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ABSTRACT

The use of medical devices such as pacemakers and implantable cardiac defibrillators

have become commonplace to treat arrhythmias. Pacing leads with electrodes are

used to send electrical pulses to the heart to treat either abnormally slow heart rates,

or abnormal rhythms. Lead induced vessel occlusion, which is commonly seen after

placement of pacemaker or implantable cardiac defibrillators leads, may result in lead

malfunction and/or superior vena cava syndrome, and makes lead extraction difficult.

The association between the anatomic locations at risk for thrombosis and regions of

venous stasis have been reported previously. The computational studies reveal obvious

flow stasis in the proximity of the leads, due to the no-slip boundary condition imposed

on the lead surface. With recent technologies capable of creating slippery surfaces that

can repel complex fluids including blood, we explore computationally how local flow

structures may be altered in the regions around the leads when the no-slip boundary

condition on the lead surface is relaxed using various slip lengths. The slippery surface

is modeled by a Navier slip boundary condition. Analytical studies are performed

on idealized geometries, which were then used to validate numerical simulations.

A patient-specific model is constructed and studied numerically to investigate the

influence of the slippery surface in a more physiologically realistic environment. The

findings evaluate the possibility of reducing the risk of lead-induced thrombosis and

occlusion by implementing a slippery surface conditions on the leads.

viii



Chapter 1

Introduction

A pacemaker is a small device that is placed in the chest or abdomen to help control

abnormal heart rhythms. It uses low-energy electrical pulses to prompt the heart to

beat at a normal rate. Pacemakers are used to treat arrhythmia, which represents any

change in the normal sequence of electrical impulses. The electric impulse may happen

too fast, too slow, or erratically that would result in an abnormal heart beat. The

improper heart beat would cause ineffective blood flows to different parts of the body,

which may lead to damages or shut down of other organs. Previous studies show that

in 1 − 3% of patients with pacemaker implants are symptomatic to occlusions right

after the implantation [1]. But, the number of cases of venous occlusions increases

to 14 − 37% when the patients return for system revision or regular follow up [2–5].

From the year 1980 to 2003, the number of pacemaker implants has increased from

40,000 per year to 150,000 per year. In 2006, an estimate of 418,000 pacemakers was

implanted in United States [6].

Despite the common use of these medical devices, a complete understanding of

the risk factors for the development of venous obstruction and methods to circumvent

them however remain to be addressed. The majority of pacemaker failure is caused

by venous occlusion. Figa et al. [7] suggested that lead characteristics are significant

factors affecting the occurrence of venous occlusion in young patients. The presence

of pacemaker leads in the blood vessel may cause more occlusions in young patients

because of their small blood vessels than adult patients. In some cases of pacemaker

implantation, the pacemaker leads cause partial or full blockage of the blood flow in

a vessel. The blockage causes increased wall shear stress on the blood vessels and
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Figure 1.1: Schematic representation of a pacemaker implant. Image taken from NIH

website [8] without permission.

decreased blood flow rates.

Computational fluid mechanics has been employed as a useful tool to simulate the

flows of blood in both idealized and patient-specific geometries [9]. In particular, for

lead-induced venous occlusion, a simulation-based investigation was conducted with

patient-specific geometrical models to predict the locations of the vessels that are

prone to venous occlusions [10]. Using the images obtained from computed tomog-

raphy (CT) scan of patients, three-dimensional (3D) models of blood vessels were

created as shown in Fig. 1.2. These models were then used to perform fluid dynam-

ics simulations to analyze different flow characteristics, including blood flow velocity,

wall shear stress, and pressure with and without the pacemaker lead.

Typically the pacemaker leads used in the implants are made of metal alloys in-

sulated with silicone rubber or polyurethane. While studying the fluid mechanics of

blood flow around such pacemaker leads, the pacemaker lead surface is considered as

a no-slip surface. This results in regions with low velocities near the lead and results

in an increase in the wall shear stress on the blood vessel [10]. As shown in Fig. 1.3,

the flow velocity is typically low near the lead. This results in increased mean ex-

posure time, which is the amount of time fluid particles stay in a particular region.

Regions with higher mean exposure time distribution are more prone to occlusions or

blockage because the blood cells have more time to interact with the lead surfaces to

develop thrombosis.

2



Figure 1.2: Patient-specific geometrical models. (a) Patient-specific CT image with

pacemaker lead and generator highlighted. (b) Paths drawn through the center of the

great vain (red) and lead (green and blue) (c) The vessel lumen is defined at fixed

intervals along each vessel and these slices are lofted together to provide a geometric

model of the great veins and pacemaker leads (d) High-resolution computational

mesh is created from the geometric model [10]. Image reproduced from [10] without

permission.

In this work, we explore the influence of surface condition of the pacemaker lead

on the local flow structure by relaxing the no-slip boundary condition on the lead

surface. These “slippery” surfaces may be achieved with superhydrophobic materials

inspired by lotus leaves [11], which lead to the development of liquid repellent micro-

textured surfaces. Recently, Wong et al. [12] have developed slippery liquid-infused

porous surfaces (SLIPS) technology. The idea was inspired by Nepenthes pitcher

plants shown in Fig. 1.4, and these SLIPS materials posses nano-structured tubes

infused with lubricating fluids. The slippery surface is highly hydrophobic and stable

under pressure. These SLIPS materials are biocompatible and capable of repelling

biological fluids including untreated blood samples, which suggest their applications

in anti-biofouling coatings for medical devices (Fig. 1.5). Some previous studies also

demonstrated significant drag reduction using these slippery surface [14–17].
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Figure 1.3: Comparison of velocity and mean exposure time distributions for different

patient-specific models at various locations with and without pacemaker leads [10].

Image reproduced from [10] without permission.

For different physical reasons and scenarios, the slip flows have been noticed earlier

in gas flows, non-newtonian fluids and contact line motion [18]. The influence of

slippery surfaces on flow structure can be modeled through an apparent slip length

described by the Navier slip condition [19] as,

u = l
∂u

∂n
, (1.1)

where u is the tangential velocity, l is the dimensional slip length of the surface, and

n is the normal direction. The slip length of surfaces produced from different tech-

nologies can range from few micrometers to hundreds of micrometers [17].
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Figure 1.4: (a) Nepenthes pitcher plant (b) Microscopic view of SLIPS, LP-liquid per-

fluorocarbon, TP-tethered perfluorocarbon. (c) Residual on blood droplet on tethered

liquid perfluorocarbon(TLP) and on acrylic [13]. Image reproduced from [13] without

permission.

Figure 1.5: (a) Flow comparison over SLIPS and superhydrophobic, air containing

Teflon porous surface. Fluid flows on SLIPS without leaving any residual but leaves

some traces behind on the Teflon surface. (b) Flow over the SLIPS and Teflon surface

after physical damage. Fluid flows on SLIPS over the damaged part without leaving

any residual but gets pinned on the damaged part while flowing over Teflon surface

[12]. Image reproduced from [12] without permission.
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In this work, we investigate theoretically the influence of a slippery pacemaker

lead on the flow characteristic in blood vessels. We first perform analytical studies

for idealized vessel geometries in Ch. 2 to obtain some fundamental understanding of

the effects of apparent slip on lead surface. The analytical results are then used to

compare with the numerical results obtained from numerical simulations to validate

the numerical results in Ch. 3. After validation, a 3D patient-specific model is created

to investigate the effect of a slippery lead surface in more realistic biological scenarios,

and the results are discussed in Ch. 3.
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Chapter 2

Analytical Studies

Before considering complex geometries in patient-specific models, idealized geometries

are studied here to make analytical progress. These analytical results provide basic

understandings and can be used for validating the numerical simulation results later.

Poiseuille pioneered the modeling of blood flows by studying the ideal scenario of

pressure-driven flow in a long circular pipe. Assuming blood as a Newtonian fluid

and the flow being incompressible, the fluid velocity u and pressure p is governed by

the continuity equation (conservation of mass):

5 · u = 0, (2.1)

and the Navier-Stokes equation (conservation of momentum):

ρ

[
∂u

∂t
+ u · 5u

]
= −5 p+ µ52 u, (2.2)

where ρ and µ represent the fluid density and dynamic viscosity, respectively. Under

the assumptions of a steady and unidirectional flow in the z-direction in cylindri-

cal polar coordinates (r, φ, z), the velocity field uz satisfying the no-slip boundary

condition on the wall of a blood vessel (r = Ro) is given by

uz =
1

4µ

∂p

∂z

(
r2 −R2

o

)
, (2.3)

where ∂p/∂z is the pressure gradient. The simplest model that accounts for the

presence of a pacemaker lead is that of flow past concentric cylinders. The inner

cylinder represents the pacemaker lead and the outer cylinder presents the blood

vessel. This problem can also be readily solved in cylindrical polar coordinates with
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the no-slip boundary condition at both the inner and outer cylinders. The resulting

unidirectional flow field is given by

uz =
1

4µ

∂p

∂z

[
r2 −R2

o −
ln(r/Ro)

ln(Ro/Ri)
(R2

o −R2
i )

]
, (2.4)

where Ro and Ri are the outer and inner radii respectively.

2.1 Concentric cylinders with non-homogeneous slip

Figure 2.1: Velocity profiles in concentric cylinders for different slip lengths, λ =

0, 0.1, 1, 10 and ∞. Here λ is the dimensionless slip length on the inner cylinder

surface. The solid lines represent the analytical results and the symbols represents

the simulation results (see Ch. 3).

In the idealized scenario of having a pacemaker lead concentrically positioned

along the centerline of a blood vessel, one can investigate the effect of a slippery surface

by implementing a Navier slip boundary condition introduced in Eq. 1.1 at the inner

cylinder (r = Ri). The boundary condition at the outer cylinder (r = R0) remains to

be no-slip since it represents the blood vessel. This known solution [19] is reviewed

below since it will be used as a validation for subsequent numerical simulations.

We non-dimensionalize lengths by the outer radius R0 and velocities by GR2
o/µ,

where G is the negative pressure gradient. The dimensionless Navier slip boundary
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condition for the dimensionless velocity w is then given by

w = λ
∂w

∂n
, (2.5)

where λ = l/R0 is the dimensionless slip length. The dimensionless velocity expression

for non-homogeneous slip at the inner and outer cylinders can be calculated as [19],

w = c1 + c2 ln r − r2

4
, (2.6)

with

c1 =
1

4

[
1 + 2λ2 −

bλ2(1− b2 + 2bλ1 − 2λ2)

(λ1 + bλ2 − b ln b)

]
, (2.7)

c2 =
b(1− b2 + 2bλ1 + 2λ2)

4(λ1 + bλ2 − b ln b)
, (2.8)

where b = Ri/Ro, λ1 = l1/Ro is the dimensionless slip length of inner cylinder surface

and λ2 = l2/Ro is the dimensionless slip length of outer cylinder surface (l1 and l2

are the dimensional slip length of inner and outer cylinder surface respectively). The

dimensional version of the velocity field is given by

uz = −∂p
∂z

Ro

µ

[
c1 + c2 ln

(
r

Ro

)
−
(

r

2Ro

)2
]
. (2.9)

Applying this general solution to the specific problem of a concentric pacemaker

lead in a blood vessel, we consider a blood vessel raids of Ro = 0.55 cm and pacemaker

lead radius as Ri = 0.1167 cm. We assume a viscosity of µ = 0.04 g/cm.s for blood and

a physiological volume flow rate Q = 16 cm3/s. The outer cylinder wall is considered

as no-slip surface (i.e. λ2 = 0) and different slip length values on inner cylinder wall

are considered to calculate the velocity profile as shown in Fig. 2.1. As expected, the

slip velocity at the pacemaker lead (r = Ri) increases with the slip length, but the

rate of increase is less substantial for large values of λ. A dimensionless slip length of

λ = 1 already develops mores than 80% of the slip velocity generated by the free slip

case λ =∞. Therefore, even though current technologies can only produce a slippery

surface with slip lengths in the order of hundreds of micrometers, their effects may

still be significant in small scale flows.

Wall shear stress at the blood vessel (r = R0) is an important quantity in the

biomechanics of cardiovascular systems because the endothelial cells were shown to

9



Figure 2.2: Comparison between analytical results and simulation results for wall

shear stress on the blood vessel (outer cylinder), where no-slip boundary condition is

applied. The slip length λ of the pacemaker lead (inner cylinder) is varied.

respond to shear stresses. The corresponding dimensional wall shear stress in the

above problem is calculated as

τwall = Ro
∂p

∂z

[
c2
Ro

− 1

2Ro

]
. (2.10)

For this axisymmetric case, the wall shear stress is uniform and Fig. 2.2 shows the

change in numerical values of the wall shear stress with the slip length (λ) on inner

cylinder wall surface. The wall shear stress when there is no lead is given shown

for comparison. For a pacemaker lead with no-slip boundary condition (λ = 0) is

present, the wall shear stress at the blood vessel increases substantially (≈ 70%).

Such a substantial increase in wall shear stress might cause undesirable response of

the endothelial cells. When the surface of the pacemaker lead becomes increasingly

slipper (increasing λ), the wall shear stress decreases to a value closer to the case

when there is no lead.
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2.2 Eccentric cylinder with non-homogeneous slip

Next, we consider the case when the pacemaker lead (inner cylinder) is eccentrically

positioned in side the blood vessel, which represent a more realistic scenario compared

with the concentric case. Problems with eccentric cylinders can be treated analytically

with the bipolar cylindrical coordinates (Fig. 2.3). The slip flow past eccentric annulus

with homogenous slip boundary conditions (i.e. same slip length for all surfaces) have

been recently solved by Alassar in a semi-analytical approach in bipolar cylindrical

coordinates [24]. To adapt the calculations to our problem where the slip lengths

are different on the inner (slippery pacemaker lead) and outer (no-slip good vessel)

surfaces, we pursue a slight modification of the calculation by Alassar [24] to allow a

simple extension of their results to non-homogenous slip boundary conditions.

Figure 2.3: Bipolar cylindrical coordinate system, image taken from Alassar [24].

We will first reproduce the calculations by Alassar [24] in Sec. 2.2.1, before pre-

senting new results for non-homogenous slip in Sec. 2.2.2.

11



2.2.1 Homogenous slip

In this section, we present the formulation by Alassar [24] on the slip flow through

an eccentric cylindrical annulus and reproduce their results as a validation. The

problem is solved in bipolar cylindrical coordinate system (θ, ξ, z), shown in Fig. 2.3,

where there are two foci. The relation between the bipolar cylindrical coordinate and

Cartesian coordinate systems is given by:

x =
C sinh ξ

cosh ξ − cos θ
, (2.11)

y =
C sin θ

cosh ξ − cos θ
, (2.12)

z = z, (2.13)

where C is the focal distance

C =

√
(H −Ri −Ro)(H −Ri +Ro)(H +Ri −Ro)(H +Ri +Ro)

2H
. (2.14)

Here Ri and Ro are the radii of the inner and outer cylinders, respectively, and H is

the center-to-center distance. The surface of the inner and outer cylinders are given

by ξ1 = sinh−1(C/Ri) and ξ2 = sinh−1(C/Ro), respectively (refer to Fig. 2.3).

Assuming a steady, unidirectional flow in the z−direction, the Navier-Stokes equa-

tion reduces to

∇2uz =
1

µ

dp

dz
· (2.15)

We non-dimensionalize the velocity as w = uz/(GR
2
o/µ), where G represents the

magnitude of the pressure gradient in the z−direction. The dimensionless governing

equation in bipolar cylindrical coordinate system is then given by

∂2w

∂ξ2
+
∂2w

∂θ2
= − C2

R2
o(cosh ξ − cos θ)2

, (2.16)

and the homogenous slip boundary conditions are given by

w = ±β(cosh ξ − cos θ)
∂w

∂ξ

∣∣∣∣
ξ=ξ∗

. (2.17)

Here, + is used when ξ∗ = ξ1 and − is used when ξ∗ = ξ2. The slip coefficient β is

related to slip length l as

β =
l

C
· (2.18)

12



The solution of Eq 2.16 can be obtained as a superposition of a general solution to

the Laplace equation and a particular solution accounting for the non-homogenous

terms in Eq. 2.16 as

w= a1+a2ξ+
∞∑
n=1

[An sinh(n(ξ−ξ1))+Bn sinh(n(ξ−ξ2))] cosnθ− C2 cosh ξ

2R2
o(cosh ξ − cos θ)

·

(2.19)

Figure 2.4: Coefficients An and Bn with number of terms N for slip length (λ) = 0.1.

The unknown coefficients in Eq. 2.19 are obtained by applying the boundary

conditions and the orthogonality relations of the trigonometric functions as

(2.20)
2a1 + 2(ξ∗ ∓ β cosh ξ∗)a2 ± β cosh(ξ∗ − ξ1)A1 ± β cosh(ξ∗ − ξ2)B1

=
C2

R2
o

(coth ξ∗ ± β(cosh ξ∗ − sinh ξ∗)),

±2βδ1na2±β(n− 1) cosh((n− 1)(ξ∗− ξ1))An−1±β(n+ 1) cosh((n+ 1)(ξ∗− ξ1))An+1

+ (2 sinh(n(ξ∗ − ξ1))− 2n(±β) cosh ξ∗ cosh(n(ξ∗ − ξ1)))An ± β(n− 1)(ξ∗ − ξ2))Bn−1

+ (2 sinh(n(ξ∗ − ξ2))− 2n(±β) cosh ξ∗ cosh(n(ξ∗ − ξ2)))Bn =
C2

R2
o

(2 coth ξ∗

± 2β cosh ξ∗)(cosh ξ∗ − sinh ξ∗)
n,

(2.21)

where n ≥ 1, δij is the Kronecker delta and the signs ± are used as + for ξ∗ = ξ1

and − for ξ∗ = ξ2. Compared with previous results, we have corrected a typo in the

13



equation presented in Alassar [24]. With the assumptions that limn→∞An = 0 and

limn→∞Bn = 0, the above system of equations can be solved for the required 2N + 2

coefficients by setting AN = BN = 0, where N is the number of terms considered in

the series. The error involved is expected to be small when N is large. The coefficients

An and Bn are computed (refer to Appendix for the MATLAB implementation) and

shown in Fig. 2.4. As expected, the coefficients monotonically decrease and become

very small as N increases.

Figure 2.5: Results for homogeneous slip conditions (a) dimensionless velocity at

θ = 0 and π for Ri/Ro = 1/4 and H/Ro = 1/2, curves from top to bottom: β =

0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01 and 0.0. (b) dimensionless

wall shear stress on inner cylinder (τ1) for β = 0.05, Ri/Ro = 1/2 and eccentricity,

e = 0.001, 0.125, 0.250, 0.375, 0.5, 0.625, 0.750 and 0.875. (c) dimensionless wall

shear stress on outer cylinder (τ2) for β = 0.05, Ri/Ro = 1/2 and eccentricity, e =

0.001, 0.125, 0.250, 0.375, 0.5, 0.625, 0.750 and 0.875.

The coefficients are then employed to compute the velocity field using Eq. 2.19 and

shown in Fig. 2.5a. The results agree with those presented in Alassar [24] for various

slip lengths. We also reproduce the results on wall shear stress, which is calculated

14



by

τ = ∓ µ
C

(cosh ξ∗ − cos θ)
∂u

∂ξ

∣∣∣∣
ξ=ξ∗

, (2.22)

where the signs ∓ are used as − when ξ∗ = ξ1 and + when ξ∗ = ξ2. The reproduced

results agree with those presented in Alassar [24] and are shown in Fig. 2.5(b) and (c)

for inner and outer cylinders respectively for different eccentricity, e = H/(Ro−Ri).

2.2.2 Non-homogenous slip

After reproducing the results for a homogenous slip in Alassar [24], we modify the

boundary conditions (Eq. 2.17) for the problem in this study. The inner cylinder

(pacemaker lead) at ξ = ξ1 can be slippery while the outer cylinder at ξ = ξ2 (blood

vessel) has the no-slip boundary condition:

w(ξ = ξ1) = β1(cosh ξ − cos θ)
∂w

∂ξ

∣∣∣∣
ξ=ξ1

and w(ξ = ξ2) = 0. (2.23)

With non-homogeneous slip boundary conditions in Eq. 2.23, the system of equations

given by Eqs. 2.20 and 2.21 are solved again with the modified values of β = β1 at

ξ = ξ1 and β = 0 at ξ = ξ2. The new coefficients An and Bn are shown in Fig. 2.6.

The velocity field is then obtained using the new coefficients with Eq. 2.19.

For illustration, we consider a specific geometry defined by Ro = 0.55 cm, Ri =

0.1167 cm and H = 0.144 cm. We assume a viscosity of µ = 0.04 g/cm.s and density

ρ = 1.06 g/cm3 for blood and a physiological volume flow rate Q = 16 cm3/s. In

Fig. 2.7b, the velocity profiles for different values of slip length λ are plotted along

the line of centers shown as a bold black line in Fig. 2.7a. The slip velocity at the

inner cylinder increases with the slip length, and a dimensionless slip length of λ = 1

is already effective in inducing a significant slip velocity compared with that with

λ = 10.

The wall shear stress on the outer cylinder (representing the blood vessel) is also

computed using Eq. 2.22 at ξ = ξ2. Since the wall shear stress on the upper half of

the vessel (ω ∈ [0, π], shown as the bold line in Fig. 2.8a) is the same as the lower

half, we present only the results for the upper half of the vessel in Fig. 2.8b. Due to

the eccentricity, the wall shear stress becomes non-uniform in general in contrast to

the concentric case. For the case of no-slip (λ = 0), the wall shear stress is highly
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Figure 2.6: Coefficients An and Bn with number of terms N with non-homogenous

slip lengths (λ1 = 0.1 and λ2 = 0).

non-uniform with a large peak at ω = 0. With the increase in slip length (e.g. λ = 1

and 10), the wall shear-stress becomes more uniform and reduces to a level close to

the case when there is no lead (compared with Fig. 2.2). These characteristics may

be desirable from a physiological perspective since the presence of the lead does not

significantly alter the biomechanical environments and hence may lead to fewer side

effects or complications.
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(a)

(b)

Figure 2.7: (a) Idealized eccentric model considered for the analytical and numerical

studies. The bold black line along the line of centers represents the domain where

the velocity distribution shown in (b) is plotted. (b) Comparison of velocity profiles

along the line of centers for eccentric cylinders with a no-slip boundary condition at

the outer cylinder and different dimensionless slip lengths λ = 0, 0.1, 1 and 10 at the

inner cylinder. The solid lines represent analytical solution derived in this study and

the symbols represent numerical results presented in Ch. 3.
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(a)

(b)

Figure 2.8: (a) Idealized eccentric model considered for the analytical and numerical

studies. The bold black line represents the domain where the wall shear stress in (b) is

plotted. (b) Comparison of wall shear stress on outer cylinder with no-slip boundary

condition and inner cylinder with different dimensionless slip lengths λ = 0, 0.1, 1

and 10. The solid lines represent the analytical solution derived in this section and

the symbols represent the numerical results presented in Ch. 3.
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Chapter 3

Computational Results

3.1 Numerical implementation and validation

An open source software SimVascular [25] was employed to create models and sim-

ulate blood flow. Three dimensional incompressible Navier-Stokes equations were

discretized by a stabilized finite element formulation (SUPG: streamlined upwind

Petrov-Galerkin). A generalized alpha-method with second order accuracy in time

is used for time integration [26]. Further details on the finite element solver can be

found in [27–29].

The numerical simulations are first validated against the analytical results de-

rived for idealized geometrical model studied in Ch. 2 in Sec. 3.1 before proceeding

to consider more a geometrically complex patient-specific model in Sec. 3.2. The

Dirichlet boundary condition was employed for the inlet with prescribed flow rates

and a parabolic profile. The same flow rate (Q = 16 cm3/sec) at the inlet and fluid

properties (µ =0.04 g/cm.s and ρ = 1.06 g/cm3) are prescribed as the analytical

solutions. A resistance boundary condition was employed for the outlet [30]. A rigid-

wall approximation was employed. No slip boundary condition was prescribed on the

vessel wall, and a Navier slip boundary condition was enforced on the pacing lead to

model the effect of a slippery surface.

Meshsim (Simmetrix, Clifton Park, NY) was used to generate linear tetrahedral

meshes. The same geometrical models of concentric and eccentric cylinders considered

in Ch. 2 are constructed for numerical simulations. The idealized model measures

inner and outer radii of 0.1167 cm and 0.55 cm respectively with a length of 100
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times of the outer diameter, and it consists of 6M elements with a mesh size of 0.08

cm. A three-layer boundary mesh with a factor of 0.5 is added to the wall. The mesh

size was chosen such that the error between numerical and analytical results in terms

of velocity and wall shear-stress distributions are less than 4%.

The numerical results are represented as symbols in the velocity plots for the

concentric (Fig. 2.1) and eccentric (Fig. 2.7b) cases. Similarly, the wall shear stress

obtained numerically are compared with the analytical solutions for the concentric

(Fig. 2.2) and eccentric (Fig. 2.8b) cases. Satisfactory agreements between the numer-

ical and analytical results with error less than 4% are obtained. Fig. 3.1, shows the

change velocity distributions for concentric and eccentric geometries (with center-to-

center distance H = 0, 0.144, 0.289 cm from left to right columns) for visualization

of the effect of slip on the pacemaker lead on the overall flow field. The presence of

a pacemaker lead in a blood vessel alters the flow characteristics compared with the

case when there is no lead. The case of no-slip surface modifies the overall flow field

significantly, and the introduction of a slippery surface (λ = 1) makes the alternation

less apparent. A dimensionless slip length of λ = 1 already induces effects similar to

that by the complete slip case λ =∞.

3.2 Patient-specific model: no-slip vs. slippery sur-

faces

In this section, we investigate the effect of a slippery pacemaker lead surface in more

complex geometries in an actual patient with a pacemaker installed. The medical im-

ages are obtained through collaboration with School of Medicine at Stanford Univer-

sity. A patient-specific model is created from the CT-scan images using SimVascular

(Fig, 3.2). The patient specific model consists of 1.2 M elements. Then, this model

is used to run simulations with no-slip and with slip conditions on the pacemaker

lead surface. As mentioned in the Introduction, current technologies can create a

slippery surface with slip length on the order of hundreds of micrometers [17]. Here

we consider a slip length of l = 800 µm to compare the effect of no-slip vs. slipper

surfaces in a realistic physiological geometry.

Velocity distributions at various cross sections in the blood vessel are displayed in

Fig. 3.3 to compare the no-slip and slipper cases. Similar to the idealized geometries,
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Figure 3.1: Velocity distributions for different eccentricities (from left to right

columns: H = 0 cm, 0.144 cm and 0.289 cm) with different slip lengths (λ = 0,

1, ∞).

as expected the slippery surfaces reduce the region of flow stasis near the lead at

various locations along the blood vessel. Since flow stasis has been associated with

the risk of developing thrombosis, the reduction of such regions by the use of slippery

surface may help reduce the risk of venous occlusions.

The wall shear stress distribution on the blood vessel is shown in Fig. 3.4 for the

case without lead, with a no-slip lead, and with a slippery lead. Compared with the

case where there is no lead (a), the wall shear stress when there is a no-slip lead

is elevated (b). The presence of a slippery surface (c) helps bring the shear stress

level closer to the case where there is no lead. This may reduce the possibility of

any undesirable mechanobiological response of the endothelial cells along the blood

vessel.
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Figure 3.2: Patient model obtained from CT-scan. The arrows and numbers indicate

the inlet volume flow rates of blood.
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Figure 3.3: Visualization of the flow distribution at various cross sections along the

blood vessel for the case when the pacemaker lead surface is no-slip and slippery.
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Figure 3.4: Wall shear stress distribution on the blood vessel, (a) without pacemaker

lead, (b) with no-slip pacemaker lead (l = 0 µm) and (c)with slippery pacemaker lead

(l = 800 µm).
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Chapter 4

Conclusions

While treating a patient with arrhythmia, where the patient’s heart does not beat

properly, a pacemaker is implanted in the body to make heart beat normally. The

presence of the lead in the blood vessel modifies the flow environment in the vessel.

Regions of flow stasis have been suggested to increase the risk of venous occlusions

in previous studies. In particular, these regions were identified in previous studies to

be near the pacemaker leads. With recent technologies capable of creating slippery

surfaces, we perform analytical and numerical studies how the flow structures can be

modified by replacing no-slip pacemaker slips by these slippery surfaces.

The effect of a slippery surface is modeled through a Navier slip boundary con-

dition. Analytical studies were first performed with idealized geometries including

slip flow past an eccentric annulus with non-homogenous slip boundary conditions.

The presence of a slippery surface increases the velocity around the pacemaker leads

and help restore the wall shear stress at the blood vessel to a level closer to the case

when there is no lead. These analytical results were employed to validate numeri-

cal simulations, which showed satisfactory agreements. A patient-specific model was

then constructed to evaluate the influence of the slippery pacemaker lead surface in

a more realistic physiological environment. Qualitatively similar behaviors were ob-

tained in the patient-specific model. The use of slippery pacemaker leads instead of

the conventional pacemaker lead may help reduce the risk of venous occlusions. How-

ever, more extensive case studies with realistic patient geometries and experimental

investigations in the future are required to further examine this idea.
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Appendix A

MATLAB Code

Coefficient code

1 c l e a r a l l

2 hr2 = 1/2 ;

3 r1r2 = 1/4 ;

4 cr2 = s q r t ( ( hr2 r1r2 1 ) ∗( hr2 r1r2 +1)∗( hr2+r1r2 1 ) ∗( hr2+r1r2

+1) ) /(2∗ hr2 ) ;

5 x i1 = as inh ( cr2 / r1r2 ) ;

6 x i2 = as inh ( cr2 ) ;

7 beta = 0 . 1 ;

8 % change i f o r d i f f e r e n t number o f terms

9 i =35 ;

10 s = i +1;

11 x i = xi1 ;

12 A = sym( ’A ’ , [ 1 i ] ) ;

13 B = sym( ’B ’ , [ 1 i ] ) ;

14 syms a1 a2

15 beta1 = beta ;

16 eqnG (1) = 2∗a1+a2 ∗2∗( x i+beta1∗ cosh ( x i ) ) A(1) ∗( beta1∗ cosh ( xi

x i1 ) ) B(1) ∗( beta1∗ cosh ( xi x i2 ) )== ( cr2 ˆ2) ∗( coth ( x i )

beta1 ∗( cosh ( x i ) s inh ( x i ) ) ) ;

17 f o r n = 1 : i

18 i f n==1

30



19 eqnG(n+1) = 2 ∗ beta1∗a2 beta1 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i1 ) )

∗A(n+1) + (2∗ s inh (n∗( xi x i1 ) )+2∗n∗beta1∗ cosh ( x i )∗ cosh (

n∗( xi x i1 ) ) )∗A(n) beta1 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i2 ) )∗B
(n+1) + (2∗ s inh (n∗( xi x i2 ) )+2∗n∗beta1∗ cosh ( x i )∗ cosh (n

∗( xi x i2 ) ) )∗B(n) == cr2 ˆ2∗ ( ( cosh ( x i ) s inh ( x i ) ) ˆn) ∗(2∗
coth ( x i ) 2 ∗ beta1∗ cosh ( x i ) ) ;

20 e l s e i f n==i

21 eqnG(n+1) = beta1 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i1 ) )∗A(n

1 ) + (2∗ s inh (n∗( xi x i1 ) )+2∗n∗beta1∗ cosh ( x i )∗
cosh (n∗( xi x i1 ) ) )∗A(n) beta1 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗(

xi x i2 ) )∗B(n 1 ) +(2∗ s inh (n∗( xi x i2 ) )+2∗n∗beta1∗
cosh ( x i )∗ cosh (n∗( xi x i2 ) ) )∗B(n) == cr2 ˆ2∗ ( ( cosh (

x i ) s inh ( x i ) ) ˆn) ∗(2∗ coth ( x i ) 2 ∗ beta1∗ cosh ( x i ) ) ;

22 e l s e

23 eqnG(n+1) = beta1 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i1 ) )∗A(n 1 )

beta1 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i1 ) )∗A(n+1) + (2∗ s inh (n∗(

xi x i1 ) )+2∗n∗beta1∗ cosh ( x i )∗ cosh (n∗( xi x i1 ) ) )∗A(n)

beta1 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i2 ) )∗B(n 1 ) beta1 ∗(n+1)∗
cosh ( ( n+1)∗( xi x i2 ) )∗B(n+1)+(2∗ s inh (n∗( xi x i2 ) )+2∗n∗
beta1∗ cosh ( x i )∗ cosh (n∗( xi x i2 ) ) )∗B(n) == cr2 ˆ2∗ ( ( cosh (

x i ) s inh ( x i ) ) ˆn) ∗(2∗ coth ( x i ) 2 ∗ beta1∗ cosh ( x i ) ) ;

24 end

25 end

26 end

27 x i = xi2 ;

28 t = s +1;

29 beta2 = beta ;

30 eqnG( t ) = 2∗a1+a2 ∗2∗( x i+beta2∗ cosh ( x i ) ) A(1) ∗( beta2∗ cosh ( xi

x i1 ) ) B(1) ∗( beta2∗ cosh ( xi x i2 ) )== ( cr2 ˆ2) ∗( coth ( x i )

beta2 ∗( cosh ( x i ) s inh ( x i ) ) ) ;

31 f o r n = 1 : i

32 t = t +1;

33 N( i ) = i ;

31



34 i f n==1

35 eqnG( t ) = 2 ∗ beta2∗a2 beta2 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i1

) )∗A(n+1) + (2∗ s inh (n∗( xi x i1 ) )+2∗n∗beta2∗ cosh ( x i )

∗ cosh (n∗( xi x i1 ) ) )∗A(n) beta2 ∗(n+1)∗ cosh ( ( n+1)∗(

xi x i2 ) )∗B(n+1) + (2∗ s inh (n∗( xi x i2 ) )+2∗n∗beta2∗
cosh ( x i )∗ cosh (n∗( xi x i2 ) ) )∗B(n) == cr2 ˆ2∗ ( ( cosh ( x i

) s inh ( x i ) ) ˆn) ∗(2∗ coth ( x i ) 2 ∗ beta2∗ cosh ( x i ) ) ;

36 e l s e i f n==i

37 eqnG( t ) = beta2 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i1 ) )∗
A(n 1 ) + (2∗ s inh (n∗( xi x i1 ) )+2∗n∗beta2∗
cosh ( x i )∗ cosh (n∗( xi x i1 ) ) )∗A(n) beta2 ∗(n

1 ) ∗ cosh ( ( n 1 ) ∗( xi x i2 ) )∗B(n 1 ) +(2∗ s inh (

n∗( xi x i2 ) )+2∗n∗beta2∗ cosh ( x i )∗ cosh (n∗( xi

x i2 ) ) )∗B(n) == cr2 ˆ2∗ ( ( cosh ( x i ) s inh ( x i )

) ˆn) ∗(2∗ coth ( x i ) 2 ∗ beta2∗ cosh ( x i ) ) ;

38 e l s e

39 eqnG( t ) = beta2 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i1 ) )∗A(n 1 )

beta2 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i1 ) )∗A(n+1) + (2∗ s inh (

n∗( xi x i1 ) )+2∗n∗beta2∗ cosh ( x i )∗ cosh (n∗( xi x i1 ) ) )∗A
(n) beta2 ∗(n 1 ) ∗ cosh ( ( n 1 ) ∗( xi x i2 ) )∗B(n 1 )

beta2 ∗(n+1)∗ cosh ( ( n+1)∗( xi x i2 ) )∗B(n+1)+(2∗ s inh (n

∗( xi x i2 ) )+2∗n∗beta2∗ cosh ( x i )∗ cosh (n∗( xi x i2 ) ) )∗B(

n) == cr2 ˆ2∗ ( ( cosh ( x i ) s inh ( x i ) ) ˆn) ∗(2∗ coth ( x i ) 2 ∗
beta2∗ cosh ( x i ) ) ;

40 end

41 end

42 end

43

44 [C,D] = equationsToMatrix ( [ eqnG ] , [ a1 , a2 ,A,B] ) ;

45 X = l i n s o l v e (C,D) ;

46 double (X) ;

47 double (C) ;

48 An( 1 : i ) = double (X( 3 : i +2) ) ;
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49 Bn( 1 : i ) = double (X(3+ i :2∗ i +2) ) ;

50 An;

51 Bn ;

52 semi logy ( abs (An) , ’ bo ’ , ’ LineWidth ’ ,2 , ’ MarkerFaceColor ’ , ’ b ’ ) ;

hold on ;

53 semi logy ( abs (Bn) , ’ r ˆ ’ , ’ LineWidth ’ ,2 , ’ MarkerFaceColor ’ , ’ r ’ ) ;

hold o f f ; l egend ( ’ A n ’ , ’ B n ’ ) ;

Velocity code

1 theta = 0 ;

2 syms abc

3 w =0;

4 cde = 0 ;

5 a = X(1) ;

6 b = X(2) ;

7 f o r n = 1 : i

8 cde = cde + (An(n)∗ s inh (n∗( abc x i1 ) )+Bn(n)∗ s inh (n∗( abc

x i2 ) ) )∗ cos (n∗ theta ) ;

9 end

10 w = c ˆ2∗ cosh ( abc ) /(2∗ ( cosh ( abc ) cos ( theta ) ) ) + X(1) + X(2) ∗
abc + cde ;

11 x1 = c∗ s inh ( abc ) /( cosh ( abc ) cos ( theta ) ) ;

12 f p l o t ( x1 ,w, [ x i2 x i1 ] , ’ r ’ ) ; hold on ;

13

14 theta = pi ;

15 syms abc

16 w1 =0;

17 cde = 0 ;

18 a = X(1) ;

19 b = X(2) ;

20 f o r n = 1 : i

21 cde = cde + (An(n)∗ s inh (n∗( abc x i1 ) )+Bn(n)∗ s inh (n∗( abc

x i2 ) ) )∗ cos (n∗ theta ) ;

22 end
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23 w1 = c ˆ2∗ cosh ( abc ) /(2∗ ( cosh ( abc ) cos ( theta ) ) ) + X(1) + X(2) ∗
abc + cde ;

24 x2 = c∗ s inh ( abc ) /( cosh ( abc ) cos ( theta ) ) ;

25 f p l o t ( x2 , w1 , [ x i2 x i1 ] , ’ k ’ ) ; hold on ;

26 l egend ( ’\ theta = 0 ’ , ’\ theta = pi ’ )

27 xlim ( [ 0 2 . 5 ] ) ;

28 ylim ( [ 0 0 . 2 6 ] ) ;

Wall shear stress code

1 abc = 0 ;

2 x i = x i ;

3 mn = 1000 ;

4 theta1 = l i n s p a c e (0 , pi ,mn) ;

5 f o r n = 1 : i

6 abc = abc+ (An(n)∗n∗ cosh (n∗( xi x i1 ) )+Bn(n)∗n∗ cosh (n∗( xi

x i2 ) ) )∗ cos (n .∗ theta1 ) ;

7

8 end

9 dw1 = c ˆ 2 . ∗ ( cos ( theta1 )∗ s inh ( x i ) ) . / ( 2∗ ( cosh ( x i ) cos ( theta1 )

) . ˆ 2 ) + X(2) + abc ;

10 t1 = dw1 . ∗ ( cosh ( x i ) cos ( theta1 ) ) /c ;

11

12 xy = c∗ s inh ( x i ) . / ( cosh ( x i ) cos ( theta1 ) ) ;

13 yz = c .∗ s i n ( theta1 ) . / ( cosh ( x i ) cos ( theta1 ) ) ;

14 x01 = c∗ coth ( x i ) ;

15 w1 = atan ( yz . / ( xy x01 ) ) ;

16 op = 0 ;

17 f o r m = 2 :mn

18 op = op+1;

19 i f (w1(m 1 ) > w1(m) )

20 break

21 %w1(m) = w1(m) + pi ;

22 end

23 end
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24 w1( op+1:mn) = w1( op+1:mn) + pi ;

25

26 p lo t (w1 , t1 , ’ Linewidth ’ , 1 . 5 ) ; hold on ;

27 pbaspect ( [ 3 1 1 ] )

28 ylim ( [ 0 0 . 4 ] )

29 x l a b e l ( ’w ’ )

30 y l a b e l ( ’\ tau 2 ’ )

35


	Santa Clara University
	Scholar Commons
	8-31-2017

	Influence of Slippery Pacemaker Leads on Lead-Induced Venous Occlusion
	Sagar Bhatia
	Recommended Citation


	thesis.pdf (p.3-45)

