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Abstract 

Strawbale construction is a sustainable, viable alternative to conventional building practices. As a 

newly introduced appendix to the International Residential Code (IRC), the strawbale construction 

requirements may benefit from further evaluation and possible refinement. Such evaluation and 

refinement may lead towards code change proposals that will improve the provisions and make 

strawbale construction safer and more accessible to the general public. This seismic test series 

addressed the effect of mesh wire type on ductility and the validity of the existing wall slenderness 

limits. The tests focused on slender walls dominated by flexural deformations. Welded wire mesh 

wall performed better than the woven wire mesh wall of the same detailing, yet fell short of 

expected values. Slenderness must continue to be analyzed as the results of a wall using 14” bales 

were impacted by bale irregularity. The additional tests done as part of this thesis, including 

vertical load tests and materials testing, added to the understanding of strawbale construction 

performance and expanded the corpus of strawbale wall test data. All tested walls performed 

satisfactorily under vertical loading in post-seismic conditions. The purpose of this test series was 

to validate and potentially suggest improvements to the building code provisions to enhance the 

prevalence and safety of strawbale construction. 
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1.0 Introduction 

As a sustainable alternative to conventional building practices, strawbale construction has steadily 

grown in popularity throughout the United States. Its recent addition to the International 

Residential Code (IRC) has catapulted strawbale construction into the field as a viable material 

option for homes internationally. Building primarily on research completed at the University of 

Illinois and Santa Clara University, as discussed in the Literature Review, the experiments 

described here aim to make strawbale construction safer and more accessible to populations across 

the world. This focus on lateral seismic testing adds valuable data to the body of information 

currently available on strawbale structures. 

1.1 Importance and Ethics of Strawbale Research 

A lack of knowledge regarding strawbale seismic performance underlies the need for a better 

understanding of strawbale construction. A significant effort to distill the current 

understanding of strawbale performance and construction methods led to the approval of the 

Appendix on Strawbale Construction, which was published in the 2015 International 

Residential Code (IRC Appendix S). The Appendix provides uniformly applicable provisions 

for strawbale construction that impact the wellbeing of people using strawbale structures in 

seismic zones. As knowledge of strawbale construction continues to develop, including 

thorough experiments on strawbale walls and buildings, proposals to update the Appendix may 

be necessary. Additionally, more time and data is required to sufficiently understand strawbale 

wall systems so that they can also be incorporated into the International Building Code (IBC), 

as well as validating existing provisions and analyzing potential improvements. The test series 

outlined in this paper intends to further that knowledge by examining the influence of mesh 

type on the ductility of slender walls (dominated by flexure) and the validity of code limitations 

on bale thickness and slenderness limits.  

The importance of pursuing strawbale construction lies in the material’s accessibility and the 

sustainability of its components. Strawbale construction has been lauded for its 

environmentally friendly nature. Straw bales are formed from the stalks of agricultural 

products such as wheat, rice, oat, barley, rye and other cereal grains (IRC, 2015). Generally 

seen as a waste product or byproduct of agricultural production of cereal grains, straw bales 

are often used for livestock bedding and fuel. Straw is also left in fields or baled and sent to 
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landfills, where they decompose (Sodagar, et al., 2011). Straw bales used for construction act 

as carbon sinks, however, instead of releasing CO2 via flame or decomposition. According to 

a 2011 study on “the carbon-reduction potential of straw-bale housing,” straw bale sequesters 

1.35 pounds of CO2 per pound of bale; if a bale weighs approximately 50 pounds, then it 

sequesters approximately 68 pounds of CO2 (Sodagar, et al., 2011). The same study states that 

timber also boasts a negative carbon footprint, but its sequestration rate was estimated to be 

1.2 pounds of CO2 per pound of timber. These values correspond purely to the material 

properties, and do not incorporate carbon emissions associated with the transportation of 

materials. If using locally sourced straw bales, the potential environmental benefit could be 

even greater per pound of material than the carbon savings of using timber if it comes from 

several states away. In either case, both materials work together in strawbale structures to 

contribute a negative carbon footprint. 

With regard to the mechanical properties of strawbale walls, most existing data comes from a 

limited number of tests, with even fewer performed specifically to test strawbale wall seismic 

capacity. Prior to the consensus of the 2015 IRC, the maximum allowed vertical load varied 

by jurisdiction: 17.2 kPa [2.5 psi] per Arizona Standards, 19.1 kPa [2.8 psi] per Austin 

Standards, and 11.7 kPa [1.7 psi] per the California Building Standards Code (CBSC) (Swan, 

et al., 2011). Additionally, different jurisdictions required different details, plaster mixes, 

strengths, and other strawbale wall properties, which led to general confusion regarding which 

regulations applied where. Despite the addition of IRC Appendix S, some confusion still 

remains. For example, failure modes cannot always be accurately predicted; common modes 

of failure include buckling, cracks in the plaster, and excessive displacement (Kim, et al., 

2012).  The lack of scientific data concerning strawbale construction currently limits its use, 

and potential inaccuracies within the code can endanger those who use it. The intention of this 

project was to add to the growing body of experimental data, and to fulfill our responsibility 

as engineers to contribute to public safety. 

Strawbale construction is a sustainable alternative to standard building practices, both by using 

locally sourced materials and materials that act as carbon sinks (Moga, 2015). Additionally 

straw bales in buildings act as thermal insulation, which reduces electricity demands for 

heating and cooling during winter and summer months (Sodagar, et al., 2011). A lack of 
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regulatory knowledge, however, currently prevents strawbale construction from gaining more 

mainstream use and acceptance. The thickness of strawbale walls also acts as a negative against 

strawbale construction. In practice, to shelter the walls from rain, more roofing and timber is 

required on strawbale homes to cover the same interior space protected by masonry or timber 

walls. Further testing will help establish a firmer strawbale database, allow for a more universal 

set of standards across multiple jurisdictions, and give builders clearer expectations on the 

seismic performance of strawbale structures. This testing will increase the safety and 

accessibility of a sustainable construction method, which is key to tackling the climate change 

issues the world faces. 

1.2 Objectives 

In 2013 a strawbale code was proposed to the International Building Code (IBC), which 

provided criteria for engineering strawbale wall systems for gravity, wind, and earthquake 

loads. These provisions were met with resistance and rejected by the IBC council. The IRC 

proposal was adopted into the 2015 IRC, and it includes required lengths of walls with different 

plasters for wind and earthquake resistance. To further refine the information in the IRC, the 

experiments in this test series look at two main objectives: 

1. Evaluate the performance of two wire mesh types: welded and woven wire mesh. 

2. Empirically examine the code slenderness limits using small straw bales. 

The background for these objectives is described below. 

1.2.1 Background on Objective 1 

The plaster reinforced with wire mesh that encases the bales in strawbale walls provides 

flexural and shear strength necessary to withstand powerful seismic loading. The straw 

bales themselves and the plaster itself provide little, if any, tensile strength. Flexural 

resistance imposes tensile demands on the wire mesh within the plaster. Currently there are 

two types of mesh allowed in code: hexagonal woven wire mesh (termed “woven wire 

mesh,” rather than the much thinner “chicken wire” or “poultry netting” which may be 

made using 20-gauge wire) and 2” x 2” [50mm x 50mm] welded wire mesh. The woven 

wire mesh is also used in practice for the application of stucco (a cement-lime plaster) and 

is made using 17-guage wire, woven to form 1-½” hexagons. Welded wire mesh is made 
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in different gauges; the mesh used in this series and recognized in the IRC is made from 

14-gauge wire, in compliance with ASTM A641 (2003). 

One concern that arises with using woven wire mesh is the possibility that after the 

reinforced plaster mesh cracks, there may be a tendency for the hexagons to elongate, 

representing a potential loss of stiffness. In contrast, the 2”x2” mesh consists of a grid of 

straight wires that are welded to one another.  

The 2015 IRC allows woven wire mesh to be used with cement-lime plaster and lime 

plaster, while the welded wire mesh is allowed for use with all plasters (Appendix S, Table 

AS106.13). While test data provides a basis for the mesh-plaster combinations provided in 

the IRC, results for some mesh-plaster combinations were not available and expectations 

were deduced by interpolation or augmented by calculation. Thus, one objective is to 

validate the behavior of a cement-lime plaster reinforced with woven mesh and quantify 

the impact of using woven wire mesh instead of welded wire mesh. 

1.2.2 Background on Objective 2 

Slenderness limits proposed in the IRC were based on limited empirical data, so the second 

objective of this test series is to assess the slenderness limits when walls are built to the 

limit. The Santa Clara University test frame can fit a maximum wall height of 

approximately 9 feet, which would be too short to test a wall made using full-scale bales. 

Thus, reduced-size bales were used to characterize the behavior of the most slender wall 

allowed. The slenderness limit prescribed in the code for walls made with cement-lime 

plaster is: 

ܪ ൑ 9ܶ଴.ହ     (eq. 1) 

where T is the thickness of the bales and H is the vertical height of the wall, both measured 

in feet (2015 IRC Appendix S, Table AS105.4). A full-scale wall made of 18” wide bales 

can be a maximum of 11.0 feet high. To build a wall that fits in the test frame at the same 

slenderness limit, a 9” thick wall with a nominal height of 8 ft was constructed. 

Specifically, the limit corresponding to a 9” wide bale is 7.8 feet. 



5 
 

Additionally, the 2015 IRC Appendix S (AS 106.13.1) requires the bales to be at least 

fifteen inches thick (excluding the plaster). In some parts of the country, balers produce 

narrower bales that are 14” wide, which would not meet the Appendix S provisions. Thus, 

related to the slenderness limit question is a question whether 14” thick bales are 

acceptable. 

2.0 Literature Review 

This section examines five papers on strawbale wall seismic capacities. A significant lateral testing 

program studied the behavior of six full-scale walls in 2003. While this test program provided 

much valuable data, many questions remained. Several test programs have been conducted at Santa 

Clara University (SCU). Three senior design papers are discussed, as well as one master’s thesis, 

which extended the work done by the same students when they were undergraduates at Santa Clara 

University. This formal literature review, though not fully comprehensive on all research done at 

SCU and elsewhere, serves to contextualize the research presented in this paper. 

2.1 University of Illinois 

2.1.1 In-Plane Cyclic Tests of Plastered Straw Bale Wall Assemblies 

At the University of Illinois, Urbana-Champaign, Cale Ash, Mark Aschheim, and David 

Mar constructed six full-scale plastered straw bale walls, three with cement stucco skins 

and three with earth plaster skins (2003). The walls had different levels of detailing in the 

connections, sill plates, and reinforcement. All walls were 8 feet long and 8 feet tall (1:1 

aspect ratio). 

The cement stucco mix had a sand:cement:lime:water ratio of 1 : 0.25 : 3.75 : 0.8 by 

volume. The slaked lime had been hydrated for five days prior to mixing. The seven-day 

strength of their plaster cubes was 1850 psi on average, and ranged between 2200psi to 

2210psi after 36 days of curing. The cubes were moist-cured. The average plaster strength 

for the earth plaster was inconsistent, as it was 290 psi at 44 days and 160 psi at 94 days. 

Though the SCU cement-lime plaster mix differs from theirs, their results present a useful 

measure for comparison. 
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The results of the three cement stucco walls varied depending on the detailing, though there 

was little difference between the medium- and heavy-detailed walls, Wall E and Wall F 

respectively (Table 1). The authors concluded that the additional nails and staples of the 

“Heavy” detail design did not significantly contribute to wall strength, and the increased 

labor and materials did not justify the use of a “Heavy” detail over a “Medium” detail. 

Table 1: Description of detailing and performance of the three cement stucco straw bale walls in 
Ash, Aschheim, and Mar’s paper. 

Wall 
Name 

Detailing 
Level 

Mesh Type Maximum Lateral 
Force (kips) 

Wall D Light 17 gauge woven wire mesh 6.4 

Wall E Medium 14 gauge 2” x 2” welded wire mesh 19.0 

Wall F Heavy 14 gauge 2” x 2” welded wire mesh 17.9 

 

The desired failure mode, a ductile failure in flexure, occurred only in walls with the 

cement stucco skin, specifically Wall E and Wall F. The failure of Wall D was dominated 

by rocking as the wall unhinged from its sill plate due to cross-grain bending failure at the 

base. Flexural cracks appeared in both Wall E and Wall F, which both experienced a similar 

ductile failure despite differences in detailing. Because all walls were stable at lateral drifts 

exceeding 5% (approximately 5 inches), the tests in our research were comfortably ended 

when the drift reached 5-7% (approximately 5-7 inches). 

The conclusions of this research included recommendations for continued research on 

material testing, specifically (1) component testing of the reinforcement and (2) 

examination of detailing requirements. This conclusion has heavily influenced the 

direction of research at Santa Clara University, described in the following section. 

2.2 Santa Clara University 

2.2.1 Straw Bale Seismic Design Capacities 1 

In 2014 Christopher M. Heckert and Zach T. Looney completed their senior design project 

examining connection reinforcement materials and several boundary conditions. They 

worked with two other senior design groups completing projects in the same year, and the 
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three groups built upon each other. Heckert and Looney’s research focused on a series of 

small-scale tests. 

First, they looked at several wire mesh types. The ones relating to the current research are 

their 14C (“welded wire mesh”) and Stucco Netting (“woven wire mesh”). In Table 2 are 

the average tensile ultimate strengths of their tests. 

Table 2: Listed are the average tensile ultimate strengths for the transverse and longitudinal wires 
of the welded wire mesh (14C) and woven wire mesh (Stucco Netting). 

Average Ultimate Strength (lbs) 

 Transverse Longitudinal 

14C 318 320 

Stucco Netting 132 N/A 

 

They also tested the mesh intersections in both tension and compression. They found that 

the Stucco Netting “weave pulled apart” while the weld in the 14C wire mesh resisted 402 

lbs in compression and 198 lbs in tension. 

Their final series of testing involved testing a 12” x 16” swatch of wire mesh attached to a 

small wooden cap and base and loaded in such a way to experience both tension and shear. 

Heckert and Looney’s results lead to the design of the “strong” and “workhorse” detailing 

used in subsequent testing. The “strong” detail included 6”x6” W1.4 welded wire mesh 

and 2”x2” 16-gauge woven wire mesh along the height of the wall. The connections were 

secured with a combination of 5/16” x 3” hot-dipped galvanized (HDG) lag screws and 16 

gauge 7/16” crown 1-¾” leg electro-galvanized staples. The “workhorse” detail used less 

material, and was comprised of 14 gauge 2”x4” welded wire mesh across the bales and 16 

gauge 7/16” crown 1-¾” leg electro-galvanized staples as the connection to the base. These 

two details would be used in the other groups’ tests. 

2.2.2 Straw Bale Seismic Design Capacities 2 

Beth Avon and Brittnie Swartchick looked specifically at plaster mix designs as well as the 

design of full-scale post-and-beam strawbale wall tests (2014). After several iterations of 

plaster mix designs, they concluded on the plaster mix design used for all subsequent 
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testing done at SCU. The cement:lime:sand ratio (by volume) was 1 : 0.75 : 5.25, and its 

strength when water- and lime-bath cured is summarized in Table 3. This mix design 

conforms to ASTM C926 according to Avon and Swartchick, determining the compliant 

volumes as three parts sand per part cementitious material. 

Table 3: Average strength of 2” test cubes in water and lime-saturated baths at two different cure times. 

Average Compressive Strength (psi) 

 7-day Cure Time 41-day Cure Time 

Water bath 620 N/A 

Lime-saturated bath 1030 1140 

 

The water curing resulted in significantly less strength, and there was not an appreciable 

amount of strength gain between 7 and 41 days of curing in a lime-saturated water bath. 

Once the plaster mix design proportions had been finalized, resulting in the mix design 

described in the Materials section (Table 6), two more sets of cubes were tested. One set 

dried alongside the wall without a moisture bath, and its strength was 1732 psi, which met 

the 1000 psi minimum (IRC, 2015). The second set was lime-cured and reached a strength 

of 2746 psi on average. These tests were completed at the time of wall testing, at longer 

than 28 days. 

Avon and Swartchick completed a full design, analysis, and construction of two 8’ tall by 

8’ wide post-and-beam strawbale walls - one with the “strong” details and the other with 

the “workhorse” details. This work is less relevant to the present research because their 

walls utilized the post and beam framing system, and their wire mesh reinforcement 

differed from those detailed in the 2015 IRC and the modified “workhorse” connection 

detail that this test series used. 

2.2.3 Straw Bale Seismic Design Capacities III 

The third 2014 SCU senior design group, comprised of Molly Summers and Michael 

Zaleski, focused on the complete design and construction of two walls: a 4’ long wall with 
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“strong” detailing and an 11’ long wall with openings and “strong” detailing. Both 

specimens were 8’ tall and designed to examine the behavior of slender walls (such as 

between a door and window, i.e. the 4’ wall) and wall panels having different aspect ratios 

(such as can occur due to window openings, i.e. the 11’ wall). The window openings on 

the longer wall were reinforced with No. 3 rebar along their perimeters. These walls were 

not tested as part of their senior design project. 

The walls were tested in the 3DOF (degrees of freedom) Structural Test Frame in the SCU 

structural laboratory as part of an MS thesis by Heckert, Summers, and Swartchick (2015). 

2.2.4 Straw Bale Seismic Design Capacities: The Culmination 

In 2015 Heckert, Summers, and Swartchick completed a master’s thesis that built upon 

their collective undergraduate research for their senior capstone projects. They completed 

the testing and post-test analysis of four walls begun by their respective groups in 2013: 

two 8’ walls, one 4’ wall, and one 11’ wall with openings. All four walls were constructed 

using post-and-beam framing, made primarily of 4x4 members. Three of the walls used 

Heckert and Looney’s “Strong” detailing, and one 8’ wall used their “Workhorse” detailing 

as a comparison. 

They determined that the “Strong” detailing was unnecessary, as the eight foot 

“Workhorse” wall performed better than the eight foot “Strong” wall (9.8 kips as compared 

to 7.7 kips, respectively). Their 4’ long wall with “Strong” details resisted a shear of 1.9 

kips, approximately a quarter of the 7.7 kip capacity reached by the corresponding 8’ wall. 

Their wire tests cited Heckert and Looney’s work, describing an average ultimate strength 

for 14-gauge 2”x4” welded wire mesh to be 323 lbs. They recommended further research 

into plaster adhesion and required boundary detailing. As a result of these tests, all 

subsequent walls have expanded diamond metal lath on the cap and base of each wall, as 

well as a 10” band of wire mesh at the base, which they used in their workhorse wall. The 

detailing used in the present research is a modified “Workhorse” detail, per the 

recommendations in Heckert, Summers, and Swartchick’s paper, in that expanded diamond 

lath is used at the cap and base and 2”x2” mesh was used rather than 2”x4” mesh. 
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3.0 Materials 

Every wall was constructed using the seven materials described in this section. For each wall, the 

boundary conditions used consistent materials sourced from the same provider (Material Items 4-

7). The same plaster mix for the cement-lime plaster (Material Item 3) was used for every wall in 

these tests, but the strength of each batch varied from batch to batch. The straw bales and wire 

mesh (Material Items 1 and 2, respectively) differed in size and type from wall to wall, and these 

details are discussed below. 

3.1 Straw Bales 

The straw bales were sourced from Dennis LaGrande of DLG Farms in Williams, CA, and 

were comprised of rice straw. The nominal 18” wide x 16” tall x 48” long standard bales, used 

in the Welded-18 and Woven-18 walls, were made using standard baling equipment. LaGrande 

had to overhaul an older baling machine to make smaller bales, however, and due to limited 

functionality was forced to tie the 14” x 16” x 48” bales by hand. These 14” wide bales were 

used in the Welded-14 wall. The hand-tied bales had significant irregularities with regard to 

length, lack of planar surfaces, and variability of cross-section along the length of the bales. 

To obtain the 9” x 16” x 24” bales used in the Welded-9 wall, a standard 18” x 16” x 48” bale 

was re-tied, chain-sawed in half, and pulled apart lengthwise to create four (4) bales in total. 

Each bale had two strings. Further, because the bales were now shorter, a running bond was 

used for the Welded-9 wall, requiring that two 9” x 16” x 24” bales be re-tied and pulled apart 

to create four 9” x 16” x 12” bales. 

3.2 Wire Mesh 

The Welded-9, Welded-14, and Welded-18 walls used 14-gauge 2” x 2” electro-galvanized 

welded steel wire mesh manufactured by Flynn & Enslow, Inc., imported from China. This 

wire mesh was purchased in 2013 and used in prior SCU tests. Its ultimate strength based on 

these prior tests is approximately 70 ksi (Heckert and Looney, 2014; Heckert, et al., 2015). 

The Woven-18 wall used 17-gauge electro-galvanized steel woven wire mesh with 1-½ inch 

hexagonal pattern manufactured by Deacero Buildmaster in the U.S. This mesh was also used 

in Heckert and Looney’s work at SCU. This mesh provides a cross sectional area per unit 

length that is 59.4% of that of the 14-gauge mesh (Table 4).  Based on “Allowable Shears for 
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Plastered Straw-Bale Walls” (Aschheim, et al., 2014), the woven wire mesh was calculated to 

reach 73% of the welded wire mesh capacity using the same area per unit length method, but 

it used a 1.25” spacing for the woven wire mesh’s hexagonal pattern (Parker, et al., 2006). 

Included are the American Steel and Wire (AS&W) standards for 14-gauge and 17-gauge wire.  

Table 4: Dimensions of reinforcing mesh based on the actual measurements of ten specimens. Italicized are the 
AS&W nominal values. 

Wire Type Nominal 
Diameter 

(in) 

Average 
Measured 

Diameter (in) 

Nominal 
Area 
(in2) 

Average 
Measured 
Area (in2)

Nominal 
Spacing 

(in) 

Area per 
unit length 

(in2/in) 

17-gauge woven, 
1-1/2” hexagons 

0.0540 0.050 0.00229 0.0020 1.5” 0.0013 

14-gauge welded,  
2”x2” grid 

0.0800 0.075 0.00503 0.0044 2.0” 0.0022 

 

The tensile strengths of the wire mesh types were determined using the 10-kip machine in the 

SCU civil lab. The 14-gauge welded wire mesh reached an average peak load of 301 lbs for 

wires sampled in the transverse direction, and 314 lbs for wires sampled in the longitudinal 

direction. The 17-gauge woven wire mesh reached an average peak load of 151 lbs, based on 

specimens with single-strand failures. These loads were averaged from five sample wires 

each. Their respective strengths can be found in Table 5 below, calculated by dividing their 

average peak load by their average diameter (Table 4). ‘Transverse’ refers to wires running 

vertically from top to bottom of the wall, and ‘longitudinal’ refers to wires running 

horizontally across the wall width. 

Table 5: The average strength of the two wire mesh types used in this test series. 

Average Wire Mesh Ultimate Strength (ksi) 

 Transverse Longitudinal Average 

14g welded wire 68.8 69.8 69.3 

17g woven wire 77.4 N/A 77.4 

 

The wire strength results are consistent with those of Heckert and Looney. (2014). The welded 

wire and woven wire they used came from the same rolls as the wire used in this test series. 

The welded wire used in this test series was, on average, 3% weaker in the transverse direction 
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(70.7 ksi) and 2% weaker in the longitudinal direction (71.1 ksi) than the wire in the Heckert 

and Looney test series. The woven wire in this test series, however, was 17.3% stronger in this 

test series than the 66.0 ksi woven wire they tested (this value was based on the average wire 

diameter found in the present testing, as the average wire diameter was not reported by Heckert 

and Looney for the woven wire mesh). The Parker, et al. (2006) test series tested 14-gauge 2x2 

welded mesh but did not test 17-gauge woven wire mesh. They sourced their wire from Bekaert 

Corporation in Van Buren, Arkansas, and their welded wire mesh was 12% stronger in the 

transverse direction (77.2 ksi). It was concluded that there is variability between wire meshes 

ordered from different manufacturers, which adds to the complexity of studying strawbale 

walls. 

3.3 Cement-Lime Plaster 

The walls were plastered using the cement-lime plaster mix design developed by Avon and 

Swartchick, as provided in Table 6 by relative volume, weight per batch, and percentage of 

mix by weight. Avon and Swartchick report the mix as satisfying Type CL cement-lime plaster 

as specified by the 2003 Portland Cement Association Plaster/Stucco Manual, as adapted from 

ASTM C926. The relative volumes of sand to cement and lime conform to this Type. The 

amount of sand is limited to no more than four (4) parts in terms of relative volume, and the 

sand to cementitious materials (lime and cement) in this mix design is 3:1 by volume. 

Table 6: Mix proportions for hand-applied plaster. 

Material Relative 
Volume 

Weight per 
Batch, lbs (kg)

Approximate Percentage 
of Mix by Weight 

Type II Portland Cement 1.00 13.3 (6.0) 12% 

Type S Hydrated Lime 0.75 4.9 (2.2) 5% 

Plaster Sand (Quail Hollow No. 2, 
provided by Graniterock from 
Felton quarry) 

5.25 76.4 (34.7) 71% 

Water 1.25* 12.8 (5.8) 12% 

*with additional water as needed for workability 

Plaster cubes at 2” x 2” x 2” were created to test the plaster strength for each wall. Four to 

seven batches of plaster were required per wall, and the cubes were taken from a sampling of 

batches, always three cubes from the same batch. The cubes were tested using the Tinius Olsen 
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machine in the Santa Clara University Structural Lab. The strength of the air-cured plaster for 

the Welded-18 and Woven-18 walls averaged 2300 psi, from six (6) separate 2” x 2” x 2” cubes 

(Table 7). The cubes cured alongside the wall until the walls were tested. The strength of the 

plaster for the Welded-14 wall averaged 580 psi, averaged from nine (9) separate 2” x 2” x 2” 

air-cured cubes (Table 7). These cubes were tested several weeks after they were made, 

whereas the cubes of the other two walls were tested several months after they were formed. 

Table 7: Mean strength test results of 2” cube samples of plaster mixes described in Table 1. 

CUBE SAMPLES (2” sides) 

Test Cure Type Time of Test Mean Strength (psi) COV 

Wire Series Air Same Day as Wall Test 2300 7.7% 

Welded-14 Wall Air Same Day as Wall Test 581 24.8% 

Welded-9 Wall Air 7 days 589 39.5% 

Welded-9 Wall Lime Bath 7 days 562 30.6% 

 
The samples for the Welded-9 wall were tested at seven days after mixing. Five cubes air-

cured near the wall, and five cubes cured in a lime-saturated water bath. Another five lime-

cured cubes will be tested at 28-day strength, as three cubes were taken from each of five 

batches of plaster that constituted the first layer of plaster on both sides of the wall. Their 

results are detailed in Table 8. 

Table 8: Results of Welded-9 Wall plaster batches 1-5, constituting the first ½ layer on either side of the wall. 
The 7-day compressive strengths of the 2” cube samples are listed by cure type. 

 Compressive Strength (psi) 

Batch Air-Cured 
Lime-Saturated 

Water Bath 

Percent Difference 
Between Air- and 

Lime-Cured 

1 570 636 11.56% 

2 924 661 -28.5% 

3 323 315 -2.7% 

4 437 460 5.2% 

5 692 738 6.7% 

Average 589 562 -4.7% 
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When tested, the cubes from Batches 2 and 3 were stronger air-cured than lime-cured, which 

skewed the average to show a higher cube strength when air-cured as opposed to cured in a 

lime-saturated water bath (Table 8). This unexpected result could be due to non-uniform 

tamping when consolidating the plaster in the molds, such that interior voids propagated 

cracks. The lime and cement used in the plaster mix sometimes had chunks of lime or plaster 

that did not get crushed in the mixer, and it is possible these chunks (<0.5in diameter) 

influenced the strength of the plaster cubes if present within them. It could also have been 

caused by other unidentified issues. Though the data of Batch 3 was significantly lower than 

the other four batches and the Batch 2 data differs from expected results, the average of all five 

tests is included in Table 7 for comparison. Note that the coefficient of variation for the 

Welded-9 plaster was 39.5% for the air-cured cubes and 30.6% for the lime-cured cubes. 

The IRC required strength of cement-lime plaster mixes is 1000 psi, which is a lime–saturated 

water bath cured strength based on cube tests (Appendix S, Table AS 106.12). The plaster on 

the first two walls, in the Wire Series, exceeded the requirements even when air-cured. The 

plaster of the Welded-14 wall was less than 60% of required strength when air-cured (Table 

7), so it must be adjusted for lime-cured strength to determine if it met the IRC requirements. 

According to the results of Avon and Swartchick, the strength of their lime-cured plaster (with 

the same mix design) was 1.59 times as large as its air-cured counterpart (2015). Even given 

this estimated adjustment to the air-cured cube sample strengths, the adjusted strength of the 

Welded-14 plaster is estimated to be 921 psi, which is somewhat below the 1000 psi IRC 

requirement. Given that the 7-day strengths of the Welded-9 plaster cubes showed a decrease 

in strength from air-cured to lime-cured, the 1.59 adjustment factor was a generous increase, 

especially given the relatively high variability in the cube strengths. The use of this high factor 

was meant to show that the Welded-14 plaster still falls short of the 1000 psi requirement, even 

when generously adjusted for increased lime-cured strength. 

At seven days, the average lime-cured Welded-9 wall plaster strength was 562 psi. Using the 

rule of thumb regarding plaster strength, the cubes would have reached 70% of their 28-day 

strength at seven days. Therefore their capacity after more than 28 days of curing is estimated 

to be 562/0.70 = 803 psi. This strength is also somewhat below the 1000 psi minimum 

required by the IRC. For comparison, the cubes made from the University of Illinois tests 
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averaged a 7-day strength of 1850 psi, which is 84% of the 2200 psi strength at the time of 

testing (Ash, et al., 2013). 

The highly variable plaster strength results make it difficult to determine accurate plaster 

strengths, especially when trying to predict lime-saturated strengths to compare to IRC 

requirements. Despite the variability, it appeared that the plaster on the Welded-14 and 

Welded-9 walls did not meet the 1000 psi minimum strength provided in the 2015 IRC. 

3.4 Timber 

Various timber beams and plywood sheets were used in this test series. To construct the caps 

and bases, 4x4 beams and ½” thick plywood (or ¾” thick plywood for the Welded-9 wall) were 

used. The cap and base simulate a typical floor and ceiling connection. For each wall, the base 

was bolted to a structural support (known informally as a “sled”), which provided stability 

during transportation from the structural lab to the hydraulic testing frame. The sled also 

allowed the wall to be bolted to the floor to prevent lateral slippage during seismic testing. All 

timber was Douglas-Fir, sourced from a local lumberyard. 

3.5 Staples 

The asphalt paper, metal lath, and wire mesh were connected to the base and cap using 

galvanized steel staples. The pneumatically driven staples are 16-gauge x 1.75 inch (44mm) 

leg, medium crown chisel point, (SENCO N19BAB) heavy wire staples. 

3.6 Expanded Metal Lath 

A 6” wide strip of expanded diamond metal lath manufactured by CEMCO, California 

Expanded Metal Products Company was pneumatically stapled to each 4-foot side of the base 

and headers. The product came in 8-foot long strips labeled as “galvanized Stripite.” 

3.7 Asphalt Paper 

A 4” wide strip of asphalt paper was stapled along the full outside length of each base and cap, 

covering the 4x4 member and the edge of the plywood exposed on the side. In practice, 

strawbale walls typically use two strips of asphalt paper stapled on top of each other to provide 

adequate moisture protection. This flashing acts as a barrier between the wood and plaster so 

that the wood does not absorb moisture when the plaster is applied. The product conforms to 
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Federal Spec. UU-B-790A, Type 1, Style 4, Grades A-B-C and was manufactured by Salinas 

Valley Wax Paper Co., Inc. 

4.0 Experimental Design 

To address the two objectives, regarding wire mesh type and slenderness, four wall specimens 

were constructed. One wall specimen, Welded-18, was the reference wall for all tests. A second 

wall, Woven-18, was built to examine the effect of woven wire mesh as compared to welded wire 

mesh. These two walls constituted the “Wire Mesh Series” described in the section Wire Mesh 

Series. The final two walls, when compared to the Welded-18 wall, constituted the “Slenderness 

Series” outlined in the section of the same name. The third wall was constructed using small, 14”-

wide bales (Welded-14) and the fourth wall (Welded-9) used the ¼-size bales with 16” x 9” x 24” 

dimensions. Table 9 clarifies the wall names and which test they were used in. 

Table 9: Clarification of test series name and walls used to make conclusions about the test series objective. 

Test Series Name Walls Compared 

Wire Mesh Series 1. Welded-18 
2. Woven-18 

Slenderness Series 1. Welded-18 
2. Welded-14 
3. Welded-9 

 

All four wall specimens were constructed in the Civil Structural Lab at Santa Clara University, 

and three of the four walls have already been tested under a reversed cyclic loading protocol in 

SCU’s 3-DOF lateral test frame. The specimens were of the style termed “load-bearing” due to the 

absence of post-and-beam wood framing. The standard bales for the Welded-18 and Woven-18 

walls were placed in stacked bond rather than running bond because the nominal length of the wall 

(in plan) was only 4 ft (1.2 m). To simplify construction and use resources efficiently, the walls 

were approximately 8 ft (2.4 m) high, including the wooden base and cap. All bales were made of 

rice straw, and they are depicted in Appendix B. 

Before stapling the wire mesh to the base and cap, the bales were compressed using a series of 

straps tightened around the perimeter of the wall. The wire mesh reinforcement was fixed in 
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position at approximately 12” intervals (horizontally and vertically) to the bales using 12-gauge 

wire “hairpins,” normally used for hanging T-track for suspended ceilings. 

Plaster was applied to both sides of the wall in two nominally ½ inch layers, encasing the wire 

mesh. The same cement-lime plaster mix was used for all walls and all plaster batches (Table 6). 

Typically the scratch coat came up to the mesh (approximately ½”), and the brown coat then 

continued ½” beyond the mesh to create a nominal 1” thick shell of plaster in total. The hand-

applied scratch coats were scratched using a standard 12” scarifier. Both coats were finished with 

a hand trowel. The total plaster thickness was controlled with depth guides provided by plastic 

standoffs held in place with the 12-gauge hair pins. No finish coat was applied. 

To further maintain consistency, the same detailing was used in constructing each of the four walls 

(Figure 1). For the base connection, the Woven-18 specimen had expanded lath and a 10-inch band 

of 2”x2” welded wire mesh sandwiching the main woven wire mesh that ran full height. These are 

referred to as “Heckert details” since they were recommended by Heckert, et al. (2015). The bales 

were stacked vertically and encased in wire mesh, which was stapled to the wooden header (“cap”) 

and base to secure the system. Each base and cap were protected by a layer of asphalt paper as 

would be done in practice, to prevent moisture leaching out of the plaster and to avoid moisture-

related damage to the wood. 
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Figure 1: Header (cap) and base detail for welded wire walls shown in exploded view on the right of each image. 

The only difference for the woven wire wall details was the type of wire used for the mesh. 

An additional 10” of welded wire mesh band was stapled to the base to strengthen the connection 

region. Due to the fixed connection at the base of the wall and pin connection at the top, more 

damage is expected to occur at the base. The entire wall acts like a cantilever, so the bending 

moment is highest at the base. Staples were used to secure the layers of wire mesh and asphalt 

paper to the cap and base, as shown in Figure 1. The staples were applied diagonally across each 

of the mesh intersections. 

4.1 Wire Mesh Series 

 Fourteen-gauge 2” x 2” electro-galvanized welded steel wire mesh was selected for the first wall, 

Welded-18 (Figure 2), which used nominally 18” thick bales stacked flat. The comparison wall, 

Woven-18, used 17-gauge woven wire mesh and also used 18” thick bales (Figure 3). Both walls 

used the bales stacked flat, so that their 18” side governed the width of the wall, which was 

nominally 20” wide including the 1” plaster layer on either side. Both walls were nominally four 

feet (4’) long. 
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Figure 2: Welded-18 wall     Figure 3: Woven-18 wall. 

4.2 Slenderness Series 

The three walls tested in this series compare the strength of a standard wall (18” wide bales), a 

thin wall (14” wide bales), and a limit wall (9” wide bales). Their respective names are Welded-

18, Welded-14, and Welded-9. As described in “Background on Objective 2” the Welded-9 wall 

represents the very limit of the building code (Figure 5), while the Welded-18 acts once more as a 

comparison wall (Figure 2). The purpose of the Welded-14 wall is to examine the performance of 

slightly smaller bales (Figure 4). 

 

Figure 4: Welded-14 wall.       Figure 5: Welded-9 wall. 

9.0” 



20 
 

A standard straw bale is 16” x 18” x 48” and can be oriented on its 16” side (“on edge”) or 18” 

side (“laid flat”) when stacked to form a wall. Welded-18 from the Wire Series, at 18” wide 

because the bales were laid flat, was used as the basis for comparison in the Slenderness Series. 

Some balers produce 14” wide bales, and the question remains as to whether these thin bales 

significantly impact wall strength. A new wall, Welded-14, was constructed out of 14” x 16” x 48” 

bales, oriented on edge so that the nominal wall thickness was 14 inches. Therefore, the 

performance of a thin wall could be quantified. 

The final wall of this series is the limit wall, Welded-9. Using 9” wide bales and having a nominal 

8 feet height, the Welded-9 dimensions reach the slenderness limit set by the building code. A 

standard 18” bale was quartered using a chainsaw, and the strawbale “bricks” (9” x 16” x 24”) 

were placed in a running bond for ease of construction. All other details matched the other two 

welded wire mesh walls. 

5.0 Testing Procedure 

The same standard test protocol was followed for each strawbale wall in this seismic test series. 

The wall was pinned at the top, and two structural T-shapes served as stability guides, located at 

the top on either end of the wall to prevent possible twisting during the test (Figure 6).  

 
Figure 6: T-Plate slotted into the cap of the Welded-18 wall. 
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The testing protocol was a modified CUREE Caltech protocol found in ASTM E 2126-02A 

(Krawinkler, 2009; Heckert, et al, 2015). The reversed cyclic loading provided one leading cycle 

with two trailing cycles at 75% of the leading cycle (Figure 7). A “leading cycle” is defined as a 

cycle that reaches a new peak displacement within the test, whereas a “trailing cycle” follows a 

leading cycle, and does not reach a new peak displacement. The reference drift limit is 

approximately 1% of the wall’s height, taken as 0.96” for all four walls, even though the Welded-

14 and Welded-9 walls were respectively 6” and 8” shorter than the Welded-18 and Woven-18 

walls. Individual tests were terminated at arbitrary displacements based on the condition of the 

wall. 

 
Figure 7: Applied reversed cyclic lateral displacement history, based on CUREE-Caltech Protocol (Section 1 of the 

graph) with an extension (Section 2 of the graph). Taken from Heckert, et al. (2015). 

The actuators supporting the test beam contained spherical bearings. There was friction in the 

system as well as a second-order (P-Delta) effect associated with the weight of the loading beam, 

wherein the lateral actuator resists the tendency of the frame to collapse to either side under self 

weight. The bare frame response must be removed from the results of the test via formula, specific 

to the SCU test frame. 

To address the question sometimes asked about how well a strawbale wall can resist gravity load 

after seismic shaking, all four walls were subjected to a vertical loading test after the completion 
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of lateral testing. The wall was displaced to 3% drift (approximately 3 inches) prior to application 

of vertical displacements. The vertical test continued in increments of vertical displacement until 

either bowing of the wall (for Welded-9) or shifting wall plaster encroached on unintended 

restraints. 

6.0 Results 

Individual wall results are presented in this section, and the comparison between walls can be 

found in the Discussion section. For each lateral test, a procedure was followed to account for the 

response of the bare frame described in the Testing Procedure section. Presented here are the 

results corrected according to the April 16, 2017 version of the “Correction of Test Data” document 

outlining the protocol, written by Mark Aschheim. 

6.1 Experimental Results 

6.1.1 Welded-18 Wall 

The first wall tested, Welded-18, was the reference wall for evaluating other tests. This 

wall was made of 18” wide rice straw bales encased in 14-gauge 2” x 2” welded wire mesh. 

It reached an average peak lateral load of 2338 pounds at a lateral displacement of 1.64 

inches, which resulted in a drift of 1.5 % when considering the wall’s height as the nominal 

height of the plastered area, 106 inches (Table 10). 

Table 10: Peak values from Welded-18 lateral test, including lateral loads at specified displacements. Given for both 
the positive and negative direction. 

Welded-18 Lateral Test Results 

 Peak Lateral 
Load (lbs) 

Displacement at 
Peak Load (in) 

Load at 1% drift 
(lbs) 

Load at 3% drift 
(lbs) 

Positive 2456 1.65 1626 905 

Negative 2220 1.62 1455 1433 

Average 2338 1.64 1541 1169 

 

The graph of the lateral load-lateral displacement response from the seismic test shows a 

significant reduction in carried load after the peak was reached at 1.6% drift (Figure 8). Its 
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failure, like all of the walls, was governed by flexure due to the walls 2:1 aspect ratio (8’ 

tall to 4’ length). 

 
Figure 8: Load versus displacement for lateral test of Welded-18 wall. 

 
During the Welded-18 lateral test, the plaster delaminated where the first applied coat met 

the second applied coat, i.e. the two layers encasing the wire mesh. This was especially 

evident on the back side of the wall, where chunks of the outer plaster layer spalled off the 

inner layer at the bottom left and right corners.  The second layer of plaster spalled off the 

wooden base at the bottom of the wall, though the first layer remained intact, protecting 

the staples (Figure 9). 
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Figure 9: Outer layer of plaster delaminated from the inner layer of plaster at the base of the wall. The 

stapled connections of mesh to the sill plate seem to still be intact. 

During the later cycles, when the top of the wall was subjected to lateral displacements of 

5” or more, the base (or sled) of the wall slid relative to the test floor a maximum of ½” 

laterally at the peak of each leading cycle. Figure 10 shows the two 1-inch diameter 

threaded rods restraining a 6x6 member across the base of the wall. The bearing between 

the 6x6 and wall base was not strong enough to prevent slippage as the test progressed 

(Figure 10). Subsequent tests employed plates affixed to either side of the sled, shimmed 

tight to the sled and bolted to the test floor, to prevent sliding. 

 
Figure 10: Connection of the base of the wall to the floor of the test frame. 

 

The bottom half of the plaster skin buckled, especially near the connection at the base 

(Figure 11). Except where the plaster buckled outward and delaminated, most of it 
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remained bonded to the wire and straw. Cracks in the plaster mainly proliferated near the 

bottom of the wall, and those that formed higher up did not grow much after initial 

formation.  

 
Figure 11: Wire mesh buckling at the base of the wall near the end of the lateral test, after peak 

displacement had been reached. Each side was repetitively subjected to compression and then tension. 
 

The following images present the wall at approximately 1%, 3%, and maximum 

displacement. These values will be compared across all walls in the “Discussion” section. 

   
Figure 12: Welded-18 wall at (a) 1.28” lateral displacement with lateral load 998 lbs and (b) 2.88” lateral 

displacement with lateral load 1567 lbs. These photos were taken during a leading cycle. 
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Figure 13: Welded-18 wall at 4.3” lateral displacement with lateral load 521 lbs. Taken during a leading cycle. 

6.1.2 Woven-18 Wall 

The second wall tested was the Woven-18 wall, constructed using the rice straw bales laid 

flat (18” wide) and 17-gauge woven wire mesh. It reached an average peak lateral load of 

1,702 lbs at 1.33 inches, which corresponds to 1.3% drift given a nominal height of 106 

inches (Table 11).  In the positive and negative direction, peak lateral loads deviated from 

the mean by only 1.5%. 

Table 11: Peak values from Woven-18 lateral test, including loads at specified displacements. 

Woven-18 Lateral Test Results 

 Peak Lateral 
Load (lbs) 

Displacement at 
Peak Load (in) 

Load at 1% drift 
(lbs) 

Load at 3% drift 
(lbs) 

Positive 1676 1.33 1454 650 

Negative 1727 1.32 1569 989 

Average 1702 1.33 1512 820 

 

Its graph shows a significant reduction in lateral load (Figure 14). It reached 73% of the 

capacity of the Welded-18 wall, and it also lost approximately 50% of its lateral resisting 

strength after reaching a peak. 
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Figure 14: Lateral test results of the Woven-18 wall. 

Prior to the Woven-18 lateral test, the test frame crushed the top right corner of the wall, 

damaging the plaster (Figure 15). The top one (1) foot of plaster was removed from the 

wall and replaced with new plaster made to the same specifications (Figure 16). A small 

crack formed at the interface between old and new plaster, but it didn’t propagate during 

testing. The demarcation of darker old plaster and lighter new plaster is visible in the 

images below.  

 
Figure 15: Crushing damage done to the top right corner of the wall prior to the lateral test. 
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Figure 16: The new plaster can be seen here as a band of lighter plaster at the top of the wall. 

During the Woven-18 lateral test, the damage was concentrated at the bottom. The exterior 

layer of plaster delaminated from the interior layer of plaster and popped off due to bending 

of the wire mesh. The mesh elongated in flexural tension and bent out of plane when loaded 

in compression. Most of the interior layer of plaster remained attached to the straw bales. 

Cracks in the plaster followed the “diamond” pattern of the woven wire mesh, and 

propagated diagonally from the bottom corners and edges of the “diamonds” (Figure 17). 

This is attributed to the net plaster section being reduced at the location of a wire, thus 

leading to higher tensile stresses at the location of a wire. 

 
Figure 17: Taken post-lateral test. Cracks in the plaster following the “diamond” pattern of the woven 

mesh. Delamination is evident here where the outer layer popped off to expose the woven wire, while the 
inner layer remained in place. 
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Figure 18: The damage was concentrated in a line approximately 10” above the base, due to the extra 10” 
band of wire mesh added to the modified workhorse connection detail, also termed the “Heckert detail.” 

 

For this test, a new restraint system used 8x10 Douglas-Fir beams to resist overturning 

moment and to keep the base of the wall in place. The combination of the 8x10 Dougla- 

Fir beams and plates bolted to the test floor and shimmed to block sliding at end of the wall 

successfully kept the base of the wall in place and prevented the slippage that had occurred 

during the Welded-18 test. See the Welded-14 wall results for an image of the restraint 

system (Figure 23), as the same system was implemented for the Woven-18 and Welded-

9 as well. 

The following images present the wall at approximately 1% and 3% displacement 

(Figures 19a and 19b). These values will be compared across all walls in the 

“Discussion” section. Figure 20 shows damage of the wall at the end of the lateral testing. 
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Figure 19: Woven-18 wall at (a) 1.06” lateral displacement with lateral load 1402 lbs and (b) approx. 3” 

lateral displacement at an unspecified lateral load. Figure 19(a) was taken during a leading cycle, and 
Figure 19(b) was taken during a trailing cycle. 

 
Figure 20: Backside of the Woven-18 wall, post-lateral test. Extensive delamination of the outer plaster 
layer has revealed the inner plaster layer. Plaster at the base remains intact and seemingly protects the 

stapling at the connection underneath. 

6.1.3 Welded-14 Wall 

The third wall tested was the Welded-14 wall, which was constructed of nominally 14”-

wide rice straw bales stacked on edge. During the lateral test, the Welded-14 wall had a 

tendency to buckle, though the modified connection details kept the staple-wire 

connections at the base and the top undamaged. The bales did not stack true and hence the 

plaster undulated. During testing the plaster moved laterally when subjected to 

compression or tension as part of the induced bending moment—that is, an “S-shaped” 
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undulation would become more S-shaped under compression and less S-shaped under 

tension. 

The wall reached an average peak lateral load of 1591 lbs, but the load carried by its left 

and right sides varied from the average by 21.4% relative to the mean (Table 12). When 

the wall was displaced in the positive direction (to the left in most photographs), its ability 

to carry lateral load was higher. Even the displacement at the peaks differed, showing that 

the peak in the negative direction was reached at a lateral displacement of 1.30” while the 

peak in the positive direction was reached at 1.64” (Table 12). 

Table 12: Peak values from Welded-14 lateral test, including loads at specified displacements. 

Welded-14 Lateral Test Results 

 Peak Lateral 
Force (lbs) 

Lateral Displacement 
at Peak (in) 

Lateral Force at 
1% drift (lbs) 

Lateral Force at 
3% drift (lbs) 

Positive 1931 1.64 1690 821 

Negative 1250 1.30 1089 670 

Average 1591 1.47 1390 746 

 

From the graph (Figure 21) it appears that the peak lateral forces in both directions were 

reached in the same leading cycle. Both peaks occurred at approximately 1.5% drift. 
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Figure 21: Welded-14 lateral test hysteresis test.  

 
During the Welded-14 lateral test, the wall’s irregular, wavy shape contributed to a higher 

tendency to buckle in compression, even during the lateral test (Figure 22). The lack of 

tension in the welded wire caused the wall to “breathe” during the test, where both sides of 

the plaster buckled outward. 

 
Figure 22: A picture of the Welded-14 wall prior to testing. The wall was not uniform and bore a distinct 

vertical warp. 
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The base, however, remained secure and did not slide laterally due to improved overturning 

and sliding restraints (Figure 23). The modified “workhorse” connection details at the base 

of the wall performed well, concentrating the damage in a line 10” above the base, 

protecting the staples at the base connections (Figure 24).  

 
Figure 23: The new restraint system implemented in the Woven-18 and Welded-14 walls. 

 

 
Figure 24: Damage at the base of the Welded-14 wall post-lateral test was concentrated approximately 10” 
above the base of the wall, due to the extra 10” band of wire added to the modified workhorse connection 

detail. The outer layer of plaster delaminated from the left side, but the inner layer remained intact, 
protecting the staples underneath. 
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The following images present the wall at approximately 1%, 3%, and near maximum 

displacement (Figures 25a, 25b, and 26). These values will be compared across all walls 

in the “Discussion” section. 

  
Figure 25 Welded-14 at (a) 1.17” lateral displacement and load 1704 lbs and (b) 3.26” lateral displacement 

with load 520 lbs. Both images were taken during a leading cycle. 
 

 
Figure 26: Welded-14 at 3.70” lateral displacement with load 229 lbs. Taken during a trailing cycle. 
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6.1.4 Vertical Tests 

Though all walls were subjected to a vertical test after completing the lateral test, the results 

of only two walls were successfully recorded—Woven-18 and Welded-14. The data from 

the Welded-18 wall was overwritten during subsequent testing before it had been properly 

saved. Thus, the results from the Woven-18 wall were taken as representative of a vertical 

test on an 18” wide wall. All vertical tests occurred with the walls at 3% lateral drift. 

The Woven-18 wall reached a peak vertical load of 7100 lbs (Figure 27). Over the duration 

that a displacement was held, the vertical load decreased, suggesting creep (Figure 28). 

The expected load was 1200 lbs (see Discussion for details). The woven wire wall was 

tested to a maximum vertical displacement of 6.8 inches. The Woven-18 wall was able to 

maintain a load of 6900 lbs even as it was compressed almost seven (7) inches; this load is 

called the “Sustained Vertical Load” in Table 5. 

 

Figure 27: Vertical test of Woven-18 wall in load vs. displacement. 
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Figure 28: Vertical test of Woven-18 in load vs. time. 

The Welded-14 wall’s maximum compressive load was 2710 lbs, but the maximum 

sustained load was only 1,600 lbs (Figure 29). “Sustained” was defined as the load the wall 

was bearing even after it was vertically displaced by 4 - 6 inches. The wall failed by global 

out of plane buckling.  The unusual degree to which this wall deviated from true vertical 

suggests that even poorly constructed walls will have adequate capacity to hold roof loads 

(expected to be approximately 1,200 lbs) except in cases of unusually high vertical loads; 

attention to vertical trueness will allow much higher capacities to be counted on. 

 
Figure 29: Vertical test of Welded-14 wall in load vs. displacement. 
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Figure 30: Vertical test of Welded-14 wall in load vs. time. 

As shown in the vertical load versus time graphs, the slope after each peak decreased more 

quickly as the load got higher. If given enough time, the vertical load may have returned 

to zero. 

Due to its tendency to buckle (Figure 31), the Welded-14 wall reached a lower peak vertical 

compressive load than the 18” thick Woven-18 wall (Table 13). The Welded-14 Wall also 

maintained about 25% of the vertical load that the Woven-18 Wall sustained when 

compressed to the approximately the same displacement.  

Table 13: Maximum vertical loads and continuous sustained loads. 

 Woven-18 Welded-14 

Max Vertical Load (lbs) 7194 2710 

Sustained Vertical Load (lbs) 6900 1600 

 

In both cases, damage was concentrated at the bottom of the wall, as well as the middle 

sections where flexure took place. The modified workhorse details from Heckert et al. 

moved the damage up from the base, which was observed in the lateral test, and 

concentrated the damage in a line approximately 10” above the very bottom of the wall 

(Figure 32). 
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Figure 31: Side view of the Welded-9 wall buckling during the vertical test. 

 
Figure 32: Damage sustained approximately 10” above the base of the Woven-14 wall after the vertical 

(and lateral) tests, after returning the top of the wall to its pre-test position. 
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6.2 Analytical Results 

6.2.1 Expected Strengths Based on Material Properties 

Simple models were created by Heckert, et al. to estimate flexural and shear strengths of 

walls based on approximations of conventional reinforced concrete flexural strength 

models and shear strength models (2015). The models consider the material properties of 

the plaster and wire, the dimensions of the wall, and the strength of the stapled connection. 

Heckert, et al. applied the models to estimate flexural strengths for each of their walls. On 

average, the actual strengths were within 31.4% of the model predictions (75.9% COV). 

As seen in Table 14, their 4’ wall experimental strength was within 23.3% of the strength 

determined for a 4’ wall (Heckert, et al., 2015). All walls, except the 11’ long wall, were 

predicted to fail in flexure. 

Table 14: Data from Heckert, et al.’s lateral test of four walls as compared to their predicted strength using 
the simple model based on material properties. Apparent modes of failure taken from narrative (2015). 

Wall 
Length (ft) 

Detailing 
(“Strong” or 

“Workhorse”) 

Apparent Mode of 
Failure (Shear or 
Flexure) 

Predicted Lateral 
Strength (kips) 

Experimental 
Lateral Strength 
(kips) 

8 Strong Flexure 7.8 7.7 

8 Workhorse Neither: premature 
staple failure 

4.9 9.8 

4 Strong Neither: post and sill 
disconnection 

3.3 4.3 

11 Strong Neither: individual 
panel shear friction 
failure 

23.0 11.3 

The walls in the current test series were governed by flexure, so the model was adjusted 

for new detailing and applied to these walls. The height of the wall was taken as the distance 

from the top pin of the actuator in the 3DOF Structural Test Frame (approximately 3” above 

the cap) to the height of the mesh band (10” above the base), assuming this to be the 

location of the critical section. The area per linear inch of mesh reinforcing was taken from 

Table 4, and the strengths of the woven and welded wire meshes were taken from Table 5. 

Yield strengths were estimated to be 1/1.10 times the ultimate strengths of Table 5. The 

average cross-sectional areas of Table 4 were used, rather than the AS&W nominal areas.  

The model gave strengths based on only one plastered face of the wall, so the values in 
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Table 15 had been multiplied by two (2) to account for the strength of the two plastered 

faces. In this way the model was modified to determine the expected strengths of the walls 

in these test series, and their predicted strengths can be found alongside the actual strengths 

in Table 15 below. 

Table 15: Comparison of wall strengths (plastered on both sides) based on analysis and determined from 
tests. 

 
Wall 

Shear Associated 
with Flexure at 

Base (lbs) 

Shear Associated 
with Shear 

Failure (lbs) 

Calculated 
Strength at 
Top (lbs) 

Actual 
Average 

Strength (lbs) 

Percentage 
of Expected 

Welded-18 3,218 17,276 3,218 2,338 72.7% 

Woven-18 1,569 10,126 1,569 1,702 108.5% 

Welded-14 2,785 14,241 2,785 1,591 57.1% 

Welded-9 2,851 14,580 2,851 N/A N/A 

*Calculated for both faces plastered, acting together; governing calculated failure load shown in italics. 

 

Though the models give an estimate of the strength, their predictions deviate from the 

actual strength by an average 26.2% with two out of the three estimates falling short of the 

actual wall strengths (COV 65.7%). This disparity was comparable to the variance that 

Heckert, et al. found, which predicted actual strength within 31.4% (75.9% COV).  

To determine the impact of plaster strength, wire strength, and height of the walls, a simple 

analysis of two iterations of the model was conducted. Variables were adjusted in the 

Welded-18 and Welded-14 iterations of the model, as seen in Table 16. 

Table 16: Model analysis of variables’ impact. This table shows what impact, in percent, each variable had on 
wall strength. 

Wall Variable Change Impact on Wall Strength (+/- %)
Steel Ultimate Strength +/- 10ksi 12%

Height +/- 2 inches 2%
Plaster +/- 300 psi 1%

Steel Ultimate Strength +/- 10ksi 9%
Height +/- 2 inches 2%
Plaster +/- 300 psi 19%

Welded-18

Welded-14
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Height had minimal impact in both cases, and the impact of plaster appeared to depend on 

original plaster strength which was 2300 psi for Welded-18 and 581 psi for Welded-14. 

The greatest impact on wall strength occurred when adding and subtracting 300psi from 

the strength of the Welded-14 plaster, but changing the steel ultimate strength contributed 

an approximately 10% change for both wall strength models. 

6.2.2 Expected Strengths based on Past Studies 

Based on the testing of full-scale walls at the University of Illinois, expected strengths were 

estimated for walls with 17-gauge woven wire mesh and 14-gauge 2” x 2” welded wire 

mesh (Ash, et al., 2003). The shear strength per linear foot of their Wall D, reinforced with 

woven wire mesh, was 0.8 kips/ft (6.4 kips total as seen in Table 1). Their medium-detailed 

cement-lime plaster wall, Wall E, had a strength of 2.4 kips/ft (19.0 kips total) and their 

heavy-detailed cement-lime plaster wall, Wall F, had a strength of 2.2 kips/ft (17.9 kips 

total); both of these walls used welded wire mesh (Table 1). 

For other variables held constant, flexural strength is expected to be a function of the square 

of the plan length of the wall (simply, the tensile force developed by the mesh is 

proportional to length, and the lever arm associated with bending moment is proportional 

to length). Thus, based on these previous experimental values, four-foot long walls with 

2x2 14-gauge mesh would be expected to have a strength of 17.9/(22) = 4.48 to 19.0/(22) = 

4.75 kips (averaging 4.6 kips), while the four-foot walls with woven wire mesh would be 

expected to have a strength of 6.4/(22) = 1.6 kips. Differences in mesh and plaster strength 

should be but are not included in these simple estimates. These walls had a wooden post-

and-beam frame to take load as well. These strengths are compared with the average wall 

strengths (Table 17). 

In an ASCE paper entitled “Allowable Shears for Plastered Straw-Bale Walls,” allowable 

shears were estimated for walls with different plaster and wire mesh combinations 

(Aschheim, et al., 2014). The estimation took an unadjusted shear strength based on the six 

full-scale wall tests done by Ash, et al. (2003), and then multiplied this strength by three 

factors based on plaster mix, wire mesh type, and safety.  For cement-lime plastered walls, 

the suggested Allowable Shear (Vall) with 17-gauge woven wire mesh was 380 lb/ft and 
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the allowable shear with 14-gauge 2”x2” welded wire mesh was 520 lb/ft. When 

multiplying these values by the 4’ length of the wall, the respective strengths of the woven 

and welded wire walls are 1,520 lbs and 2,080 lbs (Table 17). 

Table 17: Expected shear strength of walls based on wire mesh type (Aschheim, et al.) and on the Ash, et 
al. paper, where a post-and-beam system was used. 

Wire Mesh Type 
Expected from 
Ash, et al. (2003) 

Expected from 
Aschheim, et al. (2014) 

Actual Lateral 
Strength 

Woven 1.6 kips 1.5 kips 1.7 kips 

Welded 4.6 kips 2.1 kips 2.3 kips 

 

Based on the simple geometric relationship (data from Ash, et al.), the strength of the 

Woven-18 wall was estimated well. In contrast, the strength of the Welded-18 wall was 

only 50% of its expected value. 

Using the values from the ASCE paper (Aschheim, et al.), both walls were estimated well, 

within 12% for the Woven-18 wall and within 9% for the Welded-18 wall. The ASCE 

paper also includes a safety factor of 8.2 - 9.2 to calculate Shear Strength (Vn) which results 

in shears of 13.9 kips for four-foot woven wire walls and 17.0 kips for four-foot welded 

wire walls. The paper allows these values to be decreased based on the aspect ratio (1/2 for 

these walls), which means the shear strengths become 6.9 kips for woven wire walls and 

8.5 kips for welded wire walls. Given this reduction, the actual strengths reached on 

average 26% of this Vn shear value, a significant shortfall. 

7.0 Discussion 

7.1 Wire Series 

The welded wire mesh wall reached a larger peak load than the woven wire mesh wall, as 

expected. The Woven-18 wall reached an average of 73% of the Welded-18 wall’s peak load 

capacity, conforming to the ratio of strengths discussed in the 2014 ASCE paper (Aschheim et 

al.); they determined the difference in wire mesh reinforcement per unit length (area per length) 

was 73% and incorporated this value into their shear strength predictions. As such, these tests 

provide supporting evidence for the ASCE paper’s conclusion regarding welded versus woven 
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wire strengths, and the tests also indicate that the results are internally consistent. That said, 

the ratio of wire reinforcement determined from this present series was 59.4% which did not 

predict the wall strength ratio. Perhaps the measured distance between the woven wires could 

be used instead of the nominal value if this phenomenon were to be explored further. 

The Woven-18 wall maintained a fairly consistent strength after failure, proving to have a more 

consistent ductile response than the Welded-18 wall (Table 15). Although the ductile response 

occurred at a relatively low strength, the ductility would provide robustness to intense seismic 

shaking. The initial strength exhibited by the Welded-18 wall would be useful for resisting 

(without significant damage) the more frequent, less intense shaking of wind loads. 

Both walls lost 50% capacity, on average, after reaching peak lateral load at about 1.5% drift. 

The Welded-18 and Welded-14 walls had almost the exact same lateral loads at 1% drift, 

whereas the Woven-18 had a markedly decreased initial lateral force resisted at 1% drift (Table 

15). The Welded-14 wall may have had a high peak load due to the presence of the same 14-

gauge welded wire mesh that was in the strongest wall, Welded-18. 

Table 15: Lateral displacement and lateral force experienced by each wall at 1%, 3%, and final drifts. Height was 
taken as the height of the plastered, encompassing the stapled region at the wooden cap and base. 

 1% Drift 3% Drift Final Drift 

Wall Height 
(in) 

Lateral 
Displacement, 

x (in) 

Lateral 
Force, Fx 

(lbs) 

Lateral 
Displacement, 

x (in) 

Lateral 
Force, 

Fx (lbs) 

Lateral 
Displacement, 

x (in) 

Lateral 
Force, 

Fx (lbs) 

Welded-18 106 1.06 1654 3.18 984 3.57 816 

Woven-18 106 1.07 1455 3.19 976 5.77 1242 

Welded-14 100 1.04 1657 3.00 791 4.88 815 

 

Due to their 2:1 aspect ratio, at 4’ long and 8’ tall, the Welded-18 and Woven-18 walls failed 

mainly in flexure. They suffered the most damage at the bottom corners, where they 

experienced the greatest compression and tension. During the lateral test, both the Welded-18 

and Woven-18 walls also exhibited a line of damaged plaster laterally crossing approximately 

10” above the bottom of the wall. All of the walls exhibited some degree of delamination 

between the plaster layers at the base of the wall, but the Welded-18 wall exhibited the most 
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severe delamination (Figures 11-13). The welded wire, however, had numerous wire failures 

near the bottom, which developed beginning after the 3% drift cycle and continued as the test 

continued (Figures 17-20). The woven wire only had one wire failure, potentially because the 

woven wire’s hexagonal shape allowed it to lengthen and narrow under tension. 

7.2 Slenderness Series 

The Welded-14 wall achieved lower peak loads than the thicker walls, both in the lateral 

seismic test and the vertical compressive test. Both the irregularities of the bales themselves 

and the slenderness of the wall may have contributed to the wall’s weakness relative to the 

Welded-18 wall. This initial distortion of the reinforced plaster changed the local loading from 

a pure tensile or compressive case (under flexure) to a combination of axial force and flexure. 

Additionally, based on the air-cured cubes, the Welded-14 wall had much weaker plaster than 

the Welded-18 and Woven-18 walls, which reduced its compressive plaster strength, and thus 

its overall flexural strength. 

Due to the irregularities in the Welded-14 wall, the determination of the validity of the 

existing slenderness limits will depend heavily on the performance of the Welded-9 Wall. 

Because it was not tested by the time this thesis was submitted, its results could not be 

incorporated in this document for comparison to the other walls. At time of submittal, the 

quality of construction was visibly superior to the Welded-14 wall, which bodes well for both 

the lateral and vertical tests. 

7.3 Vertical Series 

The two walls with vertical test results could adequately support a typical roof load. Even for 

the irregular Welded-14 wall, typical roof loads could be supported, at least long enough for 

building occupants to evacuate. This typical load was calculated as such: using a combined 

dead and live roof load of 30 psf and a maximum span of 20 feet (tributary length of 10 feet), 

the linear load on the roof is 300 pounds per foot. This math results in a total vertical load of 

1200 lbs for a four-foot wall, and both walls were sufficient to carry that load as they were 

compressed more than 6 inches. 
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7.4 Complexities in Understanding Strawbale Wall Performance 

Strawbale construction utilizes a number of materials, each prone to some variability. The 

observed behavior is also a function of many variables, which define locations where damage 

takes place. Furthermore, construction practices and workmanship of even code-compliant 

walls will vary with the tradespeople doing the work. Interpretation of test results thus requires 

some care. 

Standards followed within our lab include use of the same recommended “workhorse” 

connection (Heckert and Looney, 2014) and plaster mix design (Avon and Swartchick, 2014) 

for all four walls. The walls of this test series were built using the same materials: cement-lime 

plaster (hand-applied), steel welded or woven wire mesh, wooden bases and caps, and rice 

straw bales. Their elevation dimensions were nominally the same for the Welded-18 and 

Woven-18 walls: 4’ long by 8’ tall. The Welded-14 wall was 4’ long and 7’-6” tall, and the 

Welded-9 wall was 4’ long and 7’-4” tall. The tests were performed in the same hydraulically 

driven 3DOF Structural Test Frame, with the same displacement loading protocol.  

Nevertheless, some irregularity is inherent. There is some minor variability in the 18-inch bales 

(and significantly more in the 14-inch bales), and apparently significant variability in the 

strengths of the plasters. Further, different people assisted with the construction of the walls, 

potentially leading to some variability in the plasters applied to the walls. The time between 

construction, plastering, and testing varied for each wall. 

Due to the scale of these walls, only one specimen is made to examine a particular detail or 

variable. Thus, the potential influence of other random variables on performance is not readily 

discerned, since the system behavior may be a function of more than just the explicit parameter 

that is varied. If it were possible to make two or even three of each wall, factors relating to 

individual wall irregularities could be diminished and the results could be more reliably 

interpreted. 
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8.0 Sources of Error 

8.1 Incongruous bales 

The farmer who supplied the bales for the Welded-14 wall had to hand-tie them, since his 

machinery was only calibrated for 18” thick bales. This led to numerous imperfections in the 

bales, particularly regarding shape and length, and made them difficult to stack. The 

performance of the Welded-14 wall cannot be considered representative of walls made with 

regular 14-inch bales. Even machine-baled straw bales have minor imperfections and 

inconsistencies. 

8.2 Test machine malfunctions 

The Hydraulic Frame experienced a few issues throughout the course of the year, including 

control failures and hydraulic fluid leaks. These issues delayed the schedule at times and 

caused damage to one wall that was subsequently repaired, without obvious detriment to the 

wall performance.  

8.3 Imperfect construction 

Though the provided details and mix designs were adhered to, there is always some potential 

for imperfections or unintentional variances between the quality of construction to occur.  

Straw bale construction is variable by nature, and no two walls are exactly the same because 

no two bales are exactly the same, and no two plaster batches are exactly the same, even if 

the builder adheres to the same mix design.  

8.4 Inconsistent time between construction & testing 

The welded wire and woven wire walls were built and plastered by August 2016, while the 

Welded-14 wall was completed by January 2017. As such, the first two walls had ample time 

for their plaster to cure, while the Welded-14 wall only had two months to cure. Effects of 

this on strength are thought to be minor. 
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9.0 Recommendations for Future Work 

As a result of this research, there are several recommendations for continued research on 

examining strawbale shear wall construction: 

1. Complete the Welded-9 Wall test to determine recommendations for slenderness limit. 

2. Build and test a second Welded-18 wall to understand if the unexpected low strength 

observed for this wall was representative. 

3. Monitor wire strength variability for a given wire type for different manufacturer’s 

batches. 

4. Investigate plaster strength variability for a given mix, comparing samples cured in air 

and those cured in a lime-saturated water bath. 

5. Compare the behavior of a 4’ wall with IRC details and welded wire mesh to one with 

Heckert details. 

6. Compare the behavior of woven and welded wire mesh for shear-dominated walls (e.g. 8 

feet long and 8 feet tall). 

 

10.0 Summary and Conclusions 

The results of this test series provided further confirmation that welded wire offers more strength 

than woven wire when used in the construction of strawbale walls. The four-foot walls with 

welded wire mesh fell significantly short of predicted strengths. Walls with a higher slenderness 

ratio are more prone to buckling, and in combination with an aspect ratio greater than 1:1, such 

walls should be heavily analyzed regarding their flexural strength. Further testing, especially of 

the slender limit wall, will be required to analyze these results in more detail. 

The vertical tests confirmed that strawbale walls can withstand an estimated typical roof dead 

load of 300 plf after an earthquake event, even when constructed using non-compliant 14” bales. 

This implies that strawbale buildings offer occupants enough time to safely exit the structure 

after a large earthquake. 
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Appendix A: Cost Estimate Calculation 

Given the material prices as purchased in bulk from distributors, each wall cost approximately 

$170 to build (see Table A-1). This number applies to a four-foot wall, and it does not include 

labor, which, for inexperienced builders, reached upwards of 50 hours per wall.  

 
Table A-1:  Cost estimation for a four-foot strawbale wall constructed in the SCU civil lab. 

Item Quantity Unit Price Total Price 

Straw Bale 5 $10.00/bale $50.00 

Plaster Batch 4 $5.00/batch $20.00 

Timber 2 $35.00/box beam $70.00 

Wire 16’ $1.75/ft $28.00 

TOTAL  $42.00/ft $168.00 

 

Summers and Zaleski determined their total cost to be $7,000 for four walls of varying length 

(“Straw Bale Seismic Design Capacities III,” 2014). When dividing the total by the walls in feet, 

their unit cost of a strawbale wall is $225/foot. Their high value can be attributed to the heavy 

“strong” detailing used in each of the walls; they cited $1000 as the cost of steel plates at the base 

of each of their walls. Their walls were also constructed using post-and-beam methods, which 

require more lumber than was used in this series’ walls. 
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Appendix B: Detailed Design Drawings and Standard Details 

 
Please see drawings on next page.   
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Appendix C: Welded-18 Expected Shear Calculation 
 

Please see spreadsheet on next page.  
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Materials

Unit Weight of Straw Bales (@ equil. MC) 8.5 pcf
Bale width (tributary to plaster skin) 9.00 in.

Stucco Lath
2x2 mesh, 14 gauge 2x2 mesh, 16 gauge W1.4 6" 2x4 mesh 14 ga

fy (mean fy/1.15) 55 ksi  60.0 66 60.0 50
fye (nominal * 1.15) = (ult / 1.1) 63.0 ksi ult/1.1 75.9 69 57.5
Spacing of vertical wires (plan dimension) 2.0 in 2.0 2.0 6.0 4.0
Spacing of horizontal wires (vertical dimension) 2.0 in 2.0 2.0 6.0 2.0
Wire diameter 0.0750 in 0.0800 0.0625 0.1350 0.0800
Area 0.00442 in2
Horizontal reinforcing ratio 0.221%
Area of vertical wires/unit length horizontally 0.00221 in2/in
Vertical reinforcing ratio 0.221% neglects laps
Mesh roll width 48.0 in 72.0 28.0 72.0 72.0
Lap width 0.0 in 6.0 3.0 9.0 6.0
Effective vertical reinforcing ratio (smeared) 0.221% without laps
rho.fye 0.139 ksi use vertical reinforcing ratio

For reference, from IBC and IRC proposal development
Cube strength (code min) 1000 psi cubes cured in lime saturated water bath A B C D E
Measured cylinder strength 1840 psi cube/1.25 to get cylinder (NOT  times 1.3 to get expected due to hydration) clay soil cement lime cement‐lime cement
Unit weight of plaster 138 pcf unit wt 110 130 130 138 142
Plaster Thickness (of single skin) 1.00 in specified as 7/8 min cube 100 1000 600 1000 1400

mesh in Illinois tests, 8 ft quantity each side
Strength from Parker (= 1.2 kN) 270 lbs monotonic wire anchorage tests uniform mesh wires 49
Shear strength in plastic hinge region 97 lbs cyclic wall tests, based on number of wires ignoring laps laps (3 at 6 in) 12

band at base (not stapled) 49
If protected from yielding/inelasticity total at base 110
take Vn at 2/3 of 270 180 lbs/staple

recalibrate ignoring laps 98
If part of plastic hinge region
base on 97 100 lbs/staple

Wall Segment (capacity of one reinforced plastered face)

Height, hi 8.21 ft above 10" mesh band
Plan Length, Li 4.00 ft

Height of plastered wall above segment 7.96 ft
Tributary length of straw above segment 4.00 ft assumes jambs carry horizontal wall segment weight
Weight of straw (tributary to plaster skin) 203 lbs
Weight of plaster 366 lbs
Superimposed dead load 0 lbs zero for post and beam
Axial force at top of segment 569 lbs

Weight of straw within segment 209 lbs
Weight of plaster within segment 378 lbs
Weight of wall segment 587 lbs
Axial force at base of segment 1156 lbs

Wall Segment Dimensions

Dead Load at Top of Wall Segment (tributary to single skin)

Dead Load at Base of Wall Segment (tributary to single skin)

16‐gauge staples (7/16" crown x 1‐3/4" leg)

Spreadsheet Output

4' STANDARD WALL (Welded‐18)

Bales

2x2 mesh 14 ga

cement‐lime (stucco)



Expected, based on expected material strengths
   Vc,e 3.29 kips
   Vs,e 5.34 kips
   Vn,e 8.6 kips

Beta1 0.85
Mp at top of wall segment (reinforced plaster one side)
   c 0.41 ft
   Mp, at top of wall segment 158.5 k‐in zero actually
Mp at base of wall segment (reinforced plaster one side)
   c 0.44 ft
   Mp, at base of wall segment 170.0 k‐in
Vmp (shear associated with Mp) 1.6 k cantilever value

Vmp/Vn 0.19 >1 = shear, except shear strengths may be a lot higher than calculated
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1.6 kips

If shear or plastic hinging at boundary, provide 0.3 layers of mesh/skin heavy mesh boundaries for both shear and plastic hinging? Maybe just for plastic hinging... 
Then V at boundary equals 1.61 kips

If boundary protected from inelastic action:
Length of boundary 4 ft
Provide 0.2 layers of mesh/skin
Then V at boundary equals 2 kips

Plan Length, Li 4.00 ft
Height, hi 8.21 ft
Height of plastered wall above segment 7.96 ft
Tributary length of straw above segment 4.00 ft
Vn, (shear associated with shear failure) 8.638 kips
Vmp (shear associated with Mp) 1.6 kips
Vmp/Vn 0.19
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1.61 kips
Within wall segment: Vmp/Vn 0.19
If boundary yielding: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.34
If boundary protected: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.19

Wall Segment (capacity of two reinforced plastered faces)
Vmp (shear associated with Mp) 3.218 kips (Vmp for one plaster face times 2)
Vn (shear associated with shear failure) 17.27639515 kips (Vn for one plaster face times 2)

pier hinging, Vmp/Vn around 0.7 or 0.8
pier shear failure, Vmp/Vn high
plastic hinging in pier at boundary
shear failure in pier at boundary

Stapled Boundary Shear Strength

Performance Indices

Shear Strength of Wall Segment (plastered one side)

Shear Required to Cause Plastic Hinging (of single skin)

Design Failure Mode



D 
 

 
 
 
 
 
 
 
 

Appendix D: Woven-18 Expected Shear Calculation 
 

Please see spreadsheet on next page.  

  



Plastered Straw Bale Panel Proportioning User Input
4‐Jun‐17

Meg changed it

Materials

Unit Weight of Straw Bales (@ equil. MC) 8.5 pcf
Bale width (tributary to plaster skin) 9.00 in.

Stucco Lath
2x2 mesh, 14 gauge 2x2 mesh, 16 gauge W1.4 6" 2x4 mesh 14 gWoven wire mesh, 17 gauge

fy (mean fy/1.15) 61 ksi  60.0 66 60.0 50 50
fye (nominal * 1.15) = (ult / 1.1) 70.4 ksi 75.9 69 57.5 57.5
Spacing of vertical wires (plan dimension) 3.0 in <nominal? 2.0 2.0 6.0 4.0 3.2
Spacing of horizontal wires (vertical dimension) 1.5 in for two wires 2.0 2.0 6.0 2.0 1.5
Wire diameter 0.0500 in 0.0800 0.0625 0.1350 0.0800 0.0490
Area 0.00196 in2
Horizontal reinforcing ratio 0.262% for two wires every 1.5"
Area of vertical wires/unit length horizontally 0.00065 in2/in
Vertical reinforcing ratio 0.065% neglects laps
Mesh roll width 48.0 in 72.0 28.0 72.0 72.0
Lap width 0.0 in 6.0 3.0 9.0 6.0
Effective vertical reinforcing ratio (smeared) 0.065% no laps
rho.fye 0.046 ksi

For reference, from IBC and IRC proposal development
Cube strength (code min) 1000 psi cubes cured in lime saturated water bath A B C D E
Measured cylinder strength 1840 psi cube/1.25 to get cylinder (NOT  times 1.3 to get expected due to hydration) clay soil cement lime cement‐lime cement
Unit weight of plaster 138 pcf unit wt 110 130 130 138 142
Plaster Thickness (of single skin) 1.00 in specified as 7/8 min cube 100 1000 600 1000 1400

mesh in Illinois tests, 8 ft quantity each side
Strength from Parker (= 1.2 kN) 270 lbs monotonic wire anchorage tests uniform mesh wires 49
Shear strength in plastic hinge region 97 lbs cyclic wall tests, based on number of wires ignoring laps laps (3 at 6 in) 12

band at base (not stapled) 49
If protected from yielding/inelasticity total at base 110
take Vn at 2/3 of 270 180 lbs/staple

recalibrate ignoring laps 98
If part of plastic hinge region
base on 97 100 lbs/staple

Wall Segment (capacity of one reinforced plastered face)

Height, hi 8.21 ft above 10" mesh band
Plan Length, Li 4.00 ft

Height of plastered wall above segment 7.96 ft
Tributary length of straw above segment 4.00 ft assumes jambs carry horizontal wall segment weight
Weight of straw (tributary to plaster skin) 203 lbs
Weight of plaster 366 lbs
Superimposed dead load 0 lbs zero for post and beam
Axial force at top of segment 569 lbs

Weight of straw within segment 209 lbs
Weight of plaster within segment 378 lbs
Weight of wall segment 587 lbs
Axial force at base of segment 1156 lbs

Wall Segment Dimensions

Dead Load at Top of Wall Segment (tributary to single skin)

Dead Load at Base of Wall Segment (tributary to single skin)

16‐gauge staples (7/16" crown x 1‐3/4" leg)

Spreadsheet Output

4' WOVEN WIRE WALL (Woven‐18)

Bales

2x2 mesh 14 ga

cement‐lime (stucco)



Expected, based on expected material strengths
   Vc,e 3.29 kips
   Vs,e 1.77 kips
   Vn,e 5.1 kips

Beta1 0.85
Mp at top of wall segment (reinforced plaster one side)
   c 0.17 ft
   Mp, at top of wall segment 64.3 k‐in zero actually
Mp at base of wall segment (reinforced plaster one side)
   c 0.20 ft
   Mp, at base of wall segment 77.3 k‐in
Vmp (shear associated with Mp) 0.8 k cantilever value

Vmp/Vn 0.15 >1 = shear, except shear strengths may be a lot higher than calculated
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 0.8 kips

If shear or plastic hinging at boundary, provide 0.2 layers of mesh/skin heavy mesh boundaries for both shear and plastic hinging? Maybe just for plastic hinging... 
Then V at boundary equals 0.78 kips

If boundary protected from inelastic action:
Length of boundary 4 ft
Provide 0.1 layers of mesh/skin
Then V at boundary equals 1 kips

Plan Length, Li 4.00 ft
Height, hi 8.21 ft
Height of plastered wall above segment 0.00 ft
Tributary length of straw above segment 0.00 ft
Vn, (shear associated with shear failure) 5.063 kips
Vmp (shear associated with Mp) 0.8 kips
Vmp/Vn 0.15
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 0.78 kips
Within wall segment: Vmp/Vn 0.15
If boundary yielding: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.16
If boundary protected: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.09

Wall Segment (capacity of two reinforced plastered faces)
Vmp (shear associated with Mp) 1.569 kips (Vmp for one plaster face times 2)
Vn (shear associated with shear failure) 10.12556511 kips (Vn for one plaster face times 2)

pier hinging, Vmp/Vn around 0.7 or 0.8
pier shear failure, Vmp/Vn high
plastic hinging in pier at boundary
shear failure in pier at boundary

Stapled Boundary Shear Strength

Performance Indices

Shear Strength of Wall Segment (plastered one side)

Shear Required to Cause Plastic Hinging (of single skin)

Design Failure Mode



E 
 

 
 
 
 
 
 
 
 

Appendix E: Welded-14 Expected Shear Calculation 
 

Please see spreadsheet on next page.  

  



Plastered Straw Bale Panel Proportioning User Input
4‐Jun‐17

Meg changed it

Materials

Unit Weight of Straw Bales (@ equil. MC) 8.5 pcf
Bale width (tributary to plaster skin) 7.00 in.

Stucco Lath
2x2 mesh, 14 gauge 2x2 mesh, 16 gauge W1.4 6" 2x4 mesh 14 ga Woven wire mesh, 17 gauge

fy (mean fy/1.15) 55 ksi  60.0 66 60.0 50 50
fye (nominal * 1.15) = (ult / 1.1) 63.0 ksi 75.9 69 57.5 57.5
Spacing of vertical wires (plan dimension) 2.0 in 2.0 2.0 6.0 4.0 3.2
Spacing of horizontal wires (vertical dimension) 2.0 in 2.0 2.0 6.0 2.0 1.5
Wire diameter 0.0750 in 0.0800 0.0625 0.1350 0.0800 0.0490
Area 0.00442 in2
Horizontal reinforcing ratio 0.221%
Area of vertical wires/unit length horizontally 0.00221 in2/in
Vertical reinforcing ratio 0.221% neglects laps
Mesh roll width 48.0 in 72.0 28.0 72.0 72.0
Lap width 0.0 in 6.0 3.0 9.0 6.0
Effective vertical reinforcing ratio (smeared) 0.221% no laps
rho.fye 0.139 ksi

For reference, from IBC and IRC proposal development
Cube strength (code min) 1000 psi cubes cured in lime saturated water bath A B C D E
Measured cylinder strength 465 psi cube/1.25 to get cylinder (NOT  times 1.3 to get expected due to hydration) clay soil cement lime cement‐lime cement
Unit weight of plaster 138 pcf unit wt 110 130 130 138 142
Plaster Thickness (of single skin) 1.00 in specified as 7/8 min cube 100 1000 600 1000 1400

mesh in Illinois tests, 8 ft quantity each side
Strength from Parker (= 1.2 kN) 270 lbs monotonic wire anchorage tests uniform mesh wires 49
Shear strength in plastic hinge region 97 lbs cyclic wall tests, based on number of wires ignoring laps laps (3 at 6 in) 12

band at base (not stapled) 49
If protected from yielding/inelasticity total at base 110
take Vn at 2/3 of 270 180 lbs/staple

recalibrate ignoring laps 98
If part of plastic hinge region
base on 97 100 lbs/staple

Wall Segment (capacity of one reinforced plastered face)

Height, hi 7.71 ft above 10" mesh band
Plan Length, Li 4.00 ft

Height of plastered wall above segment 7.46 ft
Tributary length of straw above segment 4.00 ft assumes jambs carry horizontal wall segment weight
Weight of straw (tributary to plaster skin) 148 lbs
Weight of plaster 343 lbs
Superimposed dead load 0 lbs zero for post and beam
Axial force at top of segment 491 lbs

Weight of straw within segment 153 lbs
Weight of plaster within segment 355 lbs
Weight of wall segment 507 lbs
Axial force at base of segment 998 lbs

Expected, based on expected material strengths
   Vc,e 1.78 kips
   Vs,e 5.34 kips
   Vn,e 7.1 kips

Wall Segment Dimensions

Dead Load at Top of Wall Segment (tributary to single skin)

Dead Load at Base of Wall Segment (tributary to single skin)

Shear Strength of Wall Segment (plastered one side)

Shear Required to Cause Plastic Hinging (of single skin)

16‐gauge staples (7/16" crown x 1‐3/4" leg)

Spreadsheet Output

4' THIN 14" WALL (Welded‐14)

Bales

2x2 mesh 14 ga

cement‐lime (stucco)



Beta1 0.85
Mp at top of wall segment (reinforced plaster one side)
   c 1.26 ft
   Mp, at top of wall segment 123.7 k‐in zero actually
Mp at base of wall segment (reinforced plaster one side)
   c 1.35 ft
   Mp, at base of wall segment 128.8 k‐in
Vmp (shear associated with Mp) 1.4 k cantilever value

Vmp/Vn 0.20 >1 = shear, except shear strengths may be a lot higher than calculated
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1.4 kips

If shear or plastic hinging at boundary, provide 0.3 layers of mesh/skin heavy mesh boundaries for both shear and plastic hinging? Maybe just for plastic hinging... 
Then V at boundary equals 1.39 kips

If boundary protected from inelastic action:
Length of boundary 4 ft
Provide 0.2 layers of mesh/skin
Then V at boundary equals 1 kips

Plan Length, Li 4.00 ft
Height, hi 7.71 ft
Height of plastered wall above segment 0.00 ft
Tributary length of straw above segment 0.00 ft
Vn, (shear associated with shear failure) 7.120 kips
Vmp (shear associated with Mp) 1.4 kips
Vmp/Vn 0.20
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1 kips
Within wall segment: Vmp/Vn 0.20
If boundary yielding: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.29
If boundary protected: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.16

Wall Segment (capacity of two reinforced plastered faces)
Vmp (shear associated with Mp) 2.785 kips (Vmp for one plaster face times 2)
Vn (shear failure) 14.24064876 kips (Vn for one plaster face times 2)

pier hinging, Vmp/Vn around 0.7 or 0.8
pier shear failure, Vmp/Vn high
plastic hinging in pier at boundary
shear failure in pier at boundary

Stapled Boundary Shear Strength

Performance Indices

Design Failure Mode



F 
 

 
 
 
 
 
 
 
 

Appendix F: Welded-9 Expected Shear Calculation 
 

Please see spreadsheet on next page.  
 



Plastered Straw Bale Panel Proportioning User Input
4‐Jun‐17

Meg changed it

Materials

Unit Weight of Straw Bales (@ equil. MC) 8.5 pcf
Bale width (tributary to plaster skin) 4.50 in.

Stucco Lath
2x2 mesh, 14 gauge 2x2 mesh, 16 gauge W1.4 6" 2x4 mesh 14 Woven wire mesh, 17 gauge

fy (mean fy/1.15) 55 ksi  60.0 66 60.0 50 50
fye (nominal * 1.15) = (ult/ 1.1) 63.0 ksi ult/1.1 75.9 69 57.5 57.5
Spacing of vertical wires (plan dimension) 2.0 in 2.0 2.0 6.0 4.0 3.2
Spacing of horizontal wires (vertical dimension) 2.0 in 2.0 2.0 6.0 2.0 1.5
Wire diameter 0.0750 in 0.0800 0.0625 0.1350 0.0800 0.0490
Area 0.00442 in2
Horizontal reinforcing ratio 0.221%
Area of vertical wires/unit length horizontally 0.00221 in2/in
Vertical reinforcing ratio 0.221% neglects laps
Mesh roll width 48.0 in 72.0 28.0 72.0 72.0
Lap width 0.0 in 6.0 3.0 9.0 6.0
Effective vertical reinforcing ratio (smeared) 0.221% no laps
rho.fye 0.139 ksi

For reference, from IBC and IRC proposal development
Cube strength (code min) 1000 psi cubes cured in lime saturated water bath A B C D E
Measured cylinder strength 642 psi cube/1.25 to get cylinder (NOT  times 1.3 to get expected due to hydration) clay soil cement lime cement‐lime cement
Unit weight of plaster 138 pcf unit wt 110 130 130 138 142
Plaster Thickness (of single skin) 1.00 in specified as 7/8 min cube 100 1000 600 1000 1400

mesh in Illinois tests, 8 ft quantity each side
Strength from Parker (= 1.2 kN) 270 lbs monotonic wire anchorage tests uniform mesh wires 49
Shear strength in plastic hinge region 97 lbs cyclic wall tests, based on number of wires ignoring laps laps (3 at 6 in) 12

band at base (not stapled) 49
If protected from yielding/inelasticity total at base 110
take Vn at 2/3 of 270 180 lbs/staple

recalibrate ignoring laps 98
If part of plastic hinge region
base on 97 100 lbs/staple

Wall Segment (capacity of one reinforced plastered face)

Height, hi 8.21 ft above 10" mesh band (85.5" measured height)
Plan Length, Li 4.00 ft

Height of plastered wall above segment 7.96 ft
Tributary length of straw above segment 4.00 ft assumes jambs carry horizontal wall segment weight
Weight of straw (tributary to plaster skin) 101 lbs
Weight of plaster 366 lbs
Superimposed dead load 0 lbs zero for post and beam
Axial force at top of segment 468 lbs

Weight of straw within segment 105 lbs
Weight of plaster within segment 378 lbs
Weight of wall segment 482 lbs
Axial force at base of segment 950 lbs

Wall Segment Dimensions

Dead Load at Top of Wall Segment (tributary to single skin)

Dead Load at Base of Wall Segment (tributary to single skin)

16‐gauge staples (7/16" crown x 1‐3/4" leg)

Spreadsheet Output

4' SLENDER 9" WALL (Welded‐9)

Bales

2x2 mesh 14 ga

cement‐lime (stucco)



Expected, based on expected material strengths
   Vc,e 1.95 kips
   Vs,e 5.34 kips
   Vn,e 7.3 kips

Beta1 0.85
Mp at top of wall segment (reinforced plaster one side)
   c 0.99 ft
   Mp, at top of wall segment 134.1 k‐in zero actually
Mp at base of wall segment (reinforced plaster one side)
   c 1.05 ft
   Mp, at base of wall segment 140.4 k‐in
Vmp (shear associated with Mp) 1.4 k cantilever value

Vmp/Vn 0.20 >1 = shear, except shear strengths may be a lot higher than calculated
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1.4 kips

If shear or plastic hinging at boundary, provide 0.3 layers of mesh/skin heavy mesh boundaries for both shear and plastic hinging? Maybe just for plastic hinging... 
Then V at boundary equals 1.43 kips

If boundary protected from inelastic action:
Length of boundary 4 ft
Provide 0.2 layers of mesh/skin
Then V at boundary equals 1 kips

Plan Length, Li 4.00 ft
Height, hi 8.21 ft
Height of plastered wall above segment 0.00 ft
Tributary length of straw above segment 0.00 ft
Vn, (shear associated with shear failure) 7.290 kips
Vmp (shear associated with Mp) 1.4 kips
Vmp/Vn 0.20
Failure mode (assumed) Flexure Governs
Shear corresponding to failure 1.4 kips
Within wall segment: Vmp/Vn 0.20
If boundary yielding: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.30
If boundary protected: Vboundary/Vsegment 1.00
    Number of boundary mesh layers 0.17

Wall Segment (capacity of two reinforced plastered faces)
Vmp (shear associated with Mp) 2.851 kips (Vmp for one plaster face times 2)
Vn (shear associated with shear failure) 14.58042873 kips (Vn for one plaster face times 2)

pier hinging, Vmp/Vn around 0.7 or 0.8
pier shear failure, Vmp/Vn high
plastic hinging in pier at boundary
shear failure in pier at boundary

Stapled Boundary Shear Strength

Performance Indices

Shear Strength of Wall Segment (plastered one side)

Shear Required to Cause Plastic Hinging (of single skin)

Design Failure Mode
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