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22 ARTIFICIAL INTELLIGENCE AND 

THE ETHICS OF SELF - LEARNING ROBOTS 

Shannon Vallor and George A. Bekey 

The convergence of robotics technology with the science of artificial 
intelligence ( or AI) is rapidly enabling the development of robots that 

emulate a wide range of intelligent human behaviors.1 Recent advances 

in machine learning techniques have produced significant gains in the 
ability of artificial agents to perform or even excel in activities for

merly thought to be the exclusive province of human intelligence, 

including abstract problem-solving, perceptual recognition, social 
interaction, and natural language use. These developments raise a host 

of new ethical concerns about the responsible design, manufacture, 

and use of robots enabled with artificial intelligence-particularly 
those equipped with self-learning capacities. 

The potential public benefits of self-learning robots are immense. 

Driverless cars promise to vastly reduce human fatalities on the road 
while boosting transportation efficiency and reducing energy use. 

Robot medics with access to a virtual ocean of medical case data 

might one day be able to diagnose patients with far greater speed and 

reliability than even the best-trained human counterparts. Robots 

tasked with crowd control could predict the actions of a dangerous 
mob well before the signs are recognizable to law enforcement officers. 

Such applications, and many more that will emerge, have the poten

tial to serve vital moral interests in protecting human life, health, and 

well-being. 
Yet as this chapter will show, the ethical risks posed by AI-enabled 

robots are equally serious-especially since self-learning systems 
behave in ways that cannot always be anticipated or folly under

stood, even by their programmers. Some warn of a future where Al 

escapes our control, or even turns against humanity (Standage 2016); 
but other, far less cinematic dangers are much nearer ro hand and are 

virrually certain to cause great harms if not promptly addressed by 
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technologists, lawmakers, and ocher stakeholders. The task of ensuring the eth
ical design, manufacture, use, and governance of AI-enabled robots and other 

artificial agents is thus as critically important as it is vast. 

22.l What Is Artificial Intelligence? 

The nature of human intelligence has been one of the great mysteries since the 
earliest days of civilization. It has been attributed to God or civilization or acci

dental mutations, bur there is general agreement that it is our brain and the intel

ligence it exhibits that separates humans from ocher animals. For centuries it 
was thought that a machine would never be able to emulate human thinking. 

Yet at present there are numerous computer programs that emulate some aspect 
of human intelligence, even if none can perform all the cognitive functions of a 
human brain. The earliest computer programs to exhibit some behavioral aspect 

of intelligence began to appear in the second half of the twentieth century. 2 The 
first meaningful test of a computer's approximation to human intelligence was 

proposed by Alan Turing (1950). He called it the "imitation game;' more com
monly known today as the "Turing Test." 

The idea is the following: An investigator submits written queries to the 

computer, which replies in writing. The computer passes the test if, afi:er a suit
able time interval, the average investigator has no better than a 70% chance of 

correctly determining whether the responses come from a person or a com

puter. The general utility and significance of the Turing Test for Al research 
are widely contested (Moor 2003; Russell and Norvig 2010). Its focus on a sys

tem's appearance to users in a tightly controlled setting, rather than the cog
nitive architecture or internal operations of the system, may appear to bypass 

the basic point of the test: namely, to demonstrate a cognitive faculty. The test 
also excludes many other types of intelligent performance that do not involve 

conversational ability. Still, it is noteworthy that in an annual competition held 

since 1991 (the Loebner Prize), no system has passed an unrestricted version of 

the test-repeatedly defying predictions by many researchers (Turing included) 

that computers would display conversational intelligence by the twenty-first 
century (Moor 2003). 

While there are many unresolved questions about what it would take for a 
machine to demonstrate possession of "real" intelligence of the general sore pos

sessed by humans, the chief goal of most AI researchers is more modest: sys

tems that can emulate, augment, or compete with the performance of intelligent 
humans in well-defined tasks.3 In this sense, the pragmatic legacy of the Turing 
Test endures. This figurative, cask-delimited definition of artificial intelligence is 

the one we shall employ in the rest of this chapter, unless otherwise stated. It 
is distinct from the far more ambitious notion of "strong" artificial intelligence 
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with the full range of cognitive capacities typically possessed by humans, includ
ing self-awareness. Most AI researchers characterize che laccer achievement, 

often referred to as "artificial general intelligence" or AGI, as at best a long-cerm 

prospect-not an emerging reality.4 

Artificial agents wich specific forms of cask intelligence, on the ocher hand, 

are already here among us. In many cases they not only compete with but hand
ily 011tpe1farm human agents, a trend that is projected co accelerate rapidly with 

ongoing advances in techniques of machine Learning. Moreover, che implementa

tion of cask-specific AI systems in robotic systems is further expanding che range 
and variety of AI agents and the kinds of social roles they can occupy. Such trends 

are projected co yield significant gains in global productivity, knowledge produc
tion, and instirncional efficiency (Kaplan 2015). Yee as we will sec, they also carry 
profound social, economic, and ethical risks. 

22.2 Artificial Intelligence and the Ethics 

of Machine Learning 

Many ethical concerns about AI research and its robotic applications are asso

ciated with a rapidly emerging domain of computer science known as machine 
Learning. As with learning in animals, machine learning is a developmental proc

ess in which repeated exposures of a system to an information-rich environment 
gradually produce, expand, enhance, or reinforce chat system's behavioral and 

cognitive competence in that environment or relevantly similar ones. Learning 

produces changes in the state of the system that endure for some time, often 
through some mechanism of explicit or implicit memory formation. 

One important approach co machine learning is modeled on networks in the 

central nervous system and is known as neural network learning or, more accu
rately, artificial neural network (ANN) Learning For simplicity, we omit che word 

artificial in the following discussion. A neural network consists of a sec of input 
nodes representing various features of che source or input data and a set of output 
nodes representing the desired control actions. Between che input and output 

node layers are "hidden" layers of nodes that function to process the input data, 

for example, by extracting features chat are especially relevant to the desired out
puts. Connections between che nodes have numerical "weights" chat can be mod

ified with che help of a learning algorithm; the algorithm allows che network to 

be "trained" with each new input pattern until the network weights are adjusted 

in such a way that the relationship between input and output layers is optimized. 

Thus the network gradually "learns" from repeated "experience" (multiple train
ing runs with input datasets) how to optimize the machine's "behavior" (outputs) 
for a given kind of task. 
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While machine learning can model cognitive architectures other than neural 

networks, interest in neural networks has grown in recent years with the addition 
of more hidden layers giving depth to such networks, as well as feedback or recur

rent layers. The adjustment of the connection strengths in these more complex 

networks belongs to a loosely defined group of techniques known as deep learn
ing. Among other applications of AI-especially those involvingcomputer vision, 

natural language, or audio processing-the performance of self-driving "robotic 

cars" has been improved significantly by the use of deep learning techniques. 
Machine learning techniques also vary in terms of the degree to which the 

learning is supervised, chat is, the extent to which the training data is explicitly 

labeled by humans to tell the system which classifications it should learn to make 
(as opposed co letting the system construct its own classifications or groupings). 

While many other programming methods can be embedded in AI systems, 

including "top-down" rule-based controls ("If a right turn is planned, activate 
right turn signal 75 meters prior co turn"), real-world contingencies are often too 

numerous, ambiguous, or unpredictable to effectively manage without the aid of 

machine learning techniques. 
For a self-driving car, the inputs will include real-time data about road condi

tions, illumination, speed, GPS location, and desired destination. The outputs 
will include the computed values of controlled variables, such as pressure on the 

accelerator (gas) pedal, steering commands (e.g., "Turn the steering wheel 30 

degrees clockwise"), and so on. Hidden layers of nodes will be sensitive to a wide 

range of salient patterns that might be detected in the inputs (e.g., input patterns 

indicating a bicyclist on the right side of the roadway) in ways that shape the 
proper outputs ("Slow down slightly, edge to the left-center of the lane"). 

Before it is capable of driving safely in real-world conditions, however, the 

car's network must be "trained" by a learning algorithm to predict the appropri

ate machine outputs (driving behaviors) for a wide variety of inputs and goals. 
Learning cakes place by adjustment of the gains or weights between the nodes 

of the network's input, hidden, and output layers. Initial training of a network 

in simulations is followed by controlled field tests, where the network is imple
mented and trained in a physical car. Once the proper connection strengths are 

determined by the training process, the input-output behavior of the network 
becomes an approximation co the behavior of the system being modeled: in our 

example, a well-driven car. \Vhile an artificial neural network's cognitive struc

ture may bear little resemblance to the neural structure of a competent human 

d river, once it can reliably approximate the input-output behavior typical of such 

drivers, we may say the network has learned co drive. 
Once the network is judged sufficiently competent and reliable in controlled 

cescs, additional fine-tuning of its performance might then take place "in the wild;' 
that is, in uncontrolled real-world conditions-as in the case of Tesla's autopilot 
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feature. Here we begin to confront important ethical questions emerging from 
Al's implementation in a robot or other system chat can autonomously act and 

make irreversible changes in the physical world. Media outlets have widely cov

ered the ethics of autonomous cars, especially the prospect of real-world "trolley 
problems" generated by the cask of programming cars co make morally challeng

ing trade-offs between the safety of its passengers, occupants of ocher cars, and 
pedestrians (Achenbach 2015). Yee "trolley problems" do nor exhaust or even 

necessarily address the core ethical issues raised by artificially intelligent and 

autonomous robotic syscems.5 This chapter focuses on a range of ethical issues 

less commonly addressed in media coverage of AI and robotics. 
First, consider that driverless cars are intended to make roads safer for humans, 

who are notoriously unsafe drivers. This goal has prima facie ethical merit, for 
who would deny chat fewer car wrecks is a moral good? To accomplish it, how

ever, one must t rain artificial networks ro drive better than we do. Like humans, 

self-learning machines gain competence in part by learning from their mistakes. 
l11e most fertile grounds for driving mistakes are real-world roadways, populated 

by loose dogs, fallen trees, wandering deer, potholes, and drunk, texting, or sleepy 

drivers. Bue is it ethical to allow people on public roads to be unwitting test sub
jects for a driverless car's training runs? 

Tesla's customers voluntarily sign up for chis risk in exchange for the excite

ment and convenience of the latest driving technology, but pedestrians and other 

drivers who might be on the wrong end of an autopilot mistake have entered 

into no such contract. Is it ethical for a company to impose such risks on us, even 
if the risks are statistically small, without public discussion or legislative over

sight? Should the public be compensated for such testing, since Tesla-a private 
company-profits handsomely if che tests resulc in a more commercially viable 
technology? Or should we accept that since the advancement of d riverless tech

nology is in the long-term public interest, we (or our children} will be compen

sated by Tesla with vastly safer roads five, ten, or twenty years from now? 
Moreover, does ethics permit the unwitting sacrifice of chose who might be 

endangered today by a machine learning its way in rhe world, as long as we can 

reasonably hope that many ochers will be saved by the same technology tomor
row? Here we see an implicit confl ict emerging between different ethical theo
ries; a utilitarian may well license such sacrifices in the interests of greater human 

happiness, while a Kantian would regard them as fundamentally immoral. 
Similar questions can be asked about other applications of machine learning. 

For example, should a future robot medic, well trained in simulations and con

trolled tests, be allowed co fine-tune its network in the field with real, injured 

victims of an earthquake or mass shooting, who might be further endangered 

by the robot's error? Does the prospect look more ethically justifiable if we rea
sonably believe chis will increase the likeliliood of one day having extraordinary 
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robot medics that can save many more lives than we currently can with only 

human medics? 
Imagine that we decide the long-term public benefit does justify the risk. 

Even the most powerful and well-trained artificial networks are not wholly pre
dictable. Statistically they may be competit ive with or even superior to humans 

at a given task, but unforeseen outputs-sometimes quite odd ones-are a rare 
but virtually ineradicable possibility. Some are emergent behaviors produced by 

interactions in large, complex systems.6 O thers are simple failures of an otherwise 

reliable system to model the desired output. A well-known example of the latter 

is IBM's Watson, which handily beat the best human]eopardy! players in 2011 

but nevertheless gave a few answers that even novice human players would have 
known were wrong, such as the notorious "Toronto" answer ro a Final Jeopardy 

question about "U.S. Cities." 
In the context of TV entertainment, this was a harmless, amusing mistake

and a helpful reminder that even the smartest machines aren't perfect. Yet today 

\Vatson for Oncology is employed by more than a dozen cancer centers in the 

United States to "offer oncologists and people with cancer individualized treat
ment options" (IBM \Vatson 2016). \Vatson's diagnoses and treatment plans are 
still vetted by licensed oncologists. Still, how reliably can a human expert distin

guish between a novel, unexpected treatment recommendation by Watson that 
might save a patient's life-something that has reportedly already happened in 

Japan (David 2016)-and the oncological equivalent of "Toronto"? At least in 

the context of oncology, a physician mn take time to investigate and evaluate 
Watson's recommendations; but how can we insulate ourselves from che unpre

dictability of systems such as self-driving cars, in which the required speed of 
operation and decision-making may render real-time human supervision virtually 

impossible to implement? 
Ideally, responsible creators of self-learning systems will allow them to oper

ate "in the wild" only when their statistical failure rate in controlled settings is 

markedly lower than chat of the average human performing the same cask. Still, 

who should we hold responsible when a robot or ocher artificial agent does injure 
a person while honing its intelligence in the real world? Consider a catastrophic 
machine "error" chat was not introduced by human programmers, could not have 

been specifically predicted by chem, and thus could not have been prevented, 
except by not allowing the machine to ace and learn in society in the first place.7 
\Vhat, if any, safeguards should be put in place to mitigate such losses, and who is 

responsible for making this happen? Lawmakers? Manufacturers? Individual AI 
scientists and programmers? Consumer groups? Insurance companies? We need 

a public conversation among affected stakeholders about what a just distribution 
of the risk burdens and benefits of self-learning systems will look like. 
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A related ethical issue concerns the very different degrees and types of risk 
that may be imposed by artificial agents on individuals and society. Allowing a 

self-driving security robot to patrol a mall food court risks bruising an errant 
toddler's foot, which is bad enough (Vincent 2016). It is quite another order of 

risk-magnitude to unleash a self-learning robot in a 2-ton metal chassis travel
ing public roads at highway speed, or to arm it with lethal weapons, or to link a 

self-learning agent up to critical power systems. Yet there are also significant risks 

involved with not employing self-learning systems, particularly in contexts such 
as driving and medicine where human error is a large and ineradicable source of 

grievous harms. If sound policy informed by careful ethical reflection does not 
begin to form soon around these questions of risk and responsibility in self-learn

ing systems, the safety of innocent people and the long-term future of AI research 

may be gravely endangered. 

22.3 Broader Ethical Concerns about Artificially 

Intel ligent Robots 

Not all ethical quandaries about AI-enabled robots are specific to their imple
mentation of machine learning. Many such concerns apply to virtually any 

artificial agent capable of autonomous action in the world. These include such 

challenges as meaningful human oversight and control of Al; algorithmic opacity 
and hidden machine bias; widespread technologiml unemployment; psychological 
and emotional manipulation of humans by Al; and automation bias. 

22.3.1 Meaningful Human Control and Oversight of Al 

Society has an ethical interest in meaningful human control and oversight of AI, 

for several reasons. The first arises from the general ethical principle that humans 
are morally responsible for our chosen actions. Since, unlike our children, Al

enabled systems come into the world formed by deliberate human design, humans 

are in a deep sense always momlly accountable for the effects of such agents on the 
world. It would therefore seem plainly irresponsible for humans to allow mean

ingful control or oversight of an artificial agent's actions to slip from our grasp. 

A second reason for our ethical interest in meaningful human control and 

oversight of AI is its rapidly expanding scope of action. Al-enabled systems 
already operate in real-world contexts like driving and medicine that involve mat

ters oflife and death, as well as other core dimensions of human flourishing. Thus 
the effects of AI in the world for which humans are responsible-positive and 
negative-are of increasing mom! gravity. This trend will strengthen as artificial 

systems demonstrate ever-greater competence and reliability in contexts with 
very high moral stakes (Wallach 2015). 
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As ethically fundamental as human responsibility for AI may be, the prac

tical challenges of maintaining meaningful human control and oversight are 

immense. In addition to the aforementioned risk of emergent or other unpre

dictable AI behaviors, there are strong counter-pressures to limit human con
trol and oversight of AI. Human supervisors are costly to employ, potentially 

reducing the profit to be reaped from automating a key task. Humans are also 
far slower to judge and act than are computers, so efficiency gains too can be 

diminished by our control. In many applications, such as driving, Right control, 
and financial trading, the entire function of the system will presuppose speeds 

and scales of decision-making beyond human reach. There is also the question 

of when our judgments warrant more epistemic authority or epistemic trust than 
machine judgments. If an artificially intelligent system has consistently demon

strated statistically greater competence than humans in a certain cask, on what 

grounds do we give a human supervisor the power to challenge or override its 

decisions? 

1he difficulty is exacerbated by the fact that self-learning robots often oper
ate in ways that are opaque to humans, even their programmers (Pasquale 2015). 

\'Ve must face the prospect of a growing disconnect between human and artificial 
forms of "expertise;' a gap that should d isturb us for several reasons. First, it risks 

the gradual devaluation of distinctly human skills and modes of understanding. 
Human expertise often expresses important moral and intellectual virtues miss

ing from AI (such as perspective, empathy, integrity, aesthetic style, and civic
mindedness, to name a few)-vircues that are all too easily undervalued relative 

to Al's instrumental virtues of raw speed and efficiency. Additionally, productive 

AI- human collaborations-the chief goal of many researchers-will be far more 
difficult if AI and human agents cannot grasp one another's manner of reasoning, 

explain the basis of their decisions to one another, or pose critical questions to 
one another. 

After all, if a human cannot reliably query an AI-enabled robot as to the spe

cific evidence and chain of reasoning by means of which it arrived at its decision, 
how can he or she reliably assess the decision's validity? Human supervisors of AI 

agents cannot effoctively do their job if their subordinate is a mute "black box." 

For this reason, many AI designers are looking for ways to increase the transpar

ency of machine reasoning. For example, internal confidence measures reported 

alongside a given choice allow a human to give less credibility to decisions with 

a low confidence value. Still, the problem of algorithmic opacity remains a signif
icant barrier to effective human oversight. Ir generates other moral risks as well. 
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22.3.2 Algorithmic Opacity and Hidden Machine Bias 

In addition to frustrating meaningful human oversight of AI, "black boxed" or 

opaque algorithmic processes can perpetuate and reinforce morally and episce

mically harmful biases. For example, racial, gender, or socioeconomic biases that 
originate in human minds are commonly embedded in the htm1an-generated 
datasets used co train or "educate" machine systems. These data define the "world" 

chat an artificial agent "knows." Yet the effect of human-biased data on machine 

outputs is easily obscured by several factors, making chose biases more harmful 
and resistant co eradication. 

One factor is algorithmic opacity itself. If I cannot know what features of a 

given dataset were singled om by a network's hidden layers as relevant and action
able, then I will be uncertain whether the network's decision rested on a harm

ful racial or gender bias encoded somewhere in that data. Another factor is our 

cultural tendency to think about robots and computers as inherently "objective" 

and "rational;' and thus materially incapable of the kinds of emotional and psy

chological responses (e.g., fear, disgust, anger, shame) that typically produce irra
tional and harmful social biases. Even scientists who understand the mechanisms 

through which human bias can infect machine intelligence are often surprised to 
discover the extent of such bias in machine outputs-even from inputs thought 
to be relatively unbiased. 

For example, a team of Boston University and Microsoft researchers found 

significant gender biases in machine "word embeddings" trained on a large body 
of Google News reports (Bolukbasi et al. 2016). They remark that data generated 

by "professional journalises" (as opposed to data sourced from internet message 

boards, for example) might have been expected to carry "little gender bias"; yet 
the machine outputs strongly reAected many harmful gender stereotypes ( 2016, 
3 ). They observed char "che same system that solved [other) reasonable analogies 

will offensively answer 'man is to computer programmer as woman is to x' with 
x = hornemaker" (3). The system also reAecced "strong" racial stereotypes (15) . 
To see how such biases could produce direct harm, just imagine chis same system 
implemented in an AI agent casked with providing college counseling to young 

men and women or with ranking employment applications for human resources 
managers ac a large tech firm. 

Indeed, hidden biases in AI algorithms and training data invite unjust out

comes or policies in predictive policing, lending, education, housing, healthcare, 

and employment, to name just a few sectors of AI implementation. Racial bias 
has already been found in facial recognition algorithms (Orcutt 2016) and, even 

more disturbingly, in machine-generated scores widely used by judges in criminal 

courts to predict the likelihood that a criminal defendant will reoffend (Angwin 
er al. 2016). Such scores shape judicial decisions about parole eligibility, length 
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of sentence, and the type of correctional facility to which a defendant will be 

subjected. A predictive engine that assigns higher risk scores to black defendants 

than to white defendants who are otherwise similar, and that systematically over
estimates the likelihood of black recidivism while systematically underestimating 

the rate of recidivism among whites, not only reflects an existing social injustice, 
but perpetuates and rein.forces it-both by giving it the stamp of machine objec

tivity and neutrality associated with computer-generated calculations and by 

encouraging further injustices ( disproportionately longer and harsher sentences) 
against black defendants and their families. 

Perhaps humans can learn to view biased machine algorithms and outputs 

with greater suspicion. Yet machine bias can also infect the judgments of less 
critically minded agents, such as robots tasked with identifying shoplifters, con

ducting anti-burglary patrols, or assisting with crowd-control or anti-terrorism 

operations. Such uses of robots are widely anticipated; indeed, automated secur
ity robots are already on the market (Vincent 2016). Perhaps we can train algo

rithms to expose hidden biases in such systems, for unless they can be effectively 

addressed, machine biases are virtually guaranteed to perpetuate and amplify 
many forms of social injustice. 

22.3.3 Widespread Technological Unemployment 

In the early nineteenth century, when weaving machines were introduced in 

England, great resentment and fear arose among textile workers who saw their 
jobs th reatened. An organized revolt against the machines led by so-called 

Luddites (after a mythical hero known as "Ned Ludd" or "King Ludd") had suf

ficient cultural impact that, to this day, people who object to new developments 
in technology are known as "Neo-Luddites." Yet despite their very real harms, 

the disruptions of the Industrial Revolution produced social goods that not 

many would be willing to surrender for the old world: longer life spans, higher 
standards ofliving in industrialized nations, and, eventually, great expansions in 

skilled employment. The early computer revolution produced similar cultural 

disruptions, but a range of new public benefits and a booming market for jobs in 
the "knowledge economy." 

Yet unlike other waves of machine automation, emerging advances in AI and 

robotics technology are now viewed as a significant threat to employees who per
form mental, not just manual, labor. Automated systems already perform many 

tasks that traditionally required advanced education, such as legal discovery, 

reading x-ray films, grading essays, rating loan applications, and writing news arti

cles (Kaplan 2015). IBM's \Vatson has been employed as a teaching assistant in an 
online college class on AI-without students discerning the non-human identity 
of their trusted TA "Jill" (Korn 2016). 
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The large-scale effects of AI and associated automation on human labor, social 

security, political stability, and economic equality are uncertain, but an Oxford 

study concludes that as many as 47% of U.S. jobs are at significant risk from 
advances in machine learning and mobile robotics (Frey and Osborne 2013, 1-2). 
Sectors at highest risk for displacement by automated systems include transpor

tation and logistics (including driving jobs), sales, service, construction, office 
and administrative support, and production (Frey and Osborne 2013, 35). It is 

worth noting that the Oxford researchers were relatively conservative in their 
predictions of machine intelligence, suggesting that non-routine, high-skilled 
jobs associated with healthcare, scientific research, education, and the arts are at 

relatively low risk due to their heavy reliance on human creativity and social intel
ligence (Frey and Osborne 2013, 40). Yet more recent gains in machine learning 

have led many to anticipate a boom in artificial agents like the university TA "Jill 
\Vatson": able ro compete with humans even in jobs that traditionaHy required 
social, creative, and intellectual capacities. 

Such developments will profoundly challenge economic and political stabil

ity in a world already suffering from rising economic inequality, political disaf
fection, and growing class divisions. They also impact fundamental human values 

like autonomy and dignity, and make it even less certain that the benefits and 

risks of scientific and technical advances will be distributed among citizens and 
nations in a manner that is not merely efficient and productive, but also good 
and ju.st. 

22. 3.4 Psychological and Emotional Manipulation 
of Humans by Al 

The moral impacts of Al on human emotions, sociality, relationship bonding, 

public discourse, and civic character have only begun to be explored. Research in 

social AI for robots and other artificial agents is exploding, and vigorous efforts 
to develop carebots for the elderly, sexbots for the lonely, chatbots for customers 

and patients, and artificial assistants like Siri and Corrana for all of us are just the 

tip of the iceberg. The ethical questions that can arise in this domain are virtually 
limitless, since human sociality is the primary field of ethical action. 

One deep worry about social AI is the well-documented tendency of humans 
to form robust emotional attachments to machines that simulate human emo
tional responses, even when the simulations are quite superficial (Turkle 2011 ). 
The behavior of artificial agents can also foster harmful delusions in hw11ans, who 

may incorrectly perceive them as having human traits such as sentience, empathy, 

moral conscience, or loyalty. Thus humans are deeply vulnerable co emotional 

and psychological manipulation by AI and robotic systems coldly designed to 

exploit us for commercial, political, or other purposes (Scheutz 2012). Imagine, 
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for example, the public harm that could be done by a chatbot programmed to 

seek out and form emotionally manipulative online relationships with youngvot

ers or lonely seniors and then, once a bond is formed, to start interjecting deliber
ately manipulative messages about a political candidate whom the chatbot deeply 
"fears" or "loves." 

Public education about the inability of robots to have feelings or form gen
uine bonds with humans will likely not be enough to prevent such harms, since 

even chose with an insider's knowledge of the technology can find themselves 
responding to such powerful delusions (Scheutz 2012). It is thus imperative that 

lawmakers and developers of AI-enabled social agents begin to work together on 

ethical and legal guidelines for restricting or prohibiting harmful manipulation, 
particularly when it undermines human autonomy or damages our vital interests. 

22.3.5 Automation Bias 

A related ethical concern about human-robot/ AI interaction is the psycholog

ical phenomenon of automation bias, in which humans greatly overestimate or 

rely unduly upon the capabilities of computerized systems (Cummings 2004). 
Automation bias can result from flawed expectations of computerized systems 

as infallible or inherently superior to human judgment, from time pressures 

or information overloads that make it difficult for humans to properly eval
uate a computer's decision, or from overextending warranted confidence in a 

machine's actual capabilities into an area of action in which confidence is not 

warranted. The latter is often elicited on the basis of only shallow similarities 
with intelligent human behavior, as when pedestrians in Puerto Rico walked 

behind a self-parking Volvo in a garage, erroneously trusting the car (which 
lacked an optional "pedestrian-detection" package) to know not to back over a 

person (Hill 2015). 

Automation bias has been cited as one possible factor in the 1988 downing of 
Iran Air 655 by che USS Vincennes, which caused che death of 290 civilians ( Gruc 

2013; Gal.liott 2015, 217). Operators of the Aegis anti-aircraft system that mis

takenly identified the airliner as a military jet had ample information to warrant 
overriding che identification, but failed to do so. As artificially incelligenc and 

robotic systems are given increasing power to effect or incite action in the physi

cal world, often with serious consequences for human safety and well-being, it is 
ethically imperative that the psychological dimension of human-AI and human
robot interactions be better understood. Such knowledge must guide efforts by 

AI and robotic system designers and users to reduce or eliminate harmful auto

mation bias and other psychological misalignments between human interests and 
artificial cognition. 



350 • S H ANNON VALLOR AND GEORGE A. BEKEY 

22.4. Public Fears and the Long-Term Future of Al 

\Vhile many computer scientists consider AI to be simply an especially interest

ing aspect of cheir field, challenging to program, and sometimes frus trating if ic 

does not behave as expected, in the popular press AI is frequently framed as a 
threat to humanity's survival. Elon Musk, founder and CEO of Space X and Tesla 
Motors, has warned the public that with AI we are "summoning the demon"; sim

ilar warnings about Al's existential risks, that is, its potential to threaten meaning

ful human existence, have been voiced by public figures such as Stephen Hawking 

and Bill Gares, alongwich a hose of AI and robotics researchers (Standage 2016).8 

The urgency of their warnings is motivated by the unprecedented acceleration of 
developments in the field, especially in machine learning.9 

Isaac Asimov's "Laws of Robotics" were an early fictional at tempt to chink 

through a sec of guidelines for the control of intelligent robots (Asimov 2004). 
Today, however, technologists and ethicists muse revisit this challenge in the face 

of profound public ambivalence about an Al-driven future. W hile many of us 

implicitly trust our car's directional sense or our tax software's financial acuity 

more than we trust our own, there is growing uncertainty about Al's long-term 

safety and compatibility with human interests. 
Public distrust of AI systems could inhibit wider adoption and consumer 

engagement with these technologies, a consequence that AI researchers have 

good reason to want to avoid. Many public fears can be moderated by better 
education and communication from AI researchers about what AI today is 
(skillful at well-defined cognitive casks) and is not (sentient, self-aware, malev
olent or benevolent, or even robustly intelligent in the manner of humans). 

Moreover, we would all benefit from an outward expansion of public concern 
to the less apocalyptic, but more pressing ethical challenges of AI addressed in 
this chapter. 

While talk about "Skynet" scenarios and "robot overlords" sounds like over

heated speculation to many AI and robotics researchers- who are otten overjoyed 

just to make a robot that can have a halfway convincing conversation or walk up 
an unstable hillside- growing public anxieties about AI and robotics technology 

may force researchers to pay more attention to such fears and at least begin an early 

dialogue about long-term control strategies for artificial agents. One does not have 
to predict a Terminator-like future to recognize that the ethical challenges pre

sented by AI will not remain fixed in their present state; as the technology grows 
in power, complexity, and scale, so will its risks and benefits ( Cameron 1984). For 
this reason, the ethics of artificial intelligence will be a rapidly moving target-and 

humanity as a whole must make a dedicated effort to keep up. 
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Notes 

l. There is much debate (even between this chapter's authors) about whether com

puter science, and artificial intelligence research in particular, is a genuine science 

that smdies and models natural phenomena (such as informational or computational 

processes) or is a branch of engineering. 

2. An excellent introduction to rhe field appears in Russell and Norvig (2010). 

3. IBM \'(/arson, for example, prefers rhe term "augmented intelligence" or "cognitive 

computing" to "artificial intelligence;' to emphasize \Varson's potential to enhance 

and empower human intelligence, not render it superfluous (IBM Research 2016). 

4. Research in AGI continues, if slowly, and is the central focus of organizations such as 

the Machine Intelligence Research Institute (MIRI). Many researchers who work on 

AGI are actively working to mitigate its considerable risks (Yudkowsky 2008). 

5. A related study is that of machine ethics: designing agents with artificial mom! imel

ligence. Because of space limitations, we restrict our focus here to the ethical chal

lenges AI presents for h11mt111 moral agents. 

6. Depending on whether the emergent behavior is undesirable or useful to humans, 

emergence can be a "bug" (as with the 2010 Flash Crash caused by feedback loops 

among interacting global financial software systems) or a "feature" (as when an algo

rithm produces emergent and seemingly "intelligent" swarming behavior among a 

networked group of micro-robots). 

7. Strictly speaking, machine learning networks do not make "errors" - they only 

generate unexpected or statistically rare outcomes that, from a human perspec

tive, are not well aligned with programmers' or users' real-world goals for the 

system. But since human goals (for example, "promote human safe ty") are no t 

actually understood by the system (however statist ically effective it may be at 

reaching them), it cannot truly be said to "err" in producing a result incongruous 

with such a goal. The mistake, if there is one, is a gap or misalignment between 

what the machine's code and network weightings actually do and what its pro

grammers wanted it to do. Good programming, training, and testing protocols 

can minimize such gaps, but it is virtually impossible to ensure that every such gap 

is el iminated. 

8. See the open letter on Al from the Future of Life Institute (2005), with more than 

eight thousand signatories; sec also Bostrom (2014). 

9. Indeed, a standard textbook in AI, which twenty years ago had some three hundred 

pages, now, in its third edition, includes well over a thousand pages (Russell and 

Norvig 2010). 
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