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ABSTRACT 

 

Both conventional and unconventional Mississippian reservoirs in the mid-continent are 

largely comprised of chert-rich carbonates of Osagean and Meramecan age.  The conventional 

reservoir target is the Mississippian “chat,” a high porosity, chert residuum interval found 

immediately beneath the Mississippian-Pennsylvanian unconformity. The unconventional 

reservoir target occurs in the lower porosity, cherty, mud-rich intervals that occur in the lower 

portion of the Mississippian succession.  

There has been considerable debate surrounding the sequence stratigraphic interpretations, 

depositional models, and formation names applied to the reservoir intervals within the subsurface.  

Another major issue with regard to the subsurface is the stratigraphic position and origin of 

tripolitic chert development. Previous outcrop studies within the Mississippian outcrop belt, mud 

logs, and well log correlations have been utilized to facilitate the application of sequence 

stratigraphy to the subsurface succession. Reservoir intervals appear to be preferentially developed 

beneath the Osagean-Meramecian and Mississippian-Pennsylvanian boundaries. The proposed 

depositional model challenges previous assignments of tripolitic chert development to what has 

been called the Reeds Spring Formation in the subsurface. 
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1.  INTRODUCTION 

Mississippian reservoirs of the mid-continent are largely comprised of chert-rich 

carbonates of Osagean and Meramecian age and are truncated at the basal Pennsylvanian 

unconformity. The Mississippian reservoirs are known in the midcontinent as Mississippian 

“chat”. In south-central Kansas and north-central Oklahoma, these reservoirs have been impressive 

oil and gas producers, yielding 278 million bbl of oil and 2.4 tcf gas in Kansas (Watney et al., 

2001) and 105 million bbl of oil and 1 tcf gas in Oklahoma (Rogers, 2001) as of 2001.  

Both conventional and unconventional reservoirs are targeted throughout the Mississippian 

interval. Mississippian fields flank Late Mississippian and Early Pennsylvanian structures in 

Kansas that also extend into Oklahoma: the Central Kansas uplift, the Pratt Anticline, and Nemaha 

Uplift (Montgomery et al., 1998; Watney et al., 2001). In Kansas, conventional reservoir 

lithologies are a spiculitic chert found immediately below the Mississippian-Pennsylvanian 

boundary that has porosities up to 25% and permeabilities up to 500 md. Down-dip there is a 

transition to a tight bedded chert interval (Watney et al., 2001; Mazzullo et al., 2009). Due to their 

lower porosity and permeability, these units were commonly avoided as a target (Watney et al., 

2001). After a period of drilling inactivity, the 2000’s brought a revitalized interest in the 

Mississippian chat, including once avoided tight bedded chert, due to advancements in drilling 

techniques (Montgomery et al., 1998; Mazzullo et al., 2009).  

One disadvantage that has plagued the Mississippian chat was a failure to produce 

economically on a consistent basis. Major factors contributing to this are reservoir 

compartmentalization and a complicated digenetic history.  
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1.1 Previous Work 

The Mississippian section has been extensively studied for the past several decades.  Initial 

studies were primarily focused on paleogeography and shelf position, regional stratigraphy, and 

general structure (Laudon 1939; Merriam and Goebel, 1951; Thorton, 1964; Gutshick and 

Sandberg, 1983). In the latter years, it was the realized that the Mississippian strata represented a 

complex post-depositional history with erosion surfaces and lateral heterogeneity (Rogers et al., 

1995; Montgomery et al., 1998; Rogers, 2001; Watney et al., 2001, Mazzullo et al., 2009; Kremen, 

2010; Friesenhahn, 2012; Costello et al., 2013; Wittman, 2013). Those studies began focusing on 

reservoir characterization and tying in unconformities to an updated sequence stratigraphic 

framework.  

Rogers et al.  (1995) specifically focused on the stratigraphy, depositional model and 

reservoir characterization of the Glick Field in Kiowa and Comanche counties, Kansas. The only 

reservoir interval within the Glick Field is spiculitic chert of Osagean age (Rogers et al., 1995). 

That informal term “chat” was coined to emphasize the drill bit “chatters” as it penetrates the chert. 

Sponge spicule bioherms represent the reservoir interval, and stratigraphic traps develop where the 

spiculitic facies pinch out into tighter limestones to the south and west (Rogers et al., 1995).  

Montgomery et al.  (1998) presented a comprehensive geologic overview of the 

Mississippian spiculitic chert reservoirs in southern Kansas. Stratigraphic cross sections, seismic 

profiles, petrophysical properties, and two field case studies provided basic stratigraphic 

relationships and noted the occurrences of Mississippian chat. The low resistivity (1-8 ohm-m) 

and high porosity (>30%) make the chat easily distinguishable in resistivity and porosity well logs 

(Montgomery et al., 1998). The low resistivity could be caused by high amounts of bound water 

within microporosity (Montgomery et al., 1998). Three “chat” types were differentiated, the first 
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type being primary in-situ chert at the top of the Osage and base of Meramec, the second type 

being in-situ chert that has been weathered at the Osage-Meramec unconformity, and finally the 

third type being chert conglomerate immediately above the Osage unconformity (not related to the 

Mississippian-Pennsylvanian unconformity) (Montgomery et al., 1998).  

 Rogers (2001) looked at the stratigraphy, petrophysics, and diagenesis of Mississippian 

chat fields near the Nemaha Uplift in north-central Oklahoma. Typically, low resistivity (1-2 ohm-

m) and high porosity (>25%) intervals are recognized on resistivity and porosity logs (Rogers, 

2001). Archie’s equation shows high water saturation values (60-100%), where anything greater 

than 80% water saturation should be deemed non-commercial (Rogers, 2001). The high water 

saturation values are attributed to high irreducible water filing microporosity (Rogers, 2001). 

Proposed diagenetic scenarios recoginzed two different types of chat. Facies are either deposited 

or transported to a setting below wave base, where silica replacement occurs. Sea level falls 

causing for meteoric water to create secondary porosity via dissolution processes (Rogers, 2001).  

Watney et al, (2001) examined eight Mississippian fields in south-central Kansas and 

suggested shallowing upward cycles, subaerial exposure, and meteoric water play crucial roles in 

the quality of reservoir within the Mississippian. Transgressive-Regressive cycles (T-R cycles) on 

the shelf-margin resulted in shallowing up cycles that contained argillaceous, carbonate muds 

towards the bottom portion transitioning to bioclastic wacke-grainstone shelf deposits at the top, 

where spicule content would increase upward with increasing cycle thickness (Watney et al., 

2001). Shallowing upward cycles are capped by a subaerial exposure surfaces. Subaerial exposure 

allowed diagenesis to occur from an influx of meteoric water in a limited zone of mixing that did 

not extend down-dip into cherty facies (Watney et al., 2001).  
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Mazzullo et al. (2009) highlighted a subsurface unit called the Cowley Formation by using 

hundreds of well logs, well cuttings and samples, seismic sections, and petrography of 

core/cuttings and samples from Kansas and Oklahoma. The Cowley Formation is a spiculite-

dominated heterogeneous succession extending throughout the subsurface of south-central Kansas 

and parts of north-central Oklahoma that straddles late Osage-early Meramec in age (Mazzullo et 

al., 2009). Mazzullo et al. (2009) interpreted the Cowley Formation as being low-gradient ramp 

deposits ranging from inner-ramp facies of moderate-energy environments to distal/outer ramp 

facies of low-energy environments. The proposed depositional model of the Cowley Formation 

included progradational wedges of transported carbonates down the low-gradient ramp into south-

central Kansas to north-central Oklahoma (Mazzullo et al., 2009). Cowley Formation deposition 

was interrupted by minor subaerial exposure allowing for alteration to occur via meteoric to mixed 

meteoric-marine water dissolution (Mazzullo et al., 2009). 

Three previous University of Arkansas unpublished master’s theses (Kreman, 2010; 

Friesenhahn, 2012; Wittman, 2013) to the east of the present study area provide important 

stratigraphic and reservoir implications.  

Kreman (2010) produced a subsurface study of the Lower Mississippian section in the 

Cherokee Geologic Province of Osage County, northeastern Oklahoma. Conclusions were that the 

development of a carbonate platform during the Kinderhookian and Osagean time experienced 

both aggradation and progradation, similar to the findings of Mazzullo et al. (2009).  

Freisenhahn (2012) proposed a reservoir characterization study primarily focusing on the 

unconventional Reeds Spring Formation within the Lower Mississippian. This study was also in 

the Cherokee Geologic Province of Osage County, northeastern Oklahoma. The middle Reeds 
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Spring was deemed the best reservoir potential based on an evaluation of petrophysical 

characteristics.  

Wittman (2013) characterized the subsurface sequence stratigraphy and reservoir character 

of Kinderhookian to Mississippian strata on the Anadarko Shelf, across north-central Oklahoma 

including Alfalfa, Grant, Garfield, Kay, Major, Woods, and parts of surrounding counties. Over 

85 wells with raster images were examined, and the study concluded that active structural features 

of the Pratt Anticline and Nemaha Ridge influenced clinoform progradation directions, which 

agree with Mazzullo et al. (2009). Reservoir implications are that the best reservoir facies occur 

immediately below the Osage-Meramec unconformity and the Mississippian-Pennsylvanian 

unconformity in landward areas that have been sub-aerially exposed for longer lengths of time 

during regressive cycles (Wittman, 2013).  

1.2 Study Area 

The thesis study area encompasses a portion of the Anadarko Shelf geologic province, 

which is to the southeast of the Hugoton Embayment and west of the Cherokee Platform (Figure 

1). This includes north-central Oklahoma and south-central Kansas. Counties included in the study 

area are Woods, Woodward, Major, Alfalfa, Garfield and Grant in Oklahoma and Comanche, 

Harper and Barber counties in Kansas.  
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Figure 1: Study area includes north-central Oklahoma and south-central Kansas. Counties included in the study area are Woods, 

Woodward, Major, Alfalfa, Garfield and Grant in Oklahoma, and Comanche, Harper and Barber counties in Kansas. Over 350 well 

logs, 60 mud logs, and one core description were used. Main correlation focus area is outlined in blue. 
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1.3 Significance 

Chesapeake Energy Corporation’s well, Howell 1-33H, was the first horizontally drilled in 

the play and achieved an IP of 441bbl/day of oil and 55 mcfd of gas. Located in Woods County, 

Oklahoma, the frac job consisted of 15% HCl, 1,017,608 gal BW, and 30/70 sand (Manger and 

Evans, 2012). The target also changed from the conventional “chat” reservoirs that contain 

porosity greater than 25% and permeability up to 500 md (Rogers, 2001) to low 

porosity/permeability cherty dolomite mudstones, argillaceous dolomite mudstones, and bioclastic 

wacke-grainstones (Watney et al., 2001). Due to recent technological advancements in drilling and 

completions, the Mississippi Lime play has undergone an unconventional revitalization. This 

revitalization in drilling has provided an ample supply of new data which has the potential to more 

accurately constrain a subsurface sequence stratigraphic framework for Kinderhookian to 

Mississippian aged strata. 

1.4 Purpose 

The purpose of this thesis research was to: 1) extend the high-resolution sequence 

stratigraphic framework purposed by Wittman (2013) into the study area, 2) create a 

lithostratigraphic framework utilizing mud logs and core description to demonstrate interval 

correlation between subsurface and outcrop, 3) test the Thompson (1986) outcrop depositional 

model in the subsurface, 4) define the stratigraphic position of favorable reservoir intervals 

 

 

 



 

8 

2.  GEOLOGIC HISTORY 

2.1 Geologic Setting 

The Anadarko Basin of the mid-continent is the deepest Phanerozoic sedimentary basin on 

the North American craton (Perry, 1989). Within this basin, three sedimentary sequences have 

been recognized (ascending order) 1) Sauk Cambro-Ordovician Arbuckle Group, 2) Tippecanoe 

Ordovician Viola Group and Siluro-Devonian Hunton Group, and 3) Kaskaskia Mississippian 

Osage-Meramec-Chester limestone sequence (Fritz and Medlock, 1995). The study primarily 

focuses on the rocks within the Osage-Meramec-Chester sequence. During the Mississippian, the 

study area was located on the Anadarko shelf margin in a ramp environment (Figure 2). Numerous 

prograding lobes of transported carbonates draped the ramp throughout the Mississippian.  

Deposition is thought to have been punctuated by higher order regressive cycles, creating possible 

sub-aerial exposure of the shelf (Rogers, 2001, Watney et al., 2001, Mazzullo et al., 2009).  
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Figure 2: Paleogeographic map of the Osage series modified from Lane and DeKeyser, 1980. Red 

square is outline of the study area. Blue polygon marks the interpreted shelf edge. The study area 

encompasses distal shelf margin, shelf margin, and basin environments. 
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2.2 Tectonic History 

In the Early to Middle Cambrian, rifting created the southern Oklahoma aulacogen. 

Following the rifting phase, the aulacogen began to cool and subside (Perry, 1989). A passive 

margin existed from Cambrian to Mississippian time (Perry, 1989). Tectonics associated with the 

Ouachita orogeny caused inversion on the northern flank of the aulacogen, producing the 

Anadarko basin (Perry, 1989). Several major tectonic entities were active during the Mississippian 

that affected both deposition and erosion, particularly the Nemaha Ridge and Pratt Anticline 

(Figure 3). The Nemaha Ridge is a 4-15 mi wide regional plunging anticline that extends from the 

surface in southeast Nebraska to south-central Oklahoma, where it ultimately terminates against 

the megashear (Dolton and Finn, 1989; McBee, 2003). Numerous structural and stratigraphic traps 

occur along the flanks, and the Nemaha Ridge has been suggested as being the fundamental feature 

that controls the distribution of oil and gas in the Oklahoma and Kansas area (Dolton and Finn, 

1989). The Nemaha Ridge also separates the Cherokee Platform from the Anadarko Shelf. The 

Pratt Anticline is a low-relief southeastern plunging nose of the Central Kansas Uplift where, along 

its crest, the Mississippian strata are absent, so Pennsylvanian rocks rest unconformably on 

Ordovician rocks (Rogers et al., 1995; Mazzullo et al., 2009). Like the Nemaha Ridge, an arcuate 

fairway is present along the flanks of the Pratt Anticline, where stratigraphic and structural traps 

exist (Montgomery et al., 1998). In the Pennsylvanian, a significant unconformity heavily eroded 

Mississippian strata within the study area. 
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Figure 3: Geologic providences and structural features within the north-central Oklahoma and south central Kansas region. Study area 

is on the Anadarko Shelf with the Pratt Anticline in the western portion of the study area and Nemaha Ridge to the east. 
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2.3 Enigma of Subsurface to Surface Stratigraphy 

 There are multiple challenges when applying the Mississippian stratigraphic framework 

in the Mississippian outcrop belt to the subsurface in north-central Oklahoma and south-central 

Kansas.  

The first challenge is nomenclature, as it is common for both formal and informal names 

used throughout the subsurface. The Kinderhook Shale, which is of Kinderhookian age, does not 

have a formal assigned outcrop equivalent, but is used frequently in the subsurface and is 

regionally correlatable. Mazzullo et al., 2010 suggest the Kinderhook Shale could be the 

subsurface equivalent to the Bachelor Formation of the St. Joe Group in the Mississippian outcrop 

belt, but this relationship has not been fully investigated. St. Joe Group, which is also of 

Kinderhookian age, does have an outcrop equivalent, and is correlatable throughout the outcrop 

and is also regionally correlatable throughout the subsurface. The St. Joe Group is differentiated 

into the Bachelor, Compton, Northview and Pierson Formations (Manger and Evans (2012). The 

Compton, Northview, and Pierson Formations are commonly used throughout the subsurface, but 

the Pierson is not recoginzed within the study area, because of its high chert content. The Osage, 

which is of Osagean age, does have a formal assigned outcrop equivalent, and is correlatable 

throughout the subsurface (Lee, 1940; Thornton, 1964; Rogers et al., 1995; Mazzullo et al., 2009, 

Rottmann, 2011; Costello et al., 2013). The Osage is differentiated into the lower and upper Boone 

Formation in Arkansas outcrop. The lower and upper Boone Formation names have not been used 

in the subsurface correlation, as it is nearly impossible to differentiate them with a standard triple-

combo log suite. The Meramec, which is Meramecian in age, does have a formal assigned outcrop 

equivalent and is correlatable throughout the subsurface (Lee; 1940; Thornton, 1964; Mazzullo et 

al., 2009; Rottmann, 2011; Costello et al., 2013). The Meramec is differentiated into the Cowley 
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Formation in subsurface, then the Warsaw Formation, Salem Formation, St. Louis Formation, and 

St. Genevieve Formation in outcrop.(Lee, 1940; Watney et al., 2001; Mazzullo et al., 2009). The 

Mississippian “chat”, is an informal term used only in the subsurface that is applied to any 

weathered chert lithology coupled with a low resistivity and high porosity log character 

(Montgomery et al., 1998).  

The second challenge is using both lithostratigraphic and chronostratigraphic methods for 

correlating in the subsurface. The Kinderhook Shale, Compton Formation, Northview Formation 

are correlated based on lithologic and well log character. This methodology is lithostratigraphic 

correlation, which is correlation based on lithologic character. The Osage and Meramec are 

correlated based on unconformities (Lee, 1940; Thornton, 1964; Rogers et al., 2001; Watney et 

al., 2001; Mazzullo et al., 2009; Costello et al., 2013). The unconformities represent 

stratigraphically important surfaces that give a diachronous proxy for time, and are used in for 

chronostratigraphic correlation (Catuneanu, 2006).  

The third challenge is the distance away from formation type localities. The Mississippian 

outcrop belt is over 200 miles away, so the outcrop nomenclature application to the subsurface 

could be suspect due to the significant distance (Figure 4).  

Nomenclature used in this study is as follows: Kinderhook Shale, St Joe Group (Northview 

and Compton Formations), Osage, and Meramec (Figure 5). The Osage is only differentiated into 

the lower and upper Boone where mud logs are available for accurate lithologic correlation. 

Meramec cannot be differentiated into Cowley Formation, Warsaw Formation, Salem Formation, 

St. Louis Formation, and St. Genevieve Formation, as nearly all mud logs did not have Meramec 

present due to erosion from Mississippian-Pennsylvanian unconformity 
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Figure 4: Black square shows the study area and the blue polygon is the Mississippi outcrop belt. The distance between the study area 

and the Mississippian outcrop belt is roughly 200 miles. 
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Figure 5: Type log and stratigraphic column for the study area taken from the Leatherman 1-30 

well in Woods County, Oklahoma. Well logs from left to right are gamma ray (0-150 API), deep 

resistivity (.42-10000 ohm-m with a 40 ohm-m blue cut off), and photoelectric effect (2-7 

barns/election with a 3.5 barns/electron cut off). 
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3.  METHODOLOGY 

3.1 Workflow 

The workflow for conducting this subsurface stratigraphic thesis research began with a 

comprehensive literature review (Figure 6). Following the extensive literature review, the 

acquisition of all available well log and related data within the defined study area became the next 

objective. Once all available data were obtained, it was assessed for quality control; if it met and 

passed certain criteria, the data were used for interpretation. During the interpretation and 

correlation of well logs, gaps in data were filled by circling back to the data acquisition stage. This 

resulted in data acquisition being the most time consuming and labor intensive portion of the 

project. Once data acquisition and all interpretations were finished, a thorough interpretation was 

produced. 

3.2 Data Acquisition and Description 

Three previous University of Arkansas masters theses by Kreman (2011), Friesenhahn 

(2012), and Wittman (2013) developed a geo-database for northeast Oklahoma westward into 

north-central Oklahoma of raster and digital well logs using geologic interpretation software, IHS 

Petra. These well logs were obtained through various donations from independent oil and gas 

companies as well as drillinginfo.com. Additional well logs were acquired and added to the geo-

database to further develop interpretations and to accomplish the goals of this study. The well logs 

were downloaded from drillinginfo.com, and the Kansas Geological Survey website.  
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Figure 6: Workflow showing the steps taken in order to complete this thesis research. 
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The methodology for mining well logs in drillinginfo.com was streamlined during the well 

log acquisition portion of Wittman (2013), where salt water disposal wells (SWD wells) were 

favored. All SWD wells target the Arbuckle Formation, which is stratigraphically below the 

Mississippian section. Drillinginfo.com allowed the search of strictly SWD wells, making this 

process quick and efficient for gathering bulk amounts of well logs in Oklahoma. Unfortunately, 

this process was not applicable for mining well logs from the Kansas Geological Survey website. 

Well logs were hand-picked from an interactive state-wide map of Kansas that showed the 

locations of each oil and gas well drilled. Once well logs were downloaded, well header 

information and associated raster images and/or digital well logs were imported into IHS Petra.  

Raster images had to be depth calibrated, which is mandatory in order to perform well log 

correlations. Well logs were also digitized in IHS Petra to allow for an easier visual representation 

as opposed to black and white raster images. It also allowed well log statistics to be calculated 

using IHS Petra.  This process was repeated several times to insure that the study area had the best 

well control from the log data available.  

Well logs which met the criteria of penetrating the full Mississippian section from the 

Devonian-Mississippian unconformity to the Mississippian-Pennsylvanian unconformity were 

downloaded. Further quality control required well logs to have gamma ray, resistivity, and 

density/porosity logs (photoelectric effect, microlog, and mud logs were also desired, but not 

required) for use in interpretation. This methodology allowed for only the highest quality of well 

log data to be used and insured that every well log downloaded would be used in this study.  

3.3 Formation Identification Criteria 

Well-log formation identification criteria were adopted based on literature and industry 

formation tops obtained from online databases. Parameters for picking the formations within the 
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St. Joe Group were defined in Mazzullo et al., (2009) and were based on log character of the 

Compton and Northview Formations. Parameters for dividing the Osage-Meramec boundary 

within the Mississippian were defined in Mazzullo et al., (2009) and Costello et al., (2013). All 

major formation tops, such as the Viola, Woodford Shale, Kinderhook Shale, and Mississippian, 

were defined by industry picks from Drillinginfo.com and the Kansas Geological Survey website. 

3.4 Stratigraphic Assumptions 

This thesis uses a combination of sequence stratigraphic terminology and approaches 

outlined in both Handford and Loucks (1993) and Catuneanu (2006). Carbonate depositional 

sequences and systems tracts were explained in Handford and Loucks (1993). During lowstand, 

seas become shallower and have a greater potential for siliciclastic input. Significant siliciclastics 

suppress and restrict carbonate sediment production. Lowstands also cause the shelf to retreat, 

producing subaerial exposure and karstification, if there was deposition of limestone prior. During 

transgression, seas begin to rise and siliciclastic input decreases. Deeper portions become starved 

of sediment. If the carbonate factory is in the right latitude and sediment input has ceased, lime 

deposition begins. Aggradation takes place as carbonates “catch up” to the rising sea level, and 

once caught up, progradational shallowing upwards successions ensue. During highstand, 

carbonate sedimentation rates are greatest, causing continued progradation of the shelf edge. As 

shelf edges continue to prograde, they can experience oversteepening, which causes a collapse and 

subsequent gravity flows down the slope towards the basin floor. Fine grained sediment also is 

derived from the platform via suspension down onto the slope 
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4. STRATIGRAPHY 

4.1 Stratigraphic Overview 

Based on the consensus of Paleozoic sea level cyclicity, the Mississippian system falls 

within the Kaskasia II mega sequence (Figure 7). Two full 3rd order transgressive-regressive 

cycles are present within the Kaskaskia II, along with a full 2nd order cycle. Within the early 

Osagean, there is a 3rd and 2nd order transgressive maximum superimposed on eachother. This 

corresponds to a transgression and maximum flooding interval from the Kinderhookian to 

Osagean. Following the maxiumum flooding interval within the early Osage, regression occurs 

until a 3rd order regression at the end of the Osagean. 3rd order transgression then returns in the 

Meramecian. A sequence boundary at the Mississippian-Pennsylvanian marks the end of the 

Kaskasia II megasequence. 
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Figure 7: Paleocyclicity of the upper Devonian and Mississippian (modified from Lowell Waite, 

Pioneer Natural Resources, Dallas, Texas, 2002 version, compiled from various sources). The 

Mississippian is entirely within the Kaskaskia II 1st order sequence. One full 2nd order cycle and 

two full 3rd order cycles are within the Mississippian. There is a 2nd order transgression and 3rd 

order transgression superimposed on one another towards the beginning of the Osage. 
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4.2 Kinderhookian 

The Kinderhookian series comprises the deposition of the Kinderhook Shale and the St. 

Joe Group. It encompasses both 3rd and 2nd order transgression at the onset of the Kaskaskia II 

megasequence.  

4.2.1 Kinderhook Shale 

The Kinderhook Shale marks the basal portion of the Mississippian sequence that lies 

above the Devonian Woodford Shale. The Woodford shale was deposited in anoxic seas during 

transgression within the Kaskaskia I megasequence during the Devonian (Lambert, 1993). 

Transgression was followed immediately by regression, where a second-and third order maximum 

regression marked the end of the Kaskaskia I megasequence, as well as the Devonian. Following 

the maximum regression at the end of the Kaskaskia I megasequence, transgression ensued 

marking the base of the Mississippian system. Sea level rose fairly rapidly in the early 

Kinderhookian and persisted until first-order maximum flooding in early Osagean series.  

In well logs, the boundary between the Woodford Shale and Kinderhook Shale was rather 

easy to distinguish (Figure 8). Commonly, the Woodford Shale would wrap around gamma ray 

logs due to high radioactivity. Values typically ranged between 200-400 API units for the 

Woodford Shale. The Kinderhook Shale, in contrast, would not wrap around as dramatically and 

has gamma ray values between 70-180 API units. Mud logs also document the difference in 

lithology between the Woodford Shale and Kinderhook Shale. The Woodford Shale consists of 

brown, dark grey, to black gritty shale with pyrite. Kinderhook Shale consists of grey to dark grey, 

silty shale that has sparse pyrite (Figure 9). Within the study area, the Kinderhook Shale has an 

average thickness of roughly 40 feet, and a range in thickness from less than 15 feet in the western 
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areas to 85 feet in the eastern areas (Figure 10). An area of greatest thickness occurs in northern 

Alfalfa County, Oklahoma, where a possible shelf edge existed for the Kinderhook Shale. 
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Figure 8: Type log of Hole In 1-1 well in Woods County, Oklahoma. Woodford Shale gamma ray 

readings fully wrap around typically two to three times, while the Kinderhook Shale gamma ray 

readings never wrap around fully. 
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Figure 9: Mud log from Cook ‘A’ well in Barber County, Kansas. Distinct differences can be seen between the Woodford Shale and 

Kinderhook Shale. Kinderhook Shale does not have black shale within, only grey to dark grey shale. Kinderhook Shale also contains a 

higher occurrence of silt.  
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Figure 10: Kinderhook Shale isopach. Contour interval is 15 feet. Thickest Kinderhook Shale 

corresponds to shelf margin during a lowstand to transgressive systems tract. 

 

 

 

02

2
0

0
2

0
3

03

3
0

04

4
0

05

05

0
6

0

6

0
7

70

8 0

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

FEET

0 69,667

PETRA 4/3/2014 12:18:45 PM



 

28 

The Kinderhook Shale represents lowstand to transgression, where some clastic influx 

occurred from a northerly source. This clastic influx probably did not allow for organics to be 

preserved compared with the amounts in the Woodford Shale, resulting in lower gamma ray API 

readings. The Kinderhook Shale was deposited below storm wave base, but in shallower, 

oxygenated waters compared to the Woodford Shale. Thickest deposits mark the shelf edge, and 

thinner units mark areas of condensed sedimentation rates out in the distal portion of the shelf and 

basin. 

4.2.2 St. Joe. Group 

The St. Joe Group can be differentiated into the Compton Formation and the Northview 

Formation. The Compton Formation is predominately limestone and the Northview Formation is 

predominately shale. 

4.2.2.1 Compton Formation 

The Compton, is the basal formation of the St. Joe Group, is a relatively clean limestone, 

with respect to chert content, that can be seen in the outcrops in northwest Arkansas and southern 

Missouri. In outcrop, the Compton is characterized as crinozoan packstones and wackstones with 

sparse occurrences of chert nodules (Manger and Evans, 2012). 

 In well logs, the Compton has gamma ray values between 15-40 API units. Photoelectric 

effect (PE) values of the Compton ranged from four to five suggesting a clean limestone with 

minimal chert and abundant calcite. The Compton is also very resistive (100-300 Ohm-m) and has 

a low porosity with minimal reservoir potential. Description of the Compton in mud logs follows 

what is seen in the outcrops, as varied amounts of chert can be present (Figure 11).  
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Figure 11: Mud log from the Wilson Estate #4 well in Barber County, Kansas of the Compton Formation. The Compton Formation is 

fairly clean with respect to chert, but chert content varies throughout the study area. The limestone is also dense with little porosity. 
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Apparently, these strata now in the subsurface were in a more favorable position for silica 

replacement to occur than what is seen within the outcrop belt. Within the study area, the Compton 

has an average thickness of 25 feet, and a range in thickness from less than five feet in the southern 

areas to almost 90 feet in the northern areas (Figure 12). There are two areas of greatest thickness, 

one in northeastern Barber County, Kansas and one in northern Comanche County, Kansas.  

The Compton represents transgressive to highstand conditions after the waters have fully 

cleared from the sediment influx from the Kinderhook Shale and allowed carbonate sedimentation. 

The isopach of the Compton is reminiscent of the outcrop isopach in Handford and Manger (1990) 

(Figure 13). A lobate pattern exists and the thicker units (>30 ft.) show the position of the 

transgressive shelf, and thinner units (<30 ft.) show the distal, starved shelf to basin. The lobate 

geometry is indicative of down-ramp movement (Handford and Manger, 1990). This same model 

can most likely explain the isopach of the Compton in the study area.  
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Figure 12: Compton Formation isopach. Contour interval is 15 feet. Thickest Compton Formation 

is towards the north, corresponding to a shelf margin during transgressive to highstand systems 

tract.  
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Figure 13: Outcrop isopach map from Handford and Manger (1990) of the Compton Formation 

in the Mississippian outcrop belt. Lobate geometry indictative to down ramp transport of 

carbonates to the thinner distal portions.This same depositional style existed within the study area. 
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4.2.2.2 Northview Formation 

Overlying the Compton Formation, the Northview Formation, is a thin light green to grey 

calcareous shale. Between the Compton and Pierson in the outcrops of northwest Arkansas and 

southern Missouri (Manger and Evans, 2012).  

 In well logs, the Northview has gamma ray values between 50-125 API units and resistivity 

values of 10-30 Ohm-m. Description of the Northview in mud logs is a grey to dark grey shale 

with trace pyrite and occasional interbedded cream to tan limestones (Figure 14). Thickness of the 

Northview averages 25 ft. and ranges from 10-130 ft (Figure 15). Mazzullo et al. (2009) noted a 

Compton-like lithology that is sometimes present that adds to the thickness of the unit. The 

Compton-like lithology mimics the well log characteristics seen within the Compton, where there 

is a gamma ray reading of 15-30 API units and a higher resistivity of around 100 Ohm-m (Figure 

16). This was periodically seen throughout the study area, and higher order 4th and 5th transgressive 

cycles could explain their origin. 
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Figure 14: Mud log from the Bouziden Trust #2 well in Barber County, Kansas of the Northview Formation. Mainly consists of grey 

to dark grey shale with trace pyrite, similar to the Kinderhook Shale. Occasional interbedded limestones occur within the shale.
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Figure 15: Northview Formation isopach. Contour interval is 15 feet. Thickest Northview 

Formation corresponds to shelf edge during lowstand systems tract.  
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Figure 16: Type log from the Ritter 1-19 well in Woods County, Kansas of the occasional Compton Formation-like log motif within 

the Northview Formation. Gamma ray (0-150 API) is on the left in red and deep resistivity (.20-2000 ohm-m) is on the right in blue. 

There are lower gamma ray readings and high resistivity spikes similar to the Compton Formation. This log motif is sporadic and not 

mappable throught the area, most likely attributed to higher order transgressions. 
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The Northview represents a lowstand in sea level with an influx of sediments from a 

northerly source (Handford, 2013; Manger and Evans, 2012). This sufficiently shut off the 

carbonate production that was seen in the Compton. Handford (2013) and Manger and Evans 

(2013) state that the Northview has a sigmoidal clinoform geometry indicative of progradation 

(Figure 17). This can be seen in cross section through the study area (Figure 18). The sigmoidal 

geometry is thin towards the shoreline, thickest at the shelf edge, and thin at the distal portion of 

the shelf. Base level fell, which caused sediment influx to outpace the creation of accommodation 

space, yielding sediment bypass at the shoreline and progradation of the shelf edge. 
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Figure 17: Depositional model from Handford (2013) showing the depositional nature of the 

Northview Formation based on outcrop isopach maps in the Mississippian outcrop belt. The 

Northview Formation was deposited during a lowstand, yielding the progradation of sigmoidal 

clinoforms. 
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Figure 18: Northwest to southeast cross section through the study area illustrating the sigmoidal clinoform-like geometry of the 

Northview Formation that is similar to the Handford (2013) depositional model. Progradation direction was to the south-southeast. 
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4.3 Osagean 

The Osagean series comprises the Osage deposition. This chronostratigraphic interval in 

the lower Mississippian occurs between the Kinderhookian and the Meramecian. It encompasses 

the maximum flooding interval where 2nd and 3rd order transgression are superimposed on 

eachother. 

4.3.1 Osage 

The contact between the Northview and Osage in the subsurface is mostly gradational 

within the study area. There does not appear to be any way to distinguish between the Pierson 

Formation and the Osage as possible in outcrop, since there are no changes in log character to 

reflect a difference in lithology. This could be due to deposition in deeper water than what is seen 

in the Mississippian outcrop belt, hindering the Pierson Formation facies to develop. The Osage is 

equivalent to the Boone Formation in northwest Arkansas, where it can be differentiated into a 

lower and upper Boone based on chert development. For well log correlations, the Osage was not 

differentiated as it was impossible to do in well logs that did not have a corresponding mud log. 

Later in this chapter, a method for differentiation was described for wells that had mud logs.  

Commonly, a photoelectric effect (PE) value of 3.5 barns/electron or lower is seen within 

the Osage. When the PE log value is lower than 3.5, it is indicative of increasing silica content, 

and when the PE log value is above 3.5 it is indicative of increasing calcium content. A cherty 

limestone gives off a distinctive “zig-zag” pattern between 2-3.5 barns/electron, which has been 

documented in Freisenhahn (2012) and Wittman (2013). Mud logs help confirm that this 

relationship between chert occurrence and the “zig-zag” pattern between 2-3.5 barns/electron is 

accurate (Figure 19). Deep resistivity values average below 40 Ohm-m. The Osage has gamma ray 
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values typically between 20-60 API units and generally exhibits a cleaning trend where gamma 

ray values decreases upward to the top of the formation. Mud logs within the Osage typically 

mention abundant chert that is tripolitic in the upper portion of the formation (Figure 20). 

Thickness of the Osage averages 250 feet with a range between less than five feet in the 

southeastern portion of the study area and over 400 feet in the southwestern portion of the study 

area (Figure 21).  

Following the lowstand within the Northview Formation, an increase in sea level occurred. 

This sea level rise is attributed to both 2nd and 3rd order transgression superimposed on each other 

within the Kaskaskia II sequence. As seen in both outcrop and the subsurface, the Osage exhibits 

abundant amounts of chert. This is most likely the maximum flooding interval that is seen in the 

lower Boone Formation of the Mississippian outcrop belt. Immediately following the maximum 

flooding interval, highstand conditions ensued allowing progradation to occur until lowstand 

conditions prevailed. This regression comprises a 3rd order regressive cycle that reaches maximum 

regression towards the conclusion of the Osage. Also, the maximum regression marks the end of 

the first T-R cycle. Within the subsurface there has been a documented minor unconformity at the 

top of the Osage (Thornton, 1964; Lane and DeKeyser, 1980; Mazzullo et al., 2009; Costello et 

al., 2013). 

A lobate depositional pattern characterizes the Boone Formation in outcrop, similar to what 

is seen in the Compton Formation (Manger and Evans, 2012) (Figure 22). The lobate geometry is 

not as pronounced as the Compton Formation, but this could be attributed to much more carbonate 

being produced or a loss of accommodation space creating the amalgamated lobes. When the 

Osage goes to thickness below 5 feet, this could be a shadow in deposition. This shadow can 

somewhat be seen in the Compton Formation due to a tight thickness gradient between thick and 



 

42 

thin deposits. It is also apparent that the Pratt Anticline was not active during the Osage, as the 

strata maintain thickness over the axis of it. This could mean that depositional patterns for the 

study area were not influenced by the Pratt Anticline during Osage deposition.  
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Figure 19: Type log from the Bouziden Trust #2 well in Barber County, Kansas. Gamma ray is 

on the left in red (0-150 API) and photoelectric effect (0-6 barns/electron) on the right in purple. 

Within the Osage, there is an abundance of chert, which is reflected on the photoelectric effect log. 

The lower the photoelectric effect value, the higher the silica content. Thus, when comparing the 

Compton Formation, a clean limestone with trace chert, to the Osage, which has abundant chert, 

there is a decreasing trend in the photoelectric effect values. 
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Figure 20: Mud log from the Tessie #08 well in Barber County, Kansas of the Osage. The Osage contains a dense, fractured at times, 

cherty limestone comprising the lower portion and a tripolitic chert rich limestone comprising the upper portion. Throughout this interval 

there are many stains and fluorescence, indicating the presence of hydrocarbons. 
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Figure 21: Isopach map of the Osage. Contour interval is 15 feet. A lobate geometry similar to 

what is seen in the Compton Formation, but more amalgamated. The thin area in the southeastern 

portion was most likely a shadow of depostion. It also appears that the Pratt Anticline was not 

active during the Osage, as the Osage maintains thickness over the axis of the Pratt Anticline. The 

Osage was deposited in a transgression to high stand conditions. 
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Figure 22: Outcrop isopach map of the Boone Formation (Osage) from Shelby (1986). Notice the 

amalgamated nature of deposition. Similarities exist in depositional style to what is seen in the 

subsurface. The amalgamated lobes seen in outcrop are indicative of a large amount of transported 

carbonates coming off of the Burlington Platform to the north. This same depositional style was 

most likely occurring within the study area. 
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4.3.1.1 Lower Boone 

The lower Boone Formation is of Osage age and is a calcisiltite with penecontemporaneous 

chert development (Manger and Evans, 2012). This penecontemporaneous chert formed from 

silica reorganization from volcanic ash mixing with carbonate sediment, and reorginization 

immediately below the sediment-water interface shortly after deposition (Manger and Evans, 

2012). Its occurrence is limited to only the lower Boone and is associated with maximum flooding 

(Manger and Evans, 2012) (Figure 23). Calcium content within the chert is low, as silica is not a 

replacement product (Manger and Evans, 2012; Minor, 2013; Johnson, 2014).  

 Based on paleogeographic reconstructions of the Mississippian outcrop belt, there is a 

change in depositional environment from southern Missouri to northwest Arkansas. Environments 

change from a shallow platform environment to a deeper, ramp (Manger and Evans, 2012). In the 

shallower platform environment in southern Missouri, the lower Boone is a thin succession of 

interbedded calcisiltites and dark chert, and is identified as the Reeds Spring Formation. Based on 

conodont data, the Reeds Spring Formation is of age and lateral equivalence to the thicker Lower 

Boone to the south in northwest Arkansas (Manger and Evans, 2012). This relationship shows that 

the maximum flooding interval thins towards the shallower platform environment in effective 

wave-base and thickens towards the deeper ramp environment below effective wave-base (Manger 

and Evans, 2012). 
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Figure 23: Picture taken from Manger (2014) of the lower Boone Formation within the Mississippi 

outcrop belt. Darker beds above the clean, white St. Joe limestones are penecomtemporaneous 

chert deposited in deep water during the maximum flooding interval during the Osage.  
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4.3.1.2 Upper Boone 

The upper Boone is of Osage age and is composed of crinozoan detritus that experienced 

later diagenetic chert replacement (Manger and Evans, 2012). In southern Missouri, succeeding 

the Reeds Spring Formation is the Elsey Formation. Based on conodont data, the Elsey is 

equivalent to the upper Boone in northwest Arkansas. Later diagenetic chert present within the 

upper Boone differs from penecontemporaneous, as it is interpreted to be a groundwater 

phenomenon that developed after lithification (Manger and Evans, 2012). Lithified carbonate was 

replaced due to silica-bearing groundwater moving along bedding planes (Manger and Evans, 

2012).  

 Within the upper Boone, there is the occurrence of tripolitic chert (Figure 24). Tripolite is 

granular, microcrystalline and porous that has been derived from the alteration of chert, or by the 

leaching of highly siliceous limestones (Tarr, 1938). In order for tripolite to form, it must have had 

a “chert precursor”. Due to tripolitic chert occurring exclusively in the upper Boone, the precursor 

had to be later diagenetic chert (Manger and Evans, 2012; Minor, 2013). Study of the tripolitic 

chert by Minor (2013) and Johnson (in preporation) have shown that in the lower Boone Formation 

(Reeds Spring Formation) penecontemporaneous chert lacks a sufficient amount of calcite to be 

decalcitized. Conversely, the upper Boone Formation (Elsey, Burlington-Keokuk) does have 

enough calcite for decalcification for silica replacement, thus, allowing the opportunity for 

tripolitic chert to develop.  
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Figure 24: Lower to upper Boone transition in southwestern Missouri, taken from Manger (2014). 

Darker limestones are lower Boone Formation and tan colored limestones are upper Boone 

Formation. The tan color represents the later diagenetic chert, which is different from the 

penecontemporaneous chert formed during maximum flooding interval. The later diagenetic chert 

was formed by to an influx of ground water after deposition causing silica replacement of the 

carbonate.  
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4.3.1.3 Subsurface Occurence 

Using just the standard triple-combo well logs, lithologic correlation is very difficult to do 

without knowing the actual lithology of the rock. Mud logs were relied on heavily while making 

such correlations. Mud logs are created based on descriptions of rock fragments brought up to the 

surface by the drilling mud during drilling. Mud logs were only available for Kansas wells and 

core descriptions from Costello et al, 2013 that were confined to Woods County, Oklahoma, which 

limited the area where lithologic correlations could be made with confidence.  

 Both mud logs and core mention the occurrence of tripolitic chert, so presumably 

observations from the outcrop can be extrapolated down into the subsurface. The tripolitic chert is 

usually described as white to off-white weathered tripolite with oil staining and good porosity 

development (Figure 25). The descriptions of the rocks below the tripolitic chert interval are 

usually white to grey chert within a dense limestone of varying color (Figure 25).  

 In the previous section, it was explained that tripolitic chert only occurs within the upper 

Boone. Combining observations from outcrop and the subsurface, there are similarities to where 

tripolitic chert develops stratigraphically. The first similarity is that below the tripolitic chert 

development, there is a dense, cherty limestone of a different character. This could be equivalent 

to the lower Boone (Reeds Spring Formation) Formation that is seen in outcrop. The second is that 

the tripolitic chert always occurs above the dense cherty limestone, reflecting the relationship seen 

in outcrop where tripolitic chert does not occur within the lower Boone (Reeds Spring Formation) 

Formation, but always above. The third is that in the cross-section through eastern Barber County, 

Kansas, the southern well (Schmidt 1-36) has tripolitic chert development with dense cherty 

limestone below (Figure 26).  
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Figure 25: Mud log from the Schmidt 1-36 well in Barber County, Kansas of the Osage. Based on the mud log descriptions, lower and 

upper Boone Formation have been identified. The lower Boone Formation represents the lower portion of the Osage, where there is a 

dense, cherty limestone. A transition to tripolitic chert limestones in the upper portion of the Osage could represent upper Boone 

Formation.
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Figure 26: Cross section in eastern Barber County, Kansas. Boundaries for the lower and upper Boone Formation were based on the 

occurrence of tripolitic chert as mentioned in mud log description. 
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Moving northward, this dense cherty limestone interval inferred to be the lower Boone 

(Reeds Spring Formation), begins to thin. In the northern well (Three Sisters), the lower Boone 

(Reeds Spring Formation) is absent, so upper Boone is directly above the Northview Formation. 

This is more than likely a facies transition from deeper ramp facies to shallow platform facies 

occurring between the Three Sisters well and Dohm #1 well. Such a facies transition characterizes 

the lower and upper Boone as illustrated in the section before from southern Missouri south to 

northwest Arkansas (Figure 27). 
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Figure 27: Depositional model based on the Thompson (1986) schematic showing stratigraphic relationships. What is seen in the 

subsurface reflects the same lithostratigraphic relationships as what is seen in the Mississippian outcrop belt. The lower Boone Formation 

in the subsurface has a facies transition to upper Boone Formation, suggesting a transition from deeper water facies to shallower water 

facies. This could also reflect a platform to ramp transition zone. 
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4.3.1.4 Tripolitic Chert Development 

Outcrops of the Mississippian provide depositional implications that can be correlated 

to the subsurface. The timing of the tripolitic chert formation is unknown, but in order for 

tripolitic chert to form it must first have carbonate to remove. In the case of the Mississippian, 

later diagenetic chert would have to be formed before it became tripolitic chert. This principal 

is taken into the subsurface and there are two scenarios that could have happened to explain 

this: 

Scenario 1) (Figure 28) First, dense, deeper water penecontemporaneous chert is formed 

by silica reorganization from ash below sediment-water interface during transgression and 

maximum flooding in the lower Boone. Following the deposition of the penecontemporaneous 

chert, sea level began to drop depositing the upper Boone limestones. Once sea level reached its 

maximum regression and the lithification of the upper Boone had taken place, a groundwater 

network of plumbing allowed for silica replacement and development of chert. This alteration 

process for the development of chert is analogous to what has been described in the outcrop 

(Manger and Evans 2012; Minor 2013, Johnson in preporation). Most of the alterations occur along 

bedding planes, with the silica replacement replacing the smaller grains (Minor 2013). After the 

maximum regression during the upper Boone, transgression is renewed and the Meramec 

limestones are deposited. The Mississippian-Pennsylvanian unconformity occurs and subaerial 

exposure and erodes portions of Meramecian strata. During the subaerial exposure, a water table 

is perched on the dense cherty limestone of the lower Boone. The overlying later diagenetic chert 

within the upper Boone is then subjected to this perched water table and tripolitic chert 

development occurs.   
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Figure 28: Scenario one for the development of tripolitic chert within the subsurface. T1 

represents the deposition of lower Boone Formation penecontemporaneous chert during the 

maximum flooding interval of the early Osage. T2 represents highstand and a gradual lowering of 

sea level causing progradation southward of the upper Boone Formation during the upper Osage. 

T3 represents lowstand at which sea level gets shallow enough for meteoric water influx and the 

formation of later diagenetic chert via perched water table during the late Osage. The meteoric 

water influx then gets perched on the penecontemporaneous chert of the lower Boone, causing 

later diagenetic chert (light brown blocks) to form in the upper Boone Formation. T4 represents 

renewed transgression and deposition of the Meramec during the Meramec. T5 represents lowstand 

at the Mississippian-Pennsylvanian unconformity, where another influx of meteoric water causes 

the decalcification of remaining carbonate within later diagenetic chert to form tripolitic (yellow 

diagonal lines) chert via another perched water table. The subaerially exposed Meramec could 

represent Mississippian “chat” development. 
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In conclusion, this scenario takes two stratigraphically separate water influx events to form 

the tripolitic chert: 1) The first influx allows for the precipitation of the diagenetic chert during the 

end of the Osage, 2) After deposition of Meramecian strata, during the Mississippian-

Pennsylvanian unconformity, a perched water table atop the penecontemoraneous chert causes 

decalcification of remaining chert and silica replacement of the carbonate results in tripolitic chert. 

It is important to note that in areas where the Meramecian strata were not fully eroded (i.e. north-

central Oklahoma) there is still tripolitic chert, showing that the presence of it atop the upper Boone 

had almost no effect on the tripolitic chert creation process (Costello et al., 2013). 

Scenario 2) (Figure 29) After deposition of the dense deeper penecontemporaneous chert 

during transgression and maximum flooding in the lower Boone, sea level began to drop. During 

this regression, the upper Boone limestones were deposited and lithified. Sea level continued to 

drop and a groundwater network of plumbing developed. The fluid enabled silica replacement and 

development of later diagenetic chert. Soon after the formation of the diagenetic chert, another 

influx of water occurs causing decalcification of the remaining carbonate in the later diagenetic 

chert into silica, creating tripolitic chert. The tripolitic chert development is limited to a window 

before deposition of the Meramec.  
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Figure 29: Scenario two for the development of tripolitic chert within the subsurface. T1 

represents the deposition of lower Boone Formation penecontemporaneous chert during the 

maximum flooding interval of the early Osage. T2 represents highstand and a gradual lowering of 

sea level causing progradation southward of the upper Boone Formation during the upper Osage. 

T3 represents lowstand at which sea level gets shallow enough for meteoric water influx and the 

formation of later diagenetic chert (light brown blocks) via perched water table during the late 

Osage. The meteoric water influx then gets perched on the penecontemporaneous chert of the 

lower Boone, causing later diagenetic chert to form in the upper Boone Formation. T4 represents 

another influx of meteoric water after the formation of the later diagenetic chert, causing 

decalcification of carbonate remaining within the later diagenetic chert into tripolitic chert (yellow 

diagonal lines) to form before the Meramec is deposited. T5 represents the transgression during 

the deposition of the Meramec during the Meramec. T6 represents lowstand at the Mississippian-

Pennsylvanian unconformity, and the Meramec could represent Mississippian “chat” 

development. 
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4.4 Meramecian 

The Meramecian series comprises the Meramec deposition. This chronostratigraphic 

interval in the upper Mississippian occurs after the Osagean. It encompasses 3rd order 

transgression after the unconformity at the end of the Osagean.  

4.4.1 Meramec 

Overlying unconformably above the Osage is the Meramec. This boundary does not exist 

in most of the Mississippian outcrop belt, as there Meramec strata have been eroded away. In the 

subsurface, finding the contact is not possible with solely gamma ray, so PE and deep resistivity 

were used. The PE log is the main log used for finding the boundary between the Osage and 

Meramec due to the Meramec having less quantities of chert, giving a higher PE reading. Deep 

resistivity is the secondary method for finding the boundary, as the Osage rarely has a greater than 

40 Ohm-m value. Due to deep resistivity not being lithology dependent, it was coupled with the 

PE curve. When the PE curve went above the 3.5 cut off and the deep resistivity went over the 40 

Ohm-m cut off, it was assumed this was the boundary between the Osage and Meramec. Gamma 

ray values in the Meramec are similar to those of the Osage and range from 15-40 API units.  

Meramec strata are characterized as a dolomitic crinoidal wackestone and packstone with 

less abundant chert (Thornton, 1964; Costello et al., 2013). Mud logs within the Meramec describe 

an abundance of dolomite with little chert (Figure 30). The average thickness of the Meramec is 

300 feet, and ranges from zero in the north-central portion of the study area to greater than 400 

feet in the southeast and southwest portion of the study area (Figure 31). The lack of Meramec 

strata in the north central portion of the study area suggests that the Pratt Anticline was active 
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during the Meramec. Activity along the Pratt Anticline also created enough relief to potentially 

affect depositional patterns, as the Meramec strata thicken dramatically moving to the south.  
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Figure 30: Mud log from the Ginger 1-10 well in Comanche County, Kansas. The Meramec is a much cleaner limestone with respect 

to chert content than the Osage; mainly a dolomitic, dense limestone.  
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Figure 31: Isopach map of the Meramec. Contour interval is 15 feet. Thickest areas are to the 

southwest and southeast. There is a large area where the Meramec has been eroded away, 

suggesting the Pratt Anticline was a post-Osage feature. The Meramec is also heavily eroded 

along the axis of the Pratt Anticline. The depositional style was similar to Osage. The Meramec 

was deposited during transgressive to highstand conditions.  
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After the lowstand and unconformity at the end of the Osage, the second 3rd order T-R 

cycle began with transgression. This allowed transgression to highstand conditions to prevail. 

Abundant accommodation space was created yielding the significantly thicker deposits towards 

the south. Depositional patterns were also similar to Osage, as down-ramp movement of sediment 

created a lobate geometry. Highstand persisted until sea level drop associated with the 

Mississippian-Pennsylvanian unconformity took over. At this time, the carbonate factory within 

the study area was ultimately shut down and Pennsylvanian siliciclastics encroached after the 

Mississippian-Pennsylvanian unconformity.  
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5. RESERVOIR CHARACTERIZATION 

5.1 Oklahoma 

Reservoir intervals within the Mississippian strata are found primarily in two different 

stratigraphic positions in Oklahoma. The porosity development occurs beneath the Osage-

Meramec boundary and beneath the Mississippian-Pennsylvanian unconformity. The porosity 

averages range from county to county with no real systematic fluctuations. Within western portions 

of Grant County, Oklahoma, porosity values range from 15-35%. This has the highest porosity 

average within the three Oklahoma counties of the study area. The highest porosity values are also 

below the Osage-Meramec boundary. In Alfalfa County, Oklahoma, porosity values range from 

10-30%. Again, most of the porosity is developed at the Osage-Meramec boundary. There are at 

times high porosity intervals beneath the Mississippian-Pennsylvanian unconformity, but the 

occurrence is not as consistent as porosity beneath the Osage-Meramec boundary. In Woods 

County, Oklahoma, porosity values range from 5-15%, making this the lowest porosity average 

within Oklahoma. Intervals within Woods County, Oklahoma, that have up to 15% porosity are 

located beneath the Osage-Meramec boundary. This seems to have the most consistent porosity 

development of the reservoir intervals seen within Oklahoma. All of the porosity intervals are 

accompanied by rather low restivity, less than 60 Ohm-m, and also have low PE values that are 

less than 3 barns/electron. Oklahoma, particularly in Alfalfa and Woods Counties, exhibit thicker 

intervals of dense, low porosity cherty limestones. The dense, low porosity nature of these 

limestones should enable the exploitation of hydrocarbons by unconventional means.  
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5.2 Kansas 

Reservoir intervals within the Mississippian strata are found primarily in one stratigraphic 

position in Kansas. The porosity development is below the Mississippian-Pennsylvanian 

unconformity, but within Osage strata. Again, like Oklahoma, the porosity averages range from 

county to county with no real predictability. In eastern Barber County, Kansas, porosity values 

range from 20-35%. This has the highest porosity within the three Kansas counties of the study 

area. This particular area has the thickest intervals of high porosity strata. Based on the 

lithostratigraphic interpretation for this region of Barber, it can be inferred that tripolitic chert 

development can explain the high porosity. In western Barber County, Kansas, the porosity values 

range from 10-20%. Again, the lithostratigraphic interpretation done in this region can attribute 

the rather high porosity to tripolitic chert development. In Comanche County, Kansas, the porosity 

values range from 10-15%. Comanche County has porosity development that is similar to Woods 

County, Oklahoma, but there are much thicker sections of Meramec strata. Barber County has the 

thickest intervals of porosity greater than 20%. All of the porosity intervals are accompanied by 

low resistivity, below 60 Ohm-m, and also have PE values less than 3 barns/electron.  
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6. CONCLUSIONS 

6.1 Stratigraphy 

 Osage strata maintain thickness over the axis of the Pratt Anticline, suggesting that it was 

not active during the Osage. Most Meramec strata have been eroded along the axis of the 

Pratt Anticline, which could imply that it was more active in the Meramec. The Pratt 

Anticline also could have affected Meramec deposition, due to thicker limestone deposits 

that prograded further south than Osage strata.   

 Deeper ramp conditions could explain thicker intervals of shale (Kinderhook, Northview) 

and higher occurrence of chert than what is seen typically in the Mississippian outcrop 

belt. Also, the lack of a Pierson Formation facies above the Northview Formation could 

be attributed to this setting. 

 Mud logs provide a way of separating the Osage in the subsurface to reflect what is seen 

in outcrop by assigning formation names of lower Boone and upper Boone where similar 

lithologies exist. This shows that the Thomspon, 1986 schematic of the lithostratigraphic 

relationship seen in outcrop is applicable to the subsurface. 

 Based on previous outcrop studies, tripolite development occurs where there is enough 

calcite left over for decalcification to occur after replacement by silica. This only occurs 

within upper Boone Formation in the Mississippian outcrop belt. 

 When tripolite develops immediately above the Northview Member, there is more than 

likely a facies change from lower Boone to upper Boone facies reflecting a change from 

ramp to platform conditions and shallower water. This could indicate that a platform to 

ramp transition zone likely existed within northwestern Barber County, Kansas between 
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Three Sisters well and Dohm #1 well. This relationship is similar to the Thompson 

(1986) outcrop depositional model for southern Missouri to northwest Arkansas where 

deeper lower Boone Formation ramp facies thin and transition to shallower upper Boone 

platform facies. 

 Two scenarios for tripolitic chert development based on the perched aquifer system that 

is seen in outcrop can be applied for the subsurface. The first scenario has two 

stratigraphically separate pulses of water influx, one at the end of the Osage, where the 

dense cherty penecontemporaneous limestones of the lower Osage perch a water table 

causing later diagenetic chert to be created and then a second influx at the Mississippian-

Pennsylvanian unconformity further alters yielding tripolitic chert. The second scenario 

has two stratigraphically related pulses of water influx, one at the end of the Osage 

causing later diagenetic chert formation and then shortly after another influx of water 

yields tripolitic chert. The tripolitic chert development in the second scenario is created 

before Meramec deposition.   

6.2 Reservoir Characterization 

 In Oklahoma, there are two intervals where porosity development exists; the first is 

beneath the Osage-Meramec boundary and the second is the Mississippian-Pennsylvanian 

unconformity. Highest porosity values occur at the Osage-Meramec boundary and are 

more consistent than the high porosity intervals at the Mississippian-Pennsylvanian 

unconformity. Typically, Grant County exhibited the highest porosity at greater than 

25%. Resistivity values were 60 Ohm-m and PE values were less than 3 barns/electron. 

High porosity intervals are generally less than 60 feet thick. However, there are also 

thicker, less porous, cherty limestone that have unconventional potential.  
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 In Kansas, there is one interval where porosity development exists and it is beneath the 

Mississippian-Pennsylvanian unconformity. Highest porosity values occur in Barber 

County where the porosity values are greater than 30%. Resistivity were 60 Ohm-m and 

PE values were less than 3 barns/electron. High porosity intervals are generally less than 

100 feet thick and can be linked to tripolitic chert development. 
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