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Abstract 

 

Purpose: The purpose of these studies was to observe the effect of dehydration on exercise 

performance while subjects were blinded to their hydration status. Methods: Study 1: Seven male cyclists 

(weight: 71±8 kg, body fat: 14±6%, VO2peak: 59.4±6 ml∙kg-1·min-1) exercised for 2 hours on a cycle 

ergometer at 55% VO2peak, in a hot-dry environment (35°C, 30% rh), with a nasogastric (NG) tube under 

euhydrated (EUH-NT) and hypohydrated (DEH-NT) conditions. In both trials, thirst was matched by 

drinking 25 mL every 5 min. In the EUH-NT trial sweat losses were fully replaced via the NG tube. 

Following the 2 hours of steady state, the cyclists completed a 5-kilometer cycling time trial at 4% grade. 

Study 2: Eleven male cyclists (weight 75.8±6.4 kg, VO2peak: 64.9±5.6 mL·kg·min-1, body fat: 12.0±5.8%) 

performed three sets of criterium-like cycling, consisting of 20 min of steady state cycling at 50% peak 

power output, each followed by a 5-km time-trial at 3% grade. Subjects completed the protocol on two 

separate occasions either hypohydrated (HYP) or euhydrated (EUH). In both trials, subjects ingested 25 

mL every 5 min during the steady-state and 25 mL every 1-km during the 5-km time-trials. In the EUH 

trial, sweat losses were fully replaced via intravenous infusion of isotonic saline while in the DEH trial, a 

sham IV was instrumented. Results: In Study 1, cyclists completed the 5-km time trial faster in the EUH-

NT trial compared to the DEH-NT trial (23.2±0.2 vs. 22.3±0.3 km·h-1, P<0.05), while producing higher 

power output (295±29 vs. 270±26 W, P<0.05). In Study 2, during the second and third time-trials, subjects 

displayed faster speed in the EUH trial (27.5±3.0 and 27.2±3.1 km·h-1) compared to the HYP trial 

(26.2±2.9 and 25.5±3.3 km·h-1; both P<0.05). Core temperature (Tre) was also higher in the HYP trial 

throughout the third steady-state (P<0.05) and continued to be higher throughout the third 5-km time-trial 

(P<0.05). Conclusions: These data suggest that full fluid replacement, even in a blinded manner, 

provided a performance advantage by maintaining better hydration state. This benefit seems to be 

associated with the lower thermoregulatory strain, due to lower core temperatures.  
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I. Introduction 

The negative impact of dehydration on aerobic and endurance exercise performance is well 

documented (Cheuvront, Carter, & Sawka, 2003; Sawka, Cheuvront, & Kenefick, 2015). Physiologic 

factors that contribute to dehydration-mediated performance decrements include 1) increased 

cardiovascular strain, 2) increased heat strain, 3) altered central nervous system (CNS) function, and 4) 

altered metabolic function. Though each factor is unique, evidence suggests that they interact to 

contribute in concert, rather than in isolation, to degrading endurance performance. However, heat strain 

(hyperthermia) probably acts to accentuate the performance decrement the heaviest (González-Alonso et 

al., 1999).  

The effects of dehydration on physiologic function and exercise performance have been studied 

using several different approaches for reducing body water. Fluid losses are achieved either before the 

exercise task (hypohydration; i.e., water deprivation, diuretics, sauna, exercise) or can develop during 

exercise (dehydration; i.e., water deprivation, exercise) (American College of Sports Medicine et al., 

2007; Barr, 1999). Unfortunately, none of these methods allows for a blinding of the treatment, with 

participants clearly aware of the hydration status under which they are performing. It is possible, 

therefore, that a placebo effect could partially contribute to the reported performance outcomes shown in 

several laboratory-based studies (McClung & Collins, 2007). 

One difficult symptom of dehydration that is difficult to mask if the simple aspect of thirst. The 

physical act of drinking can modify an individual’s perception of thirst (Figaro & Mack, 1997) and 

conversely, increased thirst can lead to psychological and physiological fatigue (Brunstrom, Tribbeck, & 

MacRae, 2000; Cheung et al., 2015). Thirst plays an integral role in the body’s homeostatic mechanism 

for fluid levels by acting as one of the key psychologic indicators to replenish lost fluid (McKinley & 

Johnson, 2004) and can potentially influence the motivation and cessation of exercise. It has been shown 

that when athletes drink only to satisfy thirst, they replace ~60% of the fluid loss (Greenleaf, 1992; 

Greenleaf & Sargent, 1965). However, some argue that exercise performance is not impaired by 

dehydration and that drinking to thirst is encouraged (Goulet, 2013; Hoffman, Cotter, Goulet, & Laursen, 

2016). 
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Recently, several studies have attempted to investigate the effect of thirst and dehydration on 

exercise performance in a blinded manner (Cheung et al., 2015; Wall et al., 2015). Although both studies 

reported no differences in cycling performance when subjects were dehydrated to 3% body weight, higher 

thermoregulatory and cardiovascular strain was observed. Further, both studies did not allow the 

ingestion of water during exercise, with only one allowing mouth rinsing with water. Previous experiments 

have suggested that the act of swallowing reduces thirst, increases performance, and inhibits vasopressin 

release, via oropharyngeal stimulation (Figaro & Mack, 1997; S A Kavouras et al., 2016; Takamata, 

Mack, Gillen, Jozsi, & Nadel, 1995). 

Lastly, since fluid ingestion was not provided during any of the hydration conditions in the 

previously mention studies, it remains possible that the similar performance outcomes were driven by a 

consistent impairment from a strong psychologic state of thirst rather than a lack of effect from hydration 

status. In order to test the hypothesis that dehydration impairs exercise performance even under blinded 

conditions, subjects completed an exercise protocol while being progressively dehydrated or while 

maintaining euhydration via sweat loss replacement. Further, subjects were allowed a structured drinking 

volume periodically to control for thirst while not affecting hydration state. This study design allowed for 

thorough investigation of how endurance exercise is affected by dehydration even when subjects were 

unaware of their hydration state.  
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ABSTRACT 

Purpose: The aim of the present study was to examine the effect of dehydration on exercise 

performance in the absence of thirst with subjects blinded to their hydration status. Methods: Seven male 

cyclists (weight: 71±8 kg, body fat: 14±6%, VO2peak: 59.4±6 ml∙kg-1·min-1) exercised for 2 hours on a cycle 

ergometer at 55% VO2peak, in a hot-dry environment (35°C, 30% rh), with a nasogastric (NG) tube under 

euhydrated (EUH-NT) and hypohydrated (DEH-NT) conditions. In both trials, thirst was matched by 

drinking 25 mL every 5 min (300 mL∙h-1). In the EUH-NT trial sweat losses were fully replaced via the NG 

tube (calculated from the familiarization visit). Following the 2 hours of steady state, the cyclists 

completed a 5-kilometer cycling time trial at 4% grade. Results: Following 2 hours of steady state cycling, 

post-exercise body mass loss for EUH-NT trial was -0.1% compared to the DEH-NT trial which was -

2.2±0.4%. Thirst (28±11 vs. 42±12 mm) and stomach fullness (41±8 vs. 38±8 mm) did not differ between 

EUH-NT and DEH-NT trials (P>0.05). Cyclists completed the 5-km time trial faster in the EUH-NT trial 

compared to the DEH-NT trial (23.2±0.2 vs. 22.3±0.3 km·h-1, P<0.05), while producing higher power 

output (295±29 vs. 270±26 W, P<0.05). During the 5-km time trial, core temperature was higher in the 

DEH-NT trial (39.2±0.3°C) compared to the EUH-NT trial (38.8±0.2°C; P>0.05). Conclusion: These data 

indicated that hypohydration decreased cycling performance and impaired thermoregulation in the 

absence of thirst, while the subjects were unaware of their hydration status. 

 

Key words: core temperature, cycling, thirst, hydration  
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INTRODUCTION 

During endurance exercise, especially in the heat, maintaining adequate hydration is 

recommended for optimal performance (American College of Sports Medicine et al., 2007; Cheuvront et 

al., 2003; Sawka et al., 2015). Proper fluid replacement reduces physiological strain (González-Alonso, 

Mora-Rodríguez, Below, & Coyle, 1995)  and diminishes thirst (McKinley & Johnson, 2004). While thirst 

plays an integral role in water homeostasis by acting as a key psychologic indicator to fluid replenishment 

(McKinley & Johnson, 2004), it is suppressed by the act of drinking (Figaro & Mack, 1997). Some scientist 

have argued that thirst alone acting as part of an anticipatory regulatory system (Sawka & Noakes, 2007) 

could impair exercise performance in dehydrated subjects (Cheung et al., 2015). 

Regardless of thirst, previous studies showing that dehydration impairs exercise performance 

have failed to blind their subjects to their fluid intake and hydration state. This absence of blinding could 

induce a bias that might affect the results based on subjects’ perceptions and/or expectations. Studies 

that manipulate hydration status through fluid ingestion are limited by the nature of drinking and its effect 

on thirst.  

Recently, two studies (Cheung et al., 2015; Wall et al., 2015) investigated the effect of 

hypohydration on exercise performance in a blinded manner via intravenous infusion of saline during 

exercise, while thirst was controlled via mouth rinsing with water. Although both studies reported no 

differences in cycling performance when subjects were dehydrated to 3% body weight, higher 

thermoregulatory and cardiovascular strain was observed. Further, both studies did not allow the 

ingestion of water during exercise. Previous experiments have suggested that the act of swallowing 

reduces thirst, increases performance, and inhibits vasopressin release, via oropharyngeal stimulation 

(Arnaoutis, Kavouras, Christaki, & Sidossis, 2012; Figaro & Mack, 1997; Takamata et al., 1995), as 

opposed to mouth rinsing. Interestingly, even though ingestion of small volumes of water alleviates thirst 

(Guest et al., 2006), drinking to thirst during exercise might impair performance (Armstrong et al., 2014; 

Armstrong, Johnson, & Bergeron, 2016; Greenleaf, 1992) via involuntary dehydration. Therefore, the aim 

of the present study was to investigate the effect of dehydration on cycling time-trial performance in the 

absence of thirst with subjects blinded to their hydration status. 
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METHODS 

Participants 

Twenty-nine cyclists signed informed consent to participate in the study. Twenty-one withdrew 

due to the discomfort associated with the nasogastric tube insertion, while one subject dropped out after 

the first trial. Seven male cyclists (weight: 71±8 kg, body fat: 14±6%, VO2peak: 59.4±6 ml∙kg-1·min-1) that 

completed the entire protocol were included in the analysis. All cyclists had extensive racing experience 

and competed regularly at USA Cycling category 3 or higher races. Eligibility criteria for participation 

included other than competitive cycling status, absence of any metabolic, cardiovascular, renal disease, 

and history of heat stroke. The study was approved by the University’s Institutional Review Board and 

participants gave their written consent prior to enrolment. 

Preliminary Screening 

During the preliminary screening, anthropometric characteristics were recorded during the first 

visit at the laboratory. Weight (Health O Meter Professional, 349 KLX, McCook, IL) and height (Seca, 

Model 700, Hamburg, Germany) were measured without shoes and with minimal clothing to the nearest 

0.1 kg and 0.005 m, respectively. Body composition was determined via dual-energy X-ray 

absorptiometry (DXA; General Electric, Lunar Prodigy Promo, Chicago, IL). Peal oxygen update 

(VO2peak) test was performed on an electronically braked cycle ergometer (Velotron, Racermate, Seattle, 

WA). Following standardized warm-up at 100 W power increased by 40 W every two minutes until 

volitional exhaustion. During the test, expiratory gases were analyzed via an online gas analyzer (Parvo 

Medics TrueOne 2400, Sandy, UT). At least three of the four following criteria were used to verify 

attainment of VO2peak: 1) Oxygen updake plateau with increased workload, 2) Respiratory exchange 

ratio greater than 1.1, 3) HR greater than 90% of age-predicted maximal value (220 - age) and 4) 

Perceived exertion based on the 6-20 Borg scale greater than 17 (Borg, 1982). 

Experimental Protocol 

All subjects completed the experimental protocol on three separate visits, first for familiarization 

and then, the two experimental trials in a counterbalanced manner. The protocol was consisted of 2 h 

steady state exercise (55% VO2peak) followed by a 5-km time-trial at 4% grade (Dantas, Pereira, & 

Nakamura, 2015). During the familiarization trial, the sweat rate of the participants was estimated while 
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drinking water ad libitum. The cyclist performed the two experimental trials without being thirsty while 

maintaining euhydration (euhydrated not-thirsty, EUH-NT) or while becoming progressively dehydrated 

(dehydrated not-thirsty, DEH-NT). To clamp thirst at low levels in both trials cyclists were drinking 25 mL 

of water every 5 minutes during the 2-h steady state phase of the protocol and every 1-km during the 5-

km time-trial. During the EUH-NT trial, water was infused via the nasogastric tube at a rate to match 

sweat losses based on the subject’s sweating rate assessed on the familiarization trial. The amount of 

water infused was corrected for water ingested to clamp thirst (25 mL every 5 min). The water infused 

was warmed to body temperature (37 ºC) to prevent the subject from sensing the cooler water getting into 

the stomach during the infusion, as well to avoid any cooling effect. The experimental trials were 

performed in the morning, at the same time of the day, to avoid diurnal variations (Atkinson, Todd, Reilly, 

& Waterhouse, 2005). 

Familiarization session 

Prior to the two experimental trials, subjects completed the cycling session to get familiarized with 

the experimental protocol. During this familiarization, subjects were instructed to bring their own water 

bottles and drink as much as they wanted from the water provided. Sweating rate was estimated based 

on the changes of body weight corrected for water intake and urine output. The protocol of this session 

was identical with the two experimental trials, apart from blood draws and nasogastric tube placement. 

Experimental Trials 

 Upon arrival to the laboratory, a urine sample was collected to assess pre-trial hydration state 

and proceeded to testing only when urine specific gravity was below 1.020 (American College of Sports 

Medicine et al., 2007). Subjects then self-inserted a rectal thermistor and a nasogastric tube (NG; 10-F, 

Corflo, Corpak Medsystems; Buffalo Grove, IL) was inserted at a depth equal to the distance between the 

tip of the nose, behind one ear, to the tip of the sternum. Placement was confirmed by analyzing gastric 

fluid for pH testing (pH <5). After securing NG tube on the nose with tape, the external portion of the 

nasogastric tube was connected to an extension tube running over the ear and toward the shoulder. 

The subject then entered the environmental chamber (35±0.3 °C, 30±0.2% relative humidity) and 

sat on the ergometer for 20 min before a baseline blood sample was taken. Following baseline 

measurements, the subjects cycled for 2 h at 55% VO2peak. Subjects performed both trials in a 
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randomized, counter-balanced fashion separated by at least 1 week. A fan producing an air speed of 4.5 

m∙s-1 was directed at the subjects throughout exercise, and subjects wore the same clothing for each trial. 

Physiological and Perceptual measurements 

Wireless skin temperature sensors (Maxim Integrated Products, Sunnyvale, CA) were attached 

on the arm, chest, thigh, and leg. Mean weighted skin temperature (Tsk) was calculated using the 

Ramanathan equation (Ramanathan, 1964). To record rectal temperature (Tre) rectal thermistors 

(Physiotemp Instruments Inc., Clifton, NJ) were inserted 10 cm past the anal sphincter. Tre and Tsk were 

recorded throughout exercise every 5 min. Heart rate (HR) was recorded every 5 min via wireless heart 

rate monitor (Polar Electro T31; Kempele, Finland). During the time-trial, all thermoregulatory and 

cardiovascular measurements were recorded every kilometer. Cycling power output (W) and finishing 

time (sec) of the 5-km time-trial were recorded in real time by the cycling computrainer software 

(RacerMate Inc., Seattle, WA). Subjects could view the screen profile of the course, but could not view 

their time, cadence, or power output. During the steady state, cyclists provided their rate of thirst (“how 

thirsty are you now”), and stomach fullness (“how full is your stomach now”) every 10 min with visual 

analog scales (33). The visual analog scales used were consisted of a 180-mm line with an anchor on the 

left side (0 mm, “not at all”) and a second anchor on the 125-mm mark with the label “extremely”. Since 

25 mL of water was provided every 5 min the assessment of thirst was done prior to drinking water to 

provide fair and objective indication. 

Blood and urine analyses 

Blood samples were obtained via venipuncture without stasis at baseline, following steady state, 

and immediately after the time-trial. Urine was obtained at baseline as well as post-trial. Urine specific 

gravity (USG) and total plasma proteins (TTP) were measured using a hand-held refractometer (Atago 

SUR-NE, Tokyo, Japan). Hematocrit (Hct) was determined in triplicate from whole blood using the 

microcapillary technique, following centrifugation for 5 min at 10,000 rpm. Hemoglobin (Hb) was also 

measured in triplicate from whole blood via the cyanmethemoglobin technique, using a commercially 

available kit (Drabkin’s reagent, Sigma, Saint Louis, Missouri, USA). Percent change in plasma volume 

(%∆PV) was calculated using the Dill and Costill equation (D.B. & D.L., 1974). Plasma (POsm) and urine 
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osmolality (UOsm) were measured in duplicate via freezing-point depression from fresh samples (3250 

Osmometer; Advanced Instruments Inc, Norwood, MA).  

Statistical Analysis 

All variables are presented as mean ± standard error, since they were normally distributed. Differences in 

the mean values or the distributions of parameters between EUH-NT and DEH-NT were assessed using 

Students paired t-tests. Two-way (treatment x time) repeated measures of ANOVA were used to analyze 

differences in variables across time points between treatments. Post-hoc analysis for comparing mean 

values between trials across time points, as well as different time points, was applied by using the 

sequential Bonferroni correction rule. All statistical analysis was performed using JMP Pro (version 

12.1.0, SAS Inc., Gary, NC, USA). A value of P<0.05 was regarded as statistically significant. 

 

RESULTS 

Familiarization Visit 

 During the 2-hour steady state of the familiarization visit, subject sweat loss was 2.3±0.1 L with 

average sweating rates of 1.2±0.0 L∙h-1. Despite favorable conditions to drink ad libitum during the 2-hour 

steady state, subjects reached a mild level of hypohydration of -1.2±0.3%. During the 5-km time-trial, 

subject sweat loss was -0.4±0.1 L with average sweating rates of 1.7±0.3 L∙h-1. Final percent dehydration 

for the whole familiarization visit was -1.8±0.4% body weight. Time-trial average power output for the 

familiarization visit was 281±15 W and average speed was 22.4±0.1 km·h-1.  

Fluid Balance Results 

 Pre-exercise body mass, USG, UOsm, and plasma osmolality did not differ between EUH-NT 

and DEH-NT (Table 1, P>0.05). During the steady state protocol, both EUH-NT and DEH-NT trials 

subjects ingested of 0.6 L of water. However, in the EUH-NT trial, 1.7±0.1 L of water was also infused into 

the subjects’ stomach via the nasogastric tube, bringing the total fluid replacement to 2.3±0.1 L. Following 

2 hours of steady state exercise body mass loss for the EUH-NT and DEH-NT trials were -0.2±0.2 

(0.2±0.6%) and -1.6±0.1 kg (2.2±0.4%), respectively (P<0.05). No significant differences in changes of 

plasma volume were observed between trials (EUH-NT -4.9±0.7% and DEH-NT -4.9±1.2%; P>0.05).  
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During the 5-km time-trial, the cyclists ingested 0.1 L of water (25 ml at every one km) during both 

EUH-NT and DEH-NT. However, in the EUH-NT trial, gastric infusion of water was 0.3±0.1 L, bringing the 

total fluid replacement to 0.4±0.1 L. Following the 5-km time-trial, final weight loss for the EUH-NT and 

DEH-NT time-trial was 0.3±0.1 vs. 0.5±0.1 kg (-0.5±0.4 vs. -0.7±0.3%; P<0.05). No statistically significant 

differences were observed on ΔPV (-4.4±3.7 vs. -7.6±5.4%; P>0.05). 

Physiological, Perceptual, and Performance Responses 

 During 2 hours of steady state cycling, there were no differences between EUH-NT and DEH-NT 

in Tre (P>0.05) with both trials reaching a 38.5±0.1 °C at end of exercise. There were, however, significant 

differences in HR between EUH-NT and DEH-NT (P<0.05) from 55 min until the end of the 2-hour steady 

state bout. Final HR recording from 2 hours of steady state was 144±4 for EUH-NT and 153±4 for DEH-

NT. Final mean Tsk recordings were 35.4±0.3 vs. 35.3±0.2 °C for EUH-NT and DEH-NT, respectively. The 

Tre data during the 5-km time-trial are presented in Figure 1. DEH-NT resulted in significantly higher 

rectal temperatures compared to the EUH-NT (P<0.05; Figure 1). HR during both EUH-NT and DEH-NT 

time-trials reached 85±14% of max HR but did not differ between the two trials (P>0.05; Figure 1). Thirst 

perception and stomach fullness did not change during the 2 h of steady state cycling and no differences 

were observed between trials (Figure 2). Mean power output was significantly greater during the 

performance test in the EUH-NT (294±11 W; P<0.05; Figure 3) compared to DEH-NT (269±10 W). 

Similarly, cycling speed was higher in the EUH-NT (23.2±0.2 km·h-1; Figure 3) compared to the DEH-NT 

(22.3±0.3 km·h-1). Further, EUH-NT had lower completion time (777±18 s) compared to DEH-NT (822±21 

s; P<0.05). Five out of the seven cyclists performed better in the 5-km time-trial during the EUH-NT than 

the DEH-NT trial (Figure 4). 

 

DISCUSSION 

The aim of the present study was to investigate the effect of dehydration on cycling time-trial 

performance in the absence of thirst with subjects blinded to their hydration status. The main finding of 

this study was that euhydration (EUH-NT) lead to better exercise performance in the 5-km time-trial 

compared to the dehydration (DEH-NT). Further, these performance results occurred with similar, albeit 
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low, thirst perceptual responses. To our knowledge, this is first study to induce a blind hydration protocol 

while drinking water, thus stimulating the oropharyngeal receptors. 

These data agree with previous literature concluding that mild hypohydration impairs endurance 

exercise performance. Logan-Springer et al. (Logan-Sprenger, Heigenhauser, Killian, & Spriet, 2012) 

found that progressive dehydration significantly increased core temperature, heart rate, whole body 

carbohydrate oxidation, and muscle glycogenolysis, and these changes were apparent in the first hour of 

exercise when body mass losses were <1%. Further, Bardis et al. (Bardis et al., 2017) found that 

hypohydration of -1.8% body mass as a response to ad libitum drinking resulted in increased core 

temperature, lower cycling power output and slower time-trial time.  

In the present study, although no differences in core temperature were observed during the 

steady state cycling, the DEH-NT trial induced higher core temperature in the time-trial. This core 

temperature difference between the two trial was almost 0.5 °C when the subjects finished the 5-km. It 

should also be noted that the DEH-NT trial had higher core temperature despite cycling at a slower 

speed, by cycling at a lower power output. Since the metabolic heat production was lower in the DEH-NT 

due to the lower power output, the higher core temperatures were due to the inability to dissipate heat, via 

sweating and skin blood flow. The fact that sweating responds were similar between the trials even 

though the thermoregulatory strain was greater in the DEH-NT trial could indicate that sweat sensitivity 

deteriorates due to water deficit. 

Kenefick et al. (R. W. Kenefick, Cheuvront, Palombo, Ely, & Sawka, 2010) found that increasing 

skin temperature proportionally accentuated plasma volume shrinkage and any additional plasma volume 

loss likely results from increased net filtration rate at the capillaries. Despite several other studies 

concluding that skin temperature modifies the impact of hydration state on endurance performance 

(González-Alonso et al., 1999; Robert W Kenefick, Sollanek, Charkoudian, & Sawka, 2014), no 

differences in skin temperature were found in the present study following 2-hours of steady state 

exercise.  

Numerous studies have shown that dehydration impairs cardiovascular function during exercise 

(González-Alonso, Mora-Rodríguez, Below, & Coyle, 1997; R. W. Kenefick et al., 2010; Montain & Coyle, 

1992) via elevated heart rate to compensate for the decreased stroke volume (González-Alonso et al., 
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1999). In the present study, heart rate was higher during the 2-hour steady state cycling in the DEH-NT 

trial from 55 to 120 min of the steady-state exercise component. However, despite the gastric infusion of 

water, no differences were found in PV between trials. Lastly, no differences were observed in maximal 

heart rate during the time-trial as seen elsewhere (R. W. Kenefick et al., 2010). 

Despite the large body of literature that consistently shows hypohydration decreases exercise 

performance (Bardis, Kavouras, Arnaoutis, Panagiotakos, & Sidossis, 2013; Bardis, Kavouras, Kosti, 

Markousi, & Sidossis, 2013; Cheuvront & Kenefick, 2014; R. W. Kenefick et al., 2010; Sawka et al., 

2015), the vast majority of these studies are confounded by the lack of experimental blinding on the 

hydration state. In an experimental setting, hydration has been manipulated via a number of methods 

such as: exercise-induced hypohydration (Armstrong et al., 1997; Barr, 1999), overnight fluid restriction 

(Arnaoutis et al., 2017), diuretics (Gebruers, Hall, O’Brien, O’Leary, & Plant, 1985), and intravenous fluid 

administration (Cheung et al., 2015; Wall et al., 2015). With two exceptions (Cheung et al., 2015; Wall et 

al., 2015), the previous methods have been conducted in a non-blind manner, thus, the subjects were 

aware of whether they were in the hypohydrated or euhydrated trial. Despite the majority of the data 

showing that fluid restriction impairs exercise performance (David Cotter, Thornton, Lee, & Laursen, 

2014), there is a possibility that knowing that you are dehydrated and expecting a decline in performance 

could work as nocebo. However, in this present study, hydration status was manipulated during exercise 

in a blinded manner injecting water to the stomach, via a nasogastric tube. Therefore, the impairment in 

performance seen in the present study is in not the result of subjects’ expectation.  

Recently, two separate studies have attempted to eliminate the bias of thirst on exercise 

performance and blind subjects to their fluid balance. In both of the previous studies (Cheung et al., 2015; 

Wall et al., 2015), Wall et al. (Wall et al., 2015) found that when cyclists were dehydrated by 3% of body 

mass, they exhibited higher core temperatures during their 25-km time-trial, despite having similar ratings 

for thirst perception. In this study, intravenous infusion of isotonic saline was used to rehydrate subjects 

following exercise-induced dehydration of -3%. Similarly, Cheung et al. (Cheung et al., 2015) found that 

when cyclists were hypohydrated by 3% body mass they experienced higher core temperatures and heart 

rates during the last half of their 20-km time-trial. Further, the cyclists were also provided mouth rinse to 

control for thirst, as both previous studies did not allow for drinking. The process of drinking water has 
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been shown to reduce thirst, increase performance, and inhibit vasopressin release, via oropharyngeal 

stimulation (Arnaoutis et al., 2012; Figaro & Mack, 1997). In the present study, subjects were provided a 

small amount of drinking throughout the protocol. This technique did not prevent dehydration, but could 

keep thirst perception low and similar between the two conditions (Fig. 2).  

Interestingly, even though a significant amount of water was infused in the stomach of the cyclist 

during exercise, no differences in stomach fullness was observed between treatments. Probably, the 

slow, continuous gastric infusion did not cause and significant distention that would be perceived by the 

subjects. It would be interested to not the role of stomach fullness in relation to thirst. A classic animal-

model study by Adolph et al. (Adolph & Northrop, 1950) discussed the relationship between stomach 

fullness and thirst when drinking and infusing fluid directly into the stomach. The authors of this study 

conclude that the factor of gastric filling concerns only the drinking that occurs immediately after a large 

volume is placed into the stomach. If time is allowed for the passage of the large amount of fluid 

administered into the intestine and for its absorption, then thirst is inhibited. In the present study, the 

gastric infusion of water was at a rate matching sweating rate and sweating amount, meaning the EUH-

NT received about 0.85 L per hour. This amount is maximal gastric emptying capacity and readily 

absorbed as water does not need to pass through the alimentary tract to be absorbed. 

Lastly, in the present study all subjects performed a familiarization trial. Although the purpose of 

the familiarization was to assess sweat losses, one cannot ignore the observation that despite favorable 

conditions for rehydration during exercise, subjects finished the 2-hour steady state in a mild level of 

hypohydration (-1.2%) while drinking ad-libitum and reached -1.8% following the 5-km time trial. The 

subjects average speed during the time-trial was slower than the EUH-NT trial coupled with a lower power 

output. This observation might suggest that exercise induced dehydration associated with drinking to 

thirst impaired performance, even though the subject did not wear the nasogastric tube that could create 

more discomfort. 

In conclusion, dehydration impaired cycling performance during a 5-km time trial in the heat, even 

in the absence of thirst, when subjects were unaware of their hydration state. Further research is needed 

to evaluate the effect of blinded rehydration in difference sports of varying intensities and environments.  

 



19 

 

REFERENCES 

Adolph, E. F., & Northrop, J. P. (1950). Thirst and its inhibition in the stomach. The American Journal of 
Physiology, 161(3), 374–86. 

American College of Sports Medicine, Sawka, M. N., Burke, L. M., Eichner, E. R., Maughan, R. J., 
Montain, S. J., & Stachenfeld, N. S. (2007). American College of Sports Medicine position stand. 
Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377–90. 

http://doi.org/10.1249/mss.0b013e31802ca597 

Armstrong, L. E., Johnson, E. C., & Bergeron, M. F. (2016). COUNTERVIEW: Is Drinking to Thirst 
Adequate to Appropriately Maintain Hydration Status During Prolonged Endurance Exercise? No. 
Wilderness & Environmental Medicine, 27(2), 195–8. http://doi.org/10.1016/j.wem.2016.03.002 

Armstrong, L. E., Johnson, E. C., Kunces, L. J., Ganio, M. S., Judelson, D. A., Kupchak, B. R., … 
Williamson, K. H. (2014). Drinking to thirst versus drinking ad libitum during road cycling. Journal of 
Athletic Training, 49(5), 624–31. http://doi.org/10.4085/1062-6050-49.3.85 

Armstrong, L. E., Maresh, C. M., Gabaree, C. V., Hoffman, J. R., Kavouras, S. A., Kenefick, R. W., … 
Ahlquist, L. E. (1997). Thermal and circulatory responses during exercise: effects of hypohydration, 
dehydration, and water intake. J Appl Physiol, 82(6), 2028–2035. 

Arnaoutis, G., Kavouras, S. A., Christaki, I., & Sidossis, L. S. (2012). Water ingestion improves 
performance compared with mouth rinse in dehydrated subjects. Medicine and Science in Sports 
and Exercise, 44(1), 175–9. http://doi.org/10.1249/MSS.0b013e3182285776 

Arnaoutis, G., Kavouras, S. A., Stratakis, N., Likka, M., Mitrakou, A., Papamichael, C., … 
Stamatelopoulos, K. (2017). The effect of hypohydration on endothelial function in young healthy 
adults. European Journal of Nutrition, 56(3), 1211–1217. http://doi.org/10.1007/s00394-016-1170-8 

Atkinson, G., Todd, C., Reilly, T., & Waterhouse, J. (2005). Diurnal variation in cycling performance: 
influence of warm-up. Journal of Sports Sciences, 23(3), 321–9. 

http://doi.org/10.1080/02640410410001729919 

Bardis, C. N., Kavouras, S. A., Adams, J. D., Geladas, N. D., Panagiotakos, D. B., & Sidossis, L. S. 
(2017). Prescribed Drinking Leads to Better Cycling Performance than Ad Libitum Drinking. 
Medicine & Science in Sports & Exercise, (January), 1. 

http://doi.org/10.1249/MSS.0000000000001202 

Bardis, C. N., Kavouras, S. A., Arnaoutis, G., Panagiotakos, D. B., & Sidossis, L. S. (2013). Mild 
dehydration and cycling performance during 5-kilometer hill climbing. Journal of Athletic Training, 
48(6), 741–7. http://doi.org/10.4085/1062-6050-48.5.01 

Bardis, C. N., Kavouras, S. A., Kosti, L., Markousi, M., & Sidossis, L. S. (2013). Mild hypohydration 
decreases cycling performance in the heat. Medicine and Science in Sports and Exercise, 45(9), 

1782–9. http://doi.org/10.1249/MSS.0b013e31828e1e77 

Barr, S. I. (1999). Effects of dehydration on exercise performance. Canadian Journal of Applied 
Physiology = Revue Canadienne de Physiologie Appliquee, 24(2), 164–72. 

http://doi.org/10.1017/CBO9781107415324.004 

Below, P. R., Mora-Rodríguez, R., González-Alonso, J., & Coyle, E. F. (1995). Fluid and carbohydrate 
ingestion independently improve performance during 1 h of intense exercise. Medicine and Science 
in Sports and Exercise, 27(2), 200–10. 

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and 
Exercise, 14(5), 377–81. 

Brunstrom, J. M., Tribbeck, P. M., & MacRae,  a W. (2000). The role of mouth state in the termination of 
drinking behavior in humans. Physiology & Behavior, 68(4), 579–83. http://doi.org/10.1016/S0031-



20 

 

9384(99)00210-3 

Cheung, S. S., McGarr, G. W., Mallette, M. M., Wallace, P. J., Watson, C. L., Kim, I. M., & Greenway, M. 
J. (2015). Separate and combined effects of dehydration and thirst sensation on exercise 
performance in the heat. Scandinavian Journal of Medicine & Science in Sports, 25(1985), 104–111. 

http://doi.org/10.1111/sms.12343 

Cheuvront, S. N., Carter, R., & Sawka, M. N. (2003). Fluid balance and endurance exercise performance. 
Current Sports Medicine Reports, 2(4), 202–8. 

Cheuvront, S. N., & Kenefick, R. W. (2014). Dehydration: physiology, assessment, and performance 
effects. Comprehensive Physiology, 4(1), 257–85. http://doi.org/10.1002/cphy.c130017 

D.B., D., & D.L., C. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells 
in dehydration. Journal of Applied Physiology, 37(2), 247–248. http://doi.org/ET0013 

Dantas, J. L., Pereira, G., & Nakamura, F. Y. (2015). Five-Kilometers Time Trial: Preliminary Validation of 
a Short Test for Cycling Performance Evaluation. Asian Journal of Sports Medicine, 6(3), e23802. 

http://doi.org/10.5812/asjsm.23802 

David Cotter, J., Thornton, S. N., Lee, J. K., & Laursen, P. B. (2014). Are we being drowned in hydration 
advice? Thirsty for more? Extreme Physiology & Medicine, 3, 1–15. http://doi.org/10.1186/2046-

7648-3-18 

Figaro, M. K., & Mack, G. W. (1997). Regulation of fluid intake in dehydrated humans: role of 
oropharyngeal stimulation. The American Journal of Physiology, 272(6 Pt 2), R1740–R1746. 

Gebruers, E. M., Hall, W. J., O’Brien, M. H., O’Leary, D., & Plant, W. D. (1985). Signals from the 
oropharynx may contribute to the diuresis which occurs in man to drinking isotonic fluids. The 
Journal of Physiology, 363, 21–33. 

González-Alonso, J., Mora-Rodríguez, R., Below, P. R., & Coyle, E. F. (1995). Dehydration reduces 
cardiac output and increases systemic and cutaneous vascular resistance during exercise. Journal 
of Applied Physiology (Bethesda, Md. : 1985), 79(5), 1487–1496. 

González-Alonso, J., Mora-Rodríguez, R., Below, P. R., & Coyle, E. F. (1997). Dehydration markedly 
impairs cardiovascular function in hyperthermic endurance athletes during exercise. Journal of 
Applied Physiology (Bethesda, Md. : 1985), 82(4), 1229–36. 

González-Alonso, J., Teller, C., Andersen, S. L., Jensen, F. B., Hyldig, T., & Nielsen, B. (1999). Influence 
of body temperature on the development of fatigue during prolonged exercise in the heat. Journal of 
Applied Physiology (Bethesda, Md. : 1985), 86(3), 1032–9. 

Goulet, E. D. B. (2013). Effect of exercise-induced dehydration on endurance performance: evaluating the 
impact of exercise protocols on outcomes using a meta-analytic procedure. British Journal of Sports 
Medicine, 47(11), 679–86. http://doi.org/10.1136/bjsports-2012-090958 

Greenleaf, J. E. (1992). Problem: thirst, drinking behavior, and involuntary dehydration. Medicine and 
Science in Sports and Exercise, 24(6), 645–56. 

Greenleaf, J. E., & Sargent, F. (1965). Voluntary dehydration in man. Journal of Applied Physiology 
(Bethesda, Md. : 1985), 20(4), 719–724. http://doi.org/10.1007/BF00380013 

Guest, S., Essick, G., Young, M., Lee, A., Phillips, N., & McGlone, F. (2006). Oral hydration, parotid 
salivation and the perceived pleasantness of small water volumes. Physiol Behav, 89(5), 724–734. 

http://doi.org/10.1016/j.physbeh.2006.08.012 

Hoffman, M. D., Cotter, J. D., Goulet, É. D., & Laursen, P. B. (2016). VIEW: Is Drinking to Thirst Adequate 
to Appropriately Maintain Hydration Status During Prolonged Endurance Exercise? Yes. Wilderness 
& Environmental Medicine, 27(2), 192–5. http://doi.org/10.1016/j.wem.2016.03.003 



21 

 

Inman, M. D., Hughson, R. L., & Jones, N. L. (1985). Comparison of cardiac output during exercise by 
single-breath and CO2-rebreathing methods. Journal of Applied Physiology (Bethesda, Md. : 1985), 
58(4), 1372–7. 

Kavouras, S. A. (2013). Thirst. Nutrition Today, 48, S7–S9. http://doi.org/10.1097/NT.0b013e31829785f1 

Kavouras, S. A., Bougatsas, D., Johnson, E. C., Arnaoutis, G., Tsipouridi, S., & Panagiotakos, D. B. 
(2016). Water intake and urinary hydration biomarkers in children. European Journal of Clinical 
Nutrition, (June), 1–6. http://doi.org/10.1038/ejcn.2016.218 

Kenefick, R. W., Cheuvront, S. N., Palombo, L. J., Ely, B. R., & Sawka, M. N. (2010). Skin temperature 
modifies the impact of hypohydration on aerobic performance. Journal of Applied Physiology 
(Bethesda, Md. : 1985), 109(1), 79–86. http://doi.org/10.1152/japplphysiol.00135.2010 

Kenefick, R. W., Sollanek, K. J., Charkoudian, N., & Sawka, M. N. (2014). Impact of skin temperature and 
hydration on plasma volume responses during exercise. Journal of Applied Physiology (Bethesda, 
Md. : 1985), 117(4), 413–20. http://doi.org/10.1152/japplphysiol.00415.2014 

Logan-Sprenger, H. M., Heigenhauser, G. J. F., Killian, K. J., & Spriet, L. L. (2012). Effects of dehydration 
during cycling on skeletal muscle metabolism in females. Medicine and Science in Sports and 
Exercise, 44(10), 1949–57. http://doi.org/10.1249/MSS.0b013e31825abc7c 

Maughan, R. J. (2012). Investigating the associations between hydration and exercise performance: 
methodology and limitations. Nutrition Reviews, 70 Suppl 2(SUPPL/2), S128-31. 
http://doi.org/10.1111/j.1753-4887.2012.00536.x 

Maughan, R. J., Leiper, J. B., & Thompson, J. (1985). Rectal temperature after marathon running. British 
Journal of Sports Medicine, 19(4), 192–5. http://doi.org/10.1136/bjsm.19.4.192 

McClung, M., & Collins, D. (2007). “Because I know it will!”: placebo effects of an ergogenic aid on athletic 
performance. Journal of Sport & Exercise Psychology, 29(3), 382–94. 

http://doi.org/10.1123/jsep.29.3.382 

McKinley, M. J., & Johnson, A. K. (2004). The physiological regulation of thirst and fluid intake. News in 
Physiological Sciences : An International Journal of Physiology Produced Jointly by the International 
Union of Physiological Sciences and the American Physiological Society, 19(1), 1–6. 

http://doi.org/10.1152/nips.01470.2003 

Mears, S. A., & Shirreffs, S. M. (2013). The effects of high-intensity intermittent exercise compared with 
continuous exercise on voluntary water ingestion. International Journal of Sport Nutrition and 
Exercise Metabolism, 23(5), 488–97. http://doi.org/10.1016/j.physbeh.2016.01.016 

Mears, S. A., Watson, P., & Shirreffs, S. M. (2016). Thirst responses following high intensity intermittent 
exercise when access to ad libitum water intake was permitted, not permitted or delayed. Physiology 
and Behavior, 157, 47–54. http://doi.org/10.1016/j.physbeh.2016.01.016 

Montain, S. J., & Coyle, E. F. (1992). Influence of graded dehydration on hyperthermia and 
cardiovascular drift during exercise. Journal of Applied Physiology (Bethesda, Md. : 1985), 73(4), 

1340–1350. 

Ramanathan, N. L. (1964). A new weighting system for mean surface temperature of the human body. 
Journal of Applied Physiology, 19(3), 531–3. 

Sawka, M. N., Cheuvront, S. N., & Kenefick, R. W. (2015). Hypohydration and Human Performance: 
Impact of Environment and Physiological Mechanisms. Sports Medicine (Auckland, N.Z.), 45 Suppl 
1(1), S51-60. http://doi.org/10.1007/s40279-015-0395-7 

Sawka, M. N., & Noakes, T. D. (2007). Does dehydration impair exercise performance? Medicine and 
Science in Sports and Exercise, 39(8), 1209–1217. http://doi.org/10.1249/mss.0b013e318124a664 

Takamata, A., Mack, G. W., Gillen, C. M., Jozsi, A. C., & Nadel, E. R. (1995). Osmoregulatory modulation 



22 

 

of thermal sweating in humans: reflex effects of drinking. The American Journal of Physiology, 
268(2), 414–22. 

Wall, B. A., Watson, G., Peiffer, J. J., Abbiss, C. R., Siegel, R., & Laursen, P. B. (2015). Current hydration 
guidelines are erroneous: dehydration does not impair exercise performance in the heat. British 
Journal of Sports Medicine, 49(16), 1077–83. http://doi.org/10.1136/bjsports-2013-092417 

Walsh, R. M., Noakes, T. D., Hawley, J. A., & Dennis, S. C. (1994). Impaired high-intensity cycling 
performance time at low levels of dehydration. International Journal of Sports Medicine, 15(7), 392–

8. http://doi.org/10.1055/s-2007-1021076 

Wingo, J. E., Lafrenz, A. J., Ganio, M. S., Edwards, G. L., & Cureton, K. J. (2005). Cardiovascular drift is 
related to reduced maximal oxygen uptake during heat stress. Medicine and Science in Sports and 
Exercise, 37(2), 248–255. http://doi.org/10.1249/01.MSS.0000152731.33450.95 

  



23 

 

Table 1. Pre-exercise fluid balance results for both DEH-NT and EUH-NT 

 

Body mass  

(kg) 

UOsm  

(mmol·kg-1) 
USG 

POsm  

(mmol·kg-1) 

DEH-NT 72.2±3.0 515±89 1.012±0.002 291±1 

EUH-NT 72.4±2.9 368±63 1.010±0.001 292±1 
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Table 2. Fluid balance measurements during and following 2-hour steady state protocol.  

 
Water Ingestion 

(L) 

Gastric Infusion  

(L) 

Total Fluid 

(L) 

% BM 

Change 
∆PV (%) 

DEH-NT 0.6 0.0±0.0 0.6±0.0 -2.2±0.1* -4.9±3.4 

EUH-NT 0.6 1.7±0.1 2.3±0.1 -0.2±0.2 -4.9±1.8 

*Denotes statistically significant different (P<0.05) between DEH-NT and EUH-NT trials. 
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FIGURE LEGENDS 

Figure 1. Core temperature and heart rate during 5km cycling time-trial between DEH-NT and EUH-NT. 
*denotes statistically significant differences, P<0.05 between trials at same time point. 
 
Figure 2. Thirst and stomach fullness visual analog scale responses during 2-hour steady state between 
DEH-NT and EUH-NT.  
 
Figure 3. Mean cycling speed and mean power output during the 5km cycling time-trial between DEH-NT 
and EUH-NT. *denotes statistically significant differences, P<0.05 between trials. 
 
Figure 4. Individual performance data during the 5km time-trial in DEH-NT and EUH-NT trials plotted with 
a line of identity. Each point represents a different individual participant. 
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Figure 4.  
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III. Study 2: 

The Effect of Blinded Hydration State on Thermoregulation and Performance in Male Cyclists 
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ABSTRACT 

Purpose: The aim of the present study was to observe the effect of dehydration on exercise performance 

with subjects blinded to their hydration status via intravenous infusion. Methods: Eleven male cyclists 

(weight 75.8±6.4 kg, VO2peak: 64.9±5.6 mL·kg·min-1, body fat: 12.0±5.8%, Powermax: 409±40 W) 

performed three sets of criterium-like cycling, consisting of 20 min of steady state cycling at 50% peak 

power output, each followed by a 5-km time-trial at 3% grade. Subjects completed the protocol, in 

counter-balanced fashion, on two separate occasions in dry heat (30 °C, 30% rh) either hypohydrated 

(HYP) or euhydrated (EUH). In both trials, subjects ingested 25 mL every 5 min during the steady-state 

and 25 mL every 1-km during the 5-km time-trials. In the EUH trial, sweat losses were fully replaced via 

intravenous infusion of isotonic saline while in the DEH trial, a sham IV was instrumented. Results: 

Following the exercise protocol, the subjects dehydrated by -0.1±0.1% and -1.8±0.2% of their body weight 

for the EUH and HYP trial, respectively. During the second and third time-trials, subjects displayed faster 

speed in the EUH trial (27.5±3.0 and 27.2±3.1 km·h-1) compared to the HYP trial (26.2±2.9 and 25.5±3.3 

km·h-1; both P<0.05). Core temperature (Tre) was also higher in the HYP trial throughout the third steady-

state (P<0.05) and continued to be higher throughout the third 5-km time-trial (P<0.05). Final Tre of the 

third time-trial for HYP and EUH was 39.1±0.3 vs. 38.6±0.6 °C. Conclusion: These data suggest that full 

fluid replacement, even in a blinded manner, provided a performance advantage by maintaining better 

hydration state. This benefit seems to be associated with the lower thermoregulatory strain, due to lower 

core temperatures.   
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INTRODUCTION 

Ad-libitum water intake during endurance exercise is rarely sufficient to replace water loss, and 

consequently dehydration is common at the end of prolonged exercise (Sawka et al., 2015). The 

American College of Sports Medicine position statement on exercise and fluid replacement states that 

hypohydration greater than 2% body mass impairs endurance exercise performance in temperate, warm 

and hot conditions (1). However, studies have shown that even a mild degree of hypohydration can impair 

exercise performance via thermoregulatory and cardiovascular strain (Bardis et al., 2017; Below, Mora-

Rodríguez, González-Alonso, & Coyle, 1995; Logan-Sprenger et al., 2012).  

Sufficient fluid replacement during exercise reduces physiological strain (González-Alonso et al., 

1995) and thirst (McKinley & Johnson, 2004). Thirst, however, is a poor indicator for fluid replacement 

(Greenleaf, 1992) as it is suppressed by the act of drinking (Figaro & Mack, 1997; Stavros A. Kavouras, 

2013). A classic study by Greenleaf et al. (Greenleaf & Sargent, 1965) showed that when drinking to 

satisfy thirst, subjects replace ~60% of fluid requirements. Further, some have postulated that thirst alone 

could impair exercise performance in dehydrated subjects (Cheung et al., 2015; Sawka & Noakes, 2007). 

Regardless of thirst, the majority of previous studies showing that dehydration impairs exercise 

performance have failed to blind their subjects to their fluid intake and/or hydration state. This absence of 

blinding could induce a bias that might affect the results based on subjects’ perceptions and/or 

expectations. Studies that manipulate hydration status through fluid ingestion are limited by the nature of 

drinking and its effect on thirst (Armstrong et al., 2016; Arnaoutis et al., 2012).  

Currently, only two studies have implemented intravenous saline infusion during exercise to blind 

fluid replacement and overall hydration state (Cheung et al., 2015; Wall et al., 2015). Although both 

studies reported no differences in cycling performance when subjects were dehydrated to 3% body 

weight, higher thermoregulatory and cardiovascular strain was observed. Further, both studies did not 

allow water ingestion during exercise, while only one allowed mouth rinsing with water. Previous 

experiments have suggested that the act of swallowing reduces thirst, increases performance, and 

inhibits vasopressin release, via oropharyngeal stimulation (Arnaoutis et al., 2012; Figaro & Mack, 1997; 

Takamata et al., 1995), as opposed to mouth rinsing. Interestingly, even though a small volume of water 
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could alleviate thirst (Guest et al., 2006), drinking to thirst during exercise might impair exercise 

performance (Armstrong et al., 2014, 2016; Greenleaf & Sargent, 1965). 

Further, since fluid ingestion was not provided during any of the hydration conditions in the 

previously mention studies, it remains a possibility that performance outcomes could be due to 

dehydration coupled with the activation of oropharyngeal receptors. Therefore, the purpose of this study 

was to investigate the effect of hypohydration on cycling performance in a blinded manner, while also 

attempting to control for thirst with small volume of water ingestion. 

 

METHODS 

Participants 

Eleven male cyclists (28±7 y; 75.9±6.4 kg; VO2peak: 64.9±5.6 mL·kg·min-1; 12.0±5.8% body fat, 

Powermax: 409±40 W) were recruited to participate in the study. All cyclists had extensive racing 

experience and competed regularly at USA Cycling category 3 or higher races. Eligibility criteria for 

participation included other than competitive cycling status, absence of any metabolic, cardiovascular, 

renal disease, and history of heat stroke. The study was approved by the university’s institutional review 

board and participants gave their written consent prior to enrolment. 

Preliminary Screening  

During the preliminary screening, anthropometric characteristics were recorded. Weight (Health O 

Meter Professional, 349 KLX, McCook, IL) and height (Seca, Model 700, Hamburg, Germany) were 

measured without shoes and with minimal clothing to the nearest 0.1 kg and 0.005 m, respectively. Body 

composition was determined via dual-energy X-ray absorptiometry (DXA; General Electric, Lunar Prodigy 

Promo, Chicago, IL). Peak oxygen uptake (VO2peak) test was performed on an electronically braked cycle 

ergometer (Velotron, Racermate, Seattle, WA). Following standardized warm-up at 100 W power 

increased by 40 W every two minutes until volitional exhaustion. During the test, expiratory gases were 

analyzed via an online gas analyzer (Parvo Medics TrueOne 2400, Sandy, UT). At least three of the four 

following criteria were used to verify attainment of VO2peak: 1) Oxygen uptake plateau with increased 

workload, 2) Respiratory exchange ratio greater than 1.1, 3) HR greater than 90% of age-predicted 
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maximal value (220 - age) and 4) Perceived exertion based on the 6-20 Borg scale greater than 17 (Borg, 

1982).  

Experimental Protocol 

All subjects performed in a counterbalanced manner two experimental criterium-like cycling tests 

in the laboratory under hot, dry conditions with moderate wind speed (30 °C, 30% rh; 4.5 m·s-1). The 

protocol consisted of three 20-min steady-state cycling (SS) sets at 50% peak power output, each 

followed by a 5-km time-trial at 3% grade (TT). During the protocol cyclists ingested 25-mL of water every 

5 minutes of each steady state, and every 1-km of each time-trial. The two experimental trials were 

identical with the exception of the hydration protocols. During the euhydrated trial (EUH), cyclists were 

continually infused isotonic saline with flow rate and amount controlled by an electronic infusion pump set 

to match the rate of sweat loss measured during the familiarization trial. During the hypohydrated trial 

(HYP), cyclists were given the same drinking protocol, however, the cyclists were sham-instrumented with 

an identical intravenous (IV) infusion configuration, and the technician performed similar movements and 

manipulations (e.g., checking the pump, massaging, and changing the saline bag). In all conditions, 

saline bags were pre-warmed to 37 °C, with a small amount infused following IV-line insertion to avoid 

conscious awareness of hydration condition. The IV pump was positioned behind the participant to 

prevent visual feedback of the infusion state. All subjects were given a commercially available frozen 

meal (600 kcal, 44 g carbohydrates, 8 g fat, and 12 g protein) to consume the night before.  Prior to the 

protocol subjects ingested a carbohydrate-rich shake (240 kcal, 41 g carbohydrates, 4 g fat, and 10 g 

protein) 20-min before the protocol. To minimize differences in starting muscle glycogen concentrations in 

between trials, participants recorded their diet 24 h before their first visit. Diet records were copied and 

returned to the participants with instructions to follow the same diet before the next subsequent visit. 

Participants were also given platform scales to measure body weight 3 days prior to each experimental 

protocol to ensure no changes in body weight occurred over the course of the experiment. All subjects 

were advised to treat the protocol as an interval workout and to refrain from heavy training and 

competition while participating in the study.   

Familiarization Trial 
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Prior to the experimental trials, participants completed the entire protocol in the same ambient 

conditions to get familiarized with the experimental protocol. All subjects were instructed to drinks as 

much as they wanted from their own water bottles. During this trial, sweating rate was estimated based 

on changes in body weight corrected for water intake and urine output. To record body weight changes 

during the trial without changing body posture, the cycle ergometer was mounted on the top of a large 

platform scale (Model VS-2501, WeighSouth Inc, Asheville, NC). The volume and rate of fluid infused 

during the EUH trial was estimated based on the familiarization trial to replace 100% of fluid losses. The 

protocol of this session was identical with the two experimental trials, with the exception of blood draws 

and perceptual measures. 

Experimental Trials 

Upon arrival to the laboratory, a urine sample was collected to assess pre-trial hydration state 

and proceeded to testing only when urine specific gravity was below 1.020 (American College of Sports 

Medicine et al., 2007). A venous catheter was then placed an antecubital vein which was coupled with an 

extension set and a 3-way stopcock for blood sampling and IV saline infusion. Following instrumentation, 

participants entered the environmental chamber and sat quietly on the cycle ergometer for 20 min before 

the first blood sample to normalize posture. A fan producing an air speed of 4.5 m∙s-1 was directed at the 

subjects throughout exercise, and subjects wore the same clothing for each trial. 

Thermoregulatory Measurements 

Wireless skin temperature sensors (Maxim Integrated Products, Sunnyvale, CA) were attached 

on the arm, chest, thigh, and leg. Mean weighted skin temperature (Tsk) was calculated using the 

Ramanathan equation (Ramanathan, 1964). To record rectal temperature (Tre), a rectal thermistor 

(Physiotemp Instruments Inc., Clifton, NJ) was inserted 10 cm past the anal sphincter. Tre and Tsk were 

recorded throughout exercise every 5-min. During the time-trials, all thermoregulatory measurements 

were recorded every kilometer. 

Cardiovascular Measurements 

Heart rate (HR) was recorded every 5 min via wireless heart rate monitor (Polar Electro T31; 

Kempele, Finland). Cardiac output (Q) was measured using the indirect CO2-rebreathing method, as 

described by Jones et al. (Inman, Hughson, & Jones, 1985), using the Parvo Medics metabolic system 
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and software. This involved measuring the VCO2, end-tidal CO2 concentration, and the equilibrium CO2 

concentration after rebreathing in succession. HR was measured every 5-min during the 20-min of steady 

state and every kilometer during the time-trials. Q was measured the last 5 min of the steady state 

sessions. 

Performance and Perceptual Measurements  

Average power output and time were recorded by the online computrainer software 

(Computrainer, RacerMate Inc., Seattle, WA). At baseline and every 10 minutes, subjects were asked to 

rate their perceived exertion their perceived thirst (“how thirsty are you now”), and their stomach fullness 

(“how full is your stomach now”). Thirst and stomach fullness was assessed via a visual analog scale 

used consisted of a 180-mm line with an anchor on the left side (0 mm, “not at all”) and a second anchor 

on the 125-mm mark with the label “extremely”.  

Blood and urine analysis 

Urine specific gravity (USG) and total plasma proteins (TTP) were measured using a hand-held 

refractometer (Atago SUR-NE, Tokyo, Japan). Hematocrit (Hct) was determined in triplicate from whole 

blood using the microcapillary technique, following centrifugation for 5-min at 10,000 rpm. Hemoglobin 

(Hb) was also measured in triplicate from whole blood via the cyanmethemoglobin technique, using a 

commercially available kit (Drabkin’s reagent, Sigma, Saint Louis, Missouri, USA). Percent change in 

plasma volume (%∆PV) was calculated using the Dill and Costill equation (D.B. & D.L., 1974). Plasma 

(POsm) and urine osmolality (UOsm) were measured in duplicate via freezing-point depression from fresh 

samples (3250 Osmometer; Advanced Instruments Inc, Norwood, MA). Whole blood lactate was also 

measured at the end of each 5-km climb with a lactate analyzer (Accutrend Lactate, Roche Diagnostics, 

Mannheim, Germany). Post-exercise blood glucose was measured using the HemoCue 201+ Glucose 

analyzer (HemoCue Ltd, Dronfield, UK).  

Statistical Analysis 

All variables are presented as mean ± standard deviation, unless stated otherwise. Differences in 

the mean values or the distributions of parameters between EUH and HYP were assessed using 

Students paired t-tests. Two-way (treatment x time) repeated measures of ANOVA were used to analyze 

differences in variables across time points between treatments. Post-hoc analysis for comparing mean 



38 

 

values between trials across time points, as well as different time points, was applied by using the 

sequential Bonferroni correction rule. Using data from a similar study (Bardis et al., 2017), an α of 0.05 

and a statistical power of 0.8, it was estimated that 10 subjects would be required to reject the null 

hypothesis. All statistical analysis was performed using JMP Pro (version 13.0, SAS Inc., Gary, NC, 

USA). A value of P<0.05 was regarded as statistically significant. 

 

RESULTS 

Familiarization Visit 

 During the three 20-min steady-state bouts, subject sweat loss was 0.3±0.1, 0.5±0.1, and 

0.4±0.2 L. During the 5-km time-trials, subject sweating rates were 1.3±0.5, 1.7±1.0, and 1.5±0.6 L·h-1. 

While drinking ad-libitum with favorable conditions for rehydration, subjects reached a mild level of 

hypohydration of -0.8±0.8% prior to the last time-trial and completed the familiarization visit at -0.8±0.8% 

body weight. Average power output for the first, second, and third 5-km time-trials were 298±52, 280±47, 

and 277±62 W while average speeds during the time-trials were 26.7±3.0, 25.8±2.9, 25.6±4.0 km·h-1.  

Blood and Body weight parameters 

Pre-exercise body mass, USG, and POsm did not different between EUH and HYP (Table 1, 

P>0.05). Subjects finished the first, second, and third 5-km time-trials in the HYP trial with a cumulative 

water deficit of -0.4±0.2, -0.9±0.2, and -1.5±1.0 kg, respectively. However, during the EUH trial, subjects 

maintained euhydration (-0.1±0.2, -0.1±0.3, -0.1±0.4 kg). At the start of the second 5-km time-trial, 

subjects in the HYP trial were dehydrated by almost 1% of their body weight (-0.9±0.2%), while subjects 

in the EUH trial remained euhydrated (-0.1±0.1%). Prior to the last 5-km time-trial, subjects in the HYP 

trial were at a mild level of hypohydration at -1.5±0.3% body weight, and finished the entire protocol at -

1.8±0.2% body weight. In the EUH trial, subjects were euhydrated approaching the last 5-km time-trial (-

0.1±0.4% body weight) and maintained that euhydration through the last time-trial (-0.1±0.5% body 

weight). Subjects in both trials ingested 25 mL of tap water every 5-min (300 mL total) of the steady-state 

exercise, and another 25 mL every 1-km of the time-trials (375 mL total). However, in the EUH trial, 

subjects were also infused intravenously a total of 1.3±0.4 L bringing the total fluid replacement for the 

EUH trial to 2.0±0.4 L. Both the water ingested and the saline infused were warmed up to 37 ºC to avoid 
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cooling effect. Despite constant infusion of 0.9% NaCl, POsm following the third time-trial in the EUH trial 

reached 303±5 mmol·kg-1 which did not differ from the HYP trial 302±7 mmol·kg-1 (P>0.05; Figure 1) 

Thermoregulatory results 

 Tre was higher in the HYP trial than the EUH trial during the second steady-state from 15 min to 

20 min (P<0.05; Figure 2) and maintained that higher core temperature during the second 5-km time-trial 

up to the last kilometer (P<0.05). Final Tre of the second time-trial for HYP and EUH was 38.9±0.3 vs. 

38.7±0.5 °C (P=0.06). Tre was also higher in the HYP trial throughout the third steady-state (P<0.05) and 

continued to be higher throughout the third 5-km time-trial (P<0.05). Final Tre of the third time-trial for HYP 

and EUH was 39.1±0.3 vs. 38.6±0.6 °C. Mean Tsk was not different between HYP and EUH for the first 

steady-state (33.4±0.9 vs. 33.5±0.6 °C), first time-trial (both 33.5±0.7 °C), second steady-state (33.1±0.9 

vs. 33.3±0.6 °C), and second time-trial (33.3±1.0 vs. 33.6±0.8°C; all P>0.05). Mean Tsk was higher, 

however, in the third steady-state from 10 minutes on (33.1±1.1 vs. 33.5±0.8 °C; P<0.05), but not during 

the third time-trial with final mean Tsk for HYP and EUH being 33.2±1.2 vs. 33.6±1.0 °C. Sweating rates 

for the HYP and EUH trials were not different for the first (1.5±0.4 vs. 1.5±0.9 L·h-1) second (1.5±0.6 vs. 

2.0±1.0 L·h-1) and third time-trials (1.9±1.0 vs. 1.7±0.5 L·h-1; all P>0.05).  

Cardiovascular results 

HR during the first (135±13 vs. 134±13 beats·min-1), second (143±16 vs. 140±14 beats·min-1), 

and third steady-states (146±17 vs. 139±14 beats·min-1; all P>0.05) were not significantly different. 

Similarly, HR during the 5-km time-trials was near maximal and did not differ significantly between the two 

trials (HYP: 170±16, 171±16, and 174±13 beats·min-1; EUH: 173±13, 173±14, 174±14 beats·min-1, 

P>0.05). We were able to collect complete Q data only from four subjects, since several subjects were 

not willing to perform the measurement. Q during the third steady-state showed no differences between 

HYP (21.0±1.0 L·min-1) and EUH (21.3±1.0 L·min-1). Oxygen uptake data did not differ between EUH 

(2.7±0.2, 2.7±0.3, and 2.70±0.3 L·min) and HYP trials (2.6±0.2, 2.8±0.2, and 2.7±0.3 L·min; P>0.05) 

Perceptual Results 

After the first steady-state, no differences were observed in thirst perception (Figure 3) between 

HYP (40±20 mm) and EUH trials (39±24 mm; P>0.05) and this continued until the end of the second 

steady state (64±26 mm vs. 50±26 mm; P>0.05). However, during the third steady state, thirst perception 
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ratings were higher in the HYP trial at all timepoints (72±29, 72±24, and 79±29 mm) compared to the 

EUH trial (46±26, 60±32, and 60±32 mm; P<0.05). No differences in stomach fullness were observed 

between HYP and EUH trials following the first (46±28 vs. 46±26 mm), second (43±27 vs. 37±19 mm), 

and third steady states (35±19 vs. 37±22 mm; all P>0.05). Similarly, RPE responses (Figure 3) were 

similar throughout the protocol between HYP and EUH following the first (9±2 vs. 9±2), second (11±2 vs. 

11±2), and third steady states (12±2 vs. 11±1; all P>0.05).  

Performance Results 

Average cycling speed during the first 5-km time-trial was not significantly different between EUH 

and HYP (27.3±2.9 vs. 26.8±3.0 km·h-1, Figure 4). During the second and third time-trials, subjects 

displayed faster speed in the EUH trial (27.5±3.0 and 27.2±3.1 km·h-1) compared to the HYP trial 

(26.2±2.9 and 25.5±3.3 km·h-1; both P<0.05). Individual data for each time-trial is plotted in Figure 5. 

Interestingly, nine out of the eleven subjects performed the last time-trial better in the EUH trial than in the 

HYP trial, with one subject performing the same. Mean power output during the first time-trial was not 

different between the two experiments (EUH: 306±52 vs. HYP: 297±53 W; P>0.05). During the second 

and third time-trials, subjects produced higher power outputs in the EUH trial (309±52 and 306±55 W) 

compared to the HYP trial (287±49 and 276±54 W; both P<0.05; Figure 4). 

 

DISCUSSION 

This study investigated the effects of mild progressive dehydration on cycling performance while 

subjects were blinded to their hydration state. Our data indicated that subjects during the EUH trial 

performed better in two out of the three 5-km time-trials, as indicated by both speed and power output. 

We found that by the end of the protocol, core temperature in the HYP trial was greater than in the EUH 

trial, indicating that even a small degree of hypohydration could induce greater thermoregulatory strain. 

These findings occurred in a blinded manner, meaning the subject was blind to which trial they were in 

and their current hydration state. To our knowledge, this is the first study to use intravenous infusion to 

blind subjects while also implementing a drinking protocol to attempt to control for thirst responses.  

Maintaining hydration status to avoid losing greater than 2% body weight has been well 

established in the literature (American College of Sports Medicine et al., 2007). However, several recent 



41 

 

studies have concluded that even mild levels of dehydration (<2% body weight) can negatively impact 

performance. Bardis et al. (Bardis et al., 2017) found that hypohydration of -1.8% body mass as a 

response to ad libitum drinking resulted in increased core temperature, lower cycling power output and 

slower time-trial performance. Below et al. (Below et al., 1995) showed that when cyclists were 

hypohydrated by less than -2%, their exercise performance declined by 6.5%. Walsh et al. (Walsh, 

Noakes, Hawley, & Dennis, 1994) examined cyclists’ performance in 32 °C and found that the time to 

exhaustion at 90% VO2max was decreased by 31% when participants started cycling in a mild 

hypohydrated state of -1.8%. In our study, subjects in the HYP trial had lower power output and cycling 

speed in the second and third time-trial when hypohydrated to -0.9 and -1.5%, respectively. Although not 

significant, the HYP trial had lower power output and slower cycling speeds in the first time-trial, meaning 

a dismal level of hypohydration of -0.5% was almost enough to significantly impair performance.  

It is known that exercise increases body temperature (R J Maughan, Leiper, & Thompson, 1985), 

especially in warm environments. Further, hypohydration can play a detrimental role in exercise-induced 

hyperthermia (Montain & Coyle, 1992). We found that by the end of the second steady-state, core 

temperature was higher in the HYP trial than in the EUH trial, indicating that even a small degree of 

hypohydration induced greater thermoregulatory strain. The fact that sweating responses were similar 

between trials even though the core temperature was greater in the HYP trial indicated that sweat 

sensitivity deteriorates due to water deficit. It should be noted that the steady-states were meant to be a 

“cool-down” from the previous time-trial as well as functioning as a “warm-up” for the next time-trial. 

Despite this, core temperature continued to stay elevated in the HYP trial throughout the end of protocol.  

Kenefick et al. (Robert W Kenefick et al., 2014) found that increasing skin temperature 

proportionally accentuated plasma volume shrinkage and any additional plasma volume loss likely results 

from increased net filtration rate at the capillaries. Despite several other studies concluding that skin 

temperature modifies the impact of hydration state on endurance performance (González-Alonso et al., 

1999; R. W. Kenefick et al., 2010), no differences in skin temperature were found until the last steady-

state in which the EUH trial had higher skin temperatures than the HYP trial.  

Numerous studies have shown that dehydration impairs cardiovascular function during exercise 

(González-Alonso et al., 1997; Montain & Coyle, 1992; Wingo, Lafrenz, Ganio, Edwards, & Cureton, 
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2005) via elevated heart rate to compensate for the reduction in stroke volume (González-Alonso et al., 

1999). In the present study, no differences were observed in heart rate during the steady-states or the 

time-trials. Further, no differences were observed in cardiac output either, which could mean that the 

small degree of hypohydration in the HYP trial was not enough to negatively impact the cardiovascular 

system, despite differences in percent changes in plasma volume. Therefore, the performance 

differences observed stem from more mechanistic actions such as skin blood flow or rather baroreceptor 

responses due to volume changes.  

Recently, two separate studies have attempted to eliminate the bias of thirst on exercise 

performance and blind subjects to their fluid balance. Wall et al. (Wall et al., 2015) found that when 

cyclists were dehydrated by 3% of body mass, they exhibited higher core temperatures during their 25-km 

time-trial, despite having similar thirst perception ratings. Similar to our study, intravenous infusion of 

0.9% NaCl was used to rehydrate subjects following exercise-induced dehydration of -3%, coupled with a 

sham IV infusion in another trial to ensure blinding. In the other study, Cheung et al. (Cheung et al., 2015) 

concluded that when cyclists were hypohydrated by 3% body mass they experienced higher core 

temperatures and heart rates during the last half of their 20-km time-trial. Further, the cyclists were 

provided mouth rinse of water whenever they desired to control for thirst, as both previous studies did not 

allow for drinking. The process of drinking water has been shown to reduce thirst, increase performance, 

and inhibit vasopressin release, via oropharyngeal stimulation (Arnaoutis et al., 2012; Figaro & Mack, 

1997). In our study, subjects were provided a standardized amount of water to drink at regular intervals. 

This was designed to keep thirst perception low, albeit similar between trials. However, this technique of 

small volume ingestion was not able to control thirst during the high intensity nature of the protocol as 

seen elsewhere (Mears & Shirreffs, 2013; Mears, Watson, & Shirreffs, 2016). 

In contrast to other performance based experiments, a unique aspect of our study was the 

implementation of a familiarization trial. In many published studies, however, there is no mention of 

adequate familiarization trials having been performed, nor is there any mention of whether the results 

were tested for the presence of an effect of trial order (Ronald J. Maughan, 2012). Further, an interesting 

note from the familiarization trial is the hydration habits of the subjects. During the familiarization trial, 

subjects were instructed to bring their own water bottles and drink ad libitum throughout the protocol. 
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Despite the low level of hypohydration in favorable conditions for drinking, the time-trial speeds were 

comparable to those in the HYP trial. In conclusion, the data showed that mild dehydration, even in a 

blinded manner, lead to performance impairment probably due to greater thermoregulatory strain.  
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Table 1.  

 
HYP EUH 

Variables Pre Post Pre Post 

BW, kg 77.2±6.1 75.7±6.0* 77.4±6.2 77.4±6.2 

ΔBW, % 
 -1.8±0.2*  -0.1±0.5 

USG 1.012±0.008  1.013±0.008  

POsm, mmol·kg-1 291±2 302±7 292±2 303±5 

TPP, g·L-1 7.4±0.4 8.0±0.7 7.4±.4 7.5±0.5 

Glucose 
 93±18  100±25 

ΔPV, % 
 -9.5±5.1*  2.8±5.9 

Lactate 
 5.2±3.2  6.5±2.1 

 

BW: Body Weight, ΔBW: Change in Body Weight, UOsm: Urine Osmolality, USG: Urine Specific Gravity, 
POsm: Plasma Osmolality, TPP: Total Plasma Protein, ΔPV: Changes in Plasma Volume. Values are 
presented as mean±SD.  
* denotes statistically significant difference (P<0.05) between EUH and HYP trials at corresponding time.  
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FIGURE LEGENDS 

Figure 1. Plasma osmolality during steady-states and time-trials between HYP and EUH. 
 
Figure 2. Core temperature during steady-states and time-trials between EUH and HYP. *denotes 
statistically significant differences, P<0.05 between trials at same time point. Values are presented as 
mean±SE 
 
Figure 3. Thirst visual analog scale response during steady-states between EUH and HYP. *denotes 
statistically significant differences, P<0.05 between trials at same time point. Values are presented as 
mean±SE 
 
Figure 4. Mean cycling speed and mean power output during the 5-km cycling time-trials between HYP 
and EUH. *denotes statistically significant differences, P<0.05 between trials. Values are presented as 
mean±SE  
 
Figure 5. Individual performance data during the 5km time-trials in HYP and EUH trials plotted with a line 
of identity. Each point represents a different individual participant’s average speed for that trial.   
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IV.  Conclusions 

These two studies sought to determine if dehydration impairs exercise performance in male 

cyclists even in a blinded manner. To investigate this, we used multiple blinding methods in the subjects 

to manipulate hydration status (i.e., nasogastric tubes, intravenous infusion). Further, we utilized these to 

maintain euhydration or to blind a subject to their progressive dehydration. Lastly, we observed these 

methods under warm-dry conditions to stress the system and to detect the mechanisms as to which the 

performance impairment is coming from (i.e., thermoregulatory strain, cardiovascular strain, etc.). 

In Study 1, subjects had higher power output and faster cycling speeds when they were 

euhydrated compared to being dehydrated. These performance differences were observed despite no 

differences in thirst and stomach fullness, which ensured the investigators that the subjects were blinded 

to their protocol. Further, the subjects experienced higher heart rates during their steady-state as well as 

higher core temperatures during the time-trial, ensuing that the impairment stemmed from some sort of 

physiological strain brought on by the elevated cardiovascular and thermoregulatory responses, rather 

than the perceptual responses.  

In Study 2, subjects had faster cycling speeds, higher power outputs, and faster completion times 

when they were euhydrated compared to being dehydrated. In this study, the differences in performance 

were paralleled with differences in core temperature as the subjects in the dehydrated trial had higher 

core temperature throughout the last half of the protocol compared to the euhydrated trial. However, the 

performance impairment observed was unlikely caused by cardiovascular strain, as there were no 

differences in either heart rate or cardiac output during the protocol.  

These data suggest that during exercise-heat stress, dehydration impairs exercise performance, 

even in a blinded manner. Moreover, the impairment appears to stem from thermoregulatory strain rather 

than cardiovascular strain, in the milder settings of dehydration (<2%). In addition, these studies were 

conducted without the knowledge of one’s hydration status which takes away the perceptual bias 

experiences in previous studies using other methods of hydration manipulation. The exact mechanisms of 

the impaired exercise performance are not clear, but further research is needed utilizing more in-depth 

techniques for both cardiovascular and thermoregulatory responses (skin blood flow, blood pressure, 

etc.).  
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