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Abstract  

Introduction: Cancer is a major public health problem in the U.S. and the world. In 2013 

there were an estimated 1,660,290 new cases of cancer in the U.S. Cancer-Cachexia (CC) is a 

common effect of many cancers, and is directly responsible for 20-40% of cancer-related deaths. 

The mechanisms that control the development of CC are not well understood. Most 

investigations of CC focus on the post-cachectic state and do not examine the progression of the 

condition. The purpose of this study was to utilize RNA sequencing to analyze transcriptomic 

alterations throughout the progression of CC. Methods: Lewis Lung Carcinoma cells (LLC) or 

Phosphate Buffered Saline (PBS, control) were injected into the hind-flank of wildtype 

C57BL6/J mice at 8 wks of age, and tumor allowed to develop for 1, 2, 3, or 4 wks before 

euthanasia. RNA was isolated from the gastrocnemius and RNA sequencing performed. Results:  

RNA sequencing showed widespread alterations in LLC when compared to PBS animals with 

largest differences seen in 4 wk LLC compared to other conditions. Commonly altered pathways 

included: Oxidative Phosphorylation, Mitochondrial Dysfunction, and Protein Ubiquitination.  

Discussion: We demonstrated that alterations in the muscle belly likely occur in phases 

beginning with early mitochondrial degenerations, which now appear to lead to large 

transcriptomic shifts concurrent to the onset of muscle atrophy.  In agreement with previous 

work, we observed multiple aspects related to degeneration of mitochondria and oxidative 

metabolism. The early onset of these alterations shows a need for early interventions in order to 

effectively ameliorate the effects of CC. 
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Cancer-Cachexia Overview 

 Approximately 39.6% of men and women will receive a cancer diagnosis during their 

lifetime, with an estimated 1,685,210 new cancer diagnoses in the United States in 2016 alone, 

of which 595,690 will eventually die as a result of their cancer diagnosis (1). On a global scale, it 

is anticipated that annual new cancer diagnoses will surpass 20 million as soon as 2025 (2). In a 

2011 statement from the World Health Organization, cancer is now recognized as one of the 

leading causes of death within the Western World, recently surpassing coronary heart disease 

and all stroke-related mortality (2). Since 1970 mortality rates for other common life threatening 

diseases have declined significantly (3). The most significant of which were heart disease and 

cerebrovascular disease, with a 62% and 73% decline in mortality respectively (3). In this same 

timeline, mortality rates due to cancer have only declined 12% (3). This shows us that there is a 

need for new evidences to enhance the treatment of cancer. One of the biggest issues facing the 

treatment of cancer is the vast number of types and causes of cancer as well as the difficulty in 

treating such a multi-faceted disease. 

One significant aspect of these cancer diagnoses is that up to 80% of individuals will 

experience varying degrees of Cancer-Cachexia (CC) (4). CC is defined as the ongoing loss of 

muscle mass, which may be accompanied by wasting of other tissues, that cannot be fully 

reversed by nutritional interventions alone (5, 6). CC is estimated to be responsible for 20-40% 

of cancer-related deaths, depending on the type and severity of cancer present, along with how 

soon preventative measures are taken (7).  Currently, the exact mechanisms responsible for the 

development of CC are not well understood, but it is clear that CC is a serious health care 

concern that lacks adequate interventions. 
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CC is a multifaceted, complex phenomenon. By definition nutritional changes alone cannot 

reverse the effects of CC, which in turn suggests that the muscle wasting is largely due to altered 

metabolism both systemically and intramuscularly (7). In order for any form of skeletal muscle 

atrophy to occur the rate of protein degradation must surpass the rate of protein synthesis, 

leading to a net loss in total muscle protein. This effect has been seen and exhaustively analyzed 

in other cases of atrophy, notably: denervation (8), sarcopenia (9), and morbid obesity (10). In 

the case of CC, however, the specific metabolic dysfunctions are not fully understood. Most 

current investigations of CC primarily focus on comparisons between the pre- and post- 

cachectic state, and offer little insight into the development of the condition. When facing a 

disease with such a high mortality rate, it is essential to understand how to effectively prevent 

CC from developing in the first place. This review of literature will outline known mechanisms 

in CC and the likely utility of –omics based approaches to further understand the development of 

CC. 

Known Pathways of Muscular Atrophy in Cancer-Cachexia 

 An in-depth understanding of CC is essential for understanding the progression of this 

disease and any potential interventions to truly reverse or reduce progression. In order to impact 

CC before there is significant muscle wasting, we must develop an understanding of altered 

cellular mechanisms at early stages in this complex disease. There are numerous mechanisms 

and alterations that contribute to dysregulation of muscle protein turnover in CC (11, 12). These 

include, but are not limited to, protein synthetic, myogenic, autophagic, proteasomal, 

inflammatory, and mitochondrial pathways (11-14). The following section will analyze current 

research in these areas. 
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Protein Synthetic Pathways 

 In CC, rates of protein synthesis are initially decreased ~19% and progress toward ~50% 

when compared to healthy controls throughout the progression of CC (15). Some factors that 

influence signal transduction pathways regulating protein synthesis are mechanical stimuli, 

anabolic and catabolic hormones, and energy balance (16). The regulation of protein synthesis is 

largely accomplished via mTOR-related signal transduction pathways (16). By far the most 

predominant signaling regulator of translation initiation is the AKT/mTOR pathway, of which 

insulin and IGF-1 are major activators (17). In CC, protein synthesis is down regulated in a 

number of ways. Both serum IGF-1 and the synthesis of IGF-1 from skeletal muscle are impaired 

in CC (18). Also, a decrease in mTOR activation is noticeable in early and late stage CC in mice 

following MAC16 tumor implantation (19). Though many theories related to decreased mTOR 

activation have been proposed, the two most promising appear to work through AMPK and 

systemic inflammation (20). AMPK inhibits mTOR by preventing the interaction with both 

p70S6K and 4E-BP1 (21). Inflammatory proteins, such as IL-6, also reduce the activation of 

mTOR directly and indirectly through phosphorylation of AMPK, among other impacts of IL-6 

and inflammatory cytokines (20). Both of these potential mechanisms of protein synthesis 

reduction via the mTOR pathway have been observed in models of CC (19, 22).  

Myogenic Pathways 

 In CC, there is significant damage to the sarcolemma. This becomes problematic 

whenever combined with decreased capacity for myogenesis, which has been linked to 

dysregulated myogenesis and muscle loss (23). It has been suggested that this is due to an 

increase in compensatory protein synthesis via other pathways, which are not present in CC (24). 

Satellite cell function is likely reduced through the NF-κB pathway (25). NF-κB activation leads 
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to sustained Pax7 activation, which in turn likely propagates a self-renewal signal in myogenic 

cells, rendering them unable to progress through differentiation (25). Despite these findings, 

Satellite Cell depletion alone does not appear to induce muscle atrophy but at the least may in 

part explain inabilities to reverse cachexia (24). Furthermore, NF-κB mediated Pax7 activation 

has also been shown to inhibit MyoD synthesis (25) Myogenic regulatory factors MyoD, 

Myogenin, Myf5, and Myf6 demonstrate some interplay with IGF-1 (26). Since reduced IGF-1 

signaling has been observed in CC (18), it is likely impairment of these processes is interrelated. 

Another potential area of myogenesis dysregulation has been examined in denervation models; it 

has been shown that denervation results in an increase in Myogenin production, which seems to 

lead to the activation of E3 ubiquitin ligases MuRF1 and Atrogin which would ultimately 

promote protein degradation (8).  

Protein Degradation 

 Autophagy is often described as a process that is inversely related to protein synthesis 

(27). It has been shown that autophagy is dysregulated in CC (13). Autophagy is a process of 

lysosomal degradation whereby aggregated protein and damaged organelles are engulfed by an 

autophagosome prior to ultimate joining with lysosome and degradation. Increased autophagy in 

CC is evidenced by an increased LC3 II content, which implies increased autophagasome 

activity (13). Lysosomal clearance may also be negatively impacted, as evidenced by increased 

p62 levels (13). Another likely method for increased muscle loss is the combination of mTOR 

inhibition and enhanced AMPK phosphorylation, which increases autophagy signaling via 

increased Beclin activation (28-30). Though it has not been adequately examined, there is 

potential for increased Reactive Oxygen Species (ROS) production in skeletal muscle, which 

may promote autophagy (28, 29). While there are signs of impaired autophagy in CC, the 
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inconsistent nature of these findings leads us to conclude that there are likely more significant 

mechanisms of muscular atrophy at play, such as proteolysis. 

 Proteasome-induced muscular atrophy has been observed in CC (31). The proteasome is 

essential for cellular function, as demonstrated by extreme oxidative stress and cell death 

following the administration of proteasome inhibitors (32). Though the proteasome is essential 

for cellular health, over-activation of this pathway leads to muscular atrophy as evidenced in 

high-fat diet in mice (33). This over-activation of proteolysis has been observed in CC and is 

highly implicated as a primary pathway of protein degradation through which muscle wasting 

occurs in this disease, despite adequate mechanistic understanding (34). Due to the complex 

nature of proteolysis and the negative implications of proteasome inhibitors on cellular health, it 

is imperative that future literature investigates the signaling pathways that cause the observed 

over-activation of proteolysis in CC. 

 In skeletal muscle there are two major muscle specific E3 ligases that are particularly 

involved in the induction of skeletal muscle wasting: Atrogin-1 and MuRF-1 (35). Under normal 

conditions, Atrogin-1 and MuRF-1 are scarcely expressed (36). Atrogin-1 and MuRF-1 facilitate 

the ubiquitination of many proteins involved in hypertrophic signaling, including proteins 

involved in: ATP generation, protein synthesis, myogenic regulatory factors, and myofibrillar 

proteins (36). Both Atrogin-1 and MuRF-1 are regulated by the transcription factors FOX-O 1 

and FOX-O 3 in skeletal muscle (37).  FOX-O 1/3 signaling appears to modify protein synthetic 

signaling by via negative regulation of AKT phosphorylation (38). In addition to modifying 

protein synthesis, FOX-O 1/3 signaling also upregulates autophagic processes (39). FOX-O 1/3 

signaling seems to be promoted by cellular stresses, which supports theories that FOX-O 1/3 



 6 

signaling is modulated in CC (39).  Clearly, there is a dysregulation in muscle protein balance in 

CC; however, the instigating signals leading to this imbalance are not well understood.  

Inflammatory Pathways 

 CC is a systemic disease that affects the muscle, fat, brain, liver, heart, blood, spleen, and 

likely numerous other tissues (40). This systemic response is largely due to circulating 

inflammatory cytokines that create a proinflammatory environment, which has been 

demonstrated in models of CC (41). Specific inflammatory cytokines that have been linked to the 

progression of CC are TNF-α, STAT3, C-Reactive Proteins, MCP-1, IL-6, and IL-1 beta (42-44). 

In this review of literature we will focus on the roles of IL-6 and TNF-α, as they are the most 

thoroughly investigated inflammatory factors known to be modified in CC.  

 IL-6 is one of the most heavily examined inflammatory cytokines in CC literature to date. 

Exogenous IL-6 and related cytokines alone can induce most symptoms of CC, including muscle 

and fat wasting, whereas conversely the inhibition of IL-6 reduces muscle loss in CC (45). 

Following tumor growth in ApcMin/+ mice dramatically increased plasma IL-6 levels (46). Mice 

lacking gp130, the cellular cytokine receptor for IL-6, and therefore unreceptive to IL-6 exhibit 

diminished symptoms of CC as well as pathological phosphorylation of p38, MAPK, STAT3, 

and FOXO3 (45). Chronic phosphorylation of p38α/β MAPK can lead to impairments in the 

ability of skeletal muscle to regenerate (47). IL-6 (via the IL-6->JAK->STAT3 pathway) is 

causally linked to many of the effects of CC, notable skeletal muscle atrophy, cardiac 

dysfunction, and hypothalamic inflammation (20, 30, 40). Furthermore, chronic IL-6 exposure 

decreases protein synthesis via inhibition of mTOR and induction of proteolysis (20, 48). 

Combined these series of evidences strongly indicate a significant role for IL-6 in mediating 

muscle wasting phenotypes such as in CC.  
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 TNF-α is an inflammatory cytokine present in the tumor microenvironment that has been 

connected with carcinogenesis, specifically in production of reactive oxygen and nitrogen 

species, and is involved with mechanisms responsible for epithelial mesenchymal transition, 

angiogenesis, and metastasis (49). TNF-α has also been implicated in the reduction of protein, 

lipid, and glycogen synthesis (50). TNF-α is further a promoter of apoptopic signaling in Type II 

muscle fibers, which alone can induce muscle atrophy (51). TNF-α expression can also be 

responsible for increased production of ubiquitin and other key E3 ubiquitin ligases, notably 

Atrogin and MuRF-1 (52). This can lead to a buildup of ubiquitinated proteins which promote 

protein degradation and shift net protein balance toward a loss, leading to reduced muscle protein 

and wasting (53). The role of this mechanism in CC is further supported by work from Zhang et 

al., who implanted mice with tumor and treated them with MG132, a proteasome inhibitor that 

specifically reduces the breakdown of ubiquitin-conjugated proteins (54). Treatment with 

MG132 significantly alleviated CC related muscle atrophy (54). It appears increased TNF-α 

levels significantly contribute to the muscle wasting seen in CC by increasing protein 

degradation, decreasing protein synthesis, and negatively impacting energy balance. 

Mitochondrial Modulation  

Mitochondrial function is another recently examined aspect of CC, which demonstrates a 

fiber-type specific effect: specifically that glycolytic muscle fibers are much more susceptible to 

wasting (55). It has been demonstrated that mitochondrial dysfunction can cause muscle wasting, 

via pathways that are observed in CC (55). One possible explanation for this relationship may be 

reduced ATP output from dysfunctional mitochondria. If there is insufficient ATP for protein 

synthesis, then rates of protein synthesis may decrease as rates of protein degradation increase as 

the cell attempts to produce ATP via alternative pathways. Secondly, increased ROS production 
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from dysfunctional mitochondria has been causally implicated in inducing atrophy (56). FOXO3 

is activated by the presence ROS, and increases autophagy in order to reduce ROS production 

(57). Interestingly, work by White et al. has demonstrated reductions in muscle oxidative 

phenotype and mitochondrial content concomitant with dysregulated mitochondrial dynamics in 

CC (15). These findings may suggest a prominent role for mitochondria in the development of 

this condition. 

Current Pharmacological Interventions in Cancer-Cachexia 

 The current definition of CC states that it is primarily a muscle atrophy that cannot be 

reversed by nutritional interventions alone (5). However, most current pharmaceutical 

interventions focus on increasing the appetite of patients, increasing the protein-synthetic impact 

of the foods ingested, or pharmacologically increasing anabolic hormone signaling within the 

(12). It is of the utmost importance to understand the methodology as well as the successes or 

failures of interventions focused on addressing hypophagia, or decreased energy intake and 

eating behavior, in order to understand the need and direction for future research into the 

mechanistic aspects of CC.  

 The most common treatment methods of CC are focused on increasing appetite. 

Megestrol Acetate administration has demonstrated improvements in appetite, fatigue, and 

general well being (58). With Megestrol Acetate, there is a dose-dependent increase in appetite 

within one week and weight gain that begins after several weeks; however this effect is seen in 

less than 25% of patients suffering from CC (58). Another medical intervention aimed at 

increasing appetite is Medroxyprogesterone Acetate. Medroxyprogesterone Acetate use in 

patients with severe CC has been shown to be effective at increasing appetite within 6 weeks as 

well as lead to significant increases in total body mass (+0.6 kg +/- 4.4 kg) when compared to the 
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placebo group, who lost weight throughout the course of this experiment (-1.4 kg +/- 4.6 kg) 

(59). Another medication being used in the treatment of CC is Dronabinol, a synthetic 

cannabinoid. Despite successes in treating wasting associated with Human Immunodeficiency 

Virus/Acquired Immunodeficiency Syndrome, it appears to have limited efficacy with CC (60). 

Another cannabinoid, Thalidomide, is showing some promise in the treatment of CC. A recent 

randomized, placebo controlled trial showed that Thalidomide treatment attenuated lean body 

mass loss in patients with advanced CC despite no difference in appetite between treatment and 

control groups (61). While treatments aimed at increasing energy intake by increasing appetite 

have shown some promise, the results are highly variable and have limited success rates. By the 

very definition of CC, these interventions focused on increasing nutritional intake would appear 

to be unlikely to exhibit high efficacy in the reversal of muscular atrophy. 

Utilization of testosterone derivatives to increase lean mass has also been examined. 

Nandrolone Propionate administration to MCG 101 sarcoma bearing mice (C57BL/6J) showed 

an increase in body weight, but this was attributed mostly to fluid retention with little to no 

increase in muscle wet weight (62). One of the most promising therapeutic treatments so far has 

been combination treatment with Oxandrolone, another Testosterone derivative, and Megestrol 

Acetate. Treatment with Oxandrolone alone showed significant increases in lean body mass and 

a decrease in fat mass (63). These improvements have shown potential as a pharmaceutical 

intervention to offset the effects of CC. These interventions have shown some promise in treating 

CC, but still do not address the underlying mechanistic causes. In order to make a significant 

impact on CC mortality rates, a better understanding of its causes and mechanisms is required in 

order to stop the disease before it causes significant muscle wasting. 
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 Another direction of research has been through inhibition of IL-6. In AMin/+ mice, 

administration of PDTC (an anti-inflammatory and antioxidant that inhibits STAT3 and NF-kB 

signaling in mice) effectively attenuated the muscle loss in CC (55) A review of six clinical trials 

administering various monoclonal IL-6 antibodies has shown that there is a significant reduction 

in cancer-related symptoms including CC, fever, and pain in humans (64). These investigations 

into the inhibition of inflammatory cytokines show an increased need to understand the 

underlying cell-processes that contribute to CC. However, the overall lack of efficacy in 

treatments for CC emphasizes the need to reconsider our approach to treatment.  

Summary of Known Mechanisms and Treatments for Cancer-Cachexia  

 When examining the mechanisms of CC, we are limited due to most studies taking place 

in the post-cachectic state. Nonetheless, this research offers valuable insight into modulated 

pathways that affect those suffering from CC. We have been able to see, through various models 

and methodologies, that there is a significant reduction in protein synthesis via inhibition of the 

AKT/mTOR pathway. Protein degradation is significantly increased in CC, both through 

ubiquitination and proteolysis. We have also examined that there is significant reduction in 

myogenic capacity within muscle, largely as a result of the NF-kB pathway. The common thread 

of Atrogin-1 and MuRF-1 increasing degradation, combined with increased Myogenin levels and 

altered myogenesis imply that the findings of Olsen et al. may also be present in models of CC 

(8).  The chronic increase in inflammatory cytokines IL-6 and TNF-a are implicated to contribute 

to dysregulation in protein synthesis, myogenesis, and protein degradation in models of CC.  

 The current lack of efficacious treatments for CC now requires the utilization of new 

approaches to the study and identification of underlying mechanisms. Specifically, recent 

literature calls for a treatment focus on prevention, rather than reversal, of CC (65). Of note, 



 11 

however, is a relative dearth of data examining the progression of CC. To best develop 

preventive measures it becomes critical to understand the process of cachectic development 

rather than a sole focus on the intracellular modulation in the cachectic state itself. Some prior 

work has inferred progression of this condition by examining varying degrees of cachexia in 

spontaneous colorectal cancer, but to our knowledge no prior efforts have been put forward to 

examine the direct time course of progression of CC.  

To this end, Fearon et al. has recently called for the use of –omics approaches in order to 

examine intracellular alterations in this disease (66). These approaches allow for assessments to 

consider the complex and multifaceted nature of CC to best determine affected processes that 

may promote this muscle wasting. As Fearon et al. have stated, the end result is more than the 

sum of its parts (66). Consideration of –omics approaches and early stage developments may 

hold the key to identify novel mechanisms and pathway interactions key to the development of 

new and efficacious therapies.  

Purpose 

 Therefore, the purpose of this thesis will be to examine the progression of CC over time 

course utilizing transcriptomic methodologies to identify significantly modulated pathways. By 

doing so I will fill major knowledge gaps in by examining both the timecourse progression and 

utilizing RNA sequencing methods to identify novel altered transcripts and affected pathways 

across the development of CC.  

Objectives for Data Analysis 

 In order to further elucidate the mechanisms behind CC, this investigation will: 1) 

describe phenotypic development of CC, including body weight, tissue weight, and tumor weight 

2) determine the number of significant differentially expressed genes in the progression of CC in 
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the gastrocnemius muscle 3) determine the number and indentity of significant genes during 

early stage CC prior to development of the cachectic condition 4) determine the top canonical 

pathways impacted by identified differentially expressed genes in comparison of control and 

cachectic groups. 
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Materials and Methods 

Animals and Interventions 

All methods were be approved by the Institutional Animal Care and Use Committee of 

the University of Arkansas. A cohort of C57BL6/J mice (Jackson Laboratories, Bar Harbor, ME) 

from a larger study (Brown et al.; manuscript in review) was randomly selected, and phenotypic 

statistics were assessed to ensure representation of the larger cohort. Mice were housed in a 

temperature-controlled room on a 12:12h light-dark cycle with food and water provided ad 

libitum. Lewis Lung Carcinoma (LLC) cells were injected subcutaneously into the hind flank of 

C57BL6/J mice at 1 x 106 cells in 100 µL PBS as previously described (45, 67). Control mice 

received a similar injection of 100µL PBS. To examine progression of CC over time course, 

tumors were allowed to grow for 1, 2, 3, or 4 weeks; mice injected with PBS were euthanized at 

12 weeks of age in order to age match Week 4 LLC mice. At the appropriate time point above 

mice were anesthetized under isoflurane anesthesia, and gastrocnemius muscles were removed 

and snap-frozen before storage at -80°C prior to euthanization. To control for alterations in total 

body size between groups, tibia lengths were assessed as a surrogate of body size independent of 

total body weight. No differences were observed in tibia length among groups, therefore 

descriptive data are presented as raw wet weights.  

RNA Isolation and Quality 

RNA isolation was performed as previously described (68). Whole gastrocnemius muscle 

form each animal was pulverized at the temperature of liquid nitrogen allowing a uniform 

mixture of the full muscle to be represented in all experiments. Approximately 120 mg of 

pulverized muscle was then suspended in 1 mL of Trizol (Invitrogen cat # 10296-028). Samples 

were then homogenized using Polytron for approximately 5 seconds before being transferred into 
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1.5 mL cryotube and placed on ice. After 15 minutes, samples were placed in centrifuge for 10 

minutes and the clear supernatant placed into a new tube. 200 µl of 100% chloroform was then 

added, and the sample centrifuged for 25 minutes. The clear solution was removed from the top 

and placed in a new, sterile tube. An equal amount to the sample of 70% DEPC EtOH was 

added, and the sample loaded in to an RNeasy column. RNA isolation was then performed using 

an Ambion RNA Isolation Kit (Life Technologies, Carlsbad, CA). RNA quality and 

concentration were determined using Agilent 2200 TapeStation (Agilent Technologies, Santa 

Clara, CA, USA). Mean RINe scores from TapeStation analysis for submitted samples were 8.56 

± 0.06  (mean ± SEM). 

RNA Sequencing and Data Analysis 

RNA sequencing was completed at the Genomics Core at Michigan State University 

(East Lansing, MI). Libraries were prepared using the Illumina TruSeq Stranded mRNA Library 

Preparation Kit. The pool was loaded onto Illumina HiSeq 2500 High Output flow cell (v4) and 

sequenced in a 1x50bp single read format using HiSeq v4 SBS reagents. Base calling was done 

by Illumina Real Time Analysis (RTA) v1.18.64 and output of RTA was demultiplexed and 

converted to FastQ format with Illumina Bcl2fastq v1.8.4.  Quality control of raw reads was 

determined using FastQC tool kit  (Babraham Bioinformatics, http://bioinformatics.babraham. 

ac.uk/projects/fastqc) The reads were then aligned with reference genome of Mus 

musculus (GRCm38.p5) downloaded from NCBI using Hisat2 tool (69) and reads aligning to 

gene exons were counted using HTSeq framework (70). List of differentially expressed (DE) 

genes between individual experimental groups was obtained by analyzing HTSeq counts using 

DESeq2 package by applying regularized log transformation (71). DE genes were identified as 

surpassing threshold levels of FDR = 0.05 and Log2FC = 0.6. Ingenuity Pathway Analysis (IPA; 
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Qiagen, Valencia, CA; http://www.ingenuity.com) software was used for canonical pathway 

analysis and functional annotation. Prediction of upstream transcription factor signatures for DE 

genes was performed using Dire tool (dire.dcode.org). Visualization of intersections of genes 

between experimental groups was performed using UpSetR package (72) and subsequent 

functional clustering of individual sets was based on Gene Ontology and performed using 

AmiGO tool (73). Two separate investigators analyzed RNA Sequencing data (I.C. and B.K.) 

with strong agreement between analyses.  

Comparison of RNA Sequencing to the MitoCarta 

Identified DE genes were compared to the mouse MitoCarta 2.0 utilizing custom 

computer software. Identified genes that were identified by RNA Sequencing as DE and 

appeared in the MitoCarta 2.0 were tallied (74).  

Statistical Analysis 

A One-Way ANOVA was employed for the global analysis for all variables of interest. 

Descriptive data including body, tumor and tissue weights were analyzed using SAS version 9.4 

(SAS, Cary, NC, USA). Data from RNA sequencing analysis was analyzed using JMP 

Genomics. The comparison-wise error rate, α, was set at 0.05 for all statistical tests. For 

descriptive data, when significant F-ratios were found, multiple comparisons were made among 

all groups using Student-Newman-Keuls post hoc analysis. For sequencing analysis, when 

significant F-ratios were found, multiple comparisons were made among all groups with p-value 

correction through FDR calculation. DE genes were identified as surpassing threshold levels of 

FDR = 0.05 and Log2FC = 0.6. 
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Results 

Phenotypic description of LLC-induced muscle atrophy across time course 

 These analyses were performed on a cohort of animals from a larger study (Brown et al.; 

manuscript in review) representing 8 mice per condition. For the current cohort, body weights 

without tumor were not different between experimental conditions across the 4 weeks cancer 

development despite significantly lower (~10-18%) muscle weights of the Gastrocenmius, 

Tibialis Anterior, Extensor Digitorum Longus, and Plantaris in Week 4 LLC animals (Table 1). 

Epididymal fat mass also was significantly lower (~33%) in Week 3 and Week 4 LLC animals 

compared to PBS animals (Table 1). Spleen mass was ~300% greater in Week 3 LLC, and 

further enlarged ~500% in Week 4 LLC compared to PBS animals (Table 1). 

 

RNA Sequencing effectively discriminates cachectic vs. non-cachectic animals  

Approximately 25,000 total genes were identified in RNA Sequencing. Two separate 

laboratory groups performed RNA sequencing analysis with a high level of agreement (data not 

shown). Following FDR correction most statistically significant comparison-to-comparison 

differences are seen when examining Week 4 LLC mice compared to all other groups (Figure 

1A). Heirarchical clustering, PCA analysis and sample-to-sample distances demonstrate good 

discrimination between experimental conditions (Figure 1B-D). Heatmap of hierarchical 

clustering of the top 1,000 most highly expressed genes showed grouping of Week 4 LLC mice 

with significant differences in gene expressions compared to animals from all other experimental 

conditions (Figure 1B).  
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Differentially expressed genes appeared primarily in comparisons to Week 4 LLC mice 

 Volcano plots of DE genes in each individual comparison are shown in Figure 2. These 

plots show that the highest alterations in gene expression are seen when comparing Week 4 LLC 

animals to other groups. The number of DE genes was tallied and revealed 932 down-regulated 

and 993 up-regulated genes in 4 wk LLC compared to PBS control (Table 2).  

 

Pathway analysis of differentially expressed genes for all comparisons 

IPA pathway analysis was performed for all comparisons with sufficient number of DE 

genes (Figure 3). Commonly impacted pathways across individual comparison groups in 

descending order of frequency included granulocyte adhesion and diapedesis, protein 

ubiquitination, TH1 and TH2 activation, Fcy-receptor mediated phagocytosis in macrophages 

and monocytes, leukocyte extravasation, aryl-hydrocarbon receptor signaling, PPARα and RXRα 

activation, TH2 pathway, agranulocyte adhesion and diapedesis, oxidative phosphorylation, 

mitochondrial dysfunction, TCA Cycle II (Eukaryotic), LXR/RXR activation, and B cell receptor 

signaling (Figure 3). Venn diagram for commonalities among multiple comparisons elucidates a 

clear relationship between Week 4 LLC animals and altered gene expression (Figure 4). When 

comparing Week 4 LLC to PBS, Week 1 LLC, and Week 2 LLC, we observe alterations in ATP 

synthesis coupled electron transport, oxidative phosphorylation, regulation of tumor necrosis 

factor production, ubiquitin-dependent protein catabolic processes, and cellular protein catabolic 

processes (Figure 4). Considering the common occurrence of processes including mitochondrial 

dysfunction and electron transport along with our prior finding (Brown et al.; manuscript in 

review), we performed IPA analysis of mitochondrial dysfunction between Week 4 LLC and 

PBS control groups showing 93 of 171 known genes in mitochondrial dysfunction affected 
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(Figure 5). Furthermore, DE genes in each comparison were matched against the MitoCarta 2.0 

(Table 3). Most notably we observed: 255 DE genes in the comparison of Week 4 LLC to Week 

2 LLC , 213 DE genes in the Week 4 LLC to Week 1 LLC comparison, and 340 similar genes in 

the Week 4 LLC to PBS comparison with matches to the MitoCarta.  

 

Analysis of transcription factors common to DE genes among comparisons 

Subsequently we analyzed DE genes in each comparison for transcription factors likely 

mediating the alterations observed. Transcription factors and families of transcription factors that 

appeared among multiple comparisons included: OCT1, SRY, Myogenin, DR3, ZIC2, TBX5, 

SREBP1, STAT, PU1, T3R, TAL1BETAITF2, HSF, LEF1, S8, ETS, and SOX9_BP1. 

Furthermore, multiple transcriptional factors with specific influence over muscle processes (i.e., 

myogenesis) were observed including: Myogenin, FOXO3, NF-kB p65, and PAX (Figure 6).  
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Discussion  

We are the first to combine RNA sequencing techniques with a time-course design to 

gain insight into the transcriptomic alterations in the development of muscle wasting in CC. We 

recently demonstrated early onset mitochondrial derangements well prior to development of 

muscle wasting in CC (Brown et al.; manuscript in review), this investigation has furthered that 

work by clearly demonstrated potential pathways involved in the pathology of CC induced 

muscle atrophy. The utilization of the time course design in conjunction with RNA sequencing 

allowed us to explore transciptomic shifts through the development of CC in tumor-bearing 

animals. Our analyses demonstrated clear differentiation between experimental groups. This 

effect can be clearly seen in Figure 2 as the number of DE genes massively increases, both 

positively and negatively, when comparing Week 4 LLC animals to all other groups suggesting a 

clear point at which large scale transcriptomic shifts occur in conjunction with the onset of 

muscle wasting. We can also see distinct modulation in critical pathways, namely autoimmune 

function, protein ubiquitination, and oxidative metabolism, as muscle wasting develops. In 

conjunction with our prior report, we now see that mitochondrial impacts appear central to 

development of muscle wasting in CC, and that CC develops in a clear progression from early 

onset metabolic derangements to large transcriptomic shifts at the onset of wasting itself. This 

study will help to create a basis for future research by identifying future pathways for analysis.  

 Our experimental model was successful as per the utilized definition of CC: the ongoing 

loss of muscle mass, which may be accompanied by wasting of other tissues, which cannot be 

fully reversed by nutritional interventions alone (5). Our assays were able to effectively 

differentiate between pre- and post- cachectic conditions, seen in Figure 1. Phenotypic analysis 

of muscle wet-weights showed significant decrease in muscle mass and increases in spleen 
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weights beginning in Week 3 LLC animals, consistent with previously reports using LLC 

implantation models of CC (75, 76). Upon examination of Figure 2, a clear increase in DE genes 

is seen when comparing Week 4 LLC animals to other groups (both LLC and PBS groups). 

Phenotypic analysis of Week 4 LLC animals shows ~10-18% reduction in muscle wet weights 

along with a ~500% enlargement of the spleen. Hierarchical clustering analysis (Figure 1B) 

showed grouping of Week 4 LLC animals when compared to PBS controls and other 

developmental stages of LLC implanted mice.  

 When examining the shift in transcriptomic signaling, large shifts do not occur until 

stages where significant muscle wasting is evident (Figure 2 and Table 2). In contrast, we have 

recently observed impairment in functional mitochondrial health preceding decreases in muscle 

wet weight (Brown et al.; manuscript in review) which were observed as early as 1 week 

following tumor implantation through a doubling in mitochondrial ROS emission. It is then of 

significant interest that large transcriptomic shifts do not occur until 4 weeks following tumor 

implantation. Thus the data presented here, combined with our early findings, suggest that 

alterations within the muscle belly occur first through functional changes in metabolic 

parameters and ultimately leads to large transcriptomic shifts concurrent to measurable muscle 

wasting. These combined findings suggest that intramuscular alterations occur via a pair of 

trigger points: one early leading to functional metabolic derangements and a second wherein 

muscle wasting and transcriptomic shifts occur. 

Prior literature has tied CC to alterations in muscle protein degradation, protein synthesis 

and inflammatory signaling, among others (11-14). Here we have built upon this by performing 

IPA analysis of transcriptomic data across development of CC to provide a more clear 

understanding of the totality of cellular processes impacted in this condition. Consistent with that 
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prior work we have identified alterations in inflammatory, immune, protein ubiquitination, and 

protein synthetic pathways. We further identified altered pathways throughout development of 

the condition seeing alterations in such pathways as circadian rhythm signaling, among others. 

When examining the pathways that are specifically modulated in post-cachectic groups when 

compared to pre-cachectic groups and PBS controls we see negative regulation of several 

important pathways, namely: actin filament depolymerization, cell morphogenesis, 

supramolecular fiber organization, cytoskeleton organization, and cell adhesion. These combined 

pathways suggest that tumor-bearing animals display impaired capabilities to maintain cellular 

morphology and structure, which will ultimately lead to impaired motor function. We also see a 

large increase in pathways associated with DNA maintenance, transcription, and translation, 

namely; histone acetylation, chromatin assembly and disassembly, translation, RNA splicing, 

DNA repair, and intracellular protein transport. Thus the cells ability to encode and provide 

functional protein becomes diminished. Therefore, in conjunction with some classic pathways 

altered in the wasting condition of CC, we see alterations in many additional pathways, which 

are critical for maintenance of total cellular health. The alteration of these pathways, combined 

with the large increase in DE genes, imply that in Week 4 LLC animals the tumor is beginning to 

breakdown essential functions within the animal.  

Considering our prior work demonstrating functional mitochondrial degeneration early in 

development of CC, it is most interesting that many pathways involved in oxidative metabolism 

were identified. Such identified pathways included: ATP synthesis coupled electron transport, 

oxidative phosphorylation, mitochondrial dysfunction, and mitochondrial organization. In 

addition to these specific aspects of mitochondrial energy metabolism we note impacts in 

signaling through AMPK and PPARα, suggesting that both direct functional components as well 
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as mitochondrial regulatory pathways are impacted. That so many of the affected pathways 

identified are vital either to direct mitochondrial quality or to the regulation therein is consistent 

with our recent findings of early onset functional mitochondrial degenerations in these animals. 

These combined findings are strongly indicative of a critical role for mitochondrial maintenance 

in development of muscular atrophy in CC. This would lead to a decreased capacity for ATP 

production, which could create chronic low-energy conditions within the muscle. This effect can 

be seen in increased AMPK signaling when comparing Week 4 LLC to PBS groups in Figure 3. 

Models of CC also demonstrate a decrease in oxidative capacity and an increase in mitochondrial 

ROS production (Brown et al.; manuscript in review). We also noted increases in NO and ROS 

in macrophages when comparing Week 4 LLC to Week 1 LLC animals, consistent with findings 

by Brown et al (manuscript in review).  

Next, to provide insight to the means by which identified DE genes were altered in 

progression of CC, we performed transcription factor analyses to identify likely regulations of 

these genes. Interestingly, we identified transcription factors commonly associated with 

processes such as myogenesis, tumor necrotic factors, sterol biosynthesis, immunosuppression, 

and increased angiogenesis (Figure 6). The alterations in these potential transcription factors, 

combined with the large quantity of DE genes over the course of CC progression, further support 

that the tumor is systemically breaking down essential functions within the animal. 

 

Summary 

 Our experiment was able to effectively demonstrate large-scale transcriptomic alterations 

throughout the timecourse of CC progression. The largest difference in expression was observed 

when comparing Week 4 LLC animals, which demonstrated the cachectic phenotype, compared 
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to all other conditions. Combined with our prior work (Brown et al.; manuscript in review) we 

now see that alterations in the muscle belly likely occur in phases beginning with early 

mitochondrial degenerations, which now appear to lead to large transcriptomic shifts concurrent 

to the onset of muscle atrophy.  We were then able to identify multiple pathways, both in classic 

protein turnover and inflammatory pathways. We also identified multiple other cell functions 

contributing to the development of the cachectic phenotype, which included aspects of 

maintenance of cell structure and DNA repair/transcription. Furthermore, in agreement with our 

prior work (Brown et al.; manuscript in review), we observed multiple aspects related to 

degeneration of mitochondria and oxidative metabolism. The data presented herein has provided 

novel evidence for altered genes and pathways throughout the progression of CC in tumor 

bearing mice. Future studies should utilize these data to identify which pathways may be critical 

to allowing the development of muscle atrophy in CC.  

 

Objectives for Data Analysis 

Relative to my experimental objectives, the cachectic phenotype presented at 4 weeks 

following tumor implantation, as seen in Table 1 (Objective 1). We observed that 5,538 of genes 

were DE in tumor-implanted mice when compared to PBS controls, as seen in Table 2 (Objective 

2). We further observed that, of the 5,538 DE genes, 140 genes were DE prior to the 

development of the cachectic phenotype, as seen in Figures 2 and 3 (Objective 3). When 

comparing PBS controls to Week 4 LLC animals, the top identified canonical pathways (As seen 

in Figure 3) were: Oxidative Phosphorylation, Mitochondrial Dysfunction, Protein 

Ubiquitination, and TCA Cycle II (Objective 4). 
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Figures and Tables 

Legends: 
Table 1: Phenotypic Data of Cohort. All values are represented as “mean ± SEM”. * signifies 
significant difference (p ≤ 0.05) from PBS. # signifies significant difference (p ≤ 0.05) from 1 
wk. 
 
Figure 1: A) Summary table of the number of up and down regulated genes in individual group 
comparisons. Red signifies down-regulated genes; green signifies up-regulated genes. B) 
Hierarchical Clustering Heatmap of 1000 most expressed genes. Red signifies increased gene 
expression, while blue signifies decreased gene expression. C) Principle Component Analysis 
(PCA) analysis of individual samples. D) Heatmap of sample-to-sample distances. Darker colors 
indicate greater differences in expression. 
 
Figure 2: Volcano plots of differentially expressed genes in individual comparisons. Blue 
signifies a gene that reached an FDR< 0.05, but log2(Fold Change) was not >|0.6|. Red signifies a 
gene that reached a FDR < 0.05 and log2(Fold Change) > |0.6|. 
 
Table 2: Summary table of the number of up and down regulated genes in individual group 
comparisons that were differentially expressed (FDR<0.05, log2(Fold Change) > |0.6|). Red 
signifies down-regulated DE genes; green signifies up-regulated DE genes. 
 
Figure 3: IPA analysis of comparisons with sufficient number of DE genes. Graphs identify 10 
most highly affected pathways with the highest significance. If applicable, z-score indicates 
whether pathway was up- or down- regulated. 
 
Supplemental Figure 1: IPA analysis of comparisons with sufficient number of DE genes. 
Graphs demonstrate significantly altered biological processes and diseases that show similar 
modulation. 
 
Figure 4: Venn diagram of the number of genes that were common or exclusive between 
comparison groups. Illustrations below show gene ontology clustering of subsets that contain 
sufficient amount of differentially expressed genes. 
 
Figure 5: DE genes in Mitochondrial Dysfunction. All colored in genes were DE when 
comparing Week 4 LLC to PBS controls. 
 
Table 3: Portion of genes with a positive match on the MitoCarta 2.0 
 
Figure 6: IPA analysis of comparisons with sufficient number of DE genes. Illustrations show 
prediction of common regulatory elements for transcription factors in identified up- and down-
regulated genes (dire.dcode.org). 
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Table 1: 
 PBS 1 wk 2 wk 3 wk 4 wk 

Body Weight  
(with Tumor) (g) n/a 23.3 ± .4 23.1 ± .6 23.2 ± 1.0 26.6 ± 0.6 # 

Tumor Weight (g) n/a 0.03 ± 0.01 0.14 ± 0.04 0.66 ± 0.15 3.56 ± 0.45 # 

Body Weight  
(without Tumor) (g) 24.3 ± 0.5 23.2 ± 0.4 23.0 ± 0.6 22.5 ± 0.8 23.1 ± 0.3 

Gastrocnemius (mg) 134.0 ± 3.7 122.6 ± 3.1 125.7 ± 4.3 119.3 ± 3.5 111.6 ± 3.6 *# 

Tibialis Anterior (mg) 45.2 ± 1.6 41.2 ± 1.3 43.2 ± 1.3 40.6 ± 1.8 * 36.0 ± .9 *# 

EDL (mg) 9.1 ± 0.6 9.5 ± 0.3 9.9 ± 0.4 9.6 ± 0.5 7.9 ± 0.4 * 

Soleus (mg) 8.7 ± 0.4 8.1 ± 0.3 7.9 ± 0.3 7.7 ± 0.4 7.4 ± 0.3 

Plantaris (mg) 18.4 ± 0.5 17.7 ± 0.4 17.9 ± 0.6 16.4 ± 0.7 15.3 ± 0.6 * 
Spleen (mg) 81.1 ± 6.1 76.6 ± 2.9 79.6 ± 3.5 238.7 ± 42.9 *# 391.5 ± 37.4 *# 

Epi Fat (mg) 360.3 ± 19.4 368.2 ± 39.2 348.7 ± 15.7 237.6 ± 42.1 *# 252.3 ± 28.9 *# 

 
Figure 1: 
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Figure 2: 

 
Table 2:  
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Figure 3: 
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Supplemental Figure 1: 
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Figure 4: 
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Figure 5:  

 
 
Table 3: 
Group Identified 

Genes 
% of 
MitoCarta 

Wk 1 to PBS 0 0% 
Wk 2 to PBS 4 0.3% 
Wk 3 to PBS 0 0% 
Wk 4 to PBS 340 29.3% 
Wk 2 to Wk 1 0 0% 
Wk 3 to Wk 2 0 0% 
Wk 3 to Wk 1 3 0.3% 
Wk 4 to Wk 1 213 18.4% 
Wk 4 to Wk 2 255 22.0% 
Wk 4 to Wk 3 20 1.7% 
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Figure 6: 
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Appendix 
Institutional Animal Care and Use Committee Approval 

 
 

In granting its approval, the IACUC has approved only the information provided. Should 
there be any further changes to the protocol during the research, please notify the  IACUC  
in writing (via the Modification form) prior to initiating the changes. If the study period is 
expected to extend beyond                          you must submit a 
prior to that date to avoid any interruption. By policy the IACUC cannot approve a study for 
more than 3 years at a time. 
 
The IACUC appreciates your cooperation in complying with University and Federal 
 guidelines involving animal subjects. 
 
 
 
CNC/aem 
 
cc: Animal Welfare Veterinarian

MEMORANDUM 

  

TO: 

FROM: 

DATE: 

SUBJECT: 

Expiration Date:

IACUC Approval

 Craig N. Coon, Chairman 

The Institutional Animal Care and Use Committee (IACUC) has APPROVED your
protocol 15065: "Mitochondrial Degeneration in the Onset of Cancer-Cachexia 
Induced Muscle Atrophy" you may begin work immediately

Nicholas Greene

Jan 1, 2018

7/13/15

Jan 1, 2018 newly drafted protocol
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BioSafety Committee Approval 
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