
Santa Clara University
Scholar Commons

Bioengineering Senior Theses Engineering Senior Theses

6-13-2017

Phosphate Contaminant Detection in Water
Through a Paper-based Microfluidic Device
Brandon Miura

Alex Wagner

Philip Wu

Follow this and additional works at: http://scholarcommons.scu.edu/bioe_senior

Part of the Biomedical Engineering and Bioengineering Commons

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fbioe_senior%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/bioe_senior?utm_source=scholarcommons.scu.edu%2Fbioe_senior%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fbioe_senior%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/bioe_senior?utm_source=scholarcommons.scu.edu%2Fbioe_senior%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=scholarcommons.scu.edu%2Fbioe_senior%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages




 

Phosphate Contaminant Detection in Water 

Through a Paper-based Microfluidic Device 
 

By 

Brandon Miura, Alex Wagner, Philip Wu 
All students contributed equally to this work 

 

SENIOR DESIGN PROJECT REPORT 
 

Submitted to 

the Department of Bioengineering 

of 

SANTA CLARA UNIVERSITY 

 

in Partial Fulfillment of the Requirements 

for the degree of 

Bachelor of Science in Bioengineering 

  

Santa Clara, California 

 

2016 - 2017 

 
 

 

 



 

 

Abstract 
This report describes a project aimed at developing a low-cost, portable, on-site, user-

friendly system for detecting different concentrations of phosphate in drinking water. 

Phosphate is a natural chemical, but toxic in large concentrations; detection is therefore 

important to avoid drinking contaminated water. Despite this fact, no cheap, and/or non-

toxic system for phosphate detection is yet on the market. 

  

The detection system utilizes a paper-based microfluidic device to automate the 

electrochemical detection process, which normally requires expert use of lab equipment. 

When combined with a portable potentiostat that works with a mobile app, the device 

will allow untrained users to determine if any source of drinking water contains unsafe 

levels of phosphate without equipment or training, and to communicate that information 

to a central database for further analysis. Those of any background, particularly in 

developing countries, will be able to maintain health and raise awareness about clean 

water. 

  

Microfluidic devices are useful tools for the detection of water contaminants, but there is 

a gap in technology for the detection of phosphate. Our phosphate detection system is a 

paper-based microfluidic device with an already-developed voltammetry device that 

automates the detection process so that any user can safely find phosphate in water. The 

system will provide a binary analysis about whether the water is safe to consume or not. 

Completion of the project provides a valuable tool to both average customers in 

developing countries and scientific researchers in determining the safety of drinking 

water.  
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Chapter 1: Introduction 

1.1 Background and Motivation 
The Dangers of Phosphate Contamination 

Phosphate is an inorganic chemical compound found in agricultural fertilizers. If 

unregulated, the usage of phosphate eventually leads to phosphate contamination of 

drinking water [1]. In the United States, the Environmental Protection Agency (EPA) 

defines the limit for phosphate level in streams and rivers to 100 parts per billion (ppb) 

[2]. However, water sources in India contain phosphate levels as high as 8,400 ppb [3]. 

While less immediately hazardous than some better-studied contaminants, too much 

phosphate ingestion can negatively impact bone and kidney health in the long term [4].  

 

Need for low-cost and accurate alternative 

Detecting these dangerous levels of phosphate in water is important, but it is not easy. 

Since phosphate contamination is most prevalent in developing countries, there needs to 

be a low-cost and accurate testing method. However, existing methods for finding 

phosphate rely on expensive equipment and trained lab technicians [5]. These resources 

are not readily available in rural and low-income areas where large populations may be at 

risk of ingesting this contaminant. Since water is necessary, our portable detection device 

will greatly improve the health of these communities because it can test if their drinking 

water is safe to consume.  

 

Our research expands the water testing technology that would help developing nations 

improve the quality of water. 
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1.2 Literature Review  

Research in Microfluidic Devices 

Microfluidic devices are often designed to be implemented in developing areas because 

of their small-scale size, low cost, and wide range of uses. There have been many 

microfluidic devices designed specifically for the detection of particular contaminants. 

While not all microfluidic devices designed for contaminant detection are for water, there 

is a significant amount of research in microfluidics for water contamination because 

many developing countries have been identified with having unsafe drinking water. 

These research findings are discussed below [6, 7, 8]. 

 

Bioluminescent-cell-based device for copper, zinc, and potassium dichromate detection 

The processes by which microfluidic devices have been designed varies by the target 

contaminant. For example, a bioluminescent-cell-based microfluidic device was designed 

to detect copper, zinc, and potassium dichromate in water supplies by using a specific 

type of cell as the sensor [6]. This approach used a plastic microfluidic chip that had 

living cells as the main tool for detecting the contaminants. Unfortunately, this 

microfluidic device is very difficult to design and manufacture because it utilizes living 

cells. Additionally, the materials necessary to manufacture the device are relatively 

expensive because of the plastic used and the culture of the cells [6].  

 

Paper-based device using a gold nanosensor for arsenic detection 

Another microfluidic device designed for water contamination detection is a paper-based 

microfluidic device, which uses a gold nanosensor to detect arsenic in water [7]. The 

device has proven effective in areas suffering from low arsenic contamination. It utilized 

paper as the main structure of the microfluidic chip, and could be easily manufactured. 

However, the gold nanosensor leads to a high cost per test, which is approximately $6.80 

for each test for a gold nanosensor from Dropsens (Asturias, Spain).  
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Compatibility of PDMS for project 

A third design was created to test whether poly-dimethylsiloxane (PDMS) can be 

compatible with microfluidic devices [8]. This was tested by observing the effects of 

various chemical solutions on the shape and integrity of PDMS. It was found that PDMS, 

a cheap plastic, was a good material for microfluidic devices since it can resist 

deformation from chemicals. Although this was a significant discovery for microfluidic 

devices, the study did not create an application with microfluidic devices. 

 

Even though the first two examples could detect contaminants in drinking water, their 

high cost and difficult fabrication make them harder to implement. If they could be made 

at a lower cost, they would be better suited to aid poor families and communities in 

developing countries. The third example does not directly aid these families and 

communities either, as it lacks an application geared toward them. 

 

Building off these and other microfluidic device discoveries, our microfluidic device will 

be usable by anyone and will be able to detect phosphate. Phosphate has only recently 

become a target for detection. 

1.3 Project Goal 

Purpose of Project 

The purpose of this project was to build an affordable, portable, accurate, and 

user-friendly device to detect phosphate concentrations in drinking water. This device can 

test water samples and contributes to the advancement of providing safe drinking water to 

people around the world.  

 

The main goal of the device is automate the detection process so that the user will not 

need to handle any of the hazardous chemicals, but only needs to add a water sample and 

wait for the result.  
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General overview of process 

The device automates the flow of a water sample through a paper-based device in order 

to perform the testing of phosphate as shown below.  

 
Figure 1: Overview of water sample flowing through device 

 

The water sample (Figure 1: step 1) travels through a paper-device that has been 

pre-dried with the detection chemical sodium molybdate (Figure 1: step 2). The water 

sample then travels to a screen-printed sensor. Then the device applies cyclic 

voltammetry to a three-electrode system (Figure 1: step 3) to determine the phosphate 

concentration.  

 

The device combines with a miniature potentiostat and a mobile application developed by 

the Department of Electrical Engineering and the Department of Computer Engineering 

at Santa Clara University. All three components are portable, affordable, and accurate.  
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Figure 2: Project goal with components 

 

As Figure 2 illustrates, the device combines microfluidics and electrochemistry to detect 

the phosphate in water, but does so using a paper-based container and low-cost Dropsens 

sensor (Asturias, Spain) to keep cost low and quality high. This combination of 

technology yields an advanced technical solution at a very low price. 

1.4 Previous and Concurrent Work 

This project was a continuation of the Phosphate Detection Project [9] funded by the 

Roelandts Grant in 2015-2016 school year. This project was now funded by a new 

Roelandts Grant in 2016-2017 school year. The previous senior design teams optimized 

and created a proof of concept device to detect phosphate in water sources [9]. 

 

This project expanded and carried out the proof of concept with a physical device. In the 

future, this device could be built upon in order to test for multiple contaminants.  
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Chapter 2: Systems Level Overview 

2.1 System Overview 

Overview of Subsystems  

There are several interdisciplinary components of the project:  

● The paper-based microfluidic device (Bioengineering) 

● The Aquasift potentiostat (Electrical Engineering) 

● The mobile tracking application (Computer Engineering) 

 

The user-friendly device was built to help public health organizations determine what 

water sources are safe to drink. This device provides critical information about water 

quality for those without easy access to this type of technology. If enough communities 

use this technology, the number of known contaminated water sources will be increased 

substantially.  

 

The paper-based microfluidic device is comprised of three subsystems: the paper-based 

device, the device container, and the electrochemical parameters. These subsystems are 

meant to automate the detection process so that the user does not need to make any 

measurements or handle any of the chemicals. Essentially, this system will prepare the 

water sample for the electrochemical parameters system that measures the water sample 

for unknown phosphate concentrations.  

 
Figure 3: Block diagram of how subsystems interact with each other. 
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2.2 Customer Needs Analysis  

ASSURED Features 

For the device to be implemented effectively, the customer’s needs must be considered in 

the design process. We followed the ASSURED requirements, established by the World 

Health Organization (WHO) for designing Point-of-Care Diagnostics [10], to ensure that 

customer needs are satisfied in the developing countries that lack safe drinking water. 

The following table lists the ASSURED features:  

 

Table 1: Project Goals with the ASSURED Requirements 

Requirements Goal 

A ​ffordable Cost < $ 10 

S ​ensitive Detect 0 ppb to 150 ppb (Drinking limit 100 ppb) 

S ​pecific No false positives 

U ​ser friendly Minimal training required; easy to use 

R ​apid and robust < 30 minutes response time 

E​quipment minimum/free Minimal handling of chemicals 

D ​elivered to end users Portable, handheld 

 

How planned device met ASSURED features 

The system was designed to be low cost and to accurately detect phosphate levels 

between 0 ppb and 150 ppb. This range goes beyond the safety limit of phosphate 

concentration of 100 ppb set by the WHO [2], in order to reliably detect phosphate levels 

in drinking water that are health hazards. Additionally, the paper-based device includes 

all necessary chemicals and prepares the user’s water sample required for testing so that 

there is no training necessary. The system is portable and safe for the customers.  
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Chapter 3: Functional Analysis 

3.1 Functional Decomposition 

Overview of steps for system detection 

The main function of our project is to detect phosphate contaminants in water sources and 

deliver this data to a mobile application to indicate whether a water source is 

contaminated with phosphate. The product consists of three sections: a bioengineered 

paper-based microfluidic device, an electrical signal processing unit, and a mobile 

application. These sections work together to accurately prepare a water sample with the 

appropriate detection chemicals so the potentiostat measures the water sample.  

 

The following figure summarizes how the three systems interact: 

 
Figure 4: System Levels Overview 

 

● The paper-based device interacts with a water sample and prepares it for testing. 

● The water sample then interacts with a sensor and sweeps through a range of 

voltages generated by the potentiostat in the electrochemical analyzer. 

○ This generates a corresponding current measured by the sensor and 

processed in the electrochemical analyzer.  
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○ This data is translated into information communicated to a mobile 

application on a local phone, which indicates to the user if the water 

sample is safe to consume.  

● The mobile application documents the locations of both contaminated and safe 

water sources. 

3.2 Performance Requirements 

Projected Goals and Objectives for Device 

Our project had several main objectives that we hoped to achieve to overcome the 

limitations of the more commercially available microfluidic devices. These are outlined 

in the table below: 

Table 2: Projected Goals and Objectives  

Goal Objectives Results Comment 

Safe-to-Use ● No need for handling of chemicals  
● Detection chemicals pre-dried on paper to 

minimize chemical handling 

Successful Overall safe to use – user does 
not need to handle any 

chemicals. 

Accurate ● Detect a lower limit of 50 ppb of phosphate 
● Replicate lab-setting tests within a 5% range 

Successful Detects down to 50 ppb of 
phosphate. 

Paper-based ●  Paper-based components to make it low cost Successful Transports water through the 
paper device. 

Portable ● User can carry device around in their hand Successful Device is smaller than a tablet. 

Disposable ● Device can be safely disposed of after usage Further 
research 

Sensors need to be replaced for 
each test. 

Affordable ● Device will cost less than $5.00/test Successful Further research could reduce 
this cost more.  

 

Expected outcomes:  

We expected that the final device would be: accurate, portable, safe-to-use, and 

paper-based, and affordable. An easily disposable device was a desired goal; however, 

given that each detection test required a new sensor, this goal was less achievable since 

discarding the sensor is not environmentally friendly. We also hope that further research 
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and improvements can be made to the system in order to drive down the overall cost of 

the detection system.  

 

Our project provided a valuable tool to both average customers and scientific researchers 

in determining the safety of drinking water.  
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Chapter 4: Team and Project Management 

4.1 Experimental Challenges 

In order to run an accurate test, our device was expected to work similarly to running the 

experiment in a lab. There were a few challenges that we had during experimentation, 

which are listed below.  

 

Challenge 1: Optimizing pre-dried chemical concentrations 

This challenge involved optimizing the pre-dried chemical conditions to control the 

concentrations of each chemical. This was our most difficult challenge. Additionally, it 

was very difficult to figure out ways to begin testing, and was expected to become more 

difficult if our experimental ideas were insufficient. Based on previous lab tests, it was 

known that the solution necessary for detecting phosphate must have a certain 

concentration of sulfuric acid and sodium molybdate. In order to obtain accurate readings 

from our system, we had to find the optimal amount of each chemical to dry onto our 

paper-based microfluidic device in order to get the correct final solution for the sensor. 

 

Our team planned to run preliminary tests with Whatman paper with chemicals pre-dried 

on it to gather information about how much of each chemical we were obtaining when 

water was added to the paper. From this data, we expected to find relationships between 

the volume of the chemicals dried with the amount of chemicals obtained as well as 

between the concentration and its effects on the accuracy of the concentration detection. 

 

Challenge 2: Wax ink melting duration 

Our next challenge came after the printing of the paper-based microfluidic device. Since 

the design was printed onto paper using wax ink, the channels were only defined on one 

side of the paper. Because of this, water could flow below the ink walls. To fix this the 
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device was placed on a hot plate and heated in order to melt the wax through the 

thickness of the paper. It was found that leaving the device on the hot plate for too long 

would melt the wax into the channels and the channel design would be ruined. Therefore, 

it was a challenge to find the optimal melting temperature and duration in order to only 

melt the wax through the thickness of the paper and not across the channel design. 

 

Our team ran separate tests for heating by adjusting the temperature or the time. These 

tests were expected to show what conditions were best for melting the wax ink through 

the full thickness of the paper. 

 

Challenge 3: Accuracy and Sensitivity 

Our last main challenge was maintaining accuracy and sensitivity. To detect phosphate 

between the concentrations of 0 ppb to 150 ppb, we had to ensure that our testing process 

was working accurately even as the concentrations increased. Additionally, the results 

from the AquaSift device were expected to differ by a constant value between the 

microfluidic device and normal lab equipment.  

 

In order to combat this challenge, our team experimented with discrepancies between 

tests for a large set of experiments. This allowed us to analyze the data and make sure 

that we were able to maintain accuracy over a wide range of phosphate concentrations. 

There was not a significant change in relationship between increasing concentration and 

the resulting increase in detected phosphate by the AquaSift device. 
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Table 3 below is a summary of the risks and mitigation strategies involved in the project.  

 

Table 3: Risks, Consequences, and Plan of Action  

The table lists risks from least impactful (top) to most impactful (bottom). 

Risk Consequence Plan of Action 

● Hazardous chemicals ● Potential toxic threat to 
eyes and skin 

 
 

● Wear proper lab safety gear (gloves, lab 
coat, eye glasses). 

● Follow all safety guidelines when 
working with chemicals 

● Inconsistent data from 
different paper-based 
microfluidic designs 

● Return to brainstorming 
phase, re-optimize 
testing procedures 

● Use good laboratory practices to have 
consistent testing procedures 

● Microfluidic design 
cannot be used due to 
chemical drying 
conditions or size that 
can be printed 

● Return to brainstorming 
phase for the 
microfluidic design.  

● Create new design and 
redo chemical pre-drying 
optimization 

● Careful pre-planning of device design 
and preliminary pre-drying testing to get 
an estimate set of conditions necessary 
for optimal testing solution 

4.2 Management 

Overview of Team Roles 

Our team was committed to making tangible progress on a weekly basis. The three main 

participants, Brandon Miura, Alex Wagner, and Philip Wu, met once per week with our 

advisor, Dr. Ashley Kim. We shared and discussed the latest results and ideas for refining 

the device’s design, as well as established weekly goals. Additionally, the three main 

participants met in the lab at least once per week to perform the necessary tests for the 

project.  

 

We took charge of a particular component of the design process:  

● Alex focused on designing new iterations of the wax and paper components.  

● Brandon handled the designing and 3D printing of plastic components of the device.  

● Philip focused on testing these designs to determine if each component worked as 

intended. He also focused on the pre-drying aspect of the device.  
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The team stayed in close collaboration through weekly meetings, continual 

communication, and regular consultation with research advisor Dr. Kim. This ensured 

that the features of the plastic components complemented the paper components, and any 

team member could contribute to any part of the design process if needed. 

4.3 Timeline 

This project started October 2016. The Gantt Chart below shows the project timeline.  

 

Table 4: Gantt Chart of Project Timeline 

 

The most crucial components and goals, such as the optimization of the pre-drying 

conditions and the device design, took the most time to complete. Additional testing 

could be done following the completion of this project in order to optimize the device 

even further. 

4.4 Project Budget 

The following budget accounts for the cost of producing and testing many iterations of 

the design and therefore includes large quantities of lab materials.  
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Table 5: Project Budget 

Item Use Unit 
Cost 

(USD) 

Quantity Total 
Cost 

(USD) 

Source 

DropSens 
DRP-110 Sensors 

For testing (75 in one order) 310 5 1550 MetrOhm 

Whatman paper 
sheets 

For paper-device (100 sheets 
in one order) 

56 2 112 GE Healthcare 
Life sciences 

Sodium molybdate Buffer solution for dissolving 
phosphate 

44.6 1 44.6 Sigma-Aldrich 

Sulfuric acid To adjust Ph for test 
conditions 

23.6 1  23.6 Sigma-Aldrich 

Phosphate 
Standard (100 mL) 

For calibration and tests 44.2 1 44.2 Sigma-Aldrich 

Xerox ColorQube 
8580 black Solid 
Ink (1 cartridge) 

For printing  154.99  1 154.99 Xerox 

Pipette tips, 
disposable lab 
tools, etc. 
(Variable) 

For testing 43.8 Variable 43.8 Sigma-Aldrich 

   Total: 1973.19  

Shipping, 
handling, & tax 

For price fluctuation, shipping 
& handling, and tax 

  42.32  

   Supplies 
total: 

2015.51  

   Amount 
Requested: 

2294.00  

 

Although the Project Budget seems significantly higher than the intended cost of the 

device, all of these expenses led to discovering an ideal device design. Projected costs for 

the production and testing of at least fifty design iterations are included. The final device, 

including highly reusable components, costs under $10; accounting for reuse, the total 

cost per test is under $5.00, as seen in Table 6 on page 30. 
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Chapter 5: Subsystem: Paper-device 

5.1 Whatman Paper Choice 

Whatman Paper chosen for Device 

Paper-based microfluidic devices use capillary action, which allows liquids to travel 

through paper naturally, in order to control the flow through the device. Typically, these 

paper-based microfluidic devices are cheap to manufacture but only work with liquids. 

These qualities are optimal for our device because we aim to manufacture it at a low cost 

and only plan to use it for water. 

 

The material choice for this paper-based component was Whatman paper from GE 

Healthcare Life Sciences (Buckinghamshire, United Kingdom) because of its optimal 

flow rate property and its low cost ​ ( ​$56.00 for 100 sheets or $0.58 for each sheet). On 

each sheet, we can print 8 paper devices. Since Whatman grade 1 Chromatography paper 

has a flow rate of 130 ml/min and a nominal thickness of 180 µm, a water sample can 

travel through the paper relatively quickly. Our design for the paper device optimizes the 

flow of water through the device. 

 

Choice of Double Layer for Paper 

A double layer device was chosen because it allows water to flow through the device and 

increases the surface area that interacts with the water. Merely increasing the 

concentration of the pre-dried sodium molybdate had little effect on the testing. In Figure 

5 below, the white area is the paper area while the dark area indicates where the wax 

melted on the paper device. Since some of the water is absorbed by the paper or “lost” 

within the device, the diameter of the circle paper was chosen to best ensure that enough 

water sample reaches the sensor at the end of the device. The dimensions of the paper 

itself were designed to be small to make the device portable. 
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Printing the paper-based device 

We printed this design using the Xerox ColorQube 8580 printer and wax ink. We then 

placed the paper device on a hot plate to ensure that the wax could melt through the 

paper. The black area on the paper device indicates the melted ink. In the figure below, 

we display the double-sided paper-device that we pre-dried on for experimentation.  

 
Figure 5: Paper-based device  

5.2 Pre-drying sodium molybdate 

Choice of pre-drying 

Since safety was a crucial goal of our project, we decided to pursue a pre-drying method 

in order to store the chemicals within the device itself. In pre-drying, a paper is soaked 

with a certain volume of liquid, then allowed to dry over a beaker overnight. This 

provides a sufficient amount of time for the liquid to evaporate, leaving a solid on the 

paper. This paper can later be rehydrated, pulling off solid particles from the paper. This 

entire process ensured that the chemicals were incorporated in the device, instead of 

being added manually by the user, which could present a hazardous exposure to chemical 

contamination.  

 

Pre-drying with sodium molybdate 

One of our detection chemicals is sodium molybdate, which is very important in carrying 

out the reaction necessary to detect phosphate (see Section 7.2 for more information). In 

pre-drying for our project, we pipetted a drop, 75µL in volume, with a 50 mM 

concentration of sodium molybdate onto the white circle of our paper device. We would 

rehydrate this area with our water sample later. 
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Chapter 6: Subsystem: The Device Container 

Because we did not want the user to interact with water sample or detection chemicals, 

the paper needed to be stored within a container. The device container ensures that the 

user does touch the water sample, helps store the paper-device, and automates the testing 

process. 

 

 

 

 

 

 
Figure 6: View of Device Container 

6.1 Substrate Choice 

Design of Device Container 

For the device to hold the water, the material needed to be sturdy but also chemically 

inert so that it would not react with any of the water sample or detection chemicals. We 

chose resin for its durability, light weight, and chemical inertness. 

 

We designed the container in this fashion in order to be of equal height to the 

potentiostat, and to be of equal width and length to the paper device as mentioned above. 

In order to ensure that the user would not contact the water sample while it sat on the 

sensor, we designed a slot for the sensor. 

 

6.2 3-D Printing Process 

The device container was designed using SolidWorks CAD software. Based on 

measurements of the potentiostat and paper device, the STL file of the container was 

created and taken to Santa Clara University’s Maker Lab to be 3-D printed. The 3-D 
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printer used was a resin-cured printer made by FormLabs. This printer was used due to its 

high-resolution options which were necessary in order to have an accurate slot for the 

sensor. Lower quality prints resulted in erroneous sensor slots; the sensor either did not 

fit or had too much space around it, which led to leaking of the water sample.  

 

 

 

 

 

 

 

Figure 7: Resin-cured printer by FormLabs 

 

Once the container was printed, it was cleaned using isopropyl alcohol (> 90%) and 

compressed air in order to clear off any uncured resin. It was also sanded down to clear 

off the supports generated while printing. The container was set aside in the sunlight in 

order to let the resin finish curing, which occurs when resin is exposed to UV light. 

6.3 Container for Sulfuric Acid 

Since acid is toxic and hazardous to handle, we needed to ensure that the user will not 

touch the acid. However, since high concentrations acid cannot be stored on a piece of 

Whatman paper, we decided to store the acid with a holder printed with resin. ​We used a 

resin-printed device as a storage unit for the acid because of its chemical inertness.  

  

 

 

 

 

 

 
Figure 8: Top part of the device container 
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Chapter 7: Electrochemical Parameters 

Many of the electrochemical parameters were researched and determined by the previous 

senior design group [9]. This system summarizes many of their findings that were 

relevant to this project.  

7.1 Electrode Choice 

A sensor is composed of a three-metal-electrode system that is used in voltammetry 

testing. The three electrodes are called counter, working, and reference, referring to their 

function. The figure below illustrates the detection process. 

 
Figure 9: A simple overview of the electrochemical principles 

 

Figure 10 explains the specific voltammetry process that occurs during testing for a 

three-metal-electrode system or sensor.  

 
Figure 10: Three-Electrode Design 
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Within the system, the working electrode sweeps through a range of potentials with 

respect to the reference electrode (Figure 10, ∆E). When a reaction occurs at different 

potentials in a solution (Figure 10, I), electrons will flow, and the counter electrode 

allows the current, or flow of electrons, to be measured. For our project, the 

electrochemical analyzer was a separate unit, called the potentiostat or the Aquasift.  

 

The chosen sensor (which contained the three-electrode system) for this project was the 

DRP-110 sensor from Dropsens (Asturias, Spain) which has a silver reference electrode, 

carbon working electrode, and carbon counter electrode. These three chemicals were 

chosen for their chemical-inertness, and conductive nature to respond to electrical 

signals. They were also selected for their affordability.  

7.2 Redox Reactions 

Oxidation-Reduction (Redox Reaction) 

For the sensor to accurately measure phosphate concentrations, an oxidation-reduction, or 

redox, reaction must occur. In a redox reaction, electrons flow from one species to 

another; the oxidized species loses electrons while the reduced species gains those 

electrons.  

 

Reaction Tracked 

Since phosphate is a non-electroactive species, it needs to react with molybdate in an 

acidic environment to form a molybdophosphate complex [11].  The complex reacts to 

cyclic voltammetry by allowing different current levels to flow through the system at 

different potential values. The current variation results in a graph characterized by two 

peaks in the IV curve. Each peak corresponds to a step in the reduction of molybdenum 

(Mo), from Mo (VI) to Mo (IV) and from Mo (IV) to Mo (II), which corresponds to peak 

1 and peak 2 respectively [12]. These two reduction peaks were analyzed in our results 

(Section 8.5).  
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This reaction allows the phosphate levels to be indirectly measured. 

 
Figure 11: Reaction between Phosphate and Sodium Molybdate 

7.3 Buffer Solution 

In order to determine if a solution does not contain any phosphate, a buffer solution 

needed to be selected to serve as a sample that did not have any contaminants. Since the 

complex mentioned above needs an acidic environment, the buffer solution has sulfuric 

acid (H ​2​SO ​4​) to drive the pH down to 1.011. Additionally, the solution has sodium 

molybdate (Na ​2​MoO ​4​) as the main component because it makes phosphate electro-active 

as discussed above in section 7.2 [12]. 

7.4 Voltammetry 

Cyclic Voltammetry used for testing 

Another important parameter of the electrochemistry pertains to voltammetry, which 

includes the type of voltammetry, the voltammetric window used, and the scan rate. In 

order to see the current peak from the reduction of molybdenum, cyclic voltammetry is 

employed from a potential of 0.3V to -0.3V and back to 0.6V.  

 

Voltammetric window and scan rate for detection peaks 

These two potentials frame the voltammetric window, which ensure that the peak heights 

are identified in the reduction of molybdenum. These peak heights correlate to the level 

of phosphate in the water sample. 

 

The rate at which the voltages are applied to the system is also important. This is known 

as the scan rate of voltammetry. Higher voltage scan rates result in higher current peaks, 

in which larger concentration differentiation at low concentration levels occurs. This 

method provides more accurate and sensitive results for phosphate concentrations. 
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However, applying voltages too quickly can cause current saturation. The scan rate used 

for this test was 900 mV/s based on summer research conducted by Philip Wu.  

7.5 Wait Time  

The amount of time that the phosphate is allowed to mix with the molybdenum in the 

acidic buffer is also important for the electrochemical detection of phosphate. This 

ensures that the reaction occurs between the chemicals. After waiting thirty minutes to let 

the reaction occur, a voltammetry test can be run. This wait time is important to ensure 

that every phosphate compound is used in the reaction described in section 7.2.  
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Chapter 8: Test and Results 

8.1 Assembly 

In order to have a functioning system, all three subcomponents need to be coupled with a 

portable potentiostat. The following figure gives a simplified and actual assembly of the 

system.  

 
Figure 12: Individual components of the device:  

1. Paper device, printed with wax ink. 

4. Device Container (bottom) 

2.  Aquasift voltammetry device. 

5. Device container (Top) 

3. Dropsens sensor.  

 
Figure 13: Assembly of Device.  

13a - Paper device placed on top of device container; 13b - Device container and paper device assembled; 

13c - Paper-based device along with Aquasift potentiostat 
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8.2 Equipment 

Solutions 

To conduct the tests for the detection of phosphate levels in drinking water, three 

solutions were used: phosphate standard, sodium molybdate, and sulfuric acid.  

● Phosphate Standard (Phosphate Standard for IC- 38364) was purchased from 

Sigma Aldrich (St. Louis, MO) at a concentration of 1000 mg/L and was diluted 

with deionized water to the desired concentrations.  

● Sodium molybdate (23465) was purchased from Sigma Aldrich (St. Louis, MO) 

in an anhydrous powder form as a source for molybdate.  

○ It was dissolved in deionized water to the desired concentration of 50 mM.  

● Sulfuric acid was purchased from Sigma Aldrich (St. Louis, MO) at a pH of 1, 

and diluted to a concentration of 0.5M.  

 

Potentiostat and Sensor 

● The potentiostat device that both ran voltages through the system and measured the 

current flowing through the sensor was built by the Department of Electrical Engineering.  

● The screen-printed carbon electrode sensor (DRP-110) used to apply voltage to the water 

samples and to measure the current was purchased from Dropsens (Asturias, Spain). 

8.3 Experimental Methods 

Amount of water sample for testing 

The detection of phosphate was carried out using a specific set of protocols. 

Concentrations of phosphate (some with buffer or 0 ppb, others with different 

concentrations of phosphate from 50 ppb to 150 ppb) of 200 µL volume were added to 

the top compartment of the device that holds the acid container.  
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The selected volume of water sample was chosen so that a desired final volume of 100 

µL arrived at the detection zone when the water sample flowed through the device. The 

rest of the procedure was automated. Water sample traveled through the device and 

pre-dried area as shown below:  

 
Figure 14: Schematic of pre-drying and water channel flow 

 

Electrochemical parameters for testing 

After waiting for thirty minute incubation period, the water sample should be in contact 

with the circular detection zone of the sensor. The potentiostat, connected directly to the 

sensor, applies a potential of 0.3 V to -0.3 V with a negative initial scan polarity at a scan 

rate of 900 mV/s. The resulting reduction peaks are measured, analyzed, and correlated to 

a specific level of phosphate as a current value as shown below in an ideal current vs. 

concentration curve.  

 
Figure 15: Ideal current vs. concentration graph 
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8.4 Control test: Non-pre-dried testing 

In order to ensure that our device matches accurately with an in-lab setting, a series of 

non-pre-dried tests were run. These experiments were meant to be a control test as a 

comparison for our device. Phosphate concentrations were prepared in a 10 mL beaker 

supplied by the Santa Clara University Bioengineering labs. The water sample was 

pipetted onto the Dropsens sensor attached to the Aquasift as shown in the figure below:  

 

 
Figure 16: Non-pre-dried control test 

 

The results of the non-pre-dried test are discussed in the following section (Section 8.4).  

8.5 Comparison of Results 

Device testing 

In order to assess if the manufactured device is able to detect phosphate, we added 

varying concentrations of phosphate solutions to the device, and generated a voltage and 

current curve from the testing. The average current signal of each concentration level was 

taken, and converted into a graph of concentration compared to current. This linear 

regression line enabled us to calibrate a standard curve and determine the phosphate level 

of unknown concentrations. The figure below shows the comparison between the 

non-pre-dried and pre-dried testing:  
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Figure 17: Comparison of current vs. concentration  for pre-dried test (red)  

and non-pre-dried test (blue) for 1st and 2nd reduction peaks.  

 

Pre-dried vs. Non-pre-dried test 

Directly comparing the slope of the pre-dried test to the slope of the non-pre-dried test, 

both have linear regions from 0 ppb to 150 ppb, and match fairly closely to each other. 

The same trend of increasing concentrations and increased current is seen for both the 

pre-dried and non-pre-dried tests.  

 

The pre-dried device had higher values, as indicated by the steeper slope of 0.1868 for 

the 1st peak and 0.3676 for the 2nd. This higher current value may have resulted from 

how the phosphate sample was prepared within the device. However, this higher value 

means that the device is more sensitive and a good predictor of phosphate in a water 

sample. Both tests resulted in a R ​2​ close to 1, indicating a high degree of fit to the line.  

 

Measuring an unknown phosphate concentration  

With an unknown phosphate concentration sample, we can read a current signal 

numerical value from the potentiostat. This values correlates to a concentration level 

using the equation of this line. This is how the unknown phosphate concentration is 

determined. The process is illustrated in Figure 18 below. 

28 



 

 
Figure 18: Calculating an unknown concentration of phosphate 

 

Unexpected Results  

During our experiments, we were able to determine some parameters and unexpected 

outcomes. In some of our experiments, we observed a blue liquid on the sensor. This 

indicated that another form of reaction was occurring. This blue color detection method is 

often used for colorimetry [13].  

 

It was not erroneous, but not necessary to indicate the reaction is completed. Residual 

ions or leftover phosphate from previous tests also had a minimal effect on our data 

points.  
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Chapter 9: Cost Analysis  

9.1 Cost of Device for Developing Countries 

The cost of each voltammetry test must be less than $5.00 to be considered affordable. 

The cost of our device is outlined below in the following table.  

Table 6: Breakdown cost for one device 

 
The total cost accounts for the price for buying each unit. The cost per measurement accounts for the fact 

that the Aquasift Device and the Device container are multi-usage items and can be used for over a 

hundred or theoretically even a thousand tests. 

9.2 Commercialization Potential 

This platform will significantly reduce the cost of phosphate detection since typical lab 

testing exceeds $400 in California [5]. This product can be sold at its manufacturing cost 

to developing communities or non-governmental organizations that will help distribute 

the device. This product has the potential to be integrated into a larger platform that can 

test for other contaminants such as arsenic, nitrate, and cadmium that utilize 

voltammetry. Although no conclusive research has been conducted, there only needs to 

be minor adjustment of voltammetry tests and the pre-dried paper to implement a 

multi-detection device. Future groups will complete the required research and design a 

business plan for this integrated platform.  
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Chapter 10: Professional Standards and Constraints: 

Clinical Impact 

10.1 Science, Technology & Society 

The goal of this project was to develop a portable, affordable device that can be 

combined with a potentiostat, a sensor from DropSens, and a mobile application to allow 

for testing of drinking water samples. Testing the water sources within communities that 

are economically disadvantaged, the public community can be informed about how safe 

their drinking water is.  

 

However, there are potential consequences of implementing this design: if there are no 

safe water sources nearby, the community may be forced to travel longer distances to find 

healthier water to consume.  

 

Despite these possible negative results of this proposal, the benefits of clean water for 

these communities would significantly outweigh the adverse health effects of unclean 

water and greatly benefit the developing communities.  

10.2 Economic Impact  

Affordability was our main economic consideration for the development and design of 

the device. A resin container with a paper-based device inside was the best and most 

economical solution. Hence, Whatman Chromatography paper was the appropriate 

choice, based on its functionality and affordability, especially when compared to PDMS, 

which is more commonly used for microfluidic devices but more costly than paper. 

Furthermore, the design of our channels was kept simple to facilitate manufacturing and 

keep production costs at a minimum. The overall cost of the device is affordable by any 

community that might benefit from it.  
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10.3 Health & Safety 

Health and safety of the user are of the utmost priority. The pre-drying technique and the 

device container for the paper-device prevents the user from touching the toxic detection 

chemicals. The user will likely have no previous experience with hazardous chemicals, 

and will need to be informed about how to handle the device.  

10.4 Usability 

Usability is a key feature of the phosphate detection because the users could have varying 

backgrounds in education and skill level. We considered our users to be largely 

non-English speaking with minimal background in operating devices. To have an 

extensive impact, we designed the device to be user friendly and intuitive in function. 

The user simply needs to add a water sample in the device to start the testing process and 

press on button to start the testing. The casing of the device will clearly show directions, 

mainly using images, to demonstrate the process.  

10.5 Sustainability and Environmental Impact  

Current colorimetric methods used for phosphate detection involve using large volumes 

of toxic chemicals. Hazardous spills and contamination could result if the device is not 

handled properly. To prevent any spilling, all the chemicals used in detection are stored 

within the device. This aspect of the product makes it more environmentally and user 

friendly than current testing methods. 

 

However, the Dropsens sensors are single-use only and must be disposed of after one test. 

This is a concern for sustainability and the environment as the product will be generating 

waste. However, the sensors are designed with non-toxic materials such as glass, carbon, 

and silver. The users will need to be educated on proper disposal of the sensors after 

testing.  
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10.6 Civic Engagement  

Since this product is intended for developing countries, it must pass the regulatory water 

standards in developing countries. In the United States, there are many municipal 

governments that monitor public water sources. These include the U.S. Environmental 

Protection Agency and the Center for Disease Control and Prevention at the national 

level. Locally, Santa Clara Valley Water District [14] refers residents to Alpha Analytical 

Laboratories, Inc. to get private drinking water analyses. Public water source records of 

contaminant levels at water treatment plants are available online.  
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Chapter 11: Ethical Analysis  

11.1 Ethical Justification 

700 million people with no access to clean water 

More than 700 million people do not have access to clean water [2], and are forced to 

drink unsafe water that results in adverse health effects and even death. By providing a 

rapid, accurate, and easy-to-use method to continuously monitor water quality, these 

areas will be able to identify contaminants in the water and take the necessary steps to 

address the issue.  

 

Certain engineering virtues must be used for this device because our users should have 

the best product possible with the most accurate results from the testing. Our approach 

was the most beneficial for a broader community, and could help minimize harm due to 

unclean water.  

11.2 Engineering Virtues 

There are certain technical and professional ethical factors that are imperative and 

required for our project. These are critical for professional engineers; we have considered 

three areas for this project:  

 

1. Right to clean water 

The United Nations has stated that “clean drinking water and sanitation are essential to 

the realization of all human rights” [15]. If the detection of a hazardous contaminant such 

as phosphate is ignored, it is not possible to ensure that a person’s drinking water is 

completely safe, denying them an essential right. 
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2.  Equal access to technology 

Access to technology that promotes health and human rights should be as widely 

available as possible so that it may benefit as many people as possible. And yet, current 

phosphate detection methods are too costly for everyone to access them. More remote, 

less privileged people deserve the same ability to assess water safety those with lab 

equipment or abundant resources have.  

 

That is why a key component of this project is the low-cost production of our device. 

Since unsafe drinking water is most prevalent in the most disadvantaged communities, 

affordability remains a necessity. The use of paper and resin will ensure that those who 

need this technology most will be able to afford it. This project aims to be usable by 

anyone, especially those with contaminated water sources.  

 

3. Environmental concerns 

Rising population leads to rising agricultural and mining activity, which in turn leads to 

more phosphate in water. It is not highly surprising that a previously ignored water 

contaminant such as phosphate would reach dangerous concentrations now, when the 

health of the environment is being negatively impacted in many other ways by human 

activity or natural causes. It is an increasingly important responsibility to combat the 

decline of environmental health. Devices that raise awareness of where pollution is 

greatest, and that have eco-friendly or biodegradable components of their own, are 

important steps toward this goal.  

11.3 Stakeholders  

The development of this device impacts many groups: not only the communities that use 

the device, but also the developers and manufacturers.  
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Users 

The users will directly benefit from the device because they will use it determine if their 

water is safe for drinking purposes. 

 

Manufacturers 

The manufacturers will benefit financially by mass producing the devices. However, if 

they should build faulty devices or use incorrect materials for the device, the 

manufacturers will experience negative effects such as a hurt reputation, and will 

discourage people from using this product despite its beneficial potential.  

 

Developers 

The last group of stakeholders is the group of developers themselves. Since they created 

the device, they must carefully conduct various tests to ensure functionality, accuracy, 

and ease of use for the device. These tests verify the proof of concept proposed by the 

previous senior design project, and ensure that it functions reliably and accurately. If 

these tests are not properly conducted, the user of the device runs the risk of drinking 

unclean and toxic water. This outcome affects the reputation of the developers and could 

prevent them from pursuing future endeavors to improve this water detection technology. 

 

11.4 Ethical Challenges and Tradeoffs  

Challenges for Project 

Throughout this project, we considered the challenges that could arise. In order to 

minimize risk to the developing communities, we designed our device to be as intuitive 

as possible. This would be addressed by providing manuals on the specific instruction of 

how to use the device and a clear outline of the hazards that must be mitigated. These 

instructions will include simple graphic instructions for users with limited technical 

knowledge.  
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Fulfillment of ASSURED requirements 

The product satisfies the ASSURED requirements mentioned earlier in order to be an 

ethical device for the users. To fulfill those requirements for our device, we had to make 

several tradeoffs. For example, we utilized paper and the pre-drying method so the 

detection chemicals could be easily stored within the device and prevent the user from 

spilling or touching the hazardous chemicals. These were some of the tradeoffs used to 

help enhance the performance and maintain environmental standards.  

 

Since the public is most likely to be affected by the risk of using this product, they need 

to understand the risks and provide their informed consent to use the product.  

11.5 Conclusion of Ethical Challenges  

After careful analysis of the ethical benefits and risks of our device, we determined that it 

is safe to use in the field through our accurate testing of the device. The product will 

benefit many communities while the benefits of the device outweigh the small potential 

for risks. These benefits include: affordable cost, more accurate testing methods, rapid 

testing time, improvement for health, and improved sanitation methods for developing 

regions. 
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Chapter 12: Project Summary 

12.1 Conclusions & Future Work 

Project summary 

Microfluidic devices are useful tools for the detection of water contaminants, but there is 

a gap in technology for the detection of phosphate. In order to address this gap, our team 

designed a phosphate detection system that is inexpensive, portable, on-site, and 

user-friendly. The combination of a mass-producible paper-based microfluidic device 

with a potentiostat automates the detection process so that any user can safely find 

phosphate in water. The project provides a valuable tool to both average customers and 

scientific researchers in determining the safety of drinking water. 
 

This project demonstrated how this portable, paper-based device could accurately 

measure phosphate concentration values from 0 ppb to 150 ppb. We designed it to cost 

less than $5.00. However, we hope to drive down the cost even further in the future. 

 

Future considerations for device improvements 

We are already considering further improvements, beyond this project’s current scope, 

that could be made to the phosphate detection system in the future as part of other 

projects. For the paper-based microfluidic device, additional channels and chemicals can 

be included for the detection of contaminants besides phosphate, such as arsenic. This 

will allow our device to detect multiple contaminants in water so that customers do not 

need to purchase more than one detection system. 

 

Further, for the mobile app that connects with the AquaSift device, an online map could 

be generated using the results that people get around the globe. This map could be used to 

show the areas that have the most phosphate contamination and be beneficial for further 
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phosphate detection research. The mobile app will output a binary output for the safety 

level of the drinking water.  

 

The following figure displays a proposed app to be used with device and the Aquasift 

unit. 

 

 
Figure 19: Mobile application that will be used with device and Aquasift unit 

 
As we have shown, the development of a low-cost phosphate detecting device was 

successful, and demonstrates the capability for extending this technology to other water 

contaminants, giving developing countries the same control over the purity of their water 

supplies as enjoyed by advanced economies. 
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Appendix A-1: Solidworks Paper device design 

 
Solidworks dimensions of paper-based device (Whatman paper) 
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Appendix A-2: Solidworks Device Container Design 

 
Solidworks dimensioning of Device Container with sensor slot (bottom) 

 
Solidworks dimensioning of Device container (top) 
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Appendix A-3: Budget 

Project Budget 

Item Use Unit 
Cost 

(USD) 

Quantity Total 
Cost 

(USD) 

Source 

DropSens DRP-110 
Sensors 

For testing (75 in one order) 310 5 1550 MetrOhm 

Whatman paper sheets For paper-device (100 sheets 
for one order) 

56 2 112 GE Healthcare 
Life sciences 

Sodium molybdate Buffer solution for dissolving 
phosphate 

44.6 1 44.6 Sigma-Aldrich 

Sulfuric acid To adjust Ph for test 
conditions 

23.6 1  23.6 Sigma-Aldrich 

Phosphate Standard 
(100 mL) 

For calibration and tests 44.2 1 44.2 Sigma-Aldrich 

Xerox ColorQube 8580 
black Solid Ink (1 
cartridge) 

For printing  154.99  1 154.99 Xerox 

Pipette tips, disposable 
lab tools, etc. (Variable) 

For testing 43.8 Variable 43.8 Sigma-Aldrich 

   Total: 1973.19  

Shipping, handling, & 
tax 

For price fluctuation, shipping 
& handling, and tax 

  42.32  

   Supplies 
total: 

2015.51  

   Amount 
Requested: 

2294.00  
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