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Abstract 

 Breast cancer is the most commonly diagnosed cancer in women and the second 

leading cause of cancer death among women in the United States (1). While treatments 

involving radiation and chemotherapy currently exist, disease must be detected early in 

order for the treatments to be somewhat effective, and there is no effective treatment after 

metastasis occurs (2). Additionally, current therapies do not mitigate tumor 

immunosuppression. Decreasing the tumor-associated immunosuppressive conditions 

while activating antitumor immunity could prevent recurrence and metastasis, possibly 

leading to an effective treatment for cancer (3). Tumor cell vaccines could possibly 

address this issue and have become a recent topic of research. They have the potential to 

generate tumor regression and antitumor immune responses, but they have had low 

clinical response rates and poor immunogenicity so far (3, 4). 

 We suspect the failure of cancer vaccines to be due to the immunosuppression and 

heterogeneity of breast cancers. Thus, to determine how and why different breast cancers 

induce different levels of immunosuppression, we studied different cancer cell lines of 

varying levels of immunogenicity. The study included five murine breast cancer cell 

lines, 4T1, 4T07, 66cl4, 168FARN, and 67NR. These are sister cell lines that were 

isolated from a Balb/cfC3H mouse and that differ in aggressiveness and metastatic 

capability. The production of immunosuppressive cytokines GM-CSF, G-CSF, M-CSF, 

IL-6, MCP-1, TGF-β, and VEGF was quantified for each of these cell lines. We also 

studied the effect these cytokines have on the expansion of myeloid-derived suppressor 

cells (MDSCs), which are known to suppress the immune response, and found that high 

levels of G-CSF are correlated with high numbers of MDSCs. A correlation between G-
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CSF levels and MDSC accumulation in these breast cancer cell lines could lead to future 

studies in which the effects of G-CSF are blocked in order to develop effective 

autologous breast cancer vaccines.  

 

Introduction 

I. Background 

In recent years, breast cancer has become a topic of vigorous research. In the U.S., 

it is the most commonly diagnosed cancer in women with about 230,000 new cases 

reported every year (1, 5). It is also the second leading cause of cancer death among 

women in the U.S., affecting one in twelve women (1, 2, 6). Breast cancer patients have a 

five-year survival rate of 66% when the cancer is detected early. However, there is no 

effective cancer treatment after it metastasizes to sites such as the lungs, liver, and bones 

(2). About 10% to 15% of breast cancer patients develop metastases within three years of 

initial detection of the primary tumor, and metastases at distant sites can manifest as long 

as 10 years or more after the initial diagnosis (7). Metastasis is the dissociation of cancer 

cells from a tumor to other parts of the body. This process occurs in several steps: 

invasion into nearby tissues, intravasation into blood or lymphatic vessels, transport 

through the bloodstream or lymphatic system, arresting in small vessels, extravasation 

out of the vessels, growing in new tissue sites in micrometastases, and growing into 

larger macrometastases when the new conditions are favorable (6, 8). The high risk of 

metastasis makes breast cancer difficult to cure (7). 

Upon diagnosis, breast cancer patients undergo primary treatment that involves 

surgical removal of the tumor. This is followed by chemotherapy or radiation therapy to 
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kill any residual cancer cells in an effort to prevent recurrence. However, metastasis 

differs in growth and establishment at differing sites, and each site may respond 

differently to treatment. Additionally, current treatments are usually unable to stop or 

reverse the metastasis cascade, and about 90% of breast cancer mortalities are due to 

cancer recurrence and metastasis (9). According to literature, such tumor recurrence 

could be due to immunosuppressive conditions induced by the cancer cells during their 

growth (3). These conditions provide a fertile environment for any residual cancer cells to 

grow and thrive in immunosuppressed microenvironments, resulting in recurrence or 

metastasis. 

Decreasing the tumor-associated immunosuppressive conditions, while 

simultaneously activating antitumor immunity, could be an effective treatment for cancer, 

and it could also prevent recurrence and metastasis (3). Consequently, tumor cell 

vaccines have become a recent topic of research. Early clinical trials have proven that the 

activation of an antitumor immune response can lead to tumor regression (3, 4). 

However, antitumor vaccines and immunotherapies have demonstrated low clinical 

response rates thus far, possibly due to the immunosuppression and heterogeneity of 

breast cancers (3). 

In a preliminary study in the Laboratory for Vaccine and Immunotherapy 

Delivery at the University of Arkansas, it was found that certain breast cancers induce 

immunosuppression more than others. If the reason for the differences in 

immunosuppression can be understood, one should be able to develop drugs to overcome 

tumor-associated immunosuppression and prevent breast cancer recurrence and 

metastasis. Thus, in this study, we aim to determine how and why different breast cancers 
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induce different levels of immunosuppression. For this purpose, we used five different 

murine breast cancer cell lines: 4T1, 4T07, 66cl4, 168FARN, and 67NR. These are sister 

cell lines that were isolated from a single Balb/cfC3H mouse and that differ in 

aggressiveness and metastatic capability (10). For instance, 4T1 and 66cl4 cells 

metastasize to the lungs, but the other three lines are not capable of completing all or part 

of the metastatic cascade (11). From each of these cell lines, the concentrations of 

immunosuppressive cytokines GM-CSF, G-CSF, M-CSF, IL-6, MCP-1, TGF-β, and 

VEGF were quantified. We also studied the effect these cytokines have on the expansion 

of myeloid-derived suppressor cells (MDSCs) in vivo, which could be resulting in tumor-

associated immunosuppression (3, 4, 6, 9, 12-14). 

 

II. Literature Review 

a. Tumor Cell Lines 

It is common for cell sublines from a single tumor to have heterogeneous 

metastatic potential (11). The murine sister cell lines used in this study were isolated 

from the same spontaneously arising Balb/cfC3H mammary tumor by Fred Miller at the 

Karmanos Cancer Institute (8, 9). They include 4T1, 4T07, 67NR, 168FARN, and 66cl4, 

and each of these cell lines differ in metastatic capabilities. 4T1 and 66cl4 are able to 

metastasize spontaneously and complete each step in the metastatic cascade, whereas 

4T07, 67NR, and 168FARN are non-metastatic and are unable to complete one or more 

steps (8, 11).  

The cell line 4T1 has the ability to metastasize hematogenously to sites such as 

the bones, lungs, liver, and brain and is one of a few types of breast cancer that are able to 
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do so effectively. It is one of the only cancers of any type that can metastasize 

spontaneously to the bone (2, 9). Line 66cl4 can spontaneously metastasize to the lungs 

and liver via the lymphatic system. The remaining cell lines are non-metastatic but still 

highly tumorigenic. They are unable to complete different steps of the metastasis 

cascade: 4T07 cells can disseminate via blood vessels and form micrometastases in the 

lungs but do not form visible metastases, 168FARN cells can form micrometastases in 

the lymph nodes but do not advance further to other sites, and 67NR cells are non-

metastatic and cannot leave the primary tumor site (5, 8, 11). The metabolism of 4T1 is 

better able to adapt to new microenvironments than the metabolism of 67NR, which 

likely plays a role in 4T1’s ability and 67NR’s inability to metastasize (5). 

The cell lines also differ in their aggressiveness. For example, cell lines 4T07 and 

168 (precursor of 168FARN) are both non-metastatic from subcutaneous sites of 

injection (10). But when 168 and 4T07 are grown together in vivo and in vitro in 

monolayer, the resulting tumors consist primarily of the 4T07 line, even though line 168, 

when grown alone, has a faster tumor volume-doubling time than 4T07. This result 

occurs even when the ratio of 168 to 4T07 is 100:1 or greater. The inhibition of line 168 

does not occur when 168 and 4T07 are injected on opposite sides of the mice, suggesting 

that growth inhibition requires cell contact or proximity. It has been suggested in some 

studies that 4T07 cells produce a growth-inhibitory factor that leads to the suppression of 

168 cell growth (10). Additionally, line 168 is non-immunogenic (10). 

Studying the differences in the immunogenicity, metastasis, and aggressiveness of 

these sister cell lines could assist the development of anti-cancer vaccines and 
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immunotherapies. For example, the selective steps of metastasis could serve as viable 

targets of therapeutic treatments (11). 

 

b. Immunosuppressive Cytokines 

Cytokines are secretory proteins involved in intercellular communications, 

specifically in the immune system. According to literature, some cytokines and their 

respective receptors are produced under certain pathological conditions, and it has been 

suggested that they are crucial to the induction, perpetuation, angiogenesis, and 

metastasis of breast cancer (12). Because cytokines are prominent in cancer development, 

they could serve as possible targets for therapeutic cancer treatments. Therefore, it is 

important to understand their presence and roles in different types of cancer. The 

cytokines observed and quantified in this study were TGF-ß, IL-6, VEGF, MCP-1, M-

CSF, GM-CSF, and G-CSF. 

Inflammation may play an important role in tumorigenesis. Activated immune 

cells and cytokine-secreting fibroblasts contribute to the inflammation of the 

microenvironments in which tumors can form, and cytokines help regulate tumor 

formation and proliferation. For example, interleukin-1 (IL-1), IL-6, IL-11, and 

transforming growth factor-ß (TGF-ß) stimulate the proliferation and invasion of cancer 

cells (12).  

TGF-ß is secreted by breast cancer cells and can take on the role of either tumor 

suppressor or tumor promoter. In early stages of tumorigenesis, it inhibits proliferation of 

transformed cells. In later stages of disease, however, tumor cells are able to evade this 

inhibition. TGF-ß then regulates processes such as proliferation, differentiation, 
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migration, immunity, and apoptosis through mechanisms such as epithelial-mesenchymal 

transition (EMT), which promotes metastasis. It also stimulates angiogenesis by 

regulating the expression of other cytokines: vascular endothelial growth factor (VEGF) 

and monocyte chemotactic protein 1 (MCP-1). TGF-ß has been associated with 

aggressiveness and an earlier age of cancer onset. It has the capacity to bind to MDSCs, 

an action which suppresses natural killer cells and helps tumors evade the immune 

system (12). 

IL-6 mediates humoral immunity and allergic responses (4). Like TGF-ß, 

however, IL-6 is also associated with aggressive cancers. It is secreted by breast cancer 

cells and activated fibroblasts in the breast tissue, and it initiates the proliferation and 

invasiveness of cancer cells. Overexpression of IL-6 further increases invasiveness and 

induces EMT. When secreted by tumor-infiltrating lymphocytes in large amounts, it can 

lead to chronic inflammation of breast cancer, which in turn can promote angiogenesis 

(12). It has been suggested that IL-6 is also connected to metastasis to the bone (2). 

VEGF and MCP-1 both promote angiogenesis and the degradation of the 

extracellular matrix (5, 12). Additionally, MCP-1 attracts macrophages and induces an 

inflammatory response (15). Inflammation of breast cancer can lead to a higher 

expression of VEGF, VEGF receptors, and other proangiogenic molecules (12). 

According to literature, high levels of MCP-1 is also linked to tumor growth and lung 

micrometastases (15). 

In neoplastic breast cancer cells, macrophage colony-stimulating factor (M-CSF, 

also known as colony-stimulating factor 1, CSF-1) expression is correlated with poor 

prognosis and is often associated with ipsilateral cancer recurrence. M-CSF promotes 
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angiogenesis, metastasis, and tumor cell invasion, and it is involved in recruiting 

macrophages to breast tumors (12). Tumor-associated macrophages are involved in 

cancer progression by promoting neoplastic transformation, immune evasion, and 

metastasis (16). 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the 

production of monocytes and granulocytes and is involved in the maturation of dendritic 

cells. It stimulates the T helper 1 (Th1) and T helper 2 (Th2) responses, as well as the 

local attraction of dendritic cells, macrophages, and granulocytes. In early trials of 

cytokine-secreting tumor vaccines, GM-CSF secreted by genetically engineered tumor 

cells was shown to induce tumor regression. The exact mechanism by which this happens 

is unclear, but GM-CSF may amplify the recruitment of antigen-presenting cells (APCs) 

to the vaccination site specifically, thereby increasing antigen presentation and 

stimulating a stronger immune response. But literature also shows that high systemic 

levels of GM-CSF, whether produced endogenously or introduced by vaccination, 

correlate with spontaneous metastasis and immunosuppression via MDSC expansion (4). 

Granulocyte colony-stimulating factor (G-CSF) is responsible for regulating 

granulopoiesis, mobilizing neutrophils, and reversing neutropenia. However, it is also 

expressed by certain tumors, such as those of the head, neck, cervix, ovaries, breast, 

pancreas, bladder, and leukemia. Specifically, it is often overexpressed in ductal breast 

carcinomas (12, 14). Increasing tumor burden increases the levels of G-CSF, and 

overproduction is linked to inflammation, granulocytic MDSC accumulation, and tumor 

growth. The mechanism by which G-CSF causes this is unknown (13, 14). Tumor-



	   12 

derived G-CSF and GM-CSF have both been linked to the development of MDSCs, but 

neither actually augments the immunosuppressive effects of MDSCs (14).  

 

c. Myeloid-Derived Suppressor Cells 

The accumulation of myeloid-derived suppressor cells in the blood, lymph nodes, 

spleen, and primary tumor site is a major mechanism of tumor progression and immune 

evasion and often manifests itself as splenomegaly (13, 14). MDSCs account for tumor-

favoring microenvironments by suppressing innate and adaptive immunity, promoting 

angiogenesis, and assisting breast cancer cells in spontaneous metastasis (6, 14). They are 

the result of defective myelopoiesis: immature monocytes and granulocytes that fail to 

mature under pathological conditions such as tumor growth, trauma, infection, sepsis, and 

other inflammatory disorders (6, 14). 

MDSC accumulation has been shown to hinder the immune system by increasing 

the production of reactive oxygen species (ROSs), which can suppress the T cell response 

(13, 17). MDSCs can also act by selectively activating enzymes in the L-arginine 

metabolic pathway and upregulating the production of arginase 1 to increase the 

metabolism of L-arginine. L-arginine supplements have been shown to inhibit tumor 

growth, decrease the number of MDSCs, and enhance the immune response, so increased 

metabolism of L-arginine understandably has the opposite effect (18). Finally, MDSCs 

act by impairing the cytotoxic T cell (CTL) response through upregulation of nitric oxide 

via inducible nitric oxide synthase (iNOS) and subsequent nitrosylation of T cell 

receptors (TCRs) and CD8 molecules. This inhibits T cell proliferation and leads to 

apoptosis (4, 6). A greater inhibition of T cells was correlated with a large number of 
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MDSCs in direct contact with the T cells (13). According to literature, it has also been 

suggested that there is a direct correlation between MDSC expansion and cancer cell 

aggressiveness, creating environments that promote the survival and replication of cancer 

cells and lead to spontaneous metastasis (6). iNOS inhibitors can reverse some of the 

immunosuppressive effects of MDSCs (4). 

MDSCs have distinct surface markers that can be recognized when testing for 

MDSC accumulation: CD11b, Ly6C, and Ly6G. The monocytic MDSCs are 

CD11b+Ly6Chigh Ly6G- and the granulocytic MDSCs are CD11b+Ly6Clow Ly6G+. Up to 

70 to 80% of MDSCs may be granulocytic, the accumulation of which is associated with 

large amounts G-CSF. Both cell types have similar immunosuppressive effects (14). 

In mice, 4T1 cell tumors are known to induce MDSC expansion, possibly due to 

the secretion of large amounts of G-CSF and GM-CSF (9, 14). The effects of MDSCs are 

not as well defined in humans as they are in murine models, as most of the research has 

been preclinical. However, cancer patients at all stages have significantly higher numbers 

of MDSCs than healthy people, and the highest number of MDSCs are found in patients 

with large metastatic tumor burdens, suggesting that MDSC accumulation is associated 

with the extent of disease (3, 13). Further clinical studies of MDSCs are needed to better 

understand cancer immune-evasion in humans. 

 

d. Cancer Vaccines and Immunotherapies 

Immunotherapies may become a viable alternative to chemotherapy and radiation. 

In clinical and preclinical studies, there is evidence that T and B cells can detect antigenic 

differences between normal cells and transformed cancer cells. Furthermore, tumor 
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regression can result from the activation of an antitumor immune response (3). However, 

normal adaptive immunity usually is not strong enough to prevent malignant tumors 

because it is inhibited by the tumor microenvironment. The immune system may also 

become tolerant to the tumor antigen because of antigen persistence, and the tumor may 

evade the immune system by downregulation of major histocompatibility complex 

(MHC) molecules or increased expression of Fas ligand (FasL), IL-10, TGF-ß, and other 

immunosuppressive molecules (3). By focusing on certain immunosuppressive targets, 

therapies have been shown to eliminate disseminated cancer cells by activating a 

systemic antitumor immune response (3). 

Tumor cell vaccines can be autologous or allogeneic (4). Autologous tumor cell 

vaccines refer to those that aim to generate a cytotoxic T cell response using tumor cells 

isolated from the patient, killed exogenously, and then administered to the same person 

they were originally isolated from. Allogeneic tumor cell vaccines refer to those that are 

administered to a different patient than they were isolated from. 

Another promising type of vaccine is the cytokine-secreting tumor vaccine, in 

which the tumor microenvironment is modified using gene transfer (4, 19). In preclinical 

trials, tumor cells in mice were genetically engineered to secrete granulocyte-macrophage 

colony-stimulating factor (GM-CSF), which proved to provoke a potent and long-lived 

systemic antitumor immune response. However, it was also discovered that high levels of 

GM-CSF impair antitumor immunity. These high-dose vaccines fail to generate 

antitumor immunity, fail to expand a preexisting population of T cells, and induce the 

expansion of MDSCs (4). Therefore, a GM-CSF vaccine can be immunostimulatory or 
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immunosuppressive, depending on the dose of GM-CSF delivered. It is only effective 

below a certain threshold of GM-CSF, after which it loses its efficacy.  

When MDSC populations are expanded, the subsequent upregulation of ROSs, 

arginase 1, and nitric oxide are involved in immunosuppression. The constitutive 

expression of iNOS is associated with angiogenesis, tumor growth, metastasis, and drug 

resistance. Therefore, these could serve as possible targets of therapeutic agents in future 

studies (4).  

Because immunosuppressive cytokines and MDSCs can serve as potential 

therapeutic targets, a better understanding of their roles in tumor growth could facilitate 

the efficacy of tumor vaccines and immunotherapies. Other possible therapies could 

focus on treating the metastatic sites in patients with late stages of cancer (9). 

 

III. Preliminary Data 

In a preliminary study to determine if certain breast cancers induce 

immunosuppression and affect antitumor immunity, two murine breast cancer cell lines, 

4T1 and EMT6, were used. As is shown in literature, 4T1 is a highly aggressive and 

metastatic breast cancer cell line whereas EMT6 is comparatively less aggressive and 

non-metastatic (5, 6, 8, 9, 11). 

This study found that irradiated EMT6 cells provided protective immunity to mice 

subsequently injected with live EMT6 cells. Balb/cByJ mice were vaccinated with an 

autologous tumor cell vaccine (ATCV) of irradiated EMT6 or irradiated 4T1 cells and 

then challenged with live EMT6 or live 4T1 cells, respectively. The EMT6 vaccine 
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resulted in tumor free survival in 100% of the mice for 70 days, while the 4T1 vaccine 

exhibited tumor growth similar to the unvaccinated control group (Figure 1). 

 

 

Figure 1: Irradiated EMT6 cells provide protective immunity. Balb/cByJ female 
mice were given priming and booster vaccination 10 days apart with irradiated 4T1 or 
EMT6 cells. 10 days after booster, the mice were challenged with live 4T1 or EMT6 cells 
and were monitored for tumor free survival over a period of 80 days. (Sruthi 
Ravindranathan) 

 

When, in a related study, Balb/cByJ mice were vaccinated with irradiated EMT6 

cells and challenged with live EMT6 cells, 80% of the mice rejected the live tumor 

challenge. However, when irradiated 4T1 cells were included, either on the same or 

opposite side as the EMT6 vaccine, the protective immunity reduced to 40% and 10%, 

respectively (Figure 2). 
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Figure 2: Irradiated 4T1 cells ruined protective immunity. Balb/cByJ female mice 
were given priming and booster vaccination 10 days apart with irradiated EMT6 alone or 
with irradiated 4T1 and EMT6 cells on the same or opposite flanks. 10 days after booster, 
the mice were challenged with live EMT6 cells and were monitored for tumor free 
survival over a period of 80 days. (Sruthi Ravindranathan) 

 

Since the irradiated 4T1 cells abrogated the protective immunity even when 

injected on the opposite side, the effect is likely to be systemic rather than local. Hence, 

we looked at some of the immunosuppressive cytokines, namely GM-CSF, G-CSF, M-

CSF, IL-6, MCP-1, TGF-β, and VEGF, produced by both 4T1 and EMT6 cells before 

and after irradiation (Figure 3). 
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Figure 3. Cytokine release profile of 4T1 and EMT6 cells before and after 
irradiation. 4T1 or EMT6 cells were irradiated at 100 Gy using a Gammacell irradiator. 
5x105 non-irradiated (4T1 and EMT6) and irradiated (4T1 Irr and EMT6 Irr) cells were 
seeded on separate T25 flasks and cultured for 48 hours. The cell media was collected 
from each flask and centrifuged to obtain cell-free supernatants. Levels of cytokines IL-
6 (a), GM-CSF (b), MCP-1 (c), and G-CSF (d) in the cell-free supernatant were 
measured using CBA. Cytokines M-CSF (e), VEGF (f), and TGF-β (g) were measured 
via ELISA. The experiment was repeated thrice and the results represent mean± standard 
error (**p<0.01, *p<0.05). The data were analyzed using GraphPad Prism software, 
version 7, and statistical differences were determined using one-way ANOVA tests 
followed by Tukey’s tests. (Sruthi Ravindranathan) 



	   19 

IV. Objectives and Hypothesis 

From preliminary studies, we know 4T1 and EMT6 cells are producing different 

levels of immunosuppressive cytokines, and 4T1 cells are able to recruit more MDSCs 

than EMT6 cells. It is important to note that 4T1 cells produce extremely high levels of 

colony stimulating factors G-CSF (both non-irradiated and irradiated) and GM-CSF 

(irradiated only), whereas EMT6 cells comparatively do not. The other cytokines released 

by 4T1 cells are at levels comparable to EMT6 cells or else very low (14). In literature, 

G-CSF and GM-CSF cytokines are often associated with the expansion of the 

immunosuppressive cells known as MDSCs (3, 4, 6, 14). Thus, the high levels of G-CSF 

and GM-CSF produced by 4T1 cells could be resulting in the expansion of MDSCs in the 

blood, peripheral lymphoid tissues, or tumor microenvironments, thereby affecting 

antitumor immunity and potentially limiting the effectiveness of an irradiated 4T1 cell 

vaccine.  

Therefore, the overall objective of this study is to determine if different breast 

cancers produce varying levels of immunosuppressive cytokines and if there is a 

correlation between cytokine release and MDSC expansion in vivo. If such a correlation 

exists, the immunogenicity of the cancer cells will be better understood, and it could lead 

to the production of more effective cancer treatments, therapies, and vaccines.  

We hypothesize that different breast cancers produce varying levels of different 

immunosuppressive cytokines. We also hypothesize that these cytokines result in varying 

levels of MDSC expansion in the spleens of mice, therefore decreasing the possibility of 

an antitumor immune response. 
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V. Significance 

The murine breast cancer cell lines used in this study have not been characterized 

before. Investigating the levels of immunosuppressive cytokines produced by these cell 

lines will help us understand the reasons for differences in their immunogenicity. 

Additionally, by determining the levels of MDSC accumulation in the spleens of mice 

bearing the different breast cancers, a relationship between cytokine release and MDSC 

accumulation could be determined. If a relationship is established, knocking out genes 

that are responsible for producing the specific cytokine could help in the development of 

better autologous tumor cell vaccines in the future. 

 

Methods and Materials 

I. Tumor Cell Lines 

In this study, we used five different murine breast cancer cell lines, 66cl4, 

168FARN, 4T1, 4T07, and 67NR, derived from a spontaneously arising mammary tumor 

of the Balb/cfC3H mouse. They were cultured in Dulbecco's Modified Eagle's medium 

(DMEM) supplemented with penicillin/streptomycin, L-glutamine, and 10% fetal bovine 

serum (FBS). They were passaged by trypsinization and subsequent centrifugation and 

resuspension in complete DMEM. 

 

II. Cytokine Studies 

Cells were passaged at least once before analysis and were irradiated using 

gamma radiation at 100 grays using a Gammacell irradiator. Cells before and after 

irradiation were cultured in four T25 flasks containing approximately 500,000 cells each 
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with 4 milliliters of complete DMEM. The cells were counted using a hemocytometer 

after staining them with trypan blue: the number of cells counted in the hemocytometer 

was multiplied by the dilution factor, then multiplied by the volume within the 

hemocytometer, and finally divided by the number of grids in the hemocytometer to yield 

cells per milliliter of media. Media from the T25 cultures of each cell line were collected 

24, 48, 72, and 96 hours after seeding. The media was then centrifuged at 1400 rotations 

per minute (rpm) for 5 minutes to remove any dead cells or debris from the solution. The 

cell supernatants were tested for cytokines G-CSF, GM-CSF, M-CSF, IL-6, TGF-β, 

VEGF, and MCP-1 to determine cytokine levels produced by each cell line, before and 

after irradiation. Cytokines IL-6, GM-CSF, MCP-1, and G-CSF were measured using 

cytometric bead array (CBA) while M-CSF, VEGF, and TGF-β were measured via 

enzyme-linked immunosorbent assay (ELISA). 

 

a. Cytometric Bead Array 

Cytokines IL-6, GM-CSF, MCP-1, and G-CSF were measured using CBA, which 

allows for the simultaneous quantification of multiple proteins via flow cytometry. Media 

from each cell line culture (irradiated and non-irradiated) collected 24, 48, 72, and 96 

hours after seeding were vortexed with cytokine-specific capture beads (BD 

Biosciences). Each sample was also mixed with PE detection reagent beads. The samples 

were run through a flow cytometer in duplicate or triplicate and compared to serial 

dilutions of a top standard to determine the concentration of cytokine. The detection and 

quantification of each cytokine was determined via flow cytometric analysis performed 

using BD FACSCantoII.  
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b. Enzyme-Linked Immunosorbent Assay 

Since the cytokine-specific CBA beads were only available for four of the 

relevant cytokines, M-CSF, VEGF, and TGF-β levels were measured using ELISA (R&D 

Systems, Inc. and BioLegend). ELISA was also used to measure the concentration of G-

CSF in serum of naïve and tumor-bearing mice. Each ELISA kit included flat-bottomed, 

96-well plates pre-coated for cytokine-specific antibodies. The M-CSF, VEGF, and G-

CSF ELISA kits also included control samples that indicated the assays were working 

correctly when their calculated control concentrations fell within a specified range. Serial 

dilutions of stock solution were included to create a standard curve for each cytokine. 

Standards, controls, and media from each cell line culture (irradiated and non-irradiated) 

collected 24, 48, 72, and 96 hours after seeding were added to the 96-well plate in 

duplicate or triplicate. Cytokine-specific antibodies with conjugated horseradish 

peroxidase were subsequently added, followed by substrate solutions of 

tetramethylbenzidine and hydrogen peroxide and a stop solution of hydrochloric acid. A 

plate reader set to 450 nm and then 540 nm was used to determine the optical density of 

each standard, control, and sample. The readings at the two wavelengths were subtracted 

in order to correct for optical imperfections in the plate and to ascertain more accurate 

measurements. The sample values were then read off the standard curve to determine the 

concentrations of cytokines in picograms per milliliter of solution.  

 

III. In Vivo Tumor Growth Studies 

Each cell line was injected subcutaneously into the right flank of female 

Balb/cByJ mice approximately 8 weeks old, and the tumor growth was monitored. Five 
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mice were injected per cell line, and depending on the aggressiveness of the cells, 1, 3, or 

5 million cells suspended in phosphate-buffered saline (PBS) were injected per mouse. 

Some cell lines did not initially exhibit tumor growth, so new mice were subsequently 

injected with a larger number of cells. Anesthesia of 75 mg/kg ketamine and 15 mg/kg 

xylazine was administered intraperitoneally immediately before cell injection.  

 

IV. Determining the Number of MDSCs in Spleen 

Tumor volumes were calculated by measuring the length (longest dimension of 

the tumor, y) and the width (dimension perpendicular to the length, x) and using the 

equation (x2y)/2. When the tumor volume reached about 500 mm3, mice were terminally 

bled by suborbital bleeding. The mice were then sacrificed by cervical dislocation and the 

spleens were harvested. Splenocytes were then isolated by mechanical dissociation and 

centrifugation and treated with ammonium-chloride-potassium (ACK) lysis buffer to 

remove red blood cells. They were resuspended in Roswell Park Memorial Institute 

(RPMI) medium or PBS. The splenocytes were surface stained with fluorochrome-

conjugated monoclonal antibodies (mAbs) against CD11b and Ly6G/Ly6C (MDSC 

surface markers), and the percentage of MDSCs was determined via flow cytometry. In 

this study, FITC Rat IgG2b,k and PE Rat IgG2B,k were used as isotype controls. Cells 

were surface stained with PE Rat Anti-Mouse Ly6G/Ly6C and FITC Rat Anti-Mouse 

CD11b, or APC-Cy7 Rat Anti-Mouse CD11b. 
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V. Serum Studies 

When the tumor reached 500 mm3, about 500 µl of blood was collected from the 

mouse via suborbital bleeding. The blood was allowed to be at room temperature for 10 

minutes and then was centrifuged at 4600 rpm for 30 minutes. Serum was collected and 

stored at -80˚C until ready for quantification of G-CSF levels via ELISA (R&D Systems, 

Inc.). Each sample was diluted 1:50 with an ELISA calibrator diluent. 

 

VI. Statistical Analysis 

All data were analyzed using GraphPad Prism software, version 7. In this study, we 

were mostly interested in G-CSF, which was released in comparatively higher levels than 

other cytokines in aggressive cell types 4T1 and 4T07. Statistical differences were 

determined using one-way Analysis of Variance (ANOVA) tests followed by Tukey’s 

tests for Figures 5, 7, and 8. Probability values (p-vales) of less than 0.05 were 

considered significant and are indicated on graphs by one asterisk. Two asterisks indicate 

p-values of less than 0.01. 

 	  

Results and Discussion 

Of the five cell lines, 67NR and 168FARN did not produce any G-CSF in the 

cytokine studies. However, 4T1 produced 4606 pg/105 cells and 4158 pg/105 cells before 

and after irradiation, respectively, after 48 hours of incubation. The cell line 4T07 

produced comparatively less at 2695 pg/105 cells and 2631 pg/105 cells, and 66cl4 

produced only 61 pg/105 cells and 60 pg/105 cells (Figure 4). 

 



	   25 

 

Figure 4: Cytokine release profile of 4T1, 4T07, 67NR, 66Cl4, and 168FARN before 
and after irradiation. Cells were irradiated at 100 Gy using a Gammacell irradiator. 
5x105 non-irradiated and irradiated cells were seeded on separate T25 flasks and cultured 
for 48 hours. The cell media was collected from each flask and centrifuged to obtain cell-
free supernatants. Levels of IL-6, GM-CSF, MCP-1, and G-CSF were measured using 
CBA, and levels of M-CSF, VEGF, and TGF-β were measured via ELISA. The 
experiment was performed once and the results represent mean. 
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Though some cytokines were produced at higher levels by certain cell lines more 

than others, we focused our attention on G-CSF due to the extremely high concentrations 

released by the aggressive 4T1 cells, both irradiated and non-irradiated. In the in vivo 

tumor growth studies, each spleen was harvested and weighed to see if there was a 

correlation between the levels of G-CSF, the spleen mass, and the number of MDSCs in 

the spleen. From the data, it is evident that the mice bearing 4T1 and 4T07 tumors had 

significantly larger spleens, weighing an average of 350 mg and 658 mg, respectively. 

The other tumor types all displayed similar spleen sizes: 67NR was 104 mg, 66cl4 was 95 

mg, and 168FARN was 124 mg (Figure 5).  

 

Figure 5: Average spleen masses of mice inoculated with 4T1, 4T07, 67NR, 66Cl4, 
and 168FARN. Mice were injected subcutaneously with 1, 3, or 5 million cells. When 
the tumors reached about 500 mm3, the mice were sacrificed and their spleens were 
harvested. The results represent mean± standard error (**p<0.01, *p<0.05).	  
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The splenocytes were isolated mechanically, and the number of MDSCs was 

quantified via flow cytometry. Dead cells and debris were removed via forward scatter 

and protein-binding fixable viability stain performed by FlowJo. MDSCs in quadrant 3 

were gated as live cells and subsequently analyzed for CD11b and Ly6C/Ly6G. The 

gating strategy is shown in Figure 6. 

 

Figure 6: Gating strategy for MDSCs. Balb/cByJ mouse were subcutaneously injected 
with 1, 3, or 5 million cells and the spleen was harvested when the tumor volume reached 
about 500 mm3. Splenocytes were isolated and stained with fluorochrome-conjugated 
mAbs against CD11b, Ly6G, and Ly6C, then were analyzed using flow cytometry. 
FlowJo software was used to gate for live MDSCs (CD11b+ and Ly6G/Ly6C+).  
 

Mice bearing 4T1 and 4T07 tumors also had significantly high numbers of 

MDSCs. The spleens of 4T1 tumor-bearing mice contained about 1.3x108 MDSCs (34% 

of the total number of splenocytes), and the spleens of 4T07 tumor-bearing mice 

contained about 1.9x108 MDSCs (33% of the total number of splenocytes). Since these 

cell lines were found to produce high levels of G-CSF, we suspect a direct correlation. 

The percentages of MDSCs in the spleens of 67NR, 66cl4, and 168FARN tumor-bearing 

mice were 5%, 6%, and 7%, respectively (Figure 7). 
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Figure 7: Average number of MDSCs in spleens of mice inoculated with 4T1, 4T07, 
67NR, 66Cl4, and 168FARN. Mice were sacrificed and their spleens were harvested 
when the tumors reached about 500 mm3. Splenocytes were isolated via mechanical 
dissociation and ACK lysis buffer, and then they were surface stained for Ly6G/Ly6C 
and CD11b using PE Rat Anti-Mouse Ly6G/Ly6C and FITC Rat Anti-Mouse CD11b, or 
APC-Cy7 Rat Anti-Mouse CD11b. MDSCs were detected and quantified using flow 
cytometry. The results represent mean± standard error (**p<0.01, *p<0.05). 
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consistent with the amounts of G-CSF released by each cell line in the cytokine studies, 

and we suspect direct correlation between the tumor cell type and the concentration of G-

CSF in the blood serum (Figure 8). 

 

Figure 8: Serum cytokine release profile of 4T1, 4T07, 67NR, 66Cl4, and 168FARN 
in vivo. When the tumor reached about 500 mm3, about 500 µl of blood was collected 
from the mouse via suborbital bleeding. The blood clotted at room temperature and then 
was centrifuged at 4600 rpm for 30 minutes. Serum was collected from the supernatant 
and analyzed for G-CSF via ELISA. The results represent mean± standard error 
(**p<0.01, *p<0.05). 
 

These findings suggest that the cytokine G-CSF may be a key factor in cancer cell 

immunogenicity. Cell line 4T1 produced high amounts of G-CSF and demonstrated high 

MDSC accumulation in murine spleens. This agrees with literature suggesting that the 
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overproduction of G-CSF is linked to MDSC expansion and immunosuppressive effects 

(13, 14). The high levels of G-CSF and MDSC accumulation in 4T07 also agree with 

previous findings that G-CSF is linked to immunogenicity: although unable to complete 

the metastatic cascade, the aggressive 4T07 cell line can form micrometastases in the 

lungs and is also highly tumorigenic (5, 8, 10, 11). However, metastatic cell line 66cl4 

and tumorigenic cell lines 168FARN and 67NR demonstrated low levels of G-CSF and 

few MDSCs. This suggests that there are other key factors involved in the metastasis and 

tumorigenicity of these cell lines (8,	  11).  

Immunotherapies have demonstrated the potential to activate antitumor immune 

responses and eliminate disseminated cancer cells (3). Because G-CSF appears to be 

strongly correlated with the immunogenicity of cancers, it could serve as a potential focus 

of future tumor cell vaccines. By eliminating the genes responsible for producing G-CSF, 

thereby blocking the effects of the cytokine, an autologous tumor cell vaccine could be 

created. The vaccine would, presumably, induce a cytotoxic T cell response against the 

growing tumor cells without providing an additional source of G-CSF (4). Additionally, 

since G-CSF correlates with the accumulation of MDSCs and subsequent 

immunosuppression, the effects of MDSC expansion could also be targeted by future 

immunotherapies. Possible targets of MDSC expansion include L-arginine metabolism as 

well as nitric oxide, iNOS, and ROS expression (4, 6, 13, 14). 

 

Conclusion 

G-CSF may play a significant role in the aggressiveness and metastatic 

capabilities of cancers.  Of the five cell lines, 67NR and 168FARN did not produce any 
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G-CSF before or after irradiation. The aggressive 4T1 cells, however, produced 

comparatively more G-CSF than the other cell lines. Therefore, although certain cell 

types produced other cytokines at high levels, G-CSF became the focus of the study. 

After the spleens of tumor-bearing mice were harvested, it became evident that the mice 

bearing 4T1 and 4T07 tumors had significantly larger spleens than the mice bearing other 

tumor types. The 4T1 and 4T07 mice also had significantly higher numbers of MDSCs 

present in the spleens, as well as higher concentrations of G-CSF in the blood serum. 

Since the 4T1 and 4T07 cells were also found to produce high levels of G-CSF, we 

suspect a direct correlation between G-CSF production, spleen mass, and number of 

MDSCs present in the spleen. According to literature, MDSC expansion is linked to 

immunosuppression (13). Therefore, high G-CSF levels could be affecting antitumor 

immunity and limiting the effectiveness of anti-cancer treatments and vaccinations. 

Blocking the effects of G-CSF, either by removing its coding genes or blocking 

downstream effects, could lead to better autologous tumor cell vaccines in the future. In 

order to block the downstream effects of G-CSF, more research may need to be done on 

the mechanism by which it leads to MDSC expansion. In addition, further study of G-

CSF concentration in the serum of tumor-bearing mice could provide more insight into 

the immunogenicity of different types of breast cancer. Continued research of the 4T1, 

4T07, 66cl4, 67NR, and 168FARN cell lines could lead to a better understanding of their 

immunologic differences and facilitate the production of more effective cancer 

treatments, therapies, and vaccines. 
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