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Abstract 

 

 Cotton growth early in the season is affected by damaging levels of thrips in many 

production fields in Arkansas. During this time, insecticides used to control thrips and herbicides 

used to control weeds are often present at the same time on the cotton plant. This research 

explores how various combinations of herbicides and insecticides influence thrips numbers and 

cotton plant growth parameters early in the growing season. Pathways evaluated included 

interactions between preemergence herbicides and insecticide seed treatments and interactions 

between common tank-mixed foliar herbicides and selected foliar insecticides. No interactions in 

thrips control or plant growth were observed when using preemergence herbicides in 

combination with insecticide seed treatments. However, efficacy varied between chosen 

insecticide seed treatments and it may be concluded that in this experiment imidacloprid seed 

treatments exhibited greater control of thrips numbers than thiamethoxam seed treatments. There 

were isolated herbicide-insecticide interactions affecting plant growth parameters, but overall the 

co-application of tested herbicides and insecticides offer cotton producers the ability to integrate 

thrips and weed control without loss of thrips efficacy or negative impact on plant growth. 

Herbicide-insecticide interactions examined in this study suggested that pesticide combinations 

present on the cotton plant simultaneously, early in the season, have no significant interaction 

which may affect thrips control and early season cotton plant growth.  
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Introduction 

 Multiple chemical applications are often required for crop management and insect control 

throughout the growing season of upland cotton (Gossypium hirsutum L.). Thrips 

(Thysanoptera:Thripidae) are common insect pests during the early growth stages of cotton along 

with many species of early season weeds.  Thrips are controlled chemically through the use of 

insecticide seed treatments (IST), insecticides applied into the soil at planting (in-furrow), or 

with foliar applications when needed.  Early season weed control is achieved chemically through 

the application of preemergence (PRE) and/or post emergence (POST) herbicides. Because 

pesticide applications for early season weeds and thrips control coincide, there is potential for an 

interaction between the two types of pesticides. Herbicide-insecticide interactions in cotton have 

been previously reported. Shorter plants, stand reduction, increased or decreased toxicity and 

phytotoxicity have all been reported as effects due to herbicide-insecticide interactions (Putnam 

& Penner, 1974). Herbicide-insecticide interactions could explain reduced insecticide efficacy on 

thrips populations and slower growth of cotton plants under optimal growing conditions, 

observations sometimes seen by both extension and growers in the state of Arkansas.  

There are two possible routes for early season herbicides and insecticides to be present 

simultaneously on the cotton plant. One route for this interaction to take place is through the use 

of PRE herbicides and IST’s.  This is especially interesting because of the major increase in PRE 

herbicide use across the cotton belt. Another potential route is through tank-mixing a thrips 

insecticide with a POST herbicide. As application costs increase for the grower, tank-mixing 

becomes more common, allowing the grower to become more efficient and reducing trips made 

across the field. Both of these practices are common in recent cotton production and more 

information is needed to determine if herbicide-insecticide interactions are affecting plant growth 

and/or pesticide efficacy in anyway. Therefore, this research was conducted to evaluate the 
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effects different pathways of herbicide-insecticide interactions have on thrips populations and 

cotton plant growth throughout the season. 

 



 

3 
 

Chapter I. Herbicide-Insecticide Interactions through the Combination of Preemergence   

Herbicides and Insecticide Seed Treatments 

Abstract 

 Field studies were conducted in 2012 and 2013 to evaluate thrips control and cotton plant 

responses with the co-application of preemergence herbicides fluometuron (1122 g AI/ha), 

diuron (558 g AI/ha), and fomesafen (279 g AI/ha) alone or with insecticide seed treatments 

imidacloprid (0.75 mg AI/seed), imidacloprid (0.375 mg AI/seed), thiamethoxam (0.525 mg 

AI/seed), thiamethoxam (0.375 mg AI/seed), abamectin + thiamethoxam (0.15 mg AI/seed + 

0.49 mg AI/seed), and abamectin + thiamethoxam (0.15 mg AI/seed + 0.375 mg AI/seed). There 

was no interaction between herbicides and insecticides on the number of thrips sampled or on 

seed cotton yield in 2012 or 2013. Significant differences in number of thrips sampled, plant 

growth parameters, and seed cotton yield were caused by insecticide seed treatments, but not 

preemergence herbicide applications. Imidacloprid treatments consistently exhibited greater 

control of thrips compared to thiamethoxam treatments. Seed cotton yield increased as thrips 

numbers decreased and imidacloprid treatments reduced thrips numbers, increasing seed cotton 

yield compared to thiamethoxam treatments.  

 



 

4 
 

Introduction 

 Thrips (Thysanoptera: Thripidae) are the most important group of insect pests in the early 

growth stages of Mid-south, U.S. cotton (Gossypium hirsutum L.). Reports in 2012 concluded 

that thrips were the overall second rated economically damaging insect pest in Arkansas cotton, 

with insecticide costs from both foliar treatments and insecticide seed treatments costing cotton 

growers over ten million dollars (Williams, 2012). Species of thrips that commonly infest cotton 

seedlings in the U.S. include tobacco thrips, Frankliniella fusca (Hinds); flower thrips, 

Frankliniella tritici (Fitch); western flower thrips, Frankliniella occidentalis (Pergande); onion 

thrips, Thrips tabaci (Lindeman); and soybean thrips, Neohydatothrips variabilis (Beach).  

Tobacco thrips in Arkansas are comprised of up to 84% of all thrips species found on seedling 

cotton. Western flower thrips were the second most common thrips species at 15.6% of the thrips 

populations (Stewart et al., 2013a). A thrips infestation during periods of cool weather and slow 

growth of cotton seedlings has been linked to several problems including stunting, delayed 

fruiting, loss of apical dominance, and possible loss of stand (Reed & Jackson, 2002). Increasing 

yields have been reported by several researchers when seedling thrips were controlled (Cook et 

al., 2013; Reed & Jackson, 2002; Stewart et al., 2013a).  

Thrips are traditionally controlled with insecticides applied directly to the seed, into the 

soil at planting, or with foliar applications when needed. Currently, neonicotinoid seed 

treatments (imidacloprid and thiamethoxam) are the most widely adopted method for thrips 

control in the cotton belt and over 99% of Arkansas cotton acres are planted with insecticide 

treated seed (Williams, 2012). Several benefits result from the use of seed treatments including 

increased vigor and equivalent efficacy to alternative methods, cheaper method of application, 

convenience to the grower, and reduction in equipment cost (Taylor & Harman, 1990). Foliar 



 

5 
 

applications of insecticides are used in the absence of other control options or when seed 

treatment residual control declines (Studebaker et al., 2013). Foliar insecticide applications for 

thrips control were applied on 55% of Arkansas cotton acreage from 2006-2010, in addition to 

IST’s.  In contrast, 79.6% of Arkansas cotton acreage was treated with a foliar thrips insecticide 

application from 2011-2013 (Williams, 2006-2013). This increase of foliar applications suggests 

that IST’s are not providing as much control of thrips as in previous years. By the year of 2012, 

485,000 of 580,000 (83%) of cotton acres were treated with a supplemental foliar insecticide 

application for thrips control in Arkansas. On average, 1.8 foliar applications were made per 

acre, costing Arkansas producers an additional $4,306,000 to control thrips. With the cost of 

IST’s in 2012 at $6,380,000, Arkansas growers spent around ~$10.7 million for thrips control in 

cotton. 

 A possible factor in the loss of thrips control with IST’s may be related to issues in weed 

control. Historically, weed control in cotton relied heavily on a combination of tillage, soil-

applied herbicides, post-emergence directed herbicides, and hand weeding. In recent years, weed 

control in cotton has become heavily reliant on transgenic technologies (Irby et al., 2013). Over 

98% of Arkansas cotton was planted to Roundup Ready or Roundup Ready Flex (glyphosate) 

herbicide systems by 2010 (Smith & Scott, 2010). This adoption occurred because of 

glyphosate’s effective means of controlling Palmer amaranth (Amaranthus palmeri S. Wats). 

However, widespread planting of glyphosate resistant cotton and the extensive use of glyphosate 

have placed intensive selection pressure on weed populations (Main et al., 2012). This selection 

pressure led to the glyphosate resistance in Palmer amaranth. Palmer amaranth is now considered 

the most difficult weed to control in Arkansas crop production (Smith & Scott, 2010). By 2012, 



 

6 
 

glyphosate resistant Palmer amaranth has spread throughout all crop growing counties in eastern 

and central Arkansas and much of the United States (Smith & Scott, 2010).  

Because of glyphosate resistance in Palmer amaranth, growers rely more on residual 

herbicides applied at planting (pre-emerge) for proper weed control (Main et al., 2012). 

Herbicides such as fluometuron, prometryn, fomesafen, and pendimethalin are now used on all 

Mid-south cotton acres (Scott et al., 2014). However, cotton injury has been recorded with the 

use of preemergence herbicides (Culpepper, 2012). This injury especially occurs after excessive 

rainfall (above 1.5”) is coupled with cold temperatures allowing the developing cotton plant to 

become overly exposed to herbicide causing injury (Steckel, 2012). Cotton injury ranged up to 

41% damage in some pre-emerge herbicide injury ratings (Whitaker et al., 2011). This injury 

physically harms and stresses the plant, slowing cotton growth and vigor. 

Compared to many other plants, cotton’s early season growth is very slow. During this 

time period, pests and other stresses are often magnified. The thrips primary feeding site is 

young terminal of a cotton plant. The terminal of a cotton plant, during (60-80˚F) temperature, 

produces a node in about 2.5-3 days. If DD60’s decline to less than 5/day, the same terminal 

takes twice as long to produce that node (Robertson et al., 2007). This delayed growth allows 

thrips to cause injury to the same leaf structure for twice the normal length of time. PRE 

herbicide injury may stress the cotton plant, slowing cotton growth  and sometimes reducing 

stand (Culpepper, 2012). Thrips will then have similar stressing circumstances as colder weather, 

exposing the slow growing cotton terminal for an increased period of time. Contrarily, a rapidly 

growing seedling can outgrow thrips injury, reducing economic damage (Cook et al., 2013). 
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 Coinciding with the decreased efficacy of IST’s, the use of PRE herbicides has increased 

to provide control of glyphosate resistant palmer amaranth. Within the last three years (2010-

2012) the increased co-occurrence of IST’s and preemergence herbicides increases the potential 

for an interaction between the pesticides. The possible interaction may result from PRE 

herbicides causing stress to the plant or slowing cotton growth and increasing exposure to thrips. 

Alternatively, PRE herbicides may antagonize the IST through a direct chemical interaction. 

However, exploring direct chemical interactions were not an objective of this study.  The main 

objective of this study was to determine if there is an interaction between PRE herbicides and 

IST’s that causes a decrease in efficacy of IST’s. The second objective of this study was to 

determine if there is an interaction effect, PRE herbicide main effect, or no effect at all on early 

season plant growth. 

 

Materials and Methods 

Preemergence herbicide by insecticide seed treatments Trial I.  Field trials were 

conducted in 2013 at the University of Arkansas Lonn Mann Cotton Branch Experiment Station 

near Marianna, AR and the Southeast Branch University of Arkansas Experiment Station near 

Rohwer, AR.  Stoneville 4946GLB2 cotton cultivar, treated with the appropriate seed treatments 

(products and rates described in Table 1), was planted 15 May and 21 May at Marianna and 

Rohwer, respectively. Insecticide seed treatments (IST) evaluated were imidacloprid (Aeris) at 

0.75 mg AI/seed, thiamethoxam (Avicta Cruiser) at 0.525 mg AI/seed, and an untreated control. 

All seed was treated with a fungicide package containing (Allegiance) at 13.3 mL./45.3 kg, 

(Spera) at 51.4 mL./45.3 kg, (Vertex) at 2.4 mL/45.3 kg, and (Trilex Advanced) at 47.31 

mL/45.3 kg. Seed treatments  were made with a UNICOAT 1200 ccs-m seed treating machine 

one week prior to planting.  PRE herbicides evaluated were fluometuron (Cotoran) at 1122 g 
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AI/ha, Diuron (Direx) at 558 g AI/ha, fomesafen (Reflex) at 279 g AI/ha, and an untreated 

control. IST’s were applied alone and in combination with all PRE herbicides. Trials were 

planted in a randomized complete block design with a John Deere Max Emergence 7300, four 

row planter. Plot design was a 3x4 factorial arrangement of IST’s and preemergence (PRE) 

herbicides. The soils at these sites are a Loring silt loam (fine, silty, mixed, thermic Typic 

Fragiudalfs) and Hebert silt loam (fine silty, mixed, thermic Aeric Ochraqaulfs) at Marianna and 

Rohwer, respectively.  All tests were conducted under furrow irrigated production practices at 

both locations. Plot size was four rows, 96.5 cm apart by 12.2 m long. Weed-free conditions 

were maintained throughout the growing season by manual removal of weeds and hand hoeing. 

In Marianna, one application of glufosinate herbicide was made 45 days after emergence (on 15 

June) to control palmer amaranth escapes. Supplemental insecticide applications were made once 

insect pests other than thrips reached economic thresholds. However, no supplemental 

insecticide applications were made until the last sample of thrips was taken to avoid confounding 

results. 

PRE herbicide applications were made at planting on 16 May and 24 May at Marianna 

and Rohwer, respectively. In Marianna, PRE herbicide applications were made with a John 

Deere 5210, containing a compressed air multi-boom attachment. Green Leaf Air Mix 110001 

tips were used at 10 gallons per acre at 50 psi. In Rohwer, PRE herbicide applications were made 

with the same spray apparatus. Thrips numbers were sampled three times at approximately 10, 

20, and 25 days after planting. Each sample consisted of five plants taken from the center two 

rows of each plot. Plants were cut below the cotyledons and placed immediately into 1 quart 

glass jars, containing 70% ethyl alcohol. Samples were taken to the laboratory where thrips were 

washed from the plants onto a filter paper screen (Burris et al., 1989). Thrips were dislodged 
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from plants by rinsing each individual plant with 70% ethyl alcohol solution. Once rinsed 

thoroughly, plants were discarded and the remaining solution was filtered through a 9 cm 

Buchner funnel lined with a bowl-shaped coffee filter. Thrips were washed of the filter paper 

into a petri dish and counted with a Leica EZ4 dissecting microscope. Numbers of nymphs and 

adults were recorded. Stand counts were estimated in each plot by counting the number of plants 

in a random 10 foot section. In Marianna, stand counts were estimated once on 29 May (10 days 

after emergence). In Rohwer, stand counts were taken twice on 4 June and 11 June (8 and 15 

days after emergence). Plant heights were taken weekly from emergence until first bloom by 

random selection of 5 plants per plot, measured from the ground surface to the tallest point of 

terminal growth. Preemergence herbicide injury ratings were visually estimated in Marianna on 

29 May and 3 June in Rohwer. In Marianna, herbicide injury ratings were also taken after an 

application of glufosinate (Ignite) at 29 oz/acre caused visual injury on 20 June (35 days after 

emergence). Injury was divided into two categories (chlorosis and necrosis).  A scale of 0-100% 

was used with 0 resulting in no apparent damage and 100 being plant death (Frans et al., 1986). 

Total main stem node counts were made weekly in each plot from emergence until first bloom. 

Nodes above white flower (NAWF) counts were taken once near physiological cut-out to 

determine differences in maturity. Yield was estimated by the use of a machine harvester, 

picking the center two rows of each plot.  

Data were subjected to analysis of variance using the FIT MODEL procedure of JMP Pro 

11 of SAS software. Copyright 2014 SAS Institute Inc. SAS and all other SAS institute Inc. 

product or service name are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, 

USA. Main effects consisting of IST and PRE herbicide and interaction effects between IST and 

PRE herbicides were tested. Block effects were analyzed as a random effect. Treatment means 
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were separated using Tukey’s option (α=0.05). Contrasts estimates were used to compare how 

IST’s effected plant growth and maturity alone vs. in the presence of an average of all three PRE 

herbicides.  

Preemergence herbicide by insecticide seed treatment trial II.  Field trials were 

conducted in 2013 at the University of Arkansas Lon Mann Cotton Branch Experiment Station 

near Marianna, AR and repeated at the Southeast Branch University of Arkansas Experiment 

Station, near Rohwer, AR. Phytogen 499 cotton cultivar was planted on 13 May and 21 May at 

Marianna and Rohwer, respectively. IST’s evaluated were thiamethoxam (Cruiser) at 0.375 mg 

AI/seed, abamectin at 0.15 mg AI/seed + thiamethoxam at 0.49 mg AI/seed (Avicta Duo) (high), 

abamectin at 0.15 mg AI/seed + thiamethoxam at 0.375 mg AI/seed (A20703) (low), and 

imidacloprid (Gaucho) at 0.375 mg AI/seed. PRE herbicides evaluated were fluometuron 

(Cotoran) at 1122 g AI/ha, Diuron (Direx) at 558 g AI/ha, and untreated control. Each IST was 

evaluated with each PRE herbicide and alone (Table 2). Packaged seed was sent directly from 

Syngenta Crop Protection (Greensboro, SC). Trials were planted in a randomized complete block 

design with a John Deere Max Emergence 7300, four row planter. Plot design was a 5x3 factorial 

arrangement of IST’s and PRE herbicides. Plot size was four rows, 96.5 cm apart by 12.2 m 

long. The soils at the sites are Loring silt loam (fine, silty, mixed, thermic Typic Fragiudalfs) at 

Marianna and Hebert silt loam (fine silty, mixed, thermic Aeric Ochraqaulfs) at Rohwer.  Trials 

were conducted under furrow irrigated production practices at both locations.  Weed-free 

conditions were maintained throughout the growing season by manual removal of weeds and 

hand hoeing. Supplemental insecticide applications were made once insect pests other than thrips 

reached economic thresholds. However, no supplemental insecticide applications were made 

until the last sample of thrips was taken to avoid confounding results. 



 

11 
 

PRE herbicide applications were made at planting on 16 May and 23 May at Marianna 

and Rohwer, respectively.  In Marianna and Rohwer, PRE herbicide applications were made with 

the same spray application as describe in the previous trial. Thrips were sampled 3 times at 15, 

20, and 28 day after planting. Each sample consisted of five plants taken from the center two 

rows of each plot and thrips were processed and counted as previously described. Stand counts 

were estimated on 7 June and 4 June in Marianna and Rohwer, respectively as previously 

described.  Plant heights were taken weekly from emergence until first bloom as previously 

described. Herbicide injury ratings were visually estimated in Marianna on 29 May (10 days 

after emergence) and 3 June in Rohwer (7 days after emergence) as previously described. In 

Marianna, herbicide injury ratings were also taken after an application of glufosinate caused 

visual injury on 20 June (35 days after emergence). Total node counts were made weekly in each 

plot from emergence until first bloom. Nodes above white flower (NAWF) counts and yield were 

estimated for each plot as previously described. 

Data were subjected to analysis of variance using the FIT MODEL procedure of JMP Pro 

11 of SAS software. Copyright 2014 SAS Institute Inc. SAS and all other SAS institute Inc. 

product or service name are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, 

USA. Main effects consisting of IST alone, PRE herbicide alone, and interaction effects between 

IST and PRE herbicides were tested. Block effects were analyzed as a random effect. Treatment 

means were separated using Tukey’s option (α=0.05). Contrasts estimates were used to compare 

how IST’s effected plant growth and maturity alone vs. in the presence of an average of all three 

PRE herbicides. 
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Results Trial I 

 Thrips Response. The total numbers of thrips, over the season, were not significantly 

affected by an interaction between IST and PRE herbicides at either location (Marianna (p= 

0.59), Rohwer (p= 0.76) Table 3). The main effect of PRE herbicide did not significantly affect 

thrips numbers at either location. However, the main effect of IST did significantly impact the 

number of thrips sampled at both locations (p= <0.0001). In both locations thiamethoxam 

reduced thrips numbers compared to an untreated seed and imidacloprid reduced thrips compared 

to both thiamethoxam and untreated control (Table 3). 

Crop Response. In all locations, visual injury following seedling emergence was 

recorded as exhibiting no visible injury. Visual injury was apparent after the application of 

glufosinate at 45 days after emergence in Marianna (Table 3). Chlorosis damage ratings 

indicated no visual injury, post glufosinate application (data not shown). Necrosis damage 

ratings were significantly affected by the main effect IST in Marianna after the foliar application 

of glufosinate at 45 days after emergence (p= <0.0001). Necrosis damage ratings indicated 

imidacloprid treatments contained less damage than thiamethoxam which had less than untreated 

control.  

Plant Growth and Maturity Marianna. There was no significant interaction effect 

between PRE herbicides and IST on plant growth and maturity parameters in Marianna. The 

main effect of PRE herbicide did not significantly affect plant stand, plant height, or NAWF 

(Table 4). There was a significant difference in the number of main stem nodes among herbicide 

treatments on 1 July (p= 0.022). Insecticide seed treatments did not significantly affect plant 

stand or NAWF. However, plant height and main stem node counts varied significantly among 

IST’s. Imidacloprid seed treatment resulted in significant increases in both plant heights and the 
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number of main stem nodes compared to an untreated seed. However, plant heights among the 

two IST’s only differed on one day (20 June, Table 4). Contrasts were not significant when 

comparing IST alone to IST in combination with an average of all PRE herbicides (Table 5).  

Plant Growth and Maturity Rohwer. There was no significant interaction effect 

between PRE herbicide and IST on plant growth and maturity parameters in Rohwer. The main 

effect of PRE herbicide did not significantly affect plant stand, main stem node counts, or 

NAWF (Table 6). Plant heights were significantly reduced on 12 July in fomesafen treated plots 

relative to fluometuron treatments. The main effect of IST did not significantly affect plant stand 

or NAWF. Plant heights and main stem node counts were significantly affected by IST on 12 

July. Thiamethoxam and imidacloprid treatments contained taller plants than an untreated seed. 

Imidacloprid treatments contained plants with more main stem nodes than an untreated seed on 

12 July. Isolated, significant contrasts existed in Rohwer 2013 when comparing IST alone to IST 

in combination with an average of all PRE herbicides (Table 7). 

Seed Cotton Yield. Yield was not significantly affected by an interaction between IST 

and PRE herbicide in Marianna (p=0.93) or Rohwer (p= 0.59) (Table 3). The main effect of PRE 

herbicides also did not significantly affect yield in both locations. However, yield was 

significantly affected in Marianna (p= <0.0001) and Rohwer (p=0.0004) by IST. Yields were 

significantly higher in imidacloprid plots in both locations compared to both thiamethoxam and 

an untreated seed. In Marianna, thiamethoxam yields were significantly higher than the untreated 

seed however; this difference was not observed in Rohwer. 
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Results Trial II 

 Thrips Response. The total numbers of thrips, over the season, were not significantly 

affected by an interaction between IST and PRE herbicides at either location (Marianna (p= 

0.09), Rohwer (p= 0.11) Table 8). The main effect of PRE herbicide did not significantly affect 

thrips samples at either location. However, IST significantly reduced numbers of thrips at both 

locations (p= <0.0001). In Marianna, imidacloprid decreased thrips numbers compared to 

thiamethoxam, abamectin + thiamethoxam (high), and an untreated seed. Abamectin + 

thiamethoxam (low) decreased thrips numbers compared to untreated seed only. In Rohwer, 

imidacloprid decreased thrips numbers compared to thiamethoxam and an untreated seed.  

Abamectin + thiamethoxam (high) and abamectin + thiamethoxam (low) decreased thrips 

numbers compared to untreated check only.  

Crop Response. Chlorosis and necrosis injury ratings in both locations were not 

significantly affected by an interaction effect between PRE herbicides and IST’s or the main 

effects of PRE herbicides and IST’s.  

 Plant Growth and Maturity Marianna. There were no interaction effects between PRE 

herbicide and IST affecting plant growth and maturity in Marianna. PRE herbicides did not 

significantly affect plant stand, main stem nodes, or NAWF (Table 9). Plant heights differed 

among treatments on 26 June where plants in diuron treatments contained taller plants than those 

in both the untreated control and fluometuron plots. The main effect of IST did not significantly 

affect plant stand or NAWF. However, IST effected plant heights on 28 May and 26 June and 

NAG on 26 June. On 28 May, abamectin + thiamethoxam (high) plots contained taller plants 

than imidacloprid and thiamethoxam treatments. On 26 June, abamectin + thiamethoxam (high) 

plots contained taller plants than thiamethoxam and the untreated control treatments. On 26 June, 
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abamecticn + thiamethoxam (high) and abamectin + thiamethoxam (low) plots contained taller 

plants than the untreated control treatments. Significant plant growth and maturity contrasts were 

isolated (Table 10). 

Plant Growth and Maturity Rohwer. There were no interaction effects between PRE 

herbicide and IST affecting plant growth or maturity in Rohwer. The main effect of PRE 

herbicide did not significantly affect plant stand, main stem nodes, or NAWF (Table 11). Plant 

heights were significantly affected by PRE herbicides on 17 June where fluometuron plots and 

the untreated control plots contained taller plants than diuron treatments. The main effect of IST 

significantly affected NAWF, where thiamethoxam treated plots contained plants with more 

NAWF compared to imidacloprid treatments. However, the main effect of IST did not 

significantly affect plant stand, plant height, or main stem nodes.  Significant contrasts were 

isolated (Table 12). 

Seed Cotton Yield. Yield in Marianna was not significantly affected by an interaction 

effect between PRE herbicides and IST’s or the main effects of PRE herbicides or IST (Table 8). 

Yield in Rohwer was not significantly affected by an interaction effect of PRE herbicides or the 

main effect of PRE herbicide. However, Rohwer yield was significantly affected by IST 

(p=0.0004), where plots with untreated seed and thiamethoxam treated seed yielded significantly 

less than imidacloprid, abamectin + thiamethoxam (high), and abamectin + thiamethoxam (low) 

plots. 

Discussion 

Thrips populations exceeded the recommended threshold of an average of 5 thrips per 

plant and injury present in the non-insecticide treated plots. Thrips samples were measured and 
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analyzed using a season total sum of three sampling period means throughout the 2-4 leaf stage 

of cotton. This extended evaluation was done to determine if main effects and interaction effects 

affected thrips populations throughout the period of time that thrips damage cotton rather than 

single point in time. Interaction effects between preemergence herbicides and IST’s were non-

existent in analyses of the number of thrips sampled. Similarly, preemergence herbicide 

treatments alone did not alter the number of thrips sampled across all trials. All insecticide seed 

treatments significantly reduced the number of thrips sampled compared to the untreated control 

across all trials (Table 3, Table 8). However, insecticide seed treatments did not perform 

similarly. Imidacloprid treated seed consistently provided the greater control of thrips across 

trials compared to plots planted to thiamethoxam treated seed. The data shown here now 

suggests that reduced efficacy of IST is not through the interaction of IST and PRE herbicides, 

but may actually be the loss of control of IST. While we believe this could be a product of 

resistance/tolerance to thiamethoxam seed treatments, no data has been reported. More research 

will be conducted in the following year to determine if thrips are exhibiting a tolerance to 

specific neonicotinoid seed treatments. 

Preemergence herbicide injury on seedling cotton has been directly linked to rainfall that 

occurs from planting through cotton emergence (Main et al., 2012). Cotton typically emerges in 

five to seven days after planting, and rainfall during this period totaled 3.46 inches and 1.46 

inches in Marianna and Rohwer, respectively. Rohwer received the amount of rainfall desired 

when applying a PRE herbicide, while Marianna received excessive amounts. Excessive rainfall 

typically coupled with cooler temperatures causes the developing cotton seedling to become 

overly exposed to the herbicide causing injury (Steckel, 2012). However, herbicide injury was 

not grossly evident in 2013. Visual injury was not recorded immediately following seedling 



 

17 
 

emergence. There were significant differences in phytotoxicity injury after the application of 

glufosinate, 35 DAE (Table 3). After the application of glufosinate, there was a direct correlation 

between increased necrosis damage and treatments supporting higher numbers of thrips. This 

observation has been speculated before, where higher thrips populations magnify glufosinate 

injury (Stewart et al., 2013b). Additional experiments to isolate this observation would be 

beneficial for the Arkansas grower.  

Plant parameters were sporadically affected by main effects of IST and PRE herbicides 

but were never significantly affected by the interaction between the two. Plant growth was 

strongly influenced by the main effect of IST within Trial I in Marianna 2013 (Table 4) thus 

indicating higher thrips populations may cause plant stunting.  This was not the case in other 

research, where the use of an at planting insecticide did not influence plant growth parameters 

(Cook et al., 2013). Other observations have been made that thrips injury may delay crop 

maturity (Bourland et al., 1992). This observation occurred within trial II in Rohwer 2013, where 

thiamethoxam treatments that contained higher thrips numbers also had more NAWF in contrast 

to imidacloprid treatments with less thrips numbers and less NAWF (Table 11). However, three 

of the other four trials showed no change in cotton maturity associated with changes in thrips 

densities. Therefore, the hypothesis that PRE herbicides are slowing cotton seedling growth and 

therefore increasing the length of time thrips have to damage the cotton plant was not supported 

by this research. Additional studies that alter irrigation (as a surrogate for rainfall) could better 

assess injury to the cotton seedling as a result of delays in plant growth.  

Yield responses to thrips injury vary among previous studies. Reductions in yield are 

often associated with increased thrips damage (Cook et al., 2013; Reed & Jackson, 2002; Stewart 

et al., 2013a), although other studies show no significant effect on seed cotton yield associated 
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with thrips control (Beckham, 1970; Harp & Turner, 1976; Leigh, 1963). Across all trials within 

this study, decreased thrips numbers were associated with increases in seed cotton yield. 

Imidacloprid treatments which significantly reduced thrips numbers compared to thiamethoxam 

and untreated control, also showed significant yield increases over thiamethoxam and untreated 

control in trial I (Table 3).  However, increased yields resulted when thrips were significantly 

decreased in one of two locations in trial II (Table 8). Yields were not significantly affected 

across all trials by PRE herbicides alone or the interaction of PRE herbicides and insecticide seed 

treatments. The lack of impact on yield was expected because treatments only sporadically 

affected plant growth parameters.  

The goal of this study was designed to determine if a significant interaction between 

preemergence herbicides and insecticide seed treatments induced changes in plant growth 

parameters or thrips control. Non-significant interaction effects that were observed in these 

studies may have been significant with increased replication or under different growing 

circumstances. Similar studies are being repeated across the mid-south. These studies showed 

that observations of reduced IST efficacy were not caused by an interaction between IST and 

PRE herbicides but may be attributed to reduced efficacy of specific IST’s, consistent with 

tolerance/resistance in thrips populations. Understanding and documenting thrips 

tolerance/resistance to thiamethoxam will be vital in prevention of the complete loss of the entire 

neonicotinoid insecticide class being used for thrips control. Neonicotinoid use is at risk in the 

future in years with the current production practices utilizing neonicotinoid seed treatments in 

many mid-southern crops. 
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Table 1. Trial I, insecticide seed treatment and PRE herbicide treatments. 

Treatment # Insecticide Seed Treatment PRE Herbicide 

1 Control Control 

2 Control fluometuron 1122 g AI/ha 

3 Control diuron 558 g AI/ ha 

4 Control fomesafen 279 g AI/ ha 

5 imidacloprid 0.75 mg AI/seed Control 

6 imidacloprid 0.75 mg AI/seed fluometuron 1122 g AI/ha 

7 imidacloprid 0.75 mg AI/seed diuron 558 g AI/ ha 

8 imidacloprid 0.75 mg AI/seed fomesafen 279 g AI/ ha 

9 thiamethoxam 0.525 mg AI/seed Control 

10 thiamethoxam 0.525 mg AI/seed fluometuron 1122 g AI/ha 

11 thiamethoxam 0.525 mg AI/seed diuron 558 g AI/ ha 

12 thiamethoxam 0.525 mg AI/seed fomesafen 279 g AI/ ha 
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Table 2. Trial II, insecticide seed treatment and PRE herbicide treatments. 

Treatment # Insecticide Seed Treatment  PRE Herbicide 

1 Control Control 

2 Control fluometuron 1122 g AI/ha 

3 Control diuron 558 g AI/ha  

4 thiamethoxam 0.375 mg AI/seed Control 

5 thiamethoxam 0.375 mg AI/seed fluometuron 1122 g AI/ha 

6 thiamethoxam 0.375 mg AI/seed diuron 558 g AI/ha 

7 abamectin  + thiamethoxam (High) Control 

8 abamectin  + thiamethoxam (High) fluometuron 1122 g AI/ha 

9 abamectin  + thiamethoxam (High) diuron 558 g AI/ha 

10 abamectin + thiamethoxam (Low) Control 

11 abamectin + thiamethoxam (Low) fluometuron 1122 g AI/ha 

12 abamectin + thiamethoxam (Low) diuron 558 g AI/ha 

13 imidacloprid 0.375 mg AI/seed Control 

14 imidacloprid 0.375 mg AI/seed fluometuron 1122 g AI/ha 

15 imidacloprid 0.375 mg AI/seed diuron 558 g AI/ha 
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Table 3. Preemergence herbicide by insecticide seed treatment trial I, mean season total thrips, mean necrosis injury, and mean seed 

cotton yield (±SE) by main effects and significance of interaction effect. 

Main Effect Treatment 

Marianna Rohwer 

Thrips
1
 Injury %

2
 

Seed cotton 

yield (lbs/ac) 
Thrips

1
 

Injury 

%
2
 

Seed cotton 

yield (lbs/ac) 

Herbicide fluometuron 570.8 ± 35.1 27.5 ± 2.6 4231.4 ± 98.5 639.2 ± 47.8 0 4226 ± 241.8 

 

diuron 640.1 ± 35.1 29.2 ± 2.6 4020.7 ± 98.5 576.6 ± 47.8 0 4312 ± 241.8 

 

fomesafen 650.9 ± 35.1 31.3 ± 2.6 3843.7 ± 98.5 648.4 ± 47.8 0 4438 ± 241.8 

 

untreated control 612.2 ± 35.1 25.4 ± 2.6 4016.5 ± 98.5 496.2 ± 47.8 0 4654 ± 241.8 

  Factorial analysis P= 0.3854 P= 0.4517 P= 0.0693 P= 0.3860 x P= 0.6252 

Insecticide imidacloprid 438.4 ± 30.3 c 8.7 ± 2.3 c 4464.2 ± 85.3 c 384.1 ± 41.1 c 0 5127.4 ± 209.4 a 

 

thiamethoxam 610.0 ± 30.3 b 24.7 ± 2.3 b 4145.1 ± 85.3 b 618.7 ± 41.1 b 0 4290.4 ± 209.4 b 

 

untreated control 806.8± 30.3 a 51.6 ± 2.3 a 3475.0 ± 85.3 a 779.1 ± 41.1 a 0 3804.6 ± 209.4 b 

 

Factorial analysis P= 0.0001* P= 0.0001* P= 0.0001* P=0.0001* x P= 0.0004* 

Herbicide*Insecticide Factorial analysis p= 0.59 p= 0.99 p= 0.93 p= 0.71 x p= 0.59 

1
 Mean thrips season total 

2
 Necrosis injury ratings (%) after application of glufosinate at 45 days after emergence 

3 
Means with a column followed by the same letter are not significantly different (p= 0.05). 
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Table 4. Preemergence herbicide by insecticide seed treatment trial I Marianna 2013, mean plant stand, mean plant heights, mean 

nodes above ground, and mean nodes above white flower (±SE) by main effects. 

Main                    

Effect 

Treatment Stand
1
  

Plant heights (in.) Total Nodes NAWF 

29-May 20-Jun 1-Jul 20-Jun 26-Jun 1-Jul 15-Aug 

Herbicide fluometuron 30.3 ± 1.3
 

2.7  ± 0.1 7.9 ± 0.2 11.8 ± 0.4 6.42 ± 0.2 8.7 ± 0.3 9.5 ± 0.2 ab 4.3 ± 0.1 

 

diuron 33.2 ± 1.3 2.8 ± 0.1 7.5 ± 0.2 12.9 ± 0.4 5.9 ± 0.2  8.5 ± 0.3 10.1 ± 0.2 a 4.4 ± 0.1 

 

fomesafen 30.2 ± 1.3 2.7 ± 0.1 7.1 ± 0.2 12.0-± 0.4 6.15 ± 0.2 8.2 ± 0.3 9.0 ± 0.2 b 4.3 ± 0.1 

 

Untreated control 33 ± 1.3 2.7 ± 0.1 7.2 ± 0.2 12.1 ± 0.4 5.82 ± 0.2 8.0 ± 0.3 9.3 ± 0.2 ab 4.0 ± 0.1 

 

Factorial Analysis P= 0.18 P= 0.83 P= 0.07 P= 0.223 P= 0.20 P= 0.35 P= 0.022* P= 0.13 

Insecticide imidacloprid 31.1 ± 1.1 2.9 ± 0.1 a 8.4 ± 0.2 a 13.8 ± 0.3 a 6.5 ± 0.2 a 8.8 ± 0.2 9.9 ± 0.2 a 4.1 ± 0.1 

 

thiamethoxam 31.3 ± 1.1 2.7± 0.1 ab 7.6 ± 0.2 b 13.0 ± 0.3 a 6.4 ± 0.2 a 8.2 ± 0.2 9.5 ± 0.2 ab 4.4 ± 0.1 

 

Untreated Control 32.6 ± 1.1 2.6 ± 0.1 b 6.3 ± 0.2 c 9.8 ± 0.3 b 5.4 ± 0.2 b 8.0 ± 0.2 8.9 ± 0.2 b 4.1 ± 0.1 

  Factorial Analysis P= 0.56 P= 0.03* P= 0.001* P= 0.001* P= 0.004* P= 0.07 P= 0.002* P= 0.30 

1 
Plant Stand per 10 feet 

2 
Means with a column followed by the same letter are not significantly different (p= 0.05).
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Table 5. Preemergence herbicide by Insecticide Seed Treatment Trial I Marianna 2013, plant growth and maturity contrast estimates 

established from contrast analysis results. 

  

Treatment Stand
1 

Plant height Total Nodes NAWF 

  29-May 20-Jun 1-Jul 20-Jun 26-Jun 1-Jul 15-Aug 

Contrasts imidacloprid Vs. 

imidacloprid + PRE 

1.5 
2
 0.08 -0.73 -0.6 -0.22 0.02 0.17 -0.15 

 

P= 0.59 P= 0.66 P= 0.15 P= 0.46 P= 0.61 P= 0.97 P= 0.72 P= 0.56 

 

thiamethoxam Vs. 

thiamethoxam + PRE 

2 -0.02 0.3 -0.4 -0.4 -0.68 -0.22 -0.23 

 

P= 0.43 P= 0.89 P= 0.54 P= 0.61 P= 0.35 P= 0.25 P= 0.64 P= 0.37 

 

Untreated Vs.    

Untreated + PRE 

1.8 -0.01 -0.5 0.6 -0.4 -0.68 -0.62 -0.45 

  p= 0.53 P= 0.93 P= 0.31 P= 0.45 P= 0.35 P= 0.25 P= 0.19 P= 0.09 

1 
Plant Stand per 10 feet 

2
 Contrast estimate above and corresponding p-value below
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Table 6. Preemergence herbicide by insecticide seed treatment trial I Rohwer 2013, mean plant stand, mean plant heights, mean nodes 

above ground, and mean nodes above white flower (± SE) by main effects. 

Main                    

Effect 

Treatment Stand
1
  

Plant heights (in.) Total Nodes NAWF 

4-Jun 17-Jun 12-Jul 24-Jun 2-Jul 12-Jul 19-Aug 

Herbicide fluometuron 30.2 ± 2.1
 

2.3 ± 0.1 5.1 ± 0.2 17.9 ± 0.3 a 6.5 ± 0.1  8.2 ± 0.2   10.3 ± 0.2 4.3 ± 0.2 

 

diuron 30.5 ± 2.1 2.2 ± 0.1 4.9 ± 0.2 17.7 ± 0.3 ab 6.6 ± 0.1 8.4 ± 0.2 9.9 ± 0.2 4.1 ± 0.2 

 

fomesafen 26.8 ± 2.1 2.3 ± 0.1 5.1 ± 0.2 16.6 ± 0.3 b 6.7 ± 0.1 8.5 ± 0.2 10.0-± 0.2 4.5 ± 0.2 

 

untreated control 25.6 ± 2.1 2.4 ± 0.1 5.5 ± 0.2 17.3 ± 0.3 ab 7-± 0.1 8.7 ± 0.2 10.3 ± 0.2 4.2 ± 0.2 

  Factorial Analysis P= 0.28 P= 0.69 P= 0.12 P= 0.028* P= 0.17 P= 0.39 P= 0.42 P= 0.66 

Insecticide imidacloprid 27.4 ± 1.8 2.3 ± 0.1 5.3 ± 0.1 18.2 ± 0.2 a 6.9 ± 0.1 8.5 ± 0.1 10.5 ± 0.2 a 4.3 ± 0.2 

 

thiamethoxam 28.9 ± 1.8 2.4 ± 0.1 5.3 ± 0.1 17.5 ± 0.2 a 6.9 ± 0.1 8.3 ± 0.1   10.2 ± 0.2 ab 4.3 ± 0.2 

 

untreated control 28.4 ± 1.8 2.2 ± 0.1 4.9 ± 0.1 16.4 ± 0.2 b 6.5 ± 0.1 8.7 ± 0.1 9.7 ± 0.2 b 4.1 ± 0.2 

  Factorial Analysis P= 0.85 P= 0.58 P= 0.09 P= 0.0001* P= 0.08 P= 0.23 P= 0.0149* P= 0.69 

1 
Plant Stand per 10 feet 

2 
Means within a column followed by the same letter are not significantly different (p= 0.05).
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Table 7. Preemergence herbicide by Insecticide Seed Treatment Trial I Rohwer 2013, plant growth and maturity contrast estimates 

established from contrast analysis results. 

  

Treatment Stand 

Plant height Total Nodes NAWF 

  4-Jun 17-Jun 12-Jul 24-Jun 2-Jul 12-Jul 19-Aug 

Contrasts imidacloprid vs. 

imidacloprid + PRE 

0.42 0.03 0.81 0.05 0.18 0.33 0.05 -0.12 

 

p= 0.93 p= 0.91 p= 0.04* p= 0.94 p= 0.54 p= 0.37 p= 0.91 p= 0.81 

 

thiamethoxam vs. 

thiamethoxam + PRE 

-5.58 0.37 0.35 0.19 0.25 0.45 0.46 -0.12 

 

p= 0.19 p= 0.15 p= 0.37 p= 0.76 p= 0.40 p= 0.22 p= 0.27 p= 0.81 

 

Untreated vs.    

Untreated + PRE 

-5.5 0.08 0.29 -0.47 0.6 0.13 0.22 -0.17 

  p= 0.206 p= 0.76 p= 0.45 p= 0.46 p= 0.05* p= 0.72 p= 0.61 p= 0.73 

1 
Plant Stand per 10 feet 

2
 Contrast estimate above and corresponding p-value below
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Table 8. Preemergence herbicide by insecticide seed treatment trial II, mean season total thrips and mean seed cotton yield (± SE) by 

main effects and significance of interaction effect. 

Main Effect Treatment 

Marianna Rohwer 

Thrips
z
 

Seed Cotton 

Yield(lbs/acre) 

Thrips
z
 

Seed Cotton 

Yield(lbs/acre) 

Herbicide fluometuron 156.1 ± 5.8 3388.2 ± 80.5 510.5 ± 29.4 3587.6 ± 279.9 

 

diuron 161.5 ± 5.8 3610.8 ± 80.5 525.4 ± 29.4 3806.7 ± 279.9 

 

Untreated control 150.5 ± 5.8 3420.4 ± 80.5 487.7 ± 29.4 3762.8 ± 279.9 

  Factorial analysis p= 0.43 p= 0.14 p= 0.66 p= 0.84 

IST thiamethoxam 159.6 ± 7.6 ab 3367.6 ± 103.9 540.0 ± 37.9 ab 2690.1 ± 361.4 c 

 

abamectin + thiamethoxam (high) 158.4 ± 7.6 ab 3693.2 ± 103.9 512.3 ± 37.9 bc 4408.9 ± 361.4 a 

 

abamectin + thiamethoxam (low) 148.8 ± 7.6 bc 3483.5 ± 103.9 433.5 ± 37.9 bc 4216.5 ± 361.4 ab 

 

imidacloprid 126.1 ± 7.6 c 3560.8 ± 103.9 374.1 ± 37.9 c 4513.7 ± 361.4 a 

 

Untreated control 187.3 ± 7.6 a 3260.7 ± 103.9 679.5 ± 37.9 a 2766.1 ± 361.4 bc 

  Factorial analysis p= 0.0001* p= 0.078 p= 0.0001* p= 0.0004* 

Herbicide*Insecticide Factorial analysis p= 0.095 p= 0.24 p= 0.11 p= 0.28 

1
 Mean Thrips Season Total 

2
 Means within a column followed by the same letter are not significantly different (p= 0.05).
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Table 9. Preemergence herbicide by insecticide seed treatment trial II Marianna 2013, mean plant stand, mean plant heights, mean 

nodes above ground, and mean nodes above white flower (± SE) by main effects. 

Main                    

Effect 

Treatment Stand  

Plant Height (in) Total Nodes NAWF 

28-May 12-Jun 26-Jun 20-Jun 26-Jun 15-Aug 

Herbicide fluometuron 36.7 ± 1.3 2.2 ± 0.0 4.7 ± 0.1 9.9 ± 0.3 b 6.3 ± 0.1 7.4 ± 0.2 3.9 ± 0.1 

 

diuron 37.6 ± 1.3 2.2 ± 0.0 4.7 ± 0.1 11.2 ± 0.3 a 6.3 ± 0.1 7.5 ± 0.2 3.8 ± 0.1 

 

Untreated control 34.8 ± 1.3 2.2 ± 0.0 4.9 ± 0.1 9.7 ± 0.3 b 6.3 ± 0.1 7.4 ± 0.2 3.9 ± 0.1 

  Factorial analysis p= 0.34 p= 0.85 p= 0.53 p= 0.008* p= 0.88 p= 0.86 p= 0.79 

IST thiamethoxam 35.3 ± 1.7 2.1 ± 0.1 b 4.7 ± 0.2 9.8 ± 0.4 b 6.3 ± 0.1 7.3 ± 0.2 ab 4.0 ± 0.2 

 

abamectin + thiamethoxam (high) 34.3 ± 1.7 2.4 ± 0.1 a 5.0 ± 0.2 11.4 ± 0.4 a 6.5 ± 0.1 7.9 ± 0.2 a 3.7 ± 0.2 

 

abamectin + thiamethoxam (low) 35.8 ± 1.7 2.2 ± 0.1 ab 4.8 ± 0.2 10.4 ± 0.4 ab 6.2 ± 0.1 7.7 ± 0.2 a 3.8 ± 0.2 

 

imidacloprid 40.1 ± 1.7 2.0 ± 0.1 b 4.9 ± 0.2 10.5 ± 0.4 ab 6.1 ± 0.1 7.5 ± 0.2 ab 3.8 ± 0.2 

 

Untreated control 36.4 ± 1.7 2.2 ± 0.1 ab 4.5 ± 0.2 9.4 ± 0.4 b 6.4 ± 0.1 6.8 ± 0.2 b 4.2 ± 0.2 

  Factorial analysis p= 0.18 p= 0.013* p= 0.43 p= 0.004* p= 0.19 p= 0.009* p= 0.29 

1 
Plant Stand per 10 feet 

2 
Means within a column followed by the same letter are not significantly different (p= 0.05)
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Table 10. Preemergence herbicide by Insecticide Seed Treatment Trial II Marianna 2013, plant growth and maturity contrast estimates 

established from contrast analysis results. 

  

Treatment Stand
1 

Plant Height Total Nodes NAWF 

  28-May 12-Jun 26-Jun 20-Jun 26-Jun 15-Aug 

Contrasts thiamethoxam vs. -3.38
2 

-0.01 -0.6 -1.7 0.33 -0.6 -0.05 

 

thiamethoxam + PRE p= 0.37 p= 0.92 p= 0.18 p= 0.049* p= 0.30 p= 0.24 p= 0.90 

 

abamectin +thiamethoxam (high) vs. -5.63 0.06 0.49 -0.55 0.08 0.13 -0.08 

 

abamectin + thiamethoxam (high) + PRE p=0.14 p= 0.63 p= 0.24 p= 0.52 p= 0.81 p= 0.80 p= 0.85 

 

abamectin + thiamethoxam (low) vs. 0 0.03 0 -0.38 0.03 -0.18 0.45 

 

abamectin + thiamethoxam (low) + PRE p= 1 p= 0.85 p= 1 p= 0.66 p= 0.94 p= 0.72 p= 0.27 

 

imidacloprid vs. -1.25 0.04 0.35 -1.25 0.1 -0.15 0.33 

  imidacloprid + PRE p= 0.74 p= 0.77 p= 0.40 p= 0.14 p= 0.75 p= 0.76 p= 0.42 

1 
Plant Stand per 10 feet 

2
 Contrast estimate above and corresponding p-value below
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Table 11. Preemergence herbicide by insecticide seed treatment trial II Rohwer 2013, mean plant stand, mean plant heights, mean 

nodes above ground, and mean nodes above white flower (± SE) by main effects. 

Main                    

Effect 

Treatment Stand
1
  

Plant Height (in) 

Total 

Nodes 

NAWF 

4-Jun 17-Jun 28-Jun 20-Jun 19-Aug 

Herbicide fluometuron 29.1 ± 1.8
 

2.3 ± 0.1 5.0 ± 0.1 8.6 ± 0.2 6.2 ± 0.1 5.0 ± 0.2 

 

diuron 29.1 ± 1.8 2.4 ± 0.1 4.5 ± 0.1 8.5 ± 0.2 6.2 ± 0.1 5.1 ± 0.2 

 

untreated control 28.1 ± 1.8 2.5 ± 0.1  5.2 ± 0.1 8.8 ± 0.2 6.3 ± 0.1 4.9 ± 0.2 

  Factorial analysis p= 0.91 p= 0.41 p= 0.0025* p= 0.69 p= 0.89 p= 0.83 

IST thiamethoxam 25.7 ± 2.4 2.5 ± 0.1  4.9 ± 0.2 8.4 ± 0.3 5.9 ± 0.2 5.6 ± 0.2 a 

 

abamectin + thiamethoxam (high) 29.3 ± 2.4 2.4 ± 0.1 4.9 ± 0.2 8.8 ± 0.3 6.3 ± 0.2 4.8 ± 0.2 ab 

 

abamectin + thiamethoxam (low) 33.3 ± 2.4 2.5 ± 0.1 4.8 ± 0.2 8.6 ± 0.3 6.6 ± 0.2 4.7 ± 0.2 ab 

 

imidacloprid 31.1 ± 2.4 2.5 ± 0.1 5.3 ± 0.2 9.2 ± 0.3 6.3 ± 0.2 4.7 ± 0.2 b 

 

untreated control 24.3 ± 2.4 2.2 ± 0.1 4.7 ± 0.2 7.9 ± 0.3 6.0 ± 0.2 5.3 ± 0.2 ab 

  Factorial analysis p= 0.056 p= 0.33 p= 0.29 p= 0.09 p= 0.07 p= 0.019* 

1 
Plant Stand per 10 feet 

2 
Means within a column followed by the same letter are not significantly different (p= 0.05).
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Table 12. Preemergence herbicide by Insecticide Seed Treatment Trial II Rohwer 2013, plant growth and maturity contrast estimates 

established from contrast analysis results. 

  Treatment Stand
1 Plant Height 

Total 

Nodes NAWF 

  29-May 20-Jun 1-Jul 20-Jun 19-Aug 

Contrasts thiamethoxam vs. -3.25 
2 

0.51 0.69 1.4 -0.05 0.53 

 

thiamethoxam + PRE p= 0.52 p= 0.037* p= 0.08 p= 0.059 p= 0.89 p= 0.25 

 

abamectin +thiamethoxam (high) vs. -0.13 0.23 0.64 0.6 0.33 0.03 

 

abamectin + thiamethoxam (high) + PRE p= 0.98 p= 0.35 p= 0.11 p= 0.41 p= 0.39 p= 0.96 

 

abamectin + thiamethoxam (low) vs. -4.25 -0.18 0.35 0.21 0.13 -0.25 

 

abamectin + thiamethoxam (low) + PRE p= 0.40 p= 0.47 p= 0.37 p= 0.77 p= 0.74 p= 0.58 

 

imidacloprid vs. 2.13 -0.01 -0.01 -0.26 -0.15 -0.7 

  imidacloprid + PRE p= 0.67 p= 0.96 p= 0.97 p= 0.72 p= 0.69 p= 0.13 

1 
Plant Stand per 10 feet 

2
 Contrast estimate above and corresponding p-value below 
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Chapter II. Herbicide-Insecticide Interactions Through the Process of Tank-mixing 

Abstract 

 Studies were conducted in 2012 and 2013 at the University of Arkansas Experiment 

Stations in Marianna, AR and Rohwer, AR to evaluate thrips control and cotton plant responses 

to glyphosate or a tank mix of glufosinate and s-metolachlor alone or when tank mixed with 

selected insecticides used for thrips control. Small plot field studies were organized in 

randomized complete block design and tank mix applications were made using a Bowman 

Mudmaster. Glyphosate applications increased thrips numbers in plots when in combination with 

the insecticides acephate and dicrotophos vs. insecticides alone in one of a total of three 

Roundup trials. Numbers of thrips in Liberty Link trials after the application of an insecticide 

alone were no different than that in plots with the addition of glufosinate or glufosinate + s-

metolachlor. Visual injury did not exceed 10% with all tank mix combinations 5 days after 

application and injury was no longer present 14 days after application. Seed cotton yield was not 

affected by an interaction between insecticides and herbicides. These data suggested that 

maturity was not delayed and yield was not decreased by an early season application of 

glyphosate or glufosinate in combination with selected insecticides. Seed cotton yield was 

affected by different with the combinations of glyphosate and s-metolachlor vs. glufosinate and 

s-metolachlor. Results indicated that when applied according to pesticide labels, the co-

application of tested herbicide-insecticide tank-mixtures offered cotton producers the ability to 

integrate thrips and weed control. 
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Introduction 

 Thrips (Thysanoptera: Thripidae) are the most important group of insect pests in the early 

growing season of Mid-south, U.S. cotton (Gossypium hirsutum L.). Reports in 2012 concluded 

that thrips were the second most economically damaging insect pest in Arkansas cotton, with 

insecticide costs from both foliar treatments and insecticide seed treatments costing cotton 

growers over ten million dollars (Williams, 2012). Species of thrips that commonly infest cotton 

seedlings in the U.S. include tobacco thrips, Frankliniella fusca (Hinds); flower thrips, 

Frankliniella tritici (Fitch); western flower thrips, Frankliniella occidentalis (Pergande); onion 

thrips, Thrips tabaci (Lindeman); and soybean thrips, Neohydatothrips variabilis (Beach). In 

Arkansas, tobacco thrips comprised 84% of all thrips species found on seedling cotton. Eastern 

flower thrips and western flower thrips together comprise the remaining 15.6% of the thrips 

populations (Stewart et al., 2013a). The significance of thrips species composition is important 

when decisions are made regarding thrips control with insecticides (Stewart et al., 2013a). A 

thrips infestation coupled with cool weather and slow growth of cotton seedlings has been linked 

to several problems including stunting, delayed fruiting, loss of apical dominance, and possible 

loss of stand (Reed & Jackson, 2002). Increasing yields have been reported by several 

researchers when seedling thrips were controlled (Cook et al., 2013; Reed & Jackson, 2002; 

Stewart et al., 2013a).  

Thrips are traditionally controlled with insecticides applied directly to the seed, into the 

soil at planting, or with foliar applications when needed. Currently, neonicotinoid seed 

treatments (e.g., imidacloprid and thiamethoxam) are the most widely adopted method for thrips 

control in the cotton belt and over 99 percent of Arkansas cotton acres are planted with an 

insecticide treated seed (Williams, 2012). Benefits of seed treatments include increased vigor and 
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equivalent thrips control efficacy to alternative methods, cheaper method of application, 

convenience to the grower, and reduction in equipment cost (Taylor & Harman, 1990). Foliar 

applications of insecticides are used in the absence of other control options or when seed 

treatment residual control declines (Studebaker et al., 2013). Foliar insecticide applications for 

thrips control were applied on 55% of Arkansas cotton acreage from 2006-2010, in addition to 

IST’s. During this time period an average of 0.89 applications were made per acre and the 

average spent on foliar thrips insecticides was ~$2 million per year. However, foliar insecticide 

applications increased to 79.6% in Arkansas cotton from 2011-2013. (Williams, 2006-2013). 

During this time period, an average of 1.53 applications were made per acre and the average 

money spent on foliar thrips insecticides increased to ~$2.4 million. During the year of 2012 

alone, 485,000 of 580,000 (84%) acres of cotton were treated with a supplemental foliar 

insecticide application for thrips control in Arkansas. On average, 1.8 foliar applications were 

made per acre, resulting in a cost of > $4.3 million to Arkansas cotton growers. In addition to the 

> $6.3 million was spent on ISTs in Arkansas cotton (Williams, 2013).  

Weed control in cotton depends on a combination approach including tillage, 

preemergence herbicides (PRE), post emergence directed herbicides (POST), and hand weeding. 

With the advent of Roundup Ready technology (and later Liberty link technology) growers have 

become more reliant on transgenic cotton to aid in weed control (Irby et al., 2013). Primarily, 

there are two main systems within U.S. cotton using an herbicide resistant gene. The first is 

glyphosate resistant cotton under the trade name of Roundup Ready and the second is glufosinate 

resistant cotton, under the trade name Liberty Link cotton. Each system requires the use of foliar 

herbicide applications which target small, actively growing weeds. 
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Herbicide Systems. Monsanto’s introduction of glyphosate resistant cotton in 1997 

dramatically changed weed control methodologies in cotton. Roundup Ready cotton was 

developed by inserting GR (glyphosate resistant) clone CP4-EPSPS into the cotton plant. This 

transgene allows for glyphosate to be applied POST over the crop canopy from the time of 

emergence until fifth leaf expansion without reproductive damage or yield loss (Dill et al., 2008). 

Second generation Roundup Ready cotton (Roundup Ready Flex) was introduced in 2006 

(Young, 2006). Roundup Ready Flex technology allowed for a more flexible window of POST 

applications from cotton emergence to seven days prior to harvest (Murdock, 2006). Roundup 

Ready cotton was planted on 3.6% of total U.S. cotton acreage in 1997 and by 2009, 92% of U.S. 

cotton was planted to Roundup Ready or Roundup Ready Flex technology (Irby et al., 2013). 

The rapid adoption Roundup Ready technology occurred because of glyphosate’s effective 

means of controlling Palmer amaranth (Amaranthus palmeri S. Wats), and economic benefits 

including production efficiency and flexibility, enhanced weed control, and facilitation of 

conservation tillage (Dill et al., 2008). However, widespread planting of Roundup Ready cotton 

and the extensive use of glyphosate has placed intensive selection pressure on weed populations 

(Main et al., 2012). As of 2010, glyphosate is the number one pesticide used on U.S. cotton, with 

68% of cotton acres treated and 10.6 million pounds of active ingredient applied (USDA-NASS, 

2010). Reliance on glyphosate  has caused a major reduction in the use of herbicides with 

different modes of action (Shaner, 2000). This selection pressure led to glyphosate resistance in 

Palmer amaranth, making it the single most troublesome weed in Arkansas crop production 

(Smith & Scott, 2010).  

Glufosinate resistant cotton (Liberty Link) was introduced by Bayer CropScience in the 

year of 2004. Glufosinate tolerant cotton utilizes a bialaphos acetyltransferase gene designated as 
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LLCotton25 with a CaMV35S promoter. Glufosinate is a non-selective herbicide that has 

activity on both grass and broadleaf weeds which can be applied to Liberty Link cotton POST 

from emergence through early bloom (Irby et al., 2013). One advantage of a glufosinate based 

system is that glufosinate can effectively manage glyphosate resistant Palmer amaranth (Miller et 

al., 2012). However, the adoption rate of glufosinate resistant cotton vs. GR cotton has been 

much slower. In 2004, Liberty Link cotton was only planted on 1.7% of U.S. cotton acres, 

increasing only to 5.9%, in 2012 (Irby et al., 2013). This slow adoption rate is attributed to poor 

agronomic performance of available varieties (Irby et al., 2013).  

With the introduction of a new gene, labeled 2mepsps, Bayer CropScience is now 

marketing a glyphosate resistant variety under the trade name GlyTol® (Wallace et al., 2011). 

Bayer then added their glufosinate resistant gene integrating both the GlyTol and Liberty Link 

traits into one commercial variety. GlyTol + Liberty Link cotton can now be treated with a POST 

application of glyphosate and glufosinate without crop injury. Trial results indicate that GlyTol + 

LibertyLink cotton is highly resistant to glyphosate, glufosinate, or glyphosate plus glufosinate 

applied multiple times throughout the growing season (Wallace et al., 2011).  

In Arkansas, herbicide costs ranged from $56.76-$75.93 per acre, depending on the 

herbicide system used (Bryant et al., 2012). However, the grower must also account for the cost 

of transgenic technology that allows the application of these herbicide systems when purchasing 

seed. 

More foliar insecticide applications for thrips have resulted in an increased probability of 

growers taking a dual approach in order to control weeds and insects at the same time. Both 

applications of herbicides for Roundup Ready, Liberty Link, GlyTol, and GlyTol + Liberty Link 
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varieties and foliar application of thrips insecticides can occur around the 2-4 leaf stage. When 

early season applications for pests coincide, there are obvious economic reasons for the use of 

tank-mixing or combinations of various insecticides and herbicides. Tank-mixing results in fewer 

trips across the field via aerial or ground application, resulting in decreases in both labor and 

equipment costs. At the same time, combinations of chemicals frequently control the desired pest 

more so than the use of one chemical alone (Putnam & Penner, 1974). However, problems 

arising from tank-mixing of herbicides and insecticides have been recognized for several 

decades. Four results have been observed after the combination of insecticides, herbicides, and 

fungicides: synergism, addition, independence, and antagonism. Synergism is the cooperative 

action of two components of a mixture, such that the total effect is greater or more prolonged 

than the sum of the effects of the two taken independently. Addition is the cooperative action of 

two components of a mixture, such that the total effect is equal to the sum of the effects taken 

independently. A mixture of two components can have an independent effect where the total 

effect is equal to the effect of the most active component alone. Antagonism is the action of two 

components such that the total effect is less than the impact of the most effective component 

alone (Tammes, 1964). These terms are applicable when referring to commonly used insecticide-

herbicide combinations during the early growth stages of cotton. In addition to possibly changing 

the efficacy insecticides through a chemical interaction, mixtures of pesticides may also cause 

increased phytotoxicity in the cotton plant and cause changes in cotton growth and maturity.  

As a result of the widespread adoption of herbicide resistant cotton, commonly used tank-

mixes of insecticides and herbicides were developed for both the glyphosate and glufosinate 

systems. These trials were designed to determine if there were any effects of the mixtures on the 
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efficacy of insecticides used for thrips control. Other factors evaluated included analysis of these 

mixtures on phytotoxicity, plant growth and development, and yield.  

Materials and Methods 

Roundup Foliar Tank-mix Field Trial. Field trials were conducted during 2012 at the 

University of Arkansas Lon Mann Cotton Branch Experiment Station near Marianna, AR and 

repeated in 2013 at both the Lon Mann Station and the Rohwer Research Station, a division of 

the Southeast Research and Extension Center. DP 0912 B2RF cotton cultivar was planted on 31 

May in Marianna 2012.  Stoneville 4946 GLB2 cotton cultivar was planted 15 May and 21 May 

in Marianna and Rohwer, respectively during the 2013 season.  All trials were planted in a 

randomized complete block design using 4 replications with a John Deere Max Emerge 7300, 

four row planter. Plot size was four rows, 96.5 cm apart by 12.2 m long. The soils at these sites 

are a Loring silt loam (fine, silty, mixed, thermic Typic Fragiudalfs) and Hebert silt loam (fine 

silty, mixed, thermic Aeric Ochraqaulfs) at Marianna and Rohwer, respectively. All tests were 

conducted under furrow irrigated production practices at both locations. Weed-free conditions 

were maintained throughout the growing season by manual removal of weeds and hand hoeing. 

Supplemental insecticide applications were made once insect pests other than thrips reached 

economic thresholds. No supplemental insecticide applications were made before the last sample 

of thrips was taken to avoid confounding results. 

Insecticides evaluated included acephate (Orthene) at 368 g/ha, spinetoram (Radiant) at 

109 mL/ha, dicrotophos (Bidrin) 225 g/ha, and spinetoram combined with the organosilicone 

surfactant (Dyne-Amic) at 1%. Herbicides evaluated included glyphosate (Roundup) at 651 L/ha, 

s-metolachlor (Dual Magnum) at 1.2 L/ha, and clethodim (Sequence) at 2.91 L/ha. Insecticides 
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were applied alone, in combination with glyphosate, and in combination with both glyphosate 

and s-metolachlor (Table 13). 

Tank-mixed applications were made on 5 June in Marianna, 2012. Tank-mixed 

applications were made on 5 June in Marianna 2013 and 12 June in Rohwer 2013. All tank-mix 

applications were made using a Bowman Mudmaster fitted with Tee Jet Hollow Cone TX-VS6 

nozzles at 10 gallons per acre, under a pressure of 40 psi.  

Thrips samples were collected once in 2012, 5 days after tank-mix applications on 11 

June. Thrips numbers were sampled three times within each plot during 2013. In Marianna thrips 

were sampled on 27 May, 6 June, and 10 June. In Rohwer, thrips were sampled on 3 June, 11 

June, and 17 June. The second thrips sample was taken just before tank-mix applications and the 

last sample was taken 5-7 days after application.  Each sample consisted of five plants taken 

from the center two rows of each plot. Plants were cut below the cotyledons and placed 

immediately into one quart glass jars, containing 70% ethyl alcohol. Samples were taken to the 

laboratory where thrips were washed from the plants onto a filter paper screen (Burris et al., 

1989). Thrips were dislodged from plants by rinsing individual plants with 70% ethyl alcohol 

solution. Once rinsed thoroughly, plants were discarded and the remaining solution was filtered 

through a 9 cm Buchner funnel, lined with a bowl-shaped coffee filter. Thrips were washed off 

the filter paper into a petri dish and counted with a Leica EZ4 dissecting microscope. Numbers 

of nymph and adult thrips were recorded. 

Stand counts were estimated in each plot by randomly counting the number of plants in a 

10 foot section. In the 2012 Marianna trial, stand counts were estimated once on 5 June. In 

Marianna 2013, stand counts were estimated twice on 29 May and 12 June.  Rohwer 2013, stand 
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counts were taken twice on 4 June and 11 June. Plant heights were taken weekly from the time of 

emergence until first bloom, by random selection of 5 plants per plot measured from the ground 

surface to the tallest point of terminal growth. Estimations of cotton injury (chlorosis and 

necrosis) were recorded 5-7 days post application on a scale of 0 to 100, where 0 indicates no 

cotton injury and 100 indicates cotton death (Frans et al., 1986). Total node counts were taken 

weekly in each plot from the time of emergence until first bloom. Nodes above white flower 

(NAWF) counts were made once near physiological cut-out to determine differences in maturity. 

Yield was taken using a machine harvester, picking the center two rows of each plot. 

Data were subjected to analysis of variance using the FIT MODEL procedure of JMP Pro 

11 (SAS Institute, Cary, NC). Two treatments, consisting of s-metolachlor alone and clethodim + 

spinetoram were removed, so that data could be analyzed as a complete factorial. Main effects, 

consisting of insecticide alone and herbicide alone and interaction effects between insecticides 

and herbicides were tested. Block effects were analyzed as a random effect. Treatment means 

were separated using Tukey’s option (a=0.05). Contrasts estimates were used to compare how 

insecticides affected plant growth and maturity alone vs. in the presence of glyphosate or 

glyphosate + s-metolachlor. 

Liberty Link Foliar Tank-mix Field Trial. Field trials were conducted in 2012 and 

2013 at the same locations (Marianna and Rohwer) as previously described for the Roundup 

Foliar Trial. Phytogen 499 cotton cultivar was planted on 21 May and 14 May in 2012 and 2013, 

respectively in Marianna and 21 May in Rohwer in 2013. Trials were planted with the same 

equipment, plot sizes, and crop management strategies as previously described for the Roundup 

Ready Foliar Trial. 
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Herbicides evaluated included glufosinate (Liberty) at 2.1 L/ha, s-metolachlor (Dual 

Magnum) at 1.2 L/ha, and acetochlor (Warrant) at 3.5 L/ha. Insecticides evaluated included 

acephate (Orthene) at 368 g/ha, spinetoram (Radiant) at 109 mL/ha, dicrotophos (Bidrin) at 225 

g/ha, and spinetoram combined with the organosilicone surfactant (Dyne-Amic) at 1%. 

Insecticides were applied alone, in combination with glufosinate, and in combination with both 

glufosinate and s-metolachlor (Table 14). 

Tank-mixed applications were made on 1 June, 2012 in Marianna and 6 June and 12 

June, 2013 in Marianna and Rohwer, respectively. All tank-mix applications were made with 

equipment as previously described. 

Thrips were sampled as previously described on 6 June, 2012 in Marianna. Thrips were 

sampled three times in 2013 on 28 May, 6 June, and 10 June in Marianna and 3 June, 11 June, 

and 17 June in Rohwer. The second thrips sample was taken just before tank-mix applications 

and the last sample was taken 5-7 days after application.  Thrips samples were processed and 

counted as previously described. 

Plant measurement (stand counts, plant heights, total node counts, NAWF counts, plant 

injury ratings, and plot yields were taken on the same dates using the same methods as 

previously described.  

 Data from both trials were subjected to analysis of variance using the FIT MODEL 

procedure of JMP Pro 11 of SAS software. Copyright 2014 SAS Institute Inc. SAS and all other 

SAS institute Inc. product or service name are registered trademarks or trademarks of SAS 

Institute Inc., Cary, NC, USA.  Two treatments within the Liberty Link Trial, consisting of s-

metolachlor alone and acetochlor + spinetoram + glufosinate were removed, so that data could be 
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analyzed as a complete factorial. Two treatments within the Roundup Trial, consisting of s-

metolachlor alone and clethodim + spinetoram were removed, so that data could be analyzed as a 

complete factorial. Main effects, consisting of insecticide alone and herbicide alone and 

interaction effects between insecticides and herbicides were tested. Block effects were analyzed 

as a random effect. Treatment means were separated using Tukey’s option (a=0.05). Contrasts 

estimates were used to compare how insecticides effected plant growth and maturity alone vs. in 

the presence of glufosinate or glufosinate + s-metolachlor. 

Results 

 Liberty Link tank-mix 2012-2013 The total number of thrips were significantly affected 

by an interaction between tank-mixed insecticides and herbicides at Rohwer 2013 (p= 0.0373), 

where glufosinate + s-metolachlor with no insecticide, significantly increased thrips numbers 

compared to all other treatments (Table 15).  However, this interaction effect was not observed 

in other locations. The main effect of herbicide affected thrips numbers in Marianna during 2013, 

but means did not separate using Tukey’s HSD analysis. The main effect of insecticide affected 

thrips numbers in all locations (p= 0.0001). All insecticide treatments reduced thrips numbers 

compared to untreated check. Insecticide treatments did not separate from each other at Rohwer 

2013. However, in Marianna during 2012 and 2013, spinetoram decreased thrips numbers 

compared to dicrotophos. In Marianna during 2012, acephate also reduced thrips numbers 

compared to dicrotophos. Thrips numbers were not significantly different among treatments 

when comparing insecticides alone vs. insecticides tank-mixed with herbicides of glufosinate and 

glufosinate + s-metolachlor (Table 16). 

Visual injury following tank-mixed applications ranged from 0 to 6.75 % (Table 17). In 

Marianna during 2012, spinetoram + organosilicone surfactant treatments caused significantly 
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more chlorosis damage than all other treatments (p= 0.0060) although damage did not exceed 3.5 

%. In Marianna during 2013, necrosis damage was also significant (p= 0.0001) but did not 

exceed 8.75%. Increased necrosis damage was observed in treatments with glufosinate + s-

metolachlor and glufosinate + s-metolachlor + acephate compared to all other treatments. In 

Rohwer during 2013, no visual injury was observed for all treatments.  

No interaction between insecticides and herbicides, with respect to plant height and main 

stem node counts, was observed. There was a significant interaction among pesticide groups in 

the ratings of NAWF in Marianna 2013 (p= 0.0001). The presence of glufosinate with 

dicrotophos increased NAWF vs. dicrotophos alone (data not shown). All other means were not 

significantly different among treatment combinations. Main effects of herbicides and insecticides 

were not significant across all plant growth information collected. 

Yield was not significantly affected by the interactions of tank-mixed insecticides and 

herbicides in Marianna (p= 0.47) or Rohwer (p= 0.22) (Table 15). The main effect of herbicide 

significantly affected yield in Marianna 2013 (p= 0.0365) where the tank-mix of glufosinate and 

s-metolachlor increased yield compared to untreated check. The main effect of insecticide did 

not significantly affect yield in Marianna (p= 0.77) or Rohwer (p= 0.22). Yield contrast estimates 

were not significant when comparing insecticides alone vs. insecticides tank-mixed with 

herbicides of glufosinate and glufosinate + s-metolachlor (Table 16).  

 Roundup tank-mix 2012-2013 The total number of thrips, after tank-mix application, 

were not significantly affected by an interaction between tank-mixed insecticides and herbicides 

in Marianna (p= 0.18 and p= 0.70) or Rohwer (p= 0.72) (Table 19).  The main effect of herbicide 

significantly affected thrips numbers in Marianna 2012 (p= 0.0180), where higher numbers of 
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thrips were observed in glyphosate treatments compared to glyphosate + s-metolachlor and 

untreated check treatments. The main effect of insecticide significantly affected thrips numbers 

in all locations (p= 0.0001). Thrips numbers were significantly reduced by spinetoram only in 

Marianna during 2012. However, in Marianna during 2013 and Rohwer during 2013, all 

insecticide treatments reduced thrips numbers compared to the untreated check. Contrast 

estimates of thrips numbers were significant when comparing insecticides alone vs. insecticides 

tank-mixed with herbicides of glyphosate and glyphosate + s-metolachlor (Table 20). The 

presence of glyphosate in combination with acephate or dicrotophos reduced thrips efficacy vs.  

the insecticide alone in Marianna during 2012 (p= 0.0055 & p = 0.0403). However, reduced or 

increased thrips efficacy caused by tank-mixing was not observed in other locations or years. 

Visual injury following tank-mixed applications ranged from 0 to 6.25% (Table 21). 

Tank-mix application of glyphosate + s-metolachlor + acephate and glyphosate + s-metolachlor 

+ spinetoram resulted in significantly more necrosis damage than all other treatments in 

Marianna during 2012 (p= 0.0001).  Chlorosis damage was also significantly influenced by 

treatments in Marianna during 2013 (p=0.0002). All other damage ratings were not significantly 

different by treatment.  

None of the plant growth parameters were significantly influenced by an interaction 

between insecticides and herbicides (Table 22). Furthermore, main effects of herbicides and 

insecticides did not significantly affect any of the measured plant growth parameters. 

Yield was not significantly affected by an interaction between tank-mixed insecticides and 

herbicides in Marianna (p= 0.79) or Rohwer (p= 0.26) (Table 15). However, the main effect of 

herbicide significantly affected yield in both locations. Glyphosate treatments yielded 
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significantly more than glyphosate + s-metolachlor treatments, but no difference occurred 

relative to the untreated check in Rohwer during 2013. Glyphosate treatments yielded 

significantly more than the untreated check in Rohwer during 2013, but no separation occurred 

when relative to glyphosate + s-metolachlor treatments. The main effect of insecticide 

significantly affected yield in Rohwer during 2013 (p= 0.0357), where spinetoram treatments 

yielded significantly more than the untreated check. However, the main effect of insecticide did 

not significantly affect yield in Marianna during 2013 (p= 0.93). Contrasts estimates of yield 

were significant when comparing insecticides alone vs. insecticides tank-mixed with herbicides 

of glyphosate and glyphosate + s-metolachlor (Table 16). The presence of glyphosate in 

combination with spinetoram significantly increased yield vs. spinetoram alone in Rohwer 

during 2013. Yield was not significantly affected by tank-mixes within any other location or 

year. 

Discussion  

 Thrips populations exceeded the recommended threshold of an average of 5 thrips per 

plant and injury present in the non-insecticide treated plots. All insecticide treatments reduced 

the number of thrips sampled compared to untreated check and insecticide performance varied 

throughout replicated tests. Herbicide-insecticide interactions affected thrips numbers in only 

one of a total of six trials (Table 15). In this trial, glufosinate + s-metolachlor, with no insecticide 

present, increased thrips numbers compared to all other interaction treatments. Most reports 

indicate that herbicides alone, at field use rates do not adversely affect insects (Messersmith & 

Adkins, 1995), although no literature testing glyphosate or glufosinate alone on thrips was found. 

From our observations, herbicides alone did not alter numbers of thrips compared to untreated 

treatments. However, when s-metolachlor was co-applied with glufosinate or glyphosate small, 
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insignificant decreases in thrips numbers were observed compared to glyphosate alone or 

glufosinate alone (Table 15 & 19). 

Because of treatment structure, a contrast analysis was appropriate. Thus, even when the 

overall ANOVA analysis is not significant, contrast analysis could identify differences between 

selected treatments. Previous research demonstrated that thrips control with an insecticide was 

not reduced by co-application with glyphosate when compared with individual insecticides 

applied alone (Pankey et al., 2004). However, isolated contrasts estimates found in the Roundup 

trial located in Marianna during 2012 showed increases in numbers of thrips sampled with the 

addition of glyphosate to the insecticides acephate and dicrotophos vs. insecticides alone (Table 

20). Acephate treatments in this trial showed a mean increase of 89.8 thrips when in combination 

with glyphosate. Decreased efficacy of acephate while in combination with glyphosate was 

repeated in other locations, but contrast estimates were not significant. Dicrotophos treatments in 

combination with glyphosate showed a mean increase of 64.5 thrips. However this increase in 

thrips numbers was only observed in Marianna during 2012. (Table 20). These differences were 

isolated in these studies, so one cannot conclude that the co-application of glyphosate with 

insecticides acephate and dicrotophos decreases thrips efficacy. However, this has not been 

observed in previous research. The number of thrips sampled in Liberty Link trials after the 

application of an insecticide alone, was no different than with the addition of glufosinate or 

glufosinate + s-metolachlor. Therefore, co-application of glufosinate with insecticides did not 

influence the efficacy of insecticides used to control thrips. 

  The cotton cultivar ST4946GlB2 was chosen for tank-mixing trials because of its 

flexibility and crop safety to full labeled rates of glufosinate and glyphosate. Previous studies 

have indicated GlyTol + LibertyLink cotton contained no visual injury after the application of 
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glyphosate and/or glufosinate (Irby et al., 2013). However, other research has shown with the 

addition of an insecticide to herbicide combinations, cotton injury can reach up to 38% (Steckel 

et al., 2012). Visual assessment of cotton injury 5 days after application did not exceed 10% in 

both herbicide systems with herbicides alone or with herbicides co-applied with insecticide. 

Visual injury observed within treatments 5 days after application was no longer present 14 days 

after application.  

 Plant growth parameters including plant heights, total node counts, and NAWF were not 

affected by an herbicide-insecticide interaction or herbicides and insecticides alone in the 

Roundup tank-mix study. This observation agrees with previous findings where herbicide-

insecticide interactions in tank-mixes had no effect on plant growth parameters or yield (Miller et 

al., 2008; Stewart et al., 2013b). Liberty link trials paralleled these results in all but one location 

where the presence of glufosinate with dicrotophos contained more NAWF and therefore delayed 

maturity compared to all other treatments.  

Seed cotton yield was not affected by an interaction affect between co-applied 

insecticides and herbicides. Small amounts of visual injury recorded at 5 days after application 

did not affect seed cotton yield, which was also seen in previous studies (Miller et al., 2008). 

Seed cotton yield was not affected by different insecticide treatments even though thrips control 

was achieved at different rates. This response likely was due to thrips stressing the cotton plant 

before tank-mix applications. Thrips numbers averaged no less than 13 per plant at the time of 

evaluation 5 days after application in treatments that exhibited the greatest control. This is well 

over the recommended Arkansas threshold of 5 thrips per plant. Seed cotton yield was affected 

by herbicide differently in each herbicide system. In the absence of an insecticide, glyphosate + 

s-metolachlor treatments yielded less seed cotton than glyphosate alone. However, glufosinate + 
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s-metolachlor treatments yielded more seed cotton than glufosinate alone. In previous research it 

was shown that differences in yield response occurs due to stress caused by thrips before 

glufosinate application (Stewart et al., 2013b). Our findings showed no differences in numbers of 

thrips and therefore the observed variance in yield was not due to thrips damage being 

compounded by herbicide.  

 Overall, negative effects of herbicide insecticide tank-mixtures in this study to GlyTol + 

LibertyLink cotton at the 2-4 leaf stage were limited. Visual injury occurred, but did not last 

longer than 14 days after application and rarely resulted in delayed maturity or yield loss. Results 

indicated that when applied according to the pesticide label, co-application of the tested 

herbicide-insecticide tank-mixtures offer cotton producers the ability to integrate thrips and weed 

control. The use of these mixtures limits application costs without sacrificing loss of insecticide 

control on thrips or crop tolerance. The impact that foliar tank mixed applications have on 

seedling cotton is likely to vary from year to year due to diverse environmental conditions. 

Growers must remember to take caution when tank-mixing pesticides and only do so when 

economic thresholds for insects and weeds are reached.
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Table 13. Roundup tank-mix study 2012 and 2013, treatments. 

Tank mixture Rate 

acephate 368 g/ha 

spinetoram + dyne-amic 109 mL/ha + 1% 

dicrotophos 225 g/ha 

glyphosate + acephate 651 L/ha + 368 g/ha 

glyphosate + spinetoram 651L/ha + 109 mL/ha 

glyphosate + dicrotophos 651 L/ha + 225 g/ha  

glyphosate + s-metolachlor + acephate 651 L/ha + 1.2 L/ha + 368 g/ha 

glyphosate + s-metolachlor + spinetoram 651 L/ha + 1.2 L/ha + 109 mL/ha 

glyphosate + s-metolachlor + dicrotophos 651 L/ha + 1.2 L/ha + 22 g/ha 

glyphosate 651 L/ha 

glyphosate + s-metolachlor 651 L/ha + 1.2 L/ha 

control x 

clethodim + spinetoram 
1 

2.91 L/ha + 109 mL/ha 

glyphosate + s-metolachlor 
1 

651 L/ha + 1.2 L/ha 

1
 Treatments removed for factorial analysis
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Table 14. Liberty Link tank-mix study 2012 and 2013, treatments. 

Tank mixture Rate 

acephate 368 g/ha 

spinetoram + dyne-amic 109 mL/ha + 1% 

dicrotophos 225 g/ha 

glufosinate + acephate 2.1 L/ha + 368 g/ha 

glufosinate + spinetoram  2.1 L/ha + 109 mL/ha 

glufosinate + dicrotophos 2.1 L/ha + 225 g/ha 

glufosinate + s-metolachlor + acephate 2.1 L/ha + 1.2 L/ha + 368 g/ha 

glufosinate + s-metolachlor + spinetoram 2.1 L/ha + 1.2 L/ha + 109 mL/ha 

glufosinate + s-metolachlor + dicrotophos 2.1 L/ha + 1.2 L/ha + 225 g/ha 

glufosinate 2.1 L/ha 

glufosinate + s-metolachlor 2.1 L/ha + 1.2 L/ha 

Control x 

glufosinate + acetochlor + spinetoram
 1 

2.1 L/ha + 3.5 L/ha + 109 mL/ha 

glufosinate + s-metolachlor 
1 

2.1 L/ha + 1.2 L/ha 

1
 Treatments removed for factorial analysis 
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Table 15. Liberty Link tank-mix study 2012 and 2013, thrips total after tank-mix application and seed cotton yield (± SE), by main 

effects and significance of interaction effect. 

Main Effect Treatment 

Thrips POST tank-mix Seed Cotton yield (lbs.) 

M
1
 2012 M 2013 R

2
 2013 M 2013 R 2013 

Herbicide glufosinate 89.5 ± 10.1
 

142.9 ± 11.9 b 173.9 ± 18.1 4122.5 ± 101.8 ab 3876.5 ± 209.0 

 

glufosinate+ s-metolachlor 63.2 ± 10.1 103.8 ± 11.9 a 158.7 ± 18.1 4311.7 ± 101.8 a 4137.6 ± 209.0 

 

untreated 97.2 ± 10.1 101.9 ± 11.9 a 149.4 ± 18.1 3921.5 ± 101.8 b 3499.6 ± 209.0 

  Factorial analysis p= 0.0586 p= 0.0338* p= 0.63 p= 0.0365* p= 0.11 

Insecticide dicrotophos 92.3 ± 11.7 b 122 ± 13.8 b 111.3 ± 20.8 b 4181.3 ± 117.6 3352.0 ± 241.3 

 

acephate 69.6 ± 11.7 c 90.3 ± 13.8 bc 125.3 ± 20.8 b 4162.6 ± 117.6 4002.0 ± 241.3 

 

spinetoram 34.0 ± 11.7 c  65.5 ± 13.8 c 96.7 ± 20.8 b 4109.6 ± 117.6 4133.7 ± 241.3 

 

untreated 137.4 ± 11.7 a 187.1 ± 13.8 a 309.6 ± 20.8 a 4020.8 ± 117.6 3863.9 ± 241.3 

 

Factorial analysis p= 0.0001* p= 0.0001* p= 0.0001* p= 0.77 p= 0.13 

Herbicide*Insecticide Factorial analysis p= 0.32 p= 0.26 p= 0.0373* p= 0.47 p= 0.22 

1
Marianna 

2
Rohwer 

3
Means within a column followed by the same letter are not significantly different (p= 0.05). 
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Table 16. Liberty Link tank-mix study 2012 and 2013, thrips and yield contrast estimates established from contrast analysis results. 

  Thrips POST tank-mix Seed Cotton yield (lbs.) 

Contrasts M
1
 2012 M 2013 R

2
 2013 M 2013 R 2013 

acephate vs. 36.25
3 

16 -39.5 -180.6 821.7 

acephate + glufosinate p= 0.21 p= 0.64 p= 0.44 p= 0.54 p= 0.17 

spinetoram vs. -32.25 -16.25 -13.25 -150.4 -186.8 

spinetoram + glufosinate p= 0.27 p= 0.63 p= 0.80 p= 0.61 p= 0.75 

dicrotophos vs. -1.5 -54.25 28.25 -537.3 -582 

dicrotophos + glufosinate p= 0.96 p= 0.12 p= 0.58 p= 0.07 p= 0.33 

acephate vs. 32.5 28 47 -739.4 278.4 

acephate + glufosinate + s-metolachlor p= 0.26 p= 0.41 0.36 p= 0.015 p= 0.64 

spinetoram vs. 9 -1.75 50.25 -249.3 -622.8 

spinetoram + glufosinate + s-metolachlor p= 0.75 p= 0.96 p= 0.33 p= 0.39 p= 0.30  

dicrotophos vs. 9.25 8.5 36.25 -283.7 -809.6 

dicrotophos + glufosinate + s-metolachlor p= 0.75 p= 0.80 p= 0.48 p= 0.33 p= 0.18 

1 
Marianna 

2 
Rohwer 

3 
Contrast estimate above and corresponding p-value below
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Table 17. Liberty Link tank-mix study 2012 and 2013, mean chlorosis and necrosis injury (± SE) ratings by treatment. 

  Damage Ratings % 

Main effect 

M
1
-2012 M

1
-2013 R

2
-2013 

Chlor Nec Chlor Nec Chlor Nec 

acephate 0 ± 0.6 b
 

0 ± 1.1 0 ± 0.7 0 ± 1.3 d 0 ± 0 0 ± 0 

spinetoram + dyne-amic 3.5 ± 0.6 a 2.5 ± 1.1  0 ± 0.7 0.5 ± 1.3 d 0 ± 0 0 ± 0 

dicrotophos 0 ± 0.6 b 0 ± 1.1 1.3 ± 0.7 0.7 ± 1.3 cd 0 ± 0 0 ± 0 

glufosinate + acephate 0 ± 0.6 b 0 ± 1.1 0.7 ± 0.7 0.7 ± 1.3 cd 0 ± 0 0 ± 0 

glufosinate + spinetoram  0 ± 0.6 b 0 ± 1.1 0 ± 0.7 0.5 ± 1.3 d 0 ± 0 0 ± 0 

glufosinate + dicrotophos 0 ± 0.6 b 0 ± 1.1 0 ± 0.7 0.7 ± 1.3 cd 0 ± 0 0 ± 0 

glufosinate + s-metolachlor + acephate 0 ± 0.6 b 0 ± 1.1 0 ± 0.7 8.0 ± 1.3 ab 0 ± 0 0 ± 0 

glufosinate + s-metolachlor + spinetoram 0 ± 0.6 b 2.5 ± 1.1 2.7 ± 0.7 6.7 ± 1.3 abc 0 ± 0 0 ± 0 

glufosinate + s-metolachlor + dicrotophos  2.0 ± 0.6 ab 0 ± 1.1 0 ± 0.7 5.2 ± 1.3 abcd 0 ± 0 0 ± 0 

Untreated Control 0 ± 0.6 b 0 ± 1.1 0 ± 0.7 0.5 ± 1.3 d 0 ± 0 0 ± 0 

glufosinate 0 ± 0.6 b 0 ± 1.1 0 ± 0.7 2.2 ± 1.3 bcd 0 ± 0 0 ± 0 

glufosinate + s-metolachlor 0 ± 0.6 b 2.5 ± 1.1 0.7 ± 0.7 8.7 ± 1.3 a 0 ± 0 0 ± 0 

Factorial analysis p= 0.0060* p= 0.45 p= 0.91 p= 0.0001* p= 1.0 p= 1.0 
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1 
Marianna 

2 
Rohwer 

3
 Means within a column followed by the same letter are not significantly different (p= 0.05).
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Table 18. Liberty Link tank-mix study 2012 and 2013, changes in plant height, changes in total plant nodes, and nodes above white 

flower counts (± SE), by main effects and significance of interaction effect. 

  

Main Effect 

  

Treatment 

Plant Height ∆ (in.) Total Node ∆ NAWF 

M
1
-2013 R

2
-2013 M-2013 R-2013 M-2012 M-2013 R-2013 

Herbicide untreated 11.0 ± 0.3 8.2 ± 0.3 3.7 ± 0.2 3.1 ± 0.2 4.5 ± 0.1 2.7 ± 0.1 4.2 ± 0.2 

 

glufosinate 10.4 ± 0.3 8.3 ± 0.3 3.9 ± 0.2 3.5 ± 0.2 4.3 ± 0.1 2.9 ± 0.1 4.6 ± 0.2 

 

glufosinate + s-metolachlor 10.1 ± 0.3 8.1 ± 0.3 3.9 ± 0.2 3.4 ± 0.2 4.3 ± 0.1 2.8 ± 0.1 4.6 ± 0.2  

  Factorial analysis p= 0.16 p= 0.81 p= 0.71 p= 0.41 p= 0.34 p= 0.67 p= 0.40 

Insecticide untreated 9.9 ± 0.4 8.3 ± 0.3 3.9 ± 0.2 3.2 ± 0.3 4.5 ± 0.2 2.6 ± 0.1 4.3 ± 0.3 

 

acephate 10.7 ± 0.4 8.4 ± 0.3 3.9 ± 0.2 3.6 ± 0.3 4.3 ± 0.2 2.7 ± 0.1 4.8 ± 0.3 

 

spinetoram 10.6 ± 0.4  8.4 ± 0.3 3.8 ± 0.2 3.4 ± 0.3 4.3 ± 0.2 2.9 ± 0.1 4.4 ± 0.3 

 

dicrotophos 10.7 ± 0.4 7.8 ± 0.3 3.7 ± 0.2 3.3 ± 0.3 4.4 ± 0.2 2.9 ± 0.1 4.4 ± 0.3 

 

Factorial analysis p= 0.52 p= 0.47 p= 0.89 p= 0.76 p= 0.81 p= 0.22 p= 0.56 

Herbicide*Insecticide Factorial analysis p= 0.75 p= 0.15 p= 0.81 p= 0.35 p= 0.48 p= 0.001* p= 0.69 

∆ change in growth between application time and reading 20 days after application 
1 

Marianna 
2 

Rohwer 
3 

Means within a column followed by the same letter are not significantly different (p= 0.05). 
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Table 19. Roundup tank-mix study 2012 and 2013, thrips total and seed cotton yield (± SE) after tank-mix application, by main effect 

and significance of interaction effect. 

Main Effect Treatment 

Thrips POST tank-mix Seed Cotton yield (lbs.) 

M
1
 2012 M 2013 R

2
 2013 M 2013 R 2013 

Herbicide glyphosate 154.8 ± 10.7 a
 

173.1 ± 12.3 172.9 ± 22.8 5071.4 ± 124.1 a 6974.8 ± 215.9 a 

 

glyphosate +  

s-metolachlor 

117.3 ± 10.7 b 140.7 ± 12.3 161.1 ± 22.8 4621.2 ± 124.1 b 6563.0 ± 215.9 ab 

 

untreated 113.7 ± 10.7 b 176.7 ± 12.3 145.9 ± 22.8 4882.7 ± 124.1 ab 5860.3 ± 215.9 b 

  Factorial analysis p= 0.0180* p= 0.09 p= 0.71 p= 0.0488* p= 0.0033* 

Insecticide dicrotophos 184 ± 12.3 a 151.8 ± 14.2 b 120.3 ± 26.4 b 4787.9 ± 143.4 6163.8 ± 249.3 ab 

 

acephate 155.4 ± 12.3 a 152.3 ± 14.2 b 103.8 ± 26.4 b 4904.9 ± 143.4 6606.7 ± 249.3 ab 

 

spinetoram 14.7 ± 12.3 b 106.9 ± 14.2 b 129.7 ± 26.4 b 4840.4 ± 143.4 7033.6 ± 249.3 a 

 

untreated 160.3 ± 12.3 a 243.0 ± 14.2 a 286.2 ± 26.4 a 4900.6 ± 143.4 6060 ± 249.3 b 

 

Factorial analysis p= 0.0001* p= 0.0001* p= 0.0001* p= 0.93 p= 0.0357* 

Herbicide*Insecticide Factorial analysis p= 0.18 p= 0.70 p= 0.72 p= 0.79 p= 0.26 

1 
Marianna 

2 
Rohwer 

3 
Means within a column followed by the same letter are not significantly different (p= 0.05).  
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Table 20. Roundup tank-mixing study 2012 and 2013, thrips and yield contrast estimates established from contrast analysis results. 

  Thrips POST tank-mix Seed Cotton (lbs.) 

Contrasts M
1
 2012 M 2013 R

2
 2013 M 2013 R 2013 

acephate vs. -89.753
3 

-37.25 -18.5 -206.3 -401.2 

acephate + glyphosate p= 0.0055* p= 0.29 p= 0.78 p= 0.56 p= 0.52 

spinetoram vs. 3.5 29 -62 -124.7 -1405 

spinetoram + glyphosate p= 0.91 p= 0.41 p= 0.34 p= 0.72 p= 0.0279* 

dicrotophos vs. -64.5 26.25 40.75 147.88 -439.5 

dicrotophos + glyphosate p= 0.0403* p= 0.46 p= 0.53 p= 0.68 p= 0.47 

acephate vs. 7.5 -12.25 -2.75 322.4 -182.6 

acephate + glyphosate + s-metolachlor p= 0.81 p= 0.73 p= 0.97 p= 0.37 p= 0.77 

spinetoram vs. -3.25 54.5 -83.25 214.95 -454.5 

spinetoram + glyphosate + s-metolachlor p= 0.92 p= 0.13 p= 0.21 p= 0.54 p= 0.46 

dicrotophos vs. -37.5 69 5.75 233.82 -298.7 

dicrotophos + glyphosate + s-metolachlor p= 0.22 p= 0.0555* p= 0.93 p= 0.51 p= 0.63 

1 
Marianna 

2 
Rohwer 

3 
Contrast estimate above and corresponding p-value below
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Table 21. Roundup tank-mixing study 2012 and 2013, mean chlorosis and necrosis injury ratings (± SE) by treatment. 

  Damage Ratings % 

Tank Mixture 

 M
1
-2012 M

1
-2013  R

2
-2013 

Chlor Nec Chlor Nec Chlor Nec 

acephate  3.5 ± 0.9
 

0.7 ± 1.0 b 0 ± 0.4 c 0 ± 0.6 1.2 ± 1.3 0 ± 0.5 

spinetoram + dyne-amic 2.5 ± 0.9 0.7 ± 1.0 b 0.2 ± 0.4 bc 0 ± 0.6 1.7 ± 1.3 0 ± 0.5 

dicrotophos 1.7 ± 0.9 0.7 ± 1.0 b 0.2 ± 0.4 bc 0 ± 0.6 2.5 ± 1.3 0 ± 0.5 

glyphosate + s-metolachlor + acephate 2.7 ± 0.9 6-± 1.0 a 0.7 ± 0.4 abc 2 ± 0.6 4.7 ± 1.3 0.7 ± 0.5 

glyphosate + s-metolachlor + spinetoram 2.5 ± 0.9 6.2 ± 1.0 a 2.0 ± 0.4 abc 0.7 ± 0.6 5.2 ± 1.3 0 ± 0.5 

glyphosate + s-metolachlor + dicrotophos 3 ± 0.9 4.5 ± 1.0 ab 2.5 ± 0.4 a 2.5 ± 0.6 4.2 ± 1.3 0 ± 0.5 

glyphosate + spinetoram 2 ± 0.9 0.7 ± 1.0 b 0 ± 0.4 c 0.7 ± 0.6 5.7 ± 1.3 2.0 ± 0.5 

glyphosate + acephate 2.7 ± 0.9 2.0 ± 1.0 ab 0 ± 0.4 c 0 ± 0.6 4.0 ± 1.3 1.0 ± 0.5 

glyphosate + dicrotophos 5.5 ± 0.9 1.0 ± 1.0 b 0 ± 0.4 c 1.2 ± 0.6 3.7 ± 1.3 0.7 ± 0.5 

untreated control 1.2 ± 0.9 1.0 ± 1.0 b 2.2 ± 0.4 ab 1.7 ± 0.6 5.2 ± 1.3 0 ± 0.5 

glyphosate 2.0 ± 0.9 1.5 ± 1.0 ab 0 ± 0.4 c 0.5 ± 0.6 6.5 ± 1.3 0.5 ± 0.5 

glyphosate + s-metolachlor 2.0 ± 0.9 5.2 ± 1.0 ab 0.2 ± 0.4 bc 1.5 ± 0.6 7.0 ± 1.3 0.5 ± 0.5 

Factorial analysis p=0.19 p= 0.0001* p= 0.0002* p= 0.08 p= 0.66 p= 0.77 
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1 
Marianna 

2 
Rohwer 

3
 Means within a column followed by the same letter are not significantly different (p= 0.05). 
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Table 22. Roundup tank-mix study 2012 and 2013, plant height differences, total plant node differences, and nodes above white 

flower counts (± SE), by main effects and significance of interaction effect. 

  

Main effect 

  

Treatment 

Plant Height ∆ (in.)  Total Nodes ∆  NAWF 

M
1
-2013 R

2
-2013 M-2013 R-2013 M-2012 M-2013 R-2013 

Herbicide untreated 12.4 ± 0.3 8.2 ± 0.3 2.8  ± 0.2 3.5 ± 0.2 4.6 ± 0.1 3.6 ± 0.2 4.4 ± 0.2 

 

glyphosate 11.9 ± 0.3 8.2 ± 0.3 3.2 ± 0.2 4.1 ± 0.2  4.7 ± 0.1  3.6 ± 0.2 4.6 ± 0.2 

 

glyphosate + s-metolachlor 11.9 ± 0.3 8.3 ± 0.3 3.4 ± 0.2 3.7 ± 0.2 4.6 ± 0.1 3.6 ± 0.2 4.6 ± 0.2 

  Factorial analysis p= 0.51 p= 0.92 p= 0.22 p= 0.13 p= 0.73 p= 0.76 p= 0.79 

Insecticide untreated 12.1 ± 0.4  8.2 ± 0.3 3.6 ± 0.3 4.1 ± 0.2 4.6 ± 0.1  3.6 ± 0.2  4.1 ± 0.2 

 

acephate 12.1 ± 0.4 8.1 ± 0.3 3.3 ± 0.3 3.6 ± 0.2  4.6 ± 0.1  3.6 ± 0.2 5.0 ± 0.2 

 

spinetoram 12.1 ± 0.4 8.1 ± 0.3 2.7 ± 0.3 3.9 ± 0.2 4.7 ± 0.1 3.3 ± 0.2 4.6 ± 0.2 

 

dicrotophos 12.2 ± 0.4 8.6 ± 0.3 2.8 ± 0.3 4.1 ± 0.2 4.7 ± 0.1 3.7 ± 0.2 4.5 ± 0.2 

 

Factorial analysis p= 0.87 p= 0.67 p= 0.09 p= 0.32 p= 0.85 p= 0.45 p= 0.14 

Herbicide*Insecticide Factorial analysis p= 0.95 p= 0.88 p= 0.32 p= 0.89 p= 0.41 p= 0.20 p= 0.59 

∆ change in growth between application time and reading 20 days after application 
1
Marianna 

2
Rohwer 

3
Means within a column followed by the same letter are not significantly different (p= 0.05).
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Conclusion 

Two possible pathways of herbicide-insecticide interactions were identified and tested. 

These pathways consisted of possible interactions between preemergence herbicides in 

combination with insecticide seed treatments and early season foliar herbicides tank-mixed with 

foliar thrips insecticides. The goal of this study was not to clearly define the mechanisms of an 

interaction between insecticides and herbicides, but to illustrate if a significant interaction was 

present on some of the parameters tested. The majority of research documenting herbicide-

insecticide interactions in cotton has a focused on the impact of weed control. The focus of the 

trials in the current study was largely on thrips control and if herbicides were affecting the 

efficacy of thrips insecticides in anyway. Potential impacts of combinations of these pesticides 

and their interaction on cotton plant growth parameters were also taken into consideration. These 

studies showed that herbicide-insecticide interactions rarely occurred within these pathways and 

when they did they were sporadic in nature. Observations of reduced IST efficacy in this study 

were not caused by an interaction between IST and PRE herbicides but appear to be the result of 

reduced efficacy of specific IST’s, consistent with resistance in thrips populations. Prior to this 

study, tobacco thrips tolerance/resistance to thiamethoxam was unknown. Preliminary resistance 

testing of tobacco thrips collected from Marianna Arkansas has indicated what appears to be 

some form of resistance (data not shown). If confirmed by formal evaluation, thrips resistance 

would have serious implications for the cotton growers of Arkansas and the Mid-south. Trials 

testing co-application of foliar herbicides with thrips insecticides have indicated that growers 

could safely tank-mix these pesticides at labeled rates without sacrificing loss of insecticide 

efficacy or risk crop injury. Cotton under stress or various environmental factors may influence 

the interaction of herbicides and insecticides affecting the tested parameters differently than 

results recorded in this study. Therefore, growers must always exercise caution in extreme 
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environmental conditions when there is a potential for herbicides and insecticides to be present 

on the cotton plant at the same time.
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