular-Size Distribution 

High-performance size exclusion chromatography (HPSEC) was used to determine the 

molecular-size distribution of the debranched and debranched/β-amylase treated starches by 

following the method of Arijaje et al.18 Ten mg of starch were solubilized in 5 mL of 90% 

dimethyl sulfoxide (DMSO), boiled for 1 h, stirred overnight at room temperature, and 

centrifuged at 9,300 ×g for 10 min before injection into a HPSEC system (Waters Corp., 

Milford, MA). The HPSEC system was equipped with an inline degasser, a model 515 HPLC 

pump with a 200-μL injector valve (model 7725i, Rheodyne, Cotati, CA), a model 2414 

refractive index detector, a guard column (OHpak SB-G, 6.0 × 50 mm i.d × length), and two 

Shodex columns (OHpak SB-804 and KB-802, 8.0 × 300 mm i.d × length). The flow rate was 
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0.5 mL/min, and the mobile phase consisted of 0.1 M sodium nitrate with 0.02% sodium azide. 

The temperature of the columns was kept at 55°C and the detector at 40°C. The data was 

collected with an Empower Pro2 software (Waters Corp., Milford, MA), and the molecular-size 

distribution calculated by comparing against standards of molecular weight 180.16, 828.72, 

1,153, 5,200, 148,000, 872,300, and 1,100,000 g/mol (Waters Corp., Milford, MA), and 

1,100,000 g/mol (Sigma-Aldrich, St. Louis, MO). 

Naringenin Content 

Naringenin was released from the complexes by acid hydrolysis prior to analysis using a 

HPLC system (Beckman-Coulter, Fullerton, CA). Twenty-five mg of the complex was added 

with 2.5 mL of 1 M HCl and heated in boiling water for 1 h. The resulting solution was added 

with 12.5 mL of methanol and rotated overnight using the labquake shaker. A 1.5-mL aliquot of 

the solution was transferred to a 2-mL micro-centrifuge tube and centrifuged at 9,300 ×g for 10 

min. A 0.5-mL aliquot of the supernatant was transferred to a glass vial with a screw cap. The 

reverse phase HPLC system was equipped with an autosampler (Model 508), a dual pump 

(model 126), and a photodiode array detector (Model 168). The analysis was performed using a 

Phenomenex (Torrance, CA) Kinetex XB-C18, 100A, 2.6 micron (100 × 4.6 mm) column, and a 

binary eluent of 0.1% trifluoroacetic acid in water as mobile phase A and acetonitrile as mobile 

phase B was run isocratically with 60% A and 40% B at a flow rate of 1 mL/min. Commercial 

naringenin (Sigma-Aldrich, St. Louis, MO) was used as a standard to identify and quantify the 

naringenin content in the complex. The data was collected using Beckman-Coulter System 32 

Karat software (Version 8, 2006), and the results expressed as mg of naringenin per g of the 

complex. 
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Physicochemical Properties 

Thermal Properties. The thermal properties of the complexes were analyzed using a 

DSC (Diamond, Perkin-Elmer, Shelton, CT). Approximately 3 mg of the complex was weighed 

into a stainless steel pan, and then 10 µL of distilled water were added. The pan was hermetically 

sealed and allowed to equilibrate at room temperature for 24 h before scanning from 25 to 200°C 

at 10°C/min. The onset temperature, peak temperature, end temperature, and enthalpy of any 

transition were calculated by Pyris data analysis software. 

Wide Angle X-ray Diffraction Pattern. The X-ray diffraction pattern of the complexes 

was determined using a Philips PW 1830 MPD diffractometer (Almelo, the Netherlands). The X-

ray generator was set at 45kV and the current tube at 40 mA. The scanning 2θ angle went from 

5° to 35° with a step size of 0.02° at 1 s per step. 

Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) Spectroscopy. 

The ATR FT-IR spectra of the complexes were recorded on a Nicolet 8700 spectrometer 

(Thermo Electron Scientific Inc., Waltham, MA) using a Golden Gate ATR accessory (Specac) 

equipped with a single-reflection diamond crystal. The temperature during measurements was 

kept at 25°C ± 0.1°C using an electronic temperature controller (Specac). For each spectrum, 64 

scans were collected with a resolution of 4 cm-1. The spectrometer’s EverGlo source was on 

turbo mode during measurements. The spectrometer and ATR accessory were purged with dry 

nitrogen to diminish water-vapor contamination of the spectra. All samples were conditioned 

before their analysis for 7 days in a desiccator containing silica gel. 
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Statistical Analysis 

Two replicates of the experiment were conducted, and each analysis was done in 

duplicate. The data was analyzed using JMP Pro13 Software (SAS Institute Inc., Cary, NC, 

USA), and the means compared using Tukey’s honestly significant differences (HDS) test. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Molecular Size Distribution 

The molecular size distributions of native and acetylated potato starch and Hylon VII 

after debranching and after debranching/β-amylase treatment are presented in Figure 3.1. All 

debranched potato starches displayed four peaks (Figure 3.1A) at similar retention times (RTs) 

20.6, 22.8, 27.9, and 29.2 min, corresponding to DP ~9,480, ~2,250, ~80 and ~32, respectively, 

but their proportions were different. Debranched Hylon VII showed three broader peaks (Figure 

3.1B) at RTs 24.7, 27.9, and 28.9 min, corresponding to DP ~640, ~80, and ~39, respectively. 

Acetylation did not change the profiles of both starches; the β-amylase treatment resulted in 

starch chains of a narrower DP distribution with increased proportions of long DP chains for 

both acetylation levels of both starches (Figure 3.1 C and D). The molecular size distributions 

showed that potato amylose appeared at a shorter RT and consequently had a larger molecular 

size than Hylon VII amylose, agreeing with previous studies.24-26 Nevertheless, the proportion of 

long DP chains was greater in Hylon VII. When considering all treatments, Hylon VII 

encompassed a large proportion of DP 40-650 chains, while potato starch contained a large 

proportion of DP 30-180 chains. 

3.4.2 Degree of Substitution 

The initial degrees of substitution (DS) of low (4%) and high (8%) acetylation were 

0.049 and 0.095, respectively, for potato starch, and 0.037 and 0.094, respectively, for Hylon VII 
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prior to the enzyme treatment and complexation with naringenin. Both soluble and insoluble 

complexes were recovered and analyzed for DS. The soluble complex shared a similar DS with 

the insoluble complex within the same treatment for both starches (Table 3.1) . The β-amylase 

treatment resulted in starch with a significantly greater DS for both complexes because of the 

inability of β-amylase to bypass acetyl groups, agreeing with the findings of Arijaje et al.18 and 

Arijaje and Wang.19,20 

There was little difference in DS of acetylation between potato starch and Hylon VII for 

the same treatment, suggesting a similar distribution of acetyl groups in both starches possibly 

because of the rapid acetylation reaction27, although their amylose contents were distinctly 

different. Under the conditions studied, soluble complexes were formed at a DS of 0.034 and 

0.032 for potato starch and Hylon VII, respectively, which were lower than the DS reported for 

the formation of soluble complexes between acetylated potato starch and stearic (DS 0.063), 

oleic and linoleic acids (DS 0.048).18-20 More planar molecules tend to be included in a greater 

proportion into the amylose helix, causing the complex to precipitate, hence a greater DS was 

required to maintain the soluble complex as demonstrated by Wulff and Kubik16 and Wulff et 

al.17 , which showed that hydroxypropylated amylose of DS 0.06-0.075 was needed to maintain 

soluble complexes with sodium dodecyl sulfate. The lower DS of the soluble complexes in the 

present study was attributed to the non-planar conformation of naringenin B-ring, which may 

favor the soluble complex formation.  

3.4.3 Complex Recovery and Naringenin Content in Complex.  

The total recovery for all treatments for both starches ranged 0.89-0.99 g/g (Table 3.1). 

There was no statistical difference between the recovery of potato starch and Hylon VII, 

although differences were observed among individual complex recovery. The recovery of the 
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soluble complexes increased as the DS of acetylation increased, displaying an increase by at least 

100% for both acetylation levels. The decrease in recovery of the insoluble complex with 

increasing DS of acetylation was likely due to the disruption of the helical conformation by an 

increase in acetyl groups, agreeing with previous studies.18-20 The incorporation of the β-amylase 

treatment did not significantly change the recovery of individual complex for both starches. 

In general, the naringenin content in the insoluble complex (4.44–28.50 mg/g) was 

significantly greater than that in the soluble complex (2.35-10.86 mg/g) for the same treatment. 

Nevertheless, the naringenin content in the insoluble complexes increased with increasing DS of 

acetylation, differing from the work of Wulff et al.17, in which the ability of acetylated amylose 

to complex iodine decreased with increasing DS from 0.16 to 0.43. The differences between 

these two studies were ascribed to the significantly greater DS in Wulff et al.17 study, compared 

with the DS range of 0.031-0.080 for the insoluble complex in this study. Meanwhile, the 

naringenin contents in both complexes from Hylon VII were significantly greater than those 

from potato starch regardless of the treatment. Although the DS of acetylation was similar 

among starches for the same treatment, the greater complexing capability of Hylon VII is 

suggested to be related to its larger proportion of longer DP chains than potato starch, 

particularly chains of DP 180-650 (Figure 3.1).  

The introduction of the β-amylase treatment generally increased the naringenin content in 

both soluble and insoluble complexes, except for the soluble complexes from low and high 

acetylated Hylon VII. The naringenin contents in the soluble complexes of potato starch (2.35-

4.81 mg/g) were significantly lower than those of Hylon VII (6.00-10.86 mg/g), suggesting the 

importance of starch molecular size on the formation of complexes and the enhanced 

complexation from acetylation. In recent studies by Arijaje and Wang and Arijaje et al., the 
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maximum complexed stearic (123.1 mg/g)18, oleic (42.9 mg/g)19, and linoleic (54.4 mg/g)20 acids 

were obtained from the insoluble complex of low acetylated/β-amylase treated potato starch. In 

contrast, the greatest naringenin content in the present study was from the insoluble complexes 

of high acetylated/β-amylase treated potato starch (11.75 mg/g) and Hylon VII (28.50 mg/g), 

indicating the important role of the guest molecule structure on the extent of complexation.  

The available studies on the complexation of starch with phenolic compounds have not 

reported the effect of starch molecular size on the complexation yield.28-33 The amylose DP 

involved in the complexation with fatty acids was suggested to be less than 400 but greater than 

20.24,34,35 Starch chains of DP >400 would not form a stable helix, but DP <20 was too short to 

induce the helical conformation. The present results indicate the importance of both acetylation 

and DP range on enhancing complexation, and there was a different combination of DS of 

acetylation and DP of starch chains for the formation of soluble complexes versus insoluble 

complexes. Starch chains of DP >400 is proposed to participate in complexation because Hylon 

VII comprised a greater proportion of DP >400 (Figure 3.1) and contained greater naringenin 

contents in all complexes compared with potato starch. 

3.4.4 Physicochemical Properties of Starch-Naringenin Complexes 

Wide Angle X-ray Diffraction Pattern 

The X-ray diffraction patterns of potato starch and Hylon VII naringenin complexes are 

illustrated in Figures 3.2 and 3.3, respectively. The insoluble complexes from all treated potato 

starches displayed a B+V-type X-ray diffraction pattern (Figure 3.2), whereas the soluble 

complexes displayed an A+V or V-type pattern. The formation of A, B, or C type crystalline 

structure has been ascribed to be governed by the average chain length of amylopectin.36,37 The 

A-type starches had a shorter average chain length (DP ≤19.7) than the B-type starches (DP 
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≥21.6). The present X-ray diffraction results suggest that longer DP chains tended to form 

insoluble complexes, whereas shorter DP chains favored the formation of soluble complexes, 

supporting the complexed naringenin results (Table 3.1) and the results by Arijaje et al.18 and 

Arijaje and Wang19,20. The amorphous structure under the peaks generally increased as the DS of 

acetylation increased, confirming the interference of acetyl groups to the helical structure. 

Overall, potato starch complexes comprised a larger proportion of amorphous structure than 

Hylon VII complexes, inferring that shorter chains were less involved in the crystalline structure 

because a larger proportion of short chains was present in potato starch than in Hylon VII (Figure 

3.1 A and B). 

The V-type crystalline structure was observed in all soluble and insoluble complexes, 

with the soluble complex of high acetylated/β-amylase treated potato starch showing the most 

prominent V-type structure at diffraction angles ~13° and ~20°. The β-amylase treatment 

increased the intensity of the V-type crystalline structure of both soluble and insoluble 

complexes of potato starch, although the effect was not as significant as the complexes of 

stearic18, oleic19, and linoleic20 acids. Unlike potato starch, the β-amylase treatment did not 

significantly affect the crystalline structure of Hylon VII complexes. Meanwhile, both soluble 

and insoluble complexes of Hylon VII showed a V+B-type structure (Figure 3.3), which was 

attributed to its larger proportion of long DP chains. 

Kim and Huber33 reported that the complex of β-carotene with common corn starch 

showed a Vh structure, which was not ascribed to the β-carotene complex but rather to the 

interaction of the alcohol used to solubilize β-carotene. They suggested that the configuration 

and steric hindrance of β-carotene did not allow the formation of a detectable crystalline 

structure. Quercetin and genistein are similar to naringenin in structure. The complex of 
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quercetin with common corn starch was highly amorphous32, whereas the complex of genistein 

with Hylon VII exhibited a V6III crystalline structure, which was ascribed to guest molecule 

trapped between the helices.29 Previous reports38,39 on the complex of naringenin with β-

cyclodextrins suggest that the phenyl ring in naringenin was more prone to entering the helix 

cavity, whereas the chromone moiety was oriented towards the exterior. It is hypothesized that 

the observed mixed crystalline structures in the present study represent a mixture of naringenin 

partly inside the helix and partly physically trapped between the helices inter-dispersed among 

varying proportions of short and long starch chains. 

Attenuated total reflectance Fourier Transform Infrared (ATR FT-IR) Spectroscopy 

Figures 3.4 and 3.5 shows the ATR FT-IR spectra of both soluble and insoluble 

complexes, the individual starches, and the physical mixture of naringenin with potato starch and 

Hylon VII, respectively. Before acetylation, the slight difference between the spectra of potato 

starch and Hylon VII lay in the location of the saccharide band at 992 cm-1 for potato starch and 

998 cm-1 for Hylon VII, representing intra and inter molecular hydrogen bonds.40 After 

acetylation, both starches showed strong absorption at 1720 cm-1 (C=O stretching of acetyl 

group), 1365 cm-1 (C–H in acetyl group) and 1244 cm-1 (C–O stretching of acetyl group).41 These 

bands were characteristic of acetyl group attached to glucose units, and the bands increased with 

increasing acetylation level. Although no appreciable differences were noted between the spectra 

of the complexes for both starches, there were differences between the complexes and the 

physical mixtures, confirming that the results observed in the X-ray diffraction patterns were not 

physical mixtures, and that some association between starches and naringenin existed. 

To better distinguish the differences in spectra, the differential spectrum of the complexes 

was analyzed by subtracting the corresponding starch band absorption from the complexes 
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spectra as well as the naringenin spectrum (data not shown). This analysis concluded that both 

starch and naringenin were involved in the complex formation. Bands between 3600-3000 cm-1, 

which are related to free hydroxyl groups, were present in both differential spectrums. For 

acetylated starches the C=O stretching of the acetyl group (1720 cm-1) remained unchanged. 

After the β-amylase treatment, both complexes showed decreased intensity on the aromatic band 

(1510 -1601 cm-1), and the intensity of the –OH band of the phenyl ring (1200 cm-1) was greater 

in the complexes of Hylon VII, but weaker in the potato starch complexes, which might be 

associated with the amount of complexed naringenin. The spectra results support X-ray 

diffraction results that both soluble and insoluble complexes existed in both amorphous and 

crystalline structures since the peak at ~1022 cm-1 was reported to be associated with the 

amorphous region of starch42, 43 and the complexes displayed varied intensity at that band.  

Thermal Properties by Differential Scanning Calorimetry 

The thermal properties of all starch-naringenin complexes are summarized in Table 3.2. 

All insoluble complexes displayed melting endotherms, but only the soluble complexes of high 

acetylated starches displayed thermal transitions. Except for the insoluble complex of high 

acetylated debranched/β-amylase treated potato starch, the onset temperature of insoluble 

complexes decreased with increasing DS of acetylation, confirming previous studies that the 

introduction of acetyl groups interfered with re-association of starch chains and consequently 

less ordered crystalline structure.18-20,44,45 The thermal transition of starch inclusion complexes, 

mostly from starch-lipid complexes, includes Type I complexes of a randomly oriented helical 

structure that dissociates between 95 and 105 °C and Type II complexes of aggregated Type I 

complexes melting around 115 °C.46-48 Because starch and naringenin complexes comprised both 
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V-type and A- or B-type crystalline structures, their thermal transitions were broader than Type I 

complexes, suggesting a more heterogeneous nature of these complexes.  

Similar to results by Arijaje et al.18 and Arijaje and Wang19,20, the enthalpy values for all 

complexes did not reflect the amount of complexed naringenin. The greatest naringenin content 

was obtained from the insoluble complexes of high acetylated β-amylase treated potato starch 

and Hylon VII with enthalpy values 6.5 J/g and 3.3 J/g, respectively. The absence of endotherms 

in the unacetylated and low acetylated soluble complexes is hypothesized to be associated with a 

crystalline structure comprising very small and isolated crystallites in the soluble complexes, 

which was easily destabilized and consequently not detected by DSC. 

In conclusion, this study demonstrated that naringenin formed both soluble and insoluble 

complexes with debranched potato starch and Hylon VII. Acetylation increased the formation of 

the soluble complexes and the complexed naringenin, and the β-amylase treatment further 

enhanced the complexed naringenin. The molecular size distribution became narrower after the 

β-amylase treatment, which enhanced complexation with naringenin for both starches. 

Regardless the modification, starch structural characteristics determined the extent of 

complexation. Starch chains with DP >400 were suggested to be involved in complexing 

naringenin. Starch long DP chains encouraged the formation of insoluble complexes, where short 

DP chains were more involved in soluble complexes. Both soluble and insoluble complexes 

comprised a mixture of amorphous and crystalline structures as shown by their X-ray diffraction 

patterns. ATR FT-IR results confirmed the molecular interaction between starch and naringenin. 

It is important to consider both starch DP range and DS of acetylation for individual complex in 

order to maximize complexation yield with naringenin.   
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Table 3.1. Degree of Substitution, Complex Recovery and Percentage of Naringenin Content Recovered from All Complexesa 

 

 

 

 

 

 

 

 

 

 

  

debranched

starch 
acetylation 

β-amylase 

treatment 

type of 

complex 
DS of acetylation recovery (g/g)  

naringenin in individual 

complex (mg/g) 

potato no no  soluble NAb 0.30±0.01D 2.45±0.01G 

no  insoluble NA 0.64±0.00c 4.42±0.11e 

yes  soluble NA 0.33±0.02D 2.67±0.33G 

yes  insoluble NA 0.62±0.01c 3.91±0.25e 

low  no  soluble 0.034±0.055F 0.60±0.00C 2.35±0.76G 

no  insoluble 0.034±0.000f 0.31±0.00d 4.44±0.81e 

yes  soluble 0.049±0.022D 0.62±0.01C 4.00±0.34E-G 

yes  insoluble 0.045±0.022d 0.32±0.00d 6.69±0.77de 

high  no  soluble 0.071±0.044C 0.69±0.01B 3.90±0.33FG 

no  insoluble 0.067±0.000c 0.25±0.01e 7.53±1.10d 

yes  soluble 0.086±0.044A 0.71±0.03B 4.81±0.79D-F 

yes  insoluble 0.081±0.000a 0.25±0.04e 11.75±1.05c 

Hylon VII no no  soluble NA 0.12±0.00F 6.72±1.12CD 

no  insoluble NA 0.87±0.00a 8.06±1.20d 

yes  soluble NA 0.14±0.00F 8.82±0.07AB 

yes  insoluble NA 0.83±0.00a 13.61±0.52c 

low  no  soluble 0.032±0.022F 0.24±0.00E 10.86±0.59A 

no  insoluble 0.031±0.022g 0.72±0.00b 11.92±0.67c 

yes  soluble 0.041±0.000E 0.24±0.00E 9.39±0.06A 

yes  insoluble 0.040±0.022e 0.65±0.00c 18.66±0.69b 

high  no  soluble 0.077±0.022B 0.77±0.00A 6.93±0.09BC 

no  insoluble 0.077±0.000b 0.19±0.00f 17.79±0.06b 

yes  soluble 0.089±0.022A 0.77±0.00A 6.00±0.23C-E 

yes  insoluble 0.080±0.000a 0.19±0.00f 28.50±0.00a 
aMean of two replicates with standard deviation. Mean values in the same column followed by different uppercase or lowercase 

letters are significantly different based on Tukey’s HSD test. bNA: Not applicable. 

 



 

 

  

4
7
 

Table 3.2. Melting Temperatures and Enthalpiesa of Recovered Soluble and Insoluble Fractions of Native and Acetylated Potato 

Starch and Hylon VII Naringenin Complexes 

debranched starch acetylation 
β-amylase 

treatment 
type of complex 

temperature (°C) 
enthalpy 

(J/g) onset peak end 

potato no no  soluble NDb ND ND ND 

no  insoluble 101.0±1.1b 110.3±0.1b-d 118.2±0.63a-c 9.8±0.2a 

yes  soluble ND ND ND ND 

yes  insoluble 100.6±0.4b 109.9±0.1cd 118.3±0.36a-c 10.3±0.5a 

low  no soluble ND ND ND ND 

no insoluble 94.5±0.0c 105.9±0.1e 111.7±0.01e 3.2±1.0b 

yes soluble ND ND ND ND 

yes insoluble 94.4±0.5cd 107.0±0.0e 110.9±0.56e 3.6±0.7c 

high  no soluble 90.5±0.7C 106.2±1.0A 117.0±0.41A 6.0±0.5AB 

no insoluble 92.5±0.0e 109.8±0.5d 119.1±1.04ab 4.4±0.9bc 

yes soluble 91.1±0.6C 99.0±0.8B 105.6±1.39C 4.1±0.9B 

yes insoluble 108.6±0.1a 112.3±0.0a 118.4±0.47a-c 6.5±0.7c 

Hylon VII no no  soluble ND ND ND ND 

no  insoluble 101.1±0.4b 111.9±0.0ab 119.2±0.35ab 3.1±0.2 

yes  soluble ND ND ND ND 

yes  insoluble 100.6±0.1b 111.8±0.0a-c 120.2±0.73a 5.2±0.1bc 

low  no soluble ND ND ND ND 

no insoluble 102.0±0.1b 111.1±0.7a-d 117.6±0.62bc 3.6±0.3c 

yes soluble ND ND ND ND 

yes insoluble 102.0±0.7b 111.0±0.4a-d 118.3±0.45a-c 4.2±0.0c 

high no soluble 99.5±0.6A 106.6±0.2A 113.7±1.82AB 7.1±0.4A 

no insoluble 92.3±0.7e 109.7±0.6d 115.2±0.54d 3.9±0.1c 

yes soluble 93.3±0.1B 104.6±0.0A 111.2±0.93B 6.7±0.8AB 

yes insoluble 92.5±0.1de 110.2±0.8b-d 116.4±0.08cd 3.3±0.9c 

a Mean of at least two replicates with standard deviation.  Mean values in the same column followed by different uppercase or 

lowercase letters are significantly different based on Tukey’s HSD test. bND: Not detected 
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Figure 3.1. Normalized size-exclusion chromatograms of native and acetylated debranched and 

debranched/β-amylase treated potato and Hylon VII starches. 
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Figure 3.2. X-ray diffractograms of soluble and insoluble starch-naringenin complexes of native 

and acetylated debranched and debranched/β-amylase treated potato starch. 
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Figure 3.3. X-ray diffractograms of soluble and insoluble starch-naringenin complexes of native 

and acetylated debranched and debranched/β-amylase treated Hylon VII. 
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Figure 3.4. Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) spectra of 

soluble and insoluble starch-naringenin complexes of native and acetylated debranched and 

debranched/β-amylase treated potato starch. The spectra of native potato starch and physical 

mixture of native potato starch and naringenin are included for comparison. 
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Figure 3.5. Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) spectra of 

soluble and insoluble starch-naringenin complexes of native and acetylated debranched and 

debranched/β-amylase treated Hylon VII. The spectra of native Hylon VII and physical mixture 

of Hylon VII and naringenin are included for comparison.   

  



  
 

53 

   

CHAPTER 4 

HYDROXYPROPYLATION AND ENZYMATIC TREATMENT ON STARCH 

COMPLEXATION WITH NARINGENIN 

 

4.1 ABSTRACT 

The objective of this study was to investigate the effect of hydroxypropylation and 

enzymatic treatments on starch complexation with naringenin. Potato starch and Hylon VII were 

hydroxypropylated to two degrees of substitution and then debranched or debranched/β-amylase 

treated prior to complexing with naringenin. Both soluble and insoluble complexes were 

recovered and characterized. Increasing degree of substitution increased recovery of soluble 

complexes, while total recovery remained unchanged, and the β-amylase treatment further 

increased soluble complex recovery. Insoluble complexes comprised greater naringenin contents 

(3.91-15.15 mg/g) compared to soluble counterparts (2.45-9.43 mg/g). All complexes exhibited a 

mixture of B+V X-ray diffraction pattern. Overall both hydroxypropylation and β-amylase 

treatment improved complexation of potato starch and Hylon VII with naringenin.  

KEYWORDS: hydroxypropylated starch, naringenin, β-amylase, inclusion complex, soluble 

complex, X-ray diffraction. 
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4.2 INTRODUCTION 

The formation of starch inclusion complexes is mainly attributed to amylose that is 

capable of adopting a single left-handed helical conformation to complex with hydrophobic 

molecules.1 The extent of complexation is primarily affected by amylose degree of 

polymerization (DP) and guest structure, which has been extensively researched using fatty acids 

as model compounds.2-8 Rutschmann et al.9 reported that the thermal stability of amylose and 

menthone complex increased with an increase in amylose DP. Godet et al.10 prepared amylose of 

different DPs (20, 30, 40, 100 and 900 anhydroglucose units) to form complexes with caprylic, 

lauric, and palmitic acid, and found that as the amylose DP increased the melting temperature of 

the resulting complexes increased. Later, Godet et al.11 demonstrated that amylose of DP 20 was 

too short to form complex with fatty acids, and the yield of complexes increased with increasing 

amylose DP. Recently, Arijaje et al.12-14 modified potato starch with acetylation followed by 

debranching and β-amylase hydrolysis and found that linear starch chains of DPs ~50-80 was 

involved in the formation of complexes with stearic, oleic, and linoleic acids. Wulff and Kubik15 

first reported the formation of soluble complexes of sodium dodecyl sulfate with potato amylose 

of hydroxypropylation at a degree of substitution (DS) 0.075 and DPs ~9-250. Arijaje et al.12 and 

Arijaje and Wang13, 14 also showed the formation soluble complexes, and soluble complex was 

increased by 154-245% for stearic acid, 233-375% for oleic acid, and 327-490% for linoleic acid 

when potato starch was acetylated and then reduced in DP by debranching and β-amylase 

hydrolysis.  

The complexation between starch and bioactive compounds is not well researched. The 

complex of starch with tea polyphenols (TPLs) was suggested to contribute to changes in starch 

rheological properties as well as in vitro starch digestion rate when TPLs were mixed with 
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common corn, waxy maize, and high amylose corn starches.16-18 Different amounts of quercetin 

were complexed with ungelatinized and pregelatinized common corn starch, and the thermal 

stability of the resulting complex was governed by the quercetin content in the complex.19 

Lorentz et al.20 studied the inclusion complex of potato amylose with chlorogenic acid and 

concluded that grafting 4-O-palmitoyl to the acid increased the complex formation. Genistein, 

the major isoflavone in soybean, was complexed to a greater extent with potato amylose (DP 

~900) than with high amylose corn starch, implying that amylopectin long branches was also 

involved in the complexation.21 Van Hung et al.22 showed that debranched cassava starch 

complexed with ferulic acid, resulting in insoluble complexes of B-type X-ray diffraction pattern 

with improved solubility and antioxidant capacity. Recently, β-carotene exhibited improved 

stability and water solubility after complexed with common corn starch.23  

Naringenin is a phenolic compound belonging to the flavanone class, and its three-ring 

structure effects a low water solubility.24 Although naringenin has been shown to display anti-

cancer25, anti-inflammatory26, and anti-microbial activities27, the low water solubility limits its 

pharmaceutical application. The solubility of naringenin was improved by 10, 365, and 400-fold 

when complexed with β-cyclodextrin (β-CD)28, dimethyl β-CD29, and hydroxypropyl-β-CD30, 

respectively. However, concerns remain on the toxicity and high cost of CD derivatives. In our 

previous study31, potato and high amylose corn (Hylon VII) starches were acetylated and then 

debranched without or with DP reduction by β-amylase before complexing with naringenin. The 

results showed that both soluble and insoluble starch-naringenin complexes were formed and the 

naringenin content in both complexes increased as a result of acetylation and the enzymatic 

treatment. The present study followed a similar approach but using hydroxypropylation because 

the reported improved solubility of naringenin by hydroxypropyl-β-CD.30,32 Therefore, the 
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objective of this study was to investigate the complexation of naringenin with starch that was 

hydroxypropylated and debranched without and with β-amylase hydrolysis, and the resultant 

soluble and insoluble complexes were recovered and characterized for their physicochemical 

properties. 

4.3 MATERIALS AND METHODS 

Materials 

Potato starch and high amylose corn starch (~70 % amylose, Hylon VII) were kindly 

provided by Ingredion (Bridgewater, NJ). Potato starch was used without further treatment, and 

Hylon VII was defatted by extraction with 85% (v/v) methanol for 24 h, dried at 40°C for 24 h, 

and milled using a UDY Cyclone Mill (UDY Corporation, Ft. Collins, CO) fitted with a 0.5-mm 

sieve. Isoamylase (specific activity 240 U/mg), pullulanase (specific activity 34 U/mg), and β-

amylase from Bacillus cereus (specific activity 2,182 U/mg) were purchased from Megazyme 

Ltd. (Wicklow, Ireland). Naringenin was obtained from Sigma-Aldrich (St. Louis, MO). All 

other chemicals and reagents were of analytical grade. 

Hydroxypropylation of Starch 

Hydroxypropylation of potato starch and Hylon VII were carried out as described by 

Wang and Wang.33 Starch (100 g, db) was used to prepare a 35% (w/w) slurry in a 1-L reaction 

vessel and added with Na2SO4 (15%, starch db). Hydration was allowed for 30 min with stirring 

prior to pH adjustment to 11.5 with 1 M NaOH. The vessel was carefully sealed, 4 (low) or 8% 

(high) propylene oxide (starch db) was added through an opening, and then the temperature was 

gradually increased to 45°C. After 18 h of reaction, the pH was adjusted to 5.5 with 0.1 M HCl, 

and the slurry was washed three times with two-fold volume of deionized water, vacuum filtered, 

and dried at 40°C for 24 h. The hydroxypropyl content was determined by following the 
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colorimetric method of Johnson34, and the corresponding DS was calculated according to 

Wurzburg.35 

Debranching of Starch 

The debranching of native and hydroxypropylated starches followed the procedure of 

Arijaje et al.12 with modifications. A mixture of 7.5 g starch (wet basis) and 200 mL of deionized 

water (3.75% w/w) was gelatinized in boiling water for 1 h. The solution temperature was 

equilibrated to 40°C and adjusted to pH 5.0 with 0.5 M HCl. A mixture of isoamylase and 

pullulanase (1.33% each, starch db) was added, and the reaction was carried at 40°C for 48 h 

with constant stirring. The resulting debranched starch was recovered by precipitation with pure 

ethanol (four-fold volume), centrifuged at 7000 ×g for 15 min, dried at 40°C for 48 h, and milled 

to powder using the UDY Cyclone Mill. The additional β-Amylase treatment followed the 

method described by Arijaje et al.12  

Preparation of Starch-Naringenin Complex 

Starch-naringenin complexes were prepared by following the method described by 

Arijaje et al.12 with modifications. The pH of the debranched starch slurry (3.75% w/v) was 

adjusted to pH 7.0, and the temperature was gradually increased from 40 to 80°C. Naringenin 

(20% of starch db) that was previously dissolved in warm ethanol (6% w/v) was slowly added 

into the starch slurry. After 30 min at 80°C, the temperature of the mixture was adjusted to and 

maintained at 45°C with constant stirring for 24 h. The resulting solution was centrifuged at 

7,000 ×g for 15 min to obtain the precipitate as the insoluble complex, whereas the soluble 

complex remained in the supernatant. Both the supernatant and the precipitate, i.e. the soluble 

and insoluble complexes, respectively, were dried at 40°C for 48 h and then ground using the 

UDY Cyclone Mill. Uncomplexed naringenin was removed from the soluble and insoluble 
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complexes by rinsing the complexes with 95% ethanol (10 % w/v). The mixture was vortexed for 

30 s and then rotated using a labquake shaker (Barnstead/ thermolyne, Dubuque, IA) for 15 min. 

The slurry was centrifuged at 20,000 ×g for 10 min, and then the supernatant was descarted. A 

second wash was carried out under the same conditions to ensure a complete removal of 

uncomplexed naringenin. The resulting precipitate was dried at 40°C overnight and ground using 

mortar and pestle. The complex recovery was expressed as the complex weight recovered over 

the initial material weight. 

Characterization of Inclusion Complexes 

Starch Molecular-Size Distribution 

The molecular-size distribution of the enzyme-treated starches was characterized by high-

performance size-exclusion chromatography (HPSEC) according to Arijaje et al.12 Ten mg of 

starch were solubilized in 5.0 mL of 90% dimethyl sulfoxide (DMSO), boiled for 1 h, stirred 

overnight at room temperature, and centrifuged at 9,300 ×g for 10 min prior to injection into a 

Waters HPSEC system (Waters Corp., Milford, MA). The HPSEC system was equipped with an 

inline degasser, a model 515 HPLC pump with a 200-μL injector valve (model 7725i, Rheodyne, 

Cotati, CA), a model 2414 refractive index detector, a guard column (OHpak SB-G, 6.0 × 50 mm 

i.d × length), and two Shodex columns (OHpak SB-804 HQ and KB-802, 8.0 × 300 mm i.d × 

length). The flow rate was set at 0.5 mL/min, the mobile phase consisted of 0.1 M sodium nitrate 

with 0.02% sodium azide, and the columns temperature was kept at 55°C and the detector at 

40°C. The data was collected with an Empower Pro2 software (Waters Corp., Milford, MA), and 

the molecular size distribution calculated by comparing against standards of molecular weight 

180.16, 828.72, 1,153, 5,200, 148,000, 872,300, and 1,100,000 g/mol (Waters Corp., Milford, 

MA), and 1,100,000 g/mol (Sigma-Aldrich, St. Louis, MO). 
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Naringenin Content in the Complex 

Naringenin was released from the complex by acid hydrolysis. Twenty-five mg of the 

complex was added with 2.5 mL of 1 M HCl, heated in boiling water for 1 h, added with 12.5 

mL of methanol, and then rotated overnight with the labquake shaker. An aliquot of 1.5 mL was 

transferred to a 2-mL micro-centrifuge tube and centrifuged at 9,300 ×g for 10 min. From the 

resulting supernatant, an aliquot of 0.5 mL was transferred to 1.5 mL screw-capped glass vials 

and placed in an autosampler before injection into an HPLC system (Beckman-Coulter, 

Fullerton, CA). The reverse-phase HPLC system consisted of an autosampler (Model 508), a 

dual pump (model 126), and a photodiode array detector (Model 168) and a Phenomenex 

(Torrance, CA) Kinetex XB-C18, 100A, 2.6 micron (100 × 4.6 mm) column. The mobile phase 

was a binary gradient consisting 60% 0.1% trifluoroacetic acid in water as the mobile phase A 

and 40% acetonitrile as mobile phase B, and run under an isocratic condition at a flow rate of 1 

mL/min. A commercial standard (Sigma-Aldrich) was used as the reference to identify and 

quantify naringenin by comparing with the retention time. The data was collected using 

Beckman-Coulter System 32 Karat software (Version 8, 2006), and the results were expressed as 

mg of naringenin per g of the complex. 

Physicochemical Properties 

Thermal Properties. The thermal properties of the complexes were analyzed using a 

differential scanning calorimeter (DSC, Diamond, Perkin-Elmer, Shelton, CT). Approximately 3 

mg of the complex was weighed into a stainless steel pan, and then 10 µL of distilled water was 

added. The pan was hermetically sealed and allowed to equilibrate at room temperature for 18 h 

before scanning from 25 to 200°C, cooling from 200 to 25°C, and re-scanning from 25°C to 
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200°C. The scanning speed was set at 10°C/min. The onset temperature, peak temperature, end 

temperature, and enthalpy of any transition were calculated by Pyris data analysis software. 

Wide Angle X-ray Diffraction Pattern. The X-ray diffraction pattern of the complexes 

was determined using a Philips PW 1830 MPD diffractometer (Almelo, the Netherlands). The X-

ray generator was set at 45 kV and the current tube at 40 mA. The scanning 2θ angle went from 

5° to 35° with a step size of 0.02° at 1 s per step. 

Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) Spectroscopy. 

The ATR FT-IR spectra of the complexes was recorded after scanning with a Nicolet 8700 

spectrometer (Thermo Electron Scientific Inc., Waltham, MA) using a Golden Gate ATR 

accessory (Specac) equipped with a single-reflection diamond crystal. A constant temperature 

(25°C ± 0.1°C) was maintained during the scanning, and for each sample, 64 scans were 

collected with a resolution of 4 cm-1. The spectrometer’s EverGlo source was on turbo mode 

during measurements. The complexes were conditioned for 7 days in a desiccator containing 

silica gel prior to analysis. 

Statistical Analysis 

The experiment was replicated two times. For each analysis, at least two duplicates were 

conducted. The data was analyzed using JMP Pro13 Software (SAS Institute Inc., Cary, NC, 

USA), and the means compared using Tukey’s honestly significant differences (HDS) test. 
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4.4 RESULTS AND DISCUSSION 

4.4.1 Molecular Size Distribution 

Figure 4.1 illustrates the molecular size distribution of native and hydroyxypropylated 

(HP) potato starch and Hylon VII that were debranched or debranched/β-amylase treated. In 

general, debranched potato and Hylon VII starches displayed four and three peaks, respectively, 

and three and two peaks, respectively, when the β-amylase treatment was incorporated. 

Hydroxypropylation resulted in an increase in the proportion of large molecular size peaks, 

which was ascribed to an increase in hydrodynamic volume from the substituted hydroxypropyl 

groups. When the β-amylase treatment was included, the molecular size distributions became 

narrower and peak DP of all peaks shifted to shorter retention times. A similar trend was 

observed in our previous study with acetylated starches.31 Hylon VII starches with or without β-

amylase hydrolysis displayed a larger proportion of longer DP chains ~40-950 (Figure 4.1B and 

4.1D); potato starches showed a larger proportion of shorter DP chains ~40-140 (Figure 4.1A 

and 4.1C) after the same treatments. For both starches the fraction of peak DP 35-45 decreased 

with increasing hydroxypropylation level. 

4.4.2 Degree of Substitution (DS) 

The initial DS values of low and high HP DS of potato starch were 0.051 and 0.129, 

respectively, and those of low and high HP Hylon VII were 0.063 and 0.122, respectively. Table 

4.1 summarizes the DS values of soluble and insoluble complexes of potato starch and Hylon VII 

that were debranched or debranched/β-amylase treated. For the same treatment, soluble complex 

displayed a similar or greater DS compared to that of insoluble complex, agreeing with our 

previous study of acetylated potato and Hylon VII starches.31 The DS values of high HP potato 

starch complexes were significantly greater than those of high HP Hylon VII, which was 
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attributed to the presence of a greater proportion of shorter chains in potato starch. The 

incorporation of the β-amylase treatment did not alter the DS for both complexes of both 

starches. The trend was different from our previous study with acetylated starches, where the DS 

of all complexes increased with the introduction of β-amylase treatment. It is hypothesized that 

acetyl groups were predominantly introduced in the amorphous lamella close to the branching 

points, whereas the hydroxypropyl groups may be present in the amorphous lamella close to the 

branching points as well as the amorphous regions close to the non-reducing ends due to their 

different reaction condtions.33,36-38 Because β-amylase cannot bypass the hydroxypropyl groups 

in the non-reducing ends, the resultant starch chains comprised a greater amount of 

hydroxypropyl groups compared with acetylated starch in the previous study.31 

4.4.3 Complex Recovery and Naringenin Content 

Table 4.1 presents the recovery, which was expressed as recovered complex weight (g) 

over initial materials weight (g), and the naringenin content in both soluble and insoluble 

complexes for all treatments. The total recovery ranged 0.91-0.99 g/g and similarly to previous 

studies12-14,31 the combination of hydroxypropylation with the enzymatic treatment had no 

significant impact on the total recovery of both complexes. Hydroxypropylation significantly 

increased the formation of soluble complex, whereas the β-amylase treatment did not change the 

recovery of soluble or insoluble complex in both starches.  

For the same treatment, the naringenin content was greater in the insoluble complex than 

in the soluble complex, and was greater in Hylon VII complexes (6.72-15.15mg/g) than in potato 

starch complexes (2.45-11.18 mg/g), agreeing with our previous study31 of acetylated Hylon VII 

and potato starch. The naringenin content generally increased with increasing DS of HP starches, 

and increased for low HP starches when the β-amylase treatment was incorporated for both 
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complexes. The bulky hydroxypropyl groups at a high hydroxypropylation level may interfere 

with the conformation of helical structure, thus resulting in reduced complexation capability. 

Furthermore, hydroxypropyl groups are less hydrophobic than acetyl groups. Thereby, it is 

suggested that a combination of decreased hydrophobicity and increased stearic hindrance was 

responsible for the lower complexation yield of HP starches compared with acetylated 

starches.31,39,40 Wulff showed that the soluble complex of HP potato amylose (DS 0.13) 

complexed a greater amount of iodine than that of acetylated counterpart of a similar DS 

(0.14).32 The insoluble complex of acetylated Hylon VII was reported to comprise more α-

naphthol than that of HP Hylon VII.41 These discrepancies suggest that guest molecule structure 

and DS of starch also impacted complexation yield besides substitution type.  

Starch DP involved in complexing with fatty acids was suggested to be greater than 20 

but less than 400.42-44 Starch chains greater than DP 400 were believed to be too long to form an 

ordered helical structure, but starch chains less than DP 20 were too short to induce helical 

structure. When considering all treatments, the majority of starch chains were present 

approximately between DP 40 and 200 for potato starch and between 40 and 600 for Hylon VII 

(Figure 4.1). Because of a greater naringenin content in Hylon VII complexes than in potato 

starch complexes, starch chains longer than DP 200 were suggested to be also involved in 

complexing with naringenin, similar to the DP ranges found in acetylated starches.31 

The ferulic acid in the complex with debranched cassava starch ranged 6.8-31.5 mg/g23; 

the genistein content in the complex with unmodified potato amylose ranged 14-113 mg/g.21 It 

should be noted that both studies only reported the bioactive compounds in the insoluble 

complex. The greatest complexed naringenin contents in the insoluble complexes were 11.18 and 

15.15 mg/g for potato starch and Hylon VII, respectively, and the naringenin contents in the 
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soluble complexes ranged 2.45-9.43 mg/g in the present study. The differences among these 

studies confirm that the structure of the guest molecule was of great importance in determining 

the extent of complexation. The non-planar conformation of naringenin B-ring compared with 

genistein is suggested to contribute to the lower complexation of naringenin since changes on its 

orientation might prevent naringenin from properly positioning inside the helical structure, thus 

forming unstable complexes. 

4.4.4 Physicochemical Properties of Starch-Naringenin Complexes 

Wide Angel X-ray Diffraction Pattern 

Figures 4.2 and 4.3 display the X-ray diffraction pattern of both complexes from potato 

starch and Hylon VII, respectively. For all soluble and insoluble complexes, hydroxypropylation 

resulted in an increased amorphous structure compared to the native counterpart. The V-type X-

ray diffraction pattern, with a weak diffraction angle 2θ at 19.9°, was greatly affected by 

hydroxypropyl groups that might prevent the alignment and formation of the helices for a more 

defined V-type structure. Unlike acetylated potato starches31, the β-amylase treatment did not 

increase the V-type structure but generally increased the amorphous structure. In contrast the β-

amylase treatment slightly decreased the amorphous structure of Hylon VII complexes, which 

was attributed to an increase in the proportion of longer DP chains (Figure 4.1). 

Except for the soluble complex of native potato starch displaying the A-type pattern, all 

soluble and insoluble complexes showed a mixture of B+V type crystalline structure. Most 

complexes of acetylated potato and Hylon VII also showed a mixture of B+V patterns, except the 

soluble complexes of all treated potato starch displaying A+V-type. Zhang et al.19 studied the 

complexation of lauric acid with debranched high amylose corn starch (Hylon V), and observed 

that as the debranching time increased from 0 to 24 h, the X-ray diffraction pattern of the 
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insoluble complexes shifted from the V-type to a mixture of B+V-type.19 Van Hung et al.23 only 

observed the B-type crystalline structure for the insoluble complex of ferulic acid with 

debranched cassava starch.23 These results indicate the importance of starch DP and the 

introduction of substituents on the structure of the resultant complexes.  

Attenuated total reflectance Fourier Transform Infrared (ATR FT-IR) Spectroscopy 

The ATR FT-IR spectra of soluble and insoluble complexes along with the physical 

mixture of naringenin with potato starch and Hylon VII are shown in Figures 4.4 and 4.5, 

respectively. Forrest and Cove45 suggested that the absorption of methyl group of hydroxypropyl 

substituents occurred between ~2850-3000 cm-1 (CH-stretching) and ~1350-1475 cm-1 (CH 

deformation), which is the same range where native starch naturally present groups, i.e. C-O-C, 

display strong absorption, hence the characteristic bands overlap. The FT-IR spectra of HP 

starches and their complexes displayed an increase in the intensity of the bands at ~2850-3000 

cm-1 and ~1350-1475 cm-1 with increasing DS of hydroxypropylation, which was attributed to 

the incorporation of hydroxypropyl groups into starch chains. Although no appreciable 

difference was observed between the spectra of parent starches and that of the complexes, the 

spectra of the physical mixture was different and displayed a superimposition of the individual 

spectra of starch and naringenin. 

Analysis of the differential spectra (data not shown) revealed that the bands ~2850-3000 

cm-1 and ~1350-1475 cm-1 remained for all the complexes, and therefore it is suggested that 

hydroxypropyl groups were involved in the complex. The intensity of the band was greater for 

the soluble complexes than the insoluble complexes, which is agreement with the DS results 

(Table 4.1) where soluble complexes generally had a greater DS.  In agreement with our 

previous study with acetylated starches31 the bands between ~3600-3000 cm-1 (hydroxyl groups) 
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were present after the subtraction of the spectrum of starch and naringenin, suggesting that some 

molecular interaction between naringenin and starch was involved in the complex formation. It 

should be noted that the intensity of the bands between ~3600-3000 cm-1 was greater for Hylon 

VII than for potato starch, confirming a greater involvement of Hylon VII chains in complexing 

with naringenin. The differential spectrum (data not shown) also showed that the band ~988 cm-1 

(CO stretching of ring B)46 was involved in both complexes, indicating that the B ring of 

naringenin was involved in complexing with starch chains. When the β-amylase treatment was 

incorporated, a slight increase in the band ~988 cm-1 was observed, which might be related to the 

amount of naringenin complexed. This effect was more evident in HylonVII, presumably 

because of its greater complexing capability. These results corroborate the X-ray diffraction 

pattern results and also confirm that some molecular interaction took place between starch and 

naringenin in forming complexes of different crystalline structures instead of physical mixtures. 

Thermal Properties by Differential Scanning Calorimetry 

The complexes from native starches displayed a typical endothermic transition at the first 

scan; however, the complexes from HP starches exhibited two exothermic peaks during the first 

scan and a single endothermic peak at the second scan, which was not observed in our previous 

study31 of acetylated starches. The bulky hydroxypropyl groups may effect a less organized 

packing of the helices38,40,47, which rearranged to become more ordered during the first scan. The 

soluble complexes did not exhibit any thermal transition, whereas the insoluble complexes 

displayed a transition between 100.7 and 122.2 °C (Table 4.2) for both native starches.  

 When HP starches were used, the onset melting temperature decreased, the melting 

temperature range reduced, and the enthalpy decreased, except that the melting temperature 

range increased for high HP potato starch. The high enthalpy values of complexes from native 
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starches relative to other complexes indicate the role of hydroxypropyl groups in destabilizing 

the complexes. The complexes of high HP potato starches exhibited the lowest melting 

temperatures and a large melting temperature range similar to those of native starches. For Hylon 

VII, hydroxypropylation resulted in decreased melting temperatures and enthalpy, but melting 

temperature range remained unchanged with a further increase in DS. It is proposed that the 

crystalline structure in high HP potato starch complexes comprised a mixture of crystallites with 

varied thermal stability due to the presence of less homogeneous DP distribution compared with 

Hylon VII, which produced complexes of overlapping endotherms. The β-amylase treatment 

increased melting temperature of some complexes of HP potato starch, but decreased melting 

temperatures of some complexes of HP Hylon VII.  

In conclusion, hydroxypropylation and the β-amylase treatment resulted in larger 

proportions of starch chains of longer DP for both Hylon VII and potato starch and increased 

complexed naringenin contents, suggesting that longer DP chains were involved in complexing 

with naringenin. HP starches formed both soluble and insoluble complexes with naringenin, and 

the introduction of hydroxypropyl groups enhanced the recovery of the soluble complexes. The 

naringenin content was greater in the insoluble complex than in the soluble complexes, and 

generally increased with increasing DS of hydroxypropylation. When the β-amylase treatment 

was included, a further increase in naringenin content was observed for low HP starches. FT-IR 

results confirmed the occurrence of molecular interaction between starch and naringenin in both 

complexes. A combination of favored DP range and hydroxypropylation level of starch was 

important in maximizing its complexation with naringenin. 
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Table 4.1. Degree of Substitution, Complex Recovery and Percentage of Naringenin Content Recovered from All Complexesa 

debranched 

starch 
hydroxypropylation 

β-amylase 

treatment 

type of 

complex 

DS of 

hydroxypropylation 
recovery (g/g) 

naringenin in individual 

complex (mg/g) 

potato no  no  soluble NAb 0.30±0.01C 2.45±0.01D 

no  insoluble NA 0.64±0.00b 4.42±0.11g 

yes  soluble NA 0.33±0.02C 2.67±0.33D 

yes  insoluble NA 0.62±0.01b 3.91±0.25g 

low  no  soluble 0.063±0.001C 0.60±0.01B 4.35±0.40CD 

no  insoluble 0.047±0.000d 0.32±0.00d 5.34±0.28fg 

yes  soluble 0.068±0.002C 0.65±0.01B 5.09±0.47B-D 

yes  insoluble 0.060±0.000cd 0.29±0.01d 11.18±2.15b-d 

high  no  soluble 0.153±0.000A 0.74±0.02A 6.75±2.77A-C 

no  insoluble 0.150±0.002a 0.19±0.01e 9.29±0.04c-e 

yes  soluble 0.154±0.001A 0.73±0.04A 4.34±0.75CD 

yes  insoluble 0.151±0.002a 0.18±0.00e 7.73±0.55ef 

Hylon VII no no  soluble NA 0.12±0.00D 6.72±1.12A-C 

no  insoluble NA 0.87±0.00a 8.06±1.20d-f 

yes  soluble NA 0.14±0.00D 8.82±0.07AB 

yes  insoluble NA 0.83±0.00a 13.61±0.52a-b 

low no  soluble 0.066±0.000C 0.65±0.04B 6.87±0.51A-C 

no  insoluble 0.067±0.000c 0.31±0.03d 11.33±0.10bc 

yes  soluble 0.066±0.004C 0.60±0.00B 7.73±0.02A-C 

yes  insoluble 0.059±0.001cd 0.37±0.00c 15.15±0.80a 

high no  soluble 0.115±0.008B 0.79±0.01A 9.43±0.41A 

no  insoluble 0.092±0.001b 0.18±0.00e 10.97±0.17b-d 

yes  soluble 0.107±0.008B 0.78±0.01A 9.21±1.15A 

yes  insoluble 0.082±0.008b 0.18±0.00e 10.31±0.04c-e 

 

 

 

aMean of two replicates with standard deviation. Mean values in the same column followed by different uppercase or lowercase 

letters are significantly different based on Tukey’s HSD test. bNA: Not applicable. 
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Table 4.2. Melting Temperatures and Enthalpiesa of Recovered Soluble and Insoluble Fractions of Native and Hydroypropylated 

Potato Starch and Hylon VII Naringenin Complexes. 

debranched 

starch 
hydroxypropylation 

β-amylase 

treatment 

type of 

complex 

Temperature (°C) 
Enthalpy (J/g) 

onset peak end 

potato no no  soluble NDb ND ND ND 

no  insoluble 100.7±0.2a 110.1±0.9b 118.3±0.20b 8.9±0.2a 

yes  soluble ND ND ND ND 

yes  insoluble 101.0±0.2a 109.7±0.1b 118.1±0.02b 9.7±0.2a 

low no soluble 84.0±0.1B 86.5±0.1CD 91.9±0.3B-D 2.6±0.1A-C 

no insoluble 83.1±0.1c 88.9±0.0cd 93.6±0.1d 2.6±0.1cd 

yes soluble 85.5±0.0A 91.1±0.2A 97.1±0.1A 2.5±0.5A-C 

yes insoluble 85.1±0.3b 90.7±0.3c 96.7±0.3c 2.3±0.3cd 

high no soluble 76.7±0.1F 88.5±0.5B 94.6±0.6AB 1.6±0.5CD 

no insoluble 76.9±0.2d 87.4±0.7de 93.4±0.4d 2.5±0.5cd 

yes soluble 77.5±0.5E 88.6±0.0B 94.0±0.1A-C 1.7±0.0B-D 

yes insoluble 76.9±0.2d 87.4±0.7de 93.4±0.4d 2.5±0.5cd 

Hylon VII no no  soluble ND ND ND ND 

no  insoluble 101.8±0.9a 112.5±0.5a 122.2±0.8a 4.1±1.0bc 

yes  soluble ND ND ND ND 

yes  insoluble 102.2±0.9a 114.4±0.3ab 119.7±0.9b 5.4±0.9b 

low no soluble 82.7±0.2C 85.5±0.0DE 91.3±2.0CD 2.9±0.4AB 

no insoluble 82.7±0.2c 85.6±0.1ef 92.6±0.1de 2.6±0.6cd 

yes soluble 81.8±0.2D 84.4±0.4E 87.8±0.2E 3.0±0.2A 

yes insoluble 82.7±0.0c 86.0±0.7ef 92.6±0.5de 2.5±0.2cd 

high no soluble 82.3±0.1CD 86.9±0.4C 90.3±0.7DE 2.5±0.0A-C 

no insoluble 82.3±0.5c 85.2±0.1f 91.8±0.1de 1.6±0.2d 

yes soluble 83.0±0.0C 86.0±0.4CD 91.2±0.7CD 1.2±0.0D 

yes insoluble 82.8±0.4c 85.9±0.1ef 90.7±1.6e 1.4±0.2d 

aMean of at least two replicates with standard deviation.  Mean values in the same column followed by different uppercase or 

lowercase letters are significantly different based on Tukey’s HSD test. bND: not detected. 
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Figure 4.1. Normalized size-exclusion chromatograms of native and hydroxypropylated (HP) 

debranched and debranched/β-amylase treated potato and Hylon VII starches.  
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Figure 4.2. X-ray diffractograms of soluble and insoluble starch-naringenin complexes of native 

and hydroxypropylated debranched and debranched/β-amylase treated potato starch. 
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Figure 4.3. X-ray diffractograms of soluble and insoluble starch-naringenin complexes of native 

and hydroxypropylated debranched and debranched/β-amylase treated Hylon VII. 
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Figure 4.4. Attenuated Total reflectance Fourier Transform infrared (ATR FT-IR) spectra of 

soluble and insoluble starch-naringenin complexes of native and hydroxypropylated debranched 

and debranched/β-amylase treated potato starch. The spectra of native potato starch and physical 

mixture of native potato starch and naringenin are included for comparison.  
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Figure 4.5. Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) spectra of 

soluble and insoluble starch-naringenin complexes of native and hydroxypropylated debranched 

and debranched/β-amylase treated Hylon VII. The spectra of native Hylon VII and physical 

mixture of native potato starch and naringenin are included for comparison. 
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CHAPTER 5 

OVERALL CONCLUSION 

This study demonstrated that naringenin formed both soluble and insoluble complexes 

with starch, and Hylon VII complexes comprised greater naringenin contents than potato starch 

complexes. The introduction of substituents and β-amylase treatment increased the recovery of 

soluble complexes and generally increased complexed naringenin content. The β-amylase 

treatment resulted in an increase in the fraction of starch chains with longer DP for both potato 

and Hylon VII starches, and starch chains of DP >400 were involved in complexation. HP 

starches exhibited reduced complexation with naringenin compared with acetylated starches 

because of the high DS and bulky hydroxypropyl groups. The X-ray diffraction pattern of both 

complexes was determined by the DP range of starch chains, and a mixed crystalline structure 

was observed for most complexes. The changes in melting behavior were attributed to a decrease 

in the crystalline structure and disruption of the helical structure stability by acetyl and 

hydroxypropyl groups. The complexation capability of starch was enhanced by acetylation and 

hydroxypropylation, although the differences observed suggest that there was an optimum 

combination of DS and DP to maximize complexation. The distribution of the substituents in 

starch chains was also an important factor to be considered besides the structure of naringenin. 
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