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ABSTRACT 

Improving production parameters and controlling foodborne pathogens have been 

challenges to the poultry industry. Salmonella has been the most common bacterial pathogen in 

laboratory confirmed foodborne illness cases, and contaminated poultry and poultry products 

have been identified as the most important source of transmission of Salmonella to humans. 

Therefore, research on effective interventions to reduce Salmonella transmission at the poultry 

production level has gained attention. Initially, a series of studies was conducted to evaluate the 

use of selected organic acids in controlling foodborne pathogens and improving poultry 

performance. Then, the characterization and application of lactic acid bacteria and Bacillus spp. 

based probiotics in poultry, and their combination, along with early nutrition, with glutamine 

supplementation were evaluated. In the first study, the use of organic acids in vitro and in vivo 

with broiler chicks (crop and cecal tonsil enumeration) reduced the incidence of Salmonella 

Typhimurium. In the second study, an organic acid product showed reductions in body weight 

loss during feed withdrawal and transportation, and meat quality improvement of broilers during 

commercial conditions. In the third study, organic acid mixtures were used in wash solutions for 

the reduction of spoilage and foodborne bacteria from chicken skin. The results demonstrated a 

reduction on pathogenic and spoilage bacteria from chicken skin, suggesting improvement of 

raw poultry safety properties. The fourth and fifth studies were conducted to identify and 

characterize probiotic strains of lactic acid bacteria and Bacillus spp., respectively. The 

evaluations included tolerance and resistance to acidic pH, high osmotic concentration of NaCl 

and bile salts, in vitro assessment of antimicrobial activity against enteropathogenic bacteria, and 

susceptibility to antibiotics. The last series of studies was carried out with the objective of 

evaluating the effects of glutamine supplementation in combination with a lactic acid based 



 
 

 
 

probiotic, a Bacillus subtilis probiotic strain, and a commercial nutritional supplement for 

neonatal broilers and poults, on Salmonella Typhimurium colonization. The results showed 

increased body weight gain, villus height, villus width, and villus surface area index in chickens 

treated with neonatal nutrition and/or glutamine, and a reduction in Salmonella incidence and 

nitric oxide from ileal tissues of treated groups.  
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I. INTRODUCTION 

Improving production parameters and controlling foodborne pathogens at all levels of 

production, in order to maintain the food safety of products, have been challenges to the poultry 

industry (Dickson et al., 1992; Berrang & Dickens, 2000; Harris et al., 2006; Lynch et al., 2006; 

Laury et al., 2009; Zhao et al., 2009). Salmonella enterica serotypes have been the most common 

bacterial pathogen in laboratory confirmed foodborne illness cases (Mani-López et al., 2012), 

accounting to approximately 1.0 million of the foodborne human diseases caused by bacteria per 

year in the United States (Voetsch et al., 2004a, 2004b; MMWR, 2011; Scallan et al., 2011).  

Salmonella is a worldwide bacterium that is universally present in farm animals, and 

many of the more than 200 pathogenic serotypes are able to colonize the gastrointestinal tract of 

poultry (Mead et al., 2010). Moreover, contaminated poultry and poultry products have been 

identified by some researchers as the most important source of Salmonella transmission to 

humans (Lynch et al., 2006; Foley et al., 2011). Therefore, studies on effective interventions to 

minimize and possibly eradicate these bacteria at the poultry production have gained a 

tremendous focus by researchers and professionals of the poultry business.  

Worldwide researchers have been working to develop alternatives for the ban of a wide 

range of drugs for animal production. Many preventive strategies have been developed to 

decrease the incidence of Salmonella colonization in broiler chickens, such as bacteriophage 

therapy, probiotics, prebiotics, synbiotics, water and feed acidifiers, and vaccines.  

Many studies have focused on the use of organic acid in the feed or in the drinking water 

to improve chicken performance and/or to reduce foodborne pathogens at the poultry production 

level and its use as antimicrobial solution at the processing. Organic acid-based feed acidifiers 

have gained significant attention due to their high nutritional value and antimicrobial action 
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(Thompson & Hinton, 1997; Byrd et al., 2001; Kubena et al., 2001; Leeson et al., 2005; Tung & 

Petigrew, 2011; Companies and Markets, 2012; Islam, 2012). Moreover, the application of 

organic acids in the drinking water at critical periods of poultry growth has been reported to be 

helpful in maintaining a low pH in the crop, an intestinal development by the stability of the 

intestinal microflora, and eventually improving live production performance (Jarquin et al., 

2007; Wolfenden et al., 2007a). 

Probiotics have been used for many years to enhance intestinal health and treat intestinal 

diseases (Patterson and Burkholder, 2003; Nicholson, 2002; Laudanno et al., 2006; Aureli et al., 

2010). Moreover, their use in the poultry industry has increased as potential alternatives to 

antibiotics used as growth promoters, and in select cases, for controlling specific enteric 

pathogens (Anadón et al., 2006; Cartman et al., 2008; Tellez et al., 2012; Ezema, 2013). The 

selection of a bacterial strain that possess probiotic effects includes the evaluation of 

characteristics such as survivability and persistence in the gastrointestinal tract, ability to attach 

to the intestinal mucosa, and competition with enteric pathogens (Bakari et al., 2011; Fontana et 

al., 2013). The most common probiotics that have been effective in poultry are lactic acid 

bacteria based (Tellez et al., 2012); however, some microorganisms such as Saccharomyces 

boulardii and Bacillus spp. have also been described as effective probiotics in poultry (Tellez et 

al., 2012). Furthermore, products containing Bacillus spores offer potential advantages over 

lactic acid bacteria products since they can be used as direct fed microbials (Anadón et al., 2006; 

Barbosa et al., 2005; Hong et al., 2005, 2008; Osipova et al., 2003; Williams, 2007; Wolken et 

al., 2003). 

This dissertation and its literature review have the objective of studying and examining 

the use of selected organic acids in controlling foodborne pathogens and in improving poultry 



 
 

3 
 

performance, the characterization and application of lactic acid bacteria and Bacillus spp. based 

probiotics in the poultry industry, and their combination with glutamine supplementation as well 

as the combination of early nutrition and glutamine. 

 

II. LITERATURE REVIEW 

A. POULTRY AND FOOD SAFETY 

Controlling foodborne pathogens such as Salmonella enterica serotypes, Escherichia coli 

O157:H7, and Campylobacter spp., at all levels of production, have been a challenge to the 

poultry industry (Dickson et al., 1992; Berrang & Dickens, 2000; Harris et al., 2006; Lynch et 

al., 2006; Laury et al., 2009; Zhao et al., 2009). Moreover, Salmonella has been the most 

common bacterial pathogen in laboratory confirmed foodborne illness cases reported by the 

Centers for Disease Control and Prevention, being considered a target pathogen for the food 

industry (Mani-López et al., 2012). 

It is essential to maintain the food safety of poultry products in order to protect public 

health. Therefore, finding effective interventions to minimize and possibly eradicate these 

bacteria at the poultry production level has gained a tremendous focus by poultry researchers and 

professionals.  

 

1. Poultry products as a cause of human Salmonella infection 

Salmonella, a genus of the family Enterobacteriaceae, has been associated with infectious 

diseases (nontyphoid and typhoid salmonellosis) for many years, making it an important 

pathogen for both animals and humans (Su & Chiu, 2007; Lutful Kabir, 2010). It is estimated 

that 3.6 million foodborne human diseases per year, in the United States, are caused by bacteria, 
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and Salmonella spp. nontyphoidal accounts to about 1.0 million of these cases (Voetsch et al., 

2004a, 2004b; MMWR, 2011; Scallan et al., 2011).  

Approximately 80 Salmonella serotypes among all the 2,500 are often the most involved 

in Salmonella infections. Salmonella enterica subspecies enterica serotype Typhimurium and 

Salmonella enterica subspecies enterica serotype Enteritidis are the most frequent agents of 

salmonellosis; nevertheless, there has been increasing incidence and concern regarding the 

serotypes Heidelberg, Infantis, Agona, Hadar, Virchow (Chittick et al., 2006; Patchanee et al. 

2008; Freitas et al., 2010), and Kentucky (Foley et al., 2011). Contaminated poultry and poultry 

products have been identified by some researchers as the most important source of transmission 

of Salmonella to humans (Lynch et al., 2006; Foley et al., 2011). 

   Salmonella is able to invade the gastrointestinal mucosa of poultry, as well as cecal 

tonsils and Peyer’s patches, proliferate inside the macrophages and spread through blood or 

lymphatic circulation to other tissues such as liver and spleen, which are the primary site of 

invasion. Other tissues and organs susceptible to infection include ovary, oviduct, yolk sac, and 

lungs (Lutful Kabir, 2010; Foley et al., 2011). Once a chicken is infected, it can carry Salmonella 

normally in its gastrointestinal tract with no symptoms, and can cause cross-contamination to 

other birds and carcass contamination at the processing level (Mead et al., 2010). Contamination 

by Salmonella on live animals and carcasses can occur during transportation and processing 

(Bourassa et al., 2004; Parveen et al., 2007).  

Moreover, increased pressure by consumers and regulatory agencies for reduced or even 

elimination of the use of antibiotics in food producing animals has created a challenge for the 

poultry industry to control Salmonella at the production level and within processing and 
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manufacturing plants (Hargis et al., 1995; Corrier et al., 1999a; Hinton et al., 2000; Mikolajczyk 

and Radkowski, 2002). 

  

B. ORGANIC ACIDS IN POULTRY 

Worldwide potential for poultry acidifiers has been increasing due to higher demand for 

good quality poultry, which is also true for most of the other animal productions including swine 

and cattle (Berkhout, 2009). Increased utilization of feed or water acidifiers in emerging 

countries, coupled with escalating demand in the developing world, has expanded the market for 

these acidifiers (Companies and Markets, 2012). Organic acid based feed acidifiers have gained 

significant attention due to their high nutritional value and antimicrobial benefits (Companies 

and Markets, 2012).  

Most research and subsequent applications have involved feed acidifiers as a preventive 

or treatment tool for disease management or to improve chicken performance by enhancing the 

nutrient digestibility and modulating the microbial populations in the digestive tract (Thompson 

& Hinton, 1997; Byrd et al., 2001; Kubena et al., 2001; Leeson et al., 2005; Tung & Petigrew, 

2011; Islam, 2012). 

However, the application of organic acids in the drinking water at critical periods of 

poultry growth such as during the first 7 days, feed changes, and feed withdrawal has been 

reported to be helpful to maintain a low pH in the crop, an intestinal development by the stability 

of the intestinal microflora, and eventually improving live production performance (Jarquin et 

al., 2007; Wolfenden et al., 2007a). Moreover, organic acids in the water have been frequently 

used as water sanitizers, reducing colonization of pathogenic bacteria in the gastrointestinal tract 

of chickens (Van Immerseel et al., 2006; Byrd et al., 2001).  
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1. The use of organic acids to control foodborne pathogens  

Chickens contain large amounts of bacteria in their gastrointestinal tract, feathers, and 

feet; consequently, fecal bacteria could be present on chicken carcasses instantly after processing 

(Ramirez et al., 1997; Northcutt et al., 2003; Mani-López et al., 2012). Therefore, methods of 

intervention are needed to decrease populations of spoilage bacteria and foodborne 

enteropathogens in chicken meat.  

Antimicrobial chemicals are commonly used during processing to reduce pathogen loads 

on carcasses. The most common antimicrobial treatment used for decontamination of poultry 

meat is sodium hypochlorite, commonly known as chlorine (Mountney & O'malley, 1965). 

Mountney & O'malley (1965) showed 1 to 2 log10 reduction of Salmonella and Campylobacter 

on poultry carcasses treated with chlorine. While this may be sufficient to remove Salmonella 

from most poultry carcasses, chlorine may bind to organic matter, and be ineffective. In fact, the 

continued lack of decline in rates of foodborne illness (MMWR, 2011; Scallan et al., 2011) has 

suggested that chlorine treatment of carcasses in the processing facility is not effectively 

decreasing the incidence of Salmonella contamination. Moreover, difficulties in optimizing the 

disinfectant properties of chlorine (improper pH, concentration, or composition of incoming 

water) may reduce its efficacy. Chlorine treatment may also cause unpleasant and harmful odors 

due to the production of chlorine gas and trichloramines (Northcutt et al., 2005; Hinton et al., 

2007; Northcutt et al., 2008).  

For these reasons, the use of alternative methods, including organic acids, which are 

generally recognized as safe (GRAS) for meat products, to disinfect poultry carcass have been 

studied (Mani-López et al., 2012). Research based on the use of organic acids to spray or dip 

poultry carcasses has reported as much as 3 log10 of Salmonella reduction (Vasseur et al., 1999; 
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Kubena et al., 2001; Hinton & Ingram, 2005; Lu et al., 2005; Harris et al., 2006; Van Immerseel 

et al., 2006).  

Because most carcasses are considered to have about 100 Salmonella cells, carcass rinse 

applications that decrease Salmonella by 2 log10 cfu/ml are considered effective (Jetton, et al., 

1992). Yang et al. (1998) sprayed chicken carcasses with 2% lactic acid and recorded a 2 log10 

cfu reduction of Salmonella per carcass. Moreover, lactic acid and citric acid at concentrations of 

1- 3% have been shown to reduce Escherichia coli O157:H7, Salmonella enterica serotypes, and 

Listeria monocytogenes when sprayed on beef and poultry carcasses (Vasseur et al., 1999). 

Controlling foodborne pathogens, especially Salmonella at the poultry production level is 

also very important, and it directly reflects on the pathogenic bacteria levels found at the 

processing level. Berghaus et al. (2013) showed significant associations of Salmonella and 

Campylobacter prevalence between farms and processing plant in a study where they collected 

environmental samples from commercial broiler houses and evaluated the carcass rinse of 

chickens from the same flock at processing. Therefore, the use of organic acid in the feed or in 

the drinking water to reduce foodborne pathogens at the poultry production level has been a 

focus of many studies.  

Organic acids can be used as feed preservatives to reduce the pH of the feed and 

consequently reduce bacterial contamination (Islam, 2012). Moreover, treatments with organic 

acids have shown a decrease in the number of Salmonella viable cells in animal feed and feed 

ingredients (Koyuncu et al., 2013). Organic acids, which are a readily available energy source for 

both chicken and bacteria, have been also applied in the feed or driking water to reduce 

gastrointestinal bacterial pathogens. However, it is important that the administration of organic 
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acids occur in high enough concentrations to be bactericidal in the presence of organic matter, 

and low enough to be voluntarily consumed by the birds. 

Organic acids in the poultry diet have shown modulation of the microbial populations in 

the digestive tract, especially in the crop, gizzard (Thompson & Hinton, 1997; Kubena et al., 

2001) and small intestine (Cengiz et al., 2012). According to Alp et al. (1999), the dietary 

inclusion of an organic acid mix, composed by lactic, fumaric, propionic, citric, and formic 

acids, was able to decrease Enterobacteriaceae counts in the ileum of broiler chickens.  

Application of organic acids in the drinking water during broiler’s pre-slaughter feed 

withdrawal period has similarly demonstrated significantly reduction of Salmonella recovered 

from crops and cecal tonsils, and subsequently from the carcasses (Van Immerseel et al., 2006; 

Alali et al., 2010; Vandeplas et al., 2010). Byrd et al. (2001) used lactic acid in the drinking 

water during pre-slaughter feed withdrawal period, and reported a significant reduction of 

Salmonella and Campylobacter contamination of crops and carcasses at processing.  

The antimicrobial efficacy and the effect on virulence of Salmonella differ with each 

organic acid treatment, and each organic acid has a unique effect on bacteria normally present in 

the crop and gastrointestinal tract (Furuse et al., 1991; Byrd et al., 2001; Castro Gonzalez et al., 

2001; Kubena et al., 2001). 

 

2. The use of organic acids during pre-slaughter feed withdrawal period 

In the poultry industry, different reasons can cause feed restriction; nevertheless, the most 

common feed restriction is the pre-slaughter feed withdrawal, which is a method employed to 

reduce fecal contamination of carcasses at processing (Corrier et al., 1999c; Byrd et al., 2001; 

Northcutt et al., 2003; Yi et al., 2005). Althought this practice has showed efficacy in reducing 
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visible fecal/digesta contamination, it also leads to an imbalance in the natural population of 

lactic acid bacteria, causing an increase in pH, favoring pathogens as Salmonella to multiply in 

the crop. Moreover, carcass dehydration begins immediately after feed withdrawal (Benibo and 

Farr, 1985; Veerkamp, 1986), resulting in recommendations that slaughter take place within 4 to 

8 h after feed withdrawal to minimize losses, which may be hard to achieve under commercial 

conditions. Consequently, scheduling managers need to consider feed withdrawal effects on both 

gut fullness and shrinkage. In addition to feed withdrawal, chickens must endure stress during 

catching, crating transport, and shackling (Gregory, 1994; Petracci et al., 2006). Moreover, feed 

restrition induces pecking of the contaminated litter, which may contaminate the crop (Corrier et 

al., 1999c), and it may contaminate raw poultry products if the crop is ruptured during processing 

(Hargis et al., 1995; Corrier et al., 1999b).  

Drinking water acidification with organic acids has showed significant reduction of 

recoverable Salmonella in the crops and cecal tonsils, and consequently on the carcasses, when 

used during broiler’s pre-slaughter feed withdrawal period (Byrd et al., 2001; Van Immerseel et 

al., 2006; Alali et al., 2010; Vandeplas et al., 2010). Wolfenden et al. (2007a) conducted a study 

in broiler chickens and showed that the drinking water administration of a commercially 

available organic acid product based on acetic, lactic, tannic, propionic, and caprylic acids, 

significantly reduced carcass condemnation at the processing plant and mortality during 

transportation, with consistent improvement of average body weight at the farm and at the 

processing plant in broiler chickens. In a similar study, treatment with the same organic acid 

product in the drinking water of commercial turkeys during feed withdrawal showed a significant 

reduction in the rate of weight loss during transportation and holding at the processing plant in 
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treated turkeys and improved average body weight in treated turkeys during 19 h with an average 

of 90 g difference (Pixley et al., 2010).  

 

3. Antimicrobial mechanism of action of the organic acids 

The antimicrobial mechanism of action of organic acids depends on the type of acid, and 

each organic acid has a unique effect on bacteria (Kubena et al., 2001). It also depends on the 

target bacteria. For example, the minimal inhibitory concentration of acetic acid is 250 times 

lower for Bacillus subtilis than for Lactobacillus spp. (Hsiao and Siebert, 1999).  

 The antimicrobial effects of organic acids have been explained by the capability of these 

acids (in their undissociated form) to diffuse across the cell membrane, dissociating and 

acidifying the cell cytoplasm (Vasseur et al., 1999; Leeson et al., 2005; Van Immerseel et al., 

2006). Additionally, the organic acid antimicrobial effect is increased when the pH is lower than 

the acid dissociation constant (pKa), which increases the concentration of H
+
 ions, protonation, 

and diffusion of the acid across membranes (Mani-López et al., 2012).  

The cytoplasm acidification will cause inhibition of bacterial growth by the presence of 

H
+
 ions from the acids dissociation, membrane disruption, inhibition of metabolic reactions, 

accumulation of toxic anions, energy exhaustion to maintain homeostasis, and enzymes, proteins, 

and DNA alteration (Islam, 2012; Mani-López et al., 2012). Additionally, some organic acids 

(malic and citric acids) have shown the ability to chelate and disrupt the bacterial cell membrane 

(Mani-López et al., 2012).  

Most of the antimicrobial properties of organic acids are related to changes in pH, but 

organic acid inhibitory effects may vary depending on their carbon chain, hydroxyl groups, and 

double bonds (Hsiao & Siebert, 1999). For instance, the variability of carbon chain of an organic 
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acid is proposed to be an important factor to differentiate a bacterial inhibition as bactericidal or 

bacteriostatic. According to Van Immerseel et al. (2006), the dose of 25 mM of a MCFA 

(medium chain fatty acid) was bacteriostatic to a Salmonella serotype Enteritidis strain; however, 

the same strain tolerated 100 mM of a SCFA (short chain fatty acid). These variabilities may 

explain the inconsistent results regarding the administration of organic acids and their 

antimicrobial effects in chickens (Cengiz et al., 2012). 

 

C. POULTRY PERFORMANCE AND ANTIBIOTICS  

Antibiotic is considered as a growth promoter when administered at a non-therapeutic 

(low) concentration in the feed of food animals to stimulate growth and improve feed efficiency 

(Costa et al., 2011; Lin et al., 2013). Antibiotic as growth promoter (AGP) in the feed of 

different animal species has been used for more than 60 years in the United States as well as in 

other countries (Dibner & Richards, 2005; Costa et al., 2011), and its effect has been related to 

feed efficiency improvement and indirectly on growth improvement (Dibner & Richards, 2005). 

The mechanisms on how antibiotics can promote growth are still unclear. The most 

common hypotheses are: (1) improvement of nutrients absorption by thinning the intestinal wall 

and villi and reducing intestinal size, which could be caused by a loss of mucosal cell 

proliferation due to the lack of short chain fatty acids in the lumen, which is provided through 

microbial fermentation; (2) protecting nutrients from being used by bacteria; (3) decreasing the 

number of bacteria and bacterial toxins; (4) reducing the incidence of subclinical infections; 

consequently, decreasing the metabolic cost of the immune system (Gaskins et al., 2002; Butaye 

et al., 2003; Dibner & Richards, 2005; Niewold, 2007; Costa et al., 2011).  
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Many studies regarding the mode of action of AGP have focused on interactions between 

the antibiotic and the intestinal microflora (Dibner & Richards, 2005). However, many scientists 

indicate that the main activity of several growth promoting antibiotics is due to an anti-

inflammatory effect instead of an antimicrobial effect per se, and the microflora changes would 

be a consequence of the intestinal changes (Niewold, 2007; Buret, 2010; Costa et al., 2011). 

Although the use of AGP has been a common practice of modern animal production 

(Butaye et al., 2003), its extensive use has contributed to the emergence of antimicrobial 

resistance in zoonotic pathogens (Costa et al., 2011; Lin et al., 2013). As a result, the European 

Union employed a ban on the administration of all AGP to livestock in January 1, 2006 (Anadon 

et al., 2006). Moreover, restrictions to the use of AGP in the United States has been anticipating 

a possible ban as well (Dibner & Richards, 2005; Costa et al., 2011). This ban has led to an 

increase in the cost of animal production, a decrease in livestock production (Costa et al., 2011), 

and an increase in the incidence of some animal diseases (Dibner & Richards, 2005), forcing 

animal husbandry to find alternatives such as enzymes, organic acids, probiotics, prebiotics, 

essential oils, and immunostimulants (Huyghebaert et al., 2011). The regulation of immune 

functions in the intestine is associated with the establishment of the microflora, which has led to 

the introduction of therapeutic interventions with the use of cultures of beneficial live 

microorganisms known as probiotics (Isolauri et al., 2001). Moreover, due to its characteristics 

and mode of action, probiotics have been extensively studied as an alternative for AGP in animal 

production (Chaucheyras-Durand & Durand, 2010). 
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D. PROBIOTICS IN POULTRY  

Probiotics, which are defined as “live microorganisms which when administered in 

adequate amounts confer a health benefit on the host” (FAO, 2002), have been used for many 

years to enhance intestinal health and treat intestinal disorders (Patterson & Burkholder, 2003; 

Nicholson, 2002; Laudanno et al., 2006; Aureli et al., 2010).The selection of a successful 

probiotic strain includes the evaluation of characteristics such as survivability and persistence in 

the gastrointestinal tract, ability to attach to the intestinal mucosa, and competition with enteric 

pathogens (Fontana et al., 2013). The probiotic microorganism, after being ingested, also needs 

to be resistant to low pH, gastric enzymes, bile salts, and other “insults” from the gastrointestinal 

tract (Bakari et al., 2011; Fontana et al., 2013). Moreover, features such as metabolic activity of a 

specific strain and concentration administered are important for a probiotic optimal efficacy 

(Chaucheyras-Durand & Durand, 2010; Huyghebaert et al., 2011).  

The use of probiotics and direct fed microbials (DFM) in the poultry industry has 

increased as potential alternatives to antibiotics used as growth promoters and, in select cases, to 

control specific enteric pathogens (Anadón et al., 2006; Cartman et al., 2008; Tellez et al., 2012; 

Ezema, 2013). The most common probiotics that have been effective in poultry are lactic acid 

bacteria based, which are generally found in the gastrointestinal tract of vertebrates and 

invertebrates (Tellez et al., 2012). Lactic acid bacteria include, for example, Lactobacillus spp., 

Bifidobacterium spp., and Enterococcus spp. (Ljungh & Wadström, 2006). Some 

microorganisms such as Saccharomyces boulardii and Bacillus spp. that are not normally found 

in the gastrointestinal tract have also been described as effective probiotics in poultry (Tellez et 

al., 2012). Furthermore, both live and spore based probiotics from Bacillus spp. have earned 
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attention as a viable probiotic bacteria in the poultry industry (Cartman et al., 2008; Vila et al., 

2009; Wolfenden et al., 2010; Shivaramaiah et al., 2011). 

 

1. The use of lactic acid bacteria to control Salmonella spp. in poultry. 

Lactic acid bacteria (LAB) are Gram-positive bacteria, normally found in the 

gastrointestinal tract of humans and animals. The most common LAB used as a probiotic is the 

genus Lactobacillus, a nonspore-forming bacterium that has more than 125 species identified 

(Hori, 2010). Lactobacillus spp. has demonstrated, in vitro and in vivo, probiotic capability by 

inumerous studies in humans and animals. 

For example, Lactobacillus fermentum and Lactobacillus acidophilus strains have shown, 

in vitro, the reduction on the attachment of Salmonella Typhimurium and Salmonella Pullorum 

to ileal epithelial cells (Jin et al., 1996). Also, in an in vitro study, Tsai et al. (2005) selected 

Lactobacillus fermentum from the cecum based on its ability to adhere intestinal epithelial cells 

and the ability to inhibit the growth of Escherichia coli, Salmonella Typhimurium, 

Staphylococcus aureus, and Bacillus cereus. A strain of Lactobacillus crispatus was also 

selected as a potential probiotic based on aggregation time and antibacterial activity against 

Salmonella Typhimurium, Salmonella Enteritidis, and Escherichia coli (Taheri et al., 2009).  

In both in vitro and in vivo Salmonella enumeration from chicks’ liver, spleen, and ceca 

studies, Van Coillie et al. (2007) demonstrated a reduction in Salmonella Enteritidis by 

Lactobacillus spp. strains previously isolated from the cloaca and vagina of laying hens. 

Moreover, a commercial probiotic consting of Lactobacillus reuteri, Enterococcus faecium, 

Bifidobacterium animalis, Pediococcus acidilactici, and Lactobacillus salivarus showed 50% 

reduction of Salmonella Enteritidis enumerated from cecal ingesta (Mountzouris et al., 2009). 
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Laboratory and field research conducted with a commercial and defined lactic acid bacteria 

probiotic have demonstrated accelerated development of normal microflora and reduction in 

Salmonella colonization, in poultry (Tellez et al., 2006; Farnell et al., 2006; Higgins et al., 2007, 

2008; Vicente et al., 2007a, 2007b; Wolfenden et al., 2007b, 2007c, 2008; Menconi et al., 2011). 

Rahimi et al. (2009) studied the intestinal morphology of turkey poults treated, in the feed, with a 

commercial probiotic consisted of Lactobacillus spp and challenged with Salmonella serotypes 

Typhimurium, Kentucky, and Heidelberg. The authors observed changes in intestinal 

morphology regarding restoration of the villi loss or damage related to Salmonella infection 

(Rahimi et al., 2009).  

 

2. The use of Bacillus-based probiotics in poultry  

The use of direct-fed microbials (DFM) has also earned attention as a viable alternative to 

traditional antibiotic therapies. Some commonly used DFM bacteria that have been successful in 

animals and humans include multiple strains of Lactobacillus, Pediococcus, Bifidobacterium, 

and especially Bacillus spp. (Zani et al., 1998; Ouwehand et al., 2002; O’Dea et al., 2006). 

Bacillus species are ubiquitous, Gram-positive bacteria (Nicholson, 2002) that have recently 

shown promise as DFM because of their capacity to form endospores, which can survive harsh 

environmental stress and transitions during storage and handling (Cartman et al., 2008). Bacillus 

species have been found in the normal intestinal flora of poultry, and some strains have shown to 

be capable of germinating and resporulating in chickens’ gastrointestinal tract (Hoa et al., 2000; 

Barbosa et al., 2005; Tam et al., 2006; Cartman et al., 2008). The administration of Bacillus spp. 

spores as feed additive offers many advantages, such as ease preparation, heat tolerance, 
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resistance to production processes, extended shelf-life, and low cost of production (Barbosa et 

al., 2005; Duc et al., 2004; Hong et al., 2005; Vila et al., 2010; Permpoonpattana et al., 2012).  

Competitive exclusion of pathogens is a popular hypothesis to explain the action of 

probiotics (Patterson and Burkholder, 2003; Leser et al., 2008). Even though the process has 

been well demonstrated in Lactobacillus spp., some evidence exists that Bacillus spp. may have 

the same mode of action (Barbosa et al., 2005). Several studies have shown that either live 

vegetative cells or endospores of some isolates can prevent colon carcinogenesis ( Malkov et al., 

2006; Lee et al., 2007; Park et al., 2007) or produce antimicrobial substances against Gram-

positive bacteria such as Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile 

(O'Mahony et al., 2001; Urdaci et al., 2004). 

The ability of a specific laboratory strain of Bacillus subtilis in inhibiting growth of 

different pathogens bacteria in chickens, such as Escherichia coli, Clostridium perfringens, and 

Salmonella Enteritidis has been shown (La Ragione, et al., 2001; La Ragione & Woodward, 

2003). In vitro inhibition of Clostridium perfringens by a strain of Bacillus subtilis isolated from 

the gastrointestinal tract of chickens was also demonstrated by Teo & Tan (2005). Salmonella 

Enteritidis occurrence was reduced in broiler chickens in two experiments where a Bacillus 

subtilis-based probiotic was added to feed (Vila et al., 2009). Selected heat-resistant spore-

forming Bacillus species, strain PHL-NP-122, showed markedly reduction of Salmonella and 

Clostridium in poultry (Wolfenden et al., 2010; Shivaramaiah et al., 2011; Wolfenden et al., 

2011). Additionally, a Bacillus subtilis probiotic strain, DSM17299, reduced Salmonella-positive 

drag swabs and Salmonella Heildelberg incidence in the ceca of treated chickens (Knap et al., 

2011). In addition to the efficacy of Bacillus as DFM in reducing Salmonella incidence in 

poultry, the ability of increasing feed consumption and body weight through the use of Bacillus-
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based probiotics in poultry feed has also been demonstrated (Fritts et al., 2000; Vila et al., 2009; 

Wolfenden et al. 2010). 

 

3. Mechanisms of action of probiotics 

Several mechanisms of action of probiotics have been proposed, including competition 

for receptor sites and nutrients, and production of antimicrobial substances such as bacteriocins, 

hydrogen peroxide, and volatile fatty acids (Patterson & Burkholder, 2003; Vandeplas et al., 

2010). Also, probiotics have been described to cause a decrease in the intestinal pH by the 

production of organic acids, which in turn would create favorable conditions for the transient and 

resident microflora (Chaucheyras-Durand & Durand, 2010) and a production of nutrients and 

growth factors stimulating intestinal microflora (Delcenserie et al., 2008). Among all the 

mechanisms proposed for probiotic functions, the modulation of both innate and acquired 

immune systems has received a great attention (Jijon et al., 2004; Ng et al., 2009; Flore et al., 

2010; Dicks & Botes, 2010; Soccol et al., 2010). Moreover, it has been described that specific 

probiotic strains show anti-inflammatory properties, which has led to the research and discovery 

of new mechanisms of action of selected probiotic strains (Isolauri et al., 2002; Pagnini et al., 

2010). 

The bactericidal activity of LAB, for example, has been extensively studied, and the 

antimicrobial mechanism seems to be due to many factors. It is documented that lactic acid 

production and the resulting acidity is important (Fayol-Messaoudi et al., 2005; Makras et al., 

2006); nevertheless, this characteristic is also complemented by other mechanisms such as 

synthesis of bacteriocins and other compounds (Ljungh & Wadström, 2006). Some Lactobacillus 

strains reduce nitrate (NO
-3

) to nitrite (NO
-2

) and nitric oxide under anaerobic conditions (Wolf 
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et al., 1990, 1991). Nitric oxide and NO
-2

 produced from NO
-3

 by Lactobacillus spp. may be a 

possible antimicrobial mechanism (Adawi et al., 1997, 1998). In Lactobacillus strains that 

produce hydrogen peroxide, the metabolites of lactic acid and hydrogen peroxide may act 

together to kill enteric pathogens (Cadieux et al., 2009; An et al., 2010; Atassi & Servin, 2010; 

Martin & Suarez, 2010). Lactobacillus are also known to produce antimicrobial biosurfactants 

(Reid et al., 1999; Reid, 2001; Portilla-Rivera et al., 2008; Walencka et al., 2008) and to increase 

the production of intestinal mucins that may function as a barrier and as a receptor for pathogens 

(Ljungh & Wadström, 2006). 

 Additionally, probiotic bacteria can exert immunomodulatory activities through their 

interactions with the host immune system. These interactions may cause enhancement of 

antigen-specific antibodies (Davies et al., 2009; Amit-Romach et al., 2010; Cai et al., 2010), 

activation or suppression of T-cells (Gorska et al., 2009; Sjogren et al., 2009; Starovoitova et al., 

2009; Foligne et al., 2010), modulation of dendritic cell’s phenotype and function (Drakes, et al., 

2004; Hart et al., 2004; Thomas et al., 2009), and changes in cytokine expression profiles, which 

work in the induction and regulation of the immune response (Lutful Kabir, 2009; Shida et al., 

2009; Nayak, 2010; Tsai et al., 2010). Moreover, research has shown that Bacillus subtilis 

spores, after oral ingestion, are immunogenic and are able to disseminate to the Peyer's patches 

and mesenteric lymph nodes (Duc et al., 2003a, 2003b; Permpoonpattana et al., 2012). 

According to Patterson and Burkholder (2003), the probiotic action mechanisms are not mutually 

exclusive, some bacteria may act using only one or several of the mechanisms. 

Regarding the mode of action of probiotic products on intestinal inflammation, it has 

been proposed that the anti-inflammatory mechanisms of probiotic bacteria are induced by an 

improvement in barrier function, synthesis of antimicrobials, and a modulation of both 
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microflora and mucosal immune system, which, in general, occurs by decreasing the production 

of pro-inflammatory cytokines and increasing production of anti-inflammatory cytokines 

(Ewaschuk & Dieleman, 2006).  

According to Isolauri et al. (2001, 2002), probiotic bacteria are able to equilibrate local 

pro-inflammatory and anti-inflammatory cytokine. These beneficial microorganisms have shown 

a reduction in lymphocyte proliferation and cytokine production by T cells, and also a reduction 

in intestinal inflammatory responses through the stimulation of secretory immunoglobulin A 

(IgA), which protects the mucosal surface by the non-activation of inflammatory responses 

(Isolauri et al., 2001). In a study on the influence of lactic acid bacteria on the intestinal mucosa 

of mice, Galdeano and Perdigon (2004) showed an increase in the number of interleukin - 10 

(IL-10) cells and a stimulation of IgA production after the treatment with a viable Lactobacillus 

casei probiotic strain. There has been also in vitro description of the capability of probiotic 

bacteria in increasing the production of human anti-inflammatory cytokines such as IL-10 and 

transforming growth factor beta (TGF-β; Isolauri et al., 2002). Moreover, the use of probiotics 

has shown a decrease in the secretion of inflammatory cytokines by increasing the degradation of 

antigens in the intestine (Isolauri et al., 2002). 

Okada et al. (2009) showed a downregulation of mRNA expression of IL-1 β and tumor 

necrosis factor alpha (TNF-α), which are released by macrophages during intestinal 

inflammation, by probiotic strains of Bifidobacterium species. Furthermore, the authors showed 

that the commensal Enterococcus faecalis (bacteria that have been described to play a role in 

inflammatory bowel disease (IBD) in both animals and humans) stimulated macrophages to 

produce IL-12 (cytokine that facilitates the differentiation of CD4+ T helper cells through the 

activation of interferon gamma (IFN-γ) production) (Okada et al., 2009). Yan et al. (2011) 
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reported that a soluble protein derived from the probiotic strain of Lactobacillus rhamnosus was 

able to minimize the effects of dextran sodium sulfate (DSS) induced colitis (reducing intestinal 

epithelial apoptosis) in mice, through the activation of epidermal growth factor receptor. 

Interestingly, genetically modified probiotic bacteria engineered to produce anti-

inflammatory cytokines could also play a role in controlling intestinal inflammation. Steidler et 

al. (2000) showed a reduction in induced DSS colitis of mice treated with a strain of Lactococcus 

lactis genetically engineered to secret IL-10. The stimulation of the release of IL-10 by a mixture 

of probiotic strains (Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium breve, 

Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii subsp. bulgaricus, 

Lactobacillus plantarum, and Streptococcus salivarius subsp. thermophilus) known as VSL#3 

was also described by Drakes et al. (2004) and Hart et al. (2004), in an in vitro model using 

dendritic cells culture. Moreover, the probiotic combination VSL#3 was tested in an in vivo 

experiment with mice and showed a stimulation of epithelial innate immunity (Pagnini et al., 

2010). In addition, an increase in IL-10 has been decribed in mice fed Lactobacillus delbrueckii 

subspecies bulgaricus and Lactobacillus casei (Ghosh et al., 2004).  

In a DSS or trinitrobenzenosulfonic acid induced colitis model in mice, Bacillus 

polyfermenticus demonstrated a reduction in the expression of inflammatory molecules such as 

chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule, and TNF-α. The same strain 

also increased the expression of IL-10, decreasing colon inflammation (Im et al., 2009). In an in 

vitro experiment using human peripheral blood mononuclear cells, a probiotic combination of 

Bacillus mesentericus, Clostridium butyricum, and Enterococcus faecalis showed a decrease in 

TNF-α levels and an increase in IL-10 levels, increasing the number of T regulatory cells (Hua et 

al., 2010). Also, using human peripheral blood mononuclear cells, Imaoka et al. (2008) observed 
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an increase in the production of IL-10, and an inhibition of IL-8 (cytokine associated with 

inflammation in ulcerative colitis) secretion by a probiotic composed by Bifidobacterium bifidum 

and Bifidobacterium breve.  

In a study conducted with IBD and healthy human patients, Shadnoush et al. (2013) 

showed an increase in serum levels of  IL-6 (pro-inflammatory cytokine) and IL-10 and a 

decrease in serum levels of IL-1β and TNF-α in IBD patients treated with a probiotic yogurt 

containing Bifidobacterium and Lactobacillus. Overall, probiotic bacteria could act in stabilizing 

intestinal inflammation by balancing the intestinal microflora, maintaining mucosal barrier, and 

modulating and improving the intestinal mucosal immune system, especially by keeping the 

balance of pro-inflammatory and anti-inflammatory cytokines and production of intestinal IgA 

(Isolauri et al., 2002; Hua et al., 2010; Ashraf & Shah, 2013; Zagato et al., 2014). 

The following chapters represent research conducted towards finding sustainable 

antibiotic alternatives for improved welfare, production parameter, and control of Salmonella in 

poultry. 
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ABSTRACT 

An alternative to antibiotics is the use of certain organic acids for routinely encountered 

pathogens in the poultry industry. Direct acidification of drinking water with organic acids could 

significantly reduce the amount of recoverable Salmonella Typhimurium (ST) from the crop and 

cecal tonsils when used during the pre-slaughter feed withdrawal period. In the present study, in 

vitro and in vivo evaluations were conducted to compare a commercially available water acidifier 

(Optimizer
®
), versus two formulations of organic acid mix (OAM), made up of of acetic, citric 

and propionic acids at a final concentration of either 0.031% or 0.062%, to reduce Salmonella 

Typhimurium in the crop and cecal tonsils of broiler chicks during a 24 h period. The two OAM 

showed better in vitro activity to reduce Salmonella when compared to control. In vivo, the 

OAM (0.062%) had a similar effect as Optimizer
®
 showing a significant reduction in total 

number of ST positive cecal tonsils, and reducing the number of ST in the crop when compared 

with controls (P < 0.05). All treatments reduced the number of ST recovered from crop contents 

at 24 h. This new formulation of OAM has great potential as a crop sanitizer and will be further 

evaluated under conditions similar to commercial chickens. 

 

Key words: Salmonella, Organic Acid, Chickens 
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INTRODUCTION 

Salmonella enterica causes an estimated 1.4 million cases of foodborne illnesses annually 

in the United States, resulting in over 15,000 hospitalizations (Voetsch et al., 2004a, 2004b). 

Poultry and poultry products have been identified by some researchers as the most important 

source of transmission of Salmonella to the human population (Lynch et al., 2006). Increased 

pressure by consumers and regulatory agencies for reduced or even elimination of the use of 

antibiotics in food producing animals has created a need to find alternatives to maintain healthy 

and productive animals. These pressures are a challenge for the poultry industry for controlling 

Salmonella not only at the farm level, but also within processing and manufacturing plants 

(Hargis et al., 1995; Corrier et al., 1999a; Hinton et al., 2000; Mikolajczyk & Radkowski, 2002).  

An alternative to antibiotics is the use of certain organic acids. Direct acidification of the 

water with organic acids could significantly reduce the amount of recoverable Salmonella on the 

carcasses or in the crops and cecal tonsils when used during the pre-slaughter feed withdrawal 

period (Van Immerseel et al., 2006; Alali et al., 2010; Vandeplas et al., 2010); however, previous 

research has suggested that administration of OA during the pre-slaughter feed withdrawal 

period could lead to carcass shrinkage (Byrd et al., 2001). While this evidence was shown when 

using lactic acid alone, Optimizer
®
 was developed as a combination of organic acids used in 

combination at low individual concentrations so that water consumption was not discouraged 

(Jarquin et al., 2007; Wolfenden et al., 2007; Vicente et al., 2007a, 2007b, 2007c). Organic acids 

are a readily available energy source for both the chicken and the bacteria. Therefore, it is 

important that the organic acids be administered in high enough concentrations to be bactericidal 

in the presence of organic matter, and low enough to be voluntarily consumed by the birds.  
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In the present study, we compared a commercially available water acidifier (Optimizer
®
, 

Pacific Vet Group, Fayetteville, AR 72703), versus a new formulation of organic acid mix 

(OAM) to reduce Salmonella Typhimurium in the crop and cecal tonsils of broiler chicks. 

 

MATERIALS AND METHODS 

Salmonella Amplification 

A primary poultry isolate of Salmonella Typhimurium (ST) was used in these 

experiments. This isolate was selected for resistance to nalidixic acid (NA; Catalog No. N-4382, 

Sigma, St. Louis, MO 63178 USA). For these experiments, ST was grown in tryptic soy broth 

(TSB; Catalog No. N-4382, Sigma, St. Louis, MO 63178 USA) for approximately 8 h. The cells 

were washed three times with 0.9% sterile saline by centrifugation (3,000 x g), and the 

approximate concentration of the stock solution was determined spectrophotometrically at 625 

nm. The stock solution was serially diluted and confirmed by colony counts of three replicate 

samples (0.1 mL/replicate) that were spread plated on brilliant green agar (BGA; Catalog No. N-

4382, Sigma, St. Louis, MO 63178 USA) plates containing 25 µg/mL novobiocin (NO; Catalog 

No. N-1628, Sigma, St. Louis, MO 63178 USA) and 20 µg/mL nalidixic acid (NA). The colony-

forming units of Salmonella determined by spread plating were reported as the concentration of 

Salmonella (in cfu/mL) for in vitro experiments and total colony-forming units for in vivo 

challenge experiments.  

 

Experimental Design - in vitro crop assay 

An assay previously described (Barnhart et al., 1999) was used with modifications. 

Briefly, 1.25 g of unmedicated chick starter feed was measured into 13×100 mm borosilicate 
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tubes and autoclaved. The feed was suspended in 4.5 mL sterile saline and inoculated with 0.5 

mL of a Salmonella Typhimurium culture containing approximately 10
4
 cfu/mL. The tubes were 

treated with either: 1) saline as a control; 2) OAM, having a final concentration of acetic, citric 

and propionic acids at 0.031% or; 3) OAM, having a final concentration of acetic, citric and 

propionic acids at 0.062%. Each sample was run as triplicate, each treatment had 5 replicates, 

and the entire assay was repeated in 2 additional trials. After administering the treatment, the 

tubes were vortexed and incubated at 37 °C for 30 minutes and an additional 6 h. The tubes were 

then agitated and 20 µL of the content was serially diluted and plated as triplicates on BGA 

containing novobiocin and nalidixic acid. Typical ST colonies were counted after 24 h of 

incubation. 

 

Experimental Design with chickens 

In experiment 1, 64 day-of-hatch broiler chicks were obtained from a local hatchery. 

Chicks were randomized and challenged with 2 x 10
5
 cfu/mL of ST. The chicks were then held 

in chick boxes for 1 h and then randomly assigned to 1) untreated control or continuous 

treatment in the drinking water with: 2) Optimizer
®
 at commercial recommended doses; 3) 

OAM, having a final concentration of acetic, citric and propionic acids at 0.031% or; 4) OAM, 

having a final concentration of acetic, citric, and propionic acids at 0.062%. Chicks were housed 

in brooder batteries with food and water ad libitum. At 24 h post-challenge, chicks were 

humanely killed by CO2 inhalation and crop, both ceca and cecal tonsils were aseptically 

harvested separately. Salmonella recovery procedures have been previously described by our 

laboratory and were followed with some modifications (Tellez et al., 1993). Briefly, crop and 

cecal tonsils were enriched in 10 mL of tetrathionate broth overnight at 37 
°
C. Following 
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enrichment, each sample was streaked for isolation on BGA plates containing 25 µg/mL NO and 

20 µg/mL NA. The plates were incubated at 37 
°
C for 24 h and examined for the presence or 

absence of the antibiotic resistant ST. Ceca were weighed and then homogenized within sterile 

sample bags (Catalog No. N-1628, Sigma, St. Louis, MO 63178 USA) using a rubber mallet. 

Sterile saline (4X weight to volume) was added to each sample bag and hand stomached with the 

cecal contents. Dilutions were spread plated on BGA plates containing 25 µg/mL NO and 20 

µg/mL NA. The plates were incubated at 37 
°
C for 24 h and cfu of ST per ceca were determined. 

In experiment 2, 80 day-of-hatch broiler chicks were obtained from a local hatchery. 

Chicks were randomized and challenged with 2 x 10
5
 cfu/mL of ST. The chicks were then held 

in chick boxes for 1 h and then randomly assigned to 1) untreated control or continuous 

treatment in the drinking water with: 2) Optimizer
®
 at commercial recommended doses; 3) 

OAM, having a final concentration of acetic, citric and propionic acids at 0.031% or; 4) OAM, 

having a final concentration of acetic, citric and propionic acids at 0.062%. Chicks were housed 

in brooder batteries with food and water ad libitum. At 24 h post-challenge, chicks were 

humanely killed by CO2 inhalation and crops were aseptically harvested, weighed and were 

homogenized within sterile sample bags using a rubber mallet. Sterile saline (4X weight to 

volume) was added to each sample bag and hand stomached with the crop contents. Dilutions 

were spread plated on BGA plates containing 25 µg/mL NO and 20 µg/mL NA. The plates were 

incubated at 37 
°
C for 24 h and cfu of ST per crop were determined.  Following this, crops were 

enriched with a 2X solution of tetrathionate broth overnight at 37 
°
C. Following enrichment, each 

sample was streaked for isolation on BGA plates containing 25 µg/mL NO and 20 µg/mL NA. 

The plates were incubated at 37 
°
C for 24 h and examined for the presence or absence of the 

antibiotic resistant ST.   
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Statistical Analysis 

The incidence of Salmonella recovery within experiments was compared using the chi-

square test of independence (Zar, 1984) testing all possible combinations to determine significant 

(P < 0.05) differences between control and treated groups. Cecal cfu data were converted to log10 

cfu numbers and then compared using the GLM procedure of SAS (SAS Institute, 2002) with 

significance reported at P < 0.05. 

 

RESULTS AND DISCUSSION 

Salmonella colonization of poultry flocks can occur via horizontal transmission (Bailey et 

al., 2002; Kim et al., 2007; Alali et al., 2010; Vandeplas et al., 2010). Once cecal tonsil 

colonization is established, the bacterium is consistently shed in the feces (Bailey et al., 2002; 

Foley et al., 2008). Feed withdrawal induces pecking of the contaminated litter which may 

contaminate the crop (Corrier et al., 1999c) and if the crop is ruptured during processing, 

Salmonella may contaminate raw poultry products (Corrier et al., 1999b). Because the crop is 

more likely to rupture than the ceca, the crop represents an important source of Salmonella 

contamination to carcasses (Hargis et al., 1995; Corrier et al., 1999a). Table 1 summarizes the 

results of effect of OAM on ST in an in vitro crop assay. In 3 independent trials, the 0.031% 

OAM reduced ST by 6 h and the 0.062% OAM was also efficacious. However, when 0.062% 

OAM was tested in chickens, it had a similar effect as Optimizer
®
 showing a significant 

reduction in total number of ST positive chickens in cecal tonsils (Table 2), and reducing the 

number of ST in the crop (Table 3) when compared with controls.     

In the present study, Optimizer
® 

reduced ST colonization in both crop and ceca (Tables 2 

and 3) as has been previously reported (Jarquin et al., 2007; Wolfenden et al., 2007). In 
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experiment 1, treatment with OAM in the drinking water caused a significant reduction (P < 

0.05) in ST recovery from cecal tonsils when compared with the controls (OA treated=19% vs. 

controls=87%). Also, treatment with OAM reduced 2.21 logs of ST when compared with 

controls (Table 2). While any of the treatments reduced recovery of ST from the crop by 

enrichment, all treatments reduced the number of ST recovered from crop content at 24 h (Table 

3). The organic acids used in this study (citric, acetic, and propionic) as well as others have been 

shown to be individually effective in reducing Salmonella in vitro (Van Immerseel et al., 2006).  

The biocidal efficacy and the effect on virulence of Salmonella differ with each organic 

acid treatment and each organic acid has a unique effect on bacteria normally present in the crop 

and gastrointestinal tract (Furuse et al., 1991; Byrd et al., 2001; Castro Gonzalez et al., 2001; 

Kubena et al., 2001). Characteristics of organic acids such as chain length, side chain 

composition, pkA values, and hydrophobicity could be factors that effect biocidal activity (Van 

Immerseel et al., 2006). For these reasons, a mixture of organic acids was tested to reduce ST 

crop contamination. Further studies are being conducted to evaluate these new formulations of 

OAM during the pre-slaughter feed withdrawal period in commercial chickens to evaluate water 

consumption and bactericidal activity against Salmonella in the crop.  
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TABLES 

Table 1. Effect of organic acid mix (OAM) on Salmonella Typhimurium (ST) in an in vitro crop assay. 

 Trial 1 Trial 2 Trial 3 

 30 minutes 6 hours 30 minutes 6 hours 30 minutes 6 hours 

       

Control  (ST) 

 

6.25 ± 0.13 
a
 7.09 ± 0.09 

a
 7.42 ± 0.03 

a
 7.07 ± 0.04 

a
 4.95 ± 0.13 

a
 5.99 ± 0.22 

a
 

0.031% OAM 

 

6.08 ± 0.8 
a
 

 

5.98 ± 0.01 
b
 

 

7.43 ± 0.03 
a
 

 

5.86 ± 0.03 
b
 

 

4.88 ± 0.24 
a
 

 

4.56 ± 0.07 
b
 

 

0.062% OAM ND ND 7.39 ± 0.04 
a
 6.24 ± 0.12  

b
 

 

4.70 ± 0.22 
b
 

 

4.56 ± 0.07  
b
 

 

 

Organic acids mix = acetic, citric, and propionic acid 

ND = Not determined 

Data are expressed as log10 mean ± standard error.  Values within columns with different lowercase superscripts  

differ significantly (P  0.05). 
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Table 2. Experiment 1, effect of Optimizer
® 

or organic acids mix (OAM) on Salmonella Typhimurium (ST) infection              

in broiler chicks during 24 hours period. 

Treatment 

Crop 

Enrichment 

culture 

Cecal  tonsils 

Enrichment 

culture 

Log 10 ST / gram 

of ceca content 

 

Control ST 

 

15/16 (94%) 

 

 

14/16 (87%) 

 

 

2.43 ± 0.35 
a
 

Optimizer 
® 

 

13/16 (81%)    3/16 (19%) ** 0.22 ± 0.22 
b
 

0.031% OAM 

 

16/16 (100%) 12/16 (75%)  2.02 ±  0.35 
a
 

0.062% OAM 

 

13/16 (81%)    8/16 (50%) *  1.34 ±  0.40 
a
 

 

Organic acids mix= acetic, citric, and propionic acid 

Data of enrichment culture is expressed as positive/total chickens for each tissue sampled (%).   

* Indicates significant difference at P < 0.05.  ** Indicates significant difference at P < 0.001. 

Log10 ST/gram of ceca content data is expressed as mean ± standard error.  Values within columns with different lowercase 

superscripts differ significantly (P < 0.05).
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Table 3. Experiment 2, effect of Optimizer
® 

or organic acids mix (OAM) on Salmonella 

Typhimurium (ST) infection in broiler chicks during 24 hours period. 

 

Treatment 

Crop 

Enrichment 

culture 

Log 10 ST / gram of crop 

content 

Control ST 

 

20/20 (100%) 

 

5.21 ± 0.31 
a
 

Optimizer 
®

 

 

18/20 (90%) 3.73 ± 0.25  
b
 

0.031% OAM 

 

20/20 (100%) 3.96 ± 0.37 
b
 

0.062% OAM 

 

18/20 (90%) 3.89 ± 0.22 
b
 

 

Organic acids mix= acetic, citric, and propionic acid 

Data of enrichment culture is expressed as positive/total chickens for each tissue sampled (%).   

Log10 ST/gram of crop content is expressed as mean ± standard error. Values within columns 

with different lowercase superscripts differ significantly (P < 0.05).  
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ABSTRACT  

The effect of a commercial organic acid (OA) product on BW loss (BWL) during feed 

withdrawal (FW) and transportation, carcass yield, and meat quality was evaluated in broiler 

chickens. Two experiments were conducted in Brazil. Commercial houses were paired as control 

groups receiving regular water and treated groups receiving OA in the water. Treated birds had a 

reduction in BWL of 37 g in experiment 1 and 32.2 g in experiment 2. In experiment 2, no 

differences were observed in carcass yield between groups. Estimation of the cost benefit 

suggested a 1:16 ratio by using the OA. In experiment 3, conducted in Mexico, significant 

differences on water consumption, BWL, and meat quality characteristics were observed in 

chickens that were treated with the OA (P < 0.05). These data suggests this OA product may 

improve animal welfare and economics concerns in the poultry industry by reducing BWL and 

improving meat quality attributes. 

 

Key words: Organic acid, chicken, welfare, transportation, meat quality.  
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INTRODUCTION 

Global potential for poultry acidifiers, for both feed and water, are on the rise due to 

higher demand for top quality poultry, which is also true for most of the other animal production 

operations including swine and cattle (Berkhout, 2009). A global strategic business report on 

feed acidifiers have revealed that the growth potential in the feed acidifiers market is expected to 

remain robust and expected to rise, mostly attributed to the increasing demand for safe and high 

quality pork and poultry meat. Growing awareness and increasing adoption of the use of 

acidifiers in emerging countries, coupled with escalating demand in the developing world, has 

expanded the market for these acidifiers (Companies and Markets, 2012). 

Europe continues to be the largest regional market with high demand for feed acidifiers in 

specific, primarily attributed to its large pig and poultry populations, supported largely by 

legislations that ban the use of antibiotics in feed. Organic acids (OA) based feed acidifiers have 

gained significance due to their high nutritional value and antimicrobial benefits. Major countries 

dominating the production scene for feed acidifiers include the US, China, Brazil, Mexico, and 

Japan, while demand is on the rise in developing regions like Latin America, Asia-Pacific, and 

Middle East (Companies and Markets, 2012).  

Most of the research and subsequent applications has been involving feed acidifiers as a 

preventive or treatment tool for disease management or to improve bird performance. The 

inclusion of various OA or their salts to diets is shown to improve the growth performance by 

enhancing the nutrient digestibility and affecting the microbial populations in different parts of 

the digestive tract (Tung & Petigrew, 2011). The use of OA or other acidifiers in water 

management for poultry operations is a subject of much conversation between growers, 

veterinarians, and live production personnel. Further, research involving the establishment of 
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preferred pH for poultry, its effects on water consumption and eventually poultry welfare, has 

been limited. Using an OA based drinking water at critical periods of poultry growth is said to 

establish and maintain intestinal development by the stability of the intestinal microflora, 

eventually improving live production performance and cost.  

Acidifying drinking water for poultry for the first seven days of life, when the birds are 

first placed into the house, is considered critical, since the crop and intestinal microbial 

morphology would still be under development. Maintenance of low crop pH by the lactic acid 

bacteria (LAB) in newly hatched poults and chicks is critical. The acidified drinking water 

provides a second layer of protection to the LAB and helps to establish them as a part of the 

crop’s normal ecology. Once the crop’s LAB population has been established, the bird will be 

able to maintain a low crop pH on its own as long as feed is available. 

Feed withdrawal (FW) for various reasons or when chickens and turkeys are not eating 

for any reason, leads to an imbalance in the natural population of LAB, leading to an increase in 

pH, favoring pathogens like Salmonella to multiply in the crop. Pre-slaughter FW is a method 

commonly employed to reduce carcass contamination (Corrier et al., 1999; Byrd et al., 2001; 

Northcutt et al., 2003; Yi et al., 2005). However, carcass shrinkage (carcass dehydration) begins 

immediately after FW (Benibo & Farr, 1985; Veerkamp, 1986), resulting in recommendations 

that slaughter take place within 4 to 8 h after FW to minimize losses. Nevertheless, under 

commercial conditions, this time may be hard to achieve. Consequently, scheduling managers 

need to consider FW effects on both gut fullness and shrinkage. 

In addition to FW, chickens must endure stress during catching, crating transport, and 

shackling (Gregory, 1994; Petracci et al., 2006). All these factors as well as the total time from 

FW to slaughter have important implications in welfare of the birds, economics for the poultry 
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industry and meat quality for the consumers (Gregory, 1996; Kannan et al., 1997; den Hertog-

Meischke et al., 1997). In poultry and other species, transport-related economic losses are due to 

mortality, carcass shrinkage, and carcass condemnation (Veerkamp, 1986).   

Previously, our laboratory conducted a study in broiler chickens showing that a 

commercially available water treatment product (Optimizer) significantly reduced carcass 

condemnation at the processing plant and mortality during transportation, with consistent 

improvement of average BW at the farm and at the processing plant in broiler chickens 

(Wolfenden et al., 2007a). In a similar study, the treatment with Optimizer in the drinking water 

of commercial turkeys during FW showed a significant reduction in the rate of weight loss 

during transportation and holding at the processing plant in the treated turkeys and improved 

average BW in treated turkeys during 19 h with an average of 90 g difference (Pixley et al., 

2010). Both studies measured BW loss (BWL) during holding at the processing plant and the 

ability to mitigate that loss by treatment with OA prior to catching. It seems, likely, that 

dehydration progressively results in negative welfare for the animal, and the rate of BW change 

has the potential to be used as a metric in evaluating welfare status of commercial poultry 

(Warriss et al., 1993; Savenije et al., 2002; Rosenvold & Andersen, 2003; Pixley et al., 2010). 

Our research has shown the potential to reduce the rate of BWL by administering OA in the 

drinking water during FW and transportation to the processing plant. In the present study, 

Optimizer was used in different commercial broiler companies in Brazil and Mexico, to evaluate 

BWL during FW as well as during transportation to the processing plant. Carcass yield and meat 

quality during pre-slaughter feed withdrawal was also assessed, and the implications of poultry 

welfare and economic results are discussed. 
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MATERIALS AND METHODS 

 

Organic Acids 

An OA product (Optimizer™, Pacific Vet Group-USA, Inc., Fayetteville, Arkansas) was 

used in the drinking water during FW according to manufacturer’s directions (4 L 

Optimizer/1,000 L of water). This commercial OA product is a combination of five different OA 

(lactic, acetic, tannic, propionic, and caprylic acids) that contains proprietary flavoring agents. 

This OA product has been shown to reduce Salmonella colonization in crop and cecal tonsils 

without affecting water consumption in chickens (Vicente et al., 2007; Wolfenden et al., 2007b; 

Jarquin et al., 2007). 

 

Experimental Design  

Experiment 1. Effect of the organic acid product on body weight loss during pre-slaughter feed 

withdrawal and transportation under commercial conditions in different states of Brazil.  

In experiment 1, five trials were conducted in five different commercial poultry farms located in 

3 different states of Brazil (Table 1). Furthermore, the individual trials were done during the year 

2012, with birds having different age and subjected to various feed withdrawal, transportation 

and total fasting periods. In all these trials, houses were designated as control groups receiving 

regular water and as treated groups receiving OA in the water at a concentration of 4 L/1,000 L 

of water (vol/vol) according to the manufacturer’s directions. In trial 3, eight commercial 

chicken houses of market age broiler chickens were paired. In all other trials, two commercial 

chicken houses were paired. A total of 35 birds per house treatment were neck tagged and 

individually weighed before the feed withdrawal period and at the time of arrival to the 
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processing facility (after the transportation). The difference between the above two body weights 

was taken to determine the BWL under pre-slaughter commercial conditions. Later, a cost 

benefit analysis was performed based on the BWL to estimate the economic benefit in 

administering OA in broiler chickens.    

 

Experiment 2. Effect of the organic acid product on carcass yield in broiler chickens in Brazil.  

This experiment was performed in November 2012 in a poultry farm located in the state of 

Paraná. Sixteen commercial chicken houses of market age broiler chickens (47 days of age) were 

paired. In this experiment, eight houses were designated as control groups receiving regular 

water and 8 houses as treated groups receiving OA in the water at a concentration of 4 L/1,000 L 

of water (vol/vol), according to manufacturer’s directions. At each farm, 40 tagged market age 

broilers per house treatment were individually weighed after FW period and at the time of arrival 

to the processing facility. Feed withdraw time was 8 h and transportation was of 2 h, being a total 

fasting time of 10 h. Carcass yield was also calculated for the same tagged 40 birds. 

 

Experiment 3. Effect of organic acid on water consumption, body weight loss, and meat quality 

measurements during 8 hours pre-slaughter feed withdrawal in broiler chickens from Mexico. 

A total of 240 forty-day-old female Cobb 500 broilers were obtained from a commercial farm 

(Colima, Mexico) and moved to isolation facilities at CVM, University of Colima, Mexico. 

Broilers were neck tagged and randomly assigned to 8 pens, 4 controls and 4 treated, each pen 

measuring 3 m
2
 with 30 birds per pen and provided finisher feeder and water ad libitum. Broilers 

were kept in a temperature controlled room at 30 °C. At 42 d of age, all chickens were weighed 

and treatment was initiated to 4 pens by adding the OA in the drinking water. Control groups 
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receiving regular water and treated groups receiving OA in the water adjusted to a concentration 

of 4 L/1,000 L of water (vol/vol) according to manufacturer’s directions. When treatment was 

initiated, feed was removed from the control and treatment pens and water consumption was 

monitored in all pens. After 8 h of treatment, all broilers were weighed and final water 

consumption recorded. Three birds from each pen were humanely killed by cervical dislocation. 

Breast muscles (pectoralis major) were removed immediately and stored individually in plastic 

bags at 4 °C for 24 h for further analysis of meat quality measurements. 

 

Meat Quality Measurements 

At 24 h post mortem, the breast meat pH was determined on individual fillets according 

to the method as described by Qiao et al. (2002). The pH was determined using a Model pH/ISE 

meter, calibrated at pH 4.0 and 7.0, and was conducted on the medial bone side as follows: a cut 

approximately 0.5 cm in length and depth was made in the meat, and a drop of deionized water 

was placed in the cut to improve contact with the pH probe. The probe was rinsed with deionized 

water and was dried with a filter between samples, and was cleaned with alcohol after every lot 

of 3 fillets.  

The complete International Commission on Illumination (CIE) system color profile of 

lightness (L*), redness (a*), and yellowness (b*) was measured on the cranial and medial surface 

(bone side) using a reflectance colorimeter (Minolta Chroma Meter CR-10, Minolta, Osaka, 

Japan), in an area free of obvious color defects (bruises, blood spots, or surface discolorations) at 

room temperature (25 ± 2 °C), immediately after samples were tagged. Measurements were 

made on the medial surface to avoid breast fillet surface discolorations due to possible over 

scalding in the plant. Color values were calibrated using a Minolta calibration plate (L*= 60.5, 
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a*= -3.2, and b*= +6.7). 

Water-holding capacity (WHC) of the breast meat samples were measured according to 

the method as described by Lu et al. (2006), with some modifications. A 0.3 g sample of breast 

muscle was pressed onto an oven-dried Whatman 125 mm filter paper at 2000 psi for 1min. The 

WHC values were calculated as the ratio of the area of expressed water to the area of the pressed 

meat sample, measured with a planimeter. Therefore, a lower ratio indicates a greater WHC.  

Thawing loss (TL) was measured according to Mortensen et al. (2006). Immediately before 

freezing, samples were weighed. The frozen samples were thawed over a period of 24 h at 4 °C 

and weighed again. TL was determined as the percentage of BWL after thawing.  

Drip loss (DL) was conducted according to Berri et al. (2008). The muscle samples were 

weighed and immediately placed in a plastic bag, hung from a hook, and stored at 4 °C for 48 h. 

After hanging, the sample was wiped with absorbent paper and weighed again. The difference in 

weight corresponded to the DL and was expressed as the percentage of the initial muscle weight.  

For cook loss (CL), the individually weighed fillets were placed on stainless steel trays and 

cooked for 30 min at 98 °C in steam. Upon removal from the oven, the fillets were covered with 

plastic film and allowed to equilibrate to room temperature (25 °C). Individual fillets were then 

reweighed to determine CL. 

 

Data Analysis 

Body weight, carcass yield, and meat quality data collected were subjected to one way 

analysis of variance using the GLM procedure of SAS, with significance reported at P < 0.05, 

means were further separated using Duncan's multiple range test (SAS Institute, 2002). 
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Formulas and Estimated Values  

Difference in BWL/chicken = 
                  

              
 

Reduction in BWL of total chickens = (Total treated chickens) X (Difference in BWL of treated 

chickens) 

Value of treatment for total chickens = (Weight gain of total chickens) X (Value of the meat/kg 

(estimated at USD 1.44/kg)) 

Total water consumption = (water consumption/chicken) X (total treated chickens) 

Total cost of Optimizer = (cost of Optimizer/L (estimated at USD 4.16/L)) X (L of Optimizer 

used) 

Benefit to cost ratio = 
                  

                                                  
 

 

RESULTS 

The results of the effect of the OA on BWL during pre-slaughter feed withdrawal and 

transportation under commercial conditions in different states of Brazil from experiment 1 are 

summarized in Table 2. In trials 1, 2, and 5, a significant reduction in BWL was observed in the 

chickens treated with OA when compared with control birds (P < 0.05), and numerical reduction 

in trials 3 and 4. Overall average from all 5 trials, treated birds had a reduction in BWL of 37 g 

when compared with control non treated chickens. Similar results have been reported previously 

(Wolfenden et al., 2007a; Pixley et al., 2010).  

The results of the effect of the OA product on carcass yield in broiler chickens in Brazil 

from experiment 2 are summarized in table 3. In this experiment, a numerical reduction of 32.2 g 

of BWL was observed in treated chickens when compared with control non treated chickens. 

Remarkably, no differences were observed in carcass weight and carcass yield between treated 
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and control chickens. Carcass yield (%) in control chickens were 76 % versus 75.9 % in OA 

treated chickens. 

The economic analysis from experiments 1 and 2 on chickens treated with the OA 

product is shown in table 4. From this analysis, the reduction in BWL when converted to a cost 

benefit ratio suggested that for every one U.S. dollar spent with this OA product, producers were 

able to recover on average 16 U.S. dollars. 

Table 5 summarizes the effect of OA on BWL in broiler chickens during 10 h pre-

slaughter feed withdrawal, from experiment 3. As it has been shown previously (Jarquin et al., 

2007; Vicente et al., 2007), unlike treatment with lactic or formic acid (Byrd et al., 2001), the 

OA treatment used in the present study showed a significant increase in water consumption that 

was associated with a significant minor BWL after 10 h of FW compared with non-treated birds. 

Table 6 summarizes the results of OA on raw breast meat color, chemical composition, pH, 

moisture, and water-holding characteristics in broiler chickens after 10 h of FW from broilers in 

experiment 3. A significant increase in lightness and redness, drip and cooking loss with a 

significant reduction on meat pH, moisture and WHC were observed in non-treated chickens 

when compared with OA treated chickens.   

 

DISCUSSION 

Prior to slaughter, broiler chickens are exposed to many handlings and conditions such as 

FW, catching, crating, transport, and shackling that have a profound impact in their welfare 

(Akşit et al., 2006; Ali et al., 1999; Petracci et al., 2006; Vanderhasselt et al., 2013). Under those 

stressful circumstances, energy reserves of the birds can be severely affected, modifying  their 

metabolic state at slaughter, which has a negative effect in the final meat quality for the 
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consumers (Gregory, 1996; Kannan et al., 1997; Ali et al., 1999; Petracci et al., 2001).   

Feed withdrawal is a common practice that is intended to reduce fecal contamination of  

carcasses; however, during transport and lairage birds also experience water withdrawal 

(Northcutt et al., 2003; Corrier et al., 1999). All things considered (FW, crating time, transport, 

and lairage) could add a minimal of 9 h of feed deprivation, although infrequently, much longer 

times have been reported (Warriss et al., 1990), which will lead to significant carcass shrinkage 

(Veerkamp, 1986). Nevertheless, lack of feed and water has been reported to reduce glycogen 

levels in liver following as little as 3 h of FW (Warriss et al., 1988), which has also correlated 

with a significant decrease in postmortem liver pH (Warriss et al., 1993). 

In the present study, the use of the OA product showed a significant or numerical 

reduction in BWL during FW period and transportation (tables 2, 3, and 5). The combination of 

the OA used in the Optimizer™ could have helped to improve the weight loss (Jarquin et al., 

2007), even though the use of individual OA alone did not produce such an effect (Byrd et al., 

2001). This implies that Optimizer™ had a benefit from the bird welfare point of view that it did 

not cause much dehydration, in addition to its documented Salmonella-recovery reductions in 

market age broilers when administered during the pre-slaughter FW period (Jarquin et al. 2007; 

Wolfenden et al. 2007a). 

The significant increase in lightness and redness, increase drip and cooking loss as well 

as significant reduction on meat pH, moisture and WHC observed in control non treated chickens 

when compared with OA treated chickens (Table 6), suggest that the increased water 

consumption observed in previous studies (Vicente et al., 2007; Wolfenden et al., 2007a; Jarquin 

et al., 2007) and confirmed in this study (Table 5), may improve the physiological hydration state 

of the birds. From the results of carcass yield in experiment 2, where % carcass yield had a slight 
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difference of 0.1% between treated and control group (yet, numerical difference in BWL of 32.2 

g); and meat quality results observed in experiment 3 (Tables 3 and 6), we may infer that 

perhaps, the increase water consumption induced by this OA product, is retained in the muscle 

and is not loosed in feces/urine or when blood and viscera are removed. This observation was 

supported in the present study by a consistent significant or numerical improvement in BWL 

(Tables 2, 3, and 5).   

Several investigators have shown that the distribution and mobility of water in muscle 

(myowater) and meat have a profound influence on essential meat quality (Bertram et al., 2003; 

Benibo & Farr, 1985; Castellini et al., 2002; Pearce et al., 2011). During the conversion of the 

living muscle to meat and during ageing, the myowater content, location and mobility will 

change as a function of numerous mutual interacting factors of both ante and post mortem 

biochemistry (Akşit et al., 2006; Ali et al., 1999; Bertram et al., 2003; Bond et al., 2004). After 

death, oxygen supply is stopped, and energy has to be generated under anaerobic conditions 

resulting in accumulation of lactic acid, which decrease the pH of the muscle and affects the 

color of the meat and WHC due to protein breakdown (Warriss & Brown, 1987). When this 

anaerobic energy supply fails, rigor mortis appears (Maribo et al., 1998), which is directly 

correlated with the glycogen reserves of the birds and the metabolic state of the muscle before 

slaughter. The cessation of post mortem energy production in chickens has been reported to 

happen within 6 h of FW (Grey et al., 1974).   

The WHC of chicken meat products is related to final carcass yield which impact both, 

economics and eating quality such as juiciness and tenderness (Zamorano & Gambaruto, 1997; 

Dai et al., 2009). Several ante mortem and post mortem factors have been reported to affect the 

conversion of living muscle to meat as well as the location and content of the myowater (Pearce 
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et al., 2011). Therefore, any loss of water reduces the weight of the product, which contributes to 

financial loss through loss of salable product. Most of the water in the muscle fibers is present in 

the myofibrils, which represent about 80 % of the muscle volume (Cheng & Sun, 2008). When 

the muscles are cut, a red fluid, called drip, exudes from the cut surfaces. This solution consists 

primarily of myoglobin and glycolytic enzymes (Cavitt & Sams, 2003). Excessive drip loss not 

only affects the final yield of the carcass, it also affects the protein concentration of the meat and 

represent a safety concern because this fluid is an excellent nutrient broth for spoiling and 

pathogenic bacteria (Pedersen et al., 2003; den Hertog-Meischke et al., 1997; Castellini et al., 

2002; Northcutt et al., 2003). This is the first report that demonstrate that this OA induced 

increased water consumption and reduction of BWL during FW, catching, crating, transport, and 

shackling of poultry, which are associated with a positive improvement of meat quality attributes 

- such as color of the meat, pH, moisture and over all, water holding characteristics (higher water 

holding capacity and lower drip and cook losses). Furthermore, the reduction in BWL when 

converted to a cost benefit ratio suggested that for every U.S. dollar spent in this OA product, 

producers may be able to recover on average 16 U.S. dollars. 
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TABLES 

Table 1. Experimental designs for experiments 1 and 2 in Brazil 

 

 State Date 
Age 

(d) 

Time (h) 

FW 

period 

Transportation 

period 

Total 

fasting 

Experiment 1      

Trial 1 Minas Gerais March 2012 46 8 1 9 

Trial 2 Minas Gerais April 2012 43 8 1 9 

Trial 3 Paraná March 2012 42 6 5 11 

Trial 4 Paraná March 2012 42 7 3 10 

Trial 5 
Mato Grosso 

do Sul 
January 2012 44 3 10 13 

Experiment 2      

Single 

Trial 
Paraná 

November 

2012 
47 8 2 10 
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Table 2. Effect of the organic acid product (OA) on body weight loss during pre-slaughter feed 

withdrawal and transportation under commercial conditions in different states of Brazil from 

experiment 1 

Trial 

 

Treatment 

 

Initial BW (g) 

BW after 

transportation 

(g) 

 

BW change 

 (g) 

Trial 1 Control 2761± 43
a
 2578 ± 50

a
 -183 ± 23

b
 

OA 2796 ± 57
a
 2682 ± 57

a
 -114 ± 12

a
 

BW difference 

 

   69 

Trial 2 

 

Control 2674 ± 39
b
 2533 ± 37

b
 -141 ± 12

b
 

OA 2797 ± 31
a
 2702 ± 31

a
 -95 ± 6

a
 

BW difference 

 

   46 

Trial 3 

 

Control 3069 ± 68
a
 2995 ± 74

a
 - 74 ± 37

a
 

OA 3044 ± 65
a
 2992 ± 54

a
 - 52 ± 12

a
 

BW difference 

 

   22 

Trial 4 

 

Control 3202 ± 64
a
 3158 ± 65

a
 -44 ± 82

a
 

OA 3183 ± 63
a
 3159 ± 62

a
 -24 ± 79

a
 

BW difference 

 

   20 

Trial 5 

 

Control 2793 ± 70
a
 2724 ± 64

a
 -69 ± 7

b
 

OA 2757 ± 57
a
 2736 ± 60

a
 -21 ± 5

a
 

BW difference 

 

   48 

Average BW 

diference 

   37 g 

Different superscripts indicate significant differences P < 0.05, n = 35 birds. 

BW data is expressed as mean ± SE.  
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Table 3. Effect of the organic acid (OA) product on body weight and carcass yield in broiler 

chickens in Brazil from experiment 2 

 Control OA 

Initial BW (g) 3040 ± 31
a
 2990 ± 33

a
 

BW after 

transportation (g) 
3004 ± 31

a
 2986 ± 32

a
 

BW loss (g) 36.8 ± 37
a
 4.8 ± 32

a
 

Difference (g) 
32.2 g 

 

Carcass weight (g) 2967 ± 37
a
 2981 ± 38

a
 

Carcass yield (%) 76.0 % 75.9 % 

Difference (%) 0.1 % 

 

BW data is expressed as mean ± SE. Superscripts indicate significant differences P < 0.05, n = 

40 birds. 
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Table 4. Cost - benefit of organic acid (OA) product from experiments 1 and 2 

 

Trial – State Cost:benefit ratio* USD 

Experiment 1  

      Trial 1- Minas Gerais 1:15 

      Trial 2 - Minas Gerais 1:12 

      Trial 3 – Paraná 1:14 

      Trial 4 – Paraná 1:17 

      Trial 5 - Mato Grosso do Sul 1:17 

 

Experiment 2 

      Trial 1 – Paraná 

 

 

1:20 

 

Overall Average 

 

1:16 

 

 

*Estimated according to the numbers of broiler chickens/house treated with OA.  
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Table 5. Effect of organic acids on body weight loss in broiler chickens during ten hours pre-

slaughter feed withdrawal, from experiment 3. 

 

 
Control Optimizer 

 

Water consumption mL/bird 

 

38 ± 3
b 

54 ± 5
a
 

Initial BW (g) 2830 ± 50
a
 2798 ± 43

a
 

 

BW after 10 h 

feed withdraw (g) 

 

2657 ± 35
b
 

 

2672 ± 54
a
 

 

BW loss (g) 

 

176 ± 45
a
 

 

128 ± 57
b
 

Diference                                  48 g 

Data is expressed as mean ± SE. Treatments values within rows with no common superscript 

differ significantly P < 0.05.  Each group with 4 replicates of n = 30 each replicate.   
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Table 6. Effect of the organic acids on raw breast meat color, pH, moisture, and water-holding characteristics in broiler chickens 

during pre-slaughter feed withdrawal from experiment 3 

Breast meat characteristics Water holding characteristics (%) 

Treatment 
Lightness 

(L*) 

Redness 

(a*) 

Yellownes 

(b*) 
pH Moisture 

Water 

Holding 

capacity 

Thawing 

      loss 
Drip loss Cook loss 

Control 40.4 ± 0.7
a
 5.6 ± 0.1

a
 10.3 ± 0.9

a
 5.4 ± 0.2

a
 69.6 ± 0.7

b
 65.4 ± 0.3

b
 5.4 ± 0.5

a
 6.8 ± 0.2

a
 36.1 ± 0.7

a
 

Organic 

acids 
37.4 ± 0.1

b
 4.7 ± 0.3

b
 11.4 ± 0.5

a
 6.0 ± 0.1

b
 72.0 ± 0.3

a
 68.2 ± 0.5

a
 5.0 ± 0.6

a
 4.1 ± 0.5

b
 33.4 ± 0.9

b
 

 

Data expressed as mean ± SE.  

Treatments values within columns with no common superscript differ significantly P < 0.05, n = 12 birds. 
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ABSTRACT 

 Bacterial contamination of raw, processed poultry may include spoilage bacteria and foodborne 

pathogens. We evaluated different combinations of organic acid (OA) wash solutions for their 

ability to reduce bacterial contamination of raw chicken skin and to inhibit growth of spoilage 

bacteria and pathogens on skin during refrigerated storage. In experiment 1, raw chicken skin 

samples were dipped into a suspension of either 10
8
 cfu/mL of Salmonella Typhimurium (ST), 

Escherichia coli O157:H7 (EC), or Listeria monocytogenes (LM) for 30 s and then immersed in 

either phosphate buffered saline (PBS) or an OA wash solution mixture of 0.8% citric, 0.8% 

acetic, and 0.8% propionic acid (at equal w/v concentrations) for an additional 30 s. In 

experiment 2, three different concentrations of the OA wash solution (0.2, 0.4, and 0.6% at equal 

w/v concentrations) were tested against chicken skin samples contaminated with ST. Viable 

pathogenic bacteria on each skin sample were enumerated after 1 and 24 h of storage at 4 °C in 

both experiments. In experiment 3, skin samples were initially treated on day one with either 

PBS or two concentrations of the OA mixture (0.4% and 0.8%) and total aerobic bacteria were 

enumerated during a two week storage period. In all experiments, significant (p < 0.05) 

differences were observed when skin samples were treated with the OA wash solution and no 

spoilage organisms were recovered at any given time-point, while increasing log10 numbers of 

spoilage organisms were recovered over time in PBS treated skin samples. These results suggest 

that 0.2 - 0.8% concentrations of an equal-percentage mixture of this OA combination may 

reduce pathogens and spoilage organisms and improve food safety properties of raw poultry.   

Key words: organic acids, foodborne pathogens, skin rinse, chickens, shelf-life 
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INTRODUCTION 

The poultry and beef industries have the challenge of controlling Salmonella, Escherichia 

coli O157:H7, and Listeria monocytogenes within processing and manufacturing facilities 

(Dickson et al., 1992; Harris et al., 2006; Lynch et al., 2006; Laury et al., 2009; Zhao et al., 

2009). Poultry and poultry products have been identified by some researchers as the most 

important source of transmission of Salmonella to humans (Lynch et al., 2006). Contamination 

by Salmonella on live animals and carcasses can occur during transportation and processing 

(Bourassa et al., 2004; Parveen et al., 2007). A 2007 study reported that 88% of chicken 

carcasses were contaminated with Salmonella, and 80% of the isolates were resistant to one or 

more antibiotics (Parveen et al., 2007).  

Chickens contain large numbers of bacteria in their gastrointestinal tract, feathers, and 

feet; therefore fecal bacteria are present on chicken carcasses immediately after processing 

(Ramirez et al., 1997; Northcutt et al., 2003). Consequently, acceptable methods of intervention 

are needed to decrease populations of spoilage bacteria and foodborne enteropathogens. 

Antimicrobial chemicals are commonly used during processing to reduce pathogen loads on 

carcasses, and the most common antimicrobial treatment used for decontamination of poultry 

meat is chlorine (sodium hypochlorite) (Mountney and O'malley, 1965). As reported by 

Mountney and O'malley (1965), chlorine was effective in reducing Salmonella and 

Campylobacter by only as much as 1 to 2 log10 on poultry carcasses. While this may be enough 

to eliminate Salmonella from most poultry carcasses, chlorine may bind to organic matter, and be 

ineffective. In fact, the continued lack of decline in rates of foodborne illness (MMWR, 2011; 

Scallan et al., 2011) indicates that chlorine treatment of carcasses in the processing facility is not 

effectively reducing the incidence of Salmonella contamination. Moreover, failure to optimize 
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the disinfectant properties of chlorine (improper pH, concentration, or composition of incoming 

water) may reduce its efficacy. Chlorine treatment may also cause offensive and harmful odors 

due to the production of chlorine gas and trichloramines (Northcutt et al., 2005; Hinton et al., 

2007; Northcutt et al., 2008).  

Because of these reasons, alternative methods to disinfect poultry carcass are needed.  

Studies using organic acids to spray or dip poultry carcasses have shown as much as 3 log10 of 

Salmonella reduction (Bilgili et al., 1998; Vasseur et al., 1999; Kubena et al., 2001; Hinton and 

Ingram, 2005; Lu et al., 2005; Harris et al., 2006; Van Immerseel et al., 2006). A specific 

example was the use of 2 % lactic acid sprayed on chicken carcasses by Yang et al. (1998), 

which resulted in a 2 log10 cfu per carcass reduction of Salmonella. 

In this regard, the use of organic acids may be a viable alternative to avoid hazards 

associated with chlorine. Therefore, the objectives of these studies were to determine the effects 

of a mixture of different concentrations of organic acid rinse solutions at reducing foodborne 

pathogens and spoilage organisms on the surface of contaminated raw chicken skin during 

storage at 4 °C. 

 

MATERIALS AND METHODS 

Chicken skin samples 

Forceps and scissors were used to aseptically remove strips of skin (approximately 2 cm 

X 2 cm) from chicken thighs (Sarlin et al.,1988) purchased from a local supermarket. 

 

Bacterial strains 
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A poultry isolate of Salmonella enterica subspecies enterica serovar Typhimurium (ST) 

was used for all experiments. An enterohemorrhagic Escherichia coli O157:H7 (EC) strain, 

negative for sorbitol fermentation, as well as a laboratory strain of Listeria monocytogenes (LM) 

were obtained from the Biomass Research Center and USDA Food Safety Lab (University of 

Arkansas, Fayetteville, AR). The amplification and enumeration protocol for these isolates has 

previously been described (Tellez et al., 1993). 

 

ST, EC, and LM culture preparation 

  A frozen aliquot of each pathogen was inoculated into 10 mL of brain heart infusion 

(BHI) broth (Difco, Sparks, MD, USA) and incubated at 37 °C for 24 h in a shaking incubator 

(New Brunswick Scientific, Edison, N.J., U.S.A.) at 200 rpm. After 24 h, 10 mL of fresh BHI 

was inoculated with 10 μL of this culture, vortexed, and incubated at 37 °C for 18 h at 200 rpm 

to ensure that the bacterial culture was in the exponential growth phase. Finally, 10 mL of fresh 

BHI was inoculated with 20 μL of the 18 h culture to obtain a concentration of approximately 

10
8
 cfu/mL.  

 

Organic acid (OA) wash solution 

For use in these experiments, mixtures of equal concentrations (w/v) of acetic 

(Mallinckrodt Chemicals, Phillipsburg, NJ), citric (Sigma, St. Louis, MO), and propionic 

(Sigma) acids were prepared. All of these acids are considered Generally Recognized as Safe 

(GRAS) and are commonly employed in the food industry (USDA-FSIS, 2005).  

 

Experimental design 
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Experiment 1. Chicken skin samples were dipped into a suspension of 10
8
 cfu/mL of ST (N = 

20), EC (N = 20), or LM (N = 20) for 30 seconds. Skin samples were then removed and dipped 

into a solution of either phosphate buffered saline (PBS) (control; N = 30) or an OA wash 

solution (N = 30) of 0.8 % final concentration of each of the acids for an additional 30 s. Control 

and treated samples were placed in individual sample bags and kept in a refrigerator at 4 °C. At 1 

h and 24 h, 5 control and 5 treated samples were removed from the refrigerator and cultured 

separately for each pathogen. Briefly, skin samples were homogenized within sterile sample bags 

using a rubber mallet. Sterile saline (5 mL) was added to each sample bag and hand stomached. 

Serial dilutions were spread plated on brilliant green agar (Becton, Dickinson and Co. Sparks, 

MD) plates containing 25 μg/mL novobiocin (NO; Sigma, St. Louis, MO) and 20 μg/mL 

nalidixic acid (NA; Sigma, St. Louis, MO) for ST; MacConkey Sorbitol Agar for EC, (Becton, 

Dickinson and Co. Sparks, MD); or Oxoid Listeria selective agar (EMD Chemicals Inc. 

Gibbstown, NJ) for LM. Each sample was plated in triplicate. The plates were incubated at 37 °C 

for 24 h, and viable colonies were observed and enumerated.   

 

Experiment 2. Skin samples (N= 40) were dipped into a suspension of 10
6
 cfu/mL of ST for 30 

s. Skin samples were then removed and dipped into a solution of either PBS (control; N = 10) or 

the OA wash solution at 0.2 % (N = 10), 0.4 % (N = 10) or 0.6 % (N = 10) final concentration of 

each of the acids for an additional 30 s. Samples were placed in individual sample bags and kept 

in a refrigerator at 4 °C. At 1 h or 24 h, 5 control and 5 treated samples were removed from the 

refrigerator and cultured separately for ST recovery as described in experiment 1.  
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Experiment 3. Skin samples (N = 105) were dipped into a solution of 10
6
 cfu/mL of ST for 30 s. 

Skin samples were then removed and dipped into a solution of either PBS (control; N = 35) or 

the OA wash solution at 0.4% (N = 35) or 0.8% (N = 35) final concentration of each acid for an 

additional 30 s. Control and treated samples were placed in individual sample bags and kept in a 

refrigerator at 4 °C. At 1 h, 24 h, 3 days, 6 days, 9 days, 12 days, and 15 days 5 control and 5 

treated samples were removed from the refrigerator and cultured separately for ST recovery as 

described in experiment 1.  

 

Experiment 4. Skin samples were dipped into a solution of either PBS (control; N = 35) or the 

OA wash solution at 0.4% (N = 35) or 0.8% (N = 35) final concentration of each acid for an 

additional 30 s. Control and treated samples were placed in individual sample bags and kept in a 

refrigerator at 4 °C. At 1 h, 24 h, 3 days, 6 days, 9 days, 12 days, and 15 days 5 control and 5 

treated skin samples were homogenized within sterile sample bags using a rubber mallet. Sterile 

saline (5 mL) was added to each sample bag and hand stomached. Serial dilutions were spread 

plated on tryptic soy agar (TSA) (Becton Dickinson and Co., Sparks, MD) and MacConkey agar 

(Becton, Dickinson and Co. Sparks, MD). Each sample was plated in triplicate. The plates were 

incubated at 37 °C for 24 h, and viable colonies were observed and enumerated. Bacterial 

identification of different morphology colonies that grew on MacConkey agar was determined 

using the API-20E test kit for the identification of enteric Gram-negative bacteria (bioMerieux, 

Inc., Hazelwood, MO). 
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Statistical analysis  

In all experiments, for each foodborne pathogen or psychotropic bacteria, cfu/skin section 

in control or treated group respectively, was analyzed using Analysis of Variance (ANOVA) 

with further separation of significantly different means using Duncan’s Multiple Range test using 

SAS (SAS Institute, 2002). Significant differences were reported at P < 0.05.  

 

RESULTS 

Table 1 summarizes the effect of 0.8% organic acid (OA) wash solution on chicken skin 

inoculated with ST, EC or LM in experiment 1. The OA wash solution caused a 3.8 cfu/skin 

section log10 and 3.2 cfu/ skin section log10 reduction in presumptive ST and EC respectively 1 h 

after cold storage. By 24 h, no ST or EC were recovered from treated samples. For presumptive 

LM, there was a 1.85 cfu/skin section and 2.87 cfu/skin section log10 reduction at 1 h and 24 h 

respectively.  

Table 2 summarizes the results of three additional concentrations (0.2%, 0.4%, or 0.6%) 

of the same OA wash solution used as a sanitizing dip for raw chicken skin samples inoculated 

with ST. All 3 concentrations were able to significantly reduce presumptive ST at both 1 and 24 

h of storage, and no ST were recovered from skin dipped in 0.6% solutions after 24 h of storage. 

However, 0.6% OA mixture solution showed complete bactericidal activity against ST by 24 h.  

Table 3 summarizes the effect of the OA wash solution at a concentration of either 0.4% or 0.8% 

on ST skin rinse in experiment 3. At 1 h post treatment, the 0.8 % OA wash solution 

significantly reduced (p < 0.05) presumptive ST cfu by 1.72 cfu/skin section log10 compared with 

control skin samples, while at a concentration of 0.4%, there was a numerical decrease in 

presumptive ST cfu (p > 0.05). However, both OA mixtures significantly reduced total 
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presumptive ST cfu recovered at all other storage times (24 h, 3 d, 6 d, 9 d, 12 d, and 15 d). In all 

samples treated with either concentration of the OA wash solution, Salmonella was not detected 

at days 9, 12, and 15 post-treatment. In contrast, control skin samples showed a numerical 

increase in ST cfu at each day of sampling (Table 3). 

The results of experiment 4, the effect of 0.4% or 0.8% OA wash solutions on total 

aerobic bacterial cfu skin section of chicken skin are summarized in tables 4 and 5. On tryptic 

soy agar, after 1 h of cold storage, the total number of aerobic bacteria detected was low in the 

control samples. However, in both OA wash solutions, no bacteria were detected at this time of 

evaluation. At all other times of evaluation, control samples showed an increase in total cfu/skin 

section of chicken skin with a sharp increase between 3 and 6 d post-storage and was 

significantly different (p < 0.05) from both treated groups. Compared with control samples, the 

0.4% OA wash solution showed a significant reduction (p < 0.05) in total cfu/skin section at 24 h 

and 3 d post-storage. At 6, 9, 12, and 15 d, no aerobic bacteria were recovered from skin samples 

treated with the 0.4 % OA wash solution. Interestingly, at all times of evaluation, no aerobic 

bacteria were recovered from skin samples treated with the 0.8% OA wash solution (Table 4).   

Samples from both control and treated bags were plated on MacConkey agar for the detection of 

Gram-negative bacteria associated with food spoilage (Table 5). Both OA wash solutions 

inhibited the growth of Gram-negative bacteria at all times of evaluation (p < 0.05). However, 

bacteria were recovered from the 24 h samples and these numbers increased subsequently in the 

control samples (Table 5). At days 9, 12, and 15, tests determined that Escherichia ssp., 

Enterobacter spp., and Pseudomonas spp. were among the predominant bacterial flora on the 

broiler skin (data not shown).  
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DISCUSSION 

In general, carcass rinse applications that decrease Salmonella by 2 log10 cfu/ml are 

considered effective, since most carcasses are considered to have about 100 Salmonella cells 

(Jetton, et al., 1992). Lactic acid and citric acid at concentrations of 1-3% have been shown to 

reduce E. coli O157:H7, Salmonella serotypes, and Listeria monocytogenes when sprayed on 

beef and poultry carcasses by causing intracellular acidification (Vasseur et al., 1999). According 

to Vasseur et al. (1999), citric acid showed to have the highest inhibitory effect because of its 

ability to diffuse through the cell membrane. In the same experiment, lactic acid decreased the 

ionic concentration within the bacterial cell membrane, leading to accumulation of acid within 

the cell cytoplasm, disruption of the proton motive force, and inhibition of substrate transport 

(Vasseur et al., 1999).  

In these experiments, the blend of OA wash solution showed significant anti-bacterial 

activity against three foodborne pathogens commonly implicated in meat processing (Table 1). 

Additionally, we also found that lower concentrations of the OA wash solution are almost as 

effective as higher concentrations and based on these experiments, we conclude that a 

concentration of 0.4% demonstrates optimum anti-bacterial/bactericidial activity (Tables 2-5). 

Furthermore, the OA wash solution, when used at a concentration of 0.4%, was able to prevent 

recovery of aerobic food-spoilage bacteria up to two weeks of storage at 4 °C, indicating that one 

wash with this solution may enhance shelf-life of packaged meat significantly. Overall, the 

results of these experiments suggest that dipping raw chicken skin in an OA wash solution of 

citric, lactic, and propionic acids can greatly reduce populations of pathogenic bacteria, thus 

enhancing overall food safety and shelf life of chicken meat. Poultry meat quality is a concern 

when using different organic acid washes. In an earlier study, the quality effects of acetic, citric, 
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lactic, malic, mandelic, or tartaric acids at 0.5, 1, 2, 4, and 6% concentrations were tested on 

broiler carcasses, revealing that in simulated dip application, each of the acids decreased 

lightness and increased redness and yellowness values in the skin of broiler carcasses with 

increasing acid concentration (Bilgili et al., 1998). Therefore, future research will be directed at 

determining the effect of these organic acids on the texture, color, oxidative stability, pH, and 

consumer acceptance of chicken meat with treatment combinations that exhibited the most 

effective antibacterial activity. 
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TABLES 

Table 1. Experiment 1: Effect of rinsing chicken skin with an organic acid mixture (OAM)* on recovery of presumptive 

Salmonella Typhimurium (ST), Escherichia coli O: 157:H7 (EC), and Listeria monocytogenes (LM).  

Time of 

sampling 

(h) 

Control 

ST 

OAM 

ST 

Control 

EC 

     OAM   

EC 

Control 

LM 

OAM  

LM 

 

1  

 

6.0 ± 0.07
a
 

 

2.20  ± 0.75
b
 

 

7.57 ± 0.10
a
 

 

4.32 ± 0.24
b
 

 

7.39 ± 0.01
a
 

 

5.54 ± 0.13
b
 

 

24  

 

6.90 ± 0.04
a
 

 

0 ± 0
b
 

 

7.12 ± 0.09
a
 

 

0 ± 0
b
 

 

7.21 ± 0.09
a
 

 

  4.34 ± 0.44
b
 

 

*Organic acid mixture (OAM) = 0.8% acetic acid, 0.8% citric acid, and 0.8% propionic acid 

Data expressed as log10 cfu/ skin section mean ± standard error.   

Values within rows for control or treated group for each foodborne pathogen respectively, with different lowercase 

superscripts differ significantly (P  0.05). 
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Table 2. Experiment 2: Effect of three different concentrations of an organic acid mixture 

(OAM)* rinse solutions on chicken skin inoculated with Salmonella Typhimurium (ST).  

Treatment 1 hour 24 hours 

Control PBS 6.8 ± 0.04 
a
 6.2 ± 0.09 

a
 

0.2% OAM 5.5 ± 0.18 
b
 2.08 ± 1.2 

b
 

0.3% OAM 4.6 ± 0.09 
c
 1.4 ± 0.87 

b
 

0.4% OAM 4.6 ± 0.17 
c
 0.0 ± 0.0 

c
 

 

* Organic acid mixture (OAM) = acetic acid, citric acid, and propionic acid 

Data expressed as log10 cfu/ skin section mean ± standard error. Values within columns with 

different superscripts differ significantly (P  0.05). 
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Table 3. Experiment 3: Effect of two different concentrations of an organic acid mixture 

(OAM)* rinse solution on chicken skin inoculated with Salmonella Typhimurium (ST)  

Sample time Control PBS 0.4% OAM 0.8% OAM 

1 hour 3.37 ± 0.20 
a
 2.01 ± 0.83 

ab
 1.65 ± 1.05 

b
 

24 hours 3.55 ± 0.30 
a
 1.26 ± 0.77 

bc
 0 ± 0 

c
 

3 days 3.31 ± 0.30 
a
 0 ± 0 

b
 0.60 ± 0.60 

b
 

6 days 
 

3.40 ± 0.31 
a
 

0.60 ± 0.60 
b
 

 

0 ± 0 
b
 

9 days 3.49 ± 0.33 
a
 0 ± 0 

b
 0 ± 0 

b
 

12 days 4.89 ± 0.32 
a
 0 ± 0 

b
 0 ± 0 

b
 

15 days 6.82 ± 0.15 
a
 0 ± 0 

b
 0 ± 0 

b
 

    

 

* Organic acid mixture (OAM) = acetic acid, citric acid, and propionic acid  

Data expressed as log10 mean ± standard error. Values within treatment rows with different 

superscripts differ significantly (P  0.05). 
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Table 4. Experiment 4: Effect of two different concentrations of organic acid mixture (OAM)* 

rinse solutions on total cfu/skin section of chicken skin plated on tryptic soy agar plates.  

 

Sample time 

 

Control PBS 

 

 

 0.4% OAM 

 

0.8% OAM 

 

    

 

1 hour 

 

0.60 ± 0.60 
a
 

 

0 ± 0 
b
 

 

0 ± 0 
b 

 

 

24 hours 

 

1.62 ± 0.66 
a
 

 

0.60 ± 0.60 
ab

 

 

 

0 ± 0 
b
 

 

 

3 days 

 

4.49 ± 0.39  
a
 

 

2.45 ± 1.51 
b
 

 

 

0 ± 0 
c
 

 

6 days 

 

7.03 ± 0.37 
a
 

 

0 ± 0 
b
 

 

0 ± 0 
b 

 

 

9 days 

 

7.26 ± 0.19 
a
 

 

 

0 ± 0 
b
 

 

0 ± 0 
b
 

 

12 days 

 

7.61 ± 0.23 
a
 

 

 

0 ± 0 
b
 

 

0 ± 0 
b
 

 

15 days 

 

7.99 ± 0.27 
a
 

 

 

0 ± 0 
b
 

 

0 ± 0 
b
 

 

* Organic acid mixture (OAM) = acetic acid, citric acid, and propionic acid 

Data expressed as log10 mean ± standard error. Values within treatment rows with different 

superscripts differ significantly (P  0.05). 
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Table 5. Experiment 4: Effect of two different organic acid mixture (OAM)* rinse solutions on 

total cfu/skin of chicken skin plated on MacConkey agar plates.  

 

Sample time 

 

Control PBS 

 

 

 0.4% OAM 

 

0.8% OAM 

 

    

 

1 hour 

 

0 ± 0 
a
 

 

0 ± 0 
a
 

 

0 ± 0 
a 

 

 

24 hours 

 

0.60 ± 0.60 
a
 

 

0 ± 0 
b
 

 

0 ± 0 
b 

 

 

3 days 

 

5.09 ± 0.16  
a
 

 

0 ± 0 
b
 

 

0 ± 0 
b 

 

 

6 days 

 

6.52 ± 0.26 
a
 

 

0 ± 0 
b
 

 

0 ± 0 
b 

 

 

9 days 

 

TMTC  

 

0  

 

0 
 

 

 

12 days 

 

TMTC 

 

 

0  

 

0  

 

15 days 

 

TMTC 

 

0  

 

0  

 

  

* Organic acid mixture (OAM) = acetic acid, citric acid, and propionic acid 

TMTC = too many to count at the dilution corresponding to 10
7
 cfu/skin section. 

Data expressed as log10 cfu/skin section mean ± standard error. Values within treatment rows 

with different lowercase superscripts differ significantly (P  0.05). 
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ABSTRACT 

The aim of the present study was to describe the identification and characterization 

(physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a 

commercial probiotic culture, FloraMax
®
-B11. Isolates were characterized morphologically, and 

identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA 

sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the 

identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, 

and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against 

enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained 

in this study showed the tolerance of LAB 18 and LAB 48, to pH 3.0, 6.5 % of NaCl, and high 

bile salts concentration (0.6 %). Both strains evaluated showed in vitro antibacterial activity 

against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter 

jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when 

selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may 

contribute to efficacy, possibly by direct antimicrobial activity in vivo.  

 

Keywords: lactic acid bacteria, probiotic, identification, characterization, poultry 
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INTRODUCTION 

The use of probiotics in agriculture has increased as potential alternatives to antibiotics 

used as growth promoters, and in select cases, for control of specific enteric pathogens (Anadón 

et al., 2006; Tellez et al., 2012). For these reasons, the development of effective probiotic 

products that can be licensed for animal use continues to receive attention (Patterson & 

Burkholder, 2003). Some characteristics are important for the selection of a successful probiotic 

such as being tolerant to gastrointestinal environment, being able to attach to the intestinal 

mucosa, and being exclusively competitive with enteric pathogens (Fontana et al., 2013). Low 

pH, gastric enzymes, and bile salts are examples of barriers of the gastrointestinal tract that the 

probiotic bacteria need to resist after being ingested (Bakari et al., 2011; Fontana et al., 2013).  

Several years ago, our laboratory worked toward the isolation, evaluation, and combination of 

lactic acid bacteria (LAB) to control foodborne pathogens in the digestive tract of poultry (Tellez 

et al., 2006). This defined LAB culture has shown accelerated development of normal microflora 

in chickens and turkeys, providing increased resistance to Salmonella spp. infections under 

laboratory and field research conditions (Higgins et al., 2007, 2008, 2010; Vicente et al., 2007a, 

2007b, 2007c, 2008; Wolfenden et al., 2007a, 2007b). There are several publications regarding 

the efficacy and success of this LAB culture as a poultry probiotic (Tellez et al., 2012), and the 

purpose of the present study was to describe preliminary and additional data regarding the 

identification and characterization (physiological properties) of the strains present in this 

commercial probiotic product. 
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MATERIAL AND METHODS 

Bacterial strains 

Two lactic acid bacteria present in a commercial probiotic culture identified as LAB 18 

and LAB 48 were assessed. This LAB probiotic (FloraMax
®
-B11) was licensed to a commercial 

company (Pacific Vet Group-USA, Inc., Fayetteville, Arkansas 72704, USA). 

  

Morphological and Biochemical tests 

LAB 18 and LAB 48 were cultured aerobically overnight in Man Rogosa Sharpe (MRS, 

Catalog no. 288110, Becton Dickinson and Co., Sparks, MD 21152 USA) broth and were tested 

for Gram stain affinity, catalase and oxidase production. Cell morphology and colonial 

characteristics were observed on MRS agar.  

 

Comparison between 4 identification schemes 

Isolates were sent out for identification and four identification schemes were carried out 

by three different laboratories. For the identification of both strains, two private laboratories used 

the MIDI System ID (Micro Test Lab Inc., Agawam, MA 01001, USA; and Microbial ID Inc., 

Newark, DE 19713, USA), and one private laboratory used 16S rRNA Sequence Analyses 

(Microbial ID Inc., Newark, DE 19713, USA). Then, a third laboratory (Department of Poultry 

Science, University of Arkansas) used the Biolog ID System (Biolog, Inc., Hayward, CA 94545, 

USA) to compare the identification results obtained. 
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Resistance to pH, temperature, and sodium chloride 

A basal MRS medium was used in these series of in vitro studies. An overnight culture of 

each isolate was used as the inoculum whereby the cells were centrifuged and re-suspended in 

0.9% sterile saline. The suspension (100 μl) was inoculated into 10 mL of MRS broth of each 

test tube. Two incubation time points, i.e. two and four hours were evaluated for each of the 

variables (pH, temperature, and sodium chloride - NaCl). The rationale for these two points was 

mainly based on food matter passage time through the gastrointestinal tract of poultry. The 

temperatures tested were 15 °C and 45 °C, the concentrations of NaCl tested were 3.5 and 6.5% 

(w/v). The LAB’s were tested for survivability using two different pHs (2.0 and 3.0). The tubes 

were incubated with reciprocal shaking, at the specific test temperatures or at 37 °C for the tests 

on pH and concentrations of NaCl. At the time points evaluated, each sample was streaked onto 

MRS agar for presence or absence of growth, to confirm livability of the strains. The turbidity of 

each tube was also noted as an indication of growth or no-growth. Each treatment was tested 

with triplicate tubes. 

 

Bile salts tolerance 

The method of Gilliland et al. (1984), with some modifications, was used to determine 

bile salt tolerance. MRS broth containing 0%, 0.4%, 0.5%, or 0.6% of bile salts No. 3 (Catalog 

no. 213010, Becton Dickinson and Co., Sparks, MD 21152 USA) was inoculated with 10
7 

cfu/mL of each probiotic strain, after being centrifuged at 3000 g for 15 minutes and washed 

three times from their overnight growth cultures. Samples were incubated for 24 h at 37 °C with 

shaking at 100 rev./min. Growth in control (no bile salts) and test cultures was evaluated at 2, 4, 

and 24 hours by streaking samples onto MRS agar for presence or absence of growth.  

http://www.sciencedirect.com/science/article/pii/S0168160500003664#BIB6
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In vitro assessment of antimicrobial activity against enteropathogenic bacteria 

The lactic acid isolates were screened for in vitro antimicrobial activity against 

Salmonella enterica serovar Enteritidis phage type 13A (SE), Escherichia coli (O157:H7) (EC), 

and Campylobacter jejuni (CJ). Ten microliters of lactic acid isolates 18 and 48 in FloraMax
®
-

B11 were placed in the centre of MRS plates. After 24 h of incubation at 37 °C, the plated 

samples were overlaid with TSA (Tryptic Soy Agar, catalog no. 211822, Becton Dickinson, 

Sparks, MD) containing 10
6 

cfu/mL of SE or EC. After 24 h of incubation at 37 °C, plates were 

evaluated and those colonies that produced zones of inhibition were selected. A similar overlay 

method as described above was used for CJ, where 10
6
 cfu/mL of CJ was inoculated in TSA 

containing 0.2 g of sodium thioglycolate as a reducing agent, and overlaid over the solid agar. 

Plates were incubated in a microaerophilic environment for 48 h at 42 °C. Colonies that 

produced zones of inhibition were selected. 

 

RESULTS AND DISCUSSION 

Morphological, biochemical, and genotypic identification 

Both phenotypic and genotypic identifications are part of the first step in the selection of 

potential probiotic bacteria (Fontana et al., 2013). Table 1 summarizes the morphological and 

biochemical tests of LAB 18 and 48. Both strains tested Gram-positive and catalase and oxidase 

negative. However, LAB 18 showed a coccal morphology, whereas LAB 48 showed a rod-

shaped morphology. Genotypic systems are becoming valuable tools for use in a wide range of 

microorganisms (Tellez et al., 2012; Fontana et al., 2013). Genotypic 16S rRNA identification of 

microorganisms from probiotic cultures may be more consistent than the current standard 



 
 

108 
 

microbial techniques (Tellez et al., 2012). On the other hand, this method has shown to have 

issues and limitations. Speciation relies on the closest match with previously identified species in 

the database because the identification is based on specific sequence homology compared with a 

known database generated from previously identified organisms through conventional 

methodologies (Tellez et al., 2012; Fontana et al., 2013). Because databases have been constantly 

changing and increasing, the same sequence may match other taxons with greater homology. 

Therefore, at this moment it is nearly impossible to confidently know the speciation of LAB 

except with very highly characterized isolates (Tellez et al., 2012). Thus, while 16s RNA 

sequencing can positively identify one LAB isolate as unique among several, true accuracy of 

homology comparisons is a somewhat subjective.  

Even with many new experimental molecular identification techniques, and with the 

known problem of database accuracy and consistency over time, sequence analysis of 16S rRNA 

is the major molecular technology presently available for microbial identification (Wagner et al., 

2003). Table 2 shows the identification scheme for LABs 18 and 48 using the MIDI System ID 

(from two laboratories), the Biolog ID System, and the 16S rRNA Sequence Analyses. These 

results showed that the identification of these strains is difficult; nevertheless, the use of defined 

cultures for probiotic use is still safer than undefined cultures. 

 

Resistance to pH, temperature, and sodium chloride 

The first host factors that may affect commercial probiotics are the high acidity in the 

proventriculus and ventriculus and the high concentration of bile components in the proximal 

intestine (Bakari et al., 2011; Hyronimus et al., 2000). Therefore, being tolerant to acidic 

conditions is an important criterion to be considered during the selection of potential probiotic 
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isolates to assure their viability and functionality. Moreover, probiotic bacteria show variable 

resistance to acidic conditions, and this characteristic is species and strain dependent (Fontana et 

al., 2013). LAB 18 and 48 did not survive an incubation period of 2 or 4 h at pH 2.0. However, at 

a pH of 3.0, both strains were resistant after 2 and 4 h of incubation (table 3). As reported by 

Fontana et al. (2013), Lactobacillus spp. isolates have shown to be very resistant to low pH, with 

high survival rates at pH 3.0 for 1 h. On the contrary, studies show that Bifidobacterium spp. 

isolates are very sensitive to pH 2.0 and pH 3.0 (Fontana et al., 2013). Lactic acid bacteria are 

acidophilic, which means they are tolerant to low pH. However, this needs to be differentiated 

from a condition of high concentration of free acids (H+), because the free acids may cause 

growth inhibition (Amrane & Prigent, 1999). Probiotic bacteria need to survive passage through 

the stomach, where the pH can be as low as 1.5 to 2.0 (Dunne et al., 2001), and stay alive for 4 h 

or more (Bakari et al., 2011), before they move to the intestinal tract. However, feed passage rate 

for birds is faster than for other animals, especially mammals; therefore, bacterial acid tolerance 

is not as critical in chickens as it is in other animals (Boonkumklao et al., 2006). 

Both strains grew at 15 and 45 °C at 2 and 4 h of incubation (table 3). Wouters et al. 

(2000) demonstrated reduced glycolytic activity leading to reduced production of lactic acid in 

Lactococcus lactis at low temperature. According to Ibourahema et al. (Ibourahema et al., 2008), 

the bacterial capability to grow at high temperature is a good characteristic as it could be 

interpreted as indicating an increased rate of growth and lactic acid production. Moreover, a high 

fermentation temperature decreases contamination by other microorganisms (Ibourahema et al., 

20080). Both strains were also able to tolerate high osmotic concentrations of NaCl (table 3). 

This examination gave an indication of the osmotolerance level of the LAB strains. According to 

Ibourahema et al. (2008), bacterial cells cultured in a high salt concentration could have a loss of 
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turgor pressure, which would then affect their physiology, enzyme activity, water activity, and 

metabolism. According to Adnan and Tan (2007), high osmotolerance would be a requirement of 

LAB strains to be used as commercial strains, because when lactic acid is produced by the strain, 

alkali would be pumped into the broth to prevent excessive reduction in pH, and the free acid 

would be converted to its salt form, increasing the osmotic pressure on the bacterial cells. 

 

Bile salts tolerance 

In general, tolerance to bile salts has been considered a condition for colonization and 

metabolic activity of bacteria in the host’s intestine (Havenaar et al., 1992), bile salts can 

influence the intestinal microflora by acting as an antimicrobial molecule (Fontana et al., 2013). 

Consequently, when evaluating the potential use of LAB as a probiotic, it is usually important to 

evaluate their ability to tolerate bile salts (Lee & Salimen, 1995). Table 4 shows the results of 

bile tolerance of the strains evaluated. LAB 18 and LAB 48 were able to grow when cultured at 

0.4%, 0.5%, and 0.6% bile salts concentration at 2, 4, and 24 h of incubation. The average 

concentration of bile salts in the small intestine is around 0.2% to 0.3%, and may go up to 2 % 

(w/v), depending upon the individual and the type and amount of food ingested (Kristoffersen et 

al., 2007; Bakari et al., 2011). According to Xanthopoulos et al. (1997), the ability to tolerate bile 

salts vary a lot among the LAB species and between strains themselves. Bile resistance of some 

isolates is related to the enzyme activity of bile salt hydrolase (BSH) that helps to hydrolyze 

conjugated bile, reducing its toxic effect (Du Toit et al., 1998). BSH activity has most often been 

found in microorganisms isolated from animals’ intestines or feces (Tanaka et al., 1999). 

 

In vitro assessment of antimicrobial activity against enteropathogenic bacteria 
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Both strains evaluated showed in vitro antibacterial activity against the three 

enteropathogenic bacteria (Table 5). The inhibitory activity of LAB has been previously reported 

and is mainly due to the accumulation of primary metabolites such as lactic acid, ethanol, and 

carbon dioxide and to the production of other antimicrobial compounds such as bacteriocins 

(Rattanachaikunsopon & Phumkhachorn, 2010). The production levels and proportions among 

these compounds depend on the biochemical properties of the strains used and physical and 

chemical conditions of growth (Tannock, 2004). 

 

CONCLUSION 

Characterization and identification of beneficial enteric lactic acid bacterial isolates is 

highly dependent upon methodology. Bile and salt resistance of enteric resident microflora are 

high, with tolerances expected from resident microflora. Antimicrobial activity of these effective 

isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo.  

Alternatively, localized production of volatile fatty acids, and possibly bacteriocins, may 

contribute to the colonization ability of these isolates to compete locally and colonize within the 

gastrointestinal tract.  Importantly, previous (Higgins et al., 2011) and unpublished research from 

our laboratory indicates very rapid induction of specific host-gene expression pathways, 

temporally associated with reductions in enteric colonization with Salmonella. While many 

mechanisms of action have been proposed for the observed efficacy, precise modalities have not 

been completely described for this highly effective culture.   
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TABLES 

 

Table 1. Morphological characteristics of the lactic acid bacteria isolates 18 and 48 present in 

FloraMax
®
-B11  

 

LAB- ID 

Anatomic 

region 

isolated 

 

Gram stain 

 

Observation 

 

Catalase 

 

Oxidase 

18 Ceca + Cocci (clusters) - - 

48 Ceca 

 

+ Rods - - 

 

 

 

Table 2. MIDI System ID, Biolog ID System, and the 16S rRNA Sequence Analyses 

identification of the isolates 18 and 48 present in FloraMax
®
-B11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LAB- 

ID 

 

16S RNA 

SEQUENCING 

(FIRST 500 bp) 

Microbial ID Inc. 

 

MIDI 

SYSTEM ID 

Micro Test 

 Lab Inc. 

 

MIDI SYSTEM 

ID 

Microbial ID Inc. 

 

Biolog ID 

Dept. of 

Poultry 

Science 

U. of Arkansas 

 

 

18 

Pediococcus 

parvulus 

Enterococcus 

cecorum 

 

Lactobacillus 

gasseri 

Unable to 

identify 

 

 

48 

Lactobacillus 

salivarius 

 

Lactobacillus 

helveticus 

 

Lactobacillus 

gasseri 

 

Lactobacillus 

salivarius 
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Table 3.  Tolerance of the lactic acid bacteria isolates 18 and 48 present in FloraMax
®
-B11 to 

pH, temperature, and NaCl  

LAB 

ID 

 

 

pH2 

 

pH3 

 

15°C 

 

45°C 

3.5% 

NaCl 

6.5% 

NaCl 

 

18 

 

2h 4h 2h 4h 2h 4h 2h 4h 2h 4h 2h 4h 

- - + + + + + + + + + + 

48 - - + + + + + + + + + + 

Symbols: +, tolerant; -, non- tolerant 

 

 

 

 

 

Table 4. Evaluation of FloraMax
®
-B11 isolates 18 and 48 bile salt tolerance  

 

LAB 

ID 

2 hours 4 hours 24 hours 

0% 0.4% 0.5% 0.6% 0% 0.4% 0.5% 0.6% 0% 0.4% 0.5% 0.6% 

             

18 + + + + +  +  +  + + + + + 

 

48 

 

+ 

 

+ 

 

+ 

 

+ 

 

+ 

 

 + 

 

 + 

 

 + 

 

+ 

 

+ 

 

+ 

 

+ 

Symbols: +, tolerant; -, non- tolerant 

 

 

 

Table 5.  In vitro assessment of antimicrobial activity of the lactic acid bacteria isolates 18 and 

48 present in FloraMax®-B11 against enteropathogenic bacteria 

LAB- ID 

 

 

Salmonella 

Enteritidis 

Escherichia coli 

(O157:H7) 

Campylobacter 

jejuni 

18 

 

+ + + 

48 

 

+ + + 

Symbols: +, inhibition 
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ABSTRACT 

The objective of the present study was to describe the physiological properties of seven potential 

probiotic strains of Bacillus spp. Isolates were characterized morphologically, biochemically, 

and by 16S rRNA sequence analyses for identification. Tolerance to acidic pH, high osmotic 

concentrations of NaCl, and bile salts were tested. Isolates were also evaluated for their ability to 

metabolize different carbohydrates sources. The antimicrobial sensitivity profiles were 

determined. Inhibition of gastrointestinal Salmonella colonization in an avian model was also 

evaluated. Five strains of Bacillus were tolerant to acidic conditions (pH 2.0) and all strains were 

tolerant to a high osmotic pressure (NaCl at 6.5%). Moreover, all strains were able to tolerate 

concentration of 0.037 % bile salts after 24 h of incubation. Three strains were able to 

significantly reduce Salmonella Typhimurium levels in the crop and in the ceca of broiler-type 

chickens. Among the 12 antibiotics tested for antibiotic resistance, all strains were resistant to 

bacitracin and susceptible to gentamycin, neomycin, ormethoprim, triple sulfa, and 

spectinomycin. Bacterial spore formers have been shown to prevent gastrointestinal diseases in 

animals and humans. The results obtained in this study shows important characteristics to be 

evaluated when selecting Bacillus spp. candidates to be used as probiotics.  

 

Key words: Bacillus, probiotic, properties  
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INTRODUCTION 

Probiotics have been commercialized for both animal and human uses. Probiotics for 

humans use are subject to minimal restrictions and come in many different forms. Probiotics in 

animal feed have been used for the prevention of gastrointestinal infections, with a wide use in 

poultry and aquaculture productions (Hong et al., 2005; Jadamu et al., 2002, Kasper, 1998; 

Sleatorand & Hill, 2008; Rolfe, 2000; Liu et al., 2012).  

Diarrhea is one of the major side effects of chemotherapy in cancer treatments, and has 

been associated with increased morbidity, mortality, increased treatment costs, and restrictions 

related to the ability to deliver full doses of chemotherapy (Kobayashi, 2003; Savarese et al., 

2003). Enterocyte proliferation in the intestinal mucosa and the intestinal microflora can be 

directly harmed by the effect of chemotherapeutic agents as well as radiation, often causing 

bacterial translocation, malabsorption, and/or diarrhea (Savarese et al., 2013; McGough et al., 

2004). Therefore, in order to reduce systemic bacterial diseases, high doses of broad spectrum 

antibiotics are usually used in cancer patients undergoing chemotherapy or radiation therapy. 

The disruption of the beneficial intestinal microflora is a common consequence to this type of 

treatment, which may lead to the colonization of opportunistic pathogenic bacteria such as 

Salmonella spp. (Noriega et al., 1994; Delaloye et al., 2004) and Clostridium difficile 

(Benchimol & Mack, 2004; Hull & Beck, 2004). Although the most common types of probiotics 

available are based on lactic acid bacteria (LAB), there are other potentially beneficial 

microorganisms that are not normally found in the gastrointestinal tract (GIT) such as 

Saccharomyces boulardii or Bacillus spp. For example, Saccharomyces boulardii has been 

shown to prevent the recurrence of Clostridium difficile-induced pseudomembranous colitis 

(Czerucka & Rampal, 2002) as well as Escherichia coli infections (Czerucka et al., 2000). Spore 
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forming bacteria such as Bacillus subtilis, B. megaterium, B. licheniformis, Paenibacillus 

polymyxa, and B. clausii have also been used as probiotics in humans (Hong et al., 2005).   

Many studies have shown that either strains of live bacteria or active spores can 

efficaciously reach the intestine, preventing colon carcinogenesis (Lee et al., 2007; Malkov et al., 

2006). Moreover, they can suppress the development of pre-neoplastic lesions (Park et al., 2007). 

These microorganisms can also release antimicrobial substances active against Gram-positive 

bacteria such as Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile, and can 

induce IFN-gamma production and CD4+ T-cell proliferation (O'Mahony et al., 2002; Urdaci et 

al., 2004). Products containing Bacillus spp. spores are used commercially as probiotics because 

they have some advantages over the traditional LAB products, for example, the ability to be 

stored indefinitely in a dry form (Barbosa et al., 2005; Duc et al., 2004; Hong et al., 2005; 

Sleatorand & Hill, 2008) and the ability to survive baking processes (Permpoonpattana et al., 

2012).  

Current research has shown that Bacillus subtilis spores, after oral ingestion, are 

immunogenic and are able to disseminate
 
to the Peyer's patches and mesenteric lymph nodes 

(Duc et al., 2003a, 2003b; Permpoonpattana et al., 2012). Three main findings have supported 

the hypothesis that Bacillus subtilis spores can germinate in the small intestine. First, following 

oral ingestion in mice, Hoa et al. (2001) showed that more Bacillus subtilis spores were excreted 

after ingestion than initially given. Second, after administration
 
of spores to mice, expressed 

mRNA of vegetative cells was detected in the
 
GIT by reverse transcription (RT)-PCR (Casula & 

Cutting, 2002). Third, after oral administration
 
of spores to mice, systemic immunoglobulin G 

was produced against vegetative Bacillus subtilis cells (Duc et al., 2003a). The above studies 

indicate that Bacillus spp. spores are not merely present in the intestinal tract as transient bacteria, 
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but they might also have some interaction with the host enterocytes, immunocompetent cells, or 

with the intestinal microbiota (Duc et al., 2004). 

Identifying desirable physiological properties and the ability to inhibit the growth of 

pathogenic bacteria is very important when selecting potential candidates to be used as probiotics 

for humans and animals. In the present study, Bacillus spp. strains, isolated from poultry and 

environmental sources, were characterized and evaluated for their ability to metabolize different 

carbohydrate sources, their antibiotic sensitivity profile, and their tolerance to acidic pH, high 

osmotic concentrations of sodium chloride (NaCl), and bile salts. In addition, inhibition of 

Salmonella colonization in a well-established avian model was also evaluated. 

 

MATERIALS AND METHODS 

Isolation, Biochemical tests, and Identification of selected Bacillus strains 

Strains of Bacillus spp., laboratory identified as NP122, AM0904, B2, RW41, AM0902, 

AM1109A, and AM1109B, were isolated from environmental and poultry sources as described 

by Wolfenden et al. (2010). Biochemical evaluation tests as well as identification for these seven 

selected strains were carried out using a bioMerieux API 50 CHB test kit (catalog no. 50430, 

bioMerieux, Marcy l’Etoile, France). The identification procedure, which followed the 

manufacturer’s instructions, was also important to confirm generally recognized as safe (GRAS) 

status of the isolates. Besides the biochemical identification, 16S rRNA sequence analyses 

(Microbial ID Inc., Newark, DE 19713, USA) was carried out. 

 

Bile salts tolerance 
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The method of Gilliland et al. (1984), with some modifications, was used to determine 

bile salt tolerance. Tryptic Soy Broth (TSB) (Becton Dickinson and Co., Sparks, MD) containing 

0%, 0.037%, 0.075%, 0.15%, and 0.3% of bile salts No. 3 (Catalog no. 213010, Becton 

Dickinson and Co., Sparks, MD 21152 USA) was inoculated with 10
7 

cfu/mL of each potential 

probiotic strain, after being centrifuged at 3000g for 15 minutes and washed three times from 

their overnight growth cultures. Samples were incubated for 24 h at 37 °C with shaking at 100 

rev./min. Growth in control (no bile salts) and test cultures was evaluated at 2, 4, and 24 hours by 

streaking samples on Tryptic Soy Agar (TSA) for presence or absence of growth.  

 

Antibiotic resistance 

Selected colonies of NP122, AM0904, B2, RW41, AM0902, AM1109A, and AM1109B 

on TSA plates were inoculated and cultured overnight in TSB at 37 °C. Strains were then sent to 

a Veterinary Diagnostic Laboratory (University of Arkansas, Division of Agriculture, 

Fayetteville, AR, 72703, USA) for antibiotic sensitivity analysis using Kirby-Bauer 

methodology. The diameter of the inhibition zones and the interpretative zone sizes were 

reported. Twelve antibiotics were tested and their concentrations were reported as shown on 

table 6. The results were expressed in terms of resistant, intermediate, and susceptible. 

 

Resistance in conditions of the intestinal tract evaluation: pH, temperature, and sodium 

chloride 

A basal TSB medium was used in these series of in vitro studies. An overnight culture of 

each isolate was used as the inoculum whereby the cells were spun down and re-suspended in 

0.9% sterile saline. Then, 100 μL of the suspension was inoculated into 10 mL of TSB of each 

http://www.sciencedirect.com/science/article/pii/S0168160500003664#BIB6
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test tube. Two incubation time points, i.e. two and four hours were evaluated for each of the 

variables (pH, temperature, and NaCl). The rationale for these two points was mainly based on 

the transit time of food matter in the gastrointestinal tract of poultry. The temperatures tested 

were 15 and 45 °C. The concentrations of NaCl tested were 3.5 and 6.5% (w/v). The isolates 

were tested for growth at pH 2 and 3. The tubes were incubated with reciprocal shaking, at the 

specific test temperatures or at 37 °C for the tests on pH and concentrations of NaCl. At the time 

points evaluated, each sample was streaked on TSA for presence or absence of growth, to 

confirm livability of the strains. The turbidity of each tube was also noted as an indication of 

growth or no-growth. Each treatment was tested with triplicate tubes. 

 

Salmonella Typhimurium in vivo growth inhibition 

A poultry isolate of Salmonella enterica subspecies enterica serovar Typhimurium (ST), 

which had previously been selected for resistance to nalidixic acid (NA - Catalog No. N-4382, 

Sigma, St. Louis, MO 63178), was used in all experiments. The amplification and enumeration 

protocol for this isolate has been described previously (Tellez et al., 1993). Trials were 

conducted with day-of-hatch broiler chicks obtained from a local hatchery, with the exception of 

one trial that was conducted with six to seven weeks old broiler chickens. In all trials, broiler 

chickens were randomly (n=20) assigned to untreated control diet or dietary treatment of each 

Bacillus spp. isolate at 10
5
 cfu/g of feed for seven days. Broiler chicks were housed in brooder 

batteries or floor pens with food and water ad libitum. At day four, all birds were challenged 

with 2 x 10
5
 cfu ST/bird. At seven days, birds were humanely killed by CO2 inhalation and crop, 

ceca, and cecal tonsils were aseptically harvested. Salmonella recovery procedures have been 

previously described by our laboratory and were followed with some modifications [32]. All 
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animal handling procedures were in compliance with the Institutional Animal Care and Use 

Committee (IACUC) at the University of Arkansas. 

 

Statistical Analysis 

Crop and ceca colony forming units (cfu) data were converted to log10 cfu numbers and 

then compared using the GLM procedure of SAS (SAS Institute, 2002) with significance 

reported at P < 0.05. The incidence of ST recovery within experiments was compared using the 

chi-square test of independence (Zar, 1984) to determine significant (P < 0.05) differences 

between control and treated group. All values were converted to percent ST reduction comparing 

treated birds to non-treated birds (control) to be simplified in a single table. 

 

RESULTS AND DISCUSSION 

Biochemical tests and Identification of selected Bacillus strains  

As described by Logan and Berkeley (1984), the API 50 CHB system is a rapid and 

accurate test of Bacillus isolate identification, which allows bacterial isolates to be classified 

according to their ability to ferment 49 different carbohydrates, which are listed in Table 1. 

Selected Bacillus isolates were tested to evaluate their biochemical profile, and the results are 

presented in Table 1. The carbohydrate fermentation pattern was used to identify each isolates’ 

species. Four isolates were characterized as Bacillus subtilis/amyloliquefaciens, and the three 

remaining isolates were characterized as Bacillus licheniformis, Bacillus pumilus, and Bacillus 

megaterium (Table 2). Sequence analysis of 16S rRNA is the predominant molecular technology 

presently available for microbial identification (Wagner et al., 2003). The 16S rRNA analysis 

(Table 3), matched the biochemical identification results (Table 2). 
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Bile salts tolerance 

In general, tolerance to bile salts has been considered a prerequisite for colonization and 

metabolic activity of bacteria in the host’s intestine (Havenaar et al., 1992). The average 

concentration of bile salts in the small intestine is around 0.2% to 0.3%, and may go up to 2% 

(w/v), depending upon the individual and the type and amount of food ingested (Kristoffersen et 

al., 2007; Bakari et al., 2011). Nevertheless, bile levels in the intestine are not constant and are 

relatively low until ingestion of a fatty meal (Begley et al., 2005). The main purpose of bile 

secretion is to emulsify and dissolve ingested fats (Kristoffersen et al., 2007). However, bile salts 

also have bactericidal effects; they can disrupt the lipid membrane, get into the bacterial cell, 

denature proteins, chelate ions, and damage DNA (Kristoffersen et al., 2007; Hernández et al., 

2012). According to Begley et al. (2005), many studies have shown that bile tolerance is a strain-

specific characteristic and the tolerance of various bacterial species cannot be generalized. Also, 

Gram-positive bacteria seem to be more sensitive to the harmful effects of bile than Gram-

negative bacteria (Begley et al., 2005). 

Evaluating bile salts tolerance of the vegetative cells of our selected strains, we found 

that all strains were able to grow when cultured at 0.037% bile salts concentration at 2 h, 4 h, and 

24 h of incubation. Six of the vegetative forms of the Bacillus strains tested for bile resistance 

were not able to survive at the concentrations of 0.075%, 0.15%, and 0.3% of bile salts during 

the time points evaluated. The isolate B2 was the only one able to survive at 0.075%, 0.15%, and 

0.3% at 2 h of incubation (Table 4). These results are in agreement with Barbosa et al. (2005) 

findings, where vegetative cells of Bacillus isolates were very susceptible to bile salts at 0.2%. 

Information about the bile tolerance of Gram positive bacteria is limited. It is important 

to know that bacterial tolerance to bile in broth assays, as with many physiological stresses, may 
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not reproduce in vivo. Because bile salts form micelles with phospholipids, they may not be free 

to interact with bacterial cells, and the in vivo antibacterial activity of bile may be lower than 

observed in in vitro assays (Begley et al., 2005). Exposure to different pH, temperatures, and 

growth environments may increase bacterial susceptibility to bile or make them more resistant. 

For example, an exposure of bacteria to low levels of bile salts may increase their tolerance to 

higher levels (Begley et al., 2005). Also, the presence of food in the intestinal tract can affect 

survival because bacteria may not be exposed to bile due to the formation of microenvironments 

by the food particles or food constituents, which may bind to bile components, preventing 

damage to the bacteria (Begley et al., 2005). Bile resistance of some isolates is related to the 

enzyme activity of bile salt hydrolase (BSH) that helps to hydrolyze conjugated bile, reducing its 

toxic effect (Du Toit et al., 1998). BSH activity has most often been found in microorganisms 

isolated from animals’ intestines or feces (Tanaka et al., 1999). 

The Bacillus spore, which consists of multiple protective layers, has been described to be 

very resistant to different physical and chemical conditions (Barbosa et al., 2005), and they have 

been shown to survive at high concentration (usually more than 1%) of bile salts (Barbosa et al., 

2005; Kristoffersen et al., 2007). The hypothesis is that Bacillus spp. spores, after ingestion, 

would germinate in distal parts of the small intestine, where the concentration of bile salts would 

be lower (Casula & Cutting, 2002; Kristoffersen et al., 2007). More physiological analyses are 

necessary to establish the importance of bile tolerance of bacteria in the intestine (Begley et al., 

2005).   

 

Resistance in conditions of the intestinal tract evaluation: pH, temperature, and sodium 

chloride 
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Probiotic bacteria need to survive the passage through the stomach, where the pH can be 

as low as 1.5 to 2.0 (Dunne et al., 2001), and stay alive for 4 h or more (Ouwehand et al., 2002), 

before they move to the intestinal tract. For this reason, the vegetative cells of the isolates were 

evaluated for conditions similar to that found in the stomach. The isolates AM1109A and B2 

were able to survive at pH 2 and pH 3 for 2 h and 4 h of exposure. On the other hand, AM0904 

and AM1109B did not survive the harsh pH conditions (Table 5). The remaining isolates 

(NP122, AM 0902, and RW41) were able to survive at pH 2 and pH 3 at only 2 h of exposure.  

According to Ibourahema et al. (2008), the bacterial capability to grow at high 

temperature is a good characteristic as it could be interpreted as indicating an increased rate of 

growth. Moreover, a high fermentation temperature reduces contamination by other 

microorganisms [0]. All strains grew at 15 °C to 44 °C at both times of incubation 2 h and 4 h 

(Table 5). All strains (vegetative cells) were also able to tolerate high osmotic concentrations of 

NaCl (Table 5). This examination gave an indication of the osmotolerance level of the Bacillus 

spp. strains. Bacterial cells cultured in a high salt concentration could have a loss of turgor 

pressure, which would then affect their physiology, enzyme activity, water activity, and 

metabolism (Ibourahema et al., 2008).  

 

Antibiotic resistance 

The antibiotic resistance and susceptibility of the seven Bacillus isolates to twelve 

antibiotics was analyzed. All isolates were resistant to bacitracin, and sensitive to gentamycin, 

neomycin, ormethoprim, triple sulfa, and spectinomycin. The isolate AM0902 was also resistant 

to clindamycin, ceftiofur, novobiocin, penicillin, and tetracycline. The isolate RW 41 also 

showed resistance to erythromycin, clindamycin, ceftiofur, and novobiocin, to which B2 was 
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resistant as well. An intermediate susceptibility was observed with AM0902 on erythromycin 

and with AM0904 on tetracycline (Table 6).  

According to Bakari et al. (2011), probiotic bacteria that show resistance to a specific 

antibiotic can be given at the time of antibiotic treatment. Because antibiotic resistant genes are 

generally carried on conjugative plasmids, they can be transferred to other bacteria (Bennet, 

2008), and could possibly result in antibiotic resistant enteropathogenic bacteria. Therefore, it is 

also important to determine whether antibiotic resistant genes are present on chromosomes or on 

plasmids (Bakari et al., 2011). 

 

Salmonella Typhimurium in vivo growth inhibition 

According to Dodgson and Romanov (2004), chickens have been a valuable model for 

human diseases and genetic analysis. Several spore-forming Bacillus spp. have been shown to 

reduce food-borne pathogens using commercial products available in Europe (Jadamus et al., 

2002).   

Our results showed that some Bacillus isolates, more specifically the isolates NP122 and 

the combination of the isolates AM1109A with AM1109B, were able to significantly reduce ST 

levels in the crop and in the ceca of broiler chickens (Table 7). The ability of Bacillus subtilis 

probiotic isolates in reducing Salmonella in chickens has been described previously by La 

Ragione & Woodward (2003) and Vila et al.(2009). 

Competitive exclusion of pathogens is a common hypothesis to explain the action of 

probiotics (Patterson & Burkholder, 2003; Leser et al., 2008). This process has been well 

demonstrated in Lactobacillus spp., and some evidence exists that Bacillus spp. may have the 

same mode of action (Barbosa et al., 2005). Competitive exclusion includes the competition for 
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receptor sites and nutrients and the production of antimicrobial substances such as bacteriocins, 

hydrogen peroxide, and volatile fatty acids (Patterson & Burkholder, 2003; Ng et al., 2009). 

Another potential mechanism of action of probiotics, that has received a lot of attention, is the 

modulation of the host’s immune system (Ng et al., 2009). According to Ng et al. (2009) and 

Rupa and Mine (2012), the probiotics alter immune functions in humans and animals by 

interacting with various receptors. An example is in the treatment of inflammatory bowel disease 

with probiotics in humans. Following probiotic treatment there are improvement of the epithelial 

and mucosal barrier function, modulation of the intestinal microbiota, and a direct effect on 

immune cells of both innate and adaptive immune systems. Despite the beneficial effects of the 

probiotics observed, in vivo mechanisms of action have not been clearly elucidated and will be a 

significant area for future research (Corr et al., 2007). Several studies have shown that either live 

vegetative cells or spores of some Bacillus isolates can prevent colon carcinogenesis (Park et al., 

2007) or release antimicrobial substances against bacteria, such as Staphylococcus aureus, 

Enterococcus faecium, and Clostridium difficile (O'Mahony et al., 2001). These results supported 

the evidence of colonization and antimicrobial activity of Bacillus spp. as probiotic bacteria. 

Therefore, products containing Bacillus spores are used commercially as probiotics (Anadón et 

al., 2006; Barbosa et al., 2005; Duc et al., 2004; Hong et al., 2005, 2008; McNulty et al., 2007; 

Osipova et al., 2003; Williams, 2007; Wolken et al., 2003). 

 

CONCLUSION 

Bacterial spore formers, especially of the genus Bacillus, are present in current probiotic 

products that have been shown to prevent gastrointestinal diseases in animals and humans. These 

probiotic based spores have been shown to have many applications such as treating 
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immunosuppressive and antibiotic associated diarrhea. The results obtained in this study showed 

the tolerance of probiotic Bacillus spp. strains in different physiological conditions as well as the 

inhibition of Salmonella Typhimurium. Moreover, the methods used to screen isolates may be 

important in the evaluation of Bacillus spp. for use as probiotics for humans and animals.  
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TABLES 

Table 1. Metabolization of different carbohydrates sources by selected isolates of Bacillus ssp.
*
  

 

 NP122 AM0904 B2 RW41 AM0902 AM1109A AM1109B 

Amidon (starch) + + + + - + + 

Amygdalin + + - + + + + 

Arbutin + + - - + + + 

D-Adonitol - - - - - - - 

D-Arabinose - - - - - - - 

D-Arabitol - - - - - - - 

D-Celiobiose + + + + + + + 

D-Fructose + + + + + + + 

D-Fucose - - - - - - - 

D-Galactose - - - + + - + 

D-Glucose + + + + + + + 

D-Lactose - + + + - + + 

D-Lyxose - - - - - - - 

D-Maltose + + + + + + + 

D-Manitol + + + + + + + 

D-Mannose + + + + + + + 

D-Melezitose - - - - - - - 

D-Melibiose - + + + - + + 

D-Rafinose - + + + - + + 

D-Ribose + + + + + + + 

D-Saccharose + + + + + + + 

D-Sorbitol + + + + - + + 

D-Tagatose - - - + + - - 

D-Trehalose + + + - + + + 

D-Turanose - - - + + - + 

Dulcitol - - - - - - - 

D-Xylose - + + + + + + 

Erythritol - - - - - - - 

Esculin (Ferric 

Citrate) 

+ + + + + + + 

Gentiobiose + - - + - - - 

Glycerol + + + + + + + 

Glycogen + + + + - + + 

Inositol  + + + + - + + 
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Inulin - - - + - - ND 

L-Arabinose + + + + + + + 

L-Arabitol - - - - - - - 

L-Fucose - - - - - - - 

L-Rhamnose - - - + - - - 

L-Sorbose - - - + - - - 

L-Xylose - - - - - - - 

Methyl-αD-

Glucopyranoside 

+ + + + + + ND 

Methyl-αD-               - 

Mannopyranoside 

- - - + - - 

Methyl-βD-

Xylopyranoside 

- - - - - - - 

N-

AcetylGlucosami

ne 

- - - - + - - 

Potassium 2-

KetoGluconate 

- - - - - - - 

Potassium 5-

KetoGluconate 

- - - - - - - 

Potassium 

GlucoNaTe 

- - - - - - - 

Salicin + + + + + + + 

Xylitol - - - - - - + 
 

*
 BioMerieux API 50 CHB test kit (catalog no. 50430, bioMerieux, Marcy l’Etoile, France) 

Symbols: +, growth; -, no growth.  ND: Not Determined. 
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Table 2. Identification (ID) of Bacillus spp. isolates by bioMerieux API 50 CHB
*
 

Bacillus isolates API 50 CHB Identification % ID 

NP122 Bacillus subtilis/amyloliquefaciens 98.2 

AM0904 Bacillus subtilis/amyloliquefaciens 96.6 

B2 Bacillus subtilis/amyloliquefaciens 99.7 

RW41 Bacillus licheniformis 99.9 

AM0902 Bacillus pumilus 99.9 

AM1109A Bacillus subtilis/amyloliquefaciens 96.6 

AM1109B Bacillus megaterium 75.3 
 

* 
BioMerieux API 50 CHB test kit (catalog no. 50430, bioMerieux, Marcy l’Etoile, France). 
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Table 3. Identification (ID) of Bacillus spp. isolates by 16S rRNA sequence analyses
* 

 

Bacillus isolates 16 S Identification % ID 

NP122 Bacillus amyloliquefaciens 99.6 

AM0904 Bacillus amyloliquefaciens 99.57 

B2 Bacillus amyloliquefaciens 99.52 

RW41 Bacillus licheniformis 98.66 

AM0902 Bacillus pumilus 100 

AM1109A ND ND 

AM1109B ND ND 
 

* 
16S rRNA sequence analyses (Microbial ID Inc., Newark, DE 19713, USA). 

ND: Not Determined.
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Table 4. Evaluation of Bacillus spp. isolates bile salt tolerance after 2, 4, and 24 hours of incubation 

 

Bacillus 

Isolates 
0% 0.037% 0.075% 0.15% 0.3% 

 2h 4h 24h 2h 4h 24h 2h 4h 24h 2h 4h 24h 2h 4h 24h 

NP122 + + + + + + + - - - - - - - - 

AM0904 + + + + + + - - - - - - - - - 

AM0902 + + + + + + - - - - - - - - - 

AM1109A + + + + + + - - - - - - - - - 

AM109B + + + + + + - - - - - - - - - 

RW41 + + + + + + - - - - - - - - - 

B2 + + + + + + + - - + - - + - - 

Symbols: +, tolerant; -, non- tolerant
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Table 5. Physiological characteristics of the Bacillus spp. isolates to pH, temperature, and 

sodium chloride (NaCl). 

 

Bacillus 

isolates 
pH2 pH3 15 °C 45 °C 

3.5% 

NaCl 

6.5%  

NaCl 

 2h 4h 2h 4h 2h 4h 2h 4h 2h 4h 2h 4h 

NP122 + - + - + + + + + + + + 

AM0904 - - - - + + + + + + + + 

AM0902 + + + - + + + + + + + + 

AM1109A + + + + + + + + + + + + 

AM1109B - - - - + + + + + + + + 

RW41 + - + - + + + + + + + + 

B2 + + + + + + + + + + + + 

 

Symbols: +, tolerant; -, non- tolerant 
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Table 6. Bacillus spp. isolates antibiotic sensitivity test
* 

 

Antibiotics Concentration AM0902 AM1109A AM1109B AM0904 NP122 RW41 B2 

Bacitracin 10 IUI/IE/U R R R R R R R 

Erythromycin 15 ug I S S S S R S 

Gentamycin 10 ug S S S S S S S 

Clindamycin 2 ug R S S S S R S 

Ceftiofur 30 ug R S S S S R S 

Neomycin 30 ug S S S S S S S 

Novobiocin 5 ug R S S S S R R 

Penicillin 10 IUI/ IE/U R S S S S S S 

Ormethoprim 1.25 ug S S S S S S S 

Tetracycline 30 ug R S S I S S S 

Triple Sulfa 1.0 mg S S S S S S S 

Spectinomycin 100 ug S S S S S S S 
 

*
 Veterinary Diagnostic Laboratory (University of Arkansas, Division of Agriculture, Fayetteville, AR, USA) 

R - resistant; I - intermediate; S – susceptible 
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Table 7. Effect of Bacillus spp. isolates in reducing Salmonella Typhimurium from crop and 

ceca of broiler chickens in an avian model 

Bacillus isolates Crop % 

Reduction 

Crop log10 

Reduction 

Cecal Tonsils 

% Reduction 

Ceca log10 

Reduction 

NP 122 15.8 ND 50 2.5* 

AM 0904 0 ND ND 0 

RW 41 0 ND ND 0 

B2 0 ND ND 0 

AM 1109 A and B 8.4 1.62* ND ND 

AM 1109 A and B 

(6-7 weeks old 

broilers) 

 

10 

 

0.63 

 

15.8 

 

1.15* 

 

*significantly different at P < 0.05 

ND: Not Determined 
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ABSTRACT 

Glutamine-enriched diets have been linked with favorable intestinal effects including structure 

maintenance of gut barrier against bacteria attacks and enterocyte differentiation. Although post 

hatch, immaturity of the GIT in the first week is a limiting factor, early nutrition has shown to be 

an alternative to alleviate the adverse performance effects of post-hatch starvation. In addition, 

both live and spore based probiotics have earned tremendous attention as a viable control of 

enteric pathogens. Present studies were carried out with objectives of evaluating the influence of 

nutrition and synergistic effects of Gln supplementation in combination with FloraMax-B11 

(FM), a defined lactic acid bacteria (LAB) probiotic product; PHL-NP-122, a heat-resistant 

spore-forming Bacillus subtilis (BS); and EarlyBird (EB), a natural hydration and nutrition 

supplement for neonatal broilers and poults, on Salmonella Typhimurium colonization. 

Morphometric analysis showed increased (P<0.05) villus height, villus width, and villus surface 

area index in chickens treated with all combination groups. A reduction (P<0.05) on nitric oxide 

(NO) produced was observed in the explant tissues of all the treated groups in comparison with 

the control group and a synergistic effect (P<0.05) in the groups treated with Gln and BS (HPL-

NP-122). Reductions in Salmonella recovery incidence (P<0.05) and colonization (P< 0.05 to 

P<0.001) were also observed among the treated groups, suggesting beneficial effects of these 

combinational feed supplements. Improved gut morphology and Salmonella exclusion was very 

well supported by body weight (BW) data with lower (P<0.05) early BW loss and overall BW 

gains in birds treated with treated groups. Considering the fact that the feed costs represents from 

70 to 80% of the poultry production and the integrity of the epithelial cells of the mucosa, hence 

ensured good performance and production, is dependent of feed and feed supplements, these 
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studies hold their relevance and importance as beneficial in more than one aspect to the poultry 

industry. 

Key words: Glutamine, early feeding, probiotics, Salmonella Typhimurium, broiler, gut 

morphology, performance 

 

INTRODUCTION 

The amino acid glutamine (Gln) is traditionally considered as a non-essential amino acid. 

However, recent researches has shown that Gln may be a conditionally essential amino acid in 

maintaining gut integrity and reducing inflammation (Reeds & Burrin, 2000; Soltan, 2009; Liu et 

al., 2002; Bode, 2001; Blikslager et al., 2001). Glutamine-enriched diets have been linked with 

favorable intestinal effects including maintenance of gut barrier function and enterocyte 

differentiation (Murakami et al., 2007). Glutamine has also been the focus of many studies in 

physiology and medicine due to its important pleiotropic roles in metabolism and tissue 

homeostasis. Glutamine serves as an essential metabolic precursor in nucleotide, glucose and 

amino sugar biosynthesis, glutathione homeostasis and protein synthesis (Bode, 2001). Presence 

of two mobilizable Nitrogen (N) groups in its structure, Gln can function as a vehicle for the 

tissue exchange of N and perform a crucial role in several important metabolic pathways.  

Functions of Gln in mucosal barrier function is exclusively studied. It is responsible for 

mucosa structure maintenance, through mucin synthesis and the maintenance of a barrier against 

bacteria attacks, in addition to promoting the maturity and integrity of the intestinal flora 

associated with the immune system. Because glutamine is the main metabolite that nourishes the 

enterocytes, effect of glutamine supplementation on reconstitution of the intestinal mucosa, after 

some damage, has been investigated in various studies (Blikslager et al., 2001). In addition, Gln 
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is an essential substrate in the construction of the passive barrier of mucin to bacteria because it 

is necessary for the synthesis of N bases and amino sugars of the extracellular matrix, N-

acetylglucosamine and N-acetylgalactosamine, and for the glycosylation of mucins (Reeds & 

Burrin, 2000). Gln has direct action in the elimination of free radicals by being a precursor of 

glutathione synthesis (Murakami et al., 2007).Glutamine is also considered as an 

immunonutrient, because of its capability of upregulating or downregulating immune responses 

to a pathogen or disease condition and may therefore reduce pathogen levels. As an 

immunonutrient, glutamine is important for promoting the integrity and maturation of intestinal 

microflora associated with the immune system, for enhancing mucin synthesis to maintain 

intestinal mucosa structure, and for reinforcing the epithelial barrier against bacterial attacks 

(Fasina et al., 2010).  

From a poultry production perspective, the maintenance, development, and health of GIT 

is fundamental, since GIT possesses the functions of food content storage, secretion, digestion, 

and absorption of nutrients. The egg supplies nutrients during embryonic development. These gut 

functions begin with hatching and has to be maintained throughout the production pyramid. 

Posthatch the gut maturation process begins and this is a critical point in determining the poultry 

performance. The first two weeks of post hatch are even critical and represent approximately 

30% of the useful life of the bird, considering a 6 week production cycle. Morphological studies 

by Sell et al. (1991) point out that at the moment of hatching, the weight of the small intestine 

represents 1.2 to 2.6% of the BW of the bird and 6.2 to 6.6% at maximum development. The 

development peak of the small intestine is shown to be between d 5 and 7 post hatch (Murakami 

et al., 2007). Hence the immaturity of the GIT in the first week post hatch is a limiting factor, 

since major gut transitions like increase in absorption capacity with a relative increase in the area 
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of absorption through the longitudinal growth of the intestine, and increase in the height of the 

villi, proper secretion of enzymes, are events yet to happen. In this regard, we suggest and 

hypothesize that the stimulation of the GIT by different substrates, soon after hatching, can 

accelerate its development.  

On the other hand, delaying access to feed and water has been documented to increase 

susceptibility to pathogens and cause weight loss, leading to poorly starting flocks with reduced 

weight gains and mortality (Bigot et al., 2003; Careghi et al., 2005; Casteel et al., 1994) . Early 

nutrition has been widely studied in poultry, and it has been shown that the use of early feeding 

supplements alleviates the adverse performance effects of post-hatch starvation (Hooshmand, 

2006; Pinchasov & Noy, 1993; Uni et al., 2003a; Noy et al., 2001), as well as stimulates yolk 

utilization (Noy & Sklan, 1998), intestinal maturation (Bigot et al., 2003), development of 

homeothermy (Meltzer, 1983; van den Brand et al., 2010), and retain passive immunity (Dibner 

et al., 1998). In this concern, EarlyBird (EB), a natural hydration and nutrition supplement for 

neonatal broilers and poults, is extensively used to promote instinctive feeding of birds, that 

leads to a rapid onset and increased early weight gains that will eventually be maintained 

throughout the bird’s lifetime (Henderson et al., 2008).  

Alternatively, increasing socio-political concerns with antibiotic usage have led to 

investigations of potential alternatives for food safety and growth promotion. Both live and spore 

based probiotics have earned tremendous attention as a viable control of enteric pathogens in this 

regard.  Laboratory and field research conducted by our laboratory with a defined lactic acid 

bacteria (LAB) probiotic , FloraMax-B11 (FM) have proved extremely influential in accelerated 

development of normal microflora and reduction in Salmonella colonization, in commercial 

poultry (Tellez et al., 2006; Higgins et al., 2007, 2008, 2011; Farnell et al., 2006; Vicente et al., 
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2007, 2008; Wolfenden et al., 2007). More recently, we have confirmed that selected heat-

resistant spore-forming Bacillus species, PHL-NP-122, can markedly reduce Salmonella and 

Clostridium in poultry when administered in very high numbers (Shivaramaiah et al., 2011; 

Wolfenden et al., 2010, 2011).   

The present studies hold it relevance and importance, considering the fact that the feed 

costs represents 70 to 80% of the poultry production and the integrity of the epithelial cells of the 

mucosa, hence ensured good performance and production, is dependent of feed and feed 

supplements. These studies were carried out with multiple objectives of evaluating the influence 

of nutrition and combinational effects of Gln supplementation in concert with FloraMax-B11 

(FM), PHL-NP-122 and EB on Salmonella Typhimurium colonization. EB+Gln were used to 

evaluate their combined effects on neonatals, FM+Gln and PHL-NP-122+Gln were used to 

evaluate their effects in relatively older birds. These studies also supports numerous trials which 

have previously tested individual positive effects of Gln, EB, FM and PHL-NP-122, on growth 

performance by rapid development of intestinal morphology in broiler chickens (Tellez et al., 

2006; Higgins et al., 2007, 2008, 2011; Farnell et al., 2006; Vicente et al., 2007, 2008; 

Wolfenden et al., 2007, 2010, 2011; Shivaramaiah et al., 2011; Henderson et al., 2008). In 

addition, inflammatory marker like nitric oxide was also measured to know the combinational 

effects on Salmonella Typhimurium induced inflammatory damage.  

 

MATERIALS AND METHODS 

Animal Source and diets 

Day-of-hatch, off-sex broiler chickens were obtained from Cobb-Vantress (Siloam 

Springs, AR, USA) for all the trials mentioned below. All animal handling procedures were in 
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compliance with Institutional Animal Care and Use Committee at the University of Arkansas.  In 

all experiments, diets were fed in mash form, and were formulated to meet or exceed National 

Research Council (NRC 1994) estimated nutrient requirements. The common starter diet was a 

typical corn soy bean meal diet (chemical analysis of nutrients is presented in Table 1).  For 

experiments 2 and 3, the diet with glutamine was similar to the common starter diet but was 

supplemented with 1% Gln. 

Perinatal Supplement and Probiotic Culture 

EarlyBird (EB) is an all-natural hydration and nutrition supplement for young birds. One 

g of EB contains 64% of water, 22.0% of protein, 10% of fiber, 20% carbohydrate and less than 

2.2% of fat (Pacific Vet Group USA Inc., Fayetteville AR 72703). Each bird should be 

administered 2g of EB according to manufacturer's instructions.  

FloraMax B-11 (FM) is a probiotic culture derived from poultry, consisting of 2 strains 

of lactic acid bacterial isolates: Lactobacillus salivarius and Pediococcus parvulus (Pacific Vet 

Group USA Inc., Fayetteville AR 72703) was used as drinking water administration. Bacillus 

subtilis (BS) spores (PHL-NP122) previously identified as potential probiotic or direct-fed 

microbial (DFM) candidate (Shivaramaiah et al., 2011) was used in the present study. 

 

Bacterial Strain and Culture Conditions 

The challenge organism used in all experiments was poultry isolate of Salmonella 

enterica subspecies enterica serovar Typhimurium (ST). This isolate was selected for resistant to 

25 µg/mL of novobiocin (NOV, catalog no.N-1628, Sigma) and 20 µg/mL of nalidixic acid (NA, 

catalog no.N-4382, Sigma) in our laboratory. For the present studies, 100 µL of SE from a frozen 

aliquot was added to 10 mL of tryptic soy broth (Catalog no. 22092, Sigma) and incubated at 
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37°C for 8 h, and passed every 8 h to ensure that all bacteria were in log phase. Post incubation, 

bacterial cells were washed 3 times in sterile 0.9% saline by centrifugation at 1,864 × g, 

quantified with a spectrophotometer (Spectronic 20D+, Spectronic Instruments Thermo 

Scientific) and diluted in sterile 0.9% saline to a concentration of approximately 10
8
 cfu/mL. 

Concentrations of ST were determined retrospectively by serial dilution and further plating on 

Brilliant Green Agar (BGA, Catalog no. 70134, Sigma) with NOV and NA agar for enumeration 

of actual colony forming units (cfu) used to challenge the chickens. 

 

Experimental Design 

Experiment 1. This experiment evaluated the effect of L-Glutamine (Catalog no. BDH 4514-

1KGP, VWR West Chester, PA 19380) supplementation associated with FM in the drinking 

water on ST cecal colonization. Day-of hatch off sex broiler chickens were obtained and 

randomly distributed into 4 separate groups with 25 birds per group: Group 1, Control ST 

challenged; Group 2, 10 % L-Glutamine (Gln) mixed in the drinking water; Group 3, FM mixed 

in the drinking water; Group 4, Gln + FM mixed in the drinking water.  A small number of 

chickens (n=20) were humanely killed on arrival, ceca-cecal tonsils and liver and spleen were 

aseptically removed, cultured in tetrathionate enrichment broth (Tet, Catalog no. 210420, Becton 

Dickinson, Sparks, MD) and confirmed negative for Salmonella by plating the samples on to 

selective BGA with NOV. All groups were challenged with ST at 10
5
 cfu/bird. One h post 

challenge, groups 2, 3 and 4 received their treatment in the drinking water, while group 1 acted 

as positive control for ST.  Twenty chickens from control or treated groups were humanly killed 

and cultured at 24 h, for ST recovery in ceca-cecal tonsils and enumerated as explained later. 
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Experiment 2. This experiment evaluated the effect of 1% dietary Gln supplementation for 6 

days associated with FM in the drinking water on ST cecal colonization and in vitro nitric oxide 

production.  Day-of hatch off sex broiler chickens were obtained and randomly distributed into 4 

separate groups with 25 birds per group: Group 1, Control ST challenged; Group 2, 1% dietary 

Gln; Group 3, FM mixed in the drinking water following manufacture instructions; Group 4, 1 % 

dietary Gln + FM mixed in the drinking water following manufacture instructions.  A small 

number of chickens (n=20) were humanely killed on arrival, ceca-cecal tonsils and liver and 

spleen were aseptically removed, cultured in Tet and confirmed negative for Salmonella by 

plating the samples on to selective BGA with NO. At five days of age, all groups were 

challenged with ST at 10
6
 cfu/bird.  One h post challenge, groups 3 and 4 received FM in the 

drinking water, while group 1 acted as positive control for ST.  Twelve  chickens from control or 

treated groups were humanly killed and cultured at six days of age (24 h post ST challenge), for 

ST enumeration and explant samples for nitric oxide determination as explained later.   

Experiment 3.This experiment evaluated the effect of 1% dietary Gln supplementation for 6 days 

associated with BS spores (PHL-NP-122) on ST cecal colonization and in vitro nitric oxide 

production. Day-of hatch off sex broiler chickens were obtained and randomly distributed into 4 

separate groups with 25 birds per group: Group 1, Control ST challenged; Group 2, 1 % dietary 

Gln; Group 3, DFM with a concentration of 10
6
 BS spores/g of feed ; Group 4, 1 % dietary Gln + 

DFM with a concentration of 10
6
 BS spores/g of feed.  A small number of chickens (n=20) were 

humanely killed on arrival, ceca-cecal tonsils and liver and spleen were aseptically removed, 

cultured in Tet and confirmed negative for Salmonella by plating the samples on to selective 

BGA with NOV. At five days of age, all groups were challenged with ST at 10
6
 cfu/bird.  

Twelve  chickens from control or treated groups were humanly killed and cultured at six days of 
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age (24 h post ST challenge), for ST enumeration and explant samples for nitric oxide 

determination as explained later.   

Experiment 4. This experiment evaluated the effect of 0.5% Gln supplemented with perinatal 

supplement on growth performance and intestinal morphology in broiler chickens during 14 

days.  Three hundred off sex broiler chicks were obtained and transported to the University of 

Arkansas facility where they were identified through neck tags and randomly distributed in to 3 

groups of 100 birds each, into commercial plastic poultry transport crates: Group 1, received no 

treatment; Group 2, received 200 grams of EB only; and Group 3 received 0.5% Gln 

supplemented with EB.  Perinatal supplement was administered according to manufacturer’s 

instructions.  All birds were kept fasted, with no feed or water, for 48 h under simulated shipping 

conditions, at room temperature (25.5 °C) maintained with constant air flow to ensure the chicks 

were comfortable.  After 48 h under simulated shipping conditions, chicks were placed onto floor 

pens with fresh wood shavings with a stocking density of 0.15 m
2
/chick. Age appropriate 

environmental temperatures were maintained and supplemental heat lamps were provided for 

each pen. Chickens were provided ad libitum access to water and a balanced un-medicated corn-

soybean diet meeting or exceeding the nutrition requirements of poultry recommended NRC 

(NRC, 1994).  All birds were weighed at 24 h, 48 h, 7 days and 14 days of age. Recorded body 

weights (BW) were then used to determine either body weight loss (BWL) at 24 h and 48h or 

body weight gain (BWG) at 7 and 14 days of age. Five ileum and duodenum samples from each 

group were collected for enteric morphometric analysis of mucosal development at 48 h, 7 and 

14 days, processed and analyzed further as explained below.  

 

Salmonella Recovery   
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In experiment one, chickens were humanely killed by CO2 asphyxiation; ceca-ceca 

tonsils were aseptically removed to culture and enumerate Salmonella. Briefly, samples were 

placed in 10mL of Tet for enrichment and incubated at 37 °C for 24 hours. Samples were then 

plated on BGA NO and NA plates and incubated at 37 °C for 24 h to confirm presence/absence 

of typical lactose-negative colonies of Salmonella. Ceca were homogenized and diluted with 

saline (1:4 by wt/vol) and tenfold dilutions were plated on BGA with NO and NA, incubated at 

37 °C for 24 h to enumerate total Salmonella cfu. Later, the cecal samples were enriched in 

double strength Tet and further incubated at 37 °C for 24 hours. Following this, ceca enrichment 

samples were plated on to BGA NO and NA plates and incubated at 37 °C for 24 h to confirm 

presence/absence of typical lactose-negative colonies of Salmonella.  This enumeration 

procedure was also conducted in experiments two and three. 

 

Explant culture 

A novel explant culture method for rapid quantification of nitrite as an inflammatory 

marker developed in our lab (Kallapura et.al, 2013, Submitted for Publication) was employed 

here. Briefly, the entire ileum was aseptically removed, cleaned by infusing sterile 0.9% saline 

through the ileal section to remove all the ingesta. The cleansed ileum section was then incised 

longitudinally exposing the mucosal surface. Ileal sections (0.5 cm
2
) were made using a sterile 

surgical blade and placed in a 24 well culture plate. Care was taken in placing the tissue explants, 

with the serosa facing down and in contact with the well bottom and the mucosa facing up, 

exposed to the media components. Circular metal meshes measuring approximately 7.5mm in 

radius with 3mm height were used to keep the floating explants in place. These meshes were 

made of steel 316L, the same material used in construction of fermenters and bioreactors. The 
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material is non-reactive, non-additive, non-absorptive and non-corrosive and hence a safe choice 

to be used with a culture medium. Further care was taken to autoclave these meshes before use, 

to avoid any contamination. Explants (n=12) for each group were obtained, with one ileal explant 

per chicken. The ileal explants cultured in 24 well culture plates were then transferred to a 

laminar airflow hood and 1 mL of RPMI 1640 medium with 5% bovine serum, 1.5 mM L – 

glutamine, and 1 mL of antibiotic – antimycotic solution (containing 10,000 units of penicillin, 

10 mg streptomycin and 25 μg amphotericin - Sigma-aldrich, St. Louis, MO) was added to each 

well. The cultures were further incubated at 40
0 

C, 5% CO2 and culture supernatants were 

collected for the nitrite assay at 3, 6 and 12 h post incubation.  

 

Nitrite Assay 

The Greiss reaction assay, which colorimetrically quantifies nitrite, was used to measure 

the nitrite accumulated over time in the culture medium, which served as an indirect measure of 

NO produced by the explants. The assay was carried out in a 96 well microtitre plate to which 

100µL of culture supernatant from the explant culture (at 3-, 6- and 12-h) was added in 

triplicates, followed by an equal volume of Greiss reagents. First, 50µL of 1% sulfanilamide 

(Sigma-aldrich, St. Louis, MO) in 5% phosphoric acid, was added and incubated at room 

temperature for 10min followed by 50µL of 0.1% N-(1-napthyl) ethylenediamine 

dihydrochloride (Sigma-aldrich, St. Louis, MO) in water and incubated further for a visible 

colored reaction to develop and measured at 540 nm. The Greiss reaction was based on a two-

step diazotization reaction in which acidified nitrite (phosphoric acid) produces a nitrosating 

agent which reacts with sulfanilic acid to produce a diazonium ion. This ion intermediate was 

then coupled with N-(1-naphthyl) ethylenediamine to form the chromophoric azo-derivative 
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whose absorbance was measured at 540 nm. Optical density (OD) for each explant sample was 

compared to known amounts of sodium nitrite (1.25, 2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90 

µM) and extrapolated using a standard curve equation.  

 

Intestinal Morphological Analysis 

For enteric morphometric analysis, birds on the designated evaluation day were 

euthanized, and ileum and duodenum samples were collected (n=5). A 1-cm segment of the 

midpoint of the duodenum and the distal end of the lower ileum from each bird was removed and 

fixed in 10% buffered formaldehyde for 48 h. Each of these intestinal segments was embedded in 

paraffin, and a 5-μm section of each sample was placed on a glass slide and stained with 

hematoxylin and eosin for examination under a light microscope.  All morphological parameters 

were measured using the ImageJ software package (http://rsb.info.nih.gov/ij/). Ten replicate 

measurements for each variable studied, were taken from each sample and the average values 

were used in statistical analysis. Villus length was measured from the top of the villus to the top 

of the lamina propria.  Villus width was measured at the widest area of each villus (Aptekmann 

et al., 2001).  Villus surface area was calculated using the formula (2π) (VW/2) (VL), where VW 

= villus width, and VL = villus length (Sakamoto et al., 2000).   

 

Statistical Analysis 

Any statistical differences in BW, BWL, BWG, log10 SE cfu/g of ceca and morphometric 

measurements were determined by analysis of variance using the General Linear Models (proc 

GLM) procedure using commercial SAS


 statistical software (SAS Institute, 2002). Significant 

differences, set at P < 0.05, were further separated using Duncan's multiple range test. The 
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percent recovery of Salmonella was compared using the chi-square test of independence testing 

all possible group combinations to determine significance for these studies (Zar, 1984).  

 

RESULTS 

The results of the effect of 10% Gln supplementation associated with FM in the drinking 

water on ST colonization in broiler chickens from experiment 1 are summarized in table 2.  A 

20% significant reduction (P < 0.05) in the rate of intestinal colonization of ST at 24 h were 

observed in the group that received 10% Gln in the drinking water; and the group that receive 

10% Gln + FM had a 35%  reduction of ST (P < 0.01). However, the group that received just the 

probiotic in the drinking water showed a 65% ST reduction when compared with control group 

(P < 0.001).  A similar trend in the reduction of cfu of ST/g of ceca content was observed in the 

same groups (Table 2). 

The effect of 1% dietary Gln supplementation associated with FM in the drinking water 

on ST colonization at 6 days of age in broiler chickens from experiment 2 are summarized in 

table 3.  A significant reduction on ST/g of ceca content was observed in both, dietary Gln alone 

or probiotic alone groups. This reduction was associated with a significant reduction on NO 

produced in the explant tissues as compared with the control group. However, an even more 

significant reduction on ST/g of ceca content and synergistic effect in the reduction of NO 

production was observed in the group that received the inclusion of 1% dietary Gln and FM in 

the drinking water when compared with the control group (Table 3). 

The effect of 1% dietary Gln supplementation associated with PHL-NP-122 on ST 

colonization at 6 days of age in broiler chickens from experiment 3 is summarized in table 4. A 

significant reduction on ST/g of ceca content was observed in both, dietary Gln or DFM groups. 
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As in the previous experiment, this reduction was also associated with a significant reduction on 

NO produced in the explant tissues as compared with the control group.  However, an even more 

significant reduction on ST/g of ceca content and synergistic effect in the reduction of NO 

production was observed in the group that received the inclusion of 1% dietary Gln and PHL-

NP-122 in the drinking water when compared with the control group (Table 4) 

The effect of 0.5% Gln with perinatal supplement on body weight and performance of 

broiler chickens from experiment 4 are summarized in table 5. At 24 h and 48 h significant BWL 

were observed with control and EB only groups when compared with the group that received EB 

+ Gln. These differences were maintained at 7 and 14 days of evaluation, with significantly 

higher BWG seen in the group treated with EB + Gln.  It was of significance to mention that by 

14 days, the BW of the EB + Gln treated group was, on an average, about 17 g heavier than that 

of non-treated control group (P < 0.05). Although not significant, over all, the EB group had a 

numerical improvement in performance with about 12 g heavier than that of non-treated control 

group (Table 1). The effect of 0.5% Gln with perinatal supplement on morphological 

development of mucosa in duodenum of broiler chickens is summarized in Table 6.  

Significantly increased villus height, villus width, and villus surface area index were observed in 

the groups treated with perinatal supplement only or 0.5% Gln and perinatal supplement, when 

compared to non-treated control group at 24 h. The trend of significant and in some cases 

numerically, morphometric changes were observed throughout the study in duodenum samples 

(Table 6). No significant morphometric changes between the three groups were observed in 

samples from distal ileum (data not shown).   
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DISCUSSION 

Glutamine is a captivating amino acid that constitutes significant concentrations of 

muscles and plasma, and represents about 50 to 80% of the total free amino acid in the body ( 

Reeds & Burrin, 2000;  Liu et al., 2002; Kim et al., 2004). Since its structure contains two 

mobilizable N groups Gln is involved in transportation and exchange of N in the cells, as well as 

participate in important metabolic pathways (Reeds & Burrin, 2000; Soltan, 2009). This amino 

acid is also a key component in the function and structure of the intestinal mucosa since it is 

involved in mucin synthesis as well as maintaining the integrity of the gut microbiome (Reeds & 

Burrin, 2000; Bode, 2001; Liu et al., 2002; Sakamoto et al., 2006; Murakami et al., 2007), which 

has a profound impact in digestive physiology (Tellez et al., 2006; Fraune & Bosch, 2010; 

Bäckhed, 2011; Musso et al., 2010), as well as innate and acquire immunity (Neish, 2009; 

Maslowski & Mackay, 2010; Kau et al., 2011; Salzman, 2011). As if these functions were not 

important enough, Gln is the principal energetic fuel for cells that has a rapid proliferation such 

as enterocytes, lymphocytes and other cells involved in inflammation (Blikslager et al., 2001; 

Bode, 2001; Dai et al., 2009; Fasina et al., 2010).   

In the present study, the supplementation of 10% Gln with probiotic culture in the 

drinking water had a significant reduction on ST colonization in the ceca, but this effect was not 

synergistic (Table 2). However, dietary supplementation of 1% Gln associated with a lactic acid 

bacteria probiotic in the drinking water (Table 3), or in the diet through a DFM in form of spores 

of Bacillus subtilis (Table 4) had a significant and synergistic effect on the reduction of 

Salmonella Typhimurium in the ceca. This reduction was associated with a significant reduction 

of nitric oxide produce in the explant of ileum samples (Tables 3 and 4). Quantifying nitrite, a 

metabolite of nitric oxide (NO), is a well-established marker for the production of reactive 
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nitrogen species and an indirect measurement for inflammation. The innate immune response is 

modulated through the recruitment of various cellular components upon pathogen exposure. 

Heterophils, monocytes, and macrophages are at the forefront of pathogen recognition, and work 

in combination with effector leukocytes to initiate an immune response. Studies investigating the 

role of heterophils, monocytes, and macrophages begin with quantification of reactive nitrogen 

species (RNS), reactive oxygen species (ROS), along with cytokines and chemokines (Crippen et 

al., 2003). Though rapid clearance of pathogens has been attributed to ROS (oxidative stress) 

rather than RNS (nitrosative stress), nitrosative stress is important in chronic and/or prolonged 

exposure. The sequential progression from a predominant oxidative stress to the production of 

nitrosative clearance could optimize the reduction in microbial burden along with minimizing 

immunopathological consequences of host inflammatory response (Vazquez-Torres & Fang, 

2001; Chakravortty & Hensel, 2003). Hence, quantifying metabolites of nitric oxide (NO), such 

as nitrite or expression of inducible nitric oxide synthase (iNOS), have been the principle for 

investigating the role of RNS during host inflammatory responses. The quantification of NO in 

the ileal explants from experiments 2 and 3 provided a suitable model for inflammation (Tables 3 

and 4), which potentially mimics in vivo intestinal conditions that rapidly detected NO (6 hours), 

at a greater magnitude than other cell culture methods (Qureshi, 2003; He et al., 2008; Setta et 

al., 2012) 

On the other hand, a fasting period of 24 to 72 h after hatch is a common practice in 

commercial poultry operations (Dibner et al., 1998) due to variation in hatching time and 

management in the hatchery. This delay in start of feed intake has been shown to negatively 

affect yolk utilization (Noy & Sklan, 2001), gastrointestinal development (Noy et al., 2001), 

slaughter weight (Halevy et al., 2000) and breast meat yield (Halevy et al., 2003; Noy & Uni, 
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2010). In addition, delayed feeding seems to depress immunological development (Juul-Madsen 

et al., 2004). The immediate post-hatch period is critical for intestinal morphological 

development in order to digest feed and assimilate nutrients (Uni et al., 1999; Uni et al., 2003b).  

Decreased intestinal development in chicks fasted for 36 to 48 hours post-hatch have been 

extensively reported by several investigators (Casteel et al., 1994; Uni et al., 1998; Batal & 

Parsons, 2002; Bigot et al., 2003; Careghi et al., 2005; Henderson et al., 2008).  In the present 

study, chicks that received 0.5% Gln with a perinatal supplement showed significantly less body 

weight loss during at 24 h and 48 h under simulated shipping period of 48 h and were 

significantly heavier at 7 and 14 days (Table 5), and these changes were associated with the 

significant increased villus height, villus width, and villus surface area index observed in the 

groups treated with EB only or EB + Gln, when compared to non-treated control group at 24 h. 

The trend of significant and in some cases numerically, morphometric changes were observed 

throughout the study in duodenum samples (Table 6). In summary, Gln with probiotics or 

perinatal supplementation suggest that these nutraceuticals could be a good practical delivery 

system for this important amino acid during the common fasting conditions, providing several 

benefits for the poultry industry. 
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TABLES 

Table 1. Composition of the starter diet for broiler chickens from 1 to 14 d (kg) 

 

Ingredient Glutamine 

free 

Glutamine 

1% 

   

Corn 546.389 546.389 

Soybean meal 369.359 369.359 

Vegetable oil 33.231 33.231 

Dicalcium phosphate 15.855 15.855 

Calcium carbonate 14.44 14.44 

Salt 3.538 3.538 

DL-Methionine 2.56 2.56 

Vitamin premix
1
 1.0 1.0 

Solka-floc 10.0 --- 

L-Lysine HCl 0.977 0.977 

L-Glutamine --- 10.00 

Choline chloride 60% 1.00 1.00 

Mineral premix
2
 0.500 0.500 

Zinc bacitracin 0.500 0.500 

Sodium monensin 0.500 0.500 

Antioxidant
3
 0.150 0.150 

Total 1000 1000 

 Calculated analysis 

ME, kcal/ kg 3,035 3,035 

CP, % 21.704 21.704 

Lysine, % 1.328 1.328 

Methionine, % 0.597 0.597 

Met + cist, % 0.98 0.98 

Threonine, % 0..866 0..866 

Tryptophan, % 0.282 0.282 

Total calcium, % 0.900 0.900 

Available phosphorus, % 0.450 0.450 

Sodium, % 0.160 0.160 
 

1
Vitamin premix supplied the following per kilogram: vitamin A, 20,000,000 IU; vitamin D3, 

6,000,000 IU; vitamin E, 75,000 IU; vitamin K3, 9 g; thiamine, 3 g; riboflavin, 8 g; pantothenic 

acid, 18 g; niacin, 60 g; pyridoxine, 5 g; folic acid, 2 g; biotin,0.2 g; cyanocobalamin, 16 mg; and 

ascorbic acid, 200 g. 
2
Mineral premix supplied the following per kilogram: manganese, 120 g; zinc, 100 g; iron, 120 

g; copper, 10–15 g; iodine, 0.7 g; selenium, 0.4 g; and cobalt, 0.2 g. 
3
Ethoxyquin.selenium, 0.4; and cobalt, 0.2 g. 
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Table 2.  Effect of 10% glutamine (Gln) supplementation associated with FloraMax (FM) in the 

drinking water on Salmonella Typhimurium (ST) colonization in broiler chickens from 

experiment 1 

 

Treatment 

 

 

Cecal tonsil 

 

Log 10  S. Typhimurium 

/gram of ceca content 

 

   

 

1. Control ST 

 

 

20/20 (100 %) 

 

3.12 ± 0.21 
a
 

 

2. Gln 10% 

 

 

16/20 (80 %) 
x 

 

 

1.96 ± 0.44 
ab

 

 

3. FM 

 

7/20 (35 %) 
z 

 

 

0.67 ± 0.35 
c
 

 

 

4. Gln 10% + FM 

 

13/20 (65 %) 
y 

 

1.72 ± 0.55 
bc

 

 

   

Chickens were orally gavaged with 10
5
 cfu/chicken of S. Typhimurium at hatch.  One hour later 

chickens were treated in the drink water.  Control chickens received regular water.  Twenty 

chickens from each group were humanly killed and cultured 24 h post challenge, for ST 

recovery.  Data of cecal tonsils is expressed as positive/total chickens (%). 
x 

P < 0.05 ; 
y
 P < 0.01; 

z
 P < 0.001. 

Ceca from twelve chickens were enumerated.  Log10 S. Typhimurium/ gram of ceca content data 

is expressed as mean ± standard error. Treatments values with no common superscript differ 

significantly P<0.05.  
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Table 3. Effect of 1% dietary glutamine (Gln) supplementation associated with with FloraMax 

(FM) in the drinking water on Salmonella Typhimurium (ST) colonization at 6 days of age in 

broiler chickens from experiment 2 

 

Treatment 

 

 

Log 10  ST/ 

gram of ceca content 

 

Nitrite in  µM 

at 6 h 

 
  

 

1. Control ST 

 

 

6.1 ± 0.2 
a
 

 

35.0 ± 25.1 
a
 

2. Glu 1% 

 

 

6.0 ± 0.2 
bc

 6.6 ± 2.0 
b
 

3. FM 

 

6.3 ± 0.3 
ab

 8.4 ± 2.3 
b
 

4. Glu 1%  + FM 

 

4.9 ± 0.11 
d
 4.8 ± 1.4 

b
 

   

   

Chickens were orally gavaged with 10
6
 cfu/chicken of S. Typhimurium at five days of age. One 

hour later chickens in groups 3 and 4 were treated in the drink water with FM. Twelve chickens 

from each group were humanly killed and cultured 24 h post challenge, for ST recovery and 

explant ileal samples. Log10 S. Typhimurium/ gram of ceca content or micro molar (µM) 

amounts of nitrite, data is expressed as mean ± standard error. Treatments values with no 

common superscript within columns differ significantly P<0.05.  
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Table 4. Effect of 1% dietary glutamine (Gln) supplementation associated with Bacillus subtilis 

spores (PHL-NP-122) on Salmonella Typhimurium (ST) colonization at 6 days of age in broiler 

chickens from experiment 3 

   

 

Treatment 

 

 

Log 10  ST/ 

gram of ceca content 

 

 

Nitrite in  µM 

at 6 h 

   

1. Control ST 

 

 

6.9 ± 0.2 
a
 34.8 ± 25.4 

a
 

2. Glu 1% 

 

 

6.1 ± 0.2 
b
 6.6 ± 1.9 

b
 

3. NP122 

 

 

6.0 ± 0.1 
b
 5.1 ± 0.8 

b
 

4.  Glu 1%  + NP122 5.6 ± 0.3 
c
 2.4 ± 0.5 

c 

 

 

   

Chickens were orally gavaged with 10
6
 cfu/chicken of S. Typhimurium/chicken at five days of 

age. Twelve chickens from each group were humanly killed and cultured 24 h post challenge,  

for ST recovery and explant ileal samples. Log10 S. Typhimurium/ gram of ceca content or micro 

molar (µM) amounts of nitrite, data is expressed as mean ± standard error. Treatments values 

with no common superscript within columns differ significantly P < 0.05.  
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Table 5.  Effect of Glutamine (Gln) with perinatal supplement (EB) on body weight (BWT) and performance of broiler 

chickens from experiment 4 

 

 

 

Initial 

body 

weight 

 

 

BWT at 

24 hours 

 

BWL at 

24 hours 

 

BWT at 

48 hours 

 

BWL at 

48 hours 

 

BWT at 

7 days 

 

BWG at 

7 days 

 

BWT at 

14 days 

 

BWG at 

14 days 

 

Control 

 

43.7 ± 0.3
a
 

 

40.2 ± 0.3
a
 

 

 

-3.5 ± 0.1
b
 

 

 

38.1 ± 0.3
a
 

 

 

-5.6 ± 0.1
b
 

 

 

111.3 ± 1.1
b
 

 

 

67.7 ±1.1
b
 

 

 

330.1 ± 4.7
b 

 

 

288.7 ± 4.4
b
 

 

 

EB 

 

43.0 ± 0.3
ab

 

 

41.3 ± 0.3
a
 

 

 

-1.7 ± 0.1
b
 

 

 

38.9 ± 0.3
a
 

 

 

-4.1 ± 0.4
b
 

 

 

118.6 ± 1.3
a 

 

 

75.4 ± 1.1
a
 

 

 

344.0 ± 4.8
a
 

 

 

301.8 ± 4.2
a
 

 

 

Gln + 

EB 

 

42.4 ± 0.2
b
 

 

41.2 ± 0.3
a
 

 

 

-1.2 ± 0.1
a
 

 

 

39.1 ± 0.3
a
 

 

 

-3.3 ± 0.1
a
 

 

 

118.5 ± 1.4
a
 

 

 

76.1 ± 1.2
a 

 

 

349.6 ± 5.7
a
 

 

 

306.3 ± 5.2
a
 

 

 

300 day of hatch off sex broiler chickens were obtained and randomly distributed in to 3 separate groups (n=100). Treatments 

were administered according to groups: Group 1, received no treatment; Group 2, received 200 grams of EB only; and Group3 

received EB supplemented with 0.5% L-glutamine. All birds were weighed at 24 h, 48 h, 7 days and 14 days of age. Recorded 

body weights (BW) were then used to determine either body weight loss (BWL) at 24 h and 48h or body weight gain (BWG) 

at 7 and 14 days of age. Body weight data were expressed as mean (grams) ± standard error. Values within columns with no 

common superscript differ significantly P < 0.05. 
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Table 6. Effect of 0.5% Glutamine (Gln) with perinatal supplement (EB) on morphometric 

analysis of the duodenum mucosa of broiler chickens from experiment 4  

 

Time of 

evaluation and 

Treatments 

 

Villus Height  

(µm) 

Villus Width 

(µm) 

Villus Surface Area 

Index (µm
2
) 

  48 hours  

    

1. Control 

 

443.9 ± 46.5
 b 

73.7 ± 6.3 
b
 101,890 ± 11,757 

b
 

2. EB 

 

737.4 ± 27.7 
a
 118.3 ± 6.7 

a
 272,083 ± 9,253 

a
 

3. 0.5 % Gln + EB 801.7 ± 22.3 
a
 113.7 ± 16.5 

a
 288,554 ± 4,5475 

a
 

   

 

 

  7 days  

    

1. Control 

 

1,108.6 ± 30.1 
b
 173.1 ± 10.4 

a
 605,798 ± 51,342 

ab
 

2. EB 

 

1,384.7 ± 54.5 
a
 169.7 ± 13.0 

a
 742,877 ± 78,879 

a
 

3. 0.5 % Gln + EB 1,333.4 ± 40.3 
a
 126.6 ± 12.1 

b
 528,375 ± 51,378 

b
 

   

 

 

  14 days  

    

1. Control 

 

1,318.7 ± 97.9 
b
 144.0 ± 4.4 

b
    599,454 ± 55,244 

b
 

2. EB 

 

1,554.9 ± 36.2 
ab

 160.2 ± 19.5 
b
    788,454 ± 109,363 

ab
 

3. 0.5 % Gln + EB 1,617.7 ± 120.9 
a
 217.1 ± 19.1 

a
    1,129,650 ± 176,212 

a
 

 

 

300 day of hatch off sex broiler chickens were obtained and randomly distributed in to 3 separate 

groups (n=100). Treatments were administered according to groups: Group 1, received no 

treatment; Group 2, received 200 grams of EB only; and Group3 received EB supplemented with 

0.5% L-glutamine. Five duodenum samples/group were collected for enteric morphometric 

analysis, at all-time points. Values were expressed as means ± SEM representing 5 bird/group 

and 10 measurements/parameter/bird. Values within columns with no common superscript differ 

significantly P<0.05. 
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APPENDIX 

 

 

 

 

 

 

 



 
 

179 
 

 

 

 

 

 

 

 



 
 

180 
 

 

 

 



 
 

181 
 

IX. CONCLUSION  

In the series of studies evaluating organic acids, the organic acid mixture and the 

commercial organic acid product were found to be potential crop sanitizers since they reduced, in 

vitro and in vivo, the incidence of Salmonella Typhimurium. Moreover, the commercial organic 

acid product proposed to cause a positive impact on animal welfare and economics concerns by 

decreasing body weight loss during feed withdrawal and transportation and meat quality 

improvement of broilers under commercial conditions. Additionally, the organic acid mixtures 

used in wash solutions demonstrated a reduction of foodborne pathogens and spoilage bacteria 

from chicken skin, suggesting improvement of raw poultry safety properties.  

The lactic acid bacteria characterization showed tolerance to different pHs and high NaCl 

and bile salts concentrations, which complemented the identification and the in vitro reduction of 

pathogenic bacteria studies regarding these strains. In addition, the identification and 

characterization of Bacillus spp. revealed potential probiotic strains to be used in the poultry 

industry. This study also reviewed and emphasized the importance of testing probiotic strains to 

be used in humans and animals. Finally, glutamine association with neonatal nutrition 

demonstrated intestinal and performance benefits to broiler chickens by increasing body weight 

gain, villus height, villus width, and villus surface area index compared to control chickens. 

Moreover, glutamine supplementation in combination with a lactic acid based probiotic or a 

Bacillus subtilis probiotic strain showed reduction in Salmonella Typhimurium from the ceca 

contents of boiler chickens as well as a reduction of nitric oxide from ileal tissues of treated 

groups, which suggested an interesting anti-inflammatory effect by the treatments. 

Taken together, these studies suggest that non-antibiotic treatments can have a significant 

impact on the quality and safety of poultry meat. Though, one single treatment may not be 100% 
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effective by itself, combinations of treatments may provide effective means for improved food 

safety and sustainability of poultry production. 
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