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Abstract 

Metallic nanostructures have been investigated with various applications especially for 

integration with light detection devices.  The incident light can be manipulated by those 

nanostructures to enhance light absorption therefor improve device performance.  However, 

previous studies focused on optical design.  The electrical properties of these integrated light 

detection devices have not been fully considered.  The photon generated carriers transport and 

collection are critical for light detection devices as well.  An optimized device platform 

considering from both the optical and electrical aspects to fully utilize these nanostructures is 

highly desired for future light detection devices. 

This dissertation targeted on three objectives, beginning with the fabrication process 

development of various nanostructures on different substrates.  High quality nanostructures were 

achieved with minimum 20nm gap and 45nm line width.  The second objective was developing 

the metallic fishnet nanostructures integrated Schottky contact a-Si solar cell to improve both 

light absorption and photon generated carrier collection.  The fishnet was designed as the light 

trapping structure and 2D connected top contact to collect carriers.  The third objective was 

developing metallic nanostructures integrated GeSn photodetectors.  The H shape nano antennas 

were integrated on GeSn photodetectors.  Multiple resonant absorption peaks at infrared range 

were observed using spectroscopic ellipsometry.  However, there was no obvious photoresponse 

value improvement of developed solar cells and H shape antennas integrated GeSn 

photodetectors.  For further investigation, interdigitated electrodes integrated GeSn 

photodetectors were designed.  With less carrier transit time, the responsivity value of the 

integrated Ge0.991Sn0.009 photodetector was 72µA/W at 1.55µm at room temperature which was 6 

times higher comparing to device without integration.  Meanwhile, with the increased carrier life 



time by decreasing temperature, the responsivity value of integrated Ge0.93Sn0.07 detectors at 

1.55µm at 100K was 8.5mA/W which was 200 times higher than the value at 300K.  These 

results suggest relative large surface recombination rate was the dominant loss mechanism in 

metallic nanostructures integrated light detection devices, as the ratio of carrier life time and 

transit time determines the gain of photodetector.  The light detection devices integrated with 

metallic nanostructures can be developed to maximize device performance with light trapping 

effect and carrier collection efficiency.  
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1 

Chapter 1: Introduction 

Efficient light concentration and manipulation are major challenges for future Group IV 

light detection devices such as photovoltaic devices and photodetectors.  Plasmonic technology 

shows promising future that investigates unique optical properties of metallic nanostructures to 

guide and manipulate light in subwavelength scale with better absorption performance.  By 

integrating metallic nanostructures on light detection devices, increased light absorption has been 

observed.  However, the energy loss during the transport of photon generated carriers between 

contacts has not been considered simultaneously.  A thorough consideration of both optical and 

electrical properties of the metallic nanostructures integrated light detection devices has not been 

fully understood.  Moreover, considering the intrinsic properties of plasmonics, an optimized 

device platform to fully utilize these integrated metallic nanostructures is still under investigation.   

As one of the future alternative energy supply candidates, the material cost of 

photovoltaic devices has been the barrier holding its worldwide applications.  Various methods 

have been applied to reduce the cost including innovative materials development, improved 

fabrication processes and special device structure consideration.  However, the achieved energy 

conversion efficiency has to be further improved to compete with fossil fuels.  Decreasing the 

device geometry size is one of the direct ways to reduce the cost.  By integrating metallic 

nanostructures on photovoltaic devices, the light absorption and energy conversion efficiency 

have been reported higher than devices without them. 

Meanwhile, integration of optoelectronics and high speed Si based electronics has been 

investigated for several decades.  Although many technology developments have been achieved, 

the integration level is relative low comparing to the electronics development which directly 

follows “Moore’s law”.  The possible reasons could be the size of optical components, the 
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heterogeneity of materials with Si and the cost.  For example, the III-V material based 

photodetectors have been successfully integrated with CMOS circuits by wires between 

components.  Nevertheless, the increased device density on single chip by much more 

components integrated approaches the intrinsic limitation of copper wires.  Comparing to the III-

V heterostructures hybrid-integrated on Si, the group IV photonics has attracted much more 

interest in recent years.  With integrated group IV based photodetectors, the optical interconnect 

could provide lower signal losses, higher speed and possibly fully CMOS fabrication 

compatibility.  However, current Si/Ge detectors need higher temperature growth to achieve 

direct band gap absorption and the operation wavelength is shorter than 2 µm.  Therefore, a low 

cost CMOS compatible infrared photodetectors is required with operating wavelength beyond 2 

µm at room temperature. 

Considering these two light detection devices, integrating metallic nanostructures has 

been utilized to achieve better light absorption.  Although plasmonics has been discussed as one 

of the possible solutions for low cost light detection devices, only the optical performance 

improvement has been addressed with exact conclusion.  Most researchers have demonstrated 

plasmonic enhanced light detection devices with increased absorption and energy conversion 

efficiency [1-8].  The optimized methods are normally analyzed and simulated from optical side 

which maximizes the overall light absorption.  However, the electrical properties of these 

metallic nanostructures have not been thoroughly studied.  The device electrical properties such 

as carrier transport and collection from the metallic nanostructures as light trapping center to 

contacts have not been optimized even included in these models.  Without considering the 

recombination processes in photon generated electro-hole pairs, the established device model is 

not accurate and might not be able to provide accurate guidance for future device development.  
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In this dissertation, the typical light detection devices integrated with metallic nanostructures 

have been developed considering both the electrical and optical aspects to improve energy 

conversion efficiency. 

1.1 Metallic Nanostructures Integrated Light Detection Devices 

If embedded nanoparticles sizes are much smaller than the wavelength of incident light, 

the metallic nanostructures could exhibit a dipolar surface plasmon resonance based on Mie’s 

theory [9].  The electric field associated with the light waves exerts a Coulomb force on the 

conduction band electrons of metallic nanostructures.  When the incident light frequency is far 

away from the intrinsic plasmonic resonant frequency of metallic nanostructures, no resonant 

oscillation of free electrons occurs.  With the approaching photon frequency of incident light, the 

plasmonic enhancement is induced by the coherent oscillation within metallic nanostructures.  

With tens of nanometer metallic nanostructures, the incident light on metallic nanostructures can 

be strongly scattered with negligible absorption.  However, as the particle size increases, the 

dipolar plasmon resonance shifts to longer wavelength and the resonant peak is extended.  With 

the size of the nanoparticle approaching wavelength, the dipolar approximation is not valid to 

estimate the scattering cross section.  To determine the resonance frequency, the metal material, 

structure geometry and dielectric environment need to be considered.  The resonance peak will 

shift to longer wavelength with increased dielectric constant of surrounding area. 

The basic mechanisms of plasmonic enhanced photovoltaic devices and photodetectors 

can be explained in three ways.  First, the nano-scale metallic structures can be treated as 

scattering center of incident light to increase the passing length within absorption layer.  Most 

metallic nanoparticles enhanced devices are designed in this way.  Second, the induced strong 

near field effect by the localized surface plasmonic resonance of metallic nanostructures 
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increases the absorption.  Third, as the scattering center excite surface plasmon propagation (SPP) 

along metallic nanostructure surface.  The momentum mismatch between incident light and SP 

mode can be overcome by period metallic structures and prisms.  With the mode propagating at 

interface, more energy will be absorbed in the semiconductor layer through evanescent wave. 

Along with the nanofabrication technique progress, innovative plasmonic enhanced 

photovoltaic and photodetectors have been developed.  In 1985, the grating structure has been 

fabricated by optical lithography to couple incident light into surface plasmonic waves confined 

to the air-metal interface to enhance quantum efficiency (QE) internal photoemission detectors 

[10].  Gratings with a period of 2 µm and a line/space ratio of ~1/3 were fabricated on heavily 

doped p-InP.  Meanwhile, another grating structure was fabricated holographically with a UV 

laser (325nm) on photoresist film to investigate the influence of SPP on the reflection spectra of 

Ag/Al2O3/Al and Al/Al2O3/Al junctions detectors [11].  The SPP photon coupling efficiency was 

optimized as a function of the grating morphology and dielectric layers.  In early 1990s, 

plasmonic enhanced organic solar cells were investigated by many research groups [12-16].  

Metal-oxide-metal tunneling junction and Schottky-barrier organic thin film solar cell copper 

phthaloeyanine (CuPc) have been studied with SPP excited by attenuated total reflection (ATR) 

coupling method [12-14, 16].  Due to the lack of nanofabrication techniques, metal nanoclusters 

have been incorporated at the ITO-CuPc interface to study the plasmonic effect on organic solar 

cells [15].  With the development of holographic technique, a 2D hexagonally textured silver 

surface has been fabricated to study SPP that propagate at Ag/air interface [17].  The chemical 

synthesis method to form metal islands film was introduced to improve the sensitivity of very 

thin semiconductor photodetectors [18, 19].  After very thin (~10 nm) metal film deposition, the 

samples were annealed under flowing nitrogen at 300 ℃ within certain time to coalesce into 
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metal islands.  Beyond chemical methods, electron beam lithography (EBL) and focused ion 

beam (FIB) are also applied to fabricate metal nanoparticles [20].  Interference lithography, 

which is able to fabricate sinusoidal patterns but not sharp corner patterns, is also utilized to 

investigate the absorption of using periodic metallic gratings structures in a-Si thin films solar 

cells [21].  After 2005, various well-organized metallic nanostructures have been integrated on 

solar cells and photodetectors due to the maturity of nanofabrication technologies.  In 2006, the 

first nano antenna integrated Ge photodetector was demonstrated with C-shape nanoaperture by 

using focused ion beam (FIB) [2].  As reported by K. Nakayama et al. [5], Ag nanoparticles with 

a diameter at 110 nm were patterned on thin GaAs solar cell by anodic aluminum oxide template.  

The particle spacing and height were varied to investigate the plasmonic effect on efficiency 

improvement.  Nanoimprint lithography is reported as fabrication technique to patterning holes 

on the Ag back contact of an n-i-p a-Si:H solar cell [7].  The demonstrated device showed an 

efficiency increase from 4.5% to 6.2%.  Various nanofabrication techniques have been 

developed based on applications.  They all have their own advantages and limitations.  The 

interference and nanosphere lithography can pattern well-organized periodic repeatable 

structures with higher throughput.  The nanoimprint and anodic aluminum oxide template 

techniques can provide relative good pattern resolution with prefabricated mask.  However, the 

FIB and EBL are two maskless fabrication techniques with much higher resolution and more 

flexibility in pattern design.  Although the throughput is relative low, the FIB and EBL are still 

two ideal fabrication technique candidates in research environment.  In this dissertation, the FIB 

and EBL were utilized as fabrication tools for photovoltaic devices and photodetectors.  
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1.2 Overview of This Dissertation 

The target of this dissertation was to first develop nanofabrication processes of different 

metallic nanostructures on various conductive and nonconductive substrates using EBL.  

Meanwhile, the nanostructures patterning processes on c-Si were developed using EBL dry 

etching and FIB techniques.  Furthermore, based on a developed fabrication integration platform 

and established processing parameter data base, two typical light detection devices integrated 

with certain metallic nanostructures were developed that included fishnet integrated Schottky 

contact a-Si solar cell and a metallic nanostructures integrated GeSn photodetector.  Not only the 

optical properties but the electrical improvement was under consideration during device 

development.   

The topics in this dissertation are organized as follows: 

Chapter 2 presents the fabrication process development of metallic nanostructures on 

various substrates including crystalline silicon (c-Si), amorphous silicon (a-Si), Indium Tin 

Oxide (ITO) and glasses.  A single horizontal Si nanowire device was developed as a process 

integration platform that can be easily transferred and integrated with other typical 2D materials 

and devices.  Meanwhile, the fabrication results of nanostructures patterning on c-Si by FIB and 

EBL are presented. 

Chapter 3 introduces the fabrication and characterization of metallic fishnet nanostructure 

integrated Schottky contact a-Si solar cell.  The detailed continuous band structure of a-Si was 

calculated with the analysis of possible nonradiative recombination loss.  Through electrical and 

optical measurements, the device performance was evaluated. 

Chapter 4 provides the development process of metallic nano antennas integrated GeSn 

photodetectors.  The optical characterization results of fabricated metallic nano antennas on thin 
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ITO coated glass substrates were presented first.  The transmission, reflection and absorption 

measurements were conducted on a spectroscopic ellipsometer.  With different geometry 

parameters, the resonant wavelengths consistently changed in infrared wavelength range.   

Furthermore, the device fabrication and integration processes were presented.   

Chapter 5 shows the further investigation of metallic interdigitated electrodes integrated 

GeSn photodetector based on the development of previous devices.  Through the systemic 

electrical and optical characterization of two Sn composition devices, the optimized metallic 

nanostructures integrated light detection devices were developed.  The critical parameters to 

develop high efficiency light detection devices were discussed. 

Chapter 6 summarizes the completed work and suggests possible directions for future 

research in metallic nanostructures integrated light detection devices. 
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Chapter 2 Fabrication and Process Development of Nanostructures Using EBL and FIB 

2.1 Introduction 

Metallic nanostructures integrated light detection devices have been studied for many 

years.  The research on the application of metallic nanostructures introduced plasmonic effect 

can be tracked from 1980s [22, 23].  The exploited applications include biological sensor [22-26], 

nanooptics [27, 28], nanophotonics [20, 29, 30] and optical metamaterials [31].  Beyond that, 

solar cells and photodetectors are under heavily investigated in recent several years.  A variety of 

studies have been conducted to integrate the metallic nanostructures on these light detection 

devices [1, 3, 13, 15, 19, 32-36].  The possible mechanisms of plasmonic enhancement by these 

structures include far field scattering, localized light confinement by enhanced optical field and 

surface plasmonic resonance.  However, the detailed theoretical study is still under development.  

In order to fully understand the device properties guiding future device development, it is 

necessary to develop device fabrication and integration processes in which nanofabrication of 

metallic nanostructures needs to be first established.  Meanwhile, Si based nanostructure 

fabrication techniques are also essential for future possible optical integrated circuit. 

Electron beam lithography (EBL) and focused ion beam (FIB) are two developed 

techniques for nanostructures patterning on various substrates without quartz mask.  The EBL 

requires electron beam sensitive resist as a pattern transfer mask.  Since the electrons with 

smaller wavelength are utilized instead of photons, the achievable smallest feature size is down 

to the 5 nm range that is sufficient for research environment.  However, the throughput is a major 

concern since it is a series exposure process.  The FIB is a maskless nanofabrication technique in 

which dielectric or metal structures can be fabricated directly by gas assisted ion beam etching or 

gas assisted electron/ion beam deposition.  Nevertheless, the available metal materials are limited 
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and complicated device integration capability is insufficient.  Even so, it is now widely used as 

device prototype fabrication technique. 

2.2 Electron Beam Lithography 

The general metallic nanostructures patterning process using EBL is shown in Fig. 2-1 

based on interaction between focused electrons and resist molecules.  After EBL exposure, the 

chemical properties of exposed resist area change leading to solubility difference in certain 

chemicals (developer).  Followed by metal deposition and lift-off, certain metallic nanostructures 

are formed on the substrate.  The detailed processing parameters will be discussed later in this 

chapter.  

 

Fig. 2-1 Standard EBL processing flow of fabricating metallic nanostructures on c-Si is 

demonstrated with lift-off process.  

The typical electron beam resists can be classified as positive and negative based on the 

solubility of exposed region in developer.  As positive resists, the molecular weights decrease 

due to polymer chain scission by exposure.  This leads to the exposed area can be easily 

dissolved in developer.  As negative resists, the crosslink occurs after electron beam exposure 

that causes the exposed area to be hardly dissolvable in developer.  Poly(methyl methacrlylate) 
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(PMMA) and ZEP-520 have been the most widely used positive e-beam resists.  PMMA has 

very high resolution and low contrast corresponding to various molecule weights.  Several 

concentration options are available corresponding to different film thickness.  No shelf or film 

life issues exist with PMMA.  Beyond that, it is not sensitive to white light that makes it useful in 

non-ideal clean room environment.  However, because of dry etching resistance is relatively poor 

it is not used as dry etching hard mask.  ZEP-520 is a positive tone resist that has comparable 

resolution and contrast of PMMA.  Most remarkable characteristic is 10 times dry etching 

resistance that makes it an ideal candidate as dry etching mask material.  In this dissertation, 

PMMA with different molecule weights and concentrations (2% and 4% 495K, 6% and 8% 

950K) and ZEP-520 were used as EBL resists for process development and device fabrications.  

Here the PMMA was used in the processing flow as example.  After coating and pre-baking (Fig. 

2-1 (b)), the PMMA thin layer was exposed by electron beam with certain moving strategy on 

substrate (Fig. 2-1 (c)).  After exposure, the exposed PMMA was dissolved in the developing 

process leaving the unexposed area covering by PMMA (Fig. 2-1 (d)).  In the following metal 

deposition, the deposited metals covered the whole substrate.  At the exposed area, the metals 

were deposited on substrate directly.  At unexposed area, the PMMA sat between the metal layer 

and substrate (Fig. 2-1 (e)).  After immersed in certain resist remover chemical (stripper), at 

unexposed area the PMMA layer was dissolved always with the metal layers above.  This left the 

unexposed area clear (Fig. 2-1 (f)).  Since the metal layers contact directly with substrate at 

exposed area, certain metal patterns could be formed.  

The feature size and pattern quality relied on different parameters including electron 

beam acceleration voltage, scanning field, resist thickness, beam current, spot size, objective lens 

aperture, pattern spacing, etc.  During EBL exposure, the electrons scattered by resist molecules 
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and substrate atoms resulted in forward scattering and back scattering.  Fig. 2-2 shows the 

schematic drawing about the incident electrons, forward and back scattered electrons [37].  If the 

electrons are scattered in large angle directions, the adjacent resist area might have higher chance 

interact with unexpected electrons.  After developing, the pattern area could be much wider than 

the exposure pattern which is called proximity effect.  With higher acceleration voltage, the 

achieved minimum feature size is smaller.  Typically, the required dose to expose a certain 

volume of resist is constant.  As shown in equation 2.1, with higher beam current, the required 

exposure time (dwell time) is less.   

              (       )              (      )            (      )        (2.1) 

However, the beam spot size is larger due to the higher current.  Furthermore, changing the 

objective lens configuration and aperture size can also increase the resolution.  With more 

objective lens involved and smaller aperture size, the beam spot size and exposure field are both 

decreased.  With certain metal layer thickness, the EBL exposure parameters needed to be 

optimized.  
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Fig. 2-2 The interaction between electron beam and substrate is shown with exposure 

distribution by forward and back scatterings [37]. 

To successfully develop the fabrication process, the interaction between electrons and 

substrates needs to be fully understood.  Both of the forward and back scatterings can be 

described by Gaussian distribution [38].  The exposure amplitude is calculated as: 
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  )                                               (2.2) 

where  ( ) is the exposure amplitude at the substrate surface with distance   away from the 

substrate beam center position.  The parameters   and   are the distribution width of forward 

and back scatterings, respectively.  Parameter   reflects the ratio between back scattered beam 

and incident electron beam.  The beam broadening radius can be calculated using following 

equation 2.3: 
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The parameter   is the broadening radius at the surface of substrate.     is the beam energy.  The 

resist properties are presented by parameters   as film thickness,   as material density,   as 

atomic number and   as atomic weight.  Following this equation, with thicker resist or lower 

beam energy more electrons will be scattered in a lateral direction and vice versa. 

Based on this double Gaussian model, the electron beam and sample interactions can be 

analyzed through typical Monte Carlo simulation.  In this dissertation, the Monte Carlo 

simulation software CASINO [39] and LMS-MS [40] were used and compared.  These two can 

simulate the large amount electron trajectories in solid especially designed for low beam 

interaction.  It provided the prediction to guide the utilized parameters in electron beam 

lithography such as acceleration voltage, film thickness and pattern spacing.  The collected data 

included backscattered coefficient, electron penetration depth and scattering width of different 

films.  As shown in Fig. 2-3, the scattering effects of electron beams at different working 

conditions were presented using CASINO.  The scattering width was 40 nm after 30 kV electron 

beam went through a 100 nm PMMA layer.  With a thicker PMMA layer of 500 nm, the 

scattering width at the same voltage extended to 640 nm, which tended to have a strong 

proximity effect on adjacent patterns.  If the voltage increased to 50 kV, the scattering width fell 

to 300 nm.  With higher voltage, the smaller scattering width was predicted.  Furthermore, the 

100 kV electron beam can penetrate 1000 nm thick PMMA with almost the same scattering 

width of 300 nm.  After the simulation, the general exposure parameters were decided as high 

acceleration voltage, low resist thickness and smaller beam spot size. 
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Fig. 2-3 Monte Carlo simulation results of different acceleration voltages and resist 

thicknesses using CASINO. 

Using LMS-MS [40], the trajectories of forward and back scattered electrons can be 

simulated with estimated broadening radius.  As shown in Fig. 2-4, the forward scattering radius 

at the interface between 100 nm PMMA and 1 µm Si was 17.5 nm at 30 kV and 10 nm at 50 kV 

which matched with the equation 2.3 within 10% error.  With well calibrated electron beam at 

higher acceleration voltage and thinner resist, the resolution of nanofabrication was under control.  

In contrast, with a higher beam energy at 50 kV the back scattering was much wider up, to tens 

of microns level, with energy intensity decreased gradually.  In general, the exposure effect by 

back scattering electrons can be neglected because the energy levels of scattered electrons are 

lower than the critical dose which is the minimum dose to change the solubility of resist.  
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Fig. 2-4 The forward and back scattering effect at 30 kV and 50 kV with the beam broadening 

radius changes using LMS-MS [40]. 

In this dissertation, two EBL systems were utilized to conduct process development 

including a Philips XL30 ESEM modified EBL machine integrated with Nanometer Pattern 

Generation System [41] (it will be called NPGS system in this dissertation) and a dedicated 

JEOL JBX-5500ZD EBL writer (it will be called JEOL EBL writer in this dissertation).  Both of 

these two systems had their unique advantages and limitations.  The processing development 

started on the NPGS system because of its flexibility and ease to use.  Based on the need of 

smaller structures and higher alignment resolution, the developed processes were seamlessly 

transferred to the JEOL machine.  Further processing integration and device development were 
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conducted on JEOL EBL writer.  The detailed information will be discussed in next several 

chapters. 

In the NGPG system, the electrons were accelerated by voltage up to 30 kV to the sample 

in a vacuum of 10
-6

 Pa.  Through the adjustment on condenser lens, objective aperture and 

working distance, higher resolution EBL exposure was achieved combined with dedicated NPGS 

control software.  Since this SEM used a field-emission source, the beam diameter was 

extremely as small as 2 nm at 30kV.  Fig. 2-5 below shows this SEM modified EBL system. 

 

Fig. 2-5 The Philips XL30 ESEM modified EBL writer is shown integrated with Nanometer 

Pattern Generation System (NPGS) [42]. 

The NPGS system was an economical direct write electron beam lithography system.  It 

included a commercial SEM machine controlled by NPGS software integrated computer.  The 

schematic system configuration and operation procedures are shown in Fig. 2-6.  As shown in 

Fig. 2-6 (a), the CAD pattern design was first generated by the integrated DesignCAD software 

(Fig. 2-6 (b)).  Other commercial CAD software such as AutoCAD could also have been used 

but would have needed one more step of file conversion.  After loading the CAD file into the 

writing plan module, the integrated DAC converter analyzed the CAD file and generated a series 



17 

voltage signals to control the beam scan traces on samples.  A typical EBL sample mount with 

standard gold particles on carbon and another Faraday cup was used to conduct a resolution test 

and current measurement.  With measured current information and CAD design, the detailed 

exposure information was organized in the control software shown in Fig. 2-6 (c) including 

exposure time, pattern sequence and overall stage movement based on the required electron dose.  

After general calibration on the scanning electron microscope system, the NPGS software took 

over to guide the stage movement and conduct exposure according to the scheduled EBL writing 

strategy.  Detailed pattern quality did vary based on systems with different beam acceleration 

voltage, beam spot size, focus condition, stage speed, etc.  The software also provided the 

exposure simulation function that was needed to examine the whole exposure process and 

estimate the total writing time (Fig. 2-6 (d)). 
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Fig. 2-6 The schematic NPGS system [41] operation process is shown in (a).  The integrated 

CAD software is demonstrated in (b) with beam written strategy schedule interface (c) and 

EBL writing simulation interface with estimated time consumption (d). 

With larger scan fields, the resolution of the NPGS system typically decreased due to the 

SEM constant.   For the NPGS system, the magnification and scan field followed equation 2.4:  

                                                                     (2.4) 

The constant value in this Philips XL30 ESEM was 100540.  The typical EBL exposure 

parameters using the NPGS system were 30kV acceleration voltage, 10 nm beam spot size, 10 

pA exposure current, 10 µm × 10 µm field size with beam blanker control. 

This SEM based EBL system was economical, flexible and easy to use.  However, the 

feature size, writing speed, field distribution and moving accuracy was limited by the electron 

microscope intrinsic properties.  Since the beam was designed for electron imaging, it was not 
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well controlled to stabilize at a certain spot size.  With increased field size (hundreds of microns 

level) the beam resolution decreased dramatically.  The writing speed was limited by the relative 

low speed of DAC card.  Moreover, the stage moving accuracy could not be guaranteed due to 

the lack of stage movement monitoring.  

The JEOL JBX-5500ZD is a dedicate electron beam lithography system with a minimum 

line-width specification below 10nm.  Fig. 2-7 shows the actual machine located in the clean 

room at University of Arkansas Fayetteville High Density Electronics Center (HiDEC).  The 

maximum capacity was a 4” wafer that was ideal for research and development environment. 

The ZrO/W thermal field emitter was utilized for electron production and was capable of 

generating electron beam as small as 4 nm in diameter.  Two electron beam acceleration voltages 

were available for use at 25kV and 50kV.  With integrated vector scanning system, the single 

scan field could be as large as 2mm.  The larger writing area was achieved through field to field 

stitching process that the stage movement accuracy well below 10 nm allowed.  The HeNe laser 

interferometer was used to calibrate actual stage position with 0.62nm errors in both the x and y 

directions by a closed loop servo control that is the critical factor for EBL.  The focus and 

astigmatism corrections were achieved either by automatic functions or manually.  With the 

deflection measurement of fields and subfields, the electron beam scanned uniformly both at the 

center and around the edge.  Although three different electron beam detection modes were 

available (secondary electron, backscattered electron, absorbed electron), the secondary electron 

detection (SE) was normally used as image and detector reference. 
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Fig. 2-7 JEOL JBX-5500ZD EBL writer is located in High Density Electronics Center 

(HiDEC) at University of Arkansas, Fayetteville [43]. 

Fig. 2-8 shows the overall system software (Fig. 2-8 (a)) and sub-functions interfaces 

under Microsoft Windows XP system.  The integrated CAD software is shown in Fig. 2-8 (b) 

which could also have been achieved through AutoCAD with a following file format conversion.  

Fig. 2-8 (c) is the beam calibration sub-function interface.  The beam condition was calibrated 

through standard procedures including beam current measurement, beam size justification and 

deflection error evaluation that could not be achieved in NPGS system directly.  Through a 

standard schedule file (Fig. 2-8 (d)) the patterns and exposure information were combined to 

generate the writing strategy files without detailed any movement plan requirement.  However, 

the machine had its own maximum running speed that was related to DAC frequency, beam 

current, scan step and exposure dose.  

   
    

  
                                                                (2.5) 

  
  

    
                                                              (2.6) 
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The parameter   is the shot time during exposure.  Parameter   is the assigned scan step.  The 

required dose   is calculated by beam current and writing frequency.  The parameter    is the 

allowed maximum frequency.  The typical EBL exposure parameters using JEOL system were 

50 kV acceleration voltage, 10 nm spot size, 5 nm scan step, 1 nA exposure current, 1 mm × 

1mm writing field and objective aperture size 2. 

 

Fig. 2-8 JEOL JBX-5500ZD system software and sub-functions interfaces are shown [44].   

2.3 Focused Ion Beam 

FIB is a technique for pattern writing utilizing an ion beam scanned substrate instead of 

electrons in scanning electron microscope (SEM).  It has been widely used in semiconductor 

industry, materials science and biology research.  As shown in Fig. 2-9 Ga ions are utilized in 

most commercial FIB systems. 
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Fig. 2-9 Gas-assisted electron beam deposition (a) and focused ion etching mechanisms (b) are 

shown [45]. 

Generally, since the ions sizes are larger than electrons the microscopy resolution of FIB 

is lower than SEM.  Besides this, when the high energy Ga ions hits the sample, the substrate 

material might be bombarded and sputtered from the surface.  With the Ga ions sputtered 

properly, it provides a precise micromachining method with high geometry control.  Combining 

with gas injection capabilities, the ion beam can also be used to assist deposition by 

decomposing the precursor gas into volatile and non-volatile components.  Since there is no 



23 

mask needed, FIB is normally utilized as fast prototype fabrication tool.  The ions will also be 

implanted into the substrate that might make the substrate surface amorphous.  This really limits 

the application of FIB since a special surface treatment might be required, such as a protective 

passivation layer deposition before FIB operation.  In this dissertation, the FEI Nova Nanolab 

200 Dual-beam workstation was used that was located in the Arkansas Nano-Bio Materials 

Characterization Facility, which is affiliated with the Institute for Nanoscience and Engineering 

at University of Arkansas, Fayetteville. 

The FEI Nova Nanolab 200 Dual-beam workstation system used for this dissertation 

integrates electrons and ions beam for micro machining and imaging functions [46].  The 

schematic drawing of the two beams position is shown in Fig. 2-10 (a).  The electron beam 

column produced high quality microscopy images and assisted in depositing metals and 

dielectric layers on the sample surface.  In this machine, Platinum (Pt) and Oxide were two 

available materials for deposition.  In the high resolution mode, over 2500 kX magnification was 

achieved with 1 nm resolution.  The ion beam tilted 45
○
 was used as both etching and deposition 

tools that provided powerful and fast device prototype fabrication capabilities.  To achieve 

Platinum (Pt) or Oxide layer deposition, the OmniProbe 100 nanomanipulator was integrated in 

the system.  Through the conjunction of electron or ion beams, specific structure was patterned 

on surface.  The advantage of electron beam assisted deposition was a uniform surface without 

the sputtering effects of ion assisted deposition.  

For electron beam assisted deposition, as shown previous in Fig. 2-9 (a), the gas was 

introduced first above the target area hundreds of microns.  With gas injection, the gas molecule 

was adsorbed at the sample surface.  With the electron beam hit the surface, it generated 

secondary electrons that broke the chemical bonds of the adsorbed gas molecules into several 
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components: dissociated components that were volatile and deposited elements on the surface.  

However, as shown in Fig. 2-10 the deposited elements would have a higher chance to be 

bombarded away if no fresh gas was injected.  A proper writing plan with well controlled beam 

was critical to an efficient FIB induced deposition system.  The FIB assisted etching had a 

similar process as deposition (Fig. 2-9 (b)).  The gas was introduced first above the target area 

hundreds of microns.  With gas injection, the gas molecule reacted at the sample surface forming 

volatile and nonvolatile species.  Instead of depositing the nonvolatile components, it was 

sputtered with evaporated volatile components.  The beams operation and microscopies are 

shown in Fig. 2-10 (b) with control software interface. 

 

Fig. 2-10 The schematic drawing of FEI Nova Nanolab 200 Dual-beam workstation system 

configuration (a) is shown with control software interface (b) [46]. 

2.4 Metallic Nanostructures Fabrication on c-Si and ITO Substrates 

The developed fabrication process using EBL to fabricate metallic nanostructures on c-Si 

has been presented previously in Fig. 2-1.  The Si substrate was scribed to 1 cm × 1 cm size from 

5 inch c-Si wafer, followed by a cleaning process using Acetone, Methanol and IPA.  After 

rinsed in DI water, the sample was baked at 180
○
C for 10 minutes to dehydrate the substrate.  

495K or 950K PMMA with concentrations of 2%-8% dissolved in Anisole was chosen as the 
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electron beam sensitive resist based on required pattern geometries.  Different concentrations 

corresponded to certain film thickness as needed to be considered for further processing.  

Generally, the sample did not need special surface preparation before PMMA coating due to its 

excellent adhesion properties.  After PMMA coating at certain speed, the sample was baked on a 

hot plate at 180
○
C for 2 minutes to evaporate solvents.  The film thickness of typical 6% 950K 

PMMA dissolved in Anisole was calibrated with different spin speeds as shown in Fig. 2-11 (a).  

The thickness calibration results of several different PMMA concentrations at 3000 RPM are 

shown in Fig. 2-11 (b).  In EBL exposure the typical exposure dose was chosen around 200-1200 

µC/cm
2
.  Several specific cases will be discussed in this chapter.  The standard developing 

process was sample immersion in mixed solution (MIBK: IPA=1:3) for 30-60 seconds followed 

by 15 seconds IPA rinse.  The commercial mixed product from MicroChem was used in this case.  

The followed metal deposition was conducted using thermal evaporator.  Typically 5nm 

Chromium (Cr) and 30nm Gold (Au) layers were deposited on the substrate.  In the early 

processing development period, 10 nm Titanium (Ti) and 30 nm Au layers were used as metal 

combinations in the e-beam evaporator.  After metal deposition, the sample was immersed in N-

Methyl-2-pyrrolidone (NMP) based solvent stripper (PG remover from MicroChem) at 80
○
C to 

remove all resist, leaving the metal layers in the exposed area.  The actual lift-off time varied 

based on different pattern geometries.  Ultrasonic clean is optional for accelerating this process 

on Si and glass substrates.  The final step was rinsing the sample with IPA and DI water.   
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Fig. 2-11 The thickness of 6% 950K PMMA at different spin coating on 1 cm × 1 cm samples 

is shown in (a).  The thicknesses at 3000 RPM of PMMA with various concentrations are 

shown in (b). 

During early processing development, the processing yield was not quite high because 

the metal layer could not be fully lifted off.  As shown in Fig. 2-12 (a), the metallic nanodisks 

were successfully deposited on c-Si substrates with surrounding areas clean.  In contrast, the 

nanodisks with smaller spacing in Fig. 2-12 (b) could not be fully lifted off.  The possible 

reasons were inaccurate electron dose, low thickness ratio between resist and metal layers, small 

spacing between patterns and other specific machine related problems. 
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Fig. 2-12 The comparison between successful and unsuccessful lift-off results is shown with 

metallic nanodisks arrays. 

Fig. 2-13 shows different situations during metal deposition.  If the resist is underexposed 

by the electron beam, the edge at the metal layer might have a 30 degrees slope.  With resist 

residual in the exposed area, the deposited metal layers in exposed and unexposed area might 

connect together with possible unsuccessful lift-off result [Fig. 2-13 (a)].  Even with the proper 

electron beam exposure, the thickness ratio between resist and metal layers needs to be carefully 

chosen due to the nonideal surface morphology.  As shown in Fig. 2-13 (b) the actual corner of 

resist could be round shape instead of extremely sharp.  If the resist is too thin or the deposited 

metal layer is too thick, the deposited metal could form a complete layer instead of disconnected 

patterns as shown in Fig. 2-13 (c).  However, the edge slope after an optimized electron beam 

dose is nearly vertical comparing to underexposed condition shown in Fig. 2-13 (a).  Successful 

lift-off results are achieved when the thickness ratio between resist and metal layers  is larger 

than 3 to avoid the metal layer connection.  Fig. 2-13 (d) shows an optimized condition of metal 

deposition which should succeed in a followed lift-off process.  Beyond the possible conditions 

mentioned above, the pattern density was another factor under consideration.  In Fig. 2-12 (b), 

the nanodisks array with larger spacing showed clear surrounding areas comparing to the array 



28 

with smaller spacing.  With larger spacing, the stripper could dissolve resist better from different 

directions. 

 

Fig. 2-13 The lift-off considerations in metallic nanostructures fabrication on c-Si substrates 

are shown with different fabrication results. 

During the processing development, the problems mentioned above were solved based on 

recipe improvement.  In other words, those problems were predictable.  However, some other 

issues related to specific equipment were more difficult to solve.  They showed similar 

fabrication results and behaviors as those discussed above.  Fig. 2-14 (a) gives an example 

showing an unsuccessful lift-off result that was similar to Fig. 2-12 (b).  The first assumption 

here was that a complete metal layer formed on top of the structures either by underexposure or 

small thickness ratios between resist and metal.  After this, a thorough electron beam dose 

screening experiment with 10 times thicker resist obtained the same lift-off result (800 nm resist 

vs. 35 nm metals).  After 15 nm metal layers deposition trials, the problem was found to be the 

metal deposition process using the Edwards 306 electron beam evaporator.  A tentative solution 

found here was increasing the resist thickness to 1600 nm through a double spin technique in 
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which the same resist was spun twice on the sample to double the resist thickness.  The 

fabrication results are shown in Fig. 2-14 (b).  With this method, the metallic nanostructures 

were successfully patterned on c-Si substrates with resist residual existing in adjacent areas.  

However, the feature size was limited to 150 nm because of the too thick resist.  The electron 

beam could not go through the entire thickness of resist without disturbance.  In order to 

fabricate smaller patterns, Ti instead of Au was used as the deposition material.  The fabrication 

result in Fig. 2-14 (c) shows a clear surrounding area of nanostructures.  This also proved the 

problem was not from the well-developed EBL process but from other sources.  During the e-

beam evaporation, since deposition current was three times higher than published data, the metal 

atoms transferred heat to the resist during deposition.  Because the working distance was only 20 

cm, the accumulated heat could not dissipate during the limited deposition time.  With the 

reduced current and longer working distance, this problem was solved as shown in Fig. 2-14 (d).  

For the device development work discussed later in this dissertation, thermal evaporation was 

mainly used as metal deposition method. 
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Fig. 2-14 Lift-off problem trouble shooting process is shown with results.  Figure (a) shows 

the unsuccessful lift-off results of fabricated nanostructures.  Figure (b) shows the lift-off 

result after double spinning of resist.  The alternative metal Titanium instead of Gold was 

utilized for trouble shooting reason as shown in (c).  Figure (d) presents the fabricated metallic 

nanostructures after process improvement. 

Having the well-defined EBL working conditions, the trouble-shooting experiment to 

solve this lift-off issue is shown in Table 2-1 with experiment results.   
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No. Resist 

information 

Metal 

thickness(nm) 

Deposition 

current (mA) 

Deposition rate 

(nm/s) 

Lift-off 

results 

1 Single layer 5 nm Ti 30 0.05 Unsuccessful 

10 nm Au 125 0.01-0.02 

2. Single layer 10 nm Ti 30 0.05 Unsuccessful 

30 nm Au 148 0.02 

3. Single layer 40 nm Ti 35 0.1 OK 

4.  Double spin 10 nm Ti 36 0.1 OK 

50 nm Au 79 0.08 

5.  Double spin 10 nm Ti 35 0.1 OK 

30 nm Au 122 0.07 

Table 2-1 The experiment design and results for lift-off trouble shooting are shown. 

With the fully developed fabrication process, various metallic nanostructures were then 

fabricated on c-Si substrates.  Fig. 2-15 (a) shows the SEM image of a fabricated nanorod array 

by the NPGS system with 150 nm width and 2 μm pitch size.  The deposited metal layers were 

10 nm Ti and 30 nm Au.  It also shows a magnified single nanorod image.  Fig. 2-15 (b) shows 

the fabricated nanorod array by the JEOL EBL system.  The pattern size was 120nm width and 4 

μm pitch size.  The fabricated pattern array covered a 1 mm × 1 mm area shown as inset with 30 

minutes writing time.  The magnified single nanorod image is also presented. 
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Fig. 2-15 The SEM images show fabricated nanorods array by NPGS (a) and JEOL (b) 

systems, respectively.  The magnified single nanowire is shown.  The fabricated patterns 

array covered 1 mm × 1 mm area shown in bottom left inset of (b).  Bottom right inset shows 

a magnified single nanowire. 

Fig. 2-16 (a) shows fabricated nanodisk array by the NPGS system.  The diameter of disk 

was around 800nm with three different pitch sizes (2 µm, 4 µm and 6 µm).  Fig. 2-16 (b) shows 

the fabricated split ring resonator (SRR) array by the JEOL EBL writer.  The line width was 

around 200nm and the pitch size was 5 μm.  The fabricated patterns array covered a 1 mm × 1 

mm area as shown in the bottom left inset.  Two separate SRRs are shown in the bottom right 

inset. 

 

 



33 

 

Fig. 2-16 The left image presents the fabricated nano disks array by NPGS system with 

different pitch size (diameter: 800 nm, 10 nm Ti and 30 nm Au).  The right image presents 

fabricated SRRs array by JEOL system (200nm line width, 5 μm pitch size, 10 nm Cr and 30 

nm Au).  The fabricated patterns array covered 1 mm × 1 mm area (bottom left inset).  Bottom 

right inset shows two magnified SRRs. 

The images included in Fig. 2-17 (a) show the fabricated random SRRs array by the 

NPGS system with 150nm line width and 1 µm spacing.  The 8 × 10 array of the SRRs is also 

presented as an inset.  Each array covered 20 µm × 20 µm with 25 µm period distance. The 

bottom right inset shows a magnified SRR structure. Fig. 2-17 (b) presents the fabricated regular 

SRR pairs array by the JEOL EBL system.  The achieved minimized spacing was around 40nm 

deposited with 10 nm Cr and 30 nm Au. 
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Fig. 2-17 (a) is the fabricated 8 × 10 random SRRs arrays by NPGS system. The geometry 

parameters were 150nm line width and 2 μm pitch size deposited with 10 nm Cr and 30 nm 

Au.  Overall fabricated patterns array is shown in bottom left inset.  Bottom right inset shows a 

magnified random SRR.  Fig. 2-17 (b) shows the SEM image of fabricated SRR pairs array by 

JEOL system (40 nm gap, 1.5 μm pitch size, 10 nm Cr and 30 nm Au).   

A 2D connected fishnet structure was proposed as an optimized light trapping structures 

for solar cells mainly due to the surface plasmonic propagation and connectivity of metallic lines 

as carrier transport path [47].  The detailed device development will be discussed in chapter 3.  

In order to integrate metallic fishnet structures on light detection devices, this structure was first 

developed on a c-Si substrate with various geometry parameters.  Fig. 2-18 shows the fabricated 

fishnet structure with different sizes by the JEOL EBL writer.  The metals were 10 nm Cr and 30 

nm Au.  The ratio of line width and spacing was 1 from (a) to (c).  With decreasing line width, 

the corners of fishnet patterns became smoother with a round shape which could have been 

caused by proximity effects.  It was clear from the images that the geometry parameters at the 

corner of the structure were more difficult to control.  With 150nm width and 150nm spacing 

(Fig. 2-18 (c)), the corner could not form a right angle anymore, which meant more detailed 

process control should be considered.  Further dose investigation combined with other parameter 

adjustments was required.  In Fig. 2-18 (d), the fabricated fishnet line width is 100 nm with 1 µm 
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pitch size which will be used as light trapping structure for Schottky contact amorphous silicon 

(a-Si) solar cell.  

 

Fig. 2-18 The fishnet patterns with various sizes are fabricated on c-Si substrate.  The geometry 

parameters of fabricated structures were: (a) 800 nm line width and 1.6 µm pitch size; (b)300 nm 

width and 1 µm pitch size; (c) 150 nm line width and 300 nm pitch size; (d) 100 nm width and 1 

µm pitch size. 

The detailed geometry parameters and EBL doses are summarized in Table 2-2.  The 

summarized optimized EBL parameters provided a general guideline for fishnet patterning with 

various geometries.   
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Line width (nm) Pitch size (nm) Proper dose (µC/cm
2
) 

150 300 400-475 

200 400 375-450 

300 600 300-350 

500 1000 220-280 

800 1600 220-280 

100 1000 520-560 

Table. 2-2 The summary of EBL dose calibration is presented with various geometry 

parameters of fishnet structures. 

In order to pattern metallic nanostructures on real optoelectronic devices, the process 

development in this dissertation took one more step in fabricating metallic nanostructures on 

transparent and conductive Indium Tin Oxide (ITO) that is normally used as electrodes. The 

substrates were purchased from Delta Technologies, LTD.  The nominal ITO thickness was 15 

nm – 30 nm with sheet resistance around 100 Ω/sq deposited on a glass substrate  The surface 

roughness was below 20 nm with a 5 mm peak to peak measurement.  Fig. 2-19 shows the 

fabricated Spit Ring Resonators (SRRs) and nanorods structures on ITO coated glass substrates.  

The fabricated SRRs array covered a 1 mm × 1 mm area with 2 µm pitch size as shown in the 

bottom left inset.  The nanorods are around 1 µm long and 120nm width.   
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Fig. 2-19 The fabricated SRRs array were patterned on ITO covering a 600 µm × 600 µm area 

shown in (a). The nanorods were deposited on ITO of 100nm width and 1 µm length covering 

500 µm × 500 µm area shown in (b). 

Table 2-3 summarizes the achieved minimum feature size of various patterns on c-Si and 

ITO substrates by EBL.  Moreover, the developed recipes were also evaluated to fabricate at 

relative large area which is necessary for following optoelectronic device applications.  These 

results are meaningful as the start point to transfer the fabrication process to other real device 

substrates such as glass and a-Si. 

Nanorods 100 nm line width, 2 µm length, 1 µm pitch size, 1 mm × 1 mm area 

Nanodisks 200 nm diameter, 1 µm pitch size, 500 µm × 500 µm area 

SRRs 100 nm line width, 1 µm pitch size, 1 mm × 1 mm area 

Fishnet 100 nm line width, 200 nm pitch size, 1 mm × 1 mm area 

SRR pairs 40 nm gap, 100 nm line width, 1 µm pitch size 

Table 2-3 The achieved minimum feature size with covered area of different patterns is 

summarized. 

In order to evaluate the best performance of the JOEL JBX-5500ZD EBL writer with 

large area writing capability, two set of experiments were carried out with different purposes.  

The first was the SRR pair pattern on glass substrates with various length and gap geometries.  

The CAD design is shown in Fig. 2-20, with the length of the SRR long arm changing from 120 
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nm to 180 nm and the gap from 20 nm to 160 nm (both with a step of 20 nm).  So there were 4 × 

8 arrays with 200 µm pitch size covering a 800 µm × 1600 µm area.  The detailed process was 

the EBL exposure of metallic nanostructures on glass substrate followed by metal depositions (2 

nm Cr and 30 nm Au) and lift-off.  The other geometry parameters are shown in Fig. 2-20 as 

well.   

The SEM and AFM results of the smallest gap value at 20 nm with 140 nm length are 

shown in Fig. 2-21 (a) and (b).  The dark shadow area between SRR pair on the SEM image is 

due to a known ESEM low vacuum artifact.  With a 45 degree rotation from the horizontal 

position, the SEM and AFM results of largest gap value at 160 nm with 160 nm length are shown 

in Fig. 2-21 (c) and (d).  The shadowing area shown in SEM image was confirmed through AFM 

results that it is a SEM imaging artifact, not a real feature on the substrate.  The surface 

roughness was around 5 nm due to the much slower metal deposition rate. 

 

Fig. 2-20 The CAD design of SRR pairs array is shown.  For each gap and L value 

variations, the 50 × 50 SRR pairs array locates with the period of 1.2 um by 0.8 um in 

horizontal and vertical directions between each pair.  There are 8 arrays in horizontal and 4 

arrays in vertical in total. 
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Fig. 2-21 The SEM and AFM results of two gap values (20nm and 160 nm) of SRR pairs are 

presented. 

Other than the minimum gap test, the smallest line width exposure on c-Si was used for 

the second minimum feature evaluation experiment.  As shown in Fig. 2-22 (a), the CAD design 

used was a straight line instead of a normal rectangle pattern.  Instead of the electron beam 

scanning back and forth generating the pattern, the beam in the minimum gap test only scanned 

one time forming a line.  Theoretically, the electron beam spot size was the limit of the minimum 

line width.  However, the actual metal line width could be much larger because of the writing 

dwell time, beam calibration condition, resist properties, developing time, metal thickness and 

lift-off conditions.  The writing dwell time was the only variable in this series experiment. Other 

parameters were set based on the current best known experiment condition.  The beam current 



40 

was controlled at 100 pA under the 4 lens mode.  2% 495K PMMA was coated at 3000 RPM 

with 80 nm thickness.  The developing time was 60s with 15s IPA rinse and the metal was 

chosen around 25 nm thick.  Fig. 2-22 (b) to (d) shows the line widths changing from 40 nm to 

70 nm with different electron beam dose.  

 

Fig. 2-22 The schematic CAD design and SEM results of EBL minimum line width test are 

presented.  The achieved metal line width was 45 nm (b), 65 nm (c) and 70 nm (d). 

Fig. 2-23 shows the summary of required doses to achieve different line width of metal 

grating structures.  With increased dose from 5000 µC/cm
2
 to 9000 µC/cm

2
, the measured metal 

line width increases from 40 nm to 70 nm.   
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Fig. 2-23 The measured fabricated line width was larger with increased electron beam dose. 

2.5 Metallic Nanostructures Fabrication on Glass Substrates 

Previous developed processes of fabricating metallic nanostructures on c-Si and ITO 

coated glass were the preliminary steps to develop plasmonic enhanced optoelectronic devices.  

In order to investigate the detailed electrical and optical properties of fabricated structures and 

devices, those structures needed to be patterned on insulating or transparent substrates.  

Therefore, the EBL fabrication processes on glass (quartz) substrates were developed.  The 

processing flow is shown in Fig. 2-24.  Comparing it to the fabrication process on c-Si substrates, 

a thin film Chromium (Cr) around 5nm thick was deposited as the anti-charging layer on top of 

e-beam resist before exposure.  The accelerated high energy electrons passed through the Cr and 

resist layers during exposure, and finally were neutralized from Cr layer.  The Cr layer was 

removed after immersed in Cr etchant CEP-200 from Microchrome followed by standard 

developing, metal deposition and lift-off processes.   
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Fig. 2-24 The schematic drawing shows the standard EBL processing flow to fabricate 

metallic nanostructures on SiO2 or glass substrates. 

Specific techniques were utilized for glass sample morphology images.  As shown in Fig. 

2-25, during high vacuum SEM analysis the sample is irradiated with an electron beam it will 

cause static electric charge accumulation on the insulating glass substrates.  This static charge 

will dramatically decrease the image quality as shown in Fig. 2-24 (a).  Since the conventional 

SEM image acquisition is not suitable to glass substrates due to the charging effect, a special 

treatment needed to be considered such as conductive coating, low acceleration voltage, low 

vacuum, etc.  The surface coating was the relatively straight-forward method.  With a coated thin 

conductive layer, the accumulated electrons were released to ground resulting in better image 

quality.  However, the sample could not be used for further characterization.  In this case, the 

nondestructive method was preferred in which the low vacuum mode of the FEI XL-30 
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Environmental SEM was used with water vapor gas as the imaging gas (Fig. 2-25 (b)).  The 

electron gun and vacuum were very sensitive to impurities including water vapor.  To achieve a 

low vacuum mode for glass samples, the specimen chamber was isolated with the electron gun 

column (light blue area).  One specific designed structure of 500 µm pinhole and four pressure 

limiting apertures (PLA) around were utilized to maintain the vacuum level difference (dark blue 

area).  The high vacuum condition kept in the electron gun column and the relatively low 

vacuum was in the specimen chamber due to water vapor.  To acquire the generated electrons for 

imaging, the gaseous secondary electron detector (GSED) was chosen with a hole in the center as 

the final aperture for primary electrons to pass through.  Although the chamber pressure could be 

10 Torr for a 500 μm aperture, a much lower pressure was chosen practically because of the 

limited electron mean free path.  Once water vapor was introduced into chamber, the generated 

secondary electrons were released from the surface of sample and hit the water molecules, 

generating more secondary electrons.  With increased collisions between water molecules 

secondary electrons accumulated and finally were collected by the GSED.  With 600V positive 

bias of GSED, the ionized water molecules were driven to the sample surface neutralizing the 

negative charges from the primary beam. 
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Fig. 2-25 The charging effect on glass substrate is shown in (a).  The brief schematic drawing 

of ESEM machine with various vacuum levels is presented with colors in (b). 

Fig. 2-26 shows the fabricated nanostructures on glass substrates.  The fabricated 

nanorings array was imaged in the low vacuum mode of the ESEM.  The line width was around 

100nm with pitch size of 1 µm.  The inner diameter (ID) was 200 nm.  The bottom left inset 

showed the covered large area and bottom right one showed the single ring structures.  Fig. 2-26 

(b) shows the fabricated nanorods array with 2 µm length and 4 µm pitch size.  The fishnet 

structure (Fig. 2-25 (c)) was patterned covering 50 µm × 50 µm with 1 µm spacing and 120 nm 

line width.  The typical interdigitated structure patterned on a glass substrate was shown in (d).  

The 200 nm gap with 4 µm finger width was achieved with a 10 nm Cr and 100 nm Au 

deposition.  The whole pattern covered a 800 µm × 500 µm area. 
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Fig. 2-26 Various metallic nanostructures were patterned on glass substrates.  Fig (a) shows 

the fabricated nanorings with 200nm inner diameter and 300nm outer diameter.  Fig (b) 

presents the nanorods with 2 µm length and 4 µm pitch size.  Fig. (c) is the fishnet structure of 

120nm width and 1 µm pitch size.  Fig. (d) captures the interdigitated electrodes of 200nm 

spacing and 4 µm finger width. 

2.6 Nanostructures Patterning of c-Si by EBL and FIB 

Compared to patterning metallic nanostructures on top of various substrates, the 

patterning of c-Si was focused on the applications of Si photonic and nanophotonic devices.  The 

EBL followed by dry etching and FIB are two methods used in this dissertation for patterning on 

c-Si.  The fabrication processes of nanostructures on c-Si by both of these two methods were 

developed.  The general work mechanism of FIB has been explained in the introduction of this 

chapter.  Fig. 2-27 shows the detailed EBL process integrating with reactive ion etching (RIE) as 

the following process after EBL exposure instead of metal deposition and lift-off processes. 
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Fig. 2-27 EBL processing flow to fabricate nanostructures on c-Si substrates 

Surface Technology Systems Advanced Silicon Etcher (Fig. 2-28 (a)) was used as RIE 

tool to fabricate nanostructures on c-Si.  As mentioned in Chapter 2.1, ZEP-520 was chosen as 

the resist due to the 10 times better etching resistance than PMMA series resists.  The sulphur 

hexafluoride (SF6) was used as etchant to selectively remove silicon, with oxygen (O2) acting as 

a catalyst.  The 100:1 aspect ratio could be achieved by alternating the etch cycles with 

passivation cycles.  Fig. 2-28 (b) and (c) show the 45 degree tilted SEM images of etched fishnet 

and align marker structures.  The gratings structures are shown in (d). 
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Fig. 2-28 Nanostructures patterning results on c-Si substrates are presented with the RIE 

machine shown in (a) from ref. [48].  The tentative etching results are shown from (b) to (d). 

The summarized etch rate study of RIE by different parameter sets are shown in Table 2-

4.  With higher applied Coilpower, the etch rate is larger which sacrificed the pattern quality. 

Gas flow (sccm) 

Coilpower (W) Platepower (W) Time (s) Etch rate (µm/min) 

SF6 O2 

130 13 650 12 60 1.0 

20 12 600 20 60 3.1 

130 13 120 12 60 0.4 

20 13 200 3 60 2.0 

Table 2-4 The RIE processing parameters for nanostructures patterning on c-Si are 

summarized. 
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The FIB assisted deposition and etching results were investigated over various 

parameters including acceleration voltage, electron beam current, required minimum feature size 

and pattern pixel size.  With higher voltage and lower current, the best processing resolution was 

achieved.  With the FEI Nova Nanolab 200 Dual-beam workstation system, the pattern was 

designed using a 24-bit bitmap format.  The pixel ranges were from 0 to 4095 in the x direction 

and from 280 to 3816 in the y direction.  Each pixel consisted of red, green and blue colors 

shown in Table 2-5 (red was not used in the system).  Green was used to control the beam with 

value 0 as blanker.  Blue determined the writing time per pixel.  Value 0 meant the minimum 

time of 100 ns and value 255 corresponded to the maximum writing time allowed in the software.  

The values between these two numbers were linearly interpolated.  Fig. 2-29 shows a typical 

bitmap pattern of writing a 2 × 2 separate fishnet array with maximum writing time. 

Color Result 

RGB 0/0/0 – black Beam is blanked 

RGB 0/1/0 Beam is on, 100nm min dwell 

RGB 0/1/255 Beam is on, Maximum dwell time 

RGB 255/255/255 – white Beam is on, Maximum dwell time 

Table 2-5 The color setting of bitmap CAD files used in FIB patterning is summarized. 
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Fig. 2-29 The FIB pattern design of 2 × 2 separate fishnet array is presented with maximum 

writing time. 

The FIB etching and deposition were finished using a proper bitmap design file.  The 

detailed FIB assisted deposition and etching mechanisms have already been discussed in Chapter 

2.2.  Figure 2-30 (a) shows the Pt metal grating structures deposited using electron beam with 

minimum spacing of 50 nm.  Since the blue color value from 0 to 255 in the RGB setting 

determined the real FIB writing time, each pixel was assigned a value with different etching 

depth based on writing time.  The “steps” morphology is shown in Fig. 2-30 (b) with different 

dwell time.  The inset shows the FIB bitmap CAD design leading to corresponded dwell time in 

actual FIB exposure.  Fig. 2-30 (c) shows the FIB etching results of separate fishnet structures on 

c-Si with the line width at 250 nm.  Fig. 2-30 (d) shows the calibration pattern to test the FIB 

etching quality of rectangles with different length-to-width ratio from 1:1 to 1:10.  The etching 

depth was smaller (~300 nm) than the target value (1 µm).       
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Figure 2-30 The results of electron beam assisted deposition and FIB assisted etching are 

presented. 

To prepare for future device fabrication, a large area FIB etching test was necessary.  Fig. 

2-31 shows the etched fishnet structures covering a relatively large area of around 100 µm × 100 

µm area.  The fabricated line widths were 200 nm and 500 nm, respectively.  The total writing 

time was kept under 30 minutes as that was a reasonable time for device prototype fabrication.  

The smaller line width (200 nm) was achieved with a smaller writing area (10 µm) as shown in 

Fig. 2-31 (a). 
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Fig. 2-31 Fabricated fishnet structures covered relative large area 100 µm × 100 µm within 30 

minutes.  The achieved line widths were 200nm (a) and 500 nm (b), respectively.  The duty 

cycle was 1:1 ratio. 

The FIB technique was initiated to develop the nanowire device by FIB assisted etching 

and electron beam assisted deposition.  Fig. 2-32 (a) and (b) show nanowire devices on SiO2.  

The global contacts were made of 10 nm Titanium (Ti) and 100 nm Gold (Au).  In order to 

investigate the electronic and optical properties of a single nanowire, other deposited nanowires 

(marked with red boxes) were etched to be disconnected from electrodes.  Fig. 2-32 (c) and (d) 

shows the corresponded SEM results after FIB assisted etching of nanowires from electrodes.  

The results show three nanowires disconnected in total by FIB assisted etching with single 

nanowire left for future characterization. 
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Fig. 2-32 The fabricated single nanowire device by FIB is presented with SEM images shown 

before and after etching.  (a) and (b) show before etching condition of two positions on one 

nanowire device.  (c) and (d) show the corresponded device positions after etching condition.  

The nanowire in yellow box was the target under test.  

A FIB etching test on a thin film metal layer was carried out on Au (100 nm) covered c-

Si samples.  The fabrication results are presented in Fig. 2-33 (a) and (b).  During the experiment 

the surface morphology changed after etching especially around the etched pattern edge.  The 

possible reason for the amorphous surface was the unintended exposure under ion beam during 

image acquisition.  Since Ga atoms reacted with Au atoms to form isolated islands of alloy, the 

etching process was carried out very carefully without any ion beam image.  Through the 
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validation experiment, Fig. 2-33 (c) and (d) present the surface morphologies before and after 

one time ion beam scanning. 

 

Fig. 2-33 The experiment results of nanostructure patterning on thin film metals show strong 

interaction between the incoming gases and metal atoms. 

As summarized in Table 2-6, the fabrication process of various metallic nanostructures 

on conductive and nonconductive substrates were developed with different resist types.  The 

achieved minimum feature size was as low as 20 nm with 10% dimension tolerance.  The dry 

etching experiments of c-Si were mainly conducted on ZEP-520 based resist due to the better 

etching resistance. 

 

 



54 

Resist type 

 

PMMA ZEP (original part : 

diluted solvent) 

2% 4% 6% 8% 1:1 1:2 1:4 

Shape rods, disks, rings, fishnet, SRR, grating, 

interdigitated, H shape, SRR pairs 

holes, fishnet, grating 

Accuracy After dose calibration, the dimension accuracy could be controlled below 10% 

Minimum 

feature size 

(nm) 

60 100 120 200 200 150 100 

Substrates c-Si, a-Si, ITO, GaAs, glass c-Si, ITO 

Dry etching   Y Y Y Y Y 

Table 2-6 The brief summary of fabrication process development of metallic nanostructures on 

various substrates and nanostructures patterning on c-Si substrates.  

2.7 Process Integration Platform  

In order to integrate metallic nanostructures on light detection devices, a process 

integration platform was firstly developed.  A typical single horizontal Si nanowire device was 

developed as a universal platform for other 2D device applications such as ZnO nanowire, 

Graphene, carbon nanotube, etc.  The EBL stitching and alignment capabilities were first 

evaluated on c-Si substrates.  Fig. 2-34 (a) shows the EBL stitching mechanism.  The dashed line 

square is the target device area with 2 × 2 field array in one single EBL writing schedule file.  

The blue square represents the exposed field and the red square shows the unexposed field.  The 

position error between target and actual fields is marked with d1 and d2 in x and y directions.  

Through the stitching results shown in Fig. 2-34 (c), the errors at x and y directions were both 

within 10 nm.  Fig. 2-34 (b) demonstrates that the EBL alignment resolution was the position 
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error between fabricated pattern and second exposure pattern.  The EBL alignment resolution 

after evaluation was within 10 nm as shown in Fig. 2-34 (d). 

 

Fig. 2-34 The mechanisms of EBL field stitching and exposure alignment are presented with 

evaluation results. 

The fabrication processing flow of a single horizontal Si nanowire device is shown in 

Figure 2-35.  The global contacts and markers were patterned first by photolithography, 

originally with 10 nm Ti and 200 nm Au thick.  After nanowire deposition, the nanowire 

positions were randomly located on substrate.  Through the EBL alignment procedure, the local 

contacts were patterned to connect the global contacts with nanowires.  With proper modification 

of this device structure, it could be easily utilized as 2D material photodetectors, photodiodes and 

transistors. 
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Fig. 2-35 The schematic drawing of horizontal nanowire device is presented. 

The SEM image in Fig. 2-36 (a) shows the fabricated global contacts and deposited Si 

nanowires (marked in yellow squares).  In order to develop the single Si nanowire device, the 

nanowire was connected to global contacts by local contacts.  This was achieved by the EBL 

alignment process using the NPGS system.  As shown in Fig. 2-36 (b), the alignment overlays 

were designed in user defined areas with alignment windows (red squares).  The overlays were 

graphical outlines within the windows.  Through SEM imaging, the position of the designed 

alignment markers was dragged and dropped to match actual patterns.  The markers’ position 

before and after alignment are shown in Fig. 2-37 (c) and (d).  The fabricated single Si nanowire 

devices are shown in Fig. 2-36 (a) and (b).  The zoom-in image shows the nanowire with two 

local contact electrodes. 
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Fig. 2-36 The brief fabrication results of single horizontal Si nanowire device are 

demonstrated with (a) global contacts fabrication, (b) align markers CAD design; (c) SEM 

image before alignment; (d) SEM image after alignment. 

 

Fig. 2-36 The SEM images show two fabricated single horizontal Si nanowire devices with 

magnified image shows only the nanowire and local electrodes. 
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Chapter 3: Fishnet Integrated Schottky Contact a-Si Solar Cell 

3.1 Introduction 

Schottky contact solar cells have been investigated since 1974 [49].  Different 

combinations between metals and semiconductor materials have been investigated to estimate 

the conversion efficiency limit.  With the material development, the first Schottky contact a-Si 

solar cell was reported by D. Carlson et al. [50] in 1976.  The power conversion efficiency is 5.5% 

using blanket Pt as Schottky contact with discharge-produced 1 µm a-Si thin film.  Although 

various metallic nanostructures have been proposed as the Schottky contacts, the collective 

optical and electrical impacts on the device performance were not fully understood.  Moreover, 

the p-i-n a-Si solar cell is preferred due the much better carrier collection efficiency by large 

internal electrical field.  In recent years, metallic nanostructures integrated plasmonic-enhanced 

a-Si solar cells have been extensively investigated [7, 32].  The incoming light can be scattered 

and collected more efficient by various metallic nanostructures placed either on top or at the 

bottom of cells.  For a p-i-n a-Si solar cell integrated with 2D electrically connected fishnet 

structure on top, the modeling work shows the incoming light can be trapped, scattered and 

concentrated more efficiently [47].  However, these heavily doped p and n regions can introduce 

high carrier recombination loss in the cell due to the short minority-carrier life time.  Comparing 

to p-i-n structure, it is necessary to revisit the Schottky contact a-Si solar cell integrated with 

fishnet structure to improve light trapping and carrier collection efficiencies.  In addition, by 

removing heavily doped regions, the carrier collection efficiency can be further improved due to 

the elimination of the dominant nonradiative recombination loss. 

In this chapter, the a-Si continuous band structure was considered with detailed device 

simulation results.  Beyond that, a a-Si solar cell with integrated metallic fishnet structure was 
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developed.  The fishnet structure played multiple roles in this device.  It was utilized as a 

Schottky contact with intrinsic a-Si and light trapping structure to collect more incoming light.  If 

the fishnet spacing was engineered to be less than minority carrier diffusion length, the carrier 

collection was expected to be more efficient.  Since no heavily doped regions were involved, the 

nonradiative recombination losses were expected to be much lower.  Based on simplified 

analytical calculation, the Shockley-Read-Hall (SRH) recombination saturation current density 

was predicted to be two orders lower comparing to p-i-n a-Si solar cell.  Through numerical 

simulation, the fishnet structure was optimized with certain geometry parameters to maximize 

light absorption inside intrinsic a-Si layer.  The fishnet structure covered hundreds of microns 

area integrated on fabricated cells by electron beam lithography (EBL).  The detailed device 

fabrication processes will be reported in fabrication section 3.3. 

3.2 Theoretical Analysis 

Comparing to c-Si, the non-ideal atomic configuration in a-Si was reflected in the energy 

band diagram of density of states (DOS).  In c-Si, the DOS is formed by a parabolic distribution 

near the conduction and valence bands.  A clear band gap is presented between the band edges.  

However, the band distribution is broader in a-Si due to the disordered atomic structure.  

Normally the band tails extend into the band gap with presented defects around the center of the 

band gap forming the continuous DOS.  This continuous DOS distribution consists of parabolic 

conduction and valence bands, exponentially decaying conduction and valence band tails, and 

localized defect states related to dangling bonds.  Fig. 3-1 shows the calculated DOS distribution 

in a-Si.  The parameters used in calculation were from reference [51].  With the continuous DOS 

distribution, the carrier transport mechanism was more complicated than c-Si.  Not only the band 

to band transition, but the localized transport was considered.  The detailed description was 
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quantified by the carrier concentrations and mobility in certain states.  Since more defect states 

are involved, the SRH recombination is the dominant mechanism for a-Si. 

 

Fig. 3-1 The calculated model of the DOS distribution in a-Si is shown with marked 

exponential band tails and defect states. 

The SRH recombination saturation current density was calculated based on the model in 

Ref. [52] and [53].  The detailed parameters of a-Si in calculation were collected from Ref. [51].  

As shown in Fig. 3-2, the calculated SRH saturation current density in Schottky contact a-Si 

solar cell was two orders lower than in p-i-n structure a-Si solar cells with carrier life time from 

10 ns to 10 µs.  It shows that the nonradiative recombination losses of Schottky contact a-Si cells 

was much less comparing to p-i-n cells because of the removal of heavily doped regions. 
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Fig. 3-2 The normalized SRH saturation current densities of Schottky contact (black dashed 

line) and p-i-n structure (red solid line) a-Si solar cells are shown corresponding to different 

carrier lifetime [54]. © 2013 IEEE 

The light absorption of the metallic fishnet nanostructure integrated a-Si Schottky contact 

solar cell was analyzed with the finite element simulation by X. Yang [54] using COMSOL 

Multiphysics).  Fig. 3-3 (a) shows the schematic of the solar cell with Au fishnet structure of 50 

nm line width and 300 nm intrinsic a-Si layer on the top of aluminum back electrode.  The pitch 

size was 600 nm.  In Fig. 3-3 (b), the electric field distributions at the bottom surface of the 

fishnet structure and the vertical plane of the solar cell were plotted at the wavelength of 632 nm.  

The strong field localization around the fishnet structure and the constructive interference of 

optical wave between the fishnet and the aluminum back electrode greatly enhanced the light 

absorption inside the a-Si layer.  Fig. 3-3 (c) gives the simulated reflection spectrum and 

absorption spectra in the different regions of the solar cell.  The plasmon resonance of the fishnet 

structures could enhance the light absorption in the a-Si layer significantly.  Based on the 

calculated light absorption spectrum in a-Si layer, the short circuit current of the solar cell at AM 

1.5G solar spectrum illumination was obtained.  Fig. 3-3 (d) plots the calculated photocurrent 
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generation spectrum, where it is assumed that all the absorbed photons in a-Si layer contribute to 

the photocurrent.  The photocurrent density was enhanced due to the plasmon resonance of the 

fishnet structure. 

 

Fig. 3-3 The numeric simulation results are shown [54].  The schematic structure of the 

simulated solar cell is shown in (a).  The typical electric field distributions of the solar cell at 

the wavelength of 632 nm are shown in (b).  The reflection and absorption spectra of the 

solar cell are shown in (c).  The photocurrent generation spectrum is calculated shown in (d).  

© 2013 IEEE 

3.3 Device Fabrication 

The mesa fabrication process of a metallic fishnet structure integrated Schottky contact a-

Si solar cell is shown in Fig. 3-4.  The fabrication started with a glass substrate.  The Aluminum 

(Al) layer was deposited as a bottom contact of 200 nm thick as shown in Fig. 3-4 (b).  The 300 

nm thick intrinsic a-Si layer was deposited by PECVD on top of Al layer (Fig. 3-4 (c)).  After the 

photolithography exposure, developing, and fluoride based dry etching processes, the intrinsic a-
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Si layer was patterned as four different mesa sizes: 2 mm × 2 mm, 1 mm × 1 mm, 800 µm × 800 

µm and 500 µm × 500 µm areas (Fig. 3-4 (d) – (g)).  The 3 µm thick AZ 4330 was used as photo 

resist due to its better dry etching resistance.  The N-Methyl Pyrrolidinone (NMP) based solvent 

stripper Remover PG was used to remove the cap layer of AZ 4330 on etched a-Si (Fig. 3-4 (h)).  

 

Fig. 3-4 The 3D processing flow shows the a-Si mesa patterning of metallic fishnet 

structure integrated Schottky contact a-Si solar cell.   

The detailed parameters in PECVD and dry etching are summarized in Table 3-1 and 

Table 3-2.   
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Temperature (°C) Gas flow (sccm) Pres. (mTorr) 

250 SiH4 500 

20 

Power (W) Time (mm:ss) 

2 30:00 

Table 3-1 The applied PECVD parameters of 300 nm thick a-Si deposition are shown. 

 

Power(W) Gas flow (sccm) 

SF6 O2 C4F8 

100 45 5 0 

Time(s) Etch rate of a-Si (nm/min) Etch rate photo resist (nm/min) 

120 325 70 

Table 3-2 The a-Si RIE dry etching parameters are used to etch stop at Al layer. 

Since the a-Si surface roughness was 80 nm leading to weak EBL alignment detection 

signal, alignment markers were patterned with 2 nm Cr and 50 nm Au through coating, exposure, 

developing, metal deposition and lift-off (Fig. 3-5 (a) – (e)).  The global contacts were formed in 

the next step by the same photolithography processes (Fig. 3-5 (f) – (j)).  The fishnet structure 

was aligned and patterned on a-Si by EBL.  The 2nm Cr and 10 nm Au were deposited followed 

by lift-off process (Fig. 3-5 (k)).  Since the a-Si surface was rough, a thicker electron beam resist 

of around 200 nm was used to improve the device yield.  Meanwhile, 300 µm × 100 µm metal 

pads were patterned to collect current. 



65 

 

Fig. 3-5 The global contacts and fishnet structures are integrated as fishnet integrated a-Si 

Schottky contact solar cells. 

The device structure shown in Fig. 3-6 was fabricated to verify the ohmic contact 

between the bottom Al and intrinsic a-Si.  The Al contacts were first patterned on glass by 

photolithography, metal deposition and lift-off.  After blanket a-Si deposition by PECVD with 

the same parameters summarized in Table 3-1, the film was etched by RIE with parameters in 

Table 3-2.  Since the applied processing condition was the same as the fabricated solar cell, the 

material quality and contact condition kept the same.  
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Fig. 3-6 The Al and a-Si ohmic contacts test structure is presented. 

3.4 Results and Discussion 

The fabricated Al and a-Si ohmic contacts test structure is shown in Fig. 3-7 (a).  Since 

intrinsic a-Si is slightly n-type semiconductor, the formed contact between Al normally was 

Schottky contact.  However, since the followed a-Si deposition was conducted at 250 ℃ (Table 

3-1), the Al and deposited a-Si interacted to form Al-Si mixed phase or c-Si as low as 150 ℃ 

[55].  Through the current voltage (I-V) measurement shown in Fig. 3-7 (b), the ohmic contact 

was formed between Al and intrinsic a-Si layers. 
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Fig. 3-7 The fabricated Al/a-Si ohmic contact structure is presented with I-V measurement 

results. 

The SEM images of fabricated metallic fishnet structure integrated Schottky contact a-Si 

solar cell are shown in Fig. 3-8.  They showed the a-Si mesa was 800 µm × 800 µm with the 

inset magnified SEM image of fishnet structure.  The line width was 90 nm with two different 

pitch sizes of 600 nm and 1 µm, respectively.  Other cells with different mesa sizes were 

available including 2 mm × 2 mm, 1 mm × 1 mm and 500 µm × 500 µm.  The back Al contact 

thickness was 200 nm with 300 nm intrinsic a-Si on top.  The global contacts and fishnet 

structures were deposited by 10 nm Au to insure 90% light passing to a-Si active layer.  The 

EBL alignment markers were made by 10 nm Cr and 100 nm Au which provided large signal to 

noise ratio during alignment. 
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Fig. 3-8 The fishnet structure was integrated on 800 µm × 800 µm a-Si mesa forming 

Schottky contact a-Si solar cell. 

To evaluate the fabricated solar cell performance, the dark J-V measurements were 

conducted first.  The measured J-V curves in Fig. 3-9 (a) present the conductivity changing by 

applied voltages on various mesa sizes from 500 µm × 500 µm to 2 mm × 2 mm.  It showed 

clearly the consistent conductivity across different mesa sizes.  Through following data analysis, 

the saturation current Is was calculated around 1.3 × 10
-7

 A/cm
2
 and the series resistance was 6.3 

× 10
4
 Ω.  The extrapolated ideality factor was around 7.7, which was much larger than 1.  The 

barrier height was calculated around 0.74 V using n-Si Richardson’s constant around 112 

A/cm
2
∙K

2
.  However, after comparing to the published J-V curve of a-Si by C. Wronski et al. 

[56], the conductivity of the fabricated device at 1 V forward bias was two orders lower than the 

published results, and four orders higher at 1 V reverse bias.  
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Fig. 3-9 The presented J-V curves show the consistent conductivities on different mesa 

sizes. 

Furthermore, more parameters were extracted and verified through temperature 

dependent current-voltage measurement.  The utilized temperature range was from 270K to 

340K.  Fig. 3-10 shows the Richardson plot of Log(I/T
2
) versus 1000/T at the constant forward 

bias voltage at 0.2V.  Through the Schottky barrier height calculation equation [57] 
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With calculated n=7.7 and the slope of  [   (
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)       .  The barrier height 
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)        which was much lower than calculated   (   )       .   

 

Fig. 3-10 The temperature dependent current-voltage measurement was conducted from 

270K to 340K.   

To evaluate the photovoltaic device performance, the dark and light J-V measurements 

were conducted on fabricated cells with and without a fishnet structure.  The measured I-V 

curves in Fig. 3-11 showed that the device quality might not be able to reach the expectation.  

The calculated filling factor was 25.3%, 25.5% and 15.0% for standard fishnet, 1 µm gap fishnet 

and without fishnet cells, respectively. 
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Fig. 3-11 The comparison between cells with and without fishnet structures are shown.  Fig. 

(a) shows the dark I-V curve and (b) shows the light measurement result.  

Through photoresponse and quantum efficiency (QE) measurements, the device 

performance was further evaluated.  The fishnet integrated device photoresponse and QE curves 

were shown in Fig. 3-12.  The response value of device with only global rectangle contacts was 

hundreds of times lower, which was not included in the figure.  Instead of the fishnet contact, the 

device with fully covered thin metal contacts (10 nm) was measured and compared.  The device 

integrated fishnet Schottky contact showed 10% higher response and QE values between 400 nm 

- 450 nm and 650 nm - 800 nm.  For the shorter wavelength improvement, it was due to the 
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reduced shadowing effect by fishnet structure.  For better longer wavelength performance, the 

photon generated carriers were easily collected by this 2D connected contact.  Compared to the 

device with only global contact, the fishnet structure improved 1000 times of the carrier 

collection efficiency with light trapping effect and reduced carrier transit time. 

 
Fig. 3-12 The photoresponse and quantum efficiency measurement results are shown.  The 

devices integrated with fishnet Schottky contact and blanked metal Schottky contact were 

compared. 
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Chapter 4: Metallic Nanostructures Integrated GeSn Photodetectors 

4.1 Introduction 

Si has been the dominant material in semiconductor integrated circuit for many years.  

With the feature size continues scaling down, conventional electronic interconnects using 

discrete components and wires limit the whole system performance, especially the chip size and 

transmission speed.  The signal propagation delay between chips and parts becomes comparable 

with computation delay.  Instead of communication by electrons, chip-scale optical interconnects 

including active and passive photonic devices with much higher bandwidth might be the possible 

solution for future chips.  Optoelectronic devices based on GaAs and InP alloys have been 

integrated on top of Si with existing 4.1% and 8.1% lattice mismatches respectively [58].  The 

corresponding thermal expansion coefficient mismatches are 120.4% and 76.9% respectively.  

This creates unacceptable high densities of threading dislocations of 10
8
 - 10

10
 cm

-2
 in the active 

region of III-V devices [59].  However, with reduced chip size, innovative optoelectronic devices 

that can grow monolithically with fully CMOS compatible process are required.  This limits the 

future possibility of III-V optoelectronic devices and Si on-chip integration.  The preferred 

interconnect devices also need to accommodate with nano-scale modern electronic devices and 

the long distance telecommunication at 1.55 µm infrared wavelength.   

Ge has been investigated many years as a candidate for on-chip IR fully CMOS 

compatible optoelectronic components.  For light emitting devices, since Ge is an indirect band 

gap material, it is difficult to realize high efficient devices.  Different methods have been applied 

including heavy doping [60] and strain engineering [60, 61].  An electrically pumped room 

temperature Ge laser has been demonstrated with heavily doped junction and 0.25% tensile strain, 

the lasing threshold is around 280kA/cm
2
 and the efficiency is very low comparing 1mW of 
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output is measured [62].  It is not a practical device with its high threshold and poor efficiency.  

Although the theoretical calculation shows a possible two orders magnitude lower threshold 

reduction with the same doping level and almost 2% tensile strain [63], the real has not been 

realized yet.  Again, the large tensile strain induced by thermal expansion mismatch between Ge 

and Si cannot be applied to CMOS process line.  Moreover, the developed Ge detectors cannot 

fully cover all the telecommunication bands. 

Tin (Sn) is another group IV material that has two crystal structures (α-Sn of diamond 

cubic structure and β-Sn of tetragonal structure).  The former structure is the interest of this 

chapter existing below 13.2 ℃ and the latter exists above that temperature.  The substitution of 

Sn atoms into Ge lattice leads to the formation of Ge1-xSnx alloys that provide another possible 

solution for infrared optoelectronic devices.  The small difference around 140 meV between 

indirect and direct band gaps of Ge can be overcome by introducing Sn atoms into lattice as 

shown in Fig. 4-1 [58].  A active and passive optoelectronic devices could be achieved with 

different Sn compositions.  Moreover, the fabricated device would be fully compatible on Si 

CMOS processes.  It increases the possibility to realize group IV optoelectronic devices by band 

gap engineering.  Nevertheless, this material system is still at the nascent development stage with 

many unknowns to explore.  Many researchers have been investigating on the high quality 

material growth and device prototype development.   
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Fig. 4-1 The schematic band structure shows the effect of Sn alloying on the band structure 

of Ge [58]. 

In GeSn growth, since the maximum equilibrium solid solubility of Sn in Ge is around 

1.1% at 400 ℃ [64], the GeSn layer growth condition is far away from equilibrium to achieve 

supersaturated solid solution of Sn in Ge.  With lower growth temperature, the Sn surface 

segregation can be minimized by reducing surface mobility.  Since no proper gaseous precursors 

available for Sn deposition by chemical vapor deposition (CVD) until late 1990s, molecular 

beam epitaxy (MBE) was the dominant method in the earlier period.  Because the Sn (6.49 Å) 

has a 14.7% lattice constant difference from Ge (5.658 Å) and it has the largest lattice constant in 

group IV, the first GeSn layer growth was on III-V (001) oriented InSb (6.479 Å) and CdTe 

(6.483 Å) by MBE at 25 ℃ [65].  With these lattice matched substrates, the high Sn 

concentration GeSn films could be grown with relative low temperatures below 200℃ by MBE 
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[66], even pure Sn films [67].  The Sn concentrations of GeSn layers grown on Si and Ge 

substrates by MBE are relative low due to the large lattice mismatch [68-71].  The crystallization 

forming single crystal GeSn by rapid thermal annealing from thermal evaporated amorphous Ge 

and Sn has been reported recently with measurable results [72].  For CVD growth of GeSn films, 

the SnD4 is firstly applied as Sn precursor with Ge2H6 [73].  The deposition is conducted in 

UHVCVD at temperature between 250 ℃ and 350 ℃ with Sn content s up to 20%.  The 

fabricated film is around 50 - 500 nm and characterized by RBS and XRD (Fig. 4-2).  An 

improved precursors set of Ge3H8 and SnD4 is demonstrated with higher film growth rate with 

Sn concentrations up to 9% and thicknesses approaching 1 µm [74].  Although SnD4 has been 

successfully commercialized as Sn precursor for industrial usage [75], the relative short shelf life 

and extremely toxic property really limit the further applications both in research and 

development.  Meanwhile, another CVD growth precursor set of SnCl4 and Ge2H6 has been 

developed with Sn contents up to 8% using Atmosphere Pressure Chemical Vapor Deposition 

(APCVD) [76, 77].  The SnCl4 is a liquid at room temperature and can be evaporated to CVD 

chamber by using a vapor station.  The developed GeSn layers either on Si or Ge process 

preferred semiconductor device properties as summarized in [78]: (a) strain relaxed film with 

low threading dislocation density; (b) fully compatible growth temperate with CMOS; (c) 

adjustable lattice constant and flat surface as ideal substrate; (d) easy cleaning process. 
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Fig. 4-2 It shows the cross sectional TEM image of Ge0.94Sn0.06 grown by UHVCVD [73].  

The top image shows the GeSn layer morphology. The middle one shows the uniformity of 

film.  The bottom one shows the GeSn and Si interface with indicated misfit dislocations. 

With continuous developed material growth techniques, GeSn based optoelectronic 

devices attract more attention for applications in near and mid IR ranges, especially at the 

telecommunication bands.  Different simulation and modeling work show the direct band gap of 

GeSn layer could happen with Sn concentration less than 10% [79]  and as low as 6.3% [80].  

However, the 2% Sn in Ge films was examined provided ten times larger absorption coefficient 

at 1.55 µm than Ge that will greatly enhance the detectors performance [79, 81].  The 

experimental results showed the direct gap is located with 7-8% Sn [74, 82].  With Sn 

composition increased, the position of Γ-point at the conduction band will decrease that might 

lead to higher light interaction efficiency with light emitting possibility.  The 

electroluminescence (EL) from direct band gap results have been reported suggesting the 

possibility of electrical injection in devices [83].   

The first GeSn based photodetector was developed using UHVCVD by R. Roucka et al. 

[84] in 2008.  The fabricated device structure with detailed parameters is shown in Fig. 4-3.  Two 
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generation devices of fully CMOS compatible are developed with improved performance.  With 

optimized growth recipe and post rapid thermal annealing process, the fabricated GeSn films 

achieved better surface and bulk morphology with fewer thread dislocations.  Instead of wet 

etching, reactive ion etching (BCl3 based) was used to define GeSn mesa area on thicker film 

(350 nm and 500 nm) devices.  The measured photoresponse showed two to three times larger of 

500 nm thick samples than thinner ones with optimized growth and fabrication processes.   

 

Fig. 4-3 The top image shows the cross-sectional schematic drawing of fabricated GeSn 

photodetector [84].  The 100 nm SiO2 is applied as antireflection coating.  The top contact is 

made by 10 nm Cr and 200 nm Au.  The bottom image shows the optical image of devices 

with different lattice geometry sizes from 250 µm × 250 µm and 1 mm × 1mm. 

Similar to the Ge based optoelectronic device development strategy, a p-i-n structure 

device with built-in electric field was proposed instead of requiring perfect material quality for 

device development.  The first device is demonstrated covering the full telecommunication 

spectrum with p-type Si as bottom contact [85].  Intrinsic GeSn layer thickness of 350 nm was 

deposited on Boron doped Si (100) substrate using UHVCVD followed by phosphorus doped 64 

nm GeSn layer.  The top contact was made by 20 nm Cr and 200 nm Au.  Circular mesas of 
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diameter from 60 µm to 300 µm were patterned through RIE.  Although the measured dark 

current density of 1 A/cm
2
 was two orders higher than corresponding Ge devices [86], the 

quantum efficiency measurement showsed photoresponse up to 1750 nm that was beyond the Ge 

direct band gap.  The detailed performance comparison showed the better quantum efficiency of 

only 2% Sn content of GeSn based devices than Ge ones from 1000 nm to 1800 nm with  

possible application in multi junction photovoltaic devices [87].  Comparing to UHVCVD 

growth, the GeSn p-i-n photodetectors developed based on MBE showed a relative low Sn 

concentration around 0.5% [88].  Instead of deposition on p-type Si substrate and capped with n-

type GeSn layer [85], the intrinsic GeSn layer was deposited on 400 nm p
+
 Ge films and capped 

with n-type Ge/Si.  The measured responsivity at 1.55 µm was 100 mA/W that is twenty times 

larger than 5mA/W reported in [85].  A similar result with thicker intrinsic Ge0.97Sn0.03 layer (820 

nm) grown by MBE has been reported with comparable dark current and responsivity of 

0.23A/W at 1.54 µm [89].  Instead of a Ge buffer layer on n-type Si substrate, an improved 

device with GeSn films directly deposited on Ge bulk substrates showed a lower dark current 

around 6.1 mA/cm
2
 (1 V reverse bias) and better photoresponse value of 0.62 A/W (5 V reverse 

bias) at 1.55 µm [90].  The measured photoresponse extended to 2100nm.  Another Ge0.975Sn0.25 

on Si p-i-n photodetector with improved UHVCVD growth rate and temperature has been 

reported with comparable responsivity of 0.13 A/W at 1.55 µm [91].  In 2012, a GeSn/Ge 

heterostructure was grown by atmospheric pressure chemical vapor deposition ASM Epsilon EPI 

reactor with 9% Sn content [92].  The GeSn quantum wells were grown with thickness of 20 nm 

and separated by 100 nm Ge barriers.  The 2 µm width interdigitated electrodes separated by 4 

µm spacing were connected to two large contact pads.  The dark current of the sample with Ge as 
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cap layer was one order lower than the one without Ge cap.  The measured photoresponse was 1 

A/W at 1.55 µm and can be extended to 2.4 µm with three GeSn quantum wells.  

Using GeSn as active layer for light emitting device has been proposed with different 

structures [93-95].  The direct band gaps with different Sn contents have been investigated by 

photoluminescence studies [82, 96].  The electroluminescence (EL) from Si/Ge0.978Sn0.022 p-i-n 

heterostructure by UHVCVD has been reported with peak position around 0.70 eV providing 

feasibility for future GeSn lasers [83].  The injection current density range was from 1.4 kA/cm
2
 

to 2.26 kA/cm
2
 with slightly EL signal blue shift.  The Si/Ge/Ge1-ySny p-i-n diodes by MBE 

showed similar EL results with Sn contents up to 4% [97].  The EL peak shifted to IR beyond 

1700 nm with higher Sn contents.  The first GeSn LED was developed based on Ge/GeSn/Ge 

double heterostructure p-i-n diode with Sn content at 7.8% [98].  Two emission peaks were 

observed at 2.164 µm and 2.275 µm corresponding to indirect and direct band gap of GeSn layer.  

The injection current density was from 318 A/cm
2
 to 493 A/cm

2
.  Another GeSn LED was 

developed based on GeSn/Ge p-n heterojunction with Sn content at 8% [99].  The emission peak 

was indicated at 2.15 µm based on spectral measurement.  Although no injection current density 

was mentioned, the emission power was around 1 µW by 15 mA drive current.  With lower 

temperature at 100K the peak intensity was eight times larger than at 300K with slight blue shift.  

A recent published Ge/GeSn/Ge heterojunction p-i-n LED showed a single emission peak with 

reported injection current density from 2.5 kA/cm
2
 to 5.0 kA/cm

2
 [100].  With Sn content 

increases from 2% to 4.2%, the emission peak shifted from 0.735 eV to 0.677 eV.   

Meanwhile, with the GeSn LED development, a GeSn based Whispering-gallery mode 

microdisk laser has been demonstrated on GaAs substrate with InGaAs buffer layer [101].  

Through transmission measurement of two Sn contents devices (4% and 1%), optical modes 
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beyond 1.55 µm were confined in fabricated GeSn disks.  With this new device structure and 

improved fabrication method, a Ge/GeSn/Ge quantum well microdisk laser has been developed 

on Si substrate [102].  The sharp whispering gallery mode resonances (Q>340) have been 

observed on fabricated 2.7 µm microdisk lasers by PL measurement. 

With the SiGeSn material system development, other methods have been investigated 

trying to increase the photoresponse covering longer wavelengths.  Since the speed of 

photodetector is mainly limited by the transit time of photogenerated carriers to the electrodes 

and the semiconductor depletion area capacitance, with smaller active areas the photodetector 

can be much faster due to shorter transit time and lower capacitance.  However, the incoming 

photon number will cause relative lower responsivity.  The convergence of speed and 

responsivity can be resolved by concentrating more light into relative smaller active area.  The 

strong optical near field could localize light achieving better absorption performance.   

In this case, nano plasmonic antennas have been applied on Ge substrates.  The first nano 

antenna integrated Ge photodetector was demonstrated with C-shaped nanoapertures [2].  The 

measured photocurrent from the C-aperture at 1310 nm showed 2-5 times higher than from 

square apertures.  The polarized spectrum from 1.37 µm to 1.54 µm showed the larger current 

with the light polarized parallel to the two arms of fabricated apertures.  One improved Ge 

photodetector with a half wave Hertz dipole antenna has been demonstrated at 1.3 µm with 

twenty times difference on polarization contrast [33].  The active volume was 0.00072 µm
3
 

which was two orders smaller than previous detector at this wavelength.  The waveguided 

Germanium based metal-semiconductor-metal (MSM) photodetector showed surface plasmon 

effect coupled between Al interdigitated electrodes and dielectric layer [35].  The photocurrents 

showed three times larger of transverse magnetic mode than transverse electric mode at 1 V 
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voltage.  In 2010, one Ge nanowire based MSM photodetector was developed showing twenty-

five times larger photoresponse than Ge bulk beyond 1.5 µm wavelength [34].  The detector 

preserved the antenna effect in the IR range with ultralow dark current around 20 pA.  To make 

the convergence of responsivity and response speed, one split bull’s eye shaped aluminum 

antenna has been integrated on MSM Ge detectors operating at 1.31 µm [36].  A recent 

plasmonic enhanced Ge photodetector was reported in 2013 by K. Balram et al. by integrating 

nanoscale resonant cavity.  The resonant wavelength could be adjusted from 1500 nm to 1650 

nm by changing the geometer parameters.  Because multiple devices can be fabricated in a single 

step, broad band IR detectors can be achieved. 

In this chapter, metallic nano antennas integrated GeSn photoconductive photodetectors 

were developed.  The fabricated devices incorporated two different Sn content (7% Sn and 0.9% 

Sn), respectively.  The optical characterizations of these nano antennas on ITO coated glass 

substrates were conducted using spectroscopic ellipsometry.  Furthermore, the H shape metallic 

nano antennas were applied on GeSn photodetector to investigate the device performance.  The 

detailed fabrication and measurement results will be shown in this chapter. 

4.2 Optical Characterization of metallic nanostructures 

In order to study the innovative electrical and optical properties of the metallic 

nanostructures integrated GeSn photodetectors, the optical properties of these nanostructures 

were characterized first.  The processing development of metallic nanostructures has been 

presented in previous chapter.  Here the optical transmission and reflection measurement of 

certain metallic nanostructures is presented.  The detailed experiments were conducted on VASE 

variable angle spectroscopic ellipsometer from J. A. Woollam Co., Inc shown in Fig. 4-4. 
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Fig. 4-4 The VASE variable angle spectroscopic ellipsometry system is shown in operation 

mode (this picture is taken by author at Dr. Shui-Qing Yu’s lab on March 10 2014). 

Ellipsometry is a contactless optical characterization technique that can analyze material 

optical constants, film thickness, crystal structure, doping concentration and roughness.  It is a 

very sensitive measurement technique measuring the relative phase change in reflected or 

transmitted polarized light.  Compared to intensity reflectance, the ellipsometry is more accurate 

since both the amplitude and phase changes are measured.  As shown in Fig. 4-5, in typical 

ellipsometry measurement the p- and s- directions are used to present the beam polarization 

states [103].  The p-direction is the wave vector in the plane of incidence which is formed by 

incident and reflected beams.  The s-direction is perpendicular to p-direction.  A right hand 

coordinate system is formed combining p-, s- and propagation directions.  Compared to single 

wavelength and fixed angle of incidence, VASE system provides optimized sample information.  

Furthermore, it can provide the flexibility for various materials and structures.  Through the 

spectroscopic ellipsometry measurement, the wavelength dependent optical constants and 

properties can be collected for further analysis.   The quantified polarization change is described 
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by the amplitude Ψ and the phase difference Δ.  Since these two parameters are collected at 

every wavelength and angle set, the more detailed material properties can be understood. 

 
Fig. 4-5 A schematic drawing of ellipsometry experiment is shown with linearly polarized 

light [103]. 

The typical procedure for ellipsometry experiments is shown below in Fig. 4-6.  The 

system was first calibrated with a well-known standard sample as a starting point.  The measured 

and collected optical constants were compared with established data to calibrate the system.  

After calibration, the optical measurement was conducted on a sample with data collection 

followed by model development.  With the developed model, the unknown parameters were 

fitted into a model based on established data.  The model development and data fitting process 

might take several rounds to find optimized parameter results. 
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Fig. 4-6 The typical processing flow is shown for ellipsometry measurement. 

In system calibration step, a crystalline Si sample covered by 2 nm oxide layer was 

selected as standard sample.  The alignment calibration was first carried out to maximize the 

signal to noise ratio for x, y and z directions.  In x-y plane alignment, the sample surface was 

roughly aligned vertically to the incident beam at the begining.  As shown in Fig. 4-7 (a), after 

the incident beam reached the sample surface, the light beam was reflected back with an offset 

position which was shown as the red crossing mark.  Through the adjustment knobs, the offset 

position of crossing mark was tuned less than 0.5 µm to the center position in both directions.  
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This ensured the incident beam was vertical to the sample surface.  The z direction alignment 

calibration was conducted as a reflection measurement at a 75
○
 reflected angle.  As shown in Fig. 

4-7 (b), the reflected intensity was adjusted to achieve maximum value.  

 

Fig. 4-7 The system calibration windows of x-y and z directions are shown.  (a) shows the x-

y plane reflection monitoring window with crossing marks. (b) presents the z direction 

intensity monitoring window. 

After the system calibration, wavelength dependent ellipsometry measurements were 

conducted on the 2” standard oxidized silicon wafer as shown in Fig. 4-8.  The measurement was 

performed at 75
○
 angle of incidence and 500 nm wavelength.  Fig. 4-8 (a) shows the actual 

measurement environment and (b) shows the measured and calculated Fourier coefficients and 

residual as a function of polarizer angle.  It was noticeable that the calculated data were the same 

from the measurement result which showed the developed model matched with the sample 

condition and the machine was in nearly perfect condition. 
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Fig. 4-8 Ellipsometry measurement configuration and results on standard oxidized silicon 

wafer are shown (the equipment setup picture is taken by author at Dr. Shui-Qing Yu’s lab 

on March 10 2014). 

With the verified machine condition and developed model, the ellipsometry measurement 

was conducted on the fabricated sample.  Instead of measuring optical constants and layer 

thickness directly, the reflected or transmitted beam intensities or polarization rates were 

measured.  The detailed optical constants and sample information were derived through analysis 

of measured parameters.  In this dissertation, the reflection and transmission measurements were 

two major experimental sets to characterize the properties of metallic nano antennas.  With 
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obtained measurement results, a model was constructed to predict the unknown parameters from 

known properties.  Once the calculated parameters matched with measured curves, the unknown 

parameters could be derived.   

The H-shape metallic nanostructures were fabricated on thin ITO (150 nm) coated glass 

substrates.  The process development has been discussed in chapter 2.  The fabricated samples 

were characterized by transmission and reflection measurement using ellipsometer.  Considering 

the shift of beam trajectory, intensity variation and beam profile changes, a reliable baseline was 

set first for transmission and reflection measurements.  For transmission measurement, two 

different baselines were compared.  The first baseline setup was starting from identical ITO 

coated glass substrate without nanostructures.  The measurement results involved with metallic 

nanostructures were directly measured.  The second baseline sample was assumed as ambient.  

After baseline data collected from the air, the samples with and without nanostructures were 

measured in sequence.  The real transmission data was the subtraction of these two results data.  

The detailed comparison results will be discussed in the session.  The reflection measurement 

used a standard oxidized silicon wafer instead of ambient as the baseline measurement.  The 

samples with and without nanostructures were measured as two sets of results.  The 

rt_baseline.mat layer from data base was used to optimize the generated reflection data based on 

the calculated model.  The data acquisition and generated models are shown in Fig. 4-9.  With 

the generated reflection data and previous collected transmission curve, the absorption of the 

metallic nanostructures was calculated.  
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Fig. 4-9 The data acquisition and generated models are shown. (This is a screen shot taken 

by author at Dr. Shui-Qing Yu’s lab on March 10 2014) 

The proposed nanostructures and brief fabrication results are shown in Fig. 4-10 (a).  The 

H-shape metallic nanostructures were fabricated with different bridge widths (no bridge, 50 nm, 

120 nm and 240 nm).  The two different sets of transmission measurements were compared 

through wavelengths of 400 nm to 2000 nm in Fig. 4-10 (b).  The dashed lines present p- and s- 

polarized transmission data with glass substrates transmission data as baseline.  The solid lines 

were the p- and s- polarized transmission curve by subtraction of sample with and without 

nanostructures.  Ambient air was used as baseline.  It was very clearly shown that the 

transmission measurements which used glass substrate as a baseline was not accurate.  The 

absolute value around 1000 nm was above 100%.  In contrast, the transmission curves using 

ambient air as baseline were relative smoother.  In the following transmission measurements, the 

ambient air was utilized as the baseline model. 
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Fig. 4-10 The proposed H-shape metallic nanostructures are shown in (a).  The comparison 

of transmission measurement on different baselines is shown in (b). 

According to the well-established baseline, the transmission property of fabricated H 

shape metallic nanostructures could be analyzed based on measurement results.  Fig. 4-11 shows 

the stacked transmission curves of H shape nano antennas after analysis.  Corresponding to 

various bridge widths, the positions of the transmission valleys were different due to the 

plasmonic resonance at certain wavelengths, especially for the s polarized direction which was 

the direction of the bridge.  For the H shaped antenna without bridge, the resonant wavelength 
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was around 830 nm.  With the 50 nm width bridge, the resonant wavelengths shifted to around 

1700 nm and 1300 nm which were in infrared color.  With the increased bridge widths from 50 

nm to 240 nm, the resonance valleys shifted from 1700 nm to 1100 nm.  In the p- polarized 

direction, which is vertical to the bridge, the resonant wavelength was around 1000 nm for 

different bridge widths.  The detailed mechanism will be discussed later in this chapter. 
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Fig. 4-11 Transmission measurement results of H shape nano antennas with various bridge 

widths are shown with two different polarized directions.  The results are stacked for easy 

reading. 

With the collected transmission data, the absorption amplitude was calculated after 

reflection measurement.  The overall procedure included two steps.  First, the baseline reflection 

measurement was conducted on standard oxidized silicon wafer.  Second, the samples with and 

without H shape antennas were measured.  After analysis by the developed model shown in Fig. 
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4-9, the reflection effect by those antennas was extracted from the subtraction of these two 

measurements.  Fig. 4-12 shows the stacked reflection results after subtraction.  There was no 

obvious peak in both p- and s- polarized directions.  These results showed that the geometry 

difference of H shaper nano antennas did not contribute to the sample reflection. 

 

Fig. 4-12 Stacked reflection measurement results of H shape nano antennas with various 

bridge widths are shown with two different polarized directions. 

After transmission and reflection measurements, the absorption curves were calculated 

shown in Fig. 4-13.  For the p- polarized direction, the absorption peaks were nearly all located 
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at 1000 nm, which was mainly due to the plasmonic resonant by two parallel nanorods.  For the 

s- polarized direction which was parallel to the bridge, the resonant wavelength had a blue shift 

from 1710 nm to 1020 nm with increased bridge widths from 50 nm to 240 nm.  The resonant 

peak of the H shaped nano antenna without bridge was located at 830 nm. 

 

Fig. 4-13 Absorption measurement results of H shape nano antennas with various bridge 

widths are shown with two different polarized directions.   The results are stacked for easy 

reading. 
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Compared to the constant maximum resonant wavelength of p- polarized direction, the 

maximum resonant peaks shifted more than 900 nm in the s- polarized direction.  The possible 

reason was the coupling mechanism transition by the conductive bridge.  In the p- polarized 

direction, which is vertical to the bridge, the resonant was caused by capacitive coupling between 

nanorods, as the peak positions did not change with or without bridge.  However, the situation 

was totally different in the s- polarized direction with an applied bridge.  The coupling changed 

from capacitive to conductive and showed a strong effect on resonant peak position due to the 

complete redistribution of the enhanced surface charges.  With the wider bridge, the amplitude of 

redistributed surface charges decreased leading to the blue shift resonance.  Moreover, the same 

explanation could be applied to absorption intensity.  With the largest redistribution amplitude by 

narrower bridge at 50 nm, the maximized intensity was observed. 

In order to verify these analysis, the measurement results were compared to published 

data [104] as shown in Fig. 4-14.  Through the comparison, the measured resonant peaks were 

close to published resonant wavelength with different bridge widths.  However, there was one 

more resonant peak of fabricated nano antennas at each bridge width value.  The possible reason 

here was the slight geometry difference between the fabricated non-ideal structures and 

published structures shown as the inset of Fig. 4-14. 
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Fig. 4-14 Comparison of the maximum resonant wavelengths of s-polarized direction 

between measurement results and published data [104]. 

4.3 Device Fabrication 

In the following experiment, all the GeSn substrates were from ASM International 

Company.  The Ge and GeSn layers were grown on Si wafers using ASM Epsilon reduced 

pressure chemical vapor deposition (RPCVD) reactor.  The Ge layer was utilized as virtual 

substrate for GeSn growth since the lattice mismatch between Ge and GeSn were relative smaller 

with lower threading dislocation densities.  The deposition temperature was well below 450 ℃ 

which is compatible with standard CMOS processes.  The as-grown sample was characterized by 

Rutherford backscattering spectrometry (RBS) and secondary ion mass spectroscopy (SIMS) to 

identify the Sn content for different growth condition.  The Ge1-xSnx samples with x values at 

0.009 and 0.07 were used in the following experiments.  The corresponding GeSn layers were 

327 nm and 240 nm thick, respectively.  The detailed heteroepitaxial grown structures are shown 

in Fig. 4-15. 
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Fig. 4-15 It shows the detailed heteroepitaxial grown structures of Si/Ge/Ge1-xSnx with two 

different Sn contents (327 nm for x=0.009 and 240 nm for x=0.07). 

The GeSn photoconductive photodetector fabrication process flow is shown below as Fig. 

4-16.  The process started with a standard solvent clean as in Chapter 2.3 with optional 

sonication on the ASM substrates (Fig. 4-16 (a)). After coating with photo resist AZ4330 the 

sample was spun at 3000 RPM with target thickness around 2 µm (Fig. 4-16 (b)).  The pre-

baking temperature was around 95 ℃ for 60 seconds.  The photolithography process was 

performed on a Karl Suss 3” mask aligner with 10 seconds exposure time followed by 60 

seconds developing time in commercial developer MF CD-26 from Shipley, which is 2.4% 

Tetramethylammonium hydroxide (TMAH) in water (Fig. 4-16 (c)).  Hard baking at 120 ℃ for 1 

minute was necessary to improve adhesion quality for following processing.  After checked 

under microscope, the sample was loaded in the Plasma Therm SLR 720 Reactive Ion Etching 

(RIE) tool and etched with the parameters shown in Table 4-1 (Fig. 4-16 (d)).  The sample was 

immersed in Remover PG solution for 20 minutes at 85 ℃ to remove the resist (Fig. 4-16 (e)).  

The available Ge/GeSn mesa sizes after etching were 2 mm × 2 mm, 1.5 mm × 1.5 mm, 1 mm × 

1 mm, 750 µm × 750 µm, and 500 µm × 500 µm on each sample.  To ensure no residual resist 

was left on the surface, an oxygen plasma asher was used.  The photodetector electrodes 

patterning started with photolithography (Fig. 4-16 (f)), followed by developing (Fig. 4-16 (g)).  
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The developed area was filled by metals in thermal evaporator (Fig. 4-16 (h)).  The 10 nm Cr and 

200 nm Au were used in this case.  The standard lift-off process was carried out to remove the 

resist and the metals (Fig. 4-16 (i)).  The developed areas filled with metals were used as 

electrodes.  Several alignment markers were patterned simultaneously for the following 

nanostructure patterning. 

 

Fig. 4-16 This figure shows GeSn photodetector processing flow.  The detailed process is: 

(a) Cleaning process of Si/Ge/GeSn substrate; (b) AZ4330 coating at 3000RPM and baking 

at 95 ℃; (c) Photolithography of AZ4330 and developing; (d) RIE of GeSn and Ge layers 

to form photodetector mesa; (e) AZ4330 removal by resist stripper; (f) AZ5214 coating at 

3000RPM and baking at 95 ℃; (g) exposure, image reverse baking at 110 ℃ and 

developing; (h) metal deposition of 10 nm Cr and 200 nm Au; (i) lift-off process after metal 

deposition to removal resist. 
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 Power (W) 

Pressure 

(mtorr) 

Gas flow 

(sccm) 

Etch rate 

(nm/min) 

Etch time 

(minutes) 

RIE 100 200 

Ar (30), CF4 

(30) 

50 25 

Asher 150 NA O2 (200) Very small 20 

Table 4-1 The detailed parameters of dry etching and descum is shown. 

The metallic nanostructures integrated GeSn photodetector was developed to investigate 

the plasmonic effects.  The schematic processing flow is shown in Fig. 4-17.  Compared to 

photolithography, electron beam lithography was used to pattern nanostructures due to the 

flexibility and high resolution.  The detailed process also started with electron beam resist 4% 

PMMA coating followed by EBL exposure (Fig. 4-17 (b)).  The EBL alignment resolution was 

proved within 10 nm shown in Chapter 2.  After EBL developing (Fig. 4-17 (c)), the metals were 

deposited through thermal evaporation (Fig. 4-17 (d)).  After overnight lift-off the interdigitated 

electrodes were patterned above the GeSn active layer.   
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Fig. 4-17 This schematic processing flow demonstrates the metallic nanostructures 

integrated GeSn photodetector fabrication.  The detailed process include: (a) Cleaning 

process of GeSn photodetector; (b) PMMA coating at 3000RPM and baking at 180 ℃; (c) 

Electron beam exposure with certain structure patterns; (d) metal deposition of 10 nm Cr 

and 50 nm Au; (i) lift-off process after metal deposition to removal PMMA.  

4.4 Device Measurement Setup 

In order to evaluate the electrical and optical properties of fabricated devices, different 

measurement techniques were utilized.  The device current-voltage measurement setup was 

described in chapter 3.  It was used to verify the contact type between GeSn and metals.  The 

setup was based on a customized probe stage with temperature controlled at 25 ℃.  A Keithley 

source measurement unit (SMU) 236 was connected to apply voltage and measure current from 

the device under test (DUT).  The spectral response was characterized based on Fourier 

transform infrared (FTIR) spectrometer.  The experiment setup was shown in Fig. 4-18.  The 

spectrum was calibrated by using 1.55 µm InGaAs photodiode for responsivity.  Pumped with 

certain values of injected current, the light from photodiode was passed through reflective 

mirrors and collected by a power meter.  The corresponded photogenerated current was 

measured by pre-calibrated InGaAs photodetector.  With the calculated photoresponsivity (A/W) 
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value at 1.55 µm, the absolute spectral response of fabricated GeSn photodetector was able to be 

measured.   

 

Fig. 4-18 This shows the schematic drawing of FTIR based IR photoresponse measurement 

setup.  The absolute responsivity at 1.55 µm is measured with laser through optical pass 1.  

The real device measurement is based on FTIR through optical pass 2 without flip mirror. 

4.5 Results and Discussion 

The fabrication results of H shape nano antennas on ITO coated glass substrates have 

been presented in Chapter 3.  The optical characterization results have been shown in Chapter 

4.2.  Beyond that, the fabricated H shape nano antennas integrated GeSn photodetectors are 

shown in Fig. 4-19.  The Fig. 4-19 (a) shows the SEM top view of 500 µm × 500 µm size GeSn 

mesa of 7% Sn content GeSn photodetector with higher magnification SEM image of fabricated 

nano antennas shown in Fig. 4-19 (b).  The geometry parameters of fabricated H shape nano 

antennas were identical to the structures used in optical characterization.  The global contact was 

made of 10 nm Cr and 200 nm Au.  The antennas were made by around 5 nm Cr and 30 nm Au. 
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Fig. 4-19 The SEM images of fabricated H shape nano antennas integrated Ge0.991Sn0.009 

photodetector. The figure (a) shows the overall image of detector on the mesa size of 500 

µm × 500 µm.  The figure (b) shows the magnified image of antennas.  The bridge width 

shown in the inset is 50 nm and the spacing is 800 nm. 

Through the photoresponse measurement, the electrical and optical effects of different 

metallic nano antennas were evaluated.  As shown in Fig. 4-20, the photoresponse curves with 

different bridge widths were almost identical with less than 10% difference.  Previously in the 

optical characterization of these antennas on ITO coated substrates, multiple absorption resonant 

peaks were observed with different geometry parameters.  However, no obvious photoresponse 

differences were observed beyond that point.  Considering this optical absorption improvement 

and negligible device performance improvement, the electrical improvement was considered in 

following device design.   
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Fig. 4-20 The photoresponse curves of fabricated H shape nano antennas integrated GeSn 

photodetectors is shown here.   
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Chapter 5: Further Investigation 

5.1 Introduction 

Through the analysis of optical characterization results of H shape nano antennas on ITO 

coated glass substrates, multiple optical resonant peaks were observed in transmission and 

absorption measurements.  This showed the optical improvement by those nano antennas.  

Meanwhile, the wavelength dependent photoresponse curves of integrating these nano antennas 

with GeSn photodetector showed negligible differences between various geometry parameters.  

Similar results were observed on the metallic fishnet integrated Schottky contact a-Si solar cell.  

Through optical simulation, an absorption improvement was obtained at 632 nm.  However, no 

obvious improvement was found during photoresponse and QE measurement.  Based on these 

two developed light detection devices, optical improvements with increased number of absorbed 

photons were achieved either through experiment or simulation.  Nevertheless, through the 

photoresponse measurement, the photogenerated extra carriers could not be collected to form a 

higher current.  In order to investigate the energy loss mechanisms, an metallic interdigitated 

electrodes integrated GeSn photodetectors were developed. 

5.2 Device Fabrication Results 

The device fabrication processing flow was shown in Fig. 4-17.  The fabricated 

interdigitated electrodes integrated GeSn photodetectors were shown in Fig. 5-1.  Fig. 5-1 (a) 

shows the SEM top view of 1 mm × 1 mm size GeSn mesa of 7% Sn content GeSn photodetector 

with zoom in SEM image of interdigitated fingers near global contact shown in Fig. 5-1 (b).  The 

fabricated electrodes were 2 µm wide with 6 µm spacing between them.  The global contacts 

were made of 10 nm Cr and 200 nm Au.  Around 10 nm Cr and 50 nm Au were deposited as 

interdigitated electrodes. 



105 

 

Fig. 5-1 It presents the SEM images of fabricated interdigitated electrodes integrated 

Ge0.93Sn 0.07 photodetector. The figure (a) shows the overall image of detector on 1 mm × 1 

mm mesa.  The figure (b) shows the magnified image of electrodes.  The width of electrode 

is 2 µm and the spacing between electrodes is 4 µm. 

5.3 Characterization Results and Discussions 

The electrical and optical characterization setups have been discussed in Chapter 3 and 4.  

Fig. 5-2 is the measured dark I-V curve that shows the ohmic contact between GeSn and Cr/Au 

layers.  All the curves were taken using 500 µm × 500 µm mesas.  The devices with 

interdigitated electrodes showed slightly lower resistance mainly due to the reduced distance 

between electrodes and increased metal resistance.  The calculated resistance between electrodes 

on the same mesa was comparable with published data earlier [105].  With lower Sn content, the 

resistance was higher. 
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Fig. 5-2 The dark I-V measurement results show ohmic contact between metals and GeSn 

layer. 

Based on the photoresponse measurement system, the IR photoresponse at room 

temperature of two Sn contents detectors (7% and 0.9%) were evaluated.  As shown in Fig. 5-3, 

the photoresponse from 1.5 µm to 1.7 µm was observed from Ge0.991Sn0.009 detector.  Following 

the same fabrication and measurement procedures, the Ge0.93Sn0.07 device showed a broader band 

response from 1.5 µm to 2.2 µm.  The noisy spectral curve observed in the 7% Sn photodetector 

without interdigitated electrodes from 1.8 µm to 1.95 μm was due to atmospheric absorption.  

Nevertheless, the normalized photoresponse difference between the photodetectors with and 

without interdigitated fingers was negligible.  Comparing to other developed metallic 

nanostructure integrated light detection devices, the increased photoresponse by metallic 

nanostructures was difficult to justify.  However, the 7% Sn detector showed a broader response 

than the 0.9% Sn detector.   
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Fig. 5-3 The photoresponse comparison of fabricated Ge1-xSnx (x=0.009 and x=0.07) based 

photodetectors is shown here.  The device performance with and without interdigitated 

electrodes is also presented. 

Furthermore, compared to similar devices published before with 1.3 µm SiO2 as a 

passivation layer on top [105], the fabricated photodetectors here showed broader response up to 

2.2 µm (Fig. 5-4).  Since SiO2 absorbed light dramatically starting from 2 µm, the future 

passivation layers of GeSn photodetectors need to be optimized. 
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Fig. 5-4 The comparison shows a slightly broader response of the detector without SiO2 as 

passivation layer. 

In order to quantify the device performance, the AC responsivity values were measured at 

room temperature (RT) at 1.55 μm on 0.9% and 7% Sn content GeSn photodetectors with and 

without interdigitated electrodes, respectively.  With the measured incident light power and the 

change of current, the absolute values of responsivity were calculated.  As shown in Fig. 5-5, 

with integrated interdigitated electrodes both devices showed six times higher responsivity 

values at RT.  With increased bias voltage up to 0.8 V, the responsivity values were higher up to 

70 µA/W.   
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Fig. 5-5 The AC responsivity of Ge0.991Sn0.009 (a) and Ge0.93Sn0.07 (b) photodetectors with and 

without interdigitated electrodes are shown at 1.55 µm at room temperature. 

Considering the shot noise, the specific detectivity (D
*
) values were calculated at RT at 

1.55 μm on 0.9% and 7% Sn content GeSn photodetectors shown in Fig. 5-6.  Comparing the 

devices with and without interdigitated electrodes, the higher responsivity and detectivity values 

of interdigitated electrodes integrated devices were achieved by 6 µm between interdigitated 

electrodes.  With this smaller gap between electrodes, the carrier transit time became shorter 

leading increased responsivity.   
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Fig. 5-6 The specific detectivity of Ge0.991Sn0.009 (a) and Ge0.93Sn0.07 (b) photodetectors with 

and without interdigitated electrodes are shown at 1.55 µm at room temperature. 

On the other hand, with decreased temperature, the photon generated carrier lift time 

increased improving the device responsivity performance.  As shown in Fig. 5-7, the wavelength 

dependent photoresponse measurement showed one thousand times improvement from 300K to 

100K both for 0.9% and 7% Sn content GeSn photodetectors.  Furthermore, the response 

wavelength extended to 2.2 µm on 7% Sn content device.   
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Fig. 5-7 The temperature dependent photoresponse of interdigitated electrodes integrated 

Ge0.991Sn0.009 (a) and Ge0.93Sn0.07 (b) photodetectors are shown. 

Through the quantified responsivity (Fig. 5-8) and specific detectivity (Fig. 5-9) 

measurements, two hundred times higher values were achieved on the 7% Sn device from 300K 

to 100K.  For the 0.9% Sn device, the maximum responsivity and specific detectivity were 

observed around 200K.  The reason for this was the band gap increases with decreased 

temperature so that the corresponding absorption edge shifted to shorter wavelength.  The 
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measured maximum value of photoresponsivity was around 0.0085 A/W for 7% Sn GeSn 

detector at 0.8V bias voltage at 100K. 

 

Fig. 5-8 The temperature dependent AC responsivity of interdigitated electrodes integrated 

Ge0.991Sn0.009 (a) and Ge0.93Sn0.07 (b) photodetectors are shown at 1.55 µm. 
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Fig. 5-9 The temperature dependent specific detectivity of interdigitated electrodes integrated 

Ge0.991Sn0.009 (a) and Ge0.93Sn0.07 (b) photodetectors are shown at 1.55 µm. 

Through the temperature dependent optical characterization, the major energy loss 

mechanism in fabricated metallic nanostructures light detection devices is shown.  With 

increased carrier life time by decreased temperature, the device responsivity increased.  The 

large surface recombination led to the negligible photoresponse improvement in previous 

fabricated metallic fishnet integrated Schottky contact a-Si solar cell and metallic H shape nano 

antennas integrated GeSn photodetectors.  In the first solar cell device, although absorption 
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improvements were observed through optical simulation, the device measurement results did not 

show clear evidence.  The photogenerated carriers could not be collected even by a 2D fully 

connected metallic fishnet electrode due to the fairly large surface recombination rate.  For the H 

shape nano antennas integrated detectors, multiple resonant peaks were observed through optical 

characterization of antennas.  But the wavelength dependent photoresponse measurement did not 

reflect these peaks.  However, with the metallic interdigitated electrodes integrated GeSn 

photodetector shown in this chapter, the photogenerated current dramatically increased both at 

RT and with temperature dependent measurements compared to regular detectors without 

interdigitated electrodes.  At RT, with reduced carrier transit time and surface recombination by 

interdigitated electrodes, the responsivity was improved six times higher.  With decreased 

temperature, the carrier life time increased further to reduce the surface recombination, 

improving the device responsivity values. 
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Chapter 6: Conclusions and Future Work 

This dissertation presents the tasks of developing fabrication processes of metallic 

nanostructures, and integrating with innovative light detection devices.  The integrated devices 

considered not only the better optical absorption but also the electrical perspective of photon 

generated carrier collection efficiency improvement.  

To provide integration of metallic nanostructures with light detection devices, the 

fabrication processes on various substrates including c-Si, a-Si, ITO and glasses were first 

developed.  High quality nanostructures were achieved with minimum feature sizes of 20 nm gap 

and 45 nm line width.  The achieved alignment error was less than 10 nm.  Beyond the 

fabrication processes development, a single horizontal Si nanowire device was developed as a 

device integration platform to characterize material and device properties.  Beyond that, this 

platform could be easily transferred to other 2D devices such as Graphene, ZnO and carbon 

nanotube.   

Further, considering the physics of light detection devices, both the optical absorption 

and electrical carrier transport were considered to evaluate the light detection device 

performance.  It is the first time the metallic fishnet integrated Schottky contact a-Si solar cell 

was studied to investigate the improved device performance by reducing the surface 

recombination loss and decreasing the transit time of photon generated carriers.  Meanwhile, the 

metallic fishnet nanostructure was utilized as a light trapping structure and interconnected top 

contact electrode simultaneously.  Although the measurement results did not reach the 

expectation, possible improvements might be made through improved material quality of a-Si 

and device structures. 
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Third, the metallic H shape nano antennas integrated GeSn photodetectors were first 

developed.  Through optical characterization of fabricated antennas on ITO coated glass 

substrates, several absorption resonant peaks in infrared range were observed with different H 

shape bridge widths.  With larger bridge widths, the resonant peak shifted to shorter wavelengths.  

After integrating these antennas on GeSn photodetectors, the wavelength dependent 

photoresponse was conducted with negligible difference of various H shape bridge widths. 

Furthermore, based on the results analysis of fabricated light detection devices, metallic 

interdigitated electrodes integrated GeSn photodetectors were developed with Sn composition of 

0.9% and 7%, respectively.  Compared to devices with and without interdigitated electrodes, six 

times higher responsivity value at room temperature with interdigitated electrodes have been 

achieved at 1.55 µm, both with Ge0.93Sn0.07 and Ge0.991Sn0.009.  Through temperature dependent 

measurement, the photoresponse values of interdigitated electrodes integrated devices were one 

thousand times higher at 100K than at 300K for both Sn contents devices.  The corresponded 

responsivity value rose to two hundred times higher at 100K for the same Sn content device. 

In this dissertation, it was the first time to integrate and characterize metallic 

nanostructures integrated intrinsic a-Si and GeSn based light detection devices, respectively.  

Considering not only the absorption improvement, but the photon generated carriers transport 

provided the optimized interdigitated electrodes as the top contact in GeSn based photodetectors.  

The achieved photoresponsivity was six times higher at room temperature and twelve hundred 

times higher at 100K comparing to the detector without interdigitated electrodes. 

In future, considering both the optical and electrical improvement, an appropriate device 

platform is required to integrate with metallic nanostructures maximizing both the light trapping 
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effect and carrier collection efficiency.  The GeSn based light detection devices might be one 

promising candidate for next generation low cost, near and mid infrared photodetectors. 
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Appendix A: Description of Research for Popular Publication 

Growing millions of tiny sunflowers on your watch  

Nanotechnology is an amazing area in recent years.  The molecule level manipulation 

excites various possible applications in our daily life.  The wearable electronics is a huge market 

in near future. 

One big challenge for these innovative electronics is the power supply.  Conventional 

lithium battery has been widely used.  However, the battery life is always a concern since it is a 

chemical battery with limited time.  With better battery life time, the size will be bigger.  Solar is 

a clean and almost endless energy supply.  The limited energy conversion efficiency is the major 

issue preventing its wide application.  With 1 cm × 1 cm solar panel, the converted energy might 

not enough to drive more sophisticated and precise electronics. 

“Now think about if you have thousands of conventional tiny solar cells on 1 cm × 1 cm 

area, the collected energy will be more than enough to drive those portable electronics such as 

iPad, iPhone, etc”.  Instead of standard cell, these cells are integrated with various metallic 

nanostructures.  However, how to fabricate those structures on such small area is the big 

challenge.   

Similar to the sunflowers, these nanostructures are light sensitive.  Instead of consistent 

facing to the sunshine, these structures can guide and manipulate light to collect more energy.  

So think about your watch has one small area fully occupied by these intensive structures.  

Moreover, the utilized solar power can drive your electronics all the time without one second 

stop.  That is the final purpose of this dissertation to develop such a processing technique putting 

millions of nanostructures on 1 mm × 1 mm area and integrating on light detection devices for 

future electronics.  



128 

Appendix B: Executive Summary of Newly Created Intellectual Property 

The objectives of this research were: (1) developing the fabrication process of metallic 

nanostructures on various substrates; (2) developing a universal device integration platform for 

2D materials and devices; (3) developing the integration process with light detection devices 

including fishnet integrated Schottky contact intrinsic a-Si solar cell; (4) developing the metallic 

nano antennas integrated GeSn photodetectors; (5) developing the interdigitated electrodes 

integrated GeSn photodetectors to further investigate the device performance considering both 

electrical and optical optimization.   

The newly created intellectual property in the current research is: 

1. The fabrication process of single horizontal Si nanowire device as a universal device 

platform can be applied for other semiconductor 2D devices.   

2. The 2D connected metallic fishnet structures as Schottky contact in thin film intrinsic 

material solar cell development.   

3. The integration process of metallic nanostructures with GeSn photodetectors 

considering both electrical and optical optimization.   
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

C.1 Patentability of Intellectual Property 

The three items listed were considered first from the perspective of whether or not the 

item could be patented. 

1. The fabrication integration technique of single horizontal Si nanowire device as 

university 2D materials and device characterization platform.  Similar device has been 

patented. 

2. The 2D connected metallic fishnet structure integrated Schottky contact a-Si solar cell.  

The device concept is innovative which could be patented. 

3.  The metallic interdigitated electrodes integrated GeSn photodetectors is new and can 

be patented. 

C.2 Commercialization prospects 

The three items listed were then considered from the perspective of whether or not the 

item should be patented. 

1. The fabrication and integration techniques can be applied on a universal semiconductor 

device platform to characterize the material properties such as ZnO nanowires, Graphene, 

molybdenum diselenide, etc.  The potential product market is limited and not clear. 

2. The idea of Schottky contact a-Si solar cell is good but the commercial application is 

really limited in PV industry. 

3. It is the first time to integrate metallic nanostructures on GeSn photodetector.  It can be 

applied further on other GeSn optoelectronic devices depending on the future material 
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and device research. Since GeSn based optoelectronic devices is under initial 

investigation, the future research and commercialized directions are not clear. 

C.3 Possible Prior Disclosure of IP 

The following items were discussed in a public forum or have published information that 

could impact the patentability of the listed IP. 

1. The 2D device fabrication process has been reported by different researchers.  

However, the detailed steps may vary based on the fabricated devices. 

2. The Schottky contact a-Si solar cell has been investigated and reported long time ago.  

The revisit integrated with fishnet nanostructure in this dissertation is only meaningful 

from device development perspective not from a product. 

3. The integration process of metallic nanostructures has been reported on different 

substrates.  Nevertheless, the integration process on GeSn is first proposed in this 

dissertation.  
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Appendix D: Broader Impacts of Research 

The metallic nanostructures integrated GeSn photodetectors can be used to improve near 

and mid infrared light detection devices performance from both optical and electrical 

improvement consideration.  With further optimized geometry parameters, the covered response 

wavelength can be adjustable so that GeSn could be a potential candidate as low cost, CMOS 

compatible, broadband group IV direct band gap infrared material and device system.  

Meanwhile, the possible hybrid thermoelectric and optoelectronic devices could be possible as 

next generation energy conversion devices. 

 

  



132 

Appendix E: Microsoft Project for Ph.D MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Dissertation Generation 

Computer 1 

Model Number: Lenovo SL300 

Serial Number: 2738A2U 

Location: ENRC #2933 

Owner: Dr. Shui-Qing (Fisher) Yu 

Software 1: Windows XP, purchased by University of Arkansas with computer 

Software 2: Microsoft Office, purchased by University of Arkansas site license 

 

Computer 2 

Model Number: Dell Insprion  

Serial Number: N4110 6366622 

Location: personal laptop 

Owner: Liang Huang 

Software 1: Windows 7, purchased by Liang Huang with computer 

Software 2: Microsoft Office, purchased by Liang Huang 

Software 3: Endnote X, purchased by Liang Huang 

Software 4: Microsoft Project, purchased by MSDN Academy Alliance College of Engineering 

Software 5: Origin 9.1, purchased by Liang Huang 

 

Computer 3 

Model Number: Gateway E-4200  

Serial Number: 14137243 
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Location: ENRC #2933 

Owner: Dr. Hameed Naseem 

Software 1: Interactive Characterization Software, purchased by University of Arkansas 

Software 2: Origin 7.0, purchased by University of Arkansas 

 

Computer 4 

Model Number: Gateway 2000  

Serial Number: 8198929 

Location: ENRC #2933 

Owner: Dr. Hameed Naseem 

Software 1: SpectraMax, purchased by University of Arkansas 

Software 2: Origin 7.0, purchased by University of Arkansas  
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Appendix G: All Publications Published, Submitted and Planned 

1. L. Huang, H. Deng, T. Pham, M. Young, H. Naseem, H. Hamza Abu-Safe, X. Yang, S.-Q. Yu, 

Amorphous Silicon Solar Cells Using Metallic Fishnet Nanostructures Simultaneously for 

Schottky Contact and Plasmonics Enhancement EBL, 2013 IEEE PVSC Conference (Tampa) 

2.  L. Huang, H.H. Abu-Safe, M. Young, S. Shumate, B. Newton, H. Naseem, S.-Q. Yu, 

Fabrication and Characterization of c-Si Solar Cells Integrated with Ordered Metallic 

Nanostructure Arrays, 2012 IEEE PVSC Conference (Austin) 

3.  B. Conley, L. Huang, S. Ghetmiri, A. Mosleh, W. Du, G. Sun, R. Soref, J. Tolle, H. Naseem, 

S.-Q Yu, Extended Infrared Absorption to 2.2 μm with Ge1-xSnx Photodetectors Grown on 

Silicon, 2014 CLEO 

4.  S. Ghetmiri, B. Conley, A. Mosleh, L. Huang, W. Du, A. Nazzal, G. Sun, R. Soref, J. Tolle, H. 

Naseem, S.-Q Yu, Photoluminescence from GeSn/Ge Heterostructure Microdisks with 6% Sn 

Grown on Si via CVD, 2014 CLEO 

5.  W. Du, S. Ghetmiri, A. Mosleh, B. Conley, L. Huang, A. Nazzal, R. Soref, G. Sun, J. Tolle, H. 

Naseem, S.-Q Yu, Investigation of Photoluminescence from Ge1-xSnx: A CMOS-Compatible 

Material Grown on Si via CVD 
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Appendix H: ANBP Group Fabrication Lot Number Definition 

ANBP Group Fabrication Lot Number Definition 

 

 

The lot number has following format: XXXXXXX 

 

1. The first ‘X’ represents the device type. 

 

Symbol Definition Symbol Definition 

V VCSEL E Edge emitter Laser 

R RCLED L Edge emitter LED 

T Tunnel Junction M Mirror or simple EPI layer 

C Conventional surface emitting 

LED 
O Ohmic Contact Test device 

X Not specified, see the traveler N Nanowire device 

S Solar cell F Nano fabrication development 

D Detector P Photoconductor 

 

2. The second ‘X’ represents the light emission direction. If the device is edge-emitting 

structure or non-light emitting test structure, then it represents device structure.  

 

Symbol Definition Symbol Definition 

T Top Emitting B Bottom Emitting 

R Ridge Defined Edge Emitter O Edge Emitter, Oxide Defined 

P P type layer N N type layer 

X Not specified, see the traveler S Simple Metal Deposition 

I Imprint Process K Schottky contact 

V For I-V measurement   

 

3. The third ‘X’ represents the key process 

 

Symbol Definition Symbol Definition 

P Plasma Etch R RIE Etch 

W Wet etch D Dielectric Layer Deposition  

X Not specified, see the traveler O Oxide confinement 

L Laser direct writing E E-beam lithography 

 

4. The forth ‘X’ (number) distinguish major difference for same device Lot number. 

For example, VTP1, VTP2 are both Lot number for VCSEL. But VTP1 is for quick VCSEL and 

VTP2 is for intra-cavity VCSEL. 

 

5. The last three ‘XXX’ represent processing round number. 

 

6. ANBP Lot number will be compatible with ASU and Lytek’s number.  
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Appendix I: Processing Traveler of Metallic Nanostructures on Glass Substrates 

 

 

 

 

Traveler, metallic nanostructures fabrication on glass substrate  
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Fab Lot # FSE1001 
Start Date: 09/03/2014 

Due Date: 09/24/2012 

Mask Set: No mask, electron beam direct writing 

Purpose: Target on metallic nanostructures fabrication on glass substrate using PMMA by 

JEOL-5500ZD in HiDEC. 

Lot#:  Nano fabrication development, Simple metal deposition, E-beam lithography, 1(first 

attempt), 001(Round number) 

 

Lot # Wafer # Growth # Description 
0001 NA  1 cm glass substrate 

 

 

OP/LINK DESCRIPTION PARAMETER ESTIMATED TIME 

1 Sample Preparation  1 hour 

2 E-beam lithography  4.0 hours 

3 Metal deposition   2.0 hours 

4 Lift-off  2 hour - overnight 

   Total: 9 hour - overnight 
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Sample Preparation (Start) 

Date

/Tim

e 

1.1 Substrate size 

 _____cm X 

______cm 

 2 inch wafer 

 4 inch wafer 

 

Sample NO:_______________ 

Dicing saw or diamond scriber 

Type:  glass 

If ITO coated 

glass,  

ITO thickness: 

_________ 

 1.2 Solvent Clean 

 Develop bench in 

photolithography room 

 Solvent spray 

bottles 

 Three waste bottles 

 Three funnels  

 

 

 

 

 Acetone, Methanol, IPA, DI 

water, N2 Blow dry  

 

 

E-beam Lithography (Start) 

Date/

Time 

2.1   Hot plate  

 

 Spinner check 

 

 Spinner  

 

 

 

 

 

 

 

 

 Nanospec 

Set hot plate temperature @ 180C wait 

for at least 10 minutes to stabilize 

 Vacuum OK? 

 Recipe OK? 

Recipe _____,  _______rpm 

 Change the bowl dedicated for EBL 

 Clean the lid 

 PMMA vial  

Concentration:  2%  4%  6%  8% 
 1.5 inch chuck 

 Blue tape apply pressure w/ finger 

tweezers, 

180 C / 120 sec  

 Double spin 

Si wafer 

Refractive index of PMMA: 1.485 (633 

nm) 

Sample thickness______________(center) 
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Date/

Time 

2.2 Metal Deposition 

(Edwards thermal 

306T) 

 Pumping down 

 

 Cr deposition 

 

 

 

  

  

Pump down time:_____________ min 

Base pressure:_______________ mBar 

Reference value Cr : 50 Å @ 0.2 Å /sec 

Start current:________________ 

Start pressure________________mBar 

Start deposition rate:__________________ 

Å/sec 

End current:________________ 

End 

pressure_____________________mBar 

End deposition rate:__________________ 

Å/sec 

Thickness:_____________________ Å 

 

 2.3 Transportation  Non-transparent sample box  

 2.4 E-beam exposure 

 System 

configuration 

 

 

 

 Substrate 

 

  Exposure 

preparation 

 

 

  Exposure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 50 KV 

 Mode 2 (four lens) 
 Piece cassette  

 Aperture 2 

Sample center position (cassette 

coordinate): 

 X: __________mm; Y: __________mm 

Calibration file: ________________ 

Current: ________nA 

 Calibration OK? 

Pattern file name: 

                           

_________________________ 

                           

_________________________ 

                           

_________________________ 
 Piece cassette exposure configuration 

Scheduled file name: 

                           

_________________________ 

The piece cassette center is at (0, -

5000µm) in exposure configuration 

coordinate!!  

Base dose: ___________µC/cm
2
 

 Shot rank (check sample information 

page) 

Writing time: ___________min 

 Writing OK?  
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 2.5 Cr Wet etching (Acid 

bench) 

 

Etchant: CEP-200 

Estimate etching rate: 5 nm/sec 

Etching time:  30 sec 

Rinse with DI water   

 Time: 30s ____________ 

 Blow dry with nitrogen 

 

 2.6 Develop (E-beam 

room) 

 

3:1 IPA:MIBK 

 Time: __________ 

Rinse with IPA 

 Time: __________ 

 

 2.7 Check with 

microscope 

OK?______  

 

Metal Deposition (Start) 

 3 Metal Deposition 
(Edwards 306T) 
 Pumping down 
 
 
 Cr deposition 
 
 
 
 
 
 

 
 Au deposition 
 
 
 
 
 
 
 

  
 
Pump down time:_____________ min 
Base pressure:_______________ mBar 
 
Reference value Cr : 20 Å @ 0.05 Å /sec 
Start current:_________________mA (in scale) 
Start pressure________________mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________mBar 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 
 
Reference value Au : 150 Å @ 0.125 Å /sec 
Start current:_________________mA (in scale) 
Start pressure________________mBar 
Start deposition rate:__________________ 
Å/sec 
Start Temperature:________________ 
Start current:_________________mA (in scale) 
End pressure_____________________mBar 
End deposition rate:__________________ 
Å/sec 
End Temperature:________________ 
Thickness:_____________________ Å 
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Lift-off (Start) 

Date/

Time 

4 Metal Liftoff 
 Solvent Hood 
 
 
 
 
 
 Microscope 
 

 
PMMA sample 
Remover PG (Place in ultrasonic bath if 
necessary) 
Temperature: 
Time: 
Acetone / Methanol / IPA / DI rinse 
 
Surface Cleanness 
 Pass 
 Fail 
Pattern OK?  
 Pass 
 Fail 
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Sample NO: 

Resist information 

Type: Thickness: Spin speed: Base dose: 

Pattern information 

Schedule file name: Total chip numbers (except marks): 

Scheduled writing pattern Chip NO Chip pattern name 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description  

  

Description  

  

Description  

  

Description  

 

Chip number     

Scan step     

Shot rank     

Shot step     

Right dose after SEM     

Comments     

     

Chip number     

Scan step     

Shot rank     

Shot step     

Right dose after SEM     

Comments     
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Job 1 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 2 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 3 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 4 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 5 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 6 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 7 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 8 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 
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Appendix J: Processing Traveler of Single Horizontal Si Nanowire Device 

 

 

 

 

 

 

 

 

Single horizontal Si nanowire device on SiO2 (EBL) 

 

NVE1001 

LOT0001 
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Fab Lot # NVE1001 

Start Date: 02/14/12 

Due Date: 02/17/12 

Mask Set:  

Purpose: Target for fabrication of single nanowire device using standard photolithography and 

electron beam lithography (EBL) processing flow. 

 Lot#:   

 

Lot # Wafer # Growth # Description 

0001  N/A Product lot 

 

 

OP/LINK DESCRIPTION PARAMETER 
ESTIMATED 

TIME 

0 Wafer Pre-clean (RCA)  1.0 hour 

2 Metal deposition 
Ti/Au, Trapping device 

mask  
3.0 hour 

3 Lift-off  1.0 hour 

4 Nanowire deposition  2.0 hour 

5 SEM / microscope inspection Define the NW location 4.0 hour 

6 Metal deposition Ti, E-beam lithography 4.0 hour 

7 Lift-off  2.0 hour 

   Total: 17 hour 
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Wafer Clean (Start) 

Date/

Time 

1 Solvent Clean 
 Solvent Hood 
 

 
Acetone/Methanol/IPA rinse 
Nitrogen dry 

 

 

METAL DEPOSITION (Start) 

Date/

Time 

2.1 Photolithography 
Image reverse 
 Hot plate  
 
 
 Spinner check 
 Spinner  
 
 
 Hot plate (Soft bake) 
 
 MJB-3 
 
 
 
 
 
 
 Hot plate (PEB) 
 MJB3 (Flooded 

exposure) 
 

 
 Base hood 
 
 
 
 
 
 
 
 
 

 
 Profilometer 
 
 Inspection 
Microscope 

 
  
Set hot plate temperature @ 95C wait for at 
least 1 hour to stabilize (Si Substrate heatsink) 
 
Recipe 5 5000 rpm 
 AZ5214(target ~ 2um) 
 2.5 inch chuck w/ skirt           
 Blue tape apply pressure w/ finger tweezers, 
95C/60 sec 
wipes underneath 
Trapping Mask 2 (Up left quarter) 
 2 inch chuck            Mask orientation 
 Determine exposure time 
PR Thickness: ___________um (Profilometer) 
Energy: ___________mJ/cm2 (Tk*25.6) 
Intensity: ___________mW/cm2 (From log) 
Exposure Time: __________s 
(Energy/Intensity) 
105 C / 2 min 30 sec 
 No Mask Needed !! 
 Determine exposure time 
Energy: ___________mJ/cm2 (Tk*67.2) 
Exposure Time: ___________s 
(Energy/Intensity) 
Develop 300 MIF (around 1min) 
Develop is temperature sensitive!!! 
Temperature:_________ C 
Volume:_____________mL 
Develop time / Comments 

1: _____60s_____,_______________ 
2: _____________,_______________ 
3: _____________,_______________ 
4: _____________,_______________ 
5: _____________,_______________ 
6: _____________,_______________ 

 Test 
Sample:_________________________(m) 
                               Center  
Smallest Feature O.K.? 
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 2.2 Metal Deposition 
(Edwards) 
 Pumping down 
 
 
 Ti deposition 
 
 
 
 
 
 
 
 Au deposition 
 
 
 
 
 
 
 

 
 
Pump down time:_____________ min 
Base pressure:_______________ Torr 
 
Reference value Ti : 100 Å @ 0.5-1 Å /sec 
Start current:_________________mA 
Midway Deposition rate: 
             _____________________ Å/sec 
Pressure_____________________Torr 
End current__________________mA 
Thickness:_____________________ Å 
 
Reference value Au : 1000 Å @ 3.0-5 Å /sec 
Start current:_________________mA 
Midway Deposition rate: 
             _____________________ Å/sec 
Pressure_____________________Torr 
End current__________________mA 
Thickness:_____________________ Å 

 

 
 

LIFT-OFF (Start) 

Date/

Time 

3 Metal Liftoff 
 Solvent Hood 
 Profilometer 
 
 
 
 
 
 Quality gate  

 
Acetone (Place in ultrasonic bath if necessary) 
Acetone / Methanol / IPA / DI rinse 
Thk A.                    Center  
Test Sample:________________________( Å) 
Surface Cleanness 
 Pass 
 Fail 
Å  < metal thickness <  Å  
 Pass 
 Fail 
Hold, contact Engineering. 
Sign off: ________(Engr) ________ (Fab)) 
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Nanowire deposition 

 4 Nanowire solution 
preparation 
 Hood 
 Wet bench 
 
 
 
 
 NW quantity in 
defined area 

 
 
Origin size of a-Si growth sample: ___in. × 
___in. 
Dilution,  

1
st
 (1:10), deposited NW OK? ____________ 

2
nd

 (1:10), deposited NW OK? ____________ 
3

rd
 (1:10), deposited NW OK? ____________ 

 
Define deposition area: _______um x 
________um 
Deposition 
0 < numbers <3   
 Pass 
 Fail 

 

 
 
 
0.1u
L 
pipet 
with 
hold
er 
 

 5.1 SEM/ Microscope 
inspection 
 

The relative position of NW to: 
Image 1: full size including align markers 
Image 2: high magnification 

 

 5.2 Pattern design   

 

E-BEAM LITHOGRAPHY (START) 

Date/

Time 

6 Coating 
 Hot plate  
 
 
 Spinner check 
 Spinner  
 
 
 Hot plate (Soft bake) 
 

  marker 
 

 
Set hot plate temperature @ 110C wait for at 
least 1 hour to stabilize (Si Substrate heatsink) 
 
Recipe 5 5000 rpm 
 6% PMMA(target ~ 550nm) 
 2.5 inch chuck w/ skirt           
 Blue tape apply pressure w/ finger tweezers, 
110 C / 60 sec  
wipes underneath 
 Scratch on top left corner 

 

 6.1 EBL run file design 
 NPGS 

 
DesignCAD file creation 
Runfile creation 
Simulation 

 

 6.2 Transportation  Non-transparent sample box  

 6.3 E-beam operation 
Check state 
Pump down 
 

 

 
 X:20000um,Y:20000um,Z:30um,R:0 
 10kV 
 Angle:0 
Field size: ________um 
Magnification:______ 
Beam current______pA 
Pattern name______ 

  Exposure Time______ 

 

 6.4 Develop 3:1 IPA:MIBK 
 Time: 15s 
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 6.5 Check with 
microscope 

OK?______ 
 

 

 6.6 Metal Deposition 
(Edwards) 
 Pumping down 
 
 
 Ti deposition 
 
 
 
 

 

 
 
Pump down time:_____________ min 
Base pressure:_______________ Torr 
 
Reference value Ti : 100 Å @ 0.5-1 Å /sec 
Start current:_________________mA 
Midway Deposition rate: 
             _____________________ Å/sec 
Pressure_____________________Torr 
End current__________________mA 
Thickness:_____________________ Å 

 

 

LIFT-OFF (Start) 

Date/

Time 

7 Metal Liftoff 
 Solvent Hood 
 Profilometer 
 
 
 
 
 
 Quality gate  

 
Acetone (Place in ultrasonic bath if necessary) 
Acetone / Methanol / IPA / DI rinse 
Thk A.                    Center  
Test Sample:________________________( Å) 
Surface Cleanness 
 Pass 
 Fail 
Pattern OK?  
 Pass 
 Fail 
Hold, contact Engineering. 
Sign off: ________(Engr) ________ (Fab)) 
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Appendix K: Processing Traveler of Metallic Fishnet Integrated a-Si Solar Cell 

 

 

 

 

 

Traveler, Schottky contact a-Si solar cell with 10nm thin Au contact 

 

SKR1010 

LOT0001 
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Fab Lot # SKR1010 
Start Date: 10/21/2013 

Due Date: 10/31/2013 

Mask Set: Schottky contact solar cell mask 

Purpose: Solar cell process of Schottky contact a-Si with 10nm thin Au contact. 

Lot#:  Solar cell, Schottky contact, RIE etching, 1(first attempt), 010(Round number) 

 

Lot # Wafer # Growth # Description 
LOT0001 NA  1 inch x 1 inch glass substrate 

 

 

OP/LINK DESCRIPTION PARAMETER 
ESTIMATED 

TIME 

1 Wafer Pre-clean  0.5 hour 

2 Aluminum deposition 200nm thick 4 hours 

3 PECVD a-Si deposition  3 hours 

4 Photolithography 
Schottky contact solar cell 
mask 

2 hours 

5 DRIE  2 hours 

6 Photolithography 
Schottky contact solar cell 
mask 

2 hours 

7 Top contact deposition 10nm gold 4 hours 

8 Photolithography 
Schottky contact solar cell 
mask 

2 hours 

9 E-beam align marker deposition 100nm gold 4 hours 

10 
E-beam lithography of fishnet 

structure 
 4 hours 

11 Fishnet deposition  4 hours 

   
Total: 31.5 hour

s 
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Sample Preparation (Start) 
Date/
Time 

1.1 Substrate size 
 1 inch × 1 inch glass 
substrate 
 Four-point prober 

 
Sample NO: ________________ 
 
 Resistivity check  

 

 1.2 Solvent Clean 
(Develop bench) 

 

 
 Acetone, Methanol, IPA, DI water, N2 Blow 
dry  

 

 

Aluminum Deposition (Start) 
Date/
Time 

2 Metal Deposition 
(HiDEC 306D) 
 Pumping down 

 
 
 
 Al deposition 
 
 
 
 
 
 

 

  
 
 
Pump down:_____________ min 
Base pressure:_______________ mBar 
 
Reference value Al : 2000 Å @ 5 Å /sec 
Start current:_________________mA  
Start pressure________________mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________mBar 
End current__________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 

 
 
 
 
 
 

 

Amorphous Silicon Deposition (Start) 
 3 PECVD (ENRC 350B 

PECVD) 
 Pumping down 
 a-Si deposition 
 
 

 

  
  
Base pressure:_______________ mTorr 
Rate: 15nm/min 

Temperatur
e (°C) 

Gas 
flow 

(sccm) 

Pres. 
(mTorr) 

250 SiH4 500 
20 

Power (W) Time (mm:ss) 
2  

 
 
Target thickness: _300_nm 
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Photolithography (Start) 
Date/
Time 

4 
 
 
 
 
 
 
 
 
 
 
 
 

Photolithography 
 Eaton Hot plate  

 
 Spinner check 
 
 Spinner  
 
 
 
 Soft bake 
 MJB-3 
 
 
 
 
 
 Develop bench 
 
 
 
 
 
 
 
 
 
 
 Postexposure bake 

 

 
Set hot plate 1 at 95C and hot plate 2 at 110C 
for at least 10 minutes to stabilize 
 Vacuum OK? 
 Recipe OK? 
Recipe 4, 4000 rpm 
 AZ 5214(target ~ 2um) 
 1.5 inch chuck           
 Blue tape apply pressure w/ finger tweezers, 
95C/60 sec 
 Schottky contact solar cell mask (mesa) 
PR Thickness: ______um (Profilometer) 
Intensity: _________mW/cm

2
 (From log) 

Energy: ___________mJ/cm
2
 (Tk*67.2) 

Exposure Time: _______s (Energy/Intensity) 
 
 MF-CD-26 
Develop is temperature sensitive!!! 
Temperature: __25___C 
Volume: _____________mL 
Develop time / Comments 

1: ____60 sec_____,_______________ 
2: _____________,_______________ 
3: _____________,_______________ 

 O.K.? 
PR thickness: __________________ 
 
 110 C / 2 min 30 sec 

 
 
 
 
 

 

Reactive Ion etching (Start) 
 5.1 Dry etching 

 Plasma Thermal RIE 
 
 

 

  
 Recipe: LHSIETCH 
 Processing pressure: ___300___mtorr 
 Reference parameters 
Process parameters 

 Gas flow (sccm) 
 SF6 O2 C4F8 

Etch 45 5 0 
 Power(W) Time(s) 

Etch 100  
 

Etch rate of a-Si: _____325 nm/min______ 
Etch rate of AZ5214: _____70 nm/min______ 
Etching thickness before resist removal: 
________µm 
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 5.2  Resist removal 
  Solvent bench 
 
 
 
 
  Develop bench 
  LFE asher 
  
 
 Microscope 
 
 Dektek 

 
Removal PG 
 70 degree 
 1 hour immersion 
Acetone 
 1 hour (room temperature) 
IPA / DI rinse 
 200 sccm O2 
 99 Watt 
 10 minutes 
Surface Cleanness 

  Pass 
 Etch depth after resist removal: 
 _____________ µm 

 

 

Photolithography (Start) 

Date/

Time 

6 

 

 

 

 

 

 

 

 

 

 

 

 

Photolithography 
 Eaton Hot plate  

 
 Spinner check 
 
 Spinner  
 
 
 
 Soft bake 
 MJB-3 
 
 
 
 
 Reversal bake 
 MJB-3 
 
 
 
 
 Develop bench 
 
 
 
 
 
 
 

 
 

 
Set hot plate 1 at 95C and hot plate 2 at 105C 
wait for at least 10 minutes to stabilize 
 Vacuum OK? 
 Recipe OK? 
Recipe 4, 4000 rpm 
 AZ 5214(target ~ 2um) 
 1.5 inch chuck           
 Blue tape apply pressure w/ finger tweezers, 
95C/60 sec 
 Schottky contact solar cell mask (top 
contact) 
PR Thickness: ______um (Profilometer) 
Intensity: __________mW/cm

2
 (From log) 

Energy: ___________mJ/cm
2
 (Tk*25.6) 

Exposure Time: ___________s 
(Energy/Intensity) 
105C/2min30sec 
 No mask needed!! 
 Determine exposure time 
Energy: ___________mJ/cm

2
 (Tk*67.2) 

Exposure Time: __________s 
(Energy/Intensity) 
 
 MF-CD-26 
Develop is temperature sensitive!!! 
Temperature: _________C 
Volume: _____________mL 
Develop time / Comments 
1: ____60 sec_____,_______________ 
2: _____________,_______________ 
3: _____________,_______________ 
 O.K.? 
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Top Contact Deposition (Start) 
Date/
Time 

7.1 Metal Deposition 
(Edwards thermal 
306T) 
 Pumping down 
 

 
 Au deposition 
 
 
 
 
 
 
 

 

  
 
Pump down time:_____________ min 
Base pressure:_______________ mBar 

 
Reference value Au : 100 Å @ 0.4 Å /sec 
Start current: _________________mA 
Start pressure________________ mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________ mBar 
End current __________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 

 
 
 
 
 
 

 7.2  Metal Liftoff 
 Solvent bench 
 
 
 
 
 
 
 Microscope 
 

 
Remover PG  
 70 degree 
 1 hour immersion 
 5 minutes ultrasonic bath (room 
temperature) 
 1 hour immersion (70 degree) 
 5 minutes ultrasonic bath (room 
temperature) 
IPA / DI rinse 
Pattern OK?  
 Pass 
 Fail 

 

 

file:///D:/Research/Fabrication/Traveler/Schottky%20contact%20a-Si%20solar%20cell_ver%201.docx%23_PARAMETER


157 

Photolithography (Start) 

Date/

Time 

8 

 

 

 

 

 

 

 

 

 

 

 

 

Photolithography 
 Eaton Hot plate  

 
 Spinner check 
 
 Spinner  
 
 
 
 Soft bake 
 MJB-3 
 
 
 
 
 Reversal bake 
 MJB-3 
 
 
 
 
 Develop bench 
 
 
 
 
 
 
 

 
 

 
Set hot plate 1 at 95C and hot plate 2 at 105C 
wait for at least 10 minutes to stabilize 
 Vacuum OK? 
 Recipe OK? 
Recipe 4, 4000 rpm 
 AZ 5214(target ~ 2um) 
 1.5 inch chuck           
 Blue tape apply pressure w/ finger tweezers, 
95C/60 sec 
 Schottky contact solar cell mask (align 
marker) 
PR Thickness: ______um (Profilometer) 
Intensity: __________mW/cm

2
 (From log) 

Energy: ___________mJ/cm
2
 (Tk*25.6) 

Exposure Time: ____5.5__s (Energy/Intensity) 
105C/2min30sec 
 No mask needed!! 
 Determine exposure time 
Energy: ___________mJ/cm

2
 (Tk*67.2) 

Exposure Time: ____15___s (Energy/Intensity) 
 
 MF-CD-26 
Develop is temperature sensitive!!! 
Temperature: _________C 
Volume: _____________mL 
Develop time / Comments 
1: ____60 sec_____,_______________ 
2: _____________,_______________ 
3: _____________,_______________ 
 O.K.? 
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Align Marker Deposition (Start) 
Date/
Time 

9.1 Metal Deposition 
(Edwards thermal 
306T) 
 Pumping down 
 

 
 Cr deposition 
 
 
 
 
 
 
 
 
  Au deposition 
 
 
 
 
 
 
 

 

  
 
Pump down time:_____________ min 
Base pressure:_______________ mBar 

 
Reference value Cr : 100 Å @ 0.4 Å /sec 
Start current: _________________mA 
Start pressure________________ mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________ mBar 
End current __________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 
 
Reference value Au : 1000 Å @ 0.4 Å /sec 
Start current: _________________mA 
Start pressure________________ mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________ mBar 
End current __________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 

 
 
 
 
 
 

 9.2  Metal Liftoff 
 Solvent bench 
 
 
 
 
 
 Microscope 
 

 
Remover PG  
 70 degree 
 1 hour immersion 
 1 minute ultrasonic bath (room temperature) 
IPA / DI rinse 
Pattern OK?  
 Pass 
 Fail 

 

 

E-beam Lithography (Start) 

Date/ 

Time 

10.1   Hot plate  
 
 Spinner check 
 
 Spinner  
 
 

 
 
 
 
 

Set hot plate temperature @ 180C wait for at 
least 10 minutes to stabilize 
 Vacuum OK? 
 Recipe OK? 
Recipe _____,  _______rpm 
 Change the bowl dedicated for EBL 
 Clean the lid 
 PMMA vial  
Concentration:  2%  4%  6%  8% 
 1.5 inch chuck 
 Blue tape apply pressure w/ finger tweezers, 
180 C / 120 sec 

 

 10.2 Transportation  Non-transparent sample box  
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 10.3 E-beam exposure 
 System configuration 

 
 
 
 Substrate 

 
  Exposure preparation 
 
 
 
 
 
 
 
 
 
  Exposure 
 
 
 
 
 
 
 
 

 
 50 KV 
 Mode 2 (four lens) 
 Piece cassette  
 Aperture 2 
Sample center position (cassette coordinate): 
 X: __________mm; Y: __________mm 
Calibration file: ________________ 
Current: ________nA 
 Calibration OK? 
 Alignment OK? 
Relative PQ marker position on mask 
X: ___3000__μm; Y: __0__μm 
PQ marker position after alignment 
Offset X: __________μm; Y: ___________μm 
Offset X: __________μm; Y: ___________μm 
 
Pattern file name: 
_________________________ 
_________________________ 
_________________________ 
 Piece cassette exposure configuration 
Scheduled file name: 
 _________________________ 
The piece cassette center is at (0, -5000µm) 
in exposure configuration coordinate!!  
Base dose: ___________µC/cm

2
 

 Shot rank (check sample information page) 
Writing time: ___________min 
 Writing OK?  

 

 10.4 Develop (E-beam 
room) 
 

3:1 IPA:MIBK 
 Time: __________ 
Rinse with IPA 
 Time: __________ 

 

 10.5 Check with 
microscope 

OK?______  
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Fishnet Deposition (Start) 
Date/
Time 

11.1 Metal Deposition 
(Edwards thermal 
306T) 
 Pumping down 
 

 
 Cr deposition 
 
 
 
 
 
 
 
 
  Au deposition 
 
 
 
 
 
 
 

 

  
 
Pump down time:_____________ min 
Base pressure:_______________ mBar 

 
Reference value Cr : 100 Å @ 0.4 Å /sec 
Start current: _________________mA 
Start pressure________________ mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________ mBar 
End current __________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 
 
Reference value Au : 300 Å @ 0.4 Å /sec 
Start current: _________________mA 
Start pressure________________ mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________ mBar 
End current __________________mA 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 

 
 
 
 
 
 

 11.2  Metal Liftoff 
 Solvent bench 
 
 
 
 
 
 Microscope 
 

 
Remover PG  
 70 degree 
 1 hour immersion 
 1 minute ultrasonic bath (room temperature) 
 Overnight? 
IPA / DI rinse 
Pattern OK?  
 Pass 
 Fail 
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Sample NO: 

Resist information 

Type: Thickness: Spin speed: Base dose: 

Pattern information 

Schedule file name: Total chip numbers (except marks): 

Scheduled writing pattern Chip NO Chip pattern name 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description  

  

Description  

  

Description  

  

Description  

 

Chip number     

Scan step     

Shot rank     

Shot step     

Right dose after SEM     

Comments     

     

Chip number     

Scan step     

Shot rank     

Shot step     

Right dose after SEM     

Comments     
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Job 1 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 2 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 3 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 4 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 5 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 6 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 7 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 

            

Job 8 

1 2 3 4 5 6 7 8 9 10 11 12 

            

13 14 15 16 17 18 19 20 21 22 23 24 
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Appendix L: Processing Traveler of Metallic Nanostructures Integrated GeSn 

Photodetector 

 

 

 

 

 

 

 

Traveler, Metallic nanostructure integrated GeSn photodetector  

 

DVE1001 

LOT0003 

 

 

 

 

 

 

 

 

 

 

 

DVE1001 

UA ANBP Group 
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Fab Lot # DVE1001 

Start Date: 11/12/2013 

Due Date: 11/22/2013 

Mask Set: 4in Mask PCPD0826_2  

Purpose: Metallic nanostructures integrated GeSn/Ge photodetector 

Lot#:  Detector, For I-V measurement, E-beam lithography, 1(first attempt), 001(Round 

number) 

 

 

Lot 

# 

Wafer 

# 
Growth # 

Description 

0002 
0003-

A51 
ASM Epsilon Reactor, ASM 

Corp. 
7 % Sn, 240 nm, Ge1-xSnx on Ge buffer, 

Si substrate 

 

OP/LINK DESCRIPTION PARAMETER 
ESTIMATED 

TIME 

1 Sample Clean  1 hour 

2 Mesa Etching  2.0 hours 

3 Top Ohmic Contact Patterning  2.0 hours 

4 Lift-off  2.0 hours  

5 E-beam lithography  4.0 hours 

6 Lift-off  2.0 hours - overnight 

   
Total: 13 hour - 

overnight 
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Sample Pre-clean (Start) 
Date/ 
Time 

 
1.1 

Solvent Clean 
 Sonicator 

 
 Methanol sonication for 5 minutes 
 Rinse with clean Methanol 
 IPA sonication for 5 minutes 
 Rinse with clean IPA 
 N2 Dry /Dehydration bake, 95 °C for 5 
minutes 

 

 
Mesa Etching (Start) 

Date/ 
Time 

2.
1 

Photolithography 
 Spinner check 
 Spinner  
 
 Hot plate (Soft 
bake) 
 
 MJB-3 
 
 
 
 
 
 
 
 Base hood 
 
 
 
 
 
 Hot plate (Hard 
bake) 

 
 Inspection 
Microscope 
 Profilometer 
 

 
Recipe 3; 3000 rpm 
 AZ4110 (target ~ 1.75 um)   Blue 
tape 
 2.5 inch chuck w/ skirt           
 95C/60 sec 
 Check accuracy with thermocouple 
PCPD0826_2  mask (Upper left quarter) 
 Mask orientation 
 Use middle corner on wafer stage! 
 Determine exposure time 
PR Thickness: ___________um 
(Profilometer) 
Energy: ___________mJ/cm2 (Tk*45) 
Intensity: ___________mW/cm2 (From 
log) 
Exposure Time:          10         s 
(Energy/Intensity) 
 Develop using 2.5% TMAH (around 60 
sec) 
 Rinse in DI water 
 N2 Blow dry 
Develop time / Comments 
1: _____60s_____,_______________ 

 
120 °C/10 sec 
 Check accuracy with thermocouple 
 Smallest Feature O.K.? 
 
Resist Thickness:           
 (m) 
                      Corners  
Resist thickness:           
 (m) 
                        Center  

 

 2.
2 

RIE 
 
 
 
 
 
 
 Load Sample 

 
Etch recipe name used:  GeSn_ET 
Expected etch rate:     50 nm/min  

Etch Step: 
Gas Flow Rates (sccm) 
Ar:    30     CF4:    30  
O2:     0      SF6:     0  
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 Run Etch Process 
 

Pressure:        200 mtorr  
Power:           100 watts  
Time:               25:00 minutes  

 2.
3 

Resist Removal 
 EBL hood 
 Matrix Asher 
 
 Inspection 
microscope 
 Profilometer 

 

 
 PG remover, 20 minutes at 80 °C 

10 minute run time 
Power:  150 Watts   O2 Gas Flow:   200 
sccm 
 OK  
 
Feature Height:            (m) 
                      Corners  
Feature Height:            (m) 
                        Center  
Width 
Expected:   Actual Width:     
  
Expected:   Actual Width:     
  

 

 
Top Ohmic Contact Patterning (Start) 

Date/ 
Time 

3.1 Clean and prepare 
sample 

 5 min sonication in IPA 
 5 min dehydration on hotplate at 95° C 

 

 3.2 Photolithography 
Image reverse 
 Spinner check 
 Spinner  
 Hot plate (Soft 
bake) 
 
 MJB-3 
 
 
 

 
 
 
 Hot plate (PEB) 
 
 MJB3 (Flooded 
exposure) 

 
 
 
 Base hood 
 
 
 
 
 
 
 Inspection 
Microscope 

 
Recipe 4, 4000 rpm for 50 seconds 
 AZ5214(target ~ 1.9 um) 
 2.5 inch chuck w/ skirt           Blue tape 
95C/60 sec 
 Check accuracy with thermocouple 
PCPD0826_2   mask (Lower left quarter) 
 Mask orientation 
 Use middle corner on wafer stage! 
 Determine exposure time 
PR Thickness: ___________um (Profilometer) 
Energy: ___________mJ/cm2 (Tk*25.6) 
Intensity: ___________mW/cm2 (From log) 
Exposure Time: _____6_____s 
(Energy/Intensity) 
105 C / 2 min 30 sec 
 Check accuracy with thermocouple 
 No Mask Needed 
 Determine exposure time 
Energy: ___________mJ/cm2 (Tk*67.2) 
Exposure Time: _____30   __s 
(Energy/Intensity) 
 Develop 2.5 % TMAH (around  60 
seconds) 
 Rinse in DI water 
 N2 Blow dry 
Develop time / Comments 
1: _____60s_____,_______________ 
2: _____________,_______________ 
 Smallest Feature O.K.? 
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 Profilometer 
 

Resist Thickness:           
 (m) 
                      Corners  
Resist thickness:           
 (m) 
                        Center  

 3.3 Metal Deposition 
(Edwards 306T) 
 Pumping down 
 
 
 Cr deposition 
 
 
 
 
 
 
 
 Au deposition 
 
 
 
 
 

 
Pump down time:_____________ min 
Base pressure:_______________ Torr 
 
Reference value Cr : 100 Å @ 0.5-1 Å /sec 
Start current:_________________mA 
Midway Deposition rate: 
             _____________________ Å/sec 
Pressure_____________________Torr 
End current__________________mA 
Thickness:_____________________ Å 
 
Reference value Au : 2000 Å @ 3.0-5 Å /sec 
Start current:_________________mA 
Midway Deposition rate: 
             _____________________ Å/sec 
Pressure_____________________Torr 
End current__________________mA 
Thickness:_____________________ Å 

 

 3.4  Inspect 
 Profilometer 
 
 

 
 Inspection 
Microscope 

 
Feature Height:            (m) 
                      Corners  
Feature Height:            (m) 
                        Center  
 O.K. 

 

 
Lift-off (Start) 

Date/ 
Time 

 4 Metal Lift-off 
 Solvent Hood 
 
 Profilometer 
 
 
 
 

 
Acetone (Place in ultrasonic bath if necessary) 
Acetone / Methanol / IPA / DI rinse 
Thk A.                    Center  
Feature height:________________________( 
um) 
Surface Cleanness 
 Pass 
 Fail 
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E-beam Lithography (Start) 

Date/ 

Time 

5.1   Hot plate  
 
 Spinner check 
 
 Spinner  
 
 

 
 
 
 
 

Set hot plate temperature @ 180C wait for at 
least 10 minutes to stabilize 
 Vacuum OK? 
 Recipe OK? 
Recipe _____,  _______rpm 
 Change the bowl dedicated for EBL 
 Clean the lid 
 PMMA vial  
Concentration:  2%  4%  6%  8% 
 1.5 inch chuck 
 Blue tape apply pressure w/ finger 
tweezers, 
180 C / 120 sec 

 

 5.2 Transportation  Non-transparent sample box  
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 5.3 E-beam exposure 
 System 
configuration 

 
 
 
 Substrate 

 
  Exposure 
preparation 
 
 
 
 
 
 
 
 
 
 
 
 
  Exposure 
 
 
 
 
 
 
 
 

 
 50 KV 
 Mode 2 (four lens) 
 Piece cassette  
 Aperture 2 
Sample center position (cassette coordinate): 
 X: __________mm; Y: __________mm 
Calibration file: ________________ 
Current: ________nA 
 Calibration OK? 
 Alignment OK? 
Relative PQ marker position on mask 
X: ___4400__μm; Y: __0__μm 
PQ marker position under microscope 
X: ____________μm; Y: _____________μm 
X: ____________μm; Y: _____________μm 
PQ marker position after alignment 
Offset X: __________μm; Y: 
___________μm 
Offset X: __________μm; Y: 
___________μm 
 
Pattern file name: 
                           
_________________________ 
                           
_________________________ 
                           
_________________________ 
 Piece cassette exposure configuration 
Scheduled file name: 
                           
_________________________ 
The piece cassette center is at (0, -5000µm) 
in exposure configuration coordinate!!  
Base dose: ___________µC/cm

2
 

 Shot rank (check sample information page) 
Writing time: ___________min 
 Writing OK?  

 

 5.4 Develop (E-beam 
room) 
 

3:1 IPA:MIBK 
 Time: __________ 
Rinse with IPA 
 Time: __________ 

 

 5.5 Check with 
microscope 

OK?______  
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 5.6 Metal Deposition 
(Edwards 306D) 
 Pumping down 
 
 
 Cr deposition 
 
 
 
 
 
 

 
 Au deposition 
 
 
 
 
 
 
 

  Pre-evaporation of 30 nm Cr 
 
Pump down time:_____________ min 
Base pressure:_______________ mBar 
 
Reference value Cr : 100 Å @ 0.2 Å /sec 
Start current:_________________mA (in 
scale) 
Start pressure________________mBar 
Start deposition rate:__________________ 
Å/sec 
End pressure_____________________mBar 
End deposition rate:__________________ 
Å/sec 
Thickness:_____________________ Å 
 
Reference value Au : 600 Å @ 1 Å /sec 
Start current:_________________mA (in 
scale) 
Start pressure________________mBar 
Start deposition rate:__________________ 
Å/sec 
Start Temperature:________________ 
End current:_________________mA (in 
scale) 
End pressure_____________________mBar 
End deposition rate:__________________ 
Å/sec 
End Temperature:________________ 
Thickness:_____________________ Å 

 

 

Lift-off (Start) 

Date/ 

Time 

6 Metal Liftoff 
 Solvent Hood 
 
 
 
 
 
 Microscope 
 

 
PMMA sample 
Remover PG (Place in ultrasonic bath if 
necessary) 
Temperature: 
Time: 
Acetone / Methanol / IPA / DI rinse 
 
Surface Cleanness 
 Pass 
 Fail 
Pattern OK?  
 Pass 
 Fail 
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Sample NO: 

Resist information 

Type: Thickness: Spin speed: Base dose: 

Pattern information 

Schedule file name: Total chip numbers (except marks): 

Scheduled writing pattern Chip NO Chip pattern name 
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Shot step     

Right dose after SEM     

Comments     

     

Chip number     

Scan step     

Shot rank     

Shot step     

Right dose after SEM     

Comments     
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