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ABSTRACT 

 Dental microwear texture analysis has been refined to a methodology relying upon scanning 

confocal microscopy for its advantages of repeatability and standardized quantification.  A new 

instrument, the Plµ Neox (Sensofar Corp.) confocal profiler recently entered the market, sparking 

questions among dental anthropologists related to the advantages and efficacy of this new technology, 

which has better resolution and lighting properties than previously available white-lighted based confocal 

profilers. This thesis reports on three complementary studies that set out to evaluate the comparability of 

the Plµ Neox to the Plµ Standard system and assess its ability to distinguish primates on the basis of their 

microwear patterning.  The first study examines a sample of hominin molars (Australopithecus africanus 

and Paranthropus robustus) for comparison with data previously scanned and analyzed on the University 

of Arkansas’ Plµ Standard confocal microscope (Scott et al., 2005).  The second study expands the 

sample of early hominins to determine whether an enlarged sample of A. africanus continues to show 

significant texture separation from P. robustus.  And the third study examines extant primate microwear 

textures of pitheciids with known dietary differences to determine whether documented food-choice trends 

are reflected in microwear patterning obtained using the Plµ Neox.  Examining pitheciine molar facets in 

the past was not possible because of their small size. The new instrument provides higher resolution 

(0.11 µm with a 150x objective compared to 0.18 µm at 100x on the Plµ Standard confocal), with a 

smaller work envelop for a comparable number of sampled points for texture analysis.  Results of the first 

study generally correspond to the original texture analysis of 2005, and the expanded dataset in the 

second study shows increased variance but the same pattern of differences for A. africanus compared 

with P. robustus.  The third study finds that the Plµ Neox is capable of parsing broad diet-related 

differences in microwear textures among the pitheciids, indicating that the new instrument may become 

an effective instrument for the quantitative characterization and comparison of dental microwear textures 

to be utilized in laboratories around the world.
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INTRODUCTION 

 Dental microwear texture analysis, in combination with scale-sensitive fractal analysis, requires 

digital renderings of a tooth’s surface (obtained with a white-light or blue-light scanning confocal profiler) 

and provides repeatable analyses of dental measurements correlated to diet.  The Ungar Lab at the 

University of Arkansas recently acquired a new instrument capable of creating more detailed 3D-surfaces.  

This new confocal microscope, called the Plµ Neox (Sensofar Corp.) confocal profiler, is an emerging 

standard in the field and can potentially discriminate between more similar diets than our Plµ Standard 

machine given its increased resolution and improved optical and lighting characteristics. First, though, the 

Neox must be tested for comparability with the Plµ Standard.   

The purpose of this research is to determine the comparability of two confocal microscopes 

separated by nearly ten years of technology, and was completed in three studies.  Study I is a 

comparison of results from the new confocal microscope to those from a 2005 study (Scott et al.), which 

established the Plµ Standard as the new discipline standard at the time.   The goal of this study is to 

establish if a possible significant correlation can be made between surface textures for a sample analyzed 

using both machines.  Upon comparing the data from two different machines, a new sample of as yet 

unanalyzed (for microwear) Australopithecus africanus specimens is included, with the goal of 

determining whether the results of the 2005 study would hold when tripling the sample of this species.  

Study III evaluates the efficacy of the new confocal for quantifying the diets of extant primates, the 

pithecoids, at an even higher resolution, yielding finer insight into their known dietary behaviors.  The goal 

of the third study is to quantify significant differences in the diets of pitheciid taxa, which have been 

documented by primatologists.  

 

STUDY I 

Background: Australopith Dietary Models 

 The diet of early hominins has been a topic of scholarship and debate since their fossil record 

was uncovered nearly a century ago.  These hypotheses may be divided into reasoning stemming from 

contextual, morphological, and dental microwear evidence. 
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Contextual 

Dart (1940; 1948; 1949; 1953) reconstructed A. africanus as a predator based on faunal cave 

remains, including numerous hindlimbs, bone breakages signifying osteodontokeratic culture and dark 

stains suggesting fire (for food preparation). He considered this evidence to imply A. africanus was a 

“killer ape” (Dart, 1926; 1957).  The holes found in fellow australopith crania were reasoned to be 

evidence of violence resulting from projectile weapons or assault.   

These findings were later contested (Brain, 1970; 1981).   The bone piles were argued to be 

hyena accumulations, the bone breaks said to match leopard kill patterns, and the dark markings on the 

floor were argued to be stains from mining explosions, discrediting the original argument for predation.  

Leopard canines fit perfectly into the holes of the skull seen in multiple specimens, and other skull 

traumas were reasoned to be the result of falling cave-roof pebbles, not flying projectiles.  

 Many studies were also conducted using primate behavior models, relying on the context of 

habitat.  Baboons, occupying an ecological zone thought to be similar to that of the South African 

Pleistocene, were used as a model of habitat and adaptive behavior for early hominins.  The South 

African savanna is home to the chacma baboon, a primate with a carnivorous appetite, conclusively 

deciding for Dart (1957) that australopiths were carnivorous killers.  This view was supported by 

Bartholomew and Birdsell (1953), who speculated early hominids lived on diets similar to baboons 

consisting of vegetables supplemented by the occasional small animal, Washburn (1957), who related the 

social consequences of meat-eating (i.e. cooperation, tool use) as predictive factors of becoming human, 

and Oakley (1961), who felt that apes were vegetarian, while humans and their ancestors were meat-

eaters.   

 

Morphological 

In 1954, Robinson categorized Australopithecus africanus as a meat eater, but based on 

morphology instead.  Moreover, he argued that the teeth alone of Paranthropus robustus, 

Australopithecus africanus, and early Homo are proof of niche separation despite what at the time were 

thought to be temporal and geographic overlap.  He categorized Australopithecus africanus, with its equal 

anterior and posterior dentition, larger canines, and smaller premolars and molars, as having a nearly 
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omnivorous diet including fair amounts of meat. Paranthropus robustus’ massive molars, small anterior 

dentition, and smaller canines led Robinson to categorize it as having a predominately specialized 

vegetable-based diet, resulting in its heavy musculature. Early Homo was classified as having a totally 

omnivorous diet, showing dietary competition and consequential displacement was unlikely.  

 In 1968, Groves and Napier examined incisor to molar row length ratios, noting that specimens 

with coarser diets consisting of stems, roots, and bark have relatively longer molar row lengths.  This 

placed robustus as having a coarser and “more intensely vegetarian diet” than Australopithecus 

africanus.  Jolly (1970) was one of the first to use the morphology of baboons as a model for early 

hominin diets with the “seed-eater hypothesis.” Comparing the gelada baboon, Theropithecus gelada, 

with the genera Papio and Mandrillus in terms of cranial features and diet, he drew parallels between the 

primates’ differences and the differences found in early hominins.  The gelada baboon shares many 

features with P. robustus, including evidence of very powerful masticatory muscles, a more vertical face, 

and expanded posterior teeth.  Jolly considered these cranial features more specialized than that of Papio 

and Mandrillus, which represent a more gracile morphology and correspondingly generalized diet. The 

gelada baboon, with its small incisors and large molars, eats grass seeds collected by hand in the 

savanna (requiring little incisor processing), leading Jolly to conclude that early hominin incisor reduction 

(as seen in P. robustus) could be attributed to its diet of small tough objects similar to the grass seeds 

found in the Gelada, as the form of the incisors would be determined by its function (the smallest 

functional size would be selected for, and lack of alveolar stress would limit space for incisors).   

 While certainly monumental, Jolly’s study had drawbacks, including the fact that grass seeds are 

seasonal, and earlier hominins (afarensis) have large incisors (Dunbar, 1976).  Regardless, this study 

showed that the highly specialized diet found in the gelada results in similar morphology to the (then 

considered) highly specialized P. robustus, while the generalized diet of Papio corresponds to the similar 

morphology found in A. africanus.  This gradient compares to the morphology-based niche separation 

identified by Robinson (1954), and later substantiated by Grine (1981, 1986).  

 In 2007, Ungar analyzed the surface topography of P. robustus and A. africanus molars using a 

laser scanner and geographic information systems (GIS) technology.  A laser scanner obtains a three-

dimensional point cloud of the surface topography, which is then uploaded to GIS software for analysis.  
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The software interprets point clouds like landscapes, with cusps treated as mountains, and grooves as 

valleys, allowing for the use of worn teeth in analyses, unlike former methods (i.e. shearing quotients) 

(Kay, 1984).  Ungar (2007) found the occlusal surfaces of A. africanus second molars show more relief 

than those of P. robustus, confirming suggestions A. africanus engaged in less grinding and crunching 

that its robust counterpart.   

 

Dental Microwear 

In 1981, Grine published a dental microwear and morphology study of deciduous A. africanus and 

P. robustus molars.  Using a scanning electron microscope, Grine noted that robust Swartkrans 

specimens had many pits and dentin islands with steep slopes, indicating a heavier reliance on 

preparatory “puncture-crushing trituration” than the gracile specimens, which instead had smooth edges 

around the dentin islands.  The robust hominins furthermore had high frequencies of scratches and pitting 

near cuspal tops, indicating Phase I activities involving more grinding than shearing.  When Grine 

included cusp slope, with A. africanus showing more occlusal relief, he concluded that the P. robustus 

dentition was specialized to grind and crush harder and more fibrous foods than A. africanus..   

 Grine followed this in 1986 with a quantitative dental microwear analysis of adult hominin molars.  

Again using a scanning electron microscope, Grine used quantifiable measures of scratch and pit 

direction size, shape and density.  He found that P. robustus had a greater number of microwear features 

and higher incidences of pitting (relative to scratching), with its scratches displaying greater degrees of 

directional heterogeneity.  The pits were also larger in P. robustus than A. africanus, suggesting to him 

that the robust hominin dentition was subjected to more hard objects (and consequential crushing and 

grinding) than the gracile hominins’.  He concludes by arguing the dental microwear shows P. robustus 

did not simply process more of the same food items that A. africanus encountered, but rather chewed 

entirely different food items than those triturated by A. africanus.  This is substantiated by the stark 

differences in dental proportions and craniomorphology of the two, independent of body size.   

 While interesting in its results, the methodology, using a scanning electron microscope, posed 

problems of repeatability and observed results (Grine et al., 2002).  Inter-observer error prevented 

standardized comparisons, as one person may have counted a feature while another may have 
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overlooked it.  In 2003, Ungar et al. proposed a new methodology and analysis protocol to approach 

these challenges.  Using scanning confocal microscopy and scale-sensitive fractal analysis, researchers 

can compare fossil samples to extant primate data to distinguish among diets by wear patterns based on 

different fracture properties. The idea of scale-sensitive analysis can be compared to the texture of a 

surface that changes with the scale of observation; if one were to look at a road, it appears relatively flat 

from eye level, but with increasing resolution, the road increases in roughness so that it no longer 

appears smooth and flat, but bumpy.  When applied to dental microwear, scale-sensitive fractal analysis 

measures anisotropy (epLsar - exact proportion length-scale anisotropy of relief), or the directionality of 

features, and complexity (Asfc – area scale fractal analysis complexity), among other measures like Smc 

(scale of maximal complexity), HAsfc (heterogeneity of complexity), and Tfv (textural fill volume) (Ungar et 

al., 2003, Scott et al., 2006).    

 Using this methodology, Scott et al. (2005) reanalyzed the sample of adult maxillary second 

molars of A. africanus and P. robustus originally studied by Grine (1986).  The study compared the 

aforementioned statistics of characteristic primate wear patterns (associated with respective diets) to the 

19 fossil specimens.  In 1986, Grine found differences between the hominins in relation to pit frequency 

and heterogeneity, which was supported by Scott et al. (2005).  The 2005 study found that Paranthropus 

teeth differed from Australopithecus specimens in that they were more complex and more variable in their 

complexity than Australopithecus.  Correspondingly, A. africanus was found to be more anisotropic and 

variable in anisotropy than P. robustus.  

Furthermore, the analysis revealed substantial overlap between the two species in complexity, 

despite each representing an extreme on opposing ends of the microwear spectrum.  This overlap was 

shown in the greater amount of variation in complexity found in Paranthropus, and the greater amount of 

variation in anisotropy found in Australopithecus, suggesting these species changed their diets regularly, 

but that their preferred resources probably overlapped.  The distinctive characteristics exhibited by each 

species may relate to those critical resources ingested only during parts of the year due to seasonal 

availability or microhabitat.  The findings confirmed that, in reference to extant primates, hard, brittle foods 

leave more complex textures riddled with pits on tooth surfaces, and tough foods leave more anisotropic 
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textures with many striations meaning that A. africanus, therefore, ate more tough foods and, despite 

significant dietary overlap, P. robustus ate more hard and brittle items.   

 

Materials and Methods 

 With advances in analytical methodology and technology, studies in relation to both extant and 

fossil dental microwear have obtained a level of uniformity and definition allowing for a higher resolution 

of comparison.  The introduction of confocal microscopy initiated the production of three-dimensional 

coordinate scans with associated digital data, allowing for uniform analysis.  Researchers are now 

confident that variation within and between species reflects true variation within that sample instead of 

noise introduced by interobserver error. The next chapter in innovation involves increasing the resolution 

of microwear comparison, as introduced by the new instrument. 

 This study incorporates the use of a new machine, the Plµ Neox Confocal white-light 3D optical 

profiler (Sensofar Corp.) with a spatial sampling of 0.17µm, and a work envelope of 242 x 181µm with a 

100x magnification (6.5 mm working distance and 0.7 numerical aperture) objective.  While former studies 

scanned four adjacent planes obtained with a lateral point spacing of 0.18µm, which are then analyzed 

separately and their median values used in follow up analyses, this new machine automatically stitches 

four fields of view with a 10% overlap, changing the work envelope from 276 x 204µm total (or four 

separately analyzed surfaces of 138 x 102 µm) to 242 x 181 µm. This new instrumentation has a finer 

resolution than ever before, allowing researchers to develop finer gradients of categorization.  

Furthermore, the Plµ Standard equipment is beginning to fail, and the Plµ Neox is quickly becoming the 

new standard, having been adopted by microwear laboratories in Europe, Australia, and here in the 

United States.  

Before studies could proceed, the Plµ Neox had to first be equipped with the appropriate 

objectives and calibrated to take scans comparable to those of the Plµ Standard confocal microscope 

using a 100x objective.  This was done by repeatedly testing various settings, including intensity and gain 

of the confocal light source, and threshold value, on a standardized location on a penny (using a scan 

from the Plµ Standard confocal microscope as a comparison).  The resulting optimal settings of the Plµ 

Neox can be found in Appendix A, and should serve as standard protocol for this laboratory and others.   
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 This stage of the project examined the occlusal wear patterns on the permanent second molars of 

Australopithecus africanus and Paranthropus robustus.  The second molar was used because this is the 

tooth observed in past studies and is therefore needed to assure comparability of results (Grine 1986, 

Scott et al. 2005).  A direct comparison of identical scans from the two different instruments consisted of 

specimens (N=19) from the South African Sterkfontein, Swartkrans, and Kromdraai formations, including 

Member 4, 1, and 3, respectively.  

 The occlusal surfaces, after a gentle cleansing with acetone-soaked cotton swabs, were molded 

with a polyvinylsiloxane dental impression material, President’s Jet Regular Body Dental Impression 

Material (Coltène-Whaledent). The casts were then poured using clear Epotek 501 epoxy resin and 

hardener (Epoxy Technologies) at the Paleoanthropology Lab, University of Arkansas. After centrifuging 

any bubbles away from the occlusal surface, the casts were allowed to harden and then removed from 

the mold for analysis.  These steps had already been completed by the time of this project’s initiation. 

Molds were originally collected at the Ditsong Museum of Natural History in Pretoria, South Africa and the 

University of the Witwatersrand in Johannesburg by Peter Ungar, Fred Grine, and Mark Teaford. 

 For this stage of the project, maxillary molar enamel facet 9 was examined on each specimen.  

Facet 9, which is located on the distobuccal aspect of the protocone (mesiolingual cusp), engages in 

crushing and grinding motions of both vertical and perpendicular movement during so-called “Phase II” 

activity, making it a standardized location for microwear studies (Grine, 1986; Krueger et al., 2008). The 

specimens were oriented under the confocal microscope so the mesiodistal axis of the tooth was 

horizontal to the viewer, and the lingual half placed closest to the viewer.  

Each scan from the 2005 (Scott et al.) study was replicated using the Plµ Neox. This was 

completed by searching the facet until distinctive landmarks could be identified (see Figure 1).  The 

samples were scanned under a 100x objective with a working distance of 6.5 mm and numerical aperture 

of 0.7.  Four adjacent scans were obtained, and digitally “stitched” together with 10% data overlap for the 

purpose of alignment. The files were saved in .plu format for use in SolarMap Universal version 3.1.10. 

where each scan was leveled.  If dust particles or extraneous adherents were present, the ‘erase defects’ 

function was used to erase the offending data points.  The resulting files were saved in .sur format for 

analysis using scale-sensitive fractal analysis software.  
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a.       b. 

 

 

 

 

 

 

Figure 1.  Comparative Scans of SK16 a, b  Scan (a.) was taken in 2005, while Scan (b.) was taken in 
2014 with the Plµ Neox scanning confocal profiler.  Note the different dimensions resulting from the 
different stitching methodologies.  Scan (a.) is a composite image of 4 adjacent, non-overlapping, scans, 
while Scan (b.), though also a composite image, has a 10% overlap at every border to ensure continuous 
data.  
      

Once the scan was obtained, the resulting point clouds were processed by Toothfrax and Sfrax 

programs.  These programs have become the standard protocol for many fields, including dental 

microwear analysis (Ungar et al., 2003; Scott et al., 2005, 2006).   

 Scale-sensitive fractal analysis results in many measures, each of which offers a component of 

comparison for gradients of diet.  The most frequently used measures to describe teeth are ‘anisotropic’ 

(a reflection of epLsar) and ‘complex’ (a reflection of Asfc).   

If a surface is anisotropic, the features exhibit similar directionality, and are visually represented 

by a rosette with very different lengths.  Each vector in a rosette is a cross section taken at the angle in 

which the vector points.  If the surface at that cross section is very bumpy (perhaps perpendicular to 

many scratches), many points are needed to mark each trough and apex.  When these points are 

connected to one another with lines, and the resulting zig-zag line is straightened, the length will be 

longer than the cross section’s length. If another cross section is taken at the same angle as a scratch, 

and is therefore entirely within the smooth trough of a scratch, the straightened and flattened cross 

section, as measured by high and low points, will be much closer to the original length of the cross 

section.  This would be represented by short vector, while a long vector would represent the former 

surface.  Having a rosette with both short and long vectors shows higher directionality because the short 

vectors will represent the cross sections sitting within the troughs of scratches, while the long vectors will 

represent the bumpy and variable cross sections taken at angles perpendicular to the features.  
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Correspondingly, rosettes with vectors of similar length represent low levels of anisotropy, or 

directionality.   

 High epLsar (anisotropy) has been correlated to the shearing motions associated with folivory.  

Ungar et al. (2005) found the folivore Alouatta palliata to be characterized by a greater degree of, and 

variance within, anisotropy as compared to the fruit and seed-eating counterpart, Cebus apella, which 

had lower degrees of, and variance within, anisotropy.  Foods that leave anisotropic microwear are 

considered “tough,” meaning they are not brittle, but require heavy trituration, characterized by shearing 

motions, to fragment.  

 If a surface is complex, there is little uniformity.  This is represented by the measurement, Asfc, or 

area-scale fractal complexity.  Asfc measures the roughness of a relative area by placing triangular 

patches across the surface, including every peak and pit.  That triangulated surface is then measured to 

find the area, which is then divided by the area of the flat cross-section. The smaller the triangles are, the 

more precise the complexity.  Asfc is measured on plots of relative area over scale.  As the scale (or size 

of the triangles) becomes finer, the values for relative area increase.  The more complex a surface is, the 

steeper the slope of the plot becomes when you increase the resolution of triangles.  Eventually, though, 

the triangles become too small to pick up any more detail, which is represented on the plot by a plateau.  

Where the Asfc levels off is called the “scale of maximum complexity,” or Smc.    

 HAsfc measures the heterogeneity of complexity for a surface.  By dividing a scan into sub-units 

of one’s discretion (9 cells x 9 cells, 50 cells x 50 cells, etc.), HAsfc measures the complexity within each 

sub-unit and compares them.  A homogenous surface would have similar features in each sub-unit, and 

therefore a low amount of heterogeneity.  This type of texture would have a lower HAsfc value than a 

highly diverse surface where few features are in common between the sub-units.   

 Textural fill volume (Tfv) measures the number of square cubes, measuring 2µm across on each 

side, required to fill a surface.  Naturally, there are two critical elements: the shape and the texture of the 

surface.  The shape of a surface is measured as Surface fill volume (Sfv), and is in reference to its depth, 

meaning the total fill volume of a more curved surface will be greater than the Sfv of a planar surface, 

despite having identical textures.  This would be like two bowls of varying depth, but with identical 

scratches on the bottom.  To distinguish the minute features from the overall volume, the size of the 
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cuboids is reduced from whatever sufficiently course volume was necessary to obtain the surface fill 

volume, to a smaller measurement along each edge.  The smaller cuboids measure the Tfv.  The surface 

fill volume (depth) is then subtracted from the textural fill volume, leaving only a measure of the fine-scale 

subtleties, much like an impression of the surface’s complexity.  A higher value of Tfv reflects a very 

bumpy and complex surface, while a lower value reflects a smoother texture. 

 Upon acquiring these data for both samples of hominin microwear (those collected on the Plµ 

Standard, and those collected on the Plµ Neox), a Spearman’s Rho correlation test was implemented for 

both Asfc and epLsar to assess the significance of correlation between the data gathered on the two 

confocals. Spearman’s Rho was used rather than Pearson’s correlation coefficient, because we cannot 

assume the texture variables are normally distributed. The original study analyzed only Asfc and epLsar 

(other measures were not fully developed at the time), guiding the protocol for both Study I and II. A 

MANOVA on ranked data was used to assess significance of texture variation among the species for the 

sample obtained using the new Plµ Neox.  ANOVAs were carried out for each variable to determine the 

sources of significant variation between the species.  In addition, Bartlett’s Tests were used to compare 

the distributions of Asfc and epLsar values among taxa.  

 

STUDY II 

The purpose of study II is to expand the sample size found in study I in order to independently 

analyze a sample using the Plµ Neox, and to see if the results corroborate the original findings obtained 

on both the old and new confocal microscopes. The sample was expanded by including analyses of more 

A. africanus specimens (n=38), including those from members 4 and 5 (dated 2-3 Ma and 2.0-2.6 Ma, 

respectively) of the Sterkfontein formation (Sterkfontein Witwatersrand) (Moggi-Cecchi et al., 2006), and 

the Limeworks Dump of the Makapansgat formation, dated at 3.03-2.58 Ma (Herries et al., 2010). A 

specimen list can be found in Appendix B.  The additional specimens were molded by Peter Ungar, Fred 

Grine, and Mark Teaford at the University of the Witwatersrand in Johannesburg, and casts were 

prepared as in Study I in the Ungar lab at the University of Arkansas.  
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Background (see STUDY I: Background) 

Materials and Methods 

The sample for Study II (N=38) more than triples the size of the original collection of A. africanus 

(N=10), offering greater insight of the variation of this hominin’s diet.  While the original study used only 

upper second molars, this expansion included all molars, some of which were mandibular.  Each 

individual is represented by only one dental specimen.  Facet 9 was isolated on all specimens, and has 

been shown to yield no significant differences in mandibular-maxillary comparisons (Teaford and Walker, 

1984).  The procedure to identify facet 9 on maxillary molars is outlined above.  Mandibular facet 9, 

however, is located on the lingual aspect of the hypocone (distobuccal cusp), and is considered a “Phase 

II” surface – it comes into direct contact with the opposing facet 9 on the upper molar. Specimens were 

prepared and scans were obtained using the techniques outlined in Study I, using the settings found in 

Appendix A.  See Appendix B for details on the Study II sample.  

Upon gathering scans, the resulting files were edited in SolarMap (Surfract Corp.) and processed 

through ToothFrax and Sfrax for scale-sensitive fractal analysis (Scott et al. 2006).  A MANOVA on 

ranked data was used to assess significance of texture variation among the species. ANOVAs were 

carried out for each variable to determine the sources of significant variation between the species.  In 

addition, Bartlett’s Tests were used to compare the distributions of Asfc and epLsar values among taxa.  

 

STUDY III 

 The purpose of Study III is to generate a sample of extant microwear data using the Plµ Neox. By 

comparing the data gathered by the Plµ Neox with known dietary strategies of pitheciids, we can assess 

the efficacy of the instrument and dental microwear texture analysis.  This study analyzed the dental 

microwear of three genera of Pitheciidae, including Chiropotes, Callicebus, and Pithecia.   

 

Background: Pitheciid Diets 

 Pitheciid diets include a varying amount of unripe fruits with hard pericarps, classifying the group 

as sclerocarpic foragers, or  “predispersal seed predators” (Rosenberger et al. 1996, Norconk et al. 

1998). This diet alleviates seasonal pressures, allowing pitheciids to eat even during the dry season, and 
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reduces competition with sympatric primates. Pitheciids vary in their degree of sclerocarpy, with 

Chiropotes consuming extremely hard-shelled seeds more frequently than Pithecia, and Callicebus 

balancing seed intake with a more generic diet of fruits and leaves (Kinzey and Norconk, 1990; Norconk 

and Conklin-Brittain, 2004; Kinzey, 1997).  

 Of the genera examined in Study III, Chiropotes has the most specialized dental adaptations.  

Along with robust mandibles and “styliform” incisors (Kinzey, 1992; Rosenberger, 1992; Anapol and Lee, 

1994), the canines of these primates are extremely tall and robust.  The canines are used to puncture and 

crush hard seeds (Rosenberger, 1992), while the incisors are used to remove the protective outer layer 

surrounding the seed.  The molars of Chiropotes are low, flat, small, and simple (Kinzey, 1992), reflecting 

the grinding motion required to break down the inner seed.   

 Pithecia does not bite through pericarps as hard as those found in the diet of Chiropotes, but 

consumes seeds with a higher resistance to crushing than other pitheciines (Kinzey, 1992). Pithecia eats 

few leaves, but more than Chiropotes (Kinzey, 1992; Rosenberger et al., 1996).  The laterally splayed 

canines of this primate are used to puncture hard seeds and open fruits.  The molars of Pithecia are small 

and low, but show more relief and definition than Chiropotes.  This is interpreted as an indicator of 

grinding more pliable seeds than Chiropotes (Kinzey, 1992).  Dental microwear analyses (using SEM) in 

a previous study showed that Pithecia surface textures had more pits and fewer scratches than found in 

ripe fruit specialists (Teaford and Runestad, 1992), markers consistent with seed predation.   

 Callicebus consumes the least sclerocarpic fruit of the three, consuming more fruit flesh than 

other pitheciines (Kinzey, 1997;, Műller 1996).  Consequently, this genus is associated with thin short 

incisors (Rosenberger, 1992).  Callicebus has the smallest canines of the three genera, using them for 

peeling fruit husks and to scrape the mesocarp from hard seeds (Kinzey, 1974, 1977; Rosenberger 

1992). While these primates have the smallest canines, they also possess the largest relative molar area 

(Norconk et al., 2009).  These unspecialized surfaces are used for triturating a variety of foods, like fruits, 

seeds, insects, and leaves.  

 With their varying levels of sclerocarpy, these genera provide an excellent range of dietary 

adaptations against which we can compare dental microwear textures obtained with the Plµ Neox 

confocal profiler.  
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Materials and Methods 

The taxa examined in this study include specimens representing Ch. satanas (n = 14), P. 

irrorata (n = 8), and Ca. moloch (n = 24) from the Brazilian Amazon (Oriximina, UHE Samuel, and 

Taperinha, respectively for each of the species).  This sample is housed in multiple museums, including 

the American Museum of Natural History in New York, The National Museum of Natural History in 

Washington DC, and Goeldi Museum in Belém.  Molds were prepared by Peter Ungar and Mark Teaford 

at each museum, and casts for study were created using epoxy resin and hardener following the 

procedure outlined above for the early hominin studies. 

 Epoxy casts of Phase II facets of upper M2s were scanned in blue light using a Plµ Neox 

scanning confocal profiler (Sensofar Corp.) with a 150x objective (0.3 mm working distance and 0.95 

numerical aperture, spatial sampling = 0.11 µm, work envelope = 162 x 121 µm) (for instrument settings, 

see Appendix A).  Resulting point clouds were edited in SensoMap v.6.2 and analyzed using scale-

sensitive fractal analysis (Scott et al., 2005). Surface texture complexity (Asfc) and anisotropy (epLsar) 

were calculated to characterize each surface. 

A MANOVA on ranked data was used to assess significance of texture variation among the 

species.  Single-classification ANOVAs for each variable and Tukey’s pairwise HSD tests were then used 

to identify sources of significant variation as needed.  In addition, Bartlett’s Tests were used to compare 

the distributions of Asfc and epLsar values among taxa, and pairwise two-sample variance tests were 

used to determine sources of variation as warranted.  

 

RESULTS 

Study I 

 The findings of Study I, which involved scanning the same areas on the hominin molars of the 

Scott, et al. (2005) sample as closely as possible given the differing work envelopes, showed that, despite 

using two different machines and areas sampled, the instruments produce results that are significantly 

correlated for both Asfc (fig. 2a) and epLsar (fig. 2b) values (n=19).  The original study, using the Plµ 

Standard, found P.robustus microwear textures to be significantly more complex (Asfc 4.29 ± 2.150; the 

median and the range) and more variable in complexity than A. africanus (Asfc 1.686 ± 0.52), while A. 
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africanus was found to have surface textures significantly more anisotropic (epLsar 0.0045 ± 0.00163) 

and more variable in anisotropy than P. robustus (epLsar 0.0028 ± 0.00060) (Scott, et al., 2005).  The 

authors concluded, therefore, that A. africanus had a tougher diet, on average, than P. robustus, and one 

that was more variable in its toughness.  P. robustus was interpreted to have relied upon hard, brittle 

foods, but the overlap in Asfc between the taxa implied that this robust hominin was unlikely to have been 

a hard-object specialist.  

The data gathered on the Plµ Neox for the original sample confirmed the average differences 

between species (see Table 1a.).  One extreme specimen was excluded from the statistical analysis, but 

is included in Figure 2 for visual reference.  Paranthropus robustus (Asfc 3.171 ± 1.647), again, 

possessed surface textures found to be significantly more complex (p = 0.014; see Table 1b.) than A. 

africanus (Asfc 1.823 ± 1.025), while A. africanus (epLsar 0.0043 ± 0.0025) had dental microwear that 

was significantly more anisotropic (p = 0.009)) and more variable in anisotropy (p = 0.045; Bartlett’s test) 

than P. robustus (epLsar 0.0021 ± 0.0012).  While the dispersions of epLsar were significantly different by 

species, the dispersions of Asfc were not (p = 0.698) (see fig. 3). Using a Spearman’s Rho non-

parametric test, the correlations between the old and new Asfc values ((ρs = 0.56, n=19), and old and new 

epLsar values (ρs = 0.78, n = 19) were significant, despite having different trends in variance.  

 

a. 
Multivariate Test Statistics 
Statistic Value F-ratio df p-value 
Wilks's Lambda 0.542 6.333 2, 15 0.01 
Pillai Trace 0.458 6.333 2, 15 0.01 
Hotelling-Lawley Trace 0.844 6.333 2, 15 0.01 

 

b. 
Univariate F Tests 
Source Type III SS df Mean Squares F-ratio p-value 
ASFC 156.056 1 156.056 7.602 0.014 
Error 328.444 16 20.528     
LSAR 193.389 1 193.389 8.835 0.009 
Error 350.222 16 21.889    

 
 
Table 1.  Summary statistics of original sample obtained on the Plµ  Neox. a, b, Multivariate statistics 
(a.) indicating significant difference between the taxa, and F-tests (b.) indicating significant median 
differences in both Asfc and epLsar. 
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a.     b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Confocal comparison. a, b, Univariate plots of values obtained from the Plµ Standard (x-axis) 
versus the Plµ Neox (y-axis) for (a) Asfc and (b) epLsar. 
 
 
a.              b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

 
Figure 3.  Pairwise Two-Sample Variance. a, b, Comparative plots (and p-values) of both Asfc (a.) and 
epLsar (b.) variance in the original sample of A. africanus and P. robustus obtained on the Plµ Neox.  
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Study II 

 The expansion of the sample to include more A. africanus specimens corroborated some findings 

of the original study (fig. 4).  Combined with the Plµ Neox sample from Study I, A. africanus (Asfc 1.208 ± 

0.889) was consistently found to be significantly less complex (p < .01; table 2b) and less variable in 

complexity (P = 0.011) than P. robustus (Asfc 3.171 ± 1.647), and consistently more anisotropic (epLsar 

0.0034 ± 0.0069; p = 0.024) than P. robustus (epLsar 0.0021 ± 0.0013) (fig. 5).  Interestingly, the different 

dispersions of epLsar values between the taxa were not significant, while the Asfc dispersions were (fig. 

6). The taxa remain significantly different in median values of both Asfc (p < 0.01) and epLsar (p = 0.024) 

(table 2), but the differences in variation are discordant with the results of Study I.  

 

a.       b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Anisotropy and complexity. a, b, Bivariate plots of epLsar versus Asfc for Australopithecus 
africanus and Paranthropus robustus (a) scanned on the Plµ Standard machine (b). scanned on the Plµ 
Neox with the expanded Study II sample.  
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a.  b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Variation by Species. a, b  Plots of (a) Asfc and (b) epLsar values versus species (A. 
africanus and P. robustus), indicating within-species variation.   
 
a. 

 

 

 

 
 
 

b. 
 

 

 

 

 

 

 

 

 
 
 
 

 
Table 2. Summary statistics of expanded sample obtained on the Plµ  Neox. a,b, Multivariate 
statistics (a.) indicating a significant difference between the taxa, and Univariate statistics (b.) indicating 
significant differences in the median values of both Asfc and epLsar between A. africanus and P. 
robustus. Other variables were not considered, following protocol of the original study, however, the other 
significant measures are Smc and HAsfc81. 
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a.       b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 6.  Pairwise Two-Sample Variance. a, b, Comparative plots (and p-values) of both Asfc (a.) and 
epLsar (b.) of the variance of the expanded sample of A. africanus and P. robustus obtained on the Plµ 
Neox 
 
 
 
Study III 

Statistical analyses showed the pitheciid species did not differ significantly in Asfc, but did in 

epLsar (p = 0.046), with Chiropotes satanas’ values significantly lower than that of Pithecia irrorata (p = 

0.036) (fig. 7).  The species also differed in their variance of both Asfc and epLsar values (fig.9).  

Callicebus moloch and Chiropotes satanas both had significantly more dispersion in epLsar values than 

did Pithecia irrorata (p < 0.01 in both instances). Chiropotes satanas also had significantly more 

dispersion in its Asfc values than did either Callicebus moloch or Pithecia irrorata ((p < 0.01 in both 

instances).   
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a.       b. 

 
Figure 7.  Box Plots a, b Box plots by species of (a.) Asfc and (b.) epLsar, reflecting median values and 
within-species variation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Anisotropy and Complexity Bivariate plot of Asfc versus epLsar for all species 
 
 

 
 
 
 
 
 
 
 
 

 
Table 3. Univariate F Tests indicating significant differences in epLsar between the three species. 
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Table 4. Tukey’s HSD Test, which shows the significance in epLsar (table 2) lies between Ch. satanas 
and P. irrorata.  
 
 
 
a.   

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

95.00% Confidence 
Interval 

0.772 to 5.68 

F-ratio 2.244   
df 23, 13   
p-value 0.133   

95.00% Confidence 
Interval 

0.035 to 0.259 

F-ratio 0.103   
df 23, 13   
p-value 0   

Equality of Two Variances 



 21 

b.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
c. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 9. Pairwise Two-sample Variance a, b, c  Comparative plots and significance charts of both Asfc 
(left) and epLsar (right) of the variance between (a.) Ca. moloch and Ch. satanas, (b.) Ca. moloch and P. 
irrorata, and (c.) Ch. satanas and P. irrorata.   
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DISCUSSION 
 
Study I, II, and III 

 Study I, the purpose of which was to compare data from the old and new confocal profilers, found 

relatively consistent results.  The different spatial sampling and different sizes, particularly, of the work 

envelopes naturally yielded different values between the two machines; the general trends in median 

values, though, are the same, and the significant correlation between the two machines’ data means 

there are many signals lending confidence to the adoption of the Plµ Neox as a standard for the field.  

Despite these similar signals, however, the Plµ Neox did not successfully replicate the original study in 

every dimension.   

 The challenges of this stage of experimentation included the different work envelope areas and 

the difficulty of searching for precisely matched areas.  The procedures for working on the Plµ Neox 

initially involved duplicating the procedures required for the Plµ Standard confocal, which included 

scanning a 2x2 rectangle and stitching them together.  Only later did it become apparent that the Plµ 

Neox overlaps 10% of the each image for the sake of data continuity, which alters the workspace.  While 

scanning a 2x2 image includes a comparable number of measured points to a composite scan from the 

Plµ Standard instrument, the smaller workspace means less of a sampled area, perhaps affecting results.  

Furthermore, the old technique of processing each quarter of the total scan separately and then 

computing the medians tended to homogenize areas and minimize extreme values and outliers that are 

more likely to be included in the analysis of the Plµ Neox’s scans.  Scanning a 3x3 rectangle and then 

cropping out any unnecessary data could have corrected the problem of incongruent areas, but the 

resulting scans would have discrepant amounts of measured points.  

 Despite repeatability (or more accurately, the reduction of observer measurement error by 

eliminating the need to identify and measure all individual features with a mouse-driven pointer) being a 

major advantage of confocal microscopy over SEM, actually finding/revisiting identical areas on a tooth 

can prove very difficult, especially when no key landmarks are present.  Relatively consistent sites were 

found for seventeen of nineteen specimens, but the same exact areas could not be identified for two.  The 

original scans of STS 31 and SK49 included landmarks that could not be located again.  Perhaps the 
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original study oriented these two specimens differently, or scanned a portion of an adjacent facet by 

mistake.  Regardless, for these two scans, comparable images were scanned instead with similar, but not 

identical, features present.  The setbacks of this study certainly had a minor bearing on the results, 

perhaps resulting the lack of significant variation in the Plµ Neox’s Asfc values, yet the data still generally 

corroborate those of the original study.  

 Study II of this experimental trilogy expanded the existing sample of A. africanus, and yielded 

interesting results that did not align with the findings from Study I in terms of variance.  While the larger 

sample saw significant median differences in Asfc and epLsar between species, the dispersion of values 

only showed significance in comparing Asfc values.  This lack of epLsar significance could perhaps be 

explained by the increased sample of values closer to the Paranthropus mean identified in (Scott, et al., 

2005).  Further study, including augmentation of the Paranthropus sample to include SKx specimens from 

Swartkans and the Drimolen sample, is planned.  This will result in a more balanced model with 

comparable sample sizes for the two hominin species. 

The overlap in Asfc between the two hominins in the original study implied to researchers that P. 

robustus was unlikely to have been a specialized hard-object feeder, like its anatomy would suggest.  

Instead, they concluded that brittle and hard foods were only an occasional food source, but perhaps 

important component for survival.  Forty-seven percent of the original Asfc values overlapped between 

the species.  As the sample increased from n = 19 to n = 57, this overlap decreased to thirty-two percent.  

This overlap may have decreased, but the conclusion of P. robustus being a dietary generalist over a 

dietary specialist remains, as the heavily weighted A. africanus sample naturally increases in range, and 

decreases the proportion of overlap between species.  The overlap may be due to commonly preferred 

foods, but a reliance on different fallback resources consumed only periodically, perhaps in relation to 

microhabitat or seasonality (Scott et al., 2005) accounts for the clear differences between taxa.  Again, 

expansion of the sample of P. robustus to include the SKx and Drimolen samples will help balance 

numbers of specimens between the taxa and clarify differences.  

Study III examines the dental microwear textures of pitheciids with known dietary behaviors using 

a 150x objective on the Plµ Neox. Comparisons of median values for complexity and anisotropy were 

complicated by significant variation in the texture variables, specifically high variation in Ch. satanas (in 
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both complexity/Asfc and anisotropy/epLsar) and in Ca. moloch (in epLsar). Still, higher anisotropy in 

P.irrorata compared with Ch. satanas may relate to reliance on more tough leaves (and thus more precise 

masticatory movements) by P.irrorata (Mellett, 1985; Kinzey, 1992; Rosenberger et al., 1996; Evans and 

Sanson, 2006).  Although Ca. moloch eats more leaves than pitheciines, it is considered a fruit-heavy 

dietary generalist, and that, plus its smaller canines (and thus perhaps less canine guidance in 

mastication (Mills, 1963), an area of exploration for future studies) may account for its high variation in 

epLsar (Müller, 1996).  The higher dispersion in Asfc values for Ch. satanas may, in turn, be due to the 

wider range of material properties of the foods in its diet, as it relies upon the most immature hard seed 

species of the examined taxa (Kinzey and Norconk, 1990; Müller, 1996; Norconk and Conklin-Brittain, 

2004), albeit with significant overlap with P. irrorata. 

While these results were obtained through analyses of specimens from different museums and 

different sites of collection in the Brazilian rainforest, they still fell in line with some dietary differences 

reported in the literature. We expect that better control over sites and dates of capture, and larger 

samples (particularly for P. irrorata) will provide more detail on how microwear texture differences relate 

to diet in these taxa.  

 

CONCLUSIONS 

 The goals of these studies were to investigate comparability between two scanning confocal 

microscopes, expand the sample of A. africanus microwear texture data, and conduct the first microwear 

texture analysis of the pitheciids (and in fact, the first such study using primates as small as Callicebus).  

In Study I, the two instruments yielded relatively similar results, despite many limitations including work 

envelope area incomparability, spatial sampling differences, and specimens whose exact same areas 

were not replicated.  While these results were similar, they only broadly replicated the general trends, 

meaning there are still efforts to be made in truly replicating an existing study.  With the many different 

features between instruments, however, this may not be possible or even preferable.   

Expanding the sample confirmed the original study’s general trends, adding confidence in data 

collected using the new Plµ Neox confocal profiler, however, there were still trends in variance that did 

not correspond to the original results. Using a sample of pitheciid primates in Study III, the Plµ Neox 
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proved capable of generally parsing species with reported differences in diet in predictable ways, lending 

evidence toward the efficacy of the new instrument.  There were some unexpected results, but 

accounting for season of collection and sample size in the future might lead to results more in line with 

predicted patterning.  

 This study also led to insight into primate diets, examining an expanded sample of hominins, and 

quantifying the dental microwear of previously unexamined pitheciids.  Australopithecus africanus and P. 

robustus were shown to have triturated significantly different types of foods, regardless of instrument 

generation, and the hypothesis of P. robustus being a dietary generalist was maintained despite a 

directional sample increase. Observable diets were also generally confirmed by this study, with 

microwear patterns of pitheciid diets by taxa broadly conforming to documented dietary specialization.   

 The generalized success of the new instrument in each stage implies that with future studies and 

experimentation, the Plµ Neox may become an effective instrument for the quantitative characterization 

and comparison of dental microwear textures to be utilized in laboratories around the world.  
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APPENDIX A 

Using the 100x Objective: 

 The following outlines the standard settings when using a 100x objective on the Plµ Neox.  After 

arranging one’s specimen and preparing an area to scan, the field of view must be changed to “Confocal” 

mode.  Make sure the <OBJECTIVE is set to 100x.  If stitching multiple areas together, “Extended 

Topography” must be selected under the <MEASUREMENT menu.  The “THRESHOLD” must be set at 

1.5%.  Under the <LIGHT SOURCE menu, the “Confocal Image Gain” setting for “Gain” must be set to 

25% in order to obtain optimal scans while the “B&W Camera” and “Color Camera” will remain on default. 

The setting for “Gamma” will correct itself upon an autofocus of the light.  White-light must be selected in 

confocal mode when scanning under 100x magnification. 

 

Using the 150x Objective: 

 The following outlines the standard settings when using a 150x objective on the Plµ Neox.  After 

arranging one’s specimen and preparing an area to scan, the field of view must be changed to “Confocal” 

mode.  Make sure the <OBJECTIVE is set to 150x.  If stitching multiple areas together, “Extended 

Topography” must be selected under the <MEASUREMENT menu.  The “THRESHOLD” must be set at 

1%.  Under the <LIGHT SOURCE menu, the “Confocal Image Gain” setting for “Gain” must be set to 

100% in order to obtain optimal scans while the “B&W Camera” and “Color Camera” will remain on 

default. The setting for “Gamma” will correct itself upon an autofocus of the light.  Blue-light must be 

selected in confocal mode when scanning under 150x magnification. 
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APPENDIX B 
 
SPECIMEN TOOTH* PHOTO SIMULATION 
STW1 LM1  

 
 
 
 

STW11 RM3  
 
 
 
 

STW13 LM3 

 
 
 
 
 

STW34 LM2 

 
 
 
 
 

STW37 LM3  

STW43 RM3  

STW53 RM2  

STW61 RM2  
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STW71 RM2  

STW96 LM3  

STW131 RM1  

STW134 LM2 

 STW140 LM3  

STW183 LM2  

STW193 LM2  

STW212 LM2  
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STW220 RM1  

STW237 LM3  

STW252 LM2  

STW291 RM1  

STW309 RM1  

STW313 LM3  

STW353 RM3  

STW397 RM3  
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STW404 RM2  

STW421 RM1  

STW450 RM1  

STW487 RM3  

STW498 RM2  

STW520 RM3  

STW524 RM3  

TM1511 LM2  
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MLD2 LM2  

MLD6 RM2  

MLD19 LM3  

MLD24 LM1  

MLD28 RM3  

MLD44 LM3  

 
*All STW specimens identified in Moggi-Cecchi et al. (2006) and MLD specimens identified in Bone and 
Dart (1955). 
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