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COMPRESSIVE SENSING WITH REDUNDANT DICTIONARIES AND STRUCTURED

MEASUREMENTS

FELIX KRAHMER, DEANNA NEEDELL, AND RACHEL WARD

ABSTRACT. Consider the problem of recovering an unknown signal from undersampled measurements,
given the knowledge that the signal has a sparse representation in a specified dictionary D. This problem
is now understood to be well-posed and efficiently solvable under suitable assumptions on the measure-
ments and dictionary, if the number of measurements scales roughly with the sparsity level. One sufficient
condition for such is the D-restricted isometry property (D-RIP), which asks that the sampling matrix ap-
proximately preserve the norm of all signals which are sufficiently sparse in D. While many classes of ran-
dom matrices are known to satisfy such conditions, such matrices are not representative of the structural
constraints imposed by practical sensing systems. We close this gap in the theory by demonstrating that
one can subsample a fixed orthogonal matrix in such a way that the D-RIP will hold, provided this basis is
sufficiently incoherent with the sparsifying dictionary D. We also extend this analysis to allow for weighted
sparse expansions. Consequently, we arrive at compressive sensing recovery guarantees for structured mea-
surements and redundant dictionaries, opening the door to a wide array of practical applications.

1. INTRODUCTION

1.1. Compressive Sensing. The compressive sensing paradigm, as first introduced by Candès and Tao
[CT05b] and Donoho [Don06], is based on using available degrees of freedom in a sensing mechanism to
tune the measurement system so as to allow for efficient recovery of a particular type of signal or image of
interest from as few measurements as possible. A model assumption that allows for such signal recovery
is sparsity: the signal can be well-approximated by just a few elements of a given representation system.

Often, a near-optimal strategy is to choose the measurements completely at random, for example
following a Gaussian distribution [RV08]. Typically, however, some additional structure is imposed by
the application at hand, and randomness can only be infused in the remaining degrees of freedom. For
example, magnetic resonance imaging (MRI) is known to be well modeled by inner products with Fourier
basis vectors. This structure cannot be changed, and the only aspect that can be decided at random is
which Fourier basis vectors to select.

An important difference between completely random measurement systems and structured random
measurement systems is in the aspect of universality. Gaussian measurement systems, among many
other systems with minimal imposed structure, are oblivious to the basis in which the underlying signal
is sparse, and achieve equal reconstruction quality for all different orthonormal basis representations.
For structured measurement systems, this is, in general, no longer the case. When the measurements are
uniformly subsampled from an orthonormal basis such as the Fourier basis, one requires, for example,
that the measurement basis and the sparsity basis are incoherent; the inner products between vectors
from the two bases are small. If the two bases are not incoherent, more refined concepts of incoherence
are required [KW14, AHPR13]. An important example is that of the Fourier measurement basis and a
wavelet sparsity basis. Since both contain the constant vector, they are maximally coherent.

1.2. Motivation. All of the above mentioned works, however, exclusively cover the case of sparsity in
orthonormal basis representations. On the other hand, there are a vast number of applications in which
sparsity is expressed not in terms of a basis but in terms of a redundant, often highly overcomplete,
dictionary. Specifically, if f ∈ C

n is the signal of interest to be recovered, then one expresses f = D x ,
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where D ∈C
n×N is an overcomplete dictionary and x ∈C

N is a sparse (or nearly sparse) coefficient vector.
Redundancy is widespread in practice, either because no sparsifying orthonormal basis exists for the
signal class of interest, or because the redundancy itself is useful and allows for a significantly larger,
richer class of signals which can be sparsely represented in the resulting dictionary. For example, it has
been well documented that overcompleteness is the key to a drastic reduction in artifacts and recovery
error in the denoising framework [SED04, SFM07].

In the compressive sensing framework, results using overcomplete dictionaries are motivated by the
broad array of tight (and often Parseval) frames appearing in practical applications. For example, if one
assumes sparsity with respect to the Discrete Fourier Transform (DFT), this is implicitly assuming that
the signal is well-represented by frequencies lying along the lattice of the DFT. To allow for more flexibility
in this rigid assumption, one instead may employ the oversampled DFT frame, containing frequencies
on a much finer grid, or even over intervals of varying widths. Gabor frames are used in imaging as well as
radar and sonar applications, which are often highly redundant [Mal99]. Many of the most widely-used
frames in imaging applications such as undecimated wavelet frames [Dut89, SED04], curvelets [CD04],
shearlets [LLKW05, ELL08], framelets [CCS08], and many others, are overcomplete with highly correlated
columns.

1.3. Related Work. Due to the abundance of relevant applications, a number of works have studied
compressive sensing for overcomplete frames. The first work on this topic aimed to recover the coef-
ficient vector x directly, and thus required strong incoherence assumptions on the dictionary D [RSV08].
More recently, it was noted that if one instead aims to recover f rather than x , recovery guarantees can be
obtained under weaker assumptions. Namely, one only needs that the measurement matrix A respects
the norms of signals which are sparse in the dictionary D . To quantify this, Candès et al. [CENR10] define
the D-restricted isometry property (D-RIP in short, see Definition 2.1 below). For measurement matrices
that have this property, a number of algorithms have been shown to guarantee recovery under certain as-
sumptions. Optimization approaches such as ℓ1-analysis [EMR07, CENR10, GNE+14, NDEG13, LML12,
RK13, Gir14] and greedy approaches [DNW12, GNE+14, GN13, PE13, GN14] have been studied.

This paper establishes the D-RIP for structured random measurements formed by subsampling or-
thonormal bases, allowing for these types of recovery results to be utilized in more realistic settings. To
date, most random matrix constructions known to yield D-RIP matrices with high probability are ran-
dom matrices with a certain concentration property. As shown in [CENR10], such a property implies that
for arbitrary dictionary D , one obtains the D-RIP with high probability. This can be interpreted as a dic-
tionary version of the universality property discussed above. It has now been shown that several classes
of random matrices satisfy this property as well as subsampled structured matrices, after applying ran-
dom column signs [DG03, KW11]. The matrices in both of these cases are motivated by application sce-
narios, but typically in applications they appear without the randomized column signs. In many cases
one is not able to apply column signs in practice; for example in cases where the measurements are fixed
such as in MRI, one has no choice but to use unsigned Fourier samples and cannot pre-process the data
to incorporate column signs. Without these signs however, such measurement ensembles will not work
for arbitrary dictionaries in general. This is closely related to the underlying RIP matrix constructions not
being universal. For example, it is clear that randomly subsampled Fourier measurements will fail for the
oversampled Fourier dictionary (for reasons similar to the basis case). In this work, we address this issue,
deriving recovery guarantees that take into account the dictionary. Similar to the basis case, our analysis
will be coherence based. A similar approach has also been taken by Poon in [Poo15b] (completed after
the first version of our paper), for an infinite dimensional version of the problem.

1.4. Contribution. Our main result shows that a wide class of orthogonal matrices having uniformly
bounded entries can be subsampled to obtain a matrix that has the D-RIP and hence yields recovery
guarantees for sparse recovery in the setting of redundant dictionaries. As indicated above, our tech-
nical estimates below will imply such guarantees for various algorithms. As an example we focus on
the method of ℓ1-analysis, for which the first D-RIP based guarantees were available [CENR10]. Our
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technical estimates will also provide more general guarantees for weighted ℓ1-analysis minimization (a
weighted version of (P1), see (P1,w ) in Section 3 for details) in case one has prior knowledge of the un-
derlying sparsity support.

Recall that the method of ℓ1-analysis consists of estimating a signal f from noisy measurements y =
A f +e by solving the convex minimization problem

f ♯ = argmin
f̃ ∈Cn

‖D∗ f̃ ‖1 such that ‖A f̃ − y‖2 ≤ ε, (P1)

where ε is the noise level, that is, ‖e‖2 ≤ ε. The ℓ1-analysis method (like alternative approaches) assumes
that for the signal f = D x , not only is the underlying (synthesis) coefficient sequence x sparse (typically
unknown and hard to obtain), but also the analysis coefficients D∗ f are nearly sparse, i.e., dominated
by a few large entries. We refer the reader to Theorem 2.2 below for the precise formulation of the result-
ing recovery guarantees (as derived in [CENR10]). The assumption has been observed empirically for
many dictionaries used in practice such as the Gabor frame, undecimated wavelets, curvelets, etc. (see,
e.g., [CENR10] for a detailed description of such frames) and is also key for a number of thresholding
approaches to signal denoising [CD04, KL07, ELL08].

A related and slightly stronger signal model, in which the analysis vector D∗ f is sparse or nearly
sparse, has been considered independently from coefficient sparsity (e.g., [NDEG13]), and is commonly
called the co-sparsity model.

The results in this paper need a similar, but somewhat weaker assumption to hold for all signals cor-
responding to sparse synthesis coefficients x . Namely, one needs to control the localization factor as we
now introduce.

Definition 1.1. For a dictionary D ∈C
n×N and a sparsity level s, we define the localization factor as

ηs,D = η
def= sup

‖Dz‖2=1,‖z‖0≤s

‖D∗D z‖1p
s

. (1.1)

In the following we will mainly consider dictionaries, which form Parseval frames, that is, D∗ is an
isometry. Then the term localization factor is appropriate because this quantity can be viewed as the fac-
tor by which sparsity is preserved under the gram matrix map D∗D , compared to the case where D is an
orthonormal basis and D∗D = In and η≡ 1 by Cauchy-Schwarz. For a general family of such frames pa-
rameterized by the redundancy N /n, η will increase with the redundancy; families of dictionaries where
such growth is relatively slow will be of interest. For example, new results on the construction of unit-
norm tight frames give a constructive method to generate spectral tetris frames [CFM+11], whose gram
matrices have at most 2⌈N /n⌉+6 non-zeros per row, guaranteeing that η is proportional only to the re-
dundancy factor N /n. In fact, one can show that these are sparsest frames possible [CHKK11], suggesting
that families of tight frames with localization factor depending linearly on the redundancy factor should
be essentially optimal for ℓ1-analysis reconstruction. We pose as a problem for subsequent work to ob-
tain such estimates for dictionaries of practical interest, discussing a few examples in Section 3. First,
to illustrate that our results go strictly beyond existing theory, we show that harmonic frames (frames
constructed by removing the high frequency rows of the DFT – see (3.3)) with small redundancy indeed
have a bounded localization factor. To our knowledge, this important case is not covered by existing the-
ories. In addition, we also bound the localization factor for redundant Haar wavelet frames. We expect,
however, that it will be difficult to efficiently compute the localization factor of an arbitrary dictionary.
For bounded localization factors, we prove the following theorem.

Theorem 1.2. Fix a sparsity level s < N . Let D ∈ C
n×N be a Parseval frame – i. e., DD∗ is the identity –

with columns {d1, . . . ,dN }, and let B = {b1, . . . ,bn} be an orthonormal basis of Cn which is incoherent to D

in the sense that

sup
i∈[n]

sup
j∈[N ]

|〈bi ,d j 〉| ≤ K n−1/2 (1.2)

for some constant K ≥ 1.
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Consider the (unweighted) localization factor η = ηs,D as in Definition 1.1. Construct B̃ ∈ C
m×n by

sampling row vectors from B i.i.d. uniformly at random. Provided

m ≥C sK 2η2 log3(sη2) log(N ), (1.3)

then with probability 1−N− log3(2s),
√

n
m

B̃ exhibits uniform recovery guarantees for ℓ1-analysis. That is,

for every signal f , the solution f ♯ of the minimization problem (P1) with y =
√

n
m

B̃ f +e for noise e with

‖e‖2 ≤ ε satisfies

‖ f ♯− f ‖2 ≤C1ε+C2
‖D∗ f − (D∗ f )s‖1p

s
. (1.4)

Here, C ,C1, and C2 are absolute constants independent of the dimensions and the signal f .

Above and throughout, (u)s denotes the best s-sparse approximation to a signal u, that is, (u)s
def=

argmin‖z‖0≤s‖u − z‖2.
Remarks.

1. Our stability result (1.4) for ℓ1 analysis guarantees recovery for the particular f = D z only up to the

scaled ℓ1 norm of the tail of D∗D z . In fact, the quantity E
∗
f
= ‖D∗ f −(D∗ f )s‖1p

s
, referred to as the unrecover-

able energy of the signal f in D [CENR10], is closely related to the localization factor ηs :

ηs = sup
f =Dz : ‖ f ‖2=1,‖z‖0≤s

‖D∗ f ‖1p
s

≤ sup
f =Dz : ‖ f ‖2=1,‖z‖0≤s

E
∗
f +1

2. As mentioned, the proof of this theorem will proceed via the D-RIP, so our analysis yields similar
guarantees for other recovery methods as well.
3. It is interesting to remark on the role of incoherence in this setting. While prior work in compressed
sensing has required the measurement matrix B̃ itself be incoherent, we now ask instead for incoherence
between the basis from which measurements are selected and the dictionary D , rather than incoherence
within D . Of course, note that the coherence of the dictionary D itself impacts the localization factorηs,D .
We will see later in Theorem 3.1 that the incoherence requirement between the basis and dictionary can
be weakened even further by using a weighted approach.
4. The assumption that D is a Parseval frame is not necessary but made for convenience of presentation.
Several results have been shown for frames which are not tight, e.g., [LML12, RK13, Gir14]. Indeed, any
frame D ∈C

n×N with linearly independent rows is such that

D̃ := (DD∗)−1/2D

is a tight frame. As observed in the recent paper [Fou15], in this case one can use for sampling the
adapted matrix Ã = (B̃ (DD∗)−1/2), as measuring the signal f = D z through y = Ã f + e is equivalent to
measuring the signal f̃ = D̃ z through y = B̃ f̃ + e . Working through this extension poses an interesting
direction for future work.

1.5. Organization. The rest of the paper is organized as follows. We introduce some notation and re-
view some technical background in Section 2 before presenting a technical version of our main result
in Section 3, which demonstrates that bases which are incoherent with a dictionary D can be randomly
subsampled to obtain D-RIP matrices. In that section, we also discuss some relevant applications and
the implications of our results, including the regime where the sampling basis is coherent to the dictio-
nary. The proof of our main theorem is presented in the final section.

2. NOTATION AND TECHNICAL BACKGROUND

Throughout the paper, we write C , C ′, C1, C2, . . . to denote absolute constants; their values can change
between different occurrences. We write In to denote the n ×n identity matrix and we denote by [n]
the set {1,2, . . . ,n}. For a vector u, we denote the j th index by u[ j ] or u( j ) or u j , depending on which
notation is the most clear in any given context; its restriction to only those entries indexed by a subset
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Λ is donated by uΛ. These notations should not be confused with the notation (u)s , which we use to

denote the best s-sparse approximation to u, that is, (u)s
def= arginf‖z‖0≤s‖u − z‖2. Similarly for a matrix A,

A j is the j th column and AΛ is the submatrices consisting of the columns with indices in Λ.

2.1. The unweighted case with incoherence. Recall that a dictionary D ∈ C
n×N is a Parseval frame if

DD∗ = In and that a vector x is s-sparse if ‖x‖0 := |supp(x)| ≤ s. Then the restricted isometry property
with respect to the dictionary D (D-RIP) is defined as follows.

Definition 2.1 ([CENR10]). Fix a dictionary D ∈ C
n×N and matrix A ∈ C

m×n . The matrix A satisfies the
D-RIP with parameters δ and s if

(1−δ)‖D x‖2
2 ≤ ‖AD x‖2

2 ≤ (1+δ)‖D x‖2
2 (2.1)

for all s-sparse vectors x ∈C
N .

Note that when D is the identity, this definition reduces to the standard definition of the restricted
isometry property [CT05a]. Under such an assumption on the measurement matrix, the following results
bound the reconstruction error for the ℓ1-analysis method.

Theorem 2.2 ([CENR10]). Let D be a tight frame, ε > 0, and consider a matrix A that has the D-RIP

with parameters 2s and δ< 0.08. Then for every signal f ∈ C
n , the reconstruction f ♯ obtained from noisy

measurements y = A f +e , ‖e‖2 ≤ ε, via the ℓ1-analysis problem (P1) above satisfies

‖ f − f ♯‖2 ≤ ε+
‖D∗ f − (D∗ f )s‖1p

s
. (2.2)

Thus as indicated in the introduction, one obtains good recovery for signals f whose analysis coeffi-
cients D∗ f have a suitable decay.

Both the RIP and the D-RIP are closely related to the Johnson-Lindenstrauss lemma [HV11, AC09,
BDDW08]. Recall the classical variant of the lemma states that for any ε ∈ (0,0.5) and points x1, . . . , xd ∈
R

n , that there exists a Lipschitz function f : Rn →R
m for some m =O(ε−2 log d ) such that

(1−ε)‖xi −x j‖2
2 ≤ ‖ f (xi )− f (x j )‖2

2 ≤ (1+ε)‖xi −x j‖2
2 (2.3)

for all i , j ∈ {1, . . . ,d }. Recent improvements have been made to this statement which in particular show
that the map f can be taken as a random linear mapping which satisfies (2.3) with high probability (see,
e.g., [Ach03] for an account of such improvements). Indeed, any matrix A ∈ C

m×n which for a fixed1

vector z ∈C
n satisfies

P
(
(1−δ)‖z‖2

2 ≤ ‖Az‖2
2 ≤ (1+δ)‖z‖2

2

)
≤C e−cm

will satisfy the D-RIP with high probability as long as m is at least on the order of s log(n/s) [CENR10].
From this, any matrix satisfying the Johnson-Lindenstrauss lemma will also satisfy the D-RIP (see [BDDW08]
for the proof of the RIP for such matrices, which directly carries over to the D-RIP). Random matrices
known to have this property include matrices with independent subgaussian entries (such as Gaussian
or Bernoulli matrices), see for example [DG03]. Moreover, it is shown in [KW11] that any matrix that
satisfies the classical RIP will satisfy the Johnson-Lindenstrauss lemma and thus the D-RIP with high
probability after randomizing the signs of the columns. The latter construction allows for structured
random matrices with fast multiplication properties such as randomly subsampled Fourier matrices (in
combination with the results from [RV08]) and matrices representing subsampled random convolutions
(in combination with the results from [RRT12, KMR14]); in both cases, however, again with randomized
column signs. While this gives an abundance of such matrices, as mentioned above, it is not always
practical or possible to apply random column signs in the sampling procedure.

1By “fixed” we mean to emphasize that this probability bound must occur for a single vector z rather than for all vectors z

like one typically sees in the restricted isometry property.
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An important general set-up for structured random sensing matrices known to satisfy the regular RIP
is the framework of bounded orthonormal systems, which includes as a special case the subsampled dis-
crete Fourier transform measurements (without column signs randomized). Such measurements are the
only natural measurements possible in many physical systems where compressive sensing is of interest,
such as in MRI, radar, and astronomy [LDP07, BS07, HS09, BSO08], as well as in applications to polyno-
mial interpolation [RW12, BDWZ12, RW11] and uncertainty quantification [HD15]. In the following, we
recall this set-up (in the discrete setting), see [Rau10, Sec.4] for a detailed account of bounded orthonor-
mal systems and examples.

Definition 2.3 (Bounded orthonormal system). Consider a probability measure ν on the discrete set [n]
and a system {r j ∈C

n , j ∈ [n]} that is orthonormal with respect to ν in the sense that

∑

i

rk (i )r j (i )νi = δ j ,k

where δ j ,k =
{

1 if j = k

0 else.
is the Kronecker delta function. Suppose further that the system is uniformly

bounded: there exists a constant K ≥ 1 such that

sup
i∈[n]

sup
j∈[n]

|r j (i )| ≤K . (2.4)

Then the matrix A ∈C
n×n whose rows are r j is called a bounded orthonormal system matrix.

Drawing m indices i1, i2, . . . , im independently from the orthogonalization measure ν, the sampling

matrix Ã ∈ C
m×n whose rows are indexed by the (re-normalized) sampled vectors

√
1
m

r j (ik ) ∈ C
n will

have the restricted isometry property with high probability (precisely, with probability exceeding 1 −
n−C log3(s)) provided the number of measurements satisfies

m ≥C K 2s log2(s) log(n). (2.5)

This result was first shown in the case where ν is the uniform measure by Rudelson and Vershynin [RV08],
for a slightly worse dependence of m on the order of s log2 s log(s log n) log(n). These results were sub-
sequently extended to the general bounded orthonormal system set-up by Rauhut [Rau10], and the de-
pendence of m was slightly improved to s log3 s log n in [RW13].

An important special case where these results can be applied is that of incoherence between the mea-
surement and sampling bases. Here the coherence between two sets of vectors Φ= {φi } and Ψ = {ψ j } is

given by µ= supi , j |〈φi ,ψ j 〉|. Two orthonormal bases Φ and Ψ of Cn are called incoherent if µ≤ K n−1/2.

In this case, the renormalized system Φ̃ = {
p

nφiΨ
∗} is an orthonormal system with respect to the uni-

form measure, which is bounded by K . Then the above results imply that signals which are sparse in
basis Ψ can be reconstructed from inner products with a uniformly subsampled subset of basis Φ. These
incoherence-based guarantees are a standard criterion to ensure signal recovery, such results had first
been observed in [CR07].

2.2. Generalization to a weighted setup and to local coherence. Recently, the criterion of incoherence
has been generalized to the case where only most of the inner products between sparsity basis vectors
and measurement basis vectors are bounded. If some vectors in the measurement basis yield larger
inner products, one can adjust the sampling measure and work with a preconditioned measurement
matrix [KW14], and if some vectors in the sparsity basis yield larger inner products, one can incorporate
weights into the recovery schemes and work with a weighted sparsity model [RW13]. Our results can
accommodate both these modifications. In the remainder of this section, we will recall some background
on these frameworks from [KW14, RW13] and formulate our definitions for the more general setup.
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Consider a set of positive weights ω= (ω j ) j∈[N ]. Associate to these weights the norms

‖x‖ω,p :=
(
∑

j

|x j |pω
2−p

j

)1/p

, 0 < p ≤ 2, (2.6)

along with the weighted “ℓ0-norm", or weighted sparsity: ‖x‖ω,0 :=
∑

j :|x j |>0ω
2
j
, which equivalently is

defined as the limit ‖x‖ω,0 = limp→0 ‖x‖p
ω,p . We say that a vector x is weighted s-sparse if ‖x‖ω,0 :=∑

j :|x j |>0ω
2
j
≤ s. In line with this definition, the weighted size of a finite set Λ ⊂ N, is given by ω(Λ) :=

∑
j∈Λω

2
j
; thus a vector is weighted s-sparse if its support has weighted size at most s. When ω j ≥ 1 for

all j , the weighted sparsity of a vector is at least as large as its unweighted sparsity, so that the class
of weighted s-sparse vectors is a strict subset of the s-sparse vectors. We make this assumption in the

remainder. Note in particular the special cases ‖x‖ω,1 =
∑

j |x j |ω j and ‖x‖ω,2 = ‖x‖2 =
√∑

j |x j |2; by

Cauchy-Schwarz, it follows that ‖x‖ω,1 ≤
p

s‖x‖2 if x is weighted s-sparse. Indeed, we can extend the
notions of localization factor (1.1) and D-RIP (2.1) to the weighted sparsity setting. It should be clear
from context which definition we refer to in the remainder.

Definition 2.4. For a dictionary D ∈C
n×N , weights ω1,ω2, . . . ,ωN ≥ 1, and a sparsity level s, we define the

(weighted) localization factor as

ηω,s,D = η
def= sup

‖Dz‖2=1,‖z‖ω,0≤s

‖D∗D z‖ω,1p
s

, (2.7)

Definition 2.5. Fix a dictionary D ∈ C
n×N , weights ω1,ω2, . . . ,ωN ≥ 1, and matrix A ∈ C

m×n . The matrix
A satisfies the D-ωRIP with parameters δ and s if

(1−δ)‖D x‖2
2 ≤ ‖AD x‖2

2 ≤ (1+δ)‖D x‖2
2 (2.8)

for all weighted s-sparse vectors x ∈C
N .

When D is an orthonormal matrix, this definition reduces to the definition ωRIP from [RW13]. More
generally, weights allow the flexibility to incorporate prior information about the support set and allow
for weaker assumptions on the dictionary D . In particular, a larger weight assigned to a dictionary el-
ement will allow for this element to have larger inner products with the measurement basis vectors. In
this regard, a basis version of our result is the following variant of a theorem from [RW13]:

Proposition 2.6 (from [RW13]). Fix a probability measure ν on [n], sparsity level s < n, and constant 0 <
δ< 1. Let D ∈C

n×n be an orthonormal matrix. Let A be an orthonormal system with respect to ν as in Def-

inition 2.3 with rows denoted by ri , and consider weights ω1,ω2, . . . ,ωn ≥ 1 such that maxi |〈ri ,d j 〉| ≤ω j .

Construct an m×n submatrix Ã of A by sampling rows of A according to the measure ν and renormalizing

each row by
√

1
m . Provided

m ≥Cδ−2s log3(s) log(n), (2.9)

then with probability 1−nc log3 s , the submatrix Ã satisfies the ωRIP with parameters s and δ.

An adjusted sampling density for the case when certain vectors in the measurement basis yield larger
inner products is obtained via the local coherence as defined in the following.

Definition 2.7 (Local coherence, [KW14, RW12]). The local coherence of a set Φ = {ϕi }k
i=1 ⊂ C

n with re-

spect to another set Ψ= {ψ j }ℓ
j=1 ⊆C

n is the function µloc(Φ,Ψ) ∈R
k defined coordinate-wise by

µloc
i (Φ,Ψ) =µloc

i = sup
1≤ j≤ℓ

|〈ϕi ,ψ j 〉|, i = 1,2, . . . ,k .



8 FELIX KRAHMER, DEANNA NEEDELL, AND RACHEL WARD

When Φ and Ψ are orthonormal bases, and a subset of Φ is used for sampling while Ψ is the basis in
which sparsity is assumed, the main point is that renormalizing the different vectors ϕi in the sampling
basis by respective factors 1

µloc
i

does not affect orthogonality of the rows of Φ∗Ψ. In this way, the larger in-

ner products can be reduced in size. To compensate for this renormalization and retain the orthonormal
system property in the sense of Definition 2.3, one can then adjust the sampling measure. The resulting
preconditioned measurement system with variable sampling density will then yield better bounds K in
Equation (2.5). This yields the following estimate for the restricted isometry property.

Proposition 2.8 ([KW14, RW12]). Let Φ = {ϕ j }n
j=1 and Ψ = {ψk }n

k=1 be orthonormal bases of C
n . As-

sume the local coherence of Φ with respect to Ψ is pointwise bounded by the function κ/
p

n ∈ C
n , that

is sup
1≤k≤n

|〈ϕ j ,ψk〉| ≤ κ j . Suppose

m ≥Cδ−2‖κ‖2
2s log3(s) log(n), (2.10)

and choose m (possibly not distinct) indices j ∈ [n] i.i.d. from the probability measure ν on [n] given by

ν( j )=
κ2

j

‖κ‖2
2

.

Call this collection of selected indices Ω (which may possibly be a multiset). Consider the matrix A ∈C
m×n

with entries

A j ,k = 〈ϕ j ,ψk〉, j ∈Ω,k ∈ [n], (2.11)

and consider the diagonal matrix W = diag(w) ∈ C
n×n with w j = ‖κ‖2/κ j . Then with probability at least

1−n−c log3(s), the preconditioned matrix 1p
m

W A has the restricted isometry property with parameters δ

and s.

Remark. In case Φ and Ψ are incoherent, or if κ j = K n−1/2 uniformly for all j , then local coherence
sampling as above reduces to the previous results for incoherent systems: in this case, the associated

probability measure ν is uniform, and the preconditioned matrix reduces to 1p
m

W A =
√

n
m

A.

Our main result on D-RIP for redundant systems and structured measurements (Theorem 3.1) im-
plies a strategy for extending local coherence sampling theory to dictionaries, of which Theorem 1.2 is
a special case. Indeed, if Ψ = {ψ j }, more generally, is a Parseval frame and Φ = {ϕi } is an orthonormal

matrix, then renormalizing the different vectors ϕi in the sampling basis by respective factors 1
µloc

i

still

does not affect orthogonality of the rows of Φ∗Ψ. We have the following corollary of our main result; we
will establish a more general result, Theorem 3.1 in the next section, from which both Theorem 1.2 and
Corollary 2.9 follow.

Corollary 2.9. Fix a sparsity level s < N , and constant 0 < δ < 1. Let D ∈ C
n×N be a Parseval frame with

columns {d1, . . . ,dN }, let B with rows {b1, . . . ,bn} be an orthonormal basis of Cn , and assume the local

coherence of D with respect to B is pointwise bounded by the function κ ∈C
n , that is sup

1≤ j≤N

|〈d j ,bk〉| ≤ κk .

Consider the probability measure ν on [n] given by ν(k) = κ2
k

‖κ‖2
2

along with the diagonal matrix W =
diag(w) ∈ C

n×n with wk = ‖κ‖2/κk . Note that the renormalized system Φ = 1p
m

W B is an orthonormal

system with respect to ν, bounded by ‖κ‖2. Construct B̃ ∈C
m×n by sampling vectors from B i.i.d. from the

measure ν, and consider the localization factor η= ηD,s of the frame D as in Definition 1.1,

As long as

m ≥Cδ−2η2‖κ‖2
2s log3(sη2) log(N )

then with probability 1−N− log3(2s), the following holds for every signal f : the solution f ♯ of the weighted

ℓ1-analysis problem

f ♯ = argmin
f̃ ∈Cn

‖D∗ f̃ ‖1 such that ‖
1

p
m

W (B̃ f̃ − y )‖2 ≤ ε, (P1,w )
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with y = B f +e for noise e with weighted error ‖ 1p
m

W e‖2 ≤ ε satisfies

‖ f ♯− f ‖2 ≤C1ε+C2
‖D∗ f − (D∗ f )s‖1p

s
. (2.12)

Here C ,C1, and C2 are absolute constants independent of the dimensions and the signal f .

The resulting bound involves a weighted noise model, which can, in the worst case, introduce an

additional factor of
√

n
m maxi

p
ν(i ). We believe however that this noise model is just an artifact of the

proof technique, and that the stability results in Corollary 2.9 should hold for the standard noise model
using the standard ℓ1-analysis problem (P1). In the important case where D is a wavelet frame and B is
the orthonormal discrete Fourier matrix, we believe that total variation minimization, like ℓ1-analysis,
should give stable and robust error guarantees with the standard measurement noise model. Indeed,
such results were recently obtained for variable density sampling in the case of orthonormal wavelet
sparsity basis [Poo15a], improving on previous bounds for total variation minimization [KW14, NW13b,
NW13a, AHPR13]. Generalizing such results to the dictionary setting is indeed an interesting direction
for future research.

3. OUR MAIN RESULT AND ITS APPLICATIONS

As mentioned in the previous section, the case of incoherence between the sampling basis and the
sparsity dictionary, as in Theorem 1.2, is a special case of a bounded orthonormal system. The following
more technical formulation of our main result in the framework of such systems covers both weighted
sparsity models and local coherence and as we will see, implies Theorem 1.2. The proof of Theorem 3.1
is presented in Section 4.

Theorem 3.1. Fix a probability measure ν on [N ], sparsity level s < N , and constant 0 < δ < 1. Let D ∈
C

n×N be a Parseval frame. Let A be an orthonormal systems matrix with respect to ν with rows ri as in

Definition 2.3, and consider weights ω1,ω2, . . . ,ωN ≥ 1 such that

max
i

|〈ri ,d j 〉| ≤ω j . (3.1)

Define the unrecoverable energy η = ηD,s as in Definition 2.7. Construct an m ×n submatrix Ã of A by

sampling rows of A according to the measure ν. Then as long as

m ≥ Cδ−2sη2 log3(sη2) log(N ), and

m ≥ Cδ−2sη2 log(1/γ) (3.2)

then with probability 1−γ, the normalized submatrix
√

1
m Ã satisfies the D-ωRIP with parameters s and

δ.

Proof of Theorem 1.2 assuming Theorem 3.1: Let B , D and s be given as in Theorem 1.2. We will apply

Theorem 3.1 with ω j = 1 for all j , with ν the uniform measure on [n], sparsity level 2s, γ = N− log3(2s),
δ = 0.08, and matrix A =

p
nB . We first note that since B is an orthonormal basis, that

p
nB is an or-

thonormal systems matrix with respect to the uniform measure ν as in Definition 2.3. In addition, (1.2)

implies (3.1) for matrix A =
p

nB with K =ω j = 1. Furthermore, setting γ= N− log3(2s), (1.3) implies both
inequalities of (3.2) (adjusting constants appropriately). Thus the assumptions of Theorem 3.1 are in

force. Theorem 3.1 then guarantees that with probability 1−γ= 1−N− log3(2s), the uniformly subsampled

matrix
√

1
m (

p
nB̃ ) satisfies the D-ωRIP with parameters 2s and δ and weights ω j = 1. A simple calcula-

tion and the definition of the D-ωRIP (Definition 2.5) shows that this implies the D-RIP with parameters
2s and δ. By Theorem 2.2, (1.4) holds and this completes the proof. ä
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Proof of Corollary 2.9 assuming Theorem 3.1. Corollary 2.9 is implied by Theorem 3.1 because the pre-
conditioned matrix Φ = 1p

m
W B formed by normalizing the i th row of B by ‖κ‖2/κ j constitutes an or-

thonormal system with respect to the probability measure ν(i ) and uniform weights ω j = ‖κ‖2. Then

the preconditioned sampled matrix Φ̃ satisfies the D-RIP for sparsity 2s and parameter δ according to

Theorem 3.1 with probability 1−γ= 1−N− log3(2s). Applying Theorem 2.2 to the preconditioned sampling
matrix Φ̃ and Parseval frame D produces the results in Corollary 2.9. ä

3.1. Example: Harmonic frame with L more vectors than dimensions. It remains to find examples of a
dictionary with bounded localization factor and an associated measurement system for which incoher-
ence condition (1.2) holds. Our main example is that of sampling a signal that is sparse in an oversampled
Fourier system, a so-called harmonic frame [VW04]; the measurement system is the standard basis. In-
deed, one can see by direct calculation that the standard basis is incoherent in the sense of (1.2) to any
set of Fourier vectors, even of non-integer frequencies. We will now show that if the number of frame
vectors exceeds the dimension only by a constant, such a dictionary will also have bounded localization
factor. This setup is a simple example, but our results apply, and it is not covered by previous theory.

More precisely, we fix L ∈N and consider N = n +L vectors in dimension n. We assume that L is such
that Ls ≤ N

4 . Then the harmonic frame is defined via its frame matrix D = (d j k ), which results from the
N ×N discrete Fourier transform matrix F = ( f j k ) by deleting the last L rows. That is, we have

d j k = 1p
n+L

exp(
2πi j k

n+L
) (3.3)

for j = 1. . .n and k = 1. . . N . The corresponding Gram matrix satisfies (D∗D)i i = n
n+L

and, for j 6= k , by
orthogonality of F ,

|(D∗D) j k | =

∣∣∣∣∣(F∗F ) j k −
N∑

ℓ=n+1

f̄ℓ j fℓk

∣∣∣∣∣=
∣∣∣∣∣

N∑

ℓ=n+1

1
n+L exp(

−2πiℓ j
n+L )exp( 2πiℓk

n+L )

∣∣∣∣∣≤
L

n+L

As a consequence, we have for z s-sparse and j ∉ supp z

|(D∗D z)[ j ]| =

∣∣∣∣∣
∑

k∈suppz

(D∗D) j k z[k]

∣∣∣∣∣≤
L

n+L ‖z‖1

where we write z[k] to denote the kth index of the vector z . Similarly, for j ∈ supp z , we obtain

|(D∗D z)[ j ]− z[ j ]| =

∣∣∣∣∣
∑

k∈suppz ,k 6= j

(D∗D) j k z[k]

∣∣∣∣∣≤
L

n+L ‖z‖1.

So we obtain, using that D∗ is an isometry,

‖D z‖2
2 = ‖D∗D z‖2

2 ≥
∑

k∈suppz

(
(D∗D z)[k]

)2 ≥
∑

k∈suppz

(|z[k]|− |(D∗D z)[k]− z[k]|)2

≥
∑

k∈suppz

|z[k]|2−2 L
n+L ‖z‖1|z[k]|

= ‖z‖2
2 −

2L
n+L ‖z‖2

1 ≥ (1− 2Ls
N )‖z‖2

2 ≥
1
2‖z‖2

2.

That is, for z with ‖D z‖2 = 1, one has ‖z‖2 ≤
p

2. Consequently,

η= sup
‖Dz‖2=1,‖z‖0≤s

‖D∗D z‖1p
s

= sup
‖Dz‖2=1,‖z‖0≤s

‖(D∗D z)|(supp z)‖1 +‖(D∗D z)|(supp z)c ‖1p
s

≤ sup
‖Dz‖2=1,‖z‖0≤s

‖D∗D z‖2 +
‖(D∗D z)|(supp z)c‖1p

s
= 1+ sup

‖Dz‖2=1,‖z‖0≤s

1p
s

∑

j∈(supp z)c

|(D∗D z)[ j ]|

≤ 1+ sup
‖Dz‖2=1,‖z‖0≤s

1p
s

(N − s) L‖z‖1
N ≤ 1+ (N−s)L‖z‖2

N ≤ 1+L
p

2.

ä
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Remark. We note here that the dependence on L seems quite pessimistic. Indeed, one often instead
considers the redundancy of the dictionary, namely r = N /n. In this case, even for redundancy r = 2
we would have L = n and require a full set of measurements according to this argument. However, we
conjecture that rather than a dependence on L one can reduce the dependence to one on the redundancy
r . Intuitively, due to the restriction of Parseval normalization on the frame D , there is a tradeoff between
redundancy and coherence; an increase in redundancy should be in some way balanced by a decrease
in coherence. This conjecture is supported by numerical experiments and by theoretical lower bounds
for robust recovery in the co-sparse model [GPV15], but we leave a further investigation to future work.

This example also plays an important role in the so-called off the grid compressed sensing setting
[TBSR12, SB12]. In this framework, the signal frequencies are not assumed to lie on a lattice but instead
can assume any values in a continuous interval. When the signal parameters do not lie on a lattice,
the signal may not be truly sparse in the discrete dictionary, and refining the grid to incorporate finer
frequencies may lead to numerical instability. In addition, typical compressed results are difficult to
apply under discretization, making off the grid approaches advantageous. The example we discuss above
gives a possible compromise to nearly on the grid recovery from linear measurements.

Another line of research that relates to this example is that of superresolution (see, e.g., [CFG14,
CFG13] and many followup works). These works study the recovery of frequency sparse signals from
equispaced samples. No assumptions regarding an underlying grid are made, but rather one assumes a
separation distance between the active frequencies. In this sense, the nearly-on-the-grid example just
discussed satisfies their assumption as the corresponding separation distance is close to the grid spac-
ing. However, the nature of the resulting guarantees is somewhat different. For example, in these works,
every deviation from an exactly sparse signal must be treated as noise, whereas in our result above we
have an additional term capturing the compressibility of a signal. We think that an in-depth comparison
of the two approaches is an interesting topic for future work.

3.2. Example: Fourier measurements and Haar frames of redundancy 2. In this subsection, we present
a second example of a sampling setup that satisfies the assumptions of incoherence and localization
factor of Theorem 3.1. In contrast to the previous example, one needs to precondition and adjust the
sampling density to satisfy these assumptions according to Corollary 2.9, which allows us to understand
the setup of the Fourier measurement basis and a 1D Haar wavelet frame with redundancy 2, as intro-
duced in the following. Let n = 2p . Recall that the univariate discrete Haar wavelet basis of C2p

consists
of h0 = 2−p/2(1,1, . . . ,1),h = h0,0 = 2−p/2(1,1, . . . ,1,−1,−1, . . . ,−1) and the frame basis elements hℓ,k given
component wise by

hℓ,k [ j ]= h[2ℓ j −k]=





2
ℓ−p

2 for k2p−ℓ ≤ j < k2p−ℓ+2p−ℓ−1

−2
ℓ−p

2 for k2p−ℓ+2p−ℓ−1 ≤ j < k2p−ℓ+2p−ℓ

0 else,

for any (ℓ,k) ∈ Z
2 satisfying 0 < ℓ< p and 0 ≤ k < 2ℓ. The corresponding basis transformation matrix is

denoted by H .
One can now create a wavelet frame of redundancy 2 by considering the union of this basis and a

circular shift of it by one index. That is, one adds the vector h̃0 = h0 = 2−p/2(1,1, . . . ,1) and vectors of the
form h̃ℓ,k [ j ] = hℓ,k [ j +1] for all (ℓ,k). Here we identify 2p +1 = 1. This is also an orthonormal basis –

its basis transformation matrix will be denoted by H̃ in the following, and the matrix D ∈ C
2p×2p+1

with
columns

D(:, (ℓ,2k −1)) =
1
p

2
hℓ,k ,

D(:, (ℓ,2k)) =
1
p

2
h̃ℓ,k (3.4)

forms a Parseval frame with redundancy 2.
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Corollary 2.9 applies to the example where sparsity is with respect to the redundant Haar frame and
where sampling measurements are rows {rk } from the n ×n orthonormal DFT matrix. Indeed, following
Corollary 6.4 of [KW14], we have the following coherence estimates:

max
ℓ, j

{|
〈

rk ,hℓ, j

〉
|, |

〈
rk , h̃ℓ, j

〉
|} ≤κk := 3

p
2π/

p
k.

Since ‖κ‖2
2 = 18π

∑n
k=1 k−1 ≤ 18π log2(n) grows only mildly with n, the Fourier / wavelet frame example

is a good fit for Corollary 2.9, provided the localization factor of the Haar frame is also small. We will
show that the localization factor of the Haar frame is bounded by η≤

√
2log2(n), leading to the following

corollary.

Corollary 3.2. Fix a sparsity level s < N , and constant 0 < δ< 1. Let D ∈C
n×N (N = 2n) be the redundant

Haar frame as defined in (3.4) and let A ∈ C
n×n with rows {r1, . . . ,rn} be the orthonormal DFT matrix.

Consider the diagonal matrix W =diag(w) ∈C
n×n with wk =C ′(log2(n))−1/2k1/2, and construct Ã ∈C

m×n

by sampling rows from A i.i.d. from the probability measure ν on [n] with power-law decay ν(k)=C k−1.

As long as the number of measurements satisfies m≥C1δ
−2s log3(s log(n)) log3(n), then with probability

1−n− log3 s , the following holds for every signal f : the solution f ♯ of the weighted ℓ1-analysis problem

(P1,w ) with y = Ã f +e for noise e with weighted error ‖ 1p
m

W e‖2 ≤ ε satisfies

‖ f ♯− f ‖2 ≤C2ε+C3
‖D∗ f − (D∗ f )s‖1p

s

Here C ,C1,C2, and C3 are absolute constants independent of the dimensions and the signal f .

Proof. To derive this result from Corollary 2.9, it suffices to prove that the redundant Haar frame as de-
fined above has localization factor at most η ≤

√
2log2(n). We will show that for each s-sparse z ∈ R

N ,
D∗D z is at most 3s log2 n-sparse. Here, D∗D is the N ×N Gramian matrix. For that, consider first either
of the two (equal) frame elements 1p

2
h0 and 1p

2
h̃0. Each of these frame elements has non-zero inner

product with exactly two frame elements: 1p
2

h0 and 1p
2

h̃0. So the corresponding columns of D∗D have

only two non-vanishing entries.
Consider then a non-constant frame element 1p

2
hℓ,k . Because H is an orthonormal basis, it is or-

thogonal to all hℓ′,k ′ with (ℓ′,k ′) 6= (ℓ,k), which is why (D∗D)(k ,2ℓ),(k ′,2ℓ′) = (D∗D)(k ,2ℓ−1),(k ′,2ℓ′−1) = 0 for
(ℓ′,k ′) 6= (ℓ,k). So it remains to consider correlations with the h̃ℓ′,k ′ . Again by orthogonality, one has for
(ℓ′,k ′) 6= (ℓ,k)

〈h̃ℓ′,k ′ ,hℓ,k〉 =δ(ℓ′ ,k ′),(ℓ,k) +〈h̃ℓ′,k ′ ,hℓ,k − h̃ℓ,k〉,

where δ(a,b),(c ,d) =
{

1 if (a,b)= (c ,d )

0 else.
denotes the Kronecker delta. By definition, hℓ,k − h̃ℓ,k has only

three non-zero entries. On the other hand, for each level ℓ′, the supports of the h̃ℓ′,k ′ are disjoint for
different values of k ′. So for each ℓ′, the supports of at most 3 of the h̃ℓ′,k ′ can intersect the support
of hℓ,k − h̃ℓ,k . As for ℓ′ = ℓ, one of these h̃ℓ′,k ′ must be h̃ℓ,k , we conclude that for each ℓ′ at most 3 of
the |〈h̃ℓ′,k ′ ,hℓ,k〉| can be nonzero. As there are log2 n levels ℓ′, this contributes at most 3log2 n nonzero
entries in the column of D∗D indexed by (k ,2ℓ). Together with (D∗D)(k ,2ℓ),(k ,2ℓ) = 1 and noting that a
similar analysis holds for columns indexed by (k ,2ℓ−1), we obtain that each column of D∗D has at most
3log2(n)+1 non-zero entries. Now for each s-sparse z , D∗D z is a linear combination of the s columns
corresponding to supp z . Consequently, ‖D∗D z − (D∗D z)s‖0 ≤ 3s log2(n) and thus, by Cauchy-Schwarz
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and noting that for a Parseval frame D , DD∗ is the identity,

η= sup
‖Dz‖2=1,‖z‖0≤s

‖D∗D z‖1p
s

= sup
‖D∗Dz‖2=1,‖z‖0≤s

‖(D∗D z)s‖1 +‖D∗D z − (D∗D z)s‖1p
s

≤ 1+ sup
‖D∗Dz‖2=1,‖z‖0≤s

√
3s log2 n‖D∗D z − (D∗D z)s‖2p

s

≤ 1+ sup
‖D∗Dz‖2=1

√
3log2 n‖D∗D z‖2 = 1+

√
3log2 n.

�

Remark. Note that this proof is closely related to the observation that each signal that is s-sparse in the
Haar frame of redundancy 2 is also O(s log n)-sparse in the Haar wavelet basis. So a number of measure-
ments comparable to the one derived here also allows for recovery of the wavelet basis coefficients. In
addition, however, a more refined analysis suggests that the entries of D∗D z decay quickly - provided
not too many approximate cancellations happen. We conjecture that the number of such approximate
cancellations can be controlled using a more sophisticated analysis, but we leave this to follow-up work.
We hence conjecture that the logarithmic factor can be removed, making the required number of mea-
surements smaller than for a synthesis approach.

4. PROOF OF MAIN RESULT

Our proof of Theorem 3.1 extends the analysis in [RW13], which extends the analysis in [CGV13] to
weighted sparsity and improves on the analysis in [RV08], from orthonormal systems to redundant dic-
tionaries.

Proof of Theorem 3.1. Consider the set

D
def= {u : u ∈C

n ,u = D z ,‖z‖ω,0 ≤ s,‖u‖2 = 1}.

Let Ã be the m×n subsampled matrix of A as in the theorem. Then observe that the smallest value δ=δs

which satisfies the D-ωRIP bound (2.8) for Ã is precisely

δs = sup
u∈D

u∗(Ã∗ Ã − In)u.

Since Ã∗ Ã−In is a self-adjoint operator, we may instead define for any self-adjoint matrix B the operator

|||B |||s
def= sup

u∈D

〈Bu, u〉 .

and equivalently write

δs =
∣∣∣∣∣∣Ã∗ Ã − In

∣∣∣∣∣∣
s .

Our goal is thus to bound this quantity. To that end, let r1,r2, . . . ,rm ∈C
n denote the m randomly selected

rows of A that make up Ã. It follows from Definition 2.3 that Er ∗
i

ri = In for each i , where the expectation
is taken with respect to the sampling measure ν. We thus have

δs =
∣∣∣∣∣∣Ã∗ Ã − In

∣∣∣∣∣∣
s =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

m

m∑

i=1

r ∗
i ri − In

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

=
1

m

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

. (4.1)
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We may bound the moments of this quantity using a symmetrization argument (see, e.g., Lemma 6.7
of [Rau10]):

E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

≤ 2

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

ǫi r ∗
i ri

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

)

= 2Er Eǫ sup
x∈D

|〈
m∑

i=1

ǫi r ∗
i ri x , x〉|

= 2Er Eǫ sup
x∈D

∣∣∣∣∣
m∑

i=1

ǫi |〈ri , x〉|2
∣∣∣∣∣ (4.2)

where ǫi are independent symmetric Bernoulli (±1) random variables.
Conditional on (ri ), we have a subGaussian process indexed by D. For a set T , a metric d , and a given

t > 0, the covering number N (T,d , t ) is defined as the smallest number of balls of radius t centered at
points of T necessary to cover T with respect to d . For fixed ri , we work with the (pseudo-)metric

d (x , z)=
(

m∑

i=1

(|〈ri , x〉|2 −|〈ri , z〉|2)2

)1/2

(4.3)

Then Dudley’s inequality [Dud67] implies

Eǫ sup
x∈D

|〈
m∑

i=1

ǫi r ∗
i ri x , x〉| ≤ 4

p
2

∫∞

0

√
log(N (D,d , t ))d t . (4.4)

Continuing as in [RW13], inspired by the approach of [CGV13], we estimate the metric d using Hölder’s
inequality with exponents p ≥ 1 and q ≥ 1 satisfying 1/p +1/q = 1 to be specified later. Using also the
reverse triangle inequality, we have for x , z ∈D,

d (x , z)≤ 2sup
u∈D

(
m∑

i=1

|〈ri ,u〉|2p

)1/(2p) ( m∑

i=1

|〈ri , x − z〉|2q

)1/(2q)

. (4.5)

We will optimize over the values of p, q later on. To further bound this quantity, we have |
〈

ri , d j

〉
| ≤ω j

by assumption. Recall the localization factor in Definition 2.4. Then, fixing u ∈D such that u = D z with
‖z‖ω,0 ≤ s, we have for any realization of (ri ),

| 〈ri , u〉 | = |
〈

DD∗ri , u
〉
|

= |
〈

D∗ri , D∗D z
〉
|

≤
∑

j

|
〈

ri , d j

〉
| j |(D∗D z) j |

≤
∑

j

ω j |(D∗D z) j |

= ‖D∗D z‖ω,1

≤
p

sη. (4.6)

The first line uses that D is a Parseval frame, while the last line uses the definition of η. The quantity sη2

will serve as a rescaled sparsity parameter throughout the remaining proof.
Continuing from (4.5), we may bound

sup
u∈D

(
m∑

i=1

|〈ri ,u〉|2p

)1/(2p)

= sup
u∈D

(
m∑

i=1

|〈ri ,u〉|2|〈ri ,u〉|2p−2

)1/(2p)

≤ (sη2)(p−1)/(2p)

(
sup
u∈D

m∑

i=1

|〈ri ,u〉|2
)1/(2p)

. (4.7)



COMPRESSIVE SENSING WITH REDUNDANT DICTIONARIES AND STRUCTURED MEASUREMENTS 15

We now introduce the (semi-)norm

‖u‖X ,q :=
(

m∑

i=1

|〈ri ,u〉|2q

)1/(2q)

.

Using basic properties of covering numbers and the bound in (4.4), we obtain

Eǫ sup
u∈D

|〈
m∑

i=1

ǫi r ∗
i ri u,u〉| ≤C1(sη2)(p−1)/(2p)

(
sup
u∈D

m∑

i=1

|〈ri ,u〉|2
)1/(2p) ∫∞

0

√
log(N (D,‖ ·‖X ,q , t ))d t (4.8)

where C1 is an absolute constant.
We now estimate the key integral above in two different ways, the first bound being better for small

values of t , the second bound better for larger values of t .

Small values of t : : Following (4.6) and (4.7) and since ‖u‖2 = 1 for all u ∈ D, we have that for any
u ∈D,

‖u‖X ,q ≤ (sη2)1/2m1/(2q). (4.9)

Standard covering arguments show that for any seminorm ‖·‖, one has for the unit ball B‖·‖ ⊂C
s

that N (B‖·‖,‖·‖, t )≤ (1+1/t )2s . Thus for Λ⊂ {1, . . . , N } with |Λ| = s′, one can define the seminorm

‖·‖Λ on C
s ′ by

‖y‖Λ
def=

(
m∑

i=1

|
〈

D∗
Λr ∗

i , y
〉
|2q

)1/(2q)

,

and observe that for u with ‖u‖X ,q ≤ 1 and u = DΛy for y ∈ C
s ′ that one has the equivalence

‖y‖Λ =‖u‖X ,q . Applying this equivalence for Λ= supp(z) and y = zΛ, we have that

N (D,‖ ·‖X ,q , t )≤
∑

ω(Λ)≤s

N (B‖·‖Λ ,m1/(2q)‖ ·‖2

√
(sη2), t )

≤
(

N

s

)
(1+

√
(sη2)m1/(2q)t−1)2s

≤ (eN /s)s(1+
√

(sη2)m1/(2q)t−1)2s ,

where we have applied [FR13, Proposition C.3] in the final line.
Large values of t : : To get a bound for larger values of t , we will utilize another embedding, and for

that reason we define the auxiliary set

Daux
def= {u : ‖D∗u‖ω,1 ≤ 1,u = D z ∈C

n ,‖z‖ω,0 ≤ s}=
⋃

Λ:ω(Λ)≤s

B
Λ
1 ,

where B
Λ
1

def= {u : ‖D∗u‖ω,1 ≤ 1,u = D z ∈ C
n , supp(z) = Λ}. Then we have the embedding D ⊂√

(sη2)Daux since for any u ∈D, ‖D∗u‖ω,1 ≤
√

(sη2) by definition of the localization factor η.
We now use a variant of Maurey’s lemma [Car85], precisely, the variant as stated in Lemma 5.3

in [RW13], in order to deduce a different covering number bound:

Lemma 4.1 (Maurey’s lemma). For a normed space X , consider a finite set U ⊂ X of cardinality

N , and assume that for every L ∈N and (u1, . . . ,uL) ∈U L , Eǫ‖
∑L

j=1 ǫ j u j‖X ≤ A
p

L, where ǫ denotes

a Rademacher vector. Then for every t > 0,

logN (conv(U ),‖ ·‖X , t )≤ c(A/t )2 log(N ),

where conv(U ) is the convex hull of U .

As a corollary, we have the following.
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Corollary 4.2. For every t > 0,

log(N (D,‖ ·‖X ,q , t )≤C

(
2e−1/2

√
2qm1/(2q)

√
2(sη2)t−1

)2

log(N ).

Proof of Corollary 4.2. Consider Lemma 4.1 with norm ‖·‖X ,q , parameter A = 2e−1/2
√

2qm1/(2q),
and U = {±ω−1

j
D∗(e j ),±iω−1

j
D∗(e j ), j ∈ [N ]}. First observe that

D ⊂
√

(sη2)Daux ⊂
√

2(sη2)conv(U ).

For a Bernoulli random vector ǫ= (ǫ1, . . . ,ǫL) and u1, . . . ,uL ∈U we have

Eǫ‖
L∑

j=1

ǫ j u j‖X ,q ≤
(
E‖

L∑

j=1

ǫ j u j‖
2q

X ,q

)1/(2q)

=
(
E

m∑

ℓ=1

|〈rℓ,
L∑

j=1

ǫ j u j 〉|2q

)1/(2q)

=
(

m∑

ℓ=1

E|〈rℓ,
L∑

j=1

ǫ j u j 〉|2q

)1/(2q)

≤ 2e−1/2
√

2q

(
m∑

ℓ=1

‖(〈rℓ,u j 〉)L
j=1‖

2q

2

)1/(2q)

, (4.10)

where we applied Khintchine’s inequality [Khi23] in the last step. Since each u j consists of a

multiple of a single column of D , we also have for each j and i that |
〈

ri , u j

〉
| = |

〈
D∗r ∗

i
, ω−1

j
e j

〉
|

for some coordinate vector e j consisting of all zeros with a 1 in the j th position. Thus |
〈

ri , u j

〉
| ≤

1 for each j and i , which means that ‖(
〈

ri , u j

〉
)L

k=1‖2 ≤
p

L for any L and

Eǫ‖
L∑

j=1

ǫ j u j‖X ,q ≤ 2e−1/2
√

2qm1/(2q)
p

L = A
p

L.

The corollary then follows from Lemma 4.1. �

We have thus obtained the two bounds for t > 0:

√
log(N (D,‖·‖X , t ))≤

√

s log(eN /s)+2s log

(
1+2

√
(sη2)m1/(2q)t−1

)

√
log(N (D,‖·‖X , t ))≤C

p
qm1/(2q)

√
(sη2)t−1

√
log(N ).

We may now bound the integral in (4.4). Without loss, we take the upper integration bound as t0 =√
(sη2)m1/(2q) because, for t > t0, we have N (D,‖ ·‖X ,q , t ) = 1 by (4.9). Splitting the integral in two parts

and using our covering number bounds, we have for α ∈ (0, t0),
∫∞

0

√
log(N (D,‖ ·‖X ,q , t ))d t

≤
∫α

0

√

s log(eN /s)+2s log

(
1+2

√
(sη2)m1/(2q)t−1

)
d t +C1

p
qm1/(2q)

√
(sη2)

∫t0

α
t−1d t

≤α
√

s log(eN /s)+
p

2sα

√
log(e(1+

√
(sη2)m1/(2q))α−1 +C2

√
qm1/q (sη2) ln(4N ) log(

√
(sη2)m1/(2q)/α)
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where in the last step we have utilized that for a > 0,
∫a

0

√
ln(1+ t−1)d t ≤ a

√
ln(e(1+a−1)) (see Lemma

10.3 of [Rau10]). Choosing α=m1/(2q) yields

∫∞

0

√
log(N (D,‖ ·‖X ,q , t ))d t ≤C3

√
q(sη2)m1/q log(N ) log2(sη2).

Combining this with (4.1), (4.2) and (4.8),we have

Eδs ≤
C3(sη2)(p−1)/(2p)

√
qm1/q (sη2) log(N ) log2(sη2)

m
Esup

x∈D

(
m∑

i=1

|〈ri , x〉|2
)1/(2p)

≤
C3(sη2)1/2+(p−1)/(2p)

√
q log(N ) log2(sη2)

m1−1/(2q)m−1/(2p)
E

(
1

m

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

r ∗
i ri − In

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

+|||In |||s

)1/(2p)

≤
C3(sη2)1/2+(p−1)/(2p)

√
q log(N ) log2(sη2)

m1/2

√
Eδs +1.

Above we applied Hölder’s inequality and used that 1/q + 1/p = 1 as well as p ≥ 1. We now choose

p = 1+1/log(sη2) and q = 1+ log(sη2) to give (sη2)(p−1)/(2p) ≤ (sη2)(p−1)/2 = (sη2)1/(2 log(sη2)) = e1/2 and

Eδs ≤C4

√
2log(N ) log2(sη2)/m

√
Eδs +1.

Squaring this inequality and completing the square finally shows that

Eδs ≤C5

√
(sη2) log(N ) log3(sη2)

m
, (4.11)

provided the term under the square root is at most 1. Then Eδs ≤ δ/2 for some δ ∈ (0,1) if

m ≥C6δ
−2(sη2) log3(sη2) log(N ). (4.12)

It remains to show that δs does not deviate much from its expectation. For this probability bound,
we may write δs as the supremum of an empirical process as in [[Rau10], Theorem 6.25] and apply the
following Bernstein inequality for the supremum of an empirical process:

Theorem 4.3 ([Bou03], Theorem 6.25 of [Rau10]). Let F be a countable set of functions f : Cn → R. Let

Y1, . . . ,Ym be independent copies of a random vector Y on C
n such that E f (Y ) = 0 for all f ∈F , and assume

f (Y ) ≤ 1 almost surely. Let Z be the random variable Z = sup f ∈F

∑m
ℓ=1 f (Yℓ), and EZ its expectation. Let

σ2 > 0 such that E[ f (Y )2] ≤σ2 for all f ∈F . Then, for all t > 0,

P(Z ≥ EZ + t )≤ exp

(
−

t 2

2(mσ2 +2EZ )+2t /3

)
(4.13)

We apply this theorem to provide a probability bound. Let fz,w (r )= Re(〈(r ∗
i

ri − I)z, w〉) so that

mδs =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

= sup
(z,w)∈D,

m∑

i=1

fz,w (ri ).

Since Er ∗
i

ri = I we have E fz,w (r ) = 0. Moreover, | fz,w (r )| ≤ maxz∈D |〈ri , z〉|2+1 ≤ sη2+1. For the variance

term, we have E| fz,w (ri )|2 = E‖(r ∗
i

ri − I)z‖2
2 ≤ (sη2 +1)2.
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Fix δ ∈ (0,1), and suppose the number of measurements m satisfies (4.12) so that Eδs ≤ δ/2. Then it
follows

P(δs ≥ δ) ≤ P(δs ≥ Eδs +δ/9)

= P

(∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

≥ E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

+δm/9

)

= P

(
1

sη2 +1

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

≥
1

sη2 +1
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
r ∗

i ri −Er ∗
i ri

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

+
δm/9

sη2 +1

)

≤ exp


−

( δm/9
sη2+1 )2

2m(1+ δ
sη2+1 )+ 2

3 ( δm/9
sη2+1 )




≤ exp

(
−

δ2m

C7(sη2)

)
. (4.14)

The last term is bounded by γ ∈ (0,1) if m ≥Cδ−2(sη2) log(1/γ). Together, we have δs ≤ δ with probability
at least 1−γ if

m ≥C8δ
−2sη2 max

{
log3(sη2) log(N ), log(1/γ)

}
.

This completes the proof. �

5. CONCLUSION

We have introduced a coherence-based analysis of compressive sensing when the signal to be recov-
ered is approximately sparse in a redundant dictionary. Whereas previous theory only allowed for un-
structured random sensing measurements, our coherence-based analysis extends to structured sensing
measurements such as subsampled uniformly bounded bases, bringing the theory closer to the setting
of practical applications. We also extend the theory of variable density sampling to the dictionary setting,
permitting some coherence between sensing measurements and sparsity dictionary. We further extend
the analysis to allow for weighted sparse expansions. Still, several open questions remain. While we
provided two concrete examples of dictionaries satisfying the bounded localization factor condition re-
quired by our analysis – the oversampled DFT frame and redundant Haar wavelet frame – these bounds
can almost certainly be extended to more general classes of dictionaries, and improved considerably in
the case of the oversampled DFT frame. We have also left several open problems related to the full anal-
ysis for variable density sampling in this setting, including the removal of a weighted noise assumption
in the ℓ1-analysis reconstruction method. Finally, we believe that the D-RIP assumption used through-
out our analysis can be relaxed, and that a RIPless analysis [CP12] should be possible and permit non-
uniform signal recovery bounds at a reduced number of measurements. It would also be useful to ex-
tend our results to measurement matrices constructed in a deterministic fashion for those applications
in which randomness is not admissable; of course this is a challenge even in the classical setting [DeV07].
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