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Abstract 

Petra, Jordan captivates tourists and researchers with its dramatic sandstone cliffs, 

Nabatean, Roman, Byzantine and Roman architecture, and rich cultural heritage. However, 

increasing tourism in the valley is exacerbating stone degradation and complicating heritage 

management. This research analyzed environmental influences on dressed stone decay via tafoni 

development and evaluating cell evolution on an isolated hewn feature, known as Djinn Block X. 

Resembling other sandstone blocks found in the area, this irregular sandstone monument exhibits 

faces ranging in size from 2.5m by 3.5m to 3.9m to 4.2m (29m perimeter). Protruding features, 

incisions along the top, and a large platform attached to the northern face suggests this 

monument was ritualistic or unfinished.  

Over twenty morphometric and micrometeorologic variables were measured for the ten 

largest and smallest tafoni cells per face. Data were examined and analyzed statistically, 

photographically, and cartographically. A mirrored-value-aspect matrix was created to reveal 

statistical relationships between aspect and detailed measurements including cell depth, average 

diameter, estimated volume, surface temperatures, ambient temperature, and humidity. Results 

supported field observations displaying greatest decay on the southern and northern faces with r2 

values as high as 0.157 at 144˚N for cell volume (total material lost). Moreover, morphometric 

data exhibited episodic spikes in cell growth, both by depth and diameter, supporting a possible 

threshold response explanation. These findings challenge steady-rate decay models and represent 

major implications for rock decay and tafoni research, as well as cultural stone assessment. 

Furthermore, Geomorphologic research such as this provides policy-makers information 

necessary to improve conservation efficacy for crucially sensitive heritage sites. 

Keywords: tafoni, threshold response, Petra, Djinn Block X, cultural stone decay, sandstone 
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Chapter One: Introduction 

 Hewn from colorful sandstone cliffs, the ruined city of Petra, Jordan hosts an extensive 

array of Nabatean-Roman-Byzantine-Crusader monuments representing rich local and regional 

cultural heritage and is, regrettably, in perpetual risk of decay. International notoriety of this 

ancient city, especially after gaining the prestigious designation UNESCO World Heritage Site in 

1985, has dramatically increased tourist activity, making it one of Jordan’s most visited historic 

sites (PTN 2013). Unfortunately, intense foot traffic through the valley threatens to exacerbate 

stone degradation faster than heritage management can allocate appropriate resources to arrest 

decay (Paradise, 2005, 2010). Multidisciplinary in nature, effective stone conservation depends 

on a functional symbiotic relationship between cultural resource management and 

geomorphologic researchers (Dorn et al., 2008; Allen & Groom, 2013)(Figure 1.1). Rock decay, 

or weathering, analyses on cultural stone can provide management with material evidence 

needed to optimize conservation policies while also giving researchers the unique opportunity to 

 
Figure 1.1 – Graphic showing the interdisciplinary nature of stone conservation. Diagram 
modified from Pope et al. (2002). 
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work within contextually controlled parameters not available for unaltered “natural” stone (Pope 

et al., 2002). Employing this collaborative model in Petra, this research investigated tafoni 

development as a proxy for overall deterioration on an isolated hewn monument, Djinn Block X, 

with the following objectives:  

• Determine aspect-dependent (insolation) patterns of cultural stone decay 

• Assess environmental influences on the development of cavernous decay 

• Develop an empirically-based threshold model for tafoni evolution 

The complexity of cultural stone decay requires a quantifiable surrogate measure, 

therefore specific rock decay features known as tafoni, or cavernous decay, were chosen due to 

their polygenetic nature. Physical (e.g. Mol & Viles, 2010), chemical (e.g. McBride & Picard, 

2000), and biological (e.g. Mottershead et al., 2003) decay processes have all been associated 

with tafoni formation, so cell development suggests at least one of these processes is impacting 

the substrate. Therefore, measurements of tafoni cell morphometry, distribution, and 

environmental characteristics could be used to quantify the severity of multiple, possibly 

simultaneous, processes deteriorating Djinn Block X, and as an extension, the city of Petra.  

While geomorphologic methods and techniques cannot directly prevent the deterioration 

of cultural stone, they can identify primary causes of decay and provide policy-makers the 

information required to strategically distribute conservation resources and concentrate efforts 

where they are needed most. For instance, advanced understanding of insolation patterns and the 

recognition of spatial and environmental disparity of rock decay allows stone conservators and 

heritage management to effectively identify monuments at greater risk (Paradise, 1999; Smith et 

al., 2008; see also Figure 1.1). Also, architects may consider placement and exposure in regards 

to longevity and conservation when designing monuments and landmarks (Smith et al., 2008; 
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Doehne & Price, 2010). In fact, geomorphologic studies have worked in tandem with heritage 

management for a number of cultural sites including rock art (e.g. Allen & Groom, 2013), 

temples (e.g. Achyuthan et al., 2010), historic buildings (e.g. Mottershead et al., 2003), and even 

multiple studies in Petra (e.g. Paradise, 1999, 2010), including a preliminary study of surface 

recession on Djinn Block X (Paradise, 2013).   

The multifaceted construction of this research benefits cultural heritage management 

through empirical environmental analyses to better distribute conservation efforts, but also 

contributes to geomorphologic knowledge by revealing morphometric patterns in tafoni 

development. Tafoni genesis investigations are often segregated into physical (e.g. Mol & Viles, 

2010) and chemical processes (e.g. McBride & Picard, 2000; Sunamura, 1996), but the two are 

not necessarily discretely separable (e.g. Brandmeier et al., 2010; Paradise, 2012). This research 

provides additional justification, including threshold modeling, for a multi-process approach to 

the investigation of this still enigmatic decay phenomena. In addition, measured cell interior 

volumes serve as an estimation of total material lost as well as a comparable representation of 

age, accepting the assumption that space is equivalent to time (i.e. larger cells are older 

cells)(Schumm, 1979). This added temporal component is critical for modeling cell initiation, 

growth, and general tafoni evolution.  

Furthermore, morphometric data exhibit periodic spurts in growth possibly supporting 

threshold modeling for tafoni evolution. Existing models include linear (e.g. Huinink et al., 

2004), non-linear exponential (e.g. Sunamura, 1996), log-normal (e.g. Norwick & Dexter, 2002), 

and S-shaped (e.g. Sunamura & Aoki, 2011), but none of these consider the concepts of 

thresholds beyond initiation lag times. Paradise (1999) identified compositional thresholds in 

sandstone weathering within the city of Petra but not specifically related to tafoni. Elaborating on 
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these studies, this research applied threshold response theory to tafoni evolution to create a visual 

model of growth using empirical data collected from Djinn Block X in Petra, Jordan. While this 

model is non-mathematical, its significance rests in representing a new approach to tafoni 

development and threshold-based stages of decay.  

Overall, this study outlines the geographical and morphometric concepts involved in 

tafoni development on Djinn Block X as a case study for overall cultural stone decay in Petra, 

Jordan. After describing the importance of the study site’s physical and cultural landscape 

interaction, an in-depth review of relevant literature is offered, including: 

• Geomorphologic Theory and Weathering 

• Regional Geomorphologic Research 

• Geomorphology and Cultural Resource Management 

An explanation of field and data collection methods are then offered, followed by an outline of 

statistical, photographical, and cartographical techniques employed. After which, meaningful 

relationships are quantitatively identified and their significances discussed in detail, 

incorporating assumptions and limitations. Finally, a succinct conclusion addresses the 

innovation of this study’s threshold-based tafoni genesis model and potential morphometric 

research applications to cultural stone decay and heritage management efficacy.  
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Chapter Two: Site Setting 

The ancient city of Petra, Jordan represents a unique field study location. Factors such as 

its extended occupational history, intricate stone dressings, and distinct petrology contribute to 

cultural stone deterioration but also provide context for comprehensive studies of rock decay 

phenomena, such as tafoni and cavernous decay. In the case of Petra, examination of broader 

environments and historic backgrounds illuminates the complexity of the city. This subchapter 

discusses the various scalar, temporal, and geographical elements influencing the “Rose Red 

City” and the degradation of its irreplaceable sandstone monuments. 

 

2.1 Hashemite Kingdom of Jordan 

Sharing its borders with Saudi Arabia to the south and east, Iraq and Syria to the north, 

and Israel and the West Bank to the west, Jordan occupies roughly 89,200 squared kilometers in 

the northwestern neck of the Arabian Peninsula (Al-Jaloudy, 2006)(Figure 2.1). With a steadily 

 
Figure 2.1 – Political map of the Hashemite Kingdom of Jordan and surrounding countries. 
Modified from Paradise (2013). Cartography by K. Groom (2013). 
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growing population the sprawling capital city of Amman, once the Classical city Philadelphia, 

represents a cultural, economic, and political hub of the nation. Jordan’s landscapes, both 

cultural and physical, have unique attributes influencing tourism, heritage management, and, 

cultural stone decay. 

 

2.1.1 Cultural Geography of Jordan 

Formally established in 1946, the Hashemite Kingdom of Jordan is a parliamentary 

monarchy currently ruled by King Abdullah II and his wife Queen Rania. As a former British 

mandate, Jordan has enjoyed relative stability in a notoriously unsettled part of the world. The 

massive influx of Palestinian, Iraqi, and Syrian refugees over the past decades has, however, put 

a considerable strain on the Jordanian government and economy. Fortunately, the country has 

attempted to incorporate this new population into everyday workings through resettlement 

projects and international funding (Chatelard, 2010). 

Since gaining independence in the aftermath of World War II, the Jordanian economy has 

enjoyed constant growth and development, primarily concentrated in agriculture, industry, and 

services. New technologies in irrigation and advanced water conservation methods have allowed 

Jordan to establish a fairly healthy agriculture sector (Ramrez et. al., 2009). Large industries 

have also flourished in the kingdom, particularly around mineral petroleum refining (Jaber et. al., 

2001). Jordan has scarce natural resources but compensates through symbiotic relations with 

their heavy oil-producing neighbors. 

 Jordan’s limited resources necessitate the development of a service-based market. 

Consisting mainly of government, transportation, communication, financial services, and 

tourism, the service vector dominates the economy earning an estimated 72% of the kingdom’s 



7 

GDP (MoIT & UNCTAD, 2003). In 1997, the kingdom approved the Charter of the Jordan 

Tourism Board and effectively began promoting itself as a tourism center in the Middle East. 

However, Jordan’s popular destinations, like Petra, now have economies overwhelmingly 

dependent on tourism. While UNESCO involvement has helped maintain some historic integrity, 

it also promotes the prime tourist destinations in the Middle East and draws visitors from all 

reaches of the world. This popularity increases funding but the constant influx of people can 

have profound and often detrimental impacts on monuments (e.g. Paradise, 1995; Heinrichs, 

2008) and rock decay remains a serious concern for resource management and the Jordanian 

Department of Antiquities. 

 

2.1.2 Physical Geography of Jordan 

 The topography of Jordan may be categorized into four physiographic regions: the 

Jordan Rift Valley and Wadi Araba, the Highlands, the Arid Zone, and the Badia. Extending 

from Lake Tiberius (Galilee – Kinneret) to the Gulf of Aqaba, the deep Jordan Rift Valley and 

Wadi Araba represents the western border of the Arabian Plate (Figure 2.2). While the Wadi 

Araba, south of the Dead Sea, is extremely arid and deserted, the Jordan Rift Valley to the north 

is the country’s primary agricultural region with Mediterranean climate characteristics and 

steady surface and ground-water supplies. Tectonic uplifting created the Highlands just East of 

the rift valley, a geologically diverse landscape including the Ajloun mountain range, the hills of 

Ammon and Moab, along with the Edom Mountains. The southern and eastern plains flatten into 

the desert Arid Zone and Badia with sporadic sandstone inselbergs and exposed Precambrian 

igneous basements, like those found in the Wadi Rum UNESCO World Heritage/Natural Site 

(Bender, 1975; Osborn & Duford, 1981).  
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Figure 2.2 – Map of the basic topography of Jordan. Note the highlands surrounding Petra in 
the southwestern region of the country leading to the Wadi Araba (Paradise, 1999). 

 

 Product of the variability of Jordan’s geology and climate, the kingdom hosts a myriad 

of soil taxonomies and great groups depending on the moisture regimes in which they develop. 

The two prominent moisture regimes in Jordan are xeric and torric (or aridic), however, the 

relatively wetter xeric moisture regimes are restricted to the northern regions of the Jordan Rift 

Valley. The soils found across Petra are aridisols created under torric conditions (Al-Qudah, 

2001). 

 

2.2 The Lost Kingdom of Petra 

Located at 30.3286˚ N and 35.4419˚ E, the city of Petra lies in the mountainous region on 

the western skirts of the Wadi Araba leading into the eastern desert. The vacant monuments 

hewn into the cliff faces and built in the valley represent a long occupational history only made  
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Figure 2.3 – Map of the main tombs, monuments, and canyons (wadis) throughout Petra (Taylor, 
2007). 
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possible by the steep protective cliffs and unique environment (Figure 2.3). Cultural resources 

management in Petra must keep a delicate balance between conserving its irreplaceable 

landmarks while simultaneously promoting tourism and international participation. Therefore, 

both physical and cultural characteristics of the city relate to cultural stone decay and its 

influences.  

 

2.2.1 History of Petra 

While there is discussion that Petra is the lost biblical land of Edom, the first recorded 

occupants were the Nabateans beginning around 580 B.C. (Browning, 1973). Theirs is also the 

primary culture associated with city, often called The Lost Kingdom of the Nabatean Empire. 

Originally nomadic, Nabateans were the first to hew tombs, living quarters, and monuments into 

the cliff faces. In order to sustain permanent residence, they engineered ingenious waterways and 

systems consisting of dams, cisterns, weirs, and piping throughout the city to maintain water 

 
Figure 2.4 – Map of Trade routes throughout the region during the height of the Nabatean 
Empire showing Petra’s central trade location. Cartography by K. Groom (2013). 
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supply, many of which can still be found today (Ortloff, 2005). City walls were also erected for 

added security, though the steep cliffs and narrow passes also lent the city a natural safety. With 

the promise of water and protection, Petra became a vital stop for caravans and traders traversing 

the brutal Arabian Desert and the city thrived as a central trade hub (Figure 2.4).  

Eventually, a number of cultures and ethnicities became integrated into the city and this 

social nexus is evident in the Hellenistic influences on Nabatean art and architecture. Despite the 

Nabateans’ lack of military strength, they were able to maintain independence well into Roman 

annexation through bribes and politics. It wasn’t until 106 CE that the Romans claimed the 

Nabatean Empire as their own “Arabia Petrea” and the city was redesigned to fit Roman 

standards (Fiema, 2003). The city continued to flourish under the Romans and during the height 

of Petra’s Roman occupation there were upwards to 30,000 people living in the city in this new 

client status within the expansion of the Roman Empire (Fiema, 2003). 

 With the gradual northern shift of major trade routes to Roman cities like Jerash and 

Palmyra and increasing sea trade around the Arabian Peninsula, Petra’s economy slowly began 

to weaken until 363 CE, when a massive earthquake, possibly followed by a catastrophic flood, 

devastated the city (Paradise, 2012). Afterwards, it is unclear how many people remained in 

Petra but a few Byzantine structures and architectural influences suggest at least some degree of 

human activity, as is evident by the free standing Byzantine church discovered in the main valley 

in 1991 (Fiema et al., 2001). Some scholars claim Petra was actually the seat of a Byzantine 

Bishopric (Browning, 1973) and several monuments were modified to fit Christian needs, such 

as the Urn Tomb’s conversion to a church (Paradise, 2010). Then, in 1095 CE, Pope Urban II 

initiated the first crusade and within five years the Crusader Kingdom was fairly well established 

in the region with Petra sitting on its eastern border. Strategically situated, occupancy of Petra 
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benefited military purposes but was limited to only a few forts in the area, primarily the 

mountain fort Al-Habis within the main valley and the larger fortress of Al-Wu’aira nearby 

(Hammond, 1970). With the fall of the Crusader Kingdom in 1191 CE, Petra fell into obscurity 

(Browning, 1973).  

Lost to the western world, Petra lay in waiting for several centuries until 1812 when it 

was rediscovered by Swiss explorer Johann Ludwig Burckhardt (1784 – 1817). Although his 

writings on the city weren’t officially published in Europe until 1829 (Browning, 1973), word of 

his discovery spread quickly and by the 1820s other explorers and artists were already traveling 

to the grand city. Early representations of Petra by artists such as David Roberts (1796 – 1864) 

and Léon de Laborde (1807 – 1869) produced during these first visits are now considerably 

valuable, often selling for several thousands of dollars at auction (Christie’s Auctioneers)(Figure 

2.5). Visitors to Petra remained minimal for decades, limited by access, funds, and social and 

political instability in the region (Browning, 1973). A major turning point for Petra came 

December 1985: inscription into the United Nations Educational, Scientific, and Cultural 

Organization’s (UNESCO) World Heritage Conservation program. Nominated by the 

 
Figure 2.5 – Examples of David Roberts’ artwork from Petra: El Deir, Petra, 1839 (left) and 
Conference of Arabs at Wady Moosa, Petra, 1839 (right)(United States Library of Congress, 
2014). 
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International Council on Monuments and Sites (ICOMOS) as an irreplaceable archaeological 

site, Petra gained the esteemed distinction “Cultural Heritage Site” during the World Heritage 

Committee’s Ninth Ordinary Session (whc.unesco.org). This has given Jordan the resources and 

prestige to both maintain and promote Petra as a cultural resource, effectively turning the once 

lost Nabatean Capital and its gateway town of Wadi Musa into the country’s most visited tourist 

attraction with nearly a million visitors in 2010 (PNT 2013). 

Although Petra had been forgotten by the western world, it is unlikely that it was ever 

completely deserted, as local nomadic Bedouins sought shelter in the ruins and made use of the 

water entrapments left from grander days (Russell, 1993). Primarily goat herders and temporary 

farmers, the Bedouins usually live in easily transported goat hair tents but the stone sanctuary of 

Petra was a welcomed retreat (Simms & Russell, 1997). A few tribes in particular, the Beduls, 

Amarine, and Nawafleh, have intimate relationships with Petra, inhabiting the valley and 

surrounding regions long before Burckhardt arrived (Simms & Russell, 1997). However, the 

site’s induction in the UNESCO World Heritage program and the subsequent tourism boom 

dramatically impacted the Beduls’ way of life. No longer permitted to live in the valley, the 

Beduls were relocated to the government-built town of Umm Sayhoun on a plateau above Petra 

proper (Bienkowski & Chlebik, 1991). The forced transition from a nomadic to sedentary 

lifestyle has been complicated, and the settlement has limited grazing land for goats or other 

traditional livestock (Angel, 2011). Later installments of roads leading back to Petra allow local 

Bedouins and Jordanians a livelihood of selling souvenirs, refreshments, and guided tours 

(Russell, 1993).  
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2.2.2 Physical Geography of Petra 

Often called “The Valley of the Crescent Moon”, the dramatic Valley of Petra has a 

distinctive curve that resembles a crescent when seen from above. At an elevation of 900-1000m 

above sea level, Petra is in the transition zone between the more temperate Highlands and the 

harsh desert of the Wadi Araba. Petra’s climate can be categorized as a Mid-Latitude Dry 

Semiarid Steppe, specifically a BSk in the Köppen Classification, although the cool, wet winters 

and hot, dry summers often resemble a Mediterranean climate (Cordova, 2007). In Petra, average 

temperatures range from 6˚-12˚C in the winter months to 15˚-32˚C in the summer with less than 

130 mm average annual precipitation (Jordanian Meteorological Division, 1971)(Figure 2.6). 

Repeated theft of monitoring equipment has discouraged the collection of any current long-term 

meteorological data.  

As part of the Northern Araba Drainage Basin, Petra is located in a valley surrounded by 

steep sandstone cliffs fed by slender canyons (siqs) and a myriad of wadis, or ephemeral streams, 

that run through the city center (Figure 2.3). Prone to flash floods, the namesake Wadi Musa is 

dangerous during storms and many precautions are taken during rainier winter seasons, 

especially in the narrow entrance of the Bab As-Siq, where 20 tourists drowned in a major 

flashflood in 1963 (Al-Weshah & El-Khoury, 1999). In fact, it has been speculated that Petra has 

experienced one or more catastrophic flood events in recent history, as indicated by large flood 

deposits discovered significantly above known water channels (Paradise, 2010). Other major 

drainages in Petra include the eastern Wadi ed-Mataha and Wadi Turkmaniyya from the north. 

Numerous other smaller wadis weave throughout the valley, which, with the aid of water 



15 

entrapments and dams, allowed people to reside in the city for several hundreds of years 

(Browning, 1973).  

 However, the most noticeable physical characteristic of Petra is also one of the most 

alluring: its striking sandstone cliffs. Along with the eclectic architecture and hewn monuments, 

the unique geology mesmerizes visitors and researchers alike. Displaying some of the oldest 

exposed sandstone on earth, Petra exists at the contact of two siliciclastic components of the Ram 

Group: the Cambrian Umm Ishrin Sandstone at the base and the Ordovician Disi Sandstone 

above. The Umm Ishrin Formation is a quartz arenite with cross-bedded components of siltstone 

and mudstone, feasibly representing the fringe of a fluvial system (Makhlouf & Abed, 1991). 

The Umm Ishrin is also responsible for the famous “rose red” color found in the city, although its 

color ranges from red to salmon, chocolate, or a deep mustard yellow. Continuing the culinary 

descriptors, the distinctively white or cream-colored Disi Formation is the “icing on top”. 

 
Figure 2.6 – Map showing the average annual precipitation in Jordan (Paradise, 1999).  
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Significantly coarser, the Disi Sandstone lacks horizontal cross bedding and was deposited in a 

braided stream environment among numerous dunes and sandbars (Nairn & Alsharhan, 1997). 

The fairly uniform Disi across Jordan is more inconsistent in Petra due to irregular and 

unconforming contact with the as-Shara Limestone above the Bedouin village, Umm Sayhoun, 

and Wadi Musa (Figure 2.7).  

 
Figure 2.7 – Map of the basic geology of Jordan. Note Petra’s location on the edge of the 
limestone plateau mixing with granite and sandstone (Paradise, 1999). 

 

2.3 Nabatean Monuments and Architecture 

Inhabiting Petra for over 400 years, the Nabatean Empire created some of the most 

recognized tombs, facades, and monuments in the valley, each displaying distinctive Nabatean 

architectural styling and stone dressings (Tholbecq, 2007). Some of the earliest archeologists in 

Petra have tried identifying typological groups for Nabatean monuments (e.g. Brünnow & von 
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Domaszewski, 1904; Kennedy, 1925), but the most common design elements include central 

doorways, often framed by two half columns or pilasters, and the presence of decorative 

crowstep patterns, adopted from Assyrian architecture (Bounni, 1999). Some of the more famous 

monuments in Petra matching this architectural style include the Urn Tomb, the tomb of the 

Roman Soldier, tomb of Sextius Florentinus, and the western face of the Temenos gate near Qasr 

al-Bint al-Faroun (Tholbecq, 2007). Iconic landmarks such as al-Khazneh (the Treasury) and al-

Deir (the Monastery) created during this era include Nabatean elements (i.e. capitals) but also 

display Hellenistic and Roman design influence in their characteristic pedestals and intricate 

stonework, exemplifying the city’s eclectic population and relations with neighboring 

civilizations (Taylor, 2007; Tholbecq, 2007)(Figure 2.8).  

 
Figure 2.8 – Images of famous monuments in Petra exhibiting the eclectic Nabatean style with 
heavy Roman and Hellenistic influence: al-Deir (left) and al-Khazneh (right). Photographs by K. 
Groom (2013). 

 Even simple monuments with no decorative stonework can be associated with the 

Nabatean Era through stone dressings: masonry methods to flatten and finish stone surfaces. 

Common stone dressings at the time included abrasive (e.g. scraping or rubbing) or percussion 

(e.g. hammer and chisel) techniques, each leaving a discernible surface texture (Taylor, 2007). 
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The most characteristic Nabatean stone dressings, frequently found on interior or flat surfaces, 

are diagonal lines ranging from 15˚ to 45˚ from the vertical created with fine point or, more 

likely, toothed chisels (Taylor, 2007)(Figure 2.9). In some case, these diagonal grooves are in a 

slight curve the length of an average human arm, suggesting the chisel was repeatedly dragged 

along the surface to create the dressing (i.e. abrasive) instead of using a hammer (i.e. percussion). 

Quite often, the slanted pattern is repeated in the opposite direction to create the distinctive 

herringbone pattern seen throughout the city, which is regularly used to identify Nabatean Era 

surfaces and contextually date monument construction (Paradise, 2005, 2013).  

 
Figure 2.9 – Examples of Nabatean stone dressings: Close up of herringbone dressing on Djinn 
Block X (left) and a large dressed surface near the opening of the Siq (right). Photographs by K. 
Groom (2013). 
 

2.3.1 Nabatean Djinn Blocks 

Among Petra’s many Nabatean monuments are djinn blocks: large hewn cubes found 

throughout the valley, with unknown purpose or meaning (Figure 2.10). The Arabic name for 

these cubes, sahreej, means cistern or reservoir, but there is little indication the blocks are hollow 

or designed to store water (Taylor, 2007), although many are found near water sources 

(Browning, 1973). Rumored to have legendary connections with djinn, or impish genies, some 

locals justify the blocks’ Arabic name by explaining they were created to imprison evil or 
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mischievous spirits. Others believe the djinn blocks are merely decorative monuments in the 

shape of the Nabatean god Dushara or goddess al-Uzza, often represented as cubes or blocks 

throughout the valley (Browning, 1987). Alternatively called tower tombs, these cubes are also 

considered to be freestanding tombs or tomb markers, as they resemble other cube tombs made 

of clay found elsewhere in the Nabatean Empire (Tholbecq, 2007). There is also speculation that 

some of these blocks might have had some kind of built superstructure containing a burial 

chamber, but little evidence of such structures remains (Browning, 1973). 

 
Figure 2.10 – Images of the more famous djinn blocks near the opening of the Siq. Note the 
Hellenistic characteristics of the block on the left. Photographs by K. Groom (2013). 

 

Although there are over thirty djinn blocks recorded throughout Petra, their degree and 

style of decoration varies (Taylor, 2007). Some djinn exist as plain cubes with no more than flat 

Nabatean stone dressing while others exhibit Assyrian, Cavetto, and even Hellenistic inspired 

carvings, including quintessential Nabatean crowsteps (Taylor, 2007). Nearly all djinn blocks are 

cube-shaped with equal dimensions, though some are taller than wide. The most famous blocks 

mark the entrance of the Bab as-Siq, the main entrance into Petra, and the Snake Monument, 

south of the city center. These particular monuments exhibit typical Assyrian and Cavetto-style 

decorations and crowns, leading some scholars to believe they are among the earliest tombs in 

Petra (Taylor, 2007). One of the blocks at Bab as-Siq is much more decorated than the others 
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with multiple pilasters and distinctive Hellenistic horizontal crowns on each of the four walls, 

which could have mounted darker or more colorful stone decorations at some point (Browning, 

1973).  

 

2.3.2 Djinn Block X 

 The djinn block addressed in this study, Djinn Block X, is an isolated irregular hewn 

monument located above the three primary djinn blocks at entrance of the Bab as-Siq (Figure 

2.11). It has been termed Djinn Block X because it was excluded from Brünnow and von 

Domaszewski’s famous 1909 record of every monument in Petra, assigning each a defining 

number. While it’s not a cube like the others, the sides are mostly orthogonal to the ground and 

flat, face a distinct aspect, and exhibit indicative Nabatean herringbone stone dressing, 

contextually placing construction of the monument to roughly 2000 years ago, contemporary 

with the other djinn blocks (Paradise, 2013). The block resembles an oblong cube with unevenly 

sized faces, a protruding feature on the eastern side, and a large flat ledge attached to the 

northern face (Figure 2.12). Therefore, each analyzed aspect was actually composed of one or 

 
Figure 2.11 – Cropped section of the map of Petra from Taylor (2007) with the location of Djinn 
Block X (left) and an image of the block from the east (right). Groom (2013). 
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more distinct panels. This research concentrated on decay features limited to vertical surfaces so 

the top of the block was omitted and only the sides of the northern ledge were assessed.  

The northern face (328˚N) includes three panels: A large square wall, the front face of the 

ledge/step, and the sidewall of the jutting feature on the eastern face (Figure 2.13). The primary 

square face is approximately 3.5m wide, 2.7m tall on the left side, and 2.2m on the right. This 

face is heavily pitted with extensive lichen overgrowth on the uppermost section. There is also 

some evidence of vandalism on this panel (i.e. engraved signatures and initials). The second 

panel is the front face of the large platform and measured 2.9m wide and 0.36m tall. There are a 

 
Figure 2.12 – Diagram of Djinn Block X showing the four major faces (Paradise, 2013). 
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couple patches of lichen development on this surface but the majority of this panel shows 

significant decay. The third, and final, panel encompassed in the northern aspect is the sidewall 

of an oddly shaped protrusion from the eastern face. Its base width measures roughly 2.9m, 

although the top width is only 2.4m, and it is 1.6m tall on the left side and 1.8m on the right. 

There is an oblong cavity on this panel displaying karren-like features, suggesting water flows 

through the feature regularly. There is also a large tafoni cell on the far left corner of this panel 

that has broken through to the eastern face. 

 
Figure 2.13 – Images of the northern face on Djinn Block X (left) and the large cavity obviously 
impacted by water runoff (right). Photographs by K. Groom (2013). 

 

The western face (226˚N) is one large continuous surface but for this research it was 

divided into two different panels because of a slight curve and to maintain accuracy during the 

raw count, as there is significant tafoni development on this aspect (Figure 2.14). The first panel 

includes a sidewall of the northern ledge, measuring 3.6m tall by 1.6m long, and a portion of the 

large wall 3.5m in length, 3.1m tall on the far left, and 3.5m at the junction with the next section. 

There is considerable flaking and other sandstone-related weathering phenomena along the base 

of this panel and an overall rougher texture on the upper portions. There are also lichen colonies 

and cyanobacteria possibly acting as stabilizing agents on areas lacking tafoni development. The 
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second panel for the western aspect is a continuation of the curved wall 3.7m long, 3.5m at its 

shortest (where it meets the first panel), and 3.9m at its tallest on the far right side. The majority 

of tafoni cell development on this panel formed in linear patterns, indicating lithological 

influences on cell distribution. There is one cluster of larger cells that run parallel with a fissure 

down the center of the panel that could be due to advanced decay from water runoff, similar to 

the large cell on the northern face.  

 
Figure 2.14 – Images of the western face of Djinn Block X (left) and intense small tafoni 
development (right). Note the 3cm Nabatean potsherd for scale. Photograph by K. Groom 
(2013). 

 

The southern aspect (156˚N) is composed of two panels: a primary square wall and the 

other sidewall of the eastern protrusion. The main face measures 4.2m wide, 3.5m tall on the left 

side, and 3.1m on the right. Observationally, this face is the most heavily decayed with the most 

indiscrete cell development and the beginning stages of what appears to be drapery formation 

along the base (Figure 2.15). This is also one of the only surfaces on the djinn block to exhibit 

extensive case hardening and dark desert varnish coating. The second panel is much smaller, 

only measuring 0.8m wide and 1.3m tall. The small size and overall lack of tafoni development, 

aside from a single large cavity, lead to this panel’s ultimate omission from the statistical and 

morphometric analysis.  
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Figure 2.15 – Images of the southern face of Djinn Block X (left) and the large isolated cavity on 
the small excluded southern panel (right). Photographs by K. Groom (2013). 

 

Although the eastern face (082˚N) technically consists of three panels, only two were 

included in this research for safety reasons. The first panel is the primary eastern face to the 

south of the protrusion, measuring roughly 4.4m wide, 2.9m tall on the shorter left side, and 

3.9m tall at its tallest right at the edge of the protrusion. There is minimal tafoni development on 

this section, although there is considerable flaking present and formation of large spalls that 

might detach in the near future. There is also more evidence of case hardening and thicker rock 

coatings, including dark desert varnish, on this section. The second assessed panel is a small 

vertical wall (2.3m by 1.3m) on the other side of the protrusion and the last sidewall of the 

northern ledge (0.4m by 2.1m). There are more tafoni cells on this portion of the eastern aspect 

(Figure 2.16). It fits within the corner between the eastern protrusion and northern ledge, so 

advanced decay could be due to the area acting as a wind trap and/or human activity, denoted by 

fire residue/damage at the base and graffiti/vandalism near the center of this panel. The third 

technical panel, the front face of the protrusion, was excluded from the research entirely because 

it is precariously positioned at the ledge of a steep ravine and inaccessible without climbing 

equipment. 



25 

 
Figure 2.16 – Images of the eastern face of Djinn Block X (left) and advanced flaking and case 
hardening at the contact between the Umm Ishrin and Disi formations on this face (right). 
Photographs by K. Groom (2013).  

 

The irregular shape and elevated isolation of Djinn Block X might explain its absence 

from several monument surveys taken throughout the valley (Paradise, 2013). Previous studies of 

the block suggest it may be a quarry remnant converted to a djinn block, due to its proximity to 

evidence of stone removal from adjacent cliff faces; an unfinished djinn block suggested by deep 

grooves along the top of the monument and the protruding section on the eastern face; or a 

ritualistic site attributable to the prominent northern ledge (Paradise, 2013). At 1022m above sea 

level, this block is 20m above the entrance road and the highest known djinn block in elevation. 

Djinn Block X is geologically unique as well. While most monuments in Petra are 

composed of either the Umm Ishrin or the Disi sandstones, Djinn X contains both due to its 

elevated location. There is a distinct contact running through the center of the monument with 

Disi on the bottom and an interdigitated lens of Umm Ishrin and Disi on top (Figure 2.17). This 

is contrary to the rest of the valley, as well as neighboring regions, where both formations are 

exposed as the Disi sandstone formation is younger and above the darker, older Umm Ishrin 

(Nairn & Alsharhan, 1997). This suggests a geologic unconformity in the substrate where Djinn 

Block X is located, as material from the older Umm Ishrin mixed with the younger Disi 
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sandstone during lithification, resulting in the interdigitation present today. The Umm Ishrin and 

Disi sandstones have relatively similar compositions of siliceous sand clasts but differences in 

carbonate levels and iron constituents in their matrices cause a greater weathering susceptibility 

in the Disi than the more resilient Umm Ishrin (Paradise 1999, 2005). This disparity is plainly 

evident on Djinn Block X, as the majority of decay is confined to the lower formation, including 

a stark difference of tafoni distribution. The less weathered upper section contains significantly 

more lichen and lithobiont growth, along with case hardening and thicker rock coatings, 

particularly on the southern and eastern faces.  

 
Figure 2.17 – Image displaying the obvious differences in decay between the Umm Ishrin and 
Disi sandstone formations on the northern face. Photograph by K. Groom (2013).  
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Chapter Three: Literature Review 

Examining prior research and literature on tafoni development and rock decay in Petra, 

Jordan can provide insight into broader investigations and applications in architectural 

deterioration and cultural heritage management. To establish a holistic scientific framework for 

this research, this literature review is divided into three thematic subchapters: theory, geography, 

and multidisciplinary application. First, general and specific geomorphologic praxis is discussed, 

including the academic dichotomy of intrinsic and extrinsic rock decay processes, polygenetic 

research perspectives for cavernous weathering, and threshold response theory. Then, an 

introduction to regional research is provided, encompassing the city of Petra as well as its wider 

geographical setting. Finally, relevant techniques and geomorphologic applicability in the 

analyses of dressed stone deterioration and cultural resource management is outlined.  

 

3.1 Geomorphologic Theory and Weathering 

Essentially, geomorphologic research illuminates the complexity of forms and processes 

continually transforming landscapes. In fact, in the late 1800s geomorphology was defined as 

“the study of the morphology of Earth’s surface” (de Margerie, 1886). Scholars have measured 

the Earth’s physical characteristics as a means to empirically examine their surroundings and 

understand concepts of decay operating outside the human time frame. Ancient Greek and 

Roman scholars such as Herodotus (484 – ca. 425BC), Aristotle (384 – 322BC), and Strabo (ca. 

64BC – 20AD) speculated on the creation of landforms, changing of the scenery, and the driving 

forces behind the Earth’s surface, often with impressive insight and accuracy (Martin & James, 

1993). In modern literature, landscape change is quantified through the analysis of morphometry, 

the measurement of form and shape. This includes everything from measuring surface recession 
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(Paradise, 1999; Inkpen & Jackson, 2000) and analyzing surface moisture (Mol & Viles, 2012), 

to evaluating weathering forms and dimensions (McBride & Picard, 2004) and examining grus 

and other detached weathering debris (Mustoe, 1983). This subchapter examines some of the 

different scales, forms, and theories in geomorphologic research. Although this research study 

focuses on sandstone decay exclusively, studies of other lithologies nonetheless contribute 

beneficial information and are therefore included.  

 

3.1.1 Arid Land Geomorphology 

Climatic influences on landscape change have been evident for generations, especially 

within the scope of morphology (Chorley, 1957), and each climate contains unique forms, 

processes, and interrelationships. Arid environments are no exception. Sporadic precipitation 

events, prevalent aeolian processes, and sparse vegetation are a few features that mark the 

world’s deserts. In terms of research, arid geomorphology is a well-recognized and explored 

topic, as evident by the multitude of books (e.g. Parsons & Abrahams, 1994; Thomas, 2011), 

reviews (e.g. Tooth, 2007), and special journal issues (e.g. Fryberger & Goudie, 1981; Bullard, 

2006). The emphasis of arid lands geomorphology can range from aeolian forms and processes 

like dune formation (Goudie, 2002) and the interrelationships of environmental change and the 

formation of rock varnishes (Liu & Dorn, 1996), to the pedogenesis of aridisols, patterned 

ground, and desert pavements (Dixon, 2009). 

The unique environmental features of arid land geomorphology are reflected in common 

research parameters and concerns. Arid lands studies have included such variables as intense 

shifts in diurnal surface temperatures (Kerr et al., 1984; Jenkins & Smith, 1990), the presence 

and formation of rock varnishes and desert pavements (Smith, 1988), diurnal ambient 
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temperature and climatic variations (McFadden et al., 2005), and perpetual environmental 

stresses (Warke, 2007). These iconic desert characteristics can lead to a number of natural and 

anthropogenic hazards that have been the focus of many geomorphologic studies, including 

intense salt-driven destabilization of building material and engineered structures (Goudie & 

Viles, 1997), geologic and hydrologic hazards for urban settlements in desert environments 

(Webb et al., 2013), flashflood vulnerability of super arid regions (Magilligan & Goldstien, 

2011), and paleoflood evidence for ancient disasters in desert environments (Paradise, 2012). 

The depositional formation of many arid lands also concentrate a significant amount of 

sandstone research to deserts and other arid environments (Young et al, 1992). Sandstone 

specific studies can range from analyses of groundwater movement and hydrogeology in arid 

environments (Mahmod et al., 2013) and the influences of cyanobacteria on sandstone surface 

change (Büdel et al., 2004) to wider formation examinations and explanations for grand 

sandstone landscapes such as the Land of Standing Rocks in Canyonlands National Park in 

southern Utah (Nicholas & Dixon, 1986) and the Wadi Rum UNESCO World Heritage Site 

(Goudie et al., 2002). 

 

3.1.2 Rock Decay and Weathering 

Where geomorphology assesses landscape change in a broader scope, the discipline of 

weathering and rock decay concentrates on the breakdown and deterioration of stone that 

essentially drives landscape change (Price, 1995). Traditionally called weathering, rock decay is 

actually the result of many different processes and variables; so to avoid the misconception that 

the weathering of stone is caused by weather many scholars within the field prefer the more 

accurate designation of rock decay (Hall et al., 2012; Dorn et al., 2013). Additionally, although 
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they are often erroneously used interchangeably, rock decay and erosion are distinctively 

different processes. Rock decay is the deterioration of the stone in situ where erosion describes 

the transportation of decayed material. While the specialized field of rock decay focuses on the 

causes and effects of stone deterioration, past and current research is often divided by two major 

ideological and process dichotomies: the importance of intrinsic versus extrinsic variables to 

stone stability/weakness and the effectiveness of physical (e.g. spalling and salt crystallization) 

versus chemical (e.g. dissolution and matrix disaggregation) driver of decay. 

The inner workings of the relationship between intrinsic (internal) and extrinsic (external) 

variables in geomorphology and rock decay have been debated for years. G.K. Gilbert (1843 – 

1918) defined landscape change in terms of sheer strength and sheer stress and observed 

“solidity is not absolute but relative” (Gilbert & Dutton, 1880). This viewpoint is applicable in 

rock decay research by ‘sheer strength’ referring to intrinsic variables like lithification and 

mineralogy; where ‘sheer stress’ represents extrinsic variables such as environmental setting, 

climate, and anthropogenic activity. Rock decay studies on intrinsic variables include identifying 

geologic matrix thresholds for sandstone surface recession (Paradise, 1995), the role of 

preexisting subsurface salts in the disintegration of granite (Bradley et al., 1978), and the impacts 

of core softening and interior stone destabilization (Conca & Rossman, 1985). Other studies 

analyzing the extrinsic variables range from assessing climate and morphometry (Chorley, 1957) 

and the impacts of thermal heating and cooling (Warke et al., 1996) to differences in decay rates 

depending on geographic and climatological location (Inkpen & Jackson, 2000). 

The second major dichotomy in rock decay research is the divide between physical and 

chemical decay processes. Physical decay involves the mechanical breakdown of stone, and 

research centers around factors like salt crystallization causing flaking and exfoliation (Bradley 
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et al., 1978) and the movement of subsurface moisture movement as a destabilizing agent (Mol 

& Viles, 2010). On the other end of the spectrum, the well-established field of geochemistry has 

been evaluating the chemical breakdown of rocks for decades (Krauskopf & Bird, 1967). Like 

physical processes, chemical decay hypotheses predominantly address salt and moisture as key 

components, except in different functions, at dissimilar scales, and often not as self-contained 

variables. Chemical rock decay research analyzes variables like corrosion on eroded material 

(Butler & Mount, 1986) and the stabilizing or deteriorating effects of different rock coatings and 

varnishes (Campbell, 1999). 

While these two processes are virtually always studied separately, directly comparing 

physical and chemical hypotheses to determine supremacy is misguided, as both function at 

discretely separate scales: physical decay analyzes breakdown from the granular scale or larger 

(e.g. McBride & Picard, 2000), where chemical decay examines mineral alteration at a molecular 

scale (e.g. Dixon & Thorn, 2005). The allusion of superiority of one over the other merely 

represents scalar bias in the geomorphologic community. Further, this scalar discrepancy implies 

both processes can affect stone materials simultaneously and reinforces the concept of 

polygeneous decay (e.g. one process initiating another, chemical leading to physical)(e.g. Young, 

1987). 

Intimately tied to geomorphology, weathering and stone deterioration processes and 

patterns also vary geographically and climatologically (Pope et al., 1995). In fact, rock decay in 

arid environments is still a major topic of academic discussion. Studies range from the 

multidimensional role of salt weathering in hot deserts  (Wellman & Wilson, 1965; Cooke, 1979) 

and laboratory simulations of salt-induced decay (e.g. Smith & McGreevy, 1983), to 

examinations of the stabilizing or deteriorating effects of rock coatings and desert varnish (e.g. 
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Dorn & Oberlander, 1982; Staley et al., 1992), along with some of the original work involving 

cavernous weathering and tafoni development (e.g. Bryan, 1928; Blackwelder, 1929).  

 

3.1.3 Tafoni and Cavernous Decay 

Tafoni and cavernous rock decay have been well documented for over 3,500 years 

(Boxerman, 2005), however their formation wasn’t a topic of scientific discussion until the mid-

1800s (Darwin, 1839; Dana, 1849), sharply increasing in quantity and geographic span later in 

the 20th Century. While tafoni remain the primary focal point, publications on the topic vary 

dramatically from qualitative observations (Bryan, 1928; Tschang 1974), modeling temporal cell 

growth (Sunamura, 1996; Norwick & Dexter, 2002), detailed laboratory investigations 

(Rodriguez-Navarro et al., 1999; McBride & Picard, 2004), and complex multidisciplinary field 

analyses (Martini, 1978; Brandmeier et al., 2010). Also, the variability in size, shape, and 

distribution of these phenomena has resulted in a wide range of names including alveoli, stone 

lace, honeycombing, caverns, pitting, and so forth, with a general understanding that each term is 

size dependent (i.e. “alveoli” only applies to small cells). However, there is no established scale 

or universally accepted distinction between terms and, therefore, for this thesis “tafoni” 

(singular: tafone) is considered non-scalar and used exclusively throughout the rest of the 

document. 

 Geographically, tafoni research was originally concentrated in North America (Bryan, 

1928; Blackwelder, 1929, etc.) and remained there until a scientific boom in the 1960s. By the 

late 1970s studies began to emerge from Antarctica (Calkin & Cailleux, 1962; Prebble, 1967), 

Southern Australia (Dragovich, 1969; Winkler, 1979), Hong Kong (Tschang, 1974), Northwest 

Sahara (Smith, 1978), and Italy (Martini, 1978). By the end of the 20th Century the regional 
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scope of research had expanded into the United Kingdom (Pye & Mottershead, 1995), Japan 

(Matsurkura et al., 1989; Suzuki & Hachinohe, 1995), Spain (Sancho & Benito, 1990; Mellor et 

al., 1997), Northern Ireland (McGreevy, 1985), Scotland and Southern Greece (Kelletat, 1980), 

and Finland (Kejonen et al., 1988), with more studies from U.S. (e.g. Butler & Mount, 1986), 

Antarctica (e.g. Conca & Astor, 1987), and Australia (e.g. Twidale & Sved, 1978). The reach has 

even gone as far as Mars (Rodriguez-Navarro, 1998). Through the 21st Century the breadth of 

studies expanded into Jordan (Viles & Goudie, 2004), South Africa (Mol & Viles, 2010), and 

Southern India (Achyuthan et al., 2010), along with continuing work in previously mentioned 

locations (e.g. McBride & Picard, 2004).  

The diverse geographic distribution of tafoni is reflected in their diverse geologic and 

environmental landscapes. The phenomena have been examined on various lithologies: intrusive 

granite and gneiss (e.g. Dragovich, 1969), volcanic tuff (e.g. McBride & Picard, 2000), slightly 

metamorphosed conglomerate (Martini, 1978), sedimentary sandstone (e.g. Grantz, 1976) and 

limestone (e.g. Rodriguez-Navarro et al., 1999), and even manmade materials like cement 

(Pestrong, 1988). Climatologically, tafoni have been discovered in a multitude of settings 

including, but not limited to, coastal (e.g. Suzuki & Hachinohe, 1995), sub-zero deserts (Selby, 

1979), river basins (Sancho & Benito, 1990), and both arid and semi-arid deserts (Wilhelmy, 

1964). The range of host landscapes, both physical and climatological, inhibits adopting any one 

universal process hypothesis and instead suggests a complex relationship between formation 

processes and lithology, location, and environment. 

 Despite considerable academic attention, primary cell formation processes still remain 

enigmatic. Countless hypotheses have been presented, and the process dichotomy between 

chemical and physical decay mechanisms emerged fairly early, led by Blackwelder (1929) and 
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Bryan (1928), respectively. Notwithstanding certain works suggesting integrated physio-

chemical contributors (Young, 1987, Kejonen et al., 1988) and an early recognition of necessary 

collaboration (Mustoe, 1983), the two processes are  typically researched separately. Biologic 

decay has also been mentioned in tafoni studies (Andre & Hall, 2004) but remains largely 

disassociated with formation and was omitted in this research. There are commonalities between 

physical and chemical tafoni evolution research, mainly crucial variables like salt (e.g. Bradley et 

al., 1978; Winkler, 1979) and water (e.g. Mol & Viles, 2010), but the specific roles of these 

elements vary per process paradigm and substrate. Physically, pressure from subsurface salt 

crystal growth is a widely accepted rock deterioration mechanism (Wellman & Wilson, 1965; 

Birot, 1968). Moisture is also considered a predominant factor in mechanical decay, whether as a 

transport agent of salts and other minerals (e.g. Mustoe, 1983) or breakdown through internal 

water migration and expansion (e.g. Conca & Astor, 1987). In relation to tafoni, many studies 

proclaim the physical influences of salt and moisture fundamental to cell formation (e.g. Mustoe, 

1982; French & Guglielmin, 2000). The specifics of these factors, however, have been explored 

by comparing salinity and water movement with various extrinsic variables.  

Rates of salt movement and crystal accumulation, signifying cell development, have been 

associated with multiple characteristics, and studies positively correlate cavity formation with 

factors such as extended wetting and drying cycles (e.g. Huinink et al., 2004), elevated 

evaporation rates of surfaces perpendicular to prevailing wind patterns (Rodriguez-Navarro et 

al., 1999), and deposition and migration of crystalline salts and calcites via precipitation 

(McBride & Picard, 2000). Each study supports a general pattern: some selected climatic factor 

determines the addition or evaporation of moisture, which in turn dictates the deposition and 
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concentration of salt crystals furthering cavernous decay. McBride and Picard (2004) have also 

determined that these processes are exacerbated in material with high porosity and permeability. 

Water movement through stone, independent of salt materialization, has also been 

identified as a physical stone deterioration mechanism. Tafoni formation have been directly 

associated with hydro-geomorphological processes like ice-induced micro fracturing (Kejonen et 

al., 1988; French & Guglielmin, 2000) and joint-dependent water migration (Conca & Astor, 

1987). More recently, Mol and Viles (2010) associated wetter internal moisture regimes with 

decreased stone hardness and, thus, increased decay. They applied the same techniques to tafoni 

cells and similar processes appear to influence cell development (Mol & Viles, 2011). However, 

even these studies note a fundamental recognition of interrelationships with chemical processes.  

Principle chemical processes applied to cell development include salt-induced dissolution 

of silica (Young, 1987), core softening (Conca & Rossman, 1985), and the formation of iron 

casings and case hardening (Campbell, 1999). In tafoni evolution, most chemical processes 

merely condition, not directly deteriorate, the host material for the formation of physical decay 

features such as exfoliation (Blackwelder, 1929), flaking (Dragovich, 1967), and granular 

disintegration (McGreevy, 1985; Mottershead & Pye, 1994).  

While the importance of this codependence has been known for years (Martini, 1978), it 

has not been until recently that tafoni research has begun incorporating processes from multiple 

schools of thought (e.g. Brandmeier et al., 2010). For example, Pope et al. (1995) aptly describes 

these complex interrelations in the terms of synergy. Likewise, Paradise (2012) illustrates the 

variance of principle driving mechanisms in cavernous rock decay, but also highlights the 

interconnectedness of those processes depending on lithology and environmental setting. In fact, 

it is this multivariate nature that makes tafoni development a justifiable representation of overall 
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stone stability and decay. Turkington and Phillips (2004) utilize this concept of polygeneity to 

create a model for stone instability feedback systems that is non-dependent on specific formation 

processes. The same research thrust can be applied to assessing overall cultural stone decay in 

the hewn city of Petra, Jordan. Where Turkington and Phillips (2004) modeled this polygenetic 

nature, this thesis sought to analyze empirical data in addressing the factors of tafoni 

development as a surrogate for dressed stone deterioration in Petra, Jordan. 

 

3.1.4 Threshold Response in Rock Decay Research 

While not conventionally applied to rock decay, the concept of thresholds has been 

present in geomorphologic research for years (Schumm, 1979). Thresholds are abrupt shifts in a 

system responding to gradual levels of energy. These exist in the natural world exemplified by 

dew points and quantum mechanics, but also in the built environment with forms such as 

structural collapse and dam failures. Within geomorphology, threshold patterns have been 

observed in landscape change like arroyo development (Graf, 1979), mass wasting (Carson, 

1971), and complex drainage systems and erosion (Schumm, 1973; Schumm & Kahn, 1972). In 

fact, the introduction of geomorphologic thresholds helps define and model many non-linear 

processes found in landscape evolution (Phillips, 2006). As these examples demonstrate, 

geomorphologic threshold research is primarily confined to weathering-limited, often fluvial, 

processes and pedogenesis (Muhs, 1984).  

Although they represent different stages of decay, weathering and pedogenesis are 

intimately interrelated and several thresholds discussed in pedogenesis research may be 

applicable to rock decay. For instance, distinctions between intrinsic (Chadwick & Chorover, 

2001) and extrinsic (Ewing et al., 2006) thresholds in pedogenesis literature may reflect 
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corresponding thresholds in weathering by substituting soil chemistry with lithology and 

mineralogy. Analyzing surface recession in sandstone, Paradise (1999) was the first to identify 

thresholds in a weathering-focused study. This thesis collaborates with these findings and also 

applies geomorphologic thresholds to tafoni evolution and development. 

3.2 Regional Geomorphology 

Before discussing the connections of geomorphologic research and cultural resource 

management, this review first examines preexisting geomorphologic research in the region to 

establish locational and scalar context and research lacunae. Beginning at a wide regional scope 

and progressively narrowing focus to the city of Petra, this subchapter assesses geomorphologic 

research conducted throughout the Middle East and North Africa, then within the Hashemite 

Kingdom of Jordan, and finally the archeological UNESCO World Heritage Site: Petra. 

 

3.2.1 Research in the Middle East and North Africa 

 The Middle East and North Africa represent a disproportionately small percentage of arid 

geomorphology research. Existing research is generally utilitarian in nature. Due to regional 

tectonic activity, much of the geomorphologic research in the Middle East focuses on seismic 

susceptibility (e.g. Cong & Mitchell, 1999; Ambraseys et al., 2005), natural or anthropogenic 

hazards (Seber et al., 1997), and considerable attention on climate change (e.g. Grove, 1980; 

Drake & Bristow, 2006). In fact, much of the climatic research from the region is conducted in 

the Sahara desert, including regional geomorphic responses to climate change during the 

Pleistocene and Holocene (Bull, 1991), the evolution of the Sahara desert as a response to 

increasingly arid conditions (Grove, 1980), and simulations of abrupt vegetation shifts in the 

Sahara during the mid-Holocene (Claussen et al., 1999). 
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In terms of general rock decay of the region, many studies remain focused on urban or 

economic applications like analyses of concrete breakdown and longevity (Fookes & Collis, 

1976; Fookes et al., 1981), examinations of building materials (Crowder & Amjad Ali, 1985), or 

petroleum-targeted research (e.g. Song et al., 2000; İşcan et al. 2006). Other continued research 

themes from landscape-scale to weathering-scale in the region include direct and indirect effects 

of climate change on building stone material (Viles, 2002), different techniques for assessing 

cultural stone decay to improve heritage management (Viles et al., 2011), and the comparison of 

simulated salt weathering in natural and laboratory settings (Goudie, 1993). 

   

3.1.2 Research in Jordan 

Geomorphologic research in the Hashemite Kingdom of Jordan varies from 

desertification (Louke & Schmidt, 2007) to natural radioactivity (Al-Okour et al., 2013) but 

largely centers attention on the decay of its cultural stone monuments and iconic desert 

landscapes. Such landmarks include the Cambrian and Ordovician sandstone inselbergs of Al-

Quwayra near Wadi Rum (Viles & Goudie, 2004), the Great Temple in the capital city of 

Amman (Paradise, 1998), and, of course, the primary tourist attraction: the lost city of Petra 

(Paradise, 1995, 2002). Interdisciplinary collaboration between geomorphologists and 

archeologists is essential to the survival of these historic sites (Pope et al., 2008). 

Evidence of this research cooperation can be found in the recently designated UNESCO 

World Heritage Site of Wadi Rum. Earning a dual designation as a Natural and Cultural Heritage 

Site, Wadi Rum boasts impressive inselbergs of the Disi and Umm Ishrin sandstones perched on 

an exposed Precambrian granite basement, and an array of petroglyphs and Thamudic 

inscriptions (Migón, 2009). Geomorphologic research in Wadi Rum includes assessing the 
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formation of large footslope debris ramps (Migón et al., 2005), geographic comparisons of 

sandstone formations composed of ancient sedimentary basins (Migón, 2009), and even an 

academic plea for international recognition of the value and inherent fragility of desert 

landscapes within cultural resource management (Goudie & Seely, 2011).  

 

3.1.3 Research in Petra 

 The ancient city of Petra boasts an elaborate array of carved and constructed sandstone 

monuments from several well-known civilizations including Nabatean, Roman, Byzantine, and 

Crusader. Each occupational period contributed their own distinct styles, architecture, and 

building methods to the existing infrastructure, creating the unique multifaceted metropolis that 

hypnotizes tourists and researchers alike. The obvious historical significance of the city has 

invariably attracted countless archeologists from local (e.g. Al-Bashaireh & Hodgins, 2011) and 

international agencies and universities (e.g. Acevedo et al., 2001; Ortloff, 2005). Similarly, the 

myriad of stone structures also endorses geomorphologic research with a variety of foci, 

including: evaluating conservation techniques (Al-Saad & Abdel-Halim, 2001; Wedekind & 

Ruedrich, 2006), assessing restoration methods (Bani-Hani & Barakat, 2006), quantifying 

physical impacts of tourism (Franchi et al., 2009; Paradise, 2010), rock-fall hazard assessments 

(Delmonaco et al., 2013), and even uncovering evidence for past catastrophic events (e.g. 

Russell, 1980; Paradise, 2012).  

  While this spectacular stone city inspires researchers from all disciplines, including 

geomorphology, empirical studies of sandstone decay and tafoni development in the city are rare 

(Paradise, 1995; Heinrichs, 2008). In fact, the city is perforated with cavernous decay features 

and yet only a handful of studies have addressed tafoni formation locally in Petra (Gomez-Heras 
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et al., 2012; Paradise, 2013). This paucity limits local and international heritage management 

understanding and, moreover, efficacy of resource allocation and conservation policies.  

 

 

3.3 Geomorphology and Cultural Resource Management 

The interdisciplinary applications of geomorphologic methodology are endless, including 

cultural and heritage resource management (Pope et al., 2002; Smith et al., 2008). Humans have 

an inherent fascination with the past and its perceived immortality. But while portable artifacts 

like books and paintings can be preserved in artificially controlled environments, immobile relics 

like permanent monuments and building façades remain susceptible to environmental 

degradation. With the establishment of international conservation projects, such as the UNESCO 

World Heritage Program, stability and deterioration analyses of historically significant 

landmarks has become of global importance (Pope et al., 2002). While geomorphologic tools and 

methods cannot prevent the inevitable deterioration of such landmarks, specific application can 

provide heritage management with the necessary information to strategically allocate 

conservation efforts and resources to arrest further decay (Dorn et al., 2008; Allen & Groom, 

2013). Rock decay research also benefits from this collaboration with an extension of potential 

research opportunities, as advocated by Smith et al. (2005), as long as they remain within the 

methodological limitations of heritage management policies. 

 

3.3.1 Cultural Stone Decay Research 

Researching historic stonework provides additional information unavailable for natural 

surfaces in traditional geomorphologic research. Whether explicit (e.g. Mottershead et al., 2003) 
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or contextual (e.g. Paradise, 1995; Norwick & Dexter, 2002) this information allows researchers 

to estimate baseline surfaces for recession studies (Paradise, 1999) and specific rates of decay to 

validate models (e.g. Sunamura, 1996) or assess environmental change (Inkpen & Jackson, 2000). 

A known date of exposure also provides credence to direct comparisons of deterioration in 

different environments (e.g. Achyuthan et al., 2010), of varying ages (e.g. Mottershead, 1997), 

and repeated measurements to assess temporal changes (e.g. Thornbush & Viles, 2008). While 

most of these studies could be conducted on natural (non-worked) stone, definitive results and 

conclusions would be controversial due to uncertainties and necessary assumptions.  

Another unique trait of geomorphologic research on dressed stone includes the often 

dressed, uniform surfaces, which mimic laboratory-type conditions but in a real-world context, 

which permitt unique opportunities for discrete aspect and insolation analyses (Warke et al., 

1996; Paradise, 2002). While solar insolation is often disregarded as a direct agent of decay 

(Blackwelder, 1933; Reiche, 1950), it is indirectly associated with accepted weathering processes 

such as thermal expansion (Ollier, 1963) and hygric expansion (Weiss et al., 2004). Aspect and 

insolation have also been applied as surrogate measures for micro-environmental influences 

(Warke & Smith, 1998). In the context of Petra, Jordan, the establishment of an original date of 

exposure and surface orientation permits credible comparative examinations of degradation and 

aspect among otherwise ambiguous surfaces (Paradise, 1999, 2002).  

However, potential research on cultural stone is restricted, as it must adhere to a series of 

limitations set forth by protective heritage management agencies. While there have been urgent 

appeals for the inclusion of rock decay research (Burns, 1991), the sensitive nature of heritage 

management strictly inhibits invasive or destructive investigations, significantly limiting 

traditional geomorphologic methodology, which typically includes some form of sample 
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retrieval using coring or rock hammers. For this reason, nonintrusive methods must be adapted to 

provide holistic representations of deterioration via observational and extrinsic variables (Smith 

et al. 1992) without compromising historic integrity and context. Another limitation is contextual 

and self-evident: the distribution, quantity, and quality of dressed stone are confined to territories 

of human activity or occupation. This often excludes harsh or inhospitable environments like the 

Polar Regions or hyper-arid deserts, where settlements are reduced to scattered and sporadic 

oases. Current stone decay research mimics this pattern by concentrating in humid, temperate, or 

coastal environments and largely overlooking dressed stone in arid environments, like Petra, 

Jordan. 

 

3.3.2 Tafoni Research on Cultural Stone 

Despite the methodological limitations, utilizing cultural stone can be very advantageous 

to cavernous decay research, especially within heavily weathered and inconsistent mature cells. 

Within tafoni research, there are often temporal complications as natural baseline exposures and 

rates of decay can be difficult to determine. To bypass this obstacle, researchers generally use 

cell size as a surrogate to age, assuming larger cells are older cells, but accurate dates and growth 

rates remain vague. There have been a few attempts to create equations (Matsurkura & Matsouka, 

1991; Sunamura & Aoki, 2011) and models (Boxerman, 2005) for rates of tafoni development, 

but the consensus is that cell deterioration is irregular and extremely case-sensitive, thus making 

general age estimations problematic. This uncertainty can be averted when working with cells on 

datable surfaces. In fact, there have been a number of cavernous decay studies conducted on 

anthropogenic structures such as temples (Achyuthan et al., 2010), Anasazi and Mormon stone 

houses (Norwick & Dexter, 2002), artificial seawalls (Pestrong, 1988), and historic buildings 
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(Mottershead et al., 2003).  Most of these studies, however, mirror the environmental preferences 

of dressed stone research and focus on regions of extended human occupation, generally 

dismissing desert settlements.  

Nevertheless, studies of tafoni on dressed surfaces in arid settings have not been 

completely neglected (e.g. Norwick & Dexter, 2002) since the dearth of desert weathering 

research presents ample opportunities for unique and original analyses. In the southern Jordanian 

desert, Paradise (2013) observed an unconventional southern-heavy distribution of tafoni 

development on an isolated hewn block in the city of Petra, and hypothesized solar flux to be a 

factor.  

Incorporating the complexities of cavernous cell formation, solar thermal weathering, and 

cultural stone decay, this thesis utilizes supplementary empirical data from the same hewn 

monument in Petra, Jordan to corroborate an informational paucity – to verify insolation as a 

contributing element to tafoni genesis, and thus dressed stone deterioration, in arid environments 

and its implications for effective cultural heritage management.   
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Chapter Four: Methods 

 Dressed stone structures like the djinn blocks offer unique opportunities for rock decay 

(weathering) research. Contextually datable surfaces allow the creation of a false datum to 

analyze total surface recession (Paradise 1999, 2013), but this is not the only advantageous 

characteristic of Djinn X. While not a regular cube like its more recognizable counterparts 

throughout Petra, Djinn X’s faces are still relatively uniform in each compass direction, 

providing ideal 360˚ positioning for aspect and insolation analyses. Also, its isolated and slightly 

elevated location limits human interaction and the potential for significant anthropogenic decay, 

although there is minimal vandalism (e.g. fire residue and carved initials) on the northern face. 

The remoteness of Petra as a whole also removes certain elements such as urban or industrial air 

pollution as contributing factors, leaving only lithographic and environmental conditions as key 

decay mechanisms. In this subchapter, before addressing key assumptions and limitations, 

research parameters and methods are outlined and discussed.  

 

4.1 Aspect as Proxy for Insolation and Environmental Conditions 

 In attempt to avoid the proclaimed over-simplicity and singularity of rock decay research 

in desert environments (Smith, 2009), this research embraces the complexity of environmental 

conditions by using aspect and tafoni as proxies for insolation and rock decay respectively. The 

polygeneity of tafoni development represents intricate chemical, physical, and biological 

breakdown within the substrate and therefore offers a multifaceted proxy for general rock 

deterioration. Individual environmental influences of rock decay, such as insolation, are difficult 

to identify discretely, but can be holistically quantified via aspect (Williams & Robinson, 2000; 

Brandmeier, 2010). Warke & Smith (1998) revealed dissimilarities in rates of deterioration 
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between direct (solar) and indirect (laboratory oven) heating, thus validating the importance of 

exposure and insolation. Paradise (2013) used aspect discontinuity to analyze the impacts of 

insolation on the same Djinn Block X, but focused on surface recession rates, and restricted 

tafoni measurements to a single transect around the monument.  

 

4.2 Tafoni Morphometry and Micrometeorology    

Obtaining comprehensive measurements of each tafone on Djinn X was logistically 

problematic, as there are well over 2500 discrete cells, so a maximum variation sampling 

strategy was employed (Patton, 2005). The ten largest and ten smallest cells per face were 

measured in detail, within instrument capability, to examine the dimensional extremes of tafoni 

development as well as observe the differences between the smallest (assumed youngest) cells 

with larger (assumed oldest) cells. The block was initially divided into nine faces but one 

precariously abuts a steep drop and was excluded for safety purposes. The few cells on this face 

were noted but not measured nor included in the analysis. As this thesis analyzes environmental 

influences on stone decay, the data consist of two components: cell morphometric dimensions 

and interior/exterior micrometeorologic readings (Figure 4.1).  

 For most accurate estimation of cell volume (i.e. representing total mass of decayed 

material), multiple dimensions were recorded and then averaged. Depth, longest axis, shortest 

axis, vertical axis, and horizontal axis were all measured in centimeters via a Staedtler® Mars® 

field ruler. For visored cells, when the interior cell is larger than the opening, additional interior 

measurements were documented. Other physical characteristics like lichen overgrowth, 

cyanobacteria, flaking or spalling, and case hardening were also documented. A series of raw 

counts of all cells was also conducted to establish base measures for comparison. Every cell was 
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tallied and categorized into four discrete size ranges (< 2cm, 2-3.9cm, 4-5.9cm, ≥ 6cm) for both 

depth and average diameter. 

 Paradise (2013) advocated insolation influenced wetting and drying as well as heating 

and cooling cycles as causes for advanced decay so micrometeorological measurements were 

also taken for each recorded cell. Ambient temperature and humidity within the tafoni and 

approximately 15cm outside the cells were measured with a Dwyer® TH-series thermo-

hygrometer (+/- 5% relative humidity and +/- 1.5˚C accuracies). Internal and external 

temperatures and humidity have been analyzed in the past (e.g. Dragovich, 1969) but not in 

relation to aspect and insolation. In addition, surface temperatures were recorded for cell 

ceilings, cell floors, and external surfaces directly outside the openings with an Oakton® Mini-

IR Thermometer (+/- 2˚C accuracy). Time of day was also noted with each measurement to 

maintain perspective and prevent continuity errors. After collection, the detailed morphometric 

and micrometeorological measurements and their corresponding notes and additional facts were 

 
Figure 4.1 – Diagram showing all the morphometric and micrometeorological measurements for 
a single tafone. Note the square markers represent physical dimensions and the circle markers 
represent environmental readings. Diagram by K. Groom (2014).  
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entered into a Microsoft Excel™ worksheet for calculations and analysis. A spreadsheet was also 

created for the raw cell counts as supplementary information.  

Based on these parameters, this thesis uses tafoni development as a proxy to investigate 

insolation as a contributing element to cultural stone decay on a hewn djinn block in Petra, 

Jordan via these steps: 

1. Define panel extents and determine aspect for each face 

2. Record discrete count of total cells per panel for comparison  

3. Document observations of unique physical characteristics (e.g. lichen growth) 

4. Measure cell morphometry of the 10 largest and 10 smallest tafoni per panel 

5. Collect internal and external micrometeorological readings of same cells 

 

4.3 Assumptions and Limitations 

Before any detailed analysis, assumptions and limitations must be discussed. First, as is 

the case with many historic stonework analyses, this research assumes all surfaces under 

consideration were hewn at the same time and were originally flat without any preexisting 

cavities or discrepancies. Other more well known djinn blocks in Petra display decorative 

pediments and other ornaments, but Djinn X is not fully orthogonal in dimension and appears to 

have been left unfinished in parts with no evidence of decorative embellishments and, therefore, 

original hewn surfaces are assumed to have been even.  

Second, there has not been any significant human interference with natural decay 

mechanisms (i.e. quarrying or removing material post-construction) or abrasion from periodic 

flash floods that plague the region. The elevated position of djinn block isolates it from the heavy 
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tourist traffic and flood pathways in the Bab Al-Siq. Any anthropogenic deterioration would 

come from curious Bedouin goat herders and only to a minimal effect.  

Third, the environmental conditions are relatively the same now as they were at the time 

of construction. While there is evidence of climatic fluctuations throughout Southern Jordan and 

Israel (Lucke et al., 2005) it can be assumed that any effects of these changes on weathering rates 

average out over the last two millennia and are negligible within a human-scale timeframe.  

Fourth, this research works under the assumption that the maximum/minimum sampling 

style provides an accurate and holistic representation of all tafoni cells on the monument. There 

are over 2500 discrete cells present on Djinn Block X and it was logistically impossible to record 

every cell in detail.  

The last assumption is inherent in tafoni and cavernous decay research: that larger cells 

indicate older cells (Schumm, 1979). As exact cell initiation and growth rates are so inconsistent 

from study to study, common practice uses size as a proxy to age (e.g. Sunamura, 1996). In the 

case of Djinn X, since all surfaces are assumed to be contemporary, and fairly young from a 

geologic perspective, age becomes less important than rates of initiation and deterioration. There 

are a few models of cell development (e.g. Boxerman, 2005; Paradise, 2013) but this research 

assumes larger cells represent later stages of decay, which may or may not correlate with age. In 

any instance, the dated surface stipulates a maximum cell age of 2000 years. 

 Along with these assumptions, there are also several logistical and methodological 

limitations. To begin with, a few cells that might have qualified as minimum or maximum were 

precariously located and, therefore, omitted from the data set for safety reasons. Also, minimum 

dimensions and micrometeorological readings do not accurately represent the absolute smallest 

cells, as they were limited to openings of 1.5 cm in diameter or larger in order to insert the 
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nozzle of the pen hygrothermometer. Smaller cells were abundant on Djinn X but internal and 

external readings would be too minute to discern any useful information.  

Finally, as both a limitation and assumption, this research recognizes that the 

micrometeorological readings are static and do not indicate microclimatic patterns or any 

conditional changes over time. These data were obtained throughout different times of day and 

significant comparisons are both scale and time dependent. While the instruments are fairly 

 
Figure 4.2 – Horizon diagram for Djinn Block X. Note that even during the summer and winter 
solstices there is very little direct sunlight on the northern face and the southern face always 
receives at least some direct insolation. Paradise (2013). 
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precise, discontinuity in physical collection controls limits the potential for accurate 

comparisons. Nonetheless, each face was assessed under conditions that reflect those most 

common to that particular face (Figure 4.2). The southern face was the only face not measured in 

the shade. However, this merely mirrors the fact that, actually, there is no shade on the southern 

face as it is exposed to direct sunlight throughout the entire day. Inversely, The northern face 

doesn’t receive any direct sunlight and the eastern and western faces only get minimum sunlight 

during the day so they were all measured in the shade. Also, it is recognized that many of the 

micrometeorological differences between internal and external readings are minute and fall well 

within the window of error of the thermo-hygrometer, but the use of statistics illuminate 

meaningful relationships despite any potential data conflicts. As with all preliminary research, a 

certain level of uncertainty is permissible. Nevertheless, temporal and accuracy discrepancies 

will be considered and noted during analysis and discussion.  
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Chapter Five: Results and Analysis 

This research analyzed three primary components: morphometry analysis, micro-

environmental conditions, and their interrelationships with insolation and aspect. All three are 

inherently correlated but each component required specific calculations to divulge any 

significant relationships and patterns. Therefore, the analyses of each topic are discussed 

separately before providing a comprehensive assessment in the subsequent discussion chapter. In 

addition, both statistical and distributional analyses were conducted to provide more holistic 

results, as some relationships between aspects and the morphometric and micrometeorological 

parameters were better divulged on a non-linear logarithmic curve and, therefore, skewed when 

assessed purely statistically. 

 

5.1 Tafoni Morphometry Analysis  

This thesis study evaluated the shape, size, and distribution of decay forms, specifically, 

tafoni cells in Petra, Jordan. Since insolation and environmental influences were the primary 

independent variables, each cell’s dimensions and aspects were paired throughout the analysis. 

Ultimately, the morphometry section contained two separate subdivisions: overall cell 

morphometry and the influences of aspect (insolation) on decay. Both components utilized the 

detailed measurements but to different degrees and for different purposes. It should be noted, 

though, that while all 156 detailed measurements were included in the cell morphometry 

analyses, the aspect and insolation assessment only used the ten maximum and ten minimum cell 

values per aspect to ensure an even distribution of cell measurements. 
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5.1.1 Tafoni Cell Dimensions and Calculations 

 Since most tafoni cells, including those found on Djinn Block X, do not develop 

homogeneously (Mustoe, 1983), several dimensions were measured to insure the most accurate 

representation of each cell. Measurements were then averaged to obtain a single value to 

represent that cell during statistical calculations, as analyzing each measurement would be 

tedious and not as indicative to the cell as a whole. Depth represents the z-axis and only required 

a single measurement at the center of each cell so no additional modifications were needed. 

However, the horizontal, vertical, maximum, and minimum axes were averaged per cell for a 

single diameter value to avoid confusing cell values (i.e. one value per cell instead of four values 

per cell that could be mistaken as other cells). Both these horizontal/vertical and 

maximum/minimum relationships were considered when calculating the tafone volume, 

representing the volume of total material lost. Assuming the cell opening is the largest 

circumference of the cell, volume was calculated as half of an ellipsoid using the following 

equation: 

! =
4
3!(!!!!!!)

2  

Where r1 represents depth divided by two, r2 is the minimum axis divided by two, and r3 

represents maximum axis divided by two. The volume was calculated again using the horizontal 

and vertical axes instead of the minimum and maximum axes. The two volumes were then 

averaged for statistical and graphical analyses. An ellipsoid equation was used instead of a 

spherical model because the majority of cells on Djinn Block X are non-spherical and the 

ellipsoid model allowed more flexibility between length and height. Also, it was divided in half 

to accommodate the cell openings as the largest diameter of the cell, as was the case in most 

recoded tafoni on Djinn Block X. 
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 Before evaluating how insolation and environmental conditions influence the 

development of tafoni cells on Djinn Block X, the general method and patterns of decay must 

first be analyzed. Depths, average diameters, and volumes were all examined graphically in 

relation to increases in volume, as a surrogate for age, and in relation to each other to evaluate 

morphometric relationships. Recognizing the possible auto-correlation between these variables, 

the purpose was not to establish causality but to assess the degree to which both depth and 

diameter influence the growth of the cells. The gap between the minimum and maximum cell 

values was so extreme that the two subsets were graphed separately for the best visual 

representations. These analyses were then cross-referenced with raw cell counts and distribution 

on Djinn X to assess tafoni evolution and potential models of decay.  

 

 

Example Mirrored-Value Diagram 

 
Figure 5.1 – Diagram demonstrating the mirrored-aspect values for the example of 225˚N. 
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 5.1.2 Morphometry and Aspect 

Solar flux (insolation) impacting Djinn Block X has previously been estimated in annual 

mega-joules per square meter using conventional calculations (Paradise, 2013) and range 

between 175 MJ/m2 on the northern faces up to 3050 MJ/m2 on the southern aspects. For that 

reason, the morphometric data collected for this thesis was categorized to match these pre-

existing aspects and insolation values to avoid unnecessary duplication in the statistical analysis.  

However, as aspect values increase past 180˚ towards 360˚ statistical significance is 

skewed. Therefore, a mirrored-value matrix was created where aspect values increased from 000˚ 

to 180˚ back down to 000˚ (see example in Figure 5.1). Then, to find aspects with the greatest 

influences on cell development, twenty mirrored values where created starting at 000˚N and 

Mirrored-Aspect Values for Djinn Block X 

 
Figure 5.2 – Horizon diagram modified from Paradise (2013) to show the location of all 
mirrored-aspect values in relation to Djinn Block X.  
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increasing every 18˚ until 342˚N (Figure 5.2). In the matrix, the mirrored value is represented by 

180˚ with values decreasing in both directions to the opposing value replaced by 000˚. Then the 

new corresponding values for each face’s 360˚ aspect value were recorded in a new 

morphometric Excel™ spreadsheet until there were twenty unique spreadsheets, one for each 

mirrored value. Once this was completed, the coefficient of determination (R-squared) was 

calculated between aspect and different dimensions of cell development using the following 

relationship: 

• Independent Variable: Aspect from Mirrored Value Matrix 

• Dependent Variables: Cell Depth, Average Diameter, and Average Volume 

Counter intuitive to field observations, initial correlations were weaker than expected. 

The only parameter to show significant relationships with aspect was depth: r2 values ranging 

from 0.076 to 0.101 around 071˚N to 126˚N. Suspecting a cancelling effect in the advanced 

decay of both the northern and southern faces, the statistical analysis was split into two data sets. 

The first set excluded the northern (328˚N) cell dimensions and the second set excluded the 

southern (156˚N) cell dimensions, essentially analyzing the data as two half circles instead of a 

full 360 degrees. This revealed several more significant correlations for both depth and volume, 

though diameter remained generally insignificant. For the northern data set (i.e. omitting 

southern values), the most significant correlation for depth was r2 = 0.130 at 108˚N and for 

volume r2 = 0.157 at 324˚N. The southern data set displayed different patterns with the most 

significant R-squared values of depth r2 = 0.123 at 216˚N and a volume r2 = 0.076 at 342˚N.  
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5.2 Microenvironments and Micrometeorology 

 The second principal component of this research concerned microenvironments and their 

connection with aspect and tafoni cell development/stone decay. Similar to the morphometric 

data, when compared to aspect and insolation, the micro-environmental data were categorized to 

match the aspect values for Djinn Block X established by Paradise (2013) to maintain analysis 

consistency when compared to preexisting insolation values. Once all three variables (surface 

temperature, ambient air temperature, ambient humidity) were entered into the morphometric 

spreadsheets and mirrored-value aspect matrices, the differences between internal and external 

values were calculated for each microclimatic variable, noting that positive values indicated 

warmer and/or more humid conditions inside the cell compared to outside, and negative values 

meant cooler and/or dryer, while near-zero values indicate equal conditions.   

Micrometeorologic difference values (internal minus external) varied between the largest 

and smallest cells so each dataset is considered discrete and, therefore, discussed and compared 

to each other as stand-alone entities. Both distributional and statistical analyses were conducted 

to determine which, if any, microclimatic variables correlate with aspect and cell morphometry 

to significant degrees. Distributional analysis assessed the relationships among the 

micrometeorological conditions and aspect locations on Djinn X, however, most difference 

values are well below instrumental accuracies (+/-2.0˚C surface temperature, +/-1.5˚C ambient 

temperature, and +/-5.0% humidity), therefore pure distributional analyses are feasibly subject to 

instrument error and not discretely reliable. To counter potential instrumental-caused 

uncertainties, statistical analyses were also conducted to reveal significant associations. To 

address influence without neglecting the positive/negative relationships between aspect and 

microenvironment conditions, both correlation coefficients (r) and coefficients of determination 
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(r2) were calculated, where r divulges positive and negative correlations with aspect, and r-

squared establishes the degree of aspect’s influence on the absolute values of difference.  

Furthermore, as no independent or dependent variables could be confidently identified between 

the morphometric and micrometeorological parameters, only simple correlation tests were 

performed to identify meaningful positive or negative relationships between these variables. 

 

5.2.1 Surface Temperature 

 During data collection, three separate surface temperatures were measured per cell: 

external surface within 1cm of the cell opening, the cell ceiling, and the cell floor. Once entered 

into the morphometric spreadsheet, the cell ceiling and floor values were averaged to determine 

an overall internal surface temperature, which was used to calculate the surface temperature 

difference value. 

Surface Temperature Differences: Cell - Exterior 

 
Figure 5.3 – Graph displaying the temperature differences between interior and exterior 
measurements per aspect. Note the values below 0.00 represent cooler interior temperatures and 
values above 0.00 represent warmer interior temperatures relative to exterior temperatures. 
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Distributionally, surface temperature showed the tightest statistical association with 

morphometry among the environmental variables, though only fairly weak correlations exist  

(depth r = -0.370 and diameter r = -0.414). When compared to aspect, however, more stark 

patterns and relationship become apparent (Figure 5.3). Statistically, basic relationships remain 

relatively weaker with the most significant correlations of r = 0.383 from 000˚N and r = -0.413 

at 162˚N with determination coefficients peaking near r2 = 0.171 at 162˚N. 

 

5.2.2 Ambient Temperature 

 Another micro-environmental variable assessed was ambient air temperature within and 

without each tafoni cell. Before analysis, the difference between internal and external cell 

temperature was calculated. Again, a negative value signifies a cooler internal temperature than 

the external temperature and positive values denote warmer internal conditions. Then, similar to 

surface temperature, this value was compared to both morphometry and aspect.  

 In terms of morphometry, the relations appear nonlinear and statistically unrelated with r-

values ranging from depth r = 0.032 and diameter r = -0.051. Graphical examination did not 

reveal any other note-worthy relationships. Correlations with aspect are slightly more meaningful 

but still fairly weak with peak r-values around r = -0.186 at 126˚N and r = 0.186 at 288˚N and an 

insignificant greatest level of influence near 126˚N (r2 = 0.035). Graphical representation was 

scattered and did not show as clear of a pattern as surface temperature. 

 

5.2.3 Ambient Humidity 

 The last micro-environmental element examined was internal and external ambient 

humidity. The difference between internal and external humidity was calculated the same way as 
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ambient temperature except positive values mean a higher internal humidity and negative values 

indicate dryer internal conditions. These values were also compared to morphometric and aspect 

variables via simple linear correlations and graphical interpretation. 

 There appear to be some weak correlations between humidity and the morphometric 

variables. Statistically, humidity related to depth with an r = 0.134, diameter with r = 0.183, and 

volume with r = 0.143. Scatter plots did not show any other substantial patterns in terms of 

morphometry. Regarding aspect, the clearest statistical correlations were found to range from r = 

-0.245 at 162˚N and r = 0.245 at 306˚N. These correlation values are technically considered 

weak and the aspect to humidity relationship is not as stark graphically as aspect to surface 

temperature but still noteworthy (Figure 5.4). Influence is equally as weak with the highest r2- 

values of r2 = 0.060 at 162˚N and again at 306˚N. 

Ambient Humidity Differences:  Cell - Exterior 

 
Figure 5.4 – Graph displaying the humidity differences between interior and exterior 
measurements per aspect. Note the values below 0.00 represent lower internal humidity and 
values above 0.00 represent higher internal humidity relative to exterior readings.  
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 The findings of this research revealed that each morphometric and micrometeorological 

variable resulted in statistically varied degrees of influences on tafoni cell formation, and 

therefore dressed stone decay measured through linear modeling. Morphometrically, diameter 

remained fairly insignificant, even after the data were separated into northern and southern sets, 

where as the depth r2-values reached as high as 0.130 at 108˚N (east southeast) and 288˚N (west 

northwest) in the northern data set. Volume displayed the greatest connection with aspect with a 

peak r2-value of 0.157 at 144˚N (southeast) and 324˚N (northwest) for the northern data set, 

suggesting up to 15.7% of cell formation (i.e. stone deterioration) is due to insolation and other 

aspect-dependent stresses. The preliminary micrometeorological analysis identified surface 

temperature as the most relevant microclimate variable in terms of aspect (peak r2 = 0.171 at 

162˚N) and morphometry (depth r = -0.370 and diameter -0.414).  
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Chapter Six: Discussion 

The major thrusts of this research dealt with environmental influences on rock decay 

(weathering) and the morphometry of tafoni evolution on a hewn monument in Petra, Jordan 

through the analysis of three morphometric and three micrometeorological characteristics 

measured from a series of selected tafoni cells. Statistical, graphical, and cartographical analyses 

revealed complex associations among the variables. The discussion of these interrelationships 

was broken into three foci: (a) morphometric patterns and cell distribution related to aspect, and 

thus insolation, (b) micrometeorological measurements and their relationship to aspect and cell 

development, (c) tafoni evolution and decay. This study investigated tafoni growth modeling 

based on existing cells, distribution of the decay phenomena, and threshold theory.  

 

6.1 Insolation and Rock Decay Patterns 

 Surface recession patterns and rates of decay on Djinn X have been already attributed to 

differences in insolation (Paradise, 2013), but this thesis research expounds upon this to include 

the influences of insolation on tafoni development, as a surrogate for comprehensive stone 

decay. Multiple detailed morphometric dimensions (depth, longest axis, shortest axis, horizontal 

axis, and vertical axis) were averaged and used to calculate three primary characteristics: cell 

depth, average diameter, and estimated volume. Measuring all 2500+ cells on the block was 

problematic and therefore, following a greatest variation sampling method, the ten largest and 

ten smallest cells per face were measured. The large numerical difference between the largest 

and smallest cells skewed initial analyses and required separate examination, but most display 

similar patterns despite scale and, therefore, they are discussed individually and as a set. 
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6.1.2 Aspect and Depth 

 Corresponding with field observations, the quantitative analysis of tafoni depth and 

aspect (i.e. insolation) displayed clear distributional relationships on Djinn Block X. 

Morphometric assessments are based on the categorized raw count and field observations while 

statistical analysis employed the mirrored aspect value matrix and the detailed measurements 

organized to fit insolation values from Paradise (2013).  

Morphometrically, the highest concentration of deeper cells was found mainly on the 

northern and southern faces, but the deepest cells were on the northern (52.8cm) and western 

(36.5cm) faces. Although these values represent outliers in the dataset, average depth values per 

face reflect the same pattern with the deepest cells on the northern (22.5cm) and western 

Aspect and Depth: Low                                           Aspect and Depth: High 

 
Figure 6.1 – Graphs showing the high and low depth value distribution in relation to aspect. 
Note the different scales to the left of the graphs. 
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(17.3cm) faces (Figures 6.1). However, cell depths were measured from the back wall to the lip 

of the opening so cell depths are not necessarily equivalent to surface recession as some cells 

have developed on already receded surfaces, such as those found on the heavily decayed 

southern face. Therefore, had depth been measured to an original surface false-datum, like 

Paradise (1999, 2013), the southern face would display significantly deeper cells. Inversely, the 

shallowest cells (less than 2cm deep), which are much more abundant on Djinn X, are 

concentrated on the eastern and western faces (Figure 6.3), with the shallowest cells, both 

measured (0.6cm) and averaged (1.2cm), on the eastern face. These findings correspond with  

Depth and Aspect  
With Summer and Winter Solstices 

 
Figure 6.2 – Graph showing the depth r-squared values for the three mirrored-aspect matrices. 
Note the block receives significantly more direct sunlight during the summer (bottom sun) as 
opposed to winter (top sun). 
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surface recession patterns in Paradise (2013), which claimed the southern and northern faces 

have the highest rates of decay, 120-220 mm/millennia and 105-110 mm/millennia respectively.  

Statistically, the analysis of depth and aspect revealed different patterns, particularly 

among the three mirrored value ranges: full 360˚, excluding southern values, and excluding 

northern values (Figure 6.2). When all faces were examined (i.e. the full 360˚) there were only 

weak correlations peaking around r2 = 0.102 at 108˚N (east) and again at 288˚N (west). This 

suggests that the highest percentage of cell growth (on the z-axis) due to insolation, or other 

aspect dependent variables, is on the east and west faces, which are contrary to morphometric 

and distributional field observations. When the southern depth values were excluded from the 

Tafoni Morphometry – Depth 

 
Figure 6.3 – Footprint of Djinn Block X showing the raw count of cells per panel categorized by 
size for depth. Note the most common cell depth is less than 2cm. Groom (2014).  



65 

matrix, the correlations were slightly higher and followed a similar pattern but with much steeper 

slopes leading up the strongest r-squared value (peak r2 = 0.130 at 108˚N and 288˚N), signifying 

a sharper increase in insolation/aspect influence on decay. Contrariwise, when the northern 

values were excluded, the entire curve shifted several degrees and displayed a much different  

pattern. Significant correlations peaked around r2 = 0.123 at 036˚N and again at 216˚N, but 

remain high between 018˚N to 072˚N (north northeast quadrant) and 198˚N to 252˚N (south 

southwest quadrant). This configuration of north/south dominance is more congruent with field 

observations and previously established patterns of decay focused on the northern and southern 

aspects (Churchill, 1982).  

 

Tafoni Morphometry – Diameter 

 
Figure 6.4 – Footprint of Djinn Block X showing the raw count of cells per panel categorized by 
size for diameter. Note the different cells sizes for the southern face. Groom (2014).  
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6.1.3 Aspect and Diameter 

 Morphometric, distributional, and statistical analysis between diameter and aspect reveal 

significant relationships distinctly different than those between aspect and depth. As before, the 

morphometric and distributional assessments utilize the detailed measurements of the ten largest 

and ten smallest cells as well as the categorized raw counts while the statistical analysis 

encompasses the mirrored value aspect matrix and the aligned morphometric values.  

Morphometrically, there is a significantly higher concentration of larger (wider) cells on 

the southern face, followed by the northern face (Figure 6.4). The largest measured (81.5cm) and 

average (27.8cm) cells are also located on the southern face. Many of the larger cells show 

evidence of coalescing, when two or more cells merge to create one larger tafone (Mustoe, 

Aspect and Diameter: Low                                    Aspect and Diameter: High 

 
Figure 6.5 – Graphs showing the high and low diameter value distribution in relation to aspect. 
Note the different scales to the left of the graphs. 
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1983). The largest cells on both the southern and northern faces are outliers but the southern face 

displays significantly more coalescing and indiscrete (broken floors, ill-defined cell boundaries, 

or otherwise difficult to measure) cell expansion than any other face. The smaller (narrower) 

cells were heavily concentrated on the eastern and western faces with the smallest measured 

(1.6cm) and average (1.8cm) cells on the western face. Even though the smallest cells measured 

were not necessarily the smallest cells on the block, as the thermo-hygrometer couldn’t 

accommodate any cell smaller than 1.5cm in diameter, the western face had abundant cells right 

at this threshold, as reflected by the minimum-size data set (Figure 6.5).  

Diameter and Aspect 
With Summer and Winter Solstices 

 
Figure 6.6 – Graph showing the diameter r-squared values for the three mirrored-aspect 
matrices. Note the block receives significantly more direct sunlight during the summer (bottom 
sun) as opposed to winter (top sun). 
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 The statistical analysis of diameter versus aspect shows a distinct pattern among the three 

mirrored value matrices data seats (Figure 6.6). The initial 360˚ matrix revealed almost zero 

correlation and very little distinction between mirrored values aside from slight correlations at 

090˚N (due east) and 270˚N (due west). The northern (i.e. without south) and southern (i.e. 

without north) data sets, however, demonstrate higher correlations at 144˚N to 162˚N (south 

southeast) and again from 324˚N to 342˚N (north northwest). The stark difference between the 

separated data sets and the 360˚ evaluation supports the hypothesis that the heavily decayed 

northern and southern faces were having a cancelling effect in the statistics. The northern data set 

has the strongest correlation with r2 = 0.103 at 162˚N and r2 = 0.101 at 342˚N. The southern data 

set follows the same path but with slightly weaker relationships peaking around r2 = 0.078 at 

162˚N and r2 = 0.086 at 342˚N. This north/south pattern is dissimilar from the 360˚ and southern 

depth correlations but is more consistent with field observations of more heavily decayed 

northern and southern faces. 

 

6.1.4 Aspect and Volume 

 As a compilation of multiple variables, volume has its own unique relationships with 

aspect. Since the values are a result of multiple calculations and alterations, any statistical 

analyses may not be as reliable as measured variables like depth, but are still relevant and 

provide valuable information. Furthermore, volume can be used to represent total material lost, 

similar to Mol and Viles (2012), so volume morphometric examinations focus on the differences 

and similarities between depths’ and diameters’ distributions and how they interact in relation to 

total stone decay and aspect. Therefore, both the morphometric and statistical analyses were 
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conducted using the same techniques as depth and diameter, although resulting significances are 

different. 

Aspect and Volume: Low                                       Aspect and Volume: High 

 
Figure 6.7 – Graphs showing the high and low volume value distribution in relation to aspect. 
Note the different scales to the left of the graphs. The four largest volumes are extreme outliers 
and are not shown here to improve clarity. 

 Morphometrically, the distribution of cells with the largest and smallest volumes on 

Djinn Block X depends entirely on continuity between relative depth and diameter. Since the 

southern and northern faces have both deep and wide cells, they exhibit significantly higher 

average volumes (5446.6cm3 south and 1967.9cm3 north) than the eastern (181.9cm3) and 

western faces (500.2cm3), though these averages have been slightly skewed by massive 

coalesced cells on the northern (15795.4cm3 and 14610.8cm3) and southern (25454.2cm3 and 

20243.3cm3) faces. If these outliers are omitted, the northern face contains, on average, much 

larger cells (1131.6cm3) than the southern face (490.9cm3), although the discussed discrepancy 
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between depth and surface recession on the southern face is a factor. On the other end of the 

spectrum, regardless of having varied depths, small diameters on the western face dramatically 

reduce volume, as do the relative shallowness of eastern cells, which have a fair range of 

diameters. Furthermore, despite higher depths in the western cells, narrower openings result in 

consistently smaller volumes with only two outliers (2884.3cm3 and 1588.6cm3). The northern 

and southern faces were a little more spread out, but clusters of shallower and narrower cells on 

the north face result in lower volumes than southern cells in the minimum dataset (Figure 6.7). 

Patterns in the statistical evaluation of volume more closely resemble those of diameter 

Volume and Aspect  
With Summer and Winter Solstices 

 
Figure 6.8 – Graph showing the volume r-squared values for the three mirrored-aspect matrices. 
Note the block receives significantly more direct sunlight during the summer (bottom sun) as 
opposed to winter (top sun). 
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instead of depth. Once again, the 360˚ data set was fairly weak with only minor increases at 

090˚N (due east) and 270˚N (due west) but nothing substantial (r2 < 0.01). The northern and 

southern datasets exhibit steeper changes in correlation peaking between 144˚N to 162˚N (south 

southeast) and again between 324˚N and 342˚N (north northwest), and, in fact, the measured 

aspects of both the southern (156˚N) and northern (328˚N) faces lie within these arcs.  

 The northern dataset has a much stronger correlation (top r2 = 0.157 at 144˚N and 324˚N) than 

the southern dataset (top r2 = 0.077 at 162˚N and 342˚N)(Figure 6.8). These numbers imply that 

up to 15.7% of all material lost (volume) is directly influenced by insolation (or aspect-

dependent variables) on the northern face but only 7.7% on the southern face, which matches 

popular consensus regarding northern-centrism in aspect related decay (e.g. Churchill, 1982) but 

not field observations. The southern face appears significantly more decayed than any other face, 

and it is possible this deterioration is affecting the numerical analysis: many of the cells on the 

southern face have collapsed into non-discrete immeasurable surfaces and no longer fit tafoni 

parameters and, therefore, are excluded from the dataset. Nevertheless, these forms exhibit 

evidence of past cells (i.e. discrete cell roofs with no body or floor) and might represent an end 

product, or exit stage, of tafoni development and cavernous decay on Djinn X. So while 

statistical assessment attributes stronger aspect-dependent decay to the northern face, certain 

consideration must still be given to post-tafoni decay on the heavily deteriorated southern face.  

 

6.2 Microclimate, Environment, and Aspect  

The second thrust of this research assessed micrometeorological measurements, 

representing climatological and environmental influences, of measured tafoni cells and their 

relationship to aspect and overall cell morphometry. In addition to the detailed morphometric 
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measurements, internal and external surface temperatures, ambient air temperatures, and ambient 

humidities were recorded. The time of day and degree of direct sunlight were also noted per 

reading, though both varied throughout data collection and account for a degree of uncertainty. 

Although it is accepted these micrometeorological readings are static and do not represent 

comprehensive patterns over time, they still provided sufficient data for a basic preliminary 

investigation of the relationships between internal/external cell environments and aspect/cell 

morphometry.  

 

6.2.1 Surface Temperature, Aspect, and Morphometry 

Surface temperature was the first micrometeorological variable assessed, and presented 

very distinct relations to aspect. The maximum dataset exhibited a general tendency for internal 

cell temperatures to be cooler than external temperatures, especially on the southern face 

Surface Temperature and Aspect 

 
Figure 6.9 – Graph of r and r2 values for surface temperature variation along the 20 mirrored-
aspect values for Djinn Block X. 
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(average -1.92˚C), possibly resulting from higher insolation causing evapotranspiration drawing 

moisture from the decayed interior and, thus, cooling the surface (Mol & Viles, 2010). Although 

the western and northern faces barely have temperature differences exceeding +/-1.50˚C, the 

maximum dataset also displayed significantly greater variance between internal and external 

temperatures, up to 5.2˚C (south), than the minimum set, which mainly remain within +/-0.5˚C 

difference. Moreover, the minimum dataset shows a warmer trend within the cells, especially the 

western face, up to +1.45˚C. Also, analyzed internal surface temperatures were the average of 

two values, roof and floor, so buildup of decayed material on the northern and western faces 

might have skewed the floor temperature reading.  

Statistically, surface temperature had the strongest correlations to aspect among the 

micrometeorological variables, both positively (r = 0.383 at 000˚N) and negatively (r = -0.413 at 

162˚N)(Figure 6.9). This suggests that as aspects near 162˚N, internal surface temperatures are 

cooler than exterior values and when aspects continue back to 360˚/000˚, the correlation flips and 

interior surface temperatures become warmer. In terms of influence, insolation and aspect-related 

factors have significant impact on internal and external surface temperature differences on the 

southern (r2 = 0.171 at 162˚N) and northern (r2 = 0.141 at 342˚N) faces as expected (aspect is 

already often associated with thermal heating and expansion (e.g. Ollier, 1963)). And yet, from 

052˚N to 090˚N (east northeast) and again from 234˚N to 270˚N (west southwest) both influence 

(r2) and correlation (r) are almost non-existent, suggesting minimal insolation influence at these 

aspects. This north/south dominant pattern fits popular hypotheses regarding aspect, as well as 

morphometric relationships (e.g. Churchill, 1982). Surface temperature displays significant 

correlations with both depth (r = -0.317) and diameter (r = -0.387), insinuating that as cells 

increase in size interior surface temperatures are more likely to be cooler than exterior surfaces, 
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which could be due to active capillary action within the cell walls manipulating moisture regimes 

(Mol & Viles, 2013). Near-surface moisture regimes have been associated with tafoni 

development (Mol & Viles, 2011) so it might be reasonable to stipulate that differential 

interior/exterior surface temperatures also contribute to cavernous decay and tafoni evolution.  

 

6.2.2 Ambient Air Temperature, Aspect, and Morphometry 

 The second micrometeorologic variable, ambient air temperature, mirrored some of the 

patterns found with surface temperature but difference values were not as consistent and aspects 

with the greatest statistical significance are dissimilar. The maximum dataset showed generally 

cooler cells on the southern face (average difference = -0.10˚C), fairly scattered values for 

eastern and northern faces tending to be slightly warmer, and nearly identical internal and 

external values on the western face. The tight consistency on the western face may have to do 

Ambient Air Temperature and Aspect 

 
Figure 6.10 – Graph of r and r2 values for ambient air temperature variation along the 20 
mirrored-aspect values for Djinn Block X. 
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with prevailing wind patterns or other weather-related factors on the day of recording. There is 

also a much higher concentration of bird, insect, and spider nests in the cells on the western face 

that might suggest more consistently mild conditions. The minimum dataset exhibited a different 

pattern with mostly cooler cell temperatures on eastern, southern, and northern faces and a stark 

warm trend to the west, with only positive values. There are a few exceptions in the southern 

value set, but overall, the smaller cells all reveal cooler conditions, except on the western face. 

This western discrepancy may be the result of inconsistent times and/or recording conditions as 

the western face was measured over a period of two days, beginning in the afternoon (13:32-

14:25) when the face was in direct sun and finished the following morning (08:19-09:07) when 

the face was shaded, unlike most of the other faces that were measured in one sitting. Also, high 

winds skewing ambient air temperature and humidity readings cut several research days short 

and may possibly account for a certain level of variability within the data.  

Consequently, statistical analysis reflects much lower correlation values (both r and r2) in 

an east/west-dominated pattern (Figure 6.10). Nearly half surface temperature, the strongest 

correlations between aspect and ambient air temperature are r = -0.186 from 108˚N to 126˚N 

(east southeast) and r = 0.186 from 288˚N to 306˚N (west northwest), mirroring the warmer 

interiors on western faces and cooler interiors on eastern faces. Insolation influence is even less 

substantial with the highest r2 of only 0.035 at 126˚N and 306˚N. Morphometry also shows 

particularly weak correlations (depth r = 0.158 and diameter r = 0.016), which might suggest 

ambient air temperature is not a key component in tafoni development on Djinn Block X. 
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6.2.3 Ambient Humidity, Aspect, and Morphometry 

The final micrometeorological variable examined in relation to aspect and morphometry 

was internal/external ambient humidity levels. Distributional patterns are not especially distinct 

for this variable, as both the minimum and maximum datasets exhibit relatively low difference 

values (mostly within +/-0.5% relative humidity for smaller cells and +/-1.0% for larger cells) 

with little variance among the aspects. Nevertheless, there are a few patterns worth discussing.  

One potentially significant relationship is a minor tendency for higher internal humidity 

levels on the northern face in both minimum and maximum datasets. These wetter conditions 

could reflect the lack of direct sunlight on this face resulting in longer wetting and drying cycles 

within the cells, particularly the larger and deeper tafoni, corresponding with generally cooler 

internal temperatures on the same face (Mol & Viles, 2013). Inversely, internal cell conditions 

are slightly drier on the eastern and western faces in both minimum and maximum datasets, 

Ambient Humidity and Aspect 

 
Figure 6.11 – Graph of r and r2 values for ambient humidity variation along the 20 mirrored-
aspect values for Djinn Block X. 
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possibly due to varied diurnal sunlight but the aspect variance is miniscule and barely noticeable.  

Statistical analyses revealed clearer, but not exceptionally significant, humidity 

correlations with aspect (Figure 6.11). The strongest relationships are on the southeast (r = -

0.245 and r2 = 0.060 at 162˚N) and northwest (r = 0.245 and r2 = 0.060 at 306˚N) faces, although 

correlations remain relatively higher (r > 2.3) for more of the northwest quadrant (288˚N – 

342˚N) than to the southeast. The negative correlations, denoting drier interior conditions, 

encompass nearly the entire southern portion of Djinn X (from 072˚N to 216˚N) and coincide 

with the faces that receive the most concentrated sunlight, which may be causing more rapid and 

intense drying (Paradise, 2013). Morphometrically, humidity is more closely tied to diameter (r = 

0.243) than depth (r = 0.128), but both have positive correlations, signifying larger cells are more 

likely to contain higher levels of humidity than smaller cells. The implications of this 

relationship to tafoni development correspond with the hypotheses presented by Paradise (2013): 

that the greater decay on the northern face is due in part by longer wetting and drying periods 

from lack of direct sunlight and, inversely, that the advanced decay on the southern face is 

caused by stresses from intense solar influx instigating more extreme wetting and drying cycles. 

 

6.3 Tafoni Morphometry and Threshold Modeling 

The third thrust of this research examined cell morphometry independently from aspect, 

although aspect influences are still discussed, culminating in a threshold-based tafoni growth 

model from existing cells on Djinn Block X (Figure 6.12). This component includes many of the 

previously discussed phenomena and decay patterns but organizes them to explain the plethora 

of different tafoni cell types present, which are unexpected given the relatively recent date of raw 

surface exposure (~2000 years). The model presented here is composed of episodic stages of  



78 

Stage Based Threshold Tafoni Genesis Model 

 
Figure 6.12 – Descriptive stage based tafoni genesis model. Note the shifts in depth and 
diameter as volume increases (representing the passage of time) and the cell progress into later 
stages of decay.  
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decay, as opposed to continuous decay models (e.g. Sunamura, 1996), and based on recorded cell 

types on Djinn Block X so the different observed cell types (i.e. stages) are described in detail, 

and then the supporting hypotheses and threshold theory is discussed and justified. 

 

6.3.1 Observed Tafoni Cell Types and Descriptive Genesis Model 

Based on empirical measurements of observed tafoni and threshold theory, the tafoni 

genesis model categorizes each cell type into four distinct stages of decay; with an optional exit 

stage if certain decay rate thresholds cannot be maintained. All observed cell types on Djinn 

Block X were organized into these stages by shape and decay patterns (ratio between depth and 

diameter). The order and transitions between stages were determined by assessing the 

relationships of measured depths and diameters of all recorded cells as volume increases. The 

purpose of this assessment is not to determine the exact causality of dimensional change but to 

identify points at which one decay rate outpaces the other and marks the advancement into the 

next stage of decay. Tafoni cells on Djinn Block X displayed several shifts between depth 

(interior) and diameter (exterior) growth rates depending on the stage of decay, suggesting the 

presence of threshold response between stages. Detailed descriptions of each stage of decay and 

the cell types of which they are comprised are provided, as well as the markers of stage 

progression within the model. 

 

Stage 1: Simple or Linear Cells 

Most commonly associated with the terms tafoni and pitting, Simple Cells are the most 

abundant cell type present on Djinn Block X and are characterized as being fairly small, discrete, 

and spherically shaped with width to height to depth ratios remaining around 2:2:1 (Figure 6.13). 
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Simple Cells aligned between two resistant bedding planes develop linearly and are given the 

supplementary diction of Linear Cells but all other cell characteristics remain analogous. Newly 

initiated and particularly small (< 0.5cm3) cells fall within this first stage.  

 Simple and Linear Cells were recorded on every vertical surface of Djinn Block X, 

although with varying quantity and distribution per aspect. The less decayed surfaces (i.e. 

western and eastern faces) displayed significant Simple Cell populations while on the more 

heavily decayed surfaces (i.e. southern and northern faces) many of the cells have already 

progressed into later stages of decay. The vast majority of cells on the least decayed eastern face 

fall within the first stage of decay. The relative uniformity of Stage 1 cells is lost once the cell 

reaches a certain size (~1.7cm3 on Djinn X) when diameter, height, and depth begin to 

experience differentiated decay rates due to the myriad of physical, chemical, and biological 

decay processes affecting the stone and they advance into Stage 2.  

Stage 1: Simple and Linear Cells 

 
Figure 6.13 – Cross section of Stage 1 cells (left) and photograph of the western face of Djinn 
Block X with both Linear and Simple Cells (right). Photograph by K. Groom (2013).  
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Stage 2: Tunneled or Hooded Cells 

 While cell openings continue to decay mostly uniformly (1:1), at some point cell depth 

becomes more pronounced and interior decay outpaces surface decay (possibly due to minimal 

case hardening or core softening) advancing cells from Stage 1 into Stage 2. The distinction 

between Tunneled and Hooded Cells involves the direction of the greatest decay. Tunneled Cells 

are curved or angled so that the deepest point of the cell, or the cell back, is non-perpendicular to 

the cell opening. In the large majority of Tunneled Cells on Djinn X, this curvature is towards the 

left, despite panel aspect or cell location on the block. Hooded Cells are more spherical than 

Tunneled Cells, with larger interior dimensions than cell openings, creating distinctive hoods, or 

visors, along the upper lip of the cell opening (Figure 6.13). Many Hooded Cells tunnel upward 

slightly but the cell backs retain primarily perpendicular to the opening.  

Stage 2: Tunneled and Hooded Cells 

 
Figure 6.14 – Cross section of Stage 2 cells (left) and photograph of the eastern face of Djinn 
Block X with both Tunneled and Hooded Cells (right). Photograph by K. Groom (2013).  
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Stage 2 cells were recorded on all faces, though very few on the eastern (cells too small) 

and southern (decay too advanced) faces. However, numerous cells on the northern and western 

faces have developed tunnels and hoods and, in fact, this stage dominates western cell types. The 

general size of Stage 2 cells varies depending on lithological constraints/weaknesses and cell 

proximity/surface density. For instance, Linear Cells are geologically limited so it is unlikely for 

them to evolve into spherical Hooded Cells, but, if the cells are located in an internally friable 

stratus (possibly due to subsurface salts or moisture activity) then Tunneled Cells could develop, 

although they would still be constrained and fairly small (rare on Djinn Block X). 

Distributionally, isolated cells are unimpeded and have the potential to become larger (~5.4cm3 

on Djinn X) before advancing to Stage 3, while closely packed cells merge into each other 

without requiring substantial growth.  

Stage 3: Coalesced or Netted Cells 

Coalesced and Netted Cells reference cavities composed of multiple adjacent cells that 

have merged into a single distinctive void. Coalesced Cells have irregular, often bulbous, cell 

openings, uneven cell backs, and display remnants of previously individual cells such as 

spherical pockets throughout the cell while still maintaining identifiable boundaries and the 

appearance of a single tafone (Figure 6.15). Netted Cells are a previously unrecorded tafoni 

phenomenon composed of a series of cell interiors that have amalgamated under the surface but 

the discrete cell openings have remained intact, essentially creating a large hollow cavity with 

the illusion of individuality (Figure 6.16. Eventually, the proverbial “net” will decay 

transitioning Netted Cells into Coalesced Cells without exiting Stage 3. This stage of decay also 

marks the evolution from single cells to joined cells that is culminated in a reversal of decay 

intensity: Depth begins to slow as diameter rapidly increases (i.e. more decay near the original  
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Stage 3: Coalesced Cells 

 
Figure 6.15 – Cross section of Stage 3 Coalesced Cells (left) and photograph a Coalesced Cell 
on the northern face of Djinn Block X (right). Photograph by K. Groom (2013).  

Stage 3: Netted Cells 

 
Figure 6.16 – Cross section of Stage 3 Netted Cells (left) and photograph a Netted Cell on the 
southern face of Djinn Block X (right). Photograph by K. Groom (2013).  
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surface than the interior of the cell) when two or more cells merge. In general, Stage 3 cells (both 

Coalesced and Netted) are deeper, and considerably wider, than single cells (Stage 1 and 2) and 

are, therefore, among some of the larger cells on Djinn Block X (e.g. 1441.2cm3 in Figure 6.15). 

Coalesced Cells are found on the northern, western, and southern faces but the majority are on 

the north and south. The largest collection of Netted Cells is located on the western face but with 

relatively smaller (~1.5 to 2.5cm) cell openings, where Netted Cells on the southern face have 

larger individual openings (~3 to 4.5cm). As long as Stage 3 cells maintain identifiably discrete 

cavities they have the potential to become quite large, like the immense caverns on an adjacent 

cliff face facing Djinn Block X, and do not advance to Stage 4. 

 

 Stage 4: Vertical Pans and Indiscrete Cells 

 Stage 4 cells represent the most advanced stage of decay and are separated into two 

categories, Vertical Pans and Indiscrete Cells, depending on lithological restraints, much like the 

difference between Simple and Linear Cells. Similar to the formation of horizontal pans in 

gnamma pits (Paradise, 2012), Vertical Pans are wide flat cells whose depth and diameter 

development have been heavily influenced by lithological restraints resulting in fairly shallow, 

rectangular cavities with flat backs. The limited depth of many Vertical Pans could reflect 

possible direct transitions from Linear Cells, bypassing Stages 2 and 3, which is supported by the 

overall scarcity of linear patterns in both of these stages and the close proximity of Linear Cells 

and shallow Vertical Pans on the western face of Djinn Block X (Figure 6.17). The only other 

Vertical Pans are located on the southern face and are actually odd combinations of Vertical  

Pans and Indiscrete Cells. 
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Indiscrete Cells are large irregular cavities composed of conjoined single and coalesced 

cells that have decayed beyond discrete identification (i.e. no longer display clear cavity  

boundaries) making them difficult to measure (Figure 6.17). There are only a few such cells on 

Djinn X’s northern face but the majority is on the heavily decayed southern face. The few 

Indiscrete Cells on the northern face show evidence of water runoff, which explains the more 

advanced decay, as opposed to the southern face where both forms of Stage 4 cells abound. The 

four large outliers (in volume) for the collected dataset fall within this stage of decay (e.g. 

25454.2cm3 on the southern face). There is also potential for Stage 4 cells to either stabilize to 

the point that new cells can initiate on the inner walls (as seen on the northern face) and restart at 

Stage 1 or destabilize and deteriorate into an Exit Stage, where they no longer fit the parameters 

to be characterized as tafoni, as is evident on the southern face.  

 

Exit Stage (Optional): Post-Tafoni Voids 

Predominantly found on the severely receded southern face, Post-Tafoni Voids are 

cavities that display certain evidence of previous tafoni activity, such as curved roofs, but the rest 

Stage 4: Vertical Pans and Indiscrete Cells 

 
Figure 6.17 – Cross section of Stage 4 Vertical Pans and example on the western face of Djinn 
Block X (left) and cross section of Stage 4 Indiscrete Cells and example on the northern face of 
Djinn Block X (left). Photographs by K. Groom (2013).  
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of the void has decayed. Most Exit Stage cells on Djinn Block X are near the base of the block 

and have developed features more congruent with drapery or rillen, as opposed to tafoni (Figure 

6.18). The wide array of Post-Tafoni Voids sizes found on Djinn X might also suggest that cells 

in any of the four stages have the potential to deteriorate beyond tafoni distinction, thus making 

the Exit Stage optional and not secured linearly within the model. The concept of an Exit Stage 

also substantiates the presence of basic decay rate thresholds that must be met for tafoni to 

continue existing.  

Exit Stage: Non-Tafoni Voids 

 
Figure 6.18 – Cross section of Exit Cells (left) and photograph of Non-Tafoni Voids on the 
southern face of Djinn Block X (right). Note the resemblance to stone drapery. Photograph by K. 
Groom (2013).  

As evident on Djinn Block X, advancement from one stage to the next is not solely 

dependent upon size, but patterns of decay. For example, there are Exit Stage cells smaller than 

Stage 3 cells and there are Stage 2 cells larger than Stage 4 cells. This only means that the 

interior cell growth and exterior overall surface recession rates of decay differ at different stages. 

Ultimately, the importance of this model is to categorize tafoni cells by decay patterns and rate 
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thresholds as opposed to the praxis of using size as the sole surrogate for age (Figure 6.19). 

Essentially, a cell can remain in the same stage of evolution as long interior and exterior decay 

rate ratios remain consistent. For example, it would be possible for a sizeable cell to never leave 

Stage 1 as long as it remains spherical and simple in shape. 

 

6.3.2 Thresholds in Tafoni Development 

While the application of threshold theory in rock decay research remains limited 

(Paradise, 1999), threshold responses are abundant in geomorphologic processes (Schumm, 

1979): Dew points, slope failure (Carson, 1971), and, evident from decay patterns on Djinn 

Block X, tafoni evolution. There have been studies addressing thresholds in tafoni development 

Cross Sections of the 5 Stages of Tafoni Evolution Model 

 
Figure 6.19 – Cross sections of the five proposed stages of tafoni evolution including Exit Stage 
cells. 
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(although not directly), such as McBride and Picard (2000) who witnessed a change in cavity 

shape once the cell exceeded 20cm, but very few studies exist concerning the thresholds required 

for tafoni to exist at all (e.g. Achyuthan et al., 2010). Once initiated, a cell develops if the interior 

of the cell decays faster than the surface on which it is located, otherwise the surface decays in 

tandem with the cell and no shape would form, thus restricting tafoni development. This kind of 

rate-threshold relationship has already been accepted in the distinction between efflorescence  

and subflorescence of soluble salts (e.g. Rodriguez-Navarro, 1999; Huinink, 2004), so it is not 

unreasonable to apply similar rate and formation thresholds to tafoni progression (Figure 6.20).  

The stage model presented here addresses these thresholds using the ratios between depth 

Example of Possible Threshold Response in Tafoni 

 
Figure 6.20 – Graph showing the exaggerated shape and steps in a threshold response system 
corresponding with the 5 Stage Model. Groom (2014).  
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and diameter as proxies for internal and external decay, respectively, driven by varying degrees 

of intrinsic and extrinsic influence at different stages. Certain features on Djinn Block X exhibit 

the two extremes of this ratio: Netted Cells occur when internal decay vastly outpaces external 

decay and Post-Tafoni Voids represent equal or greater external growth. The array of cell types 

and the subtle, but vital, distinction between each type supports the concept that there are decay 

thresholds that must be met for tafoni to occur, but there are also a series of other thresholds that 

determine when cells evolve into later stages of decay, and that cell shape and size are not 

random post-initiation as claimed by Pestrong (1988). Within Stage 1, both internal and external 

decay rate remain fairly equal, thus the uniform shapes. A cell progresses into Stage 2 when 

there is a shift and internal decay accelerates more than external (diameter) growth. This decay 

threshold could represent disparities between intrinsic and extrinsic variables in tafoni evolution. 

For example, a cell might meet this threshold and advance to Stage 2 if there is a breach in 

lithological barriers stabilizing the surface that do not exist, or even weaken, the rock deeper in 

the substrate, such as case hardening or core softening (Conca & Rossman, 1982; 1985). The 

threshold between Stages 2 and 3 is possibly the most prominent, as it represents the transition 

from multiple cells to a single void, dramatically increasing both depth and diameter. Less 

obvious, the threshold between Stages 3 and 4 are more qualitative as they represent definitive 

shifts more than dimensional shifts: a cell advances from Stage 3 to 4 when it either decays to the 

extent of its lithological restraints (Vertical Pans) or beyond the distinction of a singularly 

definable void (Indiscrete Cells). 

In fact, the relationship between intrinsic and extrinsic influences on tafoni evolution 

involves several levels of threshold response. For example, intrinsic variables such as iron 

content (Paradise, 1999) and permeability (Somerton & Gupta, 1965) have been determined to 
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affect decay rates and processes within certain thresholds. Similarly, extrinsic stresses such as 

intense heating impact the decay of salt saturated sandstones (Somerton and Gupta, 1965) or 

sandstones of different mineral compositions (Somerton, 1961; Zhang et al., 2005), but only 

once certain temperature thresholds are met.  

 Even within the Disi sandstone of Djinn Block X different minerals and compositions 

may be influencing threshold response. Previous petrologic studies in Petra have found that 

higher carbonate levels, like those found in the Disi formation, increase rates of decay due to 

contrasting linear pro-axial expansion and contraction of calcite when heated beyond the 

temperature threshold of 50˚C (Somerton, 1992), conditions common in Petra (Paradise 1995, 

1999). In addition, the higher concentrations of iron in the Umm Ishrin, known to have intrinsic 

decay thresholds (Paradise, 1999), might explain the stark differences of decay between the 

interdigitated upper component of Djinn Block X and the highly decayed lower section. 

Threshold Response Modeling on Djinn Block X 

Cell Depth                                                           Cell Diameter  

 

Figure 6.21 – Graphs showing evidence of threshold response (periodic jumps in size) based on 
empirical measurements of both depth (left) and diameter (right). Note the x-axis represents time 
as that dimension increases.  
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 Even more integral to tafoni development, the analyses of depth, diameter, and volume 

all exhibit sudden increases in value after fairly steady growth corresponding within the stage 

model (Figure 6.21). Such growth spikes might suggest episodic decay events, meaning the 

presence of threshold response decay. These periodic jumps in dimensions are even clearer when  

examined logarithmically (Figure 6.22). Identifying these thresholds could radically alter tafoni 

age and decay rate estimations, which have to this point been based on steady rates of decay, 

whether they are exponentially decreasing (Sunamura, 1996), along an S-Curve (Sunamura & 

Aoki, 2011), or non-linear (Norwick & Dexter, 2002). More research would be needed to 

numerically identify these thresholds, but the evidence found on Djinn Block X supports the idea 

that the threshold response exists in tafoni evolution.   

Logarithmic Threshold Response Modeling on Djinn Block X 

 
Figure 6.22 – Graph showing the logarithmic relationship between depth and diameter as 
volume increases (representing the passage of time). Note the large jump in diameter as depth 
progresses in smaller steps. 
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Chapter Seven – Conclusions and Implications 

 Cultural resource and heritage management (particularly regarding cultural stone), rock 

decay (weathering) research, and tafoni assessment/evolution are all interconnected and the 

multifaceted structure of this thesis research holds significant implications to each and the 

interrelationships among them (Figure 7.1). The distinctive features of cultural stone, such as 

established dates of exposure, largely orthographic and uniform surfaces, and known 

architectural elements and techniques, permit certain assumptions to be made in rock decay 

research that would not be possible with “natural stone”. These assumptions reduce uncertainties 

within geomorphologic research furthering our understanding of stone deterioration and rock 

decay phenomena, like tafoni development and the creation of a stage-based model of cell 

progression. This model then has the potential to improve evaluation techniques for dated 

 

Figure 7.1 – Diagram displaying the interconnectedness and interdisciplinary implications of 
rock decay science, cultural heritage management, and tafoni evolution. Diagram by K. Groom 
(2014).  
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surfaces and effective pre-conservation assessment of cultural stone, thus completing the cycle. 

The particular characteristics of Djinn Block X (e.g. isolation, geology, dimension, and form) 

and the research presented here match this symbiotic cycle. Therefore, conclusions and 

implications consider each beneficiary (cultural resource and Heritage management, general rock 

decay research, and tafoni evolution and development) within the context of the three primary 

research thrusts: morphometry and aspect, microclimate and aspect, and independent tafoni 

genesis.  

 Aspect, as a surrogate for insolation, proved to intimately influence several elements of 

decay on Djinn Block X, both in terms of cell morphometry/distribution as well as cell 

microclimates and micrometeorologic measurements. Observational and statistical analyses of 

basic cell morphometry displayed significantly greater diameters (wider cells) and cell depths on 

the southern and northern faces, ultimately displaying the most material lost (highest volumes) is 

on the southern face. Despite containing over 1700 separate tafoni, the western face only 

displayed smaller, less advanced cells and the eastern face was nearly devoid of any substantial 

tafoni development. While contradicting the north-centric convention regarding aspect 

dependence (Churchill, 1982), these results parallel Paradise’s (2013) findings of greatest surface 

recession on the southern aspect of Djinn Block X.  

Micrometeorologic analyses also correspond with aspect, particularly regarding internal 

and external surface temperatures. Considerable variation among the ambient air temperature and 

humidity measurements made it difficult to identify any meaningful correlations but surface 

temperatures displayed clear relationships with cell morphometric dimensions as well as 

aspectual location on Djinn Block X. Morphometrically, larger cells have stronger negative 

correlations with differences in internal and external surface temperatures. In other words, as a 
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cell grows it becomes more likely that the interior cell walls will be cooler than the exterior 

surface on which it is located. The tendency for cooler interior surfaces is also considerably 

higher on the southern face than any other aspect, which could be an auto-correlation as most of 

the block’s largest cells are found on this face. When the two factors are considered together, 

however, possible causalities become clearer. Paradise (2013) attributes the advanced recession 

of the southern face to notably higher insolation, causing more severe wetting and drying cycles, 

and rapid drying cycles are known to increase capillary action in sandstone causing a noticeable 

drop in surface temperatures (Mol & Viles, 2013). Therefore, prolonged insolation not only 

intensifies the drying cycle, effectively deteriorating the subsurface and promoting cavernous 

decay through the movement and deposition of moisture and salts (Mol & Viles, 2011), but also 

simultaneously decreases internal surface temperatures in the process. Ultimately, the findings of 

this thesis suggest insolation and other aspect dependent environmental factors have greater 

influence on rock decay and, consequentially pre-conservation assessments of cultural stone, 

than previously considered. Recognizing the distinct relationships between aspect (insolation) 

and decay can help heritage management agencies effectively identify monuments in higher risk 

of deterioration based on aspectual location and amount of prolonged insolation. 

 In addition, an investigation of the unusual variation among tafoni shapes, sizes, and 

other characteristics on Djinn Block X inspired the creation of a threshold tafoni growth model 

that offers an alternative context in which cavernous decay can be evaluated and assessed. 

Instead of trying to determine tafoni age or exact rates of decay purely based on size, which has 

been the primary method for years (e.g. Sunamura, 1996) and a major assumption in this 

research, the proposed model also involves the ratios between internal and external decay rates 

using empirical data and threshold theory. Although the model was generated independently 
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from aspect assessment, the resultant stages of decay follow similar distributional patterns as the 

detailed statistical analyses: The majority of cells on the least-decayed eastern face were only 

stage 1 and 2, western cells mainly stayed within stages 1 – 3, the northern face displayed all 

stages of decay but the majority fell within stages 2 – 4, and most cells on heavily decayed 

southern face were stage 3 or 4 with the addition of several large exit stage voids. This 

consistency helps validate the model’s ability to visually assess tafoni deterioration without the 

need for detailed dimensional measurements. 

In summary, the findings and repercussions presented in this research include: 

• Empirical evidence displaying aspect-dependence in tafoni development 
collaborating with current literature advocating for insolation as an extrinsic 
driving force of decay. 
 

• Statistical correlations between micrometeorological conditions and cell aspect 
and morphometry suggesting microclimatic variables influencing cell decay. 

 
• Morphometric indication of threshold response in tafoni evolution challenging 

dominant steady-rate weathering/tafoni research praxis and analysis. 
 

The multiple interrelated components of this research demonstrate the complexity of 

stone decay and the workings of the natural world, but it also illustrates the unending potential 

for future research. In the specific case of Djinn Block X, there are obvious lithological elements 

influencing decay that could correspond with geologic thresholds proposed by Paradise (1995), 

however they would require more detailed laboratory examinations to identify and obtaining 

petrologic sampling from Petra is a complicated procedure regulated by UNESCO and the Petra 

Regional Authorities. Also, diurnal and more consistent micrometeorological measurements for 

ambient air temperature and humidity could divulge more meaningful relationships with cell 

morphometry and aspectual distribution, as the measurements in this thesis were admittedly 

static and limited. There is also infinite potential to expand the scope of the methods to include 
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other monuments within Petra, such as the other djinn blocks, and even tafoni outcrops under 

similar arid conditions, like those found in the southwestern United States. And while the stage-

based model postured here is not necessarily meant to be universal, certain stipulations can be 

made that such a model could be adapted to suit any climate or geologic substrate, and even 

allow direct comparisons of tafoni development from various locations and environmental 

frameworks.  

Ultimately, the research presented here corroborates certain facets of accepted rock decay 

theory and processes, such as surface temperature affecting moisture and surface deterioration, 

but it also provides evidence supporting more controversial topics like insolation as a direct 

agent of decay and the presence of threshold response in tafoni development and evolution. With 

continued extensive research, it is possible for these disputed decay processes to be better 

comprehended and explained. So, although the extent of this thesis work is limited to Djinn 

Block X in Petra, Jordan, it lays the foundation for future research to further increase our 

understanding of tafoni evolution, rock decay thresholds, and effective cultural stone assessment 

worldwide.   
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A.1: Interdigitation on one of the djinn blocks in the Siq. Photograph by K. Groom (2013). 

 
  
 
 
A.2: Tour horse at the base of one of the tombs before the Siq. Photograph by K. Groom (2013). 
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A.3: Iron banding in the sandstone in the Siq. Photograph by K. Groom (2013). 

 
 
 
 
A.4: Tour horse cart in the Siq. Photograph by K. Groom (2013). 
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A.5: Drapery formations in the Siq. Photograph by K. Groom (2013). 

 
 
 
 
A.6: Treasury (al-Khazneh) at the end of the Siq. Photograph by K. Groom (2013). 
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A.7: Bedouin camel guide in front of Treasury (al-Khazneh). Photograph by K. Groom (2013). 

 
 
 
 
A.8: Camels in front of a shop in the Upper Siq. Photograph by K. Groom (2013). 
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A.9: Great Temple in the main valley. Photograph by K. Groom (2013). 

 
 
 
 
A.10: Petra Church across from the Great Temple. Photograph by K. Groom (2013). 
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A.11: Several tombs in the main valley of Petra. Photograph by K. Groom (2013). 

 
 
 
 
A.12: Royal Tombs in the main valley. Photograph by K. Groom (2013). 
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A.13: Djinn Block X from a distance. Photograph by K. Groom (2013). 

 
 
 
 
A.14: Tafoni at the base of the western face on Djinn Block X. Photograph by K. Groom (2013). 
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A.15: Bedouin goatherd of the side of a mountain across from Djinn Block X. Photograph by K. 
Groom (2013). 

 
 
 
 
A.16: Jabel Haroun from Djinn Block X. Photograph by K. Groom (2013). 
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A.17: Bird nest in a western tafone on Djinn Block X. Photograph by K. Groom (2013). 

 
 
 
 
A.18: Odd composites at the Umm Ishrin and Disi contact on Djinn Block X. Photograph by K. 
Groom (2013). 
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A.19: Extreme climate conditions during fieldwork. Photograph by K. Groom (2013). 

 
 

 
 
A.20: Carved grooves on the top of Djinn Block X. Photograph by K. Groom (2013). 
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A.21: Linear tafoni on the western face on Djinn Block X. Photograph by K. Groom (2013). 

 
 
 
 
A.22: Horsemen leaving Petra in Wadi Mousa. Photograph by K. Groom (2013). 

 
 

 



124 

A.23: Tom Paradise (consented) flat ledge directly south of Djinn Block X. Photograph by K. 
Groom (2013). 

 
 
 
 
A.24: Quarry walls directly west of Djinn Block X. Photograph by K. Groom (2013). 
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A.26: Large vertical pan on the southern face of Djinn Block X. Photograph by K. Groom 
(2013). 

 
 

A.25: Djinn Block X from the edge of the ledge to the south. Photograph by K. Groom (2013). 
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A.27: My arm in a netted cell on the southern face of Djinn Block X. Photograph by K. Groom 
(2013). 

 
 

 
 
A.28: Very deep tafone on the western face on Djinn Block X. Photograph by K. Groom (2013). 
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A.29: Large tafone on the northern face with a hole leading to the eastern face of Djinn Block X. 
Photograph by K. Groom (2013). 

 
 

 
 
A.30: My arm reaching through that hole from north to east. Photograph by K. Groom (2013). 
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A.31: Tafoni cells at the contact on the eastern face of Djinn Block X. Photograph by K. Groom 
(2013). 

 
 

 
 
A.32: Fire damage on the eastern face of Djinn Block X. Photograph by K. Groom (2013). 
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A.33: Bug nest on the western face of Djinn Block X. Photograph by K. Groom (2013). 

 
 

 
 
A.34: Large spall preparing to detach on the eastern face of Djinn Block X. Photograph by K. 
Groom (2013). 
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A.35: Main valley as seen from atop al-Habis. Photograph by K. Groom (2013). 

 
 

 
 
A.36: Western part of the main valley from atop al-Habis. Photograph by K. Groom (2013). 
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A.37: Hewn pit behind al-Habis. Photograph by K. Groom (2013). 

 
 
 
 
A.38: Royal Tombs from the path to al-Deir. Photograph by K. Groom (2013). 
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A.39: Tom Paradise (consent to publish) and Waimel al-Bedoul (consent to publish) at the Great 
Temple. Photograph by K. Groom (2013). 

 
 

 
A.40: Me, Waimel al-Bedoul (consent to publish), and Peter von Groote (consent to publish) at 
the Great Temple. Photograph by T. Paradise (2013). 
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A.41: Peter von Groote (consent to publish) on a donkey up to al-Deir. Photograph by K. Groom 
(2013). 

 
 

 
 
A.42: Restaurant benches in front of al-Deir. Photograph by K. Groom (2013). 
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Appendix B – Tables 
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B.1 – Mirrored Aspect Values for Djinn Block X: 

Mirror Values for 000˚ to 162˚ 

  000 018 036 054 072 090 108 126 144 162 
000 180 162 144 126 108 090 072 054 036 018 
018 162 180 162 144 126 108 090 072 054 036 
036 144 162 180 162 144 126 108 090 072 054 
054 126 144 162 180 162 144 126 108 090 072 
072 108 126 144 162 180 162 144 126 108 090 
090 090 108 126 144 162 180 162 144 126 108 
108 072 090 108 126 144 162 180 162 144 126 
126 054 072 090 108 126 144 162 180 162 144 
144 036 054 072 090 108 126 144 162 180 162 
162 018 036 054 072 090 108 126 144 162 180 
180 000 018 036 054 072 090 108 126 144 162 
198 018 000 018 036 054 072 090 108 126 144 
216 036 018 000 018 036 054 072 090 108 126 
234 054 036 018 000 018 036 054 072 090 108 
252 072 054 036 018 000 018 036 054 072 090 
270 090 072 054 036 018 000 018 036 054 072 
288 108 090 072 054 036 018 000 018 036 054 
306 126 108 090 072 054 036 018 000 018 036 
324 144 126 108 090 072 054 036 018 000 018 
342 162 144 126 108 090 072 054 036 018 000 

Faces on Djinn Block X 
328 148 130 112 094 076 058 040 022 004 014 
226 046 028 010 008 026 044 062 080 098 116 
156 024 042 060 078 096 114 132 150 168 174 
082 098 116 134 152 170 172 154 136 118 100 

 

Mirror Values for 180˚ to 342˚ 

180 198 216 234 252 270 288 306 324 342 
000 018 036 054 072 090 108 126 144 162 
018 000 018 036 054 072 090 108 126 144 
036 018 000 018 036 054 072 090 108 126 
054 036 018 000 018 036 054 072 090 108 
072 054 036 018 000 018 036 054 072 090 
090 072 054 036 018 000 018 036 054 072 
108 090 072 054 036 018 000 018 036 054 
126 108 090 072 054 036 018 000 018 036 
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144 126 108 090 072 054 036 018 000 018 
162 144 126 108 090 072 054 036 018 000 
180 162 144 126 108 090 072 054 036 018 
162 180 162 144 126 108 090 072 054 036 
144 162 180 162 144 126 108 090 072 054 
126 144 162 180 162 144 126 108 090 072 
108 126 144 162 180 162 144 126 108 090 
090 108 126 144 162 180 162 144 126 108 
072 090 108 126 144 162 180 162 144 126 
054 072 090 108 126 144 162 180 162 144 
036 054 072 090 108 126 144 162 180 162 
018 036 054 072 090 108 126 144 162 180 

Faces on Djinn Block X 
032 050 068 086 104 122 140 158 176 166 
134 152 170 172 154 136 118 100 082 064 
156 138 120 102 084 066 048 030 012 006 
082 064 046 028 010 008 026 044 062 080 
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B.2 – Statistic values for aspect vs. morphometry: 
 

 
360 Degrees - R2 W/o North - R2 W/o South - R2 

Mirror 
Values 

Vol. Depth Diam. Vol. Depth Diam. Vol. Depth Diam. 

000 0.001 0.007 0.001 0.049 0.083 0.041 0.102 0.008 0.080 
018 0.001 0.001 0.002 0.016 0.121 0.009 0.043 0.002 0.042 
036 0.000 0.016 0.002 0.003 0.123 0.000 0.010 0.022 0.016 
054 0.000 0.043 0.001 0.001 0.120 0.000 0.000 0.051 0.002 
072 0.003 0.077 0.001 0.001 0.120 0.000 0.012 0.088 0.002 
090 0.007 0.100 0.002 0.000 0.116 0.001 0.039 0.115 0.014 
108 0.006 0.102 0.003 0.003 0.096 0.009 0.082 0.130 0.040 
126 0.005 0.078 0.003 0.026 0.046 0.039 0.132 0.122 0.075 
144 0.003 0.049 0.002 0.067 0.001 0.078 0.157 0.087 0.099 
162 0.001 0.026 0.001 0.077 0.020 0.078 0.148 0.047 0.103 
180 0.001 0.007 0.001 0.049 0.083 0.041 0.100 0.008 0.079 
198 0.001 0.001 0.002 0.016 0.121 0.009 0.043 0.002 0.042 
216 0.000 0.016 0.002 0.003 0.123 0.000 0.010 0.022 0.016 
234 0.000 0.043 0.001 0.001 0.120 0.000 0.000 0.051 0.002 
252 0.003 0.077 0.001 0.001 0.120 0.000 0.012 0.088 0.002 
270 0.007 0.100 0.002 0.000 0.116 0.001 0.039 0.115 0.014 
288 0.006 0.102 0.003 0.003 0.096 0.009 0.082 0.130 0.040 
306 0.005 0.078 0.003 0.026 0.046 0.039 0.132 0.122 0.075 
324 0.003 0.049 0.002 0.067 0.001 0.078 0.157 0.087 0.099 
342 0.003 0.039 0.002 0.077 0.005 0.086 0.155 0.066 0.101 
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B.3 – Statistic values for aspect vs. micrometeorology: 
 
  Micrometeorology - R Micrometeorology - R2 

Mirrored 
Values 

Surface 
Temp. 

Ambient 
Temp. 

Ambient 
Humidity 

Surface 
Temp. 

Ambient 
Temp. 

Ambient 
Humidity 

000 0.383 0.098 0.191 0.147 0.010 0.036 
018 0.295 0.020 0.143 0.087 0.000 0.021 
036 0.164 -0.061 0.075 0.027 0.004 0.006 
054 0.076 -0.110 -0.005 0.006 0.012 0.000 
072 0.031 -0.137 -0.106 0.001 0.019 0.011 
090 -0.051 -0.161 -0.180 0.003 0.026 0.032 
108 -0.192 -0.186 -0.238 0.037 0.034 0.052 
126 -0.308 -0.186 -0.245 0.095 0.035 0.060 
144 -0.372 -0.169 -0.237 0.138 0.028 0.056 
162 -0.413 -0.149 -0.208 0.171 0.022 0.043 
180 -0.386 -0.098 -0.187 0.149 0.010 0.035 
198 -0.295 -0.020 -0.143 0.087 0.000 0.021 
216 -0.164 0.061 -0.075 0.027 0.004 0.006 
234 -0.076 0.110 0.005 0.006 0.012 0.000 
252 -0.031 0.137 0.106 0.001 0.019 0.011 
270 0.051 0.161 0.180 0.003 0.026 0.032 
288 0.192 0.186 0.228 0.037 0.034 0.052 
306 0.308 0.186 0.245 0.095 0.035 0.060 
324 0.372 0.169 0.237 0.138 0.028 0.056 
342 0.375 0.156 0.238 0.141 0.024 0.057 
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Appendix C – Graphs 
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C.1 – Internal and external microclimatic readings per aspect: EAST 

Ambient Humidity (1 = interior, 2 = exterior) 
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Surface Temperature (1 = interior, 2 = exterior) 

 
 
 

Ceiling (1) vs. Floor (2) Surface Temperatures 
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C.2 – Internal and external microclimatic readings per aspect: South 

Ambient Humidity (1 = interior, 2 = exterior) 
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Surface Temperature (1 = interior, 2 = exterior) 

 
 
 

 
Ceiling (1) vs. Floor (2) Surface Temperatures 
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C.3 – Internal and external microclimatic readings per aspect: West 
 

Ambient Humidity (1 = interior, 2 = exterior) 

 
 

 
Ambient Air Temperature (1 = interior, 2 = exterior) 
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Surface Temperature (1 = interior, 2 = exterior) 

 
 
 
 

Ceiling (1) vs. Floor (2) Surface Temperatures 
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C.4 – Internal and external microclimatic readings per aspect: North 
 

Ambient Humidity (1 = interior, 2 = exterior) 

 
 
 

Ambient Air Temperature (1 = interior, 2 = exterior) 
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Surface Temperature (1 = interior, 2 = exterior) 

 
 
 
 

Ceiling (1) vs. Floor (2) Surface Temperatures 
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C.5 – Distribution of Micrometeorological measurements: 
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C.6: Micrometeorological correlations in relation to each other: 
 

 
 
 
C.6: Micrometeorological coefficients of determination in relation to each other: 
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Appendix D – Field Matrices 
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D.1: Front of sheet 1:  
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D.2: Back of sheet 1:  
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D.3: Front of sheet 2:  
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D.4: Back of sheet 2:  
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D.5: Front of sheet 3:  
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D.6: Back of sheet 3:  
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D.7: Front of sheet 4:  
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D.8: Back of sheet 4:  
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D.9: Front of sheet 5:  
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D.10: Back of sheet 5:  
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D.11: Front of sheet 6:  
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D.12: Back of sheet 6:  
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D.13: Front of sheet 7:  
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D.14: Back of sheet 7:  
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