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Hülya Eraslan† Antonio Merlo‡

April 12, 2017

Abstract

It is commonly believed that voting rules that are relatively more inclusive (e.g., unanimity

or supermajority), are likely to yield relatively more equitable outcomes than simple-

majority rule. We show that this is not necessarily the case in bargaining environments.

We study a multilateral bargaining model à la Baron and Ferejohn (1989), where players

are heterogeneous with respect to the potential surplus they bring to the bargaining table.

We show that unanimity rule may generate equilibrium outcomes that are more unequal

(or less equitable) than under majority rule. In fact, as players become relatively more

patient, we show that the more inclusive the voting rule, the less equitable the equilibrium

allocations.
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1 Introduction

Multilateral bargaining is a staple of political economy, as many political negotiations entail

bargaining among several players over the allocation of some surplus (e.g., legislative bargaining,

government formation, domestic and international policy negotiations). Whenever negotiations

involve more than two players, the voting rule that is used to specify how agreements are

reached plays a fundamental role in determining the allocations that are ultimately agreed

upon. Starting with the seminal contribution of Baron and Ferejohn (1989), several articles

have studied the relative performance of alternative voting rules in multilateral bargaining

models (e.g., Banks and Duggan (2000), Baron and Kalai (1993), Eraslan (2002), Eraslan and

Merlo (2002), Harrington (1990), Yildirim (2007)). The emphasis of those papers, however,

has been primarily on efficiency. In this paper, we focus on the distributional consequences (or

equity properties) of different voting rules.

It is commonly believed that voting rules that are relatively more inclusive (e.g., unanimity

or supermajority), are likely to yield relatively more equitable outcomes than simple-majority

rule. For example, Buchanan and Tullock (1962; p. 190) argue that: “Majority decision-making

(or any decision-making with less-than-unanimity rules for choice) will tend to produce some

asymmetry in gain-sharing among the individual members of the group for which the choices

are made. The members of the effective coalition will receive differentially larger shares of the

benefits expected to result from collective action and/or they will bear differentially smaller

shares of the costs of collective action providing general benefits for the whole group.” Their

argument postulates that since unanimity safeguards the rights of each individual, it protects

minorities from the possibility of expropriation and yields more equitable outcomes than major-

ity rule. Similarly, in her analysis of the advantages and disadvantages of supermajority rules,

Schwartzberg (2013; pp. 3-8) argues that: “Those who believe their right have been violated

under majority rule turn to the promise of supermajority rule as a means of guaranteeing their

protection. [...] Because the majority could act without the support of a minority, a simple-

majority rule would not protect vulnerable minorities from abuse or neglect. [...] Majority

rule may usher in injustice or exacerbate distributive inequalities.” This general sentiment is
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also prevalent among constitutional scholars. In their defense of the original interpretation of

the U.S. Constitution as “a supermajoritarian constitution,” McGinnis and Rappaport (2013)

maintain the superiority of supermajority rules over simple-majority rule on equity grounds.

In a different context, the same authors also argue (McGinnis and Rappaport (1999; pp. 372-

373)) that supermajority rules “may promote a more harmonious political existence by making

it harder for interest groups to acquire other people’s resources for themselves. [...] We main-

tain that supermajority rules can be preferable to majority rules for categories of legislation

over which special interests have particular leverage. [...] Spending laws tend to be dispropor-

tionately favored by special interests and therefore a supermajority rule should be required to

offset the effects of these special interests.”1

We show that, in bargaining environments, it is not necessarily the case that relatively

more inclusive voting rules lead to relatively more equitable outcomes. We study a multilateral

bargaining model à la Baron and Ferejohn (1989),where players are heterogeneous with respect

to the potential surplus they bring to the bargaining table. We show that unanimity rule

may generate equilibrium outcomes that are more unequal (or less equitable) than equilibrium

outcomes under majority rule. In fact, as players become relatively more patient, the more

inclusive the voting rule with respect to the number of votes required to induce agreement,

the less equitable the equilibrium allocations. These results are a direct implication of basic

insights from bargaining theory (some unpleasant bargaining arithmetic?).

Like in Baron and Ferejohn (1989), we study an infinite-horizon, n-player bargaining model

where in every period each player is randomly selected with equal probability to make a proposal

on how to allocate some surplus. The players’ payoffs are linear in the amount of surplus they

receive and they evaluate future payoffs using a common discount factor. The voting rule

specifies the minimum number of players who have to vote in favor of a proposal for it to

be implemented. This number varies from one (dictatorship) to n (unanimity). Our point of

1In a broader context, Acemoglu and Robinson (2012) also argue that concentration of political power leads
to economic inequality. For example, in their interpretation of Egyptian poverty they write (p. 3): “Egypt is
poor precisely because it has been ruled by a narrow elite that have organized society for their own banefit at the
expense of the vast mass of people. Political power has been narrowly concentrated, and has been used to create
great wealth for those who possess it, such as the $70 billion fortune apparently accumulated by ex-president
Mubarak. The losers have been the Egyptian people, as they only too well understand.”
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departure from the canonical model is to assume that players differ with respect to the amount

of surplus they have available for distribution in the event they are selected as proposers. This

represents the only source of heterogeneity among players, and is taken to be an inalienable

characteristic of each individual. For example, different players may have different (innate)

abilities in formulating and implementing proposals, which make them inherently more or less

“productive” and cannot be transferred across players or mimicked by others.2 One of the most

striking results we obtain is that under the unanimity rule it is possible for the most productive

player to appropriate the entire surplus in equilibrium. On the other hand, under any other

voting rule, it is always the case that some other players also have positive equilibrium payoffs.

Consequently, unanimity rule may generate equilibrium outcomes that are more unequal (or

less equitable) than equilibrium outcomes under majority rule. At the same time, equilibrium

outcomes under majority rule need not be efficient even though equilibrium outcomes under

unanimity rule are always efficient (Merlo and Wilson (1998) and Eraslan and Merlo (2002)).

Thus our results highlight a trade-off between fairness and efficiency of agreement rules.

There is a recent, related literature that studies the implications of alternative voting rules

in a variety of economic and political environments. Dixit, Grossman and Gül (2000) analyze

the extent to which political compromise arises in a dynamic environment where two parties

interact repeatedly and their political strength changes stochastically over time according to a

Markov process. The party that is in power at any given time (i.e., the party whose political

strength exceeds a given threshold determined by the voting rule), decides to what extent it is

willing to share the available surplus with the opposition (i.e., the political compromise). They

show that, depending on the degree of persistence in the parties’ political strength, there may

be less political compromise, and hence more inequality, under supermajority (where if neither

party’s strength exceeds the designated threshold, then both parties must agree to any policy

change), than under simple majority rule.

Compte and Jehiel (2010) compare the performance of alternative voting rules in a collec-

tive search environment where exogenously specified proposals, which may differ along many

2Baccara and Razin (2007) study a model where firms bargain over the implementation of new ideas and
the distribution of the rents they generate. Like in our model, people can only propose their own ideas.
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dimensions, are drawn independently from a known distribution. A committee considers new

proposals sequentially and search stops when the current proposal receives the support of a

given number of committee members specified by the voting rule. They show that, depend-

ing on the voting rule and on the number of dimensions of the policy space, some committee

members may have no real voting power, “in the sense that small changes in the objectives or

preferences of such members would not affect at all the set of possible agreements” (p. 190).

Our paper analyzes a bargaining game with exogenous status quo in which bargaining ends

after an agreement is reached. There is an active literature on bargaining with endogenous

status quo where the game continues after agreement is reached, and the default allocation in

future negotiations is given by the most recent agreed upon allocation. Several papers in this

literature have shown the existence of equilibria in which one player extracts all the surplus,3

but to our knowledge, there are no studies comparing distributional properties of different

agreement rules.4

The rest of the paper is organized as follows. In Section 2, we present the model and in

Section 3, we characterize the equilibrium payoffs for different voting rules. In Section 4, we use

the characterization result from Section 3 to present an example to illustrate our main result.

We compare the equilibrium implications of different voting rules with respect to their equity

properties in Section 5 and conclude in Section 6. The proofs of the formal results stated in

the main text are in the appendix.

2 The Model

Consider a situation where n > 2 players have to collectively decide how to allocate some

surplus. Each player i is endowed with a potential surplus yi > 0, denoting the amount of

3See Kalandrakis (2004), Bernheim, Rangel and Rayo (2006), Kalandrakis (2010), Ali, Bernheim, Fan
(2014), Nunnari (2016). Winter (1996) obtains the same result with exogenous status quo in the presence of a
veto player as the players become perfectly patient.

4Yıldırım (2010) studies the distributional consequences of alternative bargaining protocols. He considers
bargaining environments where players can contest the right to make proposals and compares an environment
where proposal rights are determined once-and-for-all before the beginning of a negotiation, to one where
a contest determining the identity of the proposer takes place prior to each bargaining round. He shows that
when agreement requires unanimous consent and players differ with respect to their discount factor, equilibrium
allocations are relatively more unequal in the former environment than in the latter.
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surplus she would have available for distribution if selected as the proposer. As mentioned

in the Introduction, this situation would arise, for example, in an environment where players

are heterogeneous with respect to their ability in formulating and implementing proposals.

These (innate) abilities make the players inherently more or less “productive” and cannot

be transferred across players or mimicked by others (e.g., Baccara and Razin (2007)). We

enumerate the players from the least productive to the most productive, i.e., y1 ≤ y2 ≤ . . . ≤ yn.

In each period, a player is randomly offered the possibility of submitting a proposal with

probability 1/n.5 The selected player i may then make a proposal specifying the way she would

distribute surplus yi among the players, or forego the opportunity and pass. If a proposal is

submitted, all players then vote (sequentially) on whether or not to approve it. If at least

q ∈ {1, ..., n} people including the proposer accept the proposal, the game ends and the surplus

is shared according to the accepted proposal. Otherwise, a new player is selected as the proposer

and the process repeats itself (possibly ad infinitum).

Players have an identical, single date, von Neumann-Morgenstern payoff function that is

linear in their own share of the surplus, and discount the future with a common discount factor

δ ∈ (0, 1). In the event that agreement is never reached, all players receive a payoff of zero.

If q = n, then the agreement rule is unanimity and the game is a special case of the

stochastic bargaining model of Merlo and Wilson (1995, 1998) in which the “cake” process

and the “proposer” process are perfectly correlated. If n is odd and q = (n + 1)/2, then the

agreement rule is majority rule as in Eraslan and Merlo (2002). If, in addition, the surplus

available for distribution is the same for all players, i.e., y1 = ... = yn, then the game reduces

to the one studied by Baron and Ferejohn (1989). For any q ∈ {1, ..., n}, we refer to the voting

rule as the q-quota rule.6

Let ht denote the past history of the game up to time t (i.e, the identity of the previous

proposers, whether they made proposals, the proposals they made if they made any, and how

5Since the focus of our analysis is to study the equity properties of alternative voting rules, we deliberately
assume an egalitarian bargaining protocol. Eraslan (2002) and Merlo and Wilson (1995, 1998) study bargaining
environments where players differ with respect to the probability of being selected as proposer and show that
equilibrium payoffs are non-decreasing in such probability, for any voting rule.

6In what follows, when we refer to q-quota, we omit the quantifier with the understanding that q ∈ {1, ..., n}.
Likewise, we omit the quantifiers on generic players i and j with the understanding that i, j ∈ {1, ..., n}.
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each player voted for these proposals), together with the identity of the current proposer and

the proposal she made if she made one. A (behavior) strategy ψi for player i is a probability

distribution over feasible actions for each date t and history at date t. A strategy profile ψ is

an n-tuple of strategies, one for each player. Let G(ht) denote the game from date t on with

history ht. Let ψ|ht denote the restriction of ψ to the histories consistent with ht. Then ψ|ht is

a strategy profile on G(ht). A strategy profile ψ is subgame perfect if, for every history ht, ψ|ht

is a Nash equilibrium of G(ht). An SSP strategy profile is a subgame perfect strategy profile

with the property that the actions prescribed at any history depend only on the proposer and

offer. A stationary, subgame perfect (SSP) outcome and payoff are the outcome and payoff

generated by an SSP strategy profile.

It is well known that in multilateral bargaining games like the one considered here there

is multiplicity of subgame perfect equilibria even under unanimity rule (e.g., Sutton (1986)).

However, it has also been recognized that stationarity is typically able to select a unique

equilibrium (e.g., Baron and Ferejohn (1989), Merlo and Wilson (1995)). Thus, we restrict

attention to SSP equilibria.

3 Characterization of SSP Payoffs

In this section, we characterize the set of SSP payoffs, i.e. the set of continuation payoff vectors,

and study their properties. Given an SSP payoff vector v, player i accepts a proposal x if xi ≥ vi

and rejects it if xi < vi.
7 Let rij(v) denote the probability that i includes j in her coalition

when she is selected as the proposer and when the payoff vector is v (i.e., the probability that i

offers j a payoff equal to vj), and ri(v) = (ri1(v), ..., rin(v)). Let wi(v) denote the total cost to

player i of her coalition partners (i.e., the total amount of surplus player i has to offer to her

7We assume without loss of generality that player i accepts an offer when indifferent. To see that this
assumption is without loss of generality, suppose to the contrary that player i rejects an offer x with xi = vi
with positive probability. If there is no player j who makes an offer x with xi = vi with positive probability in
equilibrium, then clearly player i’s decision when indifferent is irrelevant, and hence, there is another equilibrium
which is payoff equivalent to the original equilibrium in which player i accepts any offer x with xi = vi with
probability one. If instead there is some player j who makes an offer x with xi = vi with positive probability,
then player j can increase his payoff by slightly increasing xi and decreasing xj .
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coalition partners to induce them to support her proposal), that is,

wi(v) =
n∑
j=1

rij(v)vj. (1)

We maintain the convention that each player i includes herself as a coalition partner (i.e.,

rii(v) = 1). This is without loss of generality, since the payments made to self cancel out with

the distribution received from self.

Since the game we consider is a stochastic bargaining game, agreement need not be reached

immediately (Merlo and Wilson (1995, 1998)). In particular, agreement is not reached in any

given period if the surplus available in that period is sufficiently small relative to the expected

surplus next period. Given a payoff vector v, let αi(v) ∈ [0, 1] denote the probability that

agreement is reached when i is the proposer. In equilibrium, we must have

αi(v) =

 1 if yi − wi(v) > 0,

0 if yi − wi(v) < 0.
(2)

If yi = wi(v), when selected as the proposer player i is indifferent between passing and proposing

and therefore αi(v) can take any value in [0, 1].

If player i is not the proposer, then she receives her continuation payoff when player j is the

proposer in one of two ways: either player j includes player i in his coalition, or player j passes

and the bargaining game continues to the next period. Let µji(v; r (v)) denote the probability

that i receives her continuation payoff vi when j is the proposer and the payoff vector is v,

given the offer probabilities r (v) = [ri (v)]ni=1. Formally,

µji(v; r (v)) = αj(v)rji(v) + (1− αj(v)). (3)

Finally, let

µi(v; r (v)) =
n∑
j=1

1

n
µji(v; r (v)) (4)

denote the total probability that i receives her continuation payoff vi either because of delay or

because she is included in the winning coalition.

The generic definition of SSP equilibria stated in the previous section is not very useful

for analysis. The following proposition provides an alternative definition of SSP payoff vectors

for any q-quota game. Proposition A.1, stated and proved in the appendix, establishes their

existence for any q-quota game.
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Proposition 1. v is an SSP payoff vector for the q-quota game if and only if for all i

vi = δ[
1

n
αi(v)(yi − wi(v)) + µi(v; r (v))vi] (5)

and

ri(v) ∈ arg min
z∈[0,1]n

∑
k

zkvk (6)

subject to
∑
k 6=i

zk ≥ q − 1 and zi = 1.

The expression in brackets on the right hand side of equation (5) is the expected payoff

to player i. With probability 1/n player i is the proposer. If she decides to propose an

allocation that would be accepted, then she receives her surplus yi net of the cost of her

coalition partners (including herself). Otherwise, she either passes or proposes an allocation

that would be rejected, and receives her continuation payoff in either case. Our convention

that rii(v) = 1 implies that player i receives her continuation payoff (over and above the

proposer’s surplus yi −wi(v) if αi(v) > 0) with probability one when she is the proposer. This

happens with probability 1/n. With probability (n− 1)/n, on the other hand, someone else is

the proposer and player i receives her continuation payoff with probability
∑

j 6=i rji(v). Since

µi(v; r (v)) =
∑n

j=1
1
n
µji(v; r (v)), the expression on the right hand side of equation (5) is the

discounted expected payoff of player i. In equilibrium, this must equal her SSP payoff.

Before discussing uniqueness of SSP equilibrium payoffs, we present some properties of SSP

equilibria.

3.1 Properties of SSP Equilibria

In this section, we establish some properties of SSP equilibria which are needed in proving

our main results. In what follows, we let v = (v1, . . . , vn) denote an arbitrary SSP equilibrium

payoff vector for any q-quota game.

Our first result establishes that if a delay is possible when a player is the proposer, then his

or her payoff must be zero.

Lemma 1. For all i, if αi(v) < 1, then vi = 0.

In the class of bargaining games we consider, players derive their bargaining power mainly

from two sources: their ability to propose and their ability to vote against a proposal. As shown
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by Kalandrakis (2006), the proposal power is in general much more significant in determining

a player’s bargaining power. Our analysis confirms and strengthens this result. In particular,

if an equilibrium admits the possibility of delay when a player is the proposer, then that player

cannot make use of his or her proposal power at all, which in turn results in a complete loss of

bargaining power and hence an equilibrium payoff of zero.

The above lemma implies that if vi > 0, then we must have αi(v) = 1, which is possible

when yi ≥ wi(v). The following lemma strengthens this result and shows that the inequality

must be strict.

Lemma 2. For all i, vi > 0 if and only if yi > wi(v).

Equation (2) states that if the surplus available when player i is the proposer exceeds the

cost of her coalition, then there is agreement when i is the proposer. Recall that we maintain

the convention that each player i includes herself in her coalition. The next lemma shows that

agreement is also reached if the surplus available when player i is the proposer exceeds the cost

of her coalition net of the cost of including herself as a coalition partner.

Lemma 3. For all i, if yi > wi(v)− vi, then αi(v) = 1.

From equation (5), it can be observed that a player’s payoff depends on three endogenous

factors: the probability of agreement when she is the proposer, the total cost of his or her

coalition partners, and the probability that she receives his or her continuation payoff when

she is not the proposer. Given that a player’s payoff is decreasing in the total cost of his or her

coalition, one might expect that “cheaper” players have higher total costs. The next results

shows that this is not the case. To the contrary, if player i has a lower continuation payoff than

player j, then the total cost of player i’s coalition cannot exceed the total cost of player j’s

coalition.

Lemma 4. For all i, j, if vi ≤ vj, then wi(v) ≤ wj(v).

This result seems counterintuitive at first since for any two players i and j with vi ≤ vj, the

cost of coalition partners for player i is weakly higher than the cost of coalition partners for
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player j because they have access to the same set of coalition partners except for each other.

But notice that the cost of coalition for a player includes the cost of his own vote. If players i

and j do not include each other in their coalitions, then the total cost of their coalition partners

excluding themselves are the same, and since vi ≤ vj, the total cost of coalition for player i is

lower. If instead player j includes player i with some positive probability, then we can obtain

an upper bound on player i’s total coalition cost by artificially restricting player i to include

player j in his coalition with the same probability. In the proof of Lemma 4, we show that this

upper bound is lower than player j’s total coalition cost.

Note that if agreement is ever reached when player i is the proposer, then the surplus

available net of the payments to her coalition partners must not be smaller than her own SSP

payoff. Since the same coalition partners are also potentially available to any other player

j when he is the proposer, it follows that if player j is more productive than player i, then

agreement must always be reached when j is the proposer.

Lemma 5. For all i, if yi > wi(v), then αj(v) = 1 for all j ≥ i.

The next result establishes that if an equilibrium admits the possibility of delay when player

i is the proposer, which implies that her payoff is equal to zero, then the equilibrium payoff of

all less productive players j < i is also zero.

Lemma 6. For all i, if αi(v) < 1, then vj = 0 for all j ≤ i.

When player i is “cheaper” than player j, player j cannot be included in other players’

coalitions more often than player i. In addition, if agreement is reached with certainty when

one of these players is the proposer, then it is also the case that the probability that player

j receives his continuation payoff when he is not the proposer cannot be higher than the

probability that player i receives her continuation payoff when she is not the proposer. This is

the intuition for our next result.

Lemma 7. For all i, j, if vi < vj and αi(v) = αj(v) = 1, then µi(v; r (v)) ≥ µj(v; r (v)).

Since the only source of asymmetry among players is their productivity, if player i is less

productive than player j, then one would expect j to fare no worse than i in equilibrium. The

following lemma shows that this is indeed the case.
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Lemma 8. SSP payoffs are monotone: that is, vi ≤ vj for all i < j, i, j = 1, ..., n.

From Lemma 1, if there is a possibility of no agreement when player q is the proposer, then

vq = 0 for any q-quota game. By Lemma 8, it follows that vi = 0 for all i ≤ q. But then the

cost of a winning coalition for player q is zero as she needs q − 1 votes in addition to his vote

in order to secure acceptance of her proposal. This argument implies the following result:

Lemma 9. In any q-quota game agreement is always reached when player q is the proposer

and player q always receives a positive payoff: that is, αq(v) = 1 and vq > 0.

For the class of games we consider here, when q = n (i.e., in the unanimity game), the

results of Merlo and Wilson (1998) imply that the SSP payoff vector is unique. It is also

straightforward to see that equilibrium is unique when q = 1 (i.e. under random dictatorship).

In what follows, we characterize the unique equilibria for these special cases.

3.2 Special Cases: Unanimity Rule and Random Dictatorship

Let vn(δ) = (vn1 (δ), . . . , vnn(δ)) denote the unique equilibrium under unanimity rule when

the discount factor is δ. Let κ denote the player with the lowest index such that the equi-

librium probability of an agreement being reached when she is the proposer is positive: that

is, κ is the smallest i such that αi(v
n(δ)) > 0. Under unanimity rule, all players receive their

continuation payoffs regardless of the identity of the proposer, and regardless of whether agree-

ment is reached or not. Hence, rij(v
n(δ)) = 1 for all δ ∈ (0, 1) and for all i, j. It follows that

µi(v
n(δ); r (vn(δ))) = 1 for all δ ∈ (0, 1) and for all i, and equation (5) reduces to:

vni (δ) =

 0 if i < κ,

δ[ 1
n
(yi −

∑n
j=1 v

n
j (δ)) + vni (δ)] if i ≥ κ.

(7)

Summing over all i and rearranging, we obtain:
n∑
i=1

vni (δ) =
n∑
i=κ

vni (δ) =
δ
∑n

i=κ yi
(1− δ)n+ δ(n− κ+ 1)

. (8)

Substituting back in equation (7) allows us to characterize the unique equilibrium under una-

nimity rule.
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Proposition 2. The payoffs in the unique equilibrium under unanimity rule are given by

vni (δ) =


0 if i < κ,

δ
n(1−δ)

(
yi − δ

∑n
i=κ yi

(1−δ)n+δ(n−κ+1)

)
if i ≥ κ.

(9)

where

κ = min{j : yj ≥
δ
∑n

i=j yi

(1− δ)n+ δ(n− j + 1)
}.

When yn−1 < yn and players are sufficiently patient, we have a sharper characterization as

a corollary of Proposition 2. Let

δn =
nyn−1

yn + (n− 1)yn−1

. (10)

Note that δn < 1 when yn−1 < yn.

Corollary 1. If yn−1 < yn and δ > δn, then vnn(δ) = δyn
n−δ(n−1)

and vni (δ) = 0 for all i < n.

This means that under the unanimity rule, if yn−1 < yn and players are sufficiently patient,

then agreement is reached only when player n is the proposer in which case she receives the

entire surplus under the agreed upon allocation. Intuitively, this is a consequence of the result

in Merlo and Wilson (1998) that the unique equilibrium under unanimity rule is efficient. If

players are sufficiently patient, efficiency requires agreement only to occur when the largest

surplus is available for distribution.

We next characterize the equilibrium under random dictatorship. Let v1(δ) = (v1
1(δ), . . . , v1

n(δ))

denote the unique equilibrium under random dictatorship when the discount factor is δ. By

Lemma 9, agreement is reached all the time, and since no player ever needs the vote of another

player, which immediately implies the following result.

Proposition 3. The payoffs in the unique equilibrium under random dictatoship are given by

v1
i (δ) =

δ

n
yi (11)

for all i.

For general q, uniqueness of the SSP equilibrium payoff vector is guaranteed when the

surplus to be divided is the same for all players, i.e., y1 = . . . = yn (Baron and Ferejohn (1989),

Eraslan (2002)). However, the equilibrium payoffs need not be unique for general agreement
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rules when the surplus to be divided is stochastic (Eraslan and Merlo (2002)). In the next

section, we first illustrate multiplicity of equilibria with an example, and then characterize the

unique SSP equilibrium payoffs associated with the most efficient equilibrium for any q-quota

game.

3.3 General q-quota Games

To see that equilibria need not be unique for q-quota games when q ∈ {2, . . . , n−1}, consider

the following example. There are three players with a common discount factor δ equal to 0.9.

The surplus available for distribution is y1 = 0.4 when player 1 is the proposer, and y2 = y3 = 1

when either player 2 or player 3 are the proposer. The agreement rule is majority rule (i.e.,

q = 2).

By Lemma 9, agreement always occurs when player 2 is the proposer and v2 > 0. Then,

by Lemma 2, y2 > w2(v), and so, by Lemma 5, agreement always occurs when player 3 is

the proposer as well. Let p denote the probability that agreement occurs when player 1 is the

proposer. Given p, let vi(p) denote the payoff to player i and v(p) = (v1(p), v2(p), v3(p)). In

equilibrium, α1(v(p)) = p. Lemma 8 implies that v2(p) = v3(p) for all p.

First, consider the possibility that p = 0. By Lemma 1, v1(0) = 0. Since p = 0, player 2 and

player 3 receive their continuation payoffs with probability one when player 1 is the proposer,

i.e., µ12(v(0)) = µ13(v(0)) = 1, and the cost of including player 1 in the winning coalition

when either player 2 or player 3 are the proposer is zero.8 Hence, µ23(v(0)) = µ32(v(0)) = 0.

Substituting in equation (5), we have:

v2(0) = 0.9

(
1

3
+

1

3
v2(0)

)
,

v3(0) = 0.9

(
1

3
+

1

3
v3(0)

)
.

Since v2(0) = v3(0) = 0.429 > y1 = 0.4, it is indeed optimal for player 1 to pass when

she is the proposer, which is consistent with p = 0. Therefore, there is an equilibrium with

v = (0, 0.429, 0.429), α (v) = (0, 1, 1), r2 (v) = (1, 1, 0) and r3 (v) = (1, 0, 1).

Next, consider the possibility that p = 1, with v1(1) < v2(1) = v3(1). Since player 1 has the

lowest SSP payoff, she is included with probability one in the winning coalition when either

8To simplify notation, in the example, we omit r as an argument of µ.
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player 2 or player 3 are the proposer, i.e., r21(v(1)) = r31(v(1)) = 1, and the cost of including

player 1 in the winning coalition is v1(1). In this case, however, when player 1 is the proposer,

players 2 and 3 are no longer guaranteed to receive their SSP payoffs. Since agreement is

reached with probability one, and agreement requires the consent of only one additional player

in addition to the proposer, we have that µ12(v(1)) = r12(v(1)) and µ13(v(1)) = r13(v(1)).

Substituting in equation (5), we have:

v1(1) = 0.9

(
0.4

3
− 1

3
vj(1) +

2

3
v1(1)

)
,

and

vj(1) = 0.9

(
1

3
− 1

3
v1(1) +

1

3
r1jvj(1)

)
,

for j = 2, 3. Since r12(v(1)) + r13(v(1)) = 1, we obtain that v1(1) = 0.048, v2(1) = v3(1) =

0.336 < 0.4 = y1, and r12(v(1)) = r13(v(1)) = 1
2
. This, in turn, implies that it is optimal

for player 1 to make a proposal when she is the proposer, which is consistent with p = 1.

Therefore, there is an equilibrium with v = (0.048, 0.336, 0.336), α (v) = (1, 1, 1), r1 (v) =(
1, 1

2
, 1

2

)
, r2 (v) = (1, 1, 0) and r3 (v) = (1, 0, 1).

In addition, there is a third equilibrium in which player 1 is indifferent between proposing

and passing when she is the proposer. This implies that v2(p) = v3(p) = 0.4, v1(p) = 0,

and the cost of including player 1 in the winning coalition when either player 2 or player

3 are the proposer is zero. Notice that by symmetry r12(v(p)) = r13(v(p)) = 1
2
, otherwise

Lemma 8 would be violated, possibly after re-enumerating the players. Hence, for j = 2, 3,

µ1j(v(p)) = pr1j(v(p)) + (1− p) = 1− p
2
. Substituting in equation (5), we have:

vj(p) = 0.9

(
1

3
+

1

3
(1− p

2
)vj(p)

)
for j = 2, 3, which in turn implies that p = 1/3.

Note that v1(p) is increasing in r21(v(p)) and r31(v(p)), but r21(v(p)) and r31(v(p)) are

decreasing in v1(p). This implies that there is no equilibrium in which p > 0 and v1(p) =

v2(p) = v3(p). Thus, the three equilibria characterized above are the only equilibria.

The intuition for this multiplicity result is as follows. When player 1 is the proposer, she

needs the vote of only one other player, whereas if she passes, both players 2 and 3 receive their

SSP payoff. This means the payoffs of players 2 and 3 are increasing in the probability that

player 1 passes when she is the proposer. At the same time, as the payoffs of players 2 and 3
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increase, it is more likely that player 1 cannot afford to have his proposal accepted, decreasing

the probability that his proposal passes. This reinforcement effect makes the payoffs of players

2 and 3 even higher.

The following result uniquely characterizes the most efficient equilibria in any q-quota game

when the players are sufficiently patient.

Proposition 4. Fix a q-quota game with q ∈ {2, . . . , n − 1}. If yi < yi+1 for all i < q and

yq > (n − q + 1)yq−1, then there exists δq ∈ (0, 1) such that, for all δ > δq, the most efficient

equilibrium of the q-quota game satisfies

vi =

 0 if i < q,

δyi
n−δ(q−1)

otherwise.
(12)

Intuitively, when the discount factor is sufficiently high and when the surplus of player q

is sufficiently larger than the surplus of player q − 1, efficiency requires that agreement is not

reached when player q− 1 is the proposer. If that is the case, then by Lemma 1, we must have

vi = 0 for all players i < q. This in turn implies that the cost of winning coalition partners for

players i ≥ q is zero, and therefore they receive strictly positive payoffs. Consequently, they

are never included in each other’s coalitions, and they receive their continuation payoffs only

when there is no agreement as a result of one of the players i < q being chosen as the proposer.

Notice that even though Proposition 4 focuses on the case when q 6= 1 and q 6= n, the

equation (12) characterizing the most efficient equilibrium payoffs is also satisfied by the unique

equilibrium when q = n and the players are sufficiently patient (see Corollary 1) and the unique

equilibrium when q = 1 regardless of the discount factor (see Proposition 3).

Before moving on to establishing our main result formally, we provide an example in the

next section.

4 An Example

In this section, we illustrate our main result with an example. Suppose there are three

players with y1 = 0.25, y2 = 0.8, y3 = 1, and the discount factor is δ = 0.95.

If the agreement rule is unanimity rule, then player 3 receives his continuation payoff when

any other player is the proposer regardless of whether that player passes or makes an offer
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that is accepted. This in turn makes player 3 so expensive that even player 2 is unable to

make an offer that would be accepted by player 3. In equilibrium v1 = v2 = 0 and v3 = 0.86.

To see these are indeed equilibrium continuation payoffs, note that player 3 is the proposer

with 1/3 probability, in which case she receives y3, and with probability 2/3, another player is

the proposer, and player 3 receives her continuation payoff v3. In equilibrium, we must have

v3 = δ(1
3
y3 + 2

3
v3) which is satisfied only when v3 = 0.86. Since the surplus player i 6= 3 has

when he is the proposer is lower than the continuation payoff of player 3, it is indeed the case

that player i passes and obtains his continuation payoff. Since he also receives his continuation

payoff when any other player is the proposer, we must have vi = δvi, i.e. vi = 0 for all i 6= 3.

If the agreement threshold is q = 2, then when player 2 is the proposer, he is now able

to offer a proposal that would be accepted. This is because he no longer needs the consent

of player 3 for his offer to be accepted. This in turn makes player 2 relatively expensive, and

player 1 is still not able to make an offer that would be accepted by player 2. Since player

3’s vote is even more expensive than player 2’s, player 1 passes when he is the proposer. In

equilibrium, v1 = 0, v2 = 0.37, and v5 = 0.46. To see, note that when either player 2 or player

3 is the proposer, it is optimal to exclude each other since the vote of player 1 is sufficient to

pass a proposal. Thus, players 2 and 3 receive their continuation payoffs only when player 1 is

the proposer which happens with probability 1/3. As such, vi = δ(1
3
yi + 1

3
vi) for i = 2, 3 which

are satisfied only when v2 = 0.37, and v3 = 0.46. Since the surplus players 1 has when he is the

proposer is lower than the continuation payoff of player 2, it is indeed the case that he passes

and obtains a payoff of zero when he is the proposer, and receives his continuation payoff when

any other player is the proposer. As before, this implies that the payoff of player 1 is zero. The

parameters of this example satisfy the conditions in the statement of Proposition 4, and the

discount factor is higher than the lower bound constructed in the proof of Proposition 4 when

q = 2. Thus, the above construction characterizes the most efficient equilibrium when q = 2.

Finally if the agreement threshold is q = 1, i.e. if the agreement rule is random dictatorship,

then agreement is reached all the time, and the continuation payoffs are given by v1 = 0.08, v2 =

0.25, v3 = 0.32. It can be easily seen that as the agreement rule becomes more inclusive, the

inequality increases in the most efficient equilibrium. In the next section, we generalize this
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observation.

5 The Equity Properties of Alternative Voting Rules

In this section, we compare the equity of equilibrium payoffs (i.e., the relative inequality

of the distribution of equilibrium payoffs), under alternative voting rules. The measure of

inequality we use is the Gini coefficent. As is well known, as a distribution becomes more

unequal, its Gini coefficient increases. At the extremes, a Gini coefficient of 0 corresponds to

complete equality, while a Gini coefficient of 1 corresponds to complete inequality with only

one element in the distribution taking a strictly positive value and all others being zero.

Formally, we let Gy denote the Gini coefficient for the distribution of potential surplus

across players which summarizes the fundamental heterogeneity in the bargaining environment

we consider:

Gy =
2
∑n

i=1 iyi
n
∑n

i=1 yi
− n+ 1

n
. (13)

By Lemma 8, any equilibrium payoff vector v = (v1, . . . , vn) is monotone, and so we may

define the Gini coefficient associated with that payoff vector as

G(v) =
2
∑n

i=1 ivi
n
∑n

i=1 vi
− n+ 1

n
. (14)

We first show that unanimity rule always induces equilibrium outcomes that are at least as

unequal as the fundamentals. Specifically, we show that for any δ ∈ (0, 1), the Gini coefficient

associated with the unique SSP payoff vector vn(δ) of the unanimity rule game with discount

factor δ is at least as large as the Gini coefficient for the distribution of potential surplus across

players, that is, G(vn(δ)) ≥ Gy for all δ ∈ (0, 1). We also show that random dictatorship always

induces equilibrium outcomes as unequal as the fundamentals.

Proposition 5. G(vn (δ)) ≥ Gy = G(v1(δ)) for all δ ∈ (0, 1), and the inequality is strict if and

only if yi 6= yj for some i, j = 1, ..., n.

Now consider any q-quota rule and let vq(δ) denote an equilibrium payoff vector under the

q-quota rule when the discount factor is δ. Let κ̃ denote the player with the lowest index such

that yi = yn, and let

δ̃ =
nyκ̃−1

(n− κ̃+ 1)yn + (κ̃− 1)yκ̃−1

. (15)
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Note that δ̃ = δn (recall equation (10)) when yn−1 < yn.

By Lemma 8, all players i > κ̃ receive the same payoff. This implies that µi(v
q(δ); r (vq(δ))) =

µn(vq(δ); r (vq(δ))) for all i > κ̃. If agreement is not reached when q − 1 is the proposer, i.e.

if αq−1(vq(δ)) = 0, then we must have κ̃ ≥ q and µi(v
q(δ); r (vq(δ))) = q

n
for all i > κ̃ since

players 1, . . . , q − 1 constitute the cheapest coalition partners, so each player i > κ̃ receives

her continuation payoff only when she is the proposer or one of the players 1, . . . , q− 1 are the

proposers (in which case there is no agreement). If instead agreement is reached with positive

probability when player q − 1 is the proposer, then not all players receive their continuation

payoff when player q − 1 proposes, and by Lemma 8, players κ̃, . . . , n are the more expensive

coalition partners and are therefore excluded with positive probability from the winning coali-

tion when another player is the proposer. Thus, µi(v
q(δ); r (vq(δ))) ≤ q

n
. Furthermore, in this

case, the cost of coalition partners for players i > κ̃ is at least vqn(δ) (recall that i’s coalition

partners include player i herself), and vqi (δ) = vqn(δ). Consequently, vqn(δ) ≤ δyn
n−δ(q−1)

. Thus, if

q ≤ κ̃ and δ > δ̃, then

vqi (δ) ≤
δyn

n− δ(q − 1)
≤ δyn

(1− δ)n+ δ(n− κ̃+ 1)
= vni (δ)

for all i ≥ κ̃, and if q < κ̃, then vqi (δ) < vni (δ) for all i ≥ κ̃. This means that if players

are sufficiently patient, then all players with the highest potential surplus fare better under

unanimity rule than under the q-quota rule. Conversely, since vni (δ) = 0 for all i < κ̃ when δ

is sufficiently large, all players except those with the highest potential surplus (weakly) prefer

the q-quota rule to the unanimity rule.

More generally, the next proposition states that if δ exceeds the bound defined in (15),

then the unique equilibrium outcome under unanimity rule is always more unequal than any

equilibrium outcome under any q-quota rule with q < n as long as q ≤ κ̃.

Proposition 6. If δ > δ̃, then G(vn(δ)) ≥ G(vq(δ)) for any q ≤ κ̃ and for any equilibrium

payoff vector vq(δ) of the q-quota game. The inequality is strict if q < κ̃.

An immediate implication of Proposition 6 is that when yn > yn−1, the equilibrium outcome

under unanimity rule is strictly more unequal than any equilibrium outcome under any q-quota

rule with q < n when players are sufficiently patient.
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For the next result, let v∗q denote the most efficient equilibrium of the q-quota game char-

acterized in Proposition 4 and let

δ∗ = max{δ2, . . . , δn}

where δq is defined in the proof of Proposition 4 when 2 < q < n, and δn is defined in equation

(10). Note that, since the equilibrium payoffs are unique when q = 1 and q = n, we have

v∗1 = v1 and v∗n = vn where v1 is characterized in Proposition 3 and vn is characterized

in Proposition 2. We now show that if no two players have the same potential surplus (i.e.,

y1 < y2 < · · · < yn), and the potential surpluses are sufficiently different from each other, then

as q increases (i.e., as the voting rule becomes increasingly more inclusive), the most efficient

equilibrium of the game becomes relatively more inequitable.

Proposition 7. If yq > (n− q + 1) yq−1 for every q = 2, ..., n, then

G(v∗1(δ)) < G(v∗2(δ)) < ... < G(v∗n−1(δ)) < G(v∗n(δ)

for all δ > δ∗.

6 Discussion and Concluding Remarks

In this paper, we have studied the equity properties of different voting rules in a multilateral

bargaining environment where players are heterogeneous with respect to the potential surplus

they bring to the bargaining table. We have shown that unanimity rule may generate equi-

librium outcomes that are more unequal (or less equitable) than equilibrium outcomes under

majority rule. In fact, as players become perfectly patient, if there is enough heterogeneity,

then the more inclusive the voting rule with respect to the number of votes required to induce

agreement, the less equitable the equilibrium allocations.

These results follow naturally from basic insights of bargaining theory in distributive set-

tings. Unanimity rule protects the rights of every player, including the most productive one. As

players become perfectly patient, no other player has a potential surplus that is large enough

to satisfy the demands of the most productive player (i.e., her reservation payoff), in order to

induce her to accept a proposal when she is not the proposer. Hence, under unanimity rule,

agreement occurs only when the most productive player is the proposer and every other player
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receives an equilibrium payoff of zero, since they never make a proposal that is accepted in

equilibrium. In fact, one of the fundamental insights of noncooperative bargaining theory is

that there is a benefit to proposing only when agreements occur. If agreement does not occur,

the payoff associated with proposing in such an instance is just the expected discounted payoff

of future agreements. Similarly, if a player is not the proposer, she will never be offered more

than the expected value of her future payoffs. Since future payoffs are discounted, if follows that

if she ever earns a positive payoff, her highest payoff must be when she makes an acceptable

offer. If none of her proposals are ever accepted, her SSP payoff must be zero.

On the other hand, under majority rule (in fact, under any q-quota rule with q < n), the

vote of the most productive player is no longer required to reach an agreement when she is

not the proposer. Hence, under a q-quota voting rule, agreement always occurs whenever a

player i ≥ q is selected as proposer, and the most productive player loses her advantage. This

“egalitarian” force makes the payoff distribution relatively more equitable.

Baron and Ferejohn (1989) present an example with a deterministic surplus of size 1, three

players (n = 3) and majority rule (q = 2) in which there is an equilibrium with players

receiving equal SSP payoffs even though they have different probabilities of being selected as

the proposer, i.e. v2 = (1/3, 1/3, 1/3).9 Although they do not show it, for the example they

present, the SSP payoff of each player under unanimity rule is equal to his probability of being

selected as the proposer, i.e. v3 = (p1, p2, p3) where pi is the probability with which player i

is selected as the proposer. Obviously v3 is less equal than v2. In that sense, this example

implicitly illustrates the possibility that players with strong bargaining powers may lose their

powers under less inclusive voting rules even when the surplus to be divided is deterministic.

However, for this example, the equilibrium payoffs under random dictatorship is identical to

the equilibrium payoffs under unanimity rule, i.e. v1 = v3. Hence, unlike in our model, the

payoff distribution does not necessarily become more unequal as the voting rule become more

inclusive with a deterministic surplus.10

9By Eraslan (2002), (1/3, 1/3, 1/3) is the only SSP payoff vector for the example they present.
10Note that there is no heterogeneity in the original Baron and Ferejohn (1989) model, and therefore all

players receive identical equilibrium payoffs regardless of the voting rule. Eraslan (2002) allows for heterogeneity
in the probability of being the proposer and the discount factor, and Eraslan and McLennan (2013) further
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Given the trade-off between fairness and efficiency of threshold voting rules we find, it would

be interesting to explore whether there are other institutional designs, such as amendments

and deadlines, that can reduce inequality at the same time preserving efficiency. We leave this

question to future work.

We conclude by discussing two other possible extensions of our results.

Heterogeneous disagreement payoffs:

If disagreement leads to an even worse outcome, then veto right is not valuable. Con-

versely, if the disagreement payoffs are sufficiently high but not equitable, then more equitable

agreements could potentially be vetoed, in which case unanimity safeguards the rights of those

already well-off. We provide an example to illustrate that our results could be robust to formu-

lations that allow for negative correlation between surpluses and disagreement payoffs. To do

so requires extending our model to a setup where the players have heterogeneous disagreement

payoffs. Let di denote the disagreement payoff of player i. It is straightforward to show that

equation (5) that characterizes equilibrium payoffs now becomes

vi = (1− δ)di + δ[
1

n
αi(v)(yi − wi(v)) + µi(v; r (v))vi].

Reconsider now the example in Section 4 and assume that the payoffs from indefinite disagree-

ment are given by d1 = 0.75, d2 = 0.2 and d3 = 0. Note that the surpluses and disagreement

payoffs are perfectly negatively correlated. The Gini coefficient for the disagreement payoffs

and the surpluses are given by 0.52 and 0.2439 respectively.

Under random dictatorship, there is always agreement, the payoffs are given by

vi = (1− δ)di +
δ

3
yi

for all i. Under majority rule, there is a unique pure strategy equilibrium in which agreement

only when players 2 and 3 propose and player 1 is included in any winning coalition. The

payoffs are given by

v1 = (1− δ)d1 +
2

3
v1,

and

vi = (1− δ)di +
δ

3
(yi − v1) +

δ

3
vi

allow for heterogeneity in voting power. Neither of these papers discusses the equity properties of different
voting rules.
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for i = 2, 3. Under unanimity rule, there is agreement only when player 3 proposes and the

payoffs are given by

vi = (1− δ)di +
δ

3
(yi −

∑
j 6=i

vj) + δ
2

3
vi

for all i. It follows that for the above equilibria, the Gini coefficient for the unanimity, majority

and random dictatorship are 0.47, 0.2442 and 0.19 respectively. Consequently, as the voting

rules become more inclusive, equilibrium payoffs become less equitable in this example.

Spatial bargaining:

We provide an example with a single period bargaining in a spatial setting to illustrate

that our main result may extend beyond the distributive setting. There are three players who

decide on a single dimensional policy. Player i’s payoff from implementing policy y is given

by 10 − (y − xi)2 where xi is the ideal policy of player i.11 Each player is selected with equal

probability to make a proposal. If the offer is accepted by q players, then it is implemented,

otherwise default policy d is implemented. As before we compare unanimity (q = 3), majority

(q = 2) and random dictatorship (q = 1).

Suppose d = −1, x1 = 0, x2 = 1 and x3 = 3.5. Then under unanimity rule, when selected

as the proposer, player 1 proposes 0 while players 2 and 3 propose 1, and all these proposals

are accepted. Under majority rule, when selected as the proposer, player 1 proposes 0, player

2 proposes 1 and player 3 proposes 3, and all these proposals are accepted. Under random

dictatorship rule, each player proposes her own ideal, and all these proposals are accepted. It is

straightforward to verify that for this example, Gini coefficient for the unanimity, majority and

random dictatorship are 0.254, 0.163 and 0.147 respectively. Consequently, the more inclusive

the voting rule, the less equitable the equilibrium payoffs.

We leave it to future research to explore whether these two examples can be generalized.

A Proofs

Proof of Proposition 1: Suppose the SSP payoff vector is given by v. Let i denote the

proposer, and consider an SSP response to a proposal x by player j. Player j accepts the

11Adding the constant 10 to the quadratic loss utility functions ensures that the payoffs are positive in
equilibrium for this example.
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proposal if xj ≥ vj and rejects it if xj < vj. Note that the proposer needs only q − 1 votes in

addition to her vote for a proposal to be accepted. Then, if the proposer decides to make an

offer that will be accepted, she will solve the program:

ri(v) ∈ arg min
z∈{0,1}n

∑
k

zkvk (16)

subject to
∑
k 6=i

zk ≥ q − 1 and zi = 1.

Let Γi denote the set of minimizers of (16). Each γi = (γij)
n
j=1 ∈ Γi corresponds to a pure

proposal, since an SSP proposal in pure strategies by player i can be identified by the (n− 1)-

dimensional vector which specifies the players to whom player i offers their continuation payoff.

A minimizer of (6), however, does not necessarily correspond to a pure proposal. Rather, it

corresponds to a mixed proposal, where player i randomizes over the proposals corresponding to

the elements in Γi (possibly with degenerate probabilities). In equilibrium, player i randomizes

over the proposals corresponding to the elements in Γi since any proposal corresponding to an

element in Γi yields the lowest possible payoff to player i. It is straightforward to verify that

rij(v) is a minimizer of (6) if and only if there exists a probability distribution πi(.) over Γi

such that

rij(v) =
∑
γi∈Γi

γijπi(γi).

In other words, randomizing over pure proposals is payoff equivalent to offering mixed proposals.

Intuitively, rij(v) denotes the probability that player j is offered his continuation payoff when

player i is the proposer who proposes an allocation that will be accepted.

If player i offers an allocation that is accepted, this allocation yields the payoff yi −∑
j 6=i rij(v)vj to the proposer and it yields the expected payoff rij(v)vj to player j. If no

proposal is accepted, then all the players receive their continuation payoffs. Given our conven-

tion that rii(v) = 1, a payoff maximizing proposer i offers an allocation that will be accepted

if yi −
∑

j rij(v)vj > 0, passes if yi −
∑

j rij(v)vj < 0, and is indifferent between proposing an

allocation that will be accepted and passing if yi −
∑

j rij(v)vj = 0. Recall that αi(v) denotes

the probability that player i proposes an allocation that will be accepted. Then αi(v) must

satisfy the restrictions imposed in equation (2).

In equilibrium, the offer probabilities rij(v) and proposal probabilities αi(v), i, j = 1, ..., n,
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must induce the continuation payoffs v, that is v = δE[v] where the expectation is taken over

the proposer selection probabilities. Next, we show that this is satisfied by equation (5).

If agreement is not reached in the current period, then next period player i is the proposer

with probability 1
n
. With probability αi(v) she proposes an allocation that will be accepted

in which case her payoff is yi −
∑

j 6=i rji(v)vj. With probability 1 − αi(v) player i passes and

receives her continuation payoff vi. Thus, conditional on being the proposer, next period’s

expected payoff for player i discounted back to the current period is

δ
1

n
[αi(v)(yi −

∑
j 6=i

rij(v)vj) + (1− αi(v))vi]. (17)

Now consider the case when player i is not the proposer next period. With probability 1
n

player

j 6= i is the proposer. Player j proposes an allocation that will be accepted with probability

αj(v) in which case the expected payoff to player i is rji(v)vi. With probability 1−αj(v) player

j passes in which case player i receives her continuation payoff vi. Thus, conditional on not

being the proposer, next period’s expected payoff for player i discounted back to the current

period is

δ
∑
j 6=i

1

n
[αj(v)rji(v) + (1− αj(v))]vi. (18)

Combining (17) and (18) and rearranging, the continuation payoff for player i is given by

equation (5).

To complete the proof consider the following strategy. When player i is not the proposer,

she accepts any proposal if and only if the proposal gives her at least vi. When player i is

the proposer, she proposes an allocation with probability αi(v) and passes with probability

1−αi(v). If she proposes an allocation, the allocation she proposes is x with probability π(γi),

where xi = yi −
∑

j 6=i γijvj, xj = γijvj for all j 6= i, and πi(.) is the probability distribution

on Γi that induces the offer probabilities rij(v). Clearly, this strategy implements the payoffs

given by (5) and no player has an incentive to unilaterally deviate from it.

Proposition A.1. There exists an SSP payoff vector for the q-quota game, for any q ∈

{1, ..., n}.

Proof: Given α = (α1, . . . , αn) and r = [ri]
n
i=1, define the mapping A(.;α, r) : IRn → IRn as
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A(v;α, r) = (A1(v;α, r), . . . , An(v;α, r)) where

Ai(v;α, r) = δ

(
1

n
αi(yi −

∑
j

rijvj) +
∑
j

1

n
[αjrji + (1− αj)]vi

)
, (19)

for all i = 1, ..., n. Define the set-valued mapping T (.) on [0, yn]n as

T (v) = {g ∈ IRn : ∃r ∈ r(v),∃α ∈ α(v) such that g = A(v;α, r)}. (20)

By Proposition 1 and the definition of T (.), v is an SSP payoff vector for the q-quota game if

and only if it is a fixed point of the set-valued mapping T (.), that is v ∈ T (v).

Note that T (.) maps [0, yn]n to non-empty subsets of [0, yn]n. It is easily seen that T (v)

is convex for all v since r(.) and α(.) are convex valued. Furthermore, T (.) is upper semi-

continuous since r(.) and α(.) are upper semi-continuous and A is continuous in v, α and r.

Finally, for all v ∈ [0, yn]n, T (v) is a closed subset of the compact set [0, yn]n and hence, T (v)

is compact. Thus, the result follows from Kakutani Fixed Point Theorem.

Proof of Lemma 1: If αi(v) = 0, then from (5) we obtain vi = δµi(v; r (v))vi ≤ δvi. Since

vi ≥ 0, we must have vi = 0. If 0 < αi(v) < 1, then the proposer must be indifferent between

proposing and passing, and hence yi = wi(v). Again, plugging in (5), we obtain vi ≤ δvi, and

the result follows since vi ≥ 0.

Proof of Lemma 2: First we show that if vi > 0, then yi > wi(v). Suppose not. Then, vi > 0,

but yi ≤ wi(v). If the inequality is strict, then αi(v) = 0. Thus, αi(v)(yi − wi(v)) = 0 whether

or not the inequality is strict. Plugging this in (5) and rearranging we obtain vi = 0 which is a

contradiction.

Next we show that if yi > wi(v), then vi > 0. Since yi > wi(v), by (2) we have αi(v) = 1,

and thus (5) implies vi > 0.

Proof of Lemma 3: Suppose not. Then yi > wi(v)− vi, but αi(v) < 1. By Lemma 1, vi = 0,

and so yi > wi(v). But then (2) implies that αi(v) = 1 which is a contradiction.

Proof of Lemma 4: If vi = vj, then wi(v) = wj(v) because otherwise one of the players would

not be maximizing their payoff. If vi < vj, given the probability rji(v) that j includes i in his
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coalition when he is the proposer in equilibrium, let

w̃j = min
z∈[0,1]n−2

∑
k 6=i,j

zkvk + rji(v)vi + vj (21)

subject to
∑
k 6=i,j

zk ≥ q − 1− rji(v),

and

w̃i = min
z∈[0,1]n−2

∑
k 6=i,j

zkvk + rji(v)vj + vi (22)

subject to
∑
k 6=i,j

zk ≥ q − 1− rji(v).

Notice that wi(v) ≤ w̃i ≤ w̃j = wj(v), where the first inequality follows from the fact that the

vector ri(v) that defines wi(v) is a minimizer for a less restrictive program than (22), the second

inequality follows from the fact that rji(v)vj + vi ≤ rji(v)vi + vj, and the equality follows from

the definition of rji(v) and wj(v).

Proof of Lemma 5: Suppose to the contrary that yi > wi(v), but αj(v) < 1 for some

j > i. Since yi > wi(v), by (2) we have αi(v) = 1 and by (5) we have vi > 0. Since

αj(v) < 1, Lemma 1 implies vj = 0. Consequently, by Lemma 4, we have wj(v) ≤ wi(v). Thus,

yj ≥ yi > wi(v) ≥ wj(v). But then (2) implies that αj(v) = 1 which is a contradiction.

Proof of Lemma 6: Suppose that αi(v) < 1. By Lemma 1 we must have vi = 0. Now suppose

to the contrary of the claim that there exists a j < i such that vj > 0. By Lemma 2, it must

be the case that yj > wj(v). But then, by Lemma 5, it must be the case that αi(v) = 1, which

is a contradiction.

Proof of Lemma 7: Since vi < vj, any player k 6= i, j includes player i in his coalition at

least as often as he includes player j, and so rki(v) ≥ rkj(v). Furthermore, rji(v) ≥ rij(v).

If not, then either player i or player j are not maximizing their payoff. Then, µji(v; r (v)) =

αj(v)rji(v) + (1− αj(v)) ≥ αi(v)rij(v) + (1− αi(v)) = µij(v; r (v)) and the result follows from

equation (3).

Proof of Lemma 8: If yi ≤ wi(v), then vi = 0 and the proof is immediate. So suppose

that yi > wi(v) and suppose to the contrary that vj < vi. Since yi > wi(v), we have by
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(2) that αi(v) = 1, and, by Lemma 5, we also have αj(v) = 1. Then by Lemma 7, we have

µj(v; r (v)) ≥ µi(v; r (v)). In addition, by Lemma 4, we have wi(v) ≥ wj(v).

Since αi(v) = αj(v) = 1, from (5) we have

vi = δ[
1

n
(yi − wi(v)) + µi(v; r (v))vi], (23)

vj = δ[
1

n
(yj − wj(v)) + µj(v; r (v))vj]. (24)

Subtracting (23) from (24), we obtain

vj − vi = δ[
1

n
(yj − yi) +

1

n
(wi(v)− wj(v)) + µj(v; r (v))vj − µi(v; r (v))vi].

Since µj(v; r (v)) ≥ µi(v; r (v)), we have

vj − vi ≥ δ[
1

n
(yj − yi) +

1

n
(wi(v)− wj(v)) + µi(v; r (v))(vj − vi).

Rearranging, we have that

vj − vi ≥ δ
1

n

(yj − yi) + (wi(v)− wj(v))

1− δµi(v; r (v))
≥ 0.

This contradicts the assumption that vj < vi.

Proof of Lemma 9: If yq−1 > wq−1(v), then the result follows from Lemma 5. If yq−1 <

wq−1(v), there is no agreement when q − 1 is the proposer and vq−1 = 0 by Lemma 1. If

yq−1 = wq−1(v), then by equation (5), it is also the case that vq−1 = 0. Hence, vi = 0 for all

i ≤ q − 1 by Lemma 8. This implies that wq(v)− vq = 0 < yq, and hence αq(v) = 1 by Lemma

3. Then, vq > 0 by equation (5).

Proof of Proposition 4: Fix q ∈ {2, . . . , n− 1} and for any i < q, let

δi =
n
∑q−1

j=i yj

(q − 1)
∑q−1

j=i yj + (q − i)
∑n

j=q yj
.

Note that δi ∈ (0, 1) for all i < q since yi < yi+1 < . . . < yn. Let

δq = max{ nyq−1

yq + yq−1(q − 1)
,max
i<q

δi}.

Clearly δq > 0. In addition, we have δq < 1 since yq−1 <
yq

n−q+1
.

First we show that if δ ≥ δq, then there is an equilibrium with vi = 0 for all i < q and

vi = δyi
n−δ(q−1)

for all i ≥ q. To verify that there is an equilibrium with these payoffs, note that

when δ > δq, we have yq−1 <
δyq

n−δ(q−1)
which in turn implies that yq−1 < wq−1(v) and hence

αq−1(v) = 0 by equation (2). Therefore, by Lemma 6, vi = 0 for all i < q. This, in turn, implies

that µi(v; r (v)) = q
n

and wi(v) = vi for all i ≥ q. Plugging in (5), we obtain vi = δyi
n−δ(q−1)

for
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all i ≥ q.

We next show that the SSP payoff vector for the most efficient equilibrium satisfies vi = 0

for all i < q and vi = δyi
n−δ(q−1)

for all i ≥ q. Given these SSP payoffs, denote the aggregate SSP

payoff by V , that is,

V =
δ
∑n

i=q yi

n− δ(q − 1)
.

Fix any other equilibrium payoff vector v′ and let κ = min{i : αi(v
′) = 1} denote the player

with the lowest index such that there is agreement with probability one when that player is

the proposer when the equilibrium payoff vector is v′. Note that by Lemma 9, αq(v
′) = 1, so

we must have κ ≤ q. If κ = q, then v′ = v, so assume κ < q. Let V ′ =
∑n

i=1 v
′
i denote the

aggregate SSP payoff when the equilibrium payoff vector is v′. To complete the proof, we show

that V > V ′.

By equations (1)-(5), suppressing the dependency of ακ−1 on v′, we have

V ′ = δ
1

n
[
n∑
i=κ

yi + ακ−1yκ−1 + ((1− ακ−1) + κ− 2)V ′]. (25)

Rearranging, we have

V ′ =
δ(
∑n

i=κ yi + ακ−1yκ−1)

n− δ(κ− ακ−1 − 1)
. (26)

Note that V > V ′ if and only if
δ
∑n

i=q yi

n− δ(q − 1)
>
δ(
∑n

i=κ yi + ακ−1yκ−1)

n− δ(κ− ακ−1 − 1)
. (27)

Canceling terms and rearranging, (27) holds whenever

δ >
n(
∑q−1

i=κ yi + ακ−1yκ−1)

(q − 1)(
∑q−1

i=κ yi + ακ−1yκ−1) + (q − κ+ ακ−1)
∑n

i=q yi
. (28)

Since right hand side is decreasing in ακ−1, and δ > δq ≥ δκ, the desired result follows.

Proof of Proposition 5: First note that by equations (13), (14), and (11), it is immediate that

Gy = G(v1(δ)). In the rest of the proof, we suppress δ and let vn and denote the equilibrium

payoffs for the unanimity rule game characterized in Proposition 2. Recall κ is the player with

the lowest index such that agreement occurs with positive probability under unanimity rule.

We first show that ∑n
i=1 iyi∑n
i=1 yi

<

∑n
i=κ iyi∑n
i=κ yi

if and only if κ > 1.

Clearly, the inequality is not satisfied if κ = 1. Thus, to establish the claim, it is sufficient to
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show ∑κ−1
i=1 iyi +

∑n
i=κ iyi∑κ−1

i=1 yi +
∑n

i=κ yi
<

∑n
i=κ iyi∑n
i=κ yi

if κ > 1.

This inequality holds if and only if
κ−1∑
i=1

iyi

n∑
i=κ

yi <
n∑
i=κ

iyi

κ−1∑
i=1

yi,

which is satisfied when κ > 1 because
∑κ−1

i=1 iyi < (κ − 1)
∑κ−1

i=1 yi and κ
∑n

i=κ yi <
∑n

i=κ iyi.

Since vni = 0 for all i < κ, we have

G(vn) =
2
∑n

i=1 iv
n
i

n
∑n

i=1 v
n
i

− n+ 1

n
=

2
∑n

i=κ iv
n
i

n
∑n

i=κ v
n
i

− n+ 1

n
.

Hence, the proof is complete if we show that∑n
i=κ iv

n
i∑n

i=κ v
n
i

≥
∑n

i=κ iyi∑n
i=κ yi

,

with equality if κ = 1. Letting Y =
∑n

i=κ yi, the left hand side is equal to∑n
i=κ i

(
yi − δY

(1−δ)n+δ(n−κ+1)

)
∑n

i=κ

(
yi − δY

(1−δ)n+δ(n−κ+1)

) =

∑n
i=κ iyi −

δ
(1−δ)n+δ(n−κ+1)

Y
∑n

i=κ i

Y − δ
(1−δ)n+δ(n−κ+1)

Y (n− κ+ 1)
.

The proof follows since (
∑n

i=κ iyi)(n − κ + 1) ≥ (
∑n

i=κ i)(
∑n

i=κ yi), with strict inequality if

yi 6= yj for some i, j = 1, ..., n.

Proof of Proposition 6: Fix q ≤ κ̃. Since yκ̃ = . . . = yn, in any equilibrium of any q-

quota game, players κ̃, . . . , n receive the same payoff by Lemma 8. That is, for any δ, we have

vqi (δ) = vqn(δ) for all i ≥ κ̃. Fix δ > δ̃. By Proposition 2, we have vni (δ) = 0 for all i < κ̃, and

therefore

G(vn(δ)) =
2
∑n

i=κ̃ iv
n
i (δ)∑n

i=κ̃ v
n
i (δ)

− n+ 1

n
=

2
∑n

i=κ̃ i

n− κ̃+ 1
− n+ 1

n
for any equilibrium payoff vector vq(δ) for the q-quota rule. Furthermore, as in the proof of

Proposition 5, ∑n
i=1 iv

q
i (δ)∑n

i=1 v
q
i (δ)

≤
∑n

i=κ̃ iv
q
i (δ)∑n

i=κ̃ v
q
i (δ)

with strict inequality if and only if κ̃ > 1. Thus G(vn(δ)) ≥ G(vq(δ)).

Proof of Proposition 7: From Proposition 4 and Corollary 1, we know that if δ > δ∗ and

yq−1 <
yq

n−q+1
for every q = 2, ..., n, then each q-quota game has the most efficient equilibrium
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of any q-quota game satisfies v∗qi = 0 for all i < q, and v∗qi = δyi
n−δ(q−1)

for i ≥ q. Thus,

G(v∗q(δ)) =
2
∑n

i=q iyi

n
∑n

i=q yi
− n+ 1

n
<

2
∑n

i=q+1 iyi

n
∑n

i=q+1 yi
− n+ 1

n
= G(v∗q+1(δ))

for any q = 1, . . . , n− 1.
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