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Lay Summary 

The gut microbiome plays a crucial role in maintaining human health, one which scientists have 

attempted to exploit through the development of genetically modified probiotics that produce and 

deliver therapeutics to the gut. In this review, we discuss the ways in which synthetic biology has 

been applied to improve the effectiveness and versatility of said probiotics, and the ways in which 

it might applied in the future. We envision engineered therapeutic microbes that will accurately 

diagnose and effectively respond to a variety of disease states. 

 

Abstract 

The gut microbiome plays a crucial role in maintaining human health. Functions performed by 

gastrointestinal microbes range from regulating metabolism to modulating immune and nervous 

system development. Scientists have attempted to exploit this importance through the development 

of engineered probiotics that are capable of producing and delivering small molecule therapeutics 

within the gut. However, existing synthetic probiotics are simplistic and fail to replicate the 

complexity and adaptability of native homeostatic mechanisms. In this review, we discuss the ways 

in which the tools and approaches of synthetic biology have been applied to improve the efficacy 

of therapeutic probiotics, and the ways in which they might be applied in the future. Simple 

devices, such as a bistable switches and integrase memory arrays, have been successfully 

implemented in the mammalian gut, and models for targeted delivery in this environment have 

also been developed. In the future, it will be necessary to introduce concepts such as logic-gating 

and biocontainment mechanisms into synthetic probiotics, as well as to expand the collection of 

relevant biosensors. Ideally, this will bring us closer to a reality in which engineered therapeutic 

microbes will be able to accurately diagnose and effectively respond to a variety of disease states.  



1 Introduction: synthetic biology and the gut microbiota 

Our gastrointestinal tracts are populated by a diverse ecosystem of commensal microbes 

commonly known as the gut microbiome or microbiota [1]. In total, the gut microbiome is thought 

to comprise up to 1014 organisms of over 2,000 distinct bacterial, viral, and eukaryotic species [2–

4]. The exact makeup of the gut microbiome is influenced by both environmental (age, diet, rearing 

environment, method of natal delivery) and genetic (gender, ethnicity, etc.) factors [5–8] – and, as 

a result, can be highly variable from individual to individual [1,2,9]. The microbiome also changes 

markedly over the course of an individual's life. It is affected profoundly by the health of its host, 

and, in turn, shapes its host profoundly, in areas ranging from metabolism to immune development 

to stress response [1,10–12]. The metabolic capacity of the microbiome – containing over three 

million genes – is thought to be greater than that of the liver [11]. Gastrointestinal bacteria direct 

carbohydrate metabolism and energy production, guide immune response, and influence memory 

[3,13]. Metabolites produced by the microbiome pass through the epithelial lining of the intestines 

and are taken into the bloodstream and transported throughout the body [11,13]. It is no surprise 

that gut dysbiosis has been linked to a bevy of disease states, from diabetes [14] to colitis [13,15] 

to mood disorders [16–18]: the microbiome has an immense effect on every part of human 

physiology (Fig. 1), in ways that are only now making themselves understood. Indeed, due to its 

large role in human health, some regard the microbiome as an additional “organ,” no less crucial 

to human health than the stomach or spleen [19,20]. 

 Because of its interplay with human health, the gut microbiome provides an attractive 

target for therapeutic applications of synthetic biology. There is a nascent and fast-growing 

industry dedicated to probiotics, or microbial species that have a beneficial effect on the body, and 

studies of these species in relation to diseases ranging from inflammatory bowel disease (IBD) 



[21] to eczema [22,23] to anxiety disorders [24] demonstrate that we can work deep changes on 

the human body by altering the composition of its gut microbiome. Commensal bacteria generate 

metabolites, such as short-chain fatty acids or quorum-sensing molecules, that can rewire human 

metabolism, immune response, and mood [13]. Prebiotics, a related field to probiotics, attempts to 

identify these relevant compounds and their specific effects. The combination of the two – that is, 

bacterial species synthetically engineered to produce prebiotic compounds – has been successful 

in treating obesity, diabetes, and colitis in animal models [25–27]. One particular strain of 

cytokine-producing Laccococtus lactis has even reached clinical trials [28]. Our challenge now is 

to expand on that principle.	To treat the complex, multifaceted diseases related to gut dysbiosis, 

we will need engineered systems that mimic the complexity and responsiveness of native microbial 

species. These synthetic microbes should be able to sense relevant changes in the 

microenvironment of the gut, such as signs of inflammation or the absence of important signaling 

molecules, and subsequently respond to correct those imbalances. Ideally, they should work in the 

way that homeostatic mechanisms in the human body work: not by attempting to overwhelm a 

pathway at a single point, but by targeting multiple points in the pathway, or multiple pathways 

simultaneously, to produce an integrated response. 

 Synthetic biology provides the principles, and is beginning to provide the tools, through 

which we might create the next generation of probiotics. Researchers have demonstrated that 

simple devices such as a nitric oxide-sensing switch [29] or an integrase-based memory array [30] 

can function in the environment of the gut microbiome. Engineered bacteria have also been 

developed for uses elsewhere in the human body, such as the eradication of infectious disease [31] 

and cancer diagnostics [32], and these can serve as a basis for similar systems within the gut.	As 

we move into the development of more complex therapeutic systems, we must also consider issues 



of safety and long-term stability – the risk of horizontal gene transfer, the potential utility of 

probiotics that colonize the gut in a lasting fashion versus the potential pitfalls of introducing a 

foreign organism that may be subsequently difficult to remove. This review will address these 

issues in addition to covering recent advances in the application of synthetic biology techniques to 

the gut microbiome. We will review the mechanisms by which the gut microbiome influences 

human health and the ways in which researchers have used engineered probiotics to exploit this 

connection, before moving on to a discussion of how the synthetic biology approach might be 

more broadly used in the design of improved therapeutics, and the challenges that may arise in the 

process. 

 

2 Background: the gut microbiome, pathways, and human health 

The microbiome has a metabolic potential that dwarfs that of the human body – the species 

contained in a typical gut are estimated to encode more than 3.3 million distinct genes, more than 

150 times the number found in humans alone [6,19,33]. Further, the necessity of interchange 

between the GI tract and bloodstream means that many millions of microbes interact intimately 

with their host, producing bacterial metabolites and modifying those produced by the host [13,34]. 

Around 10% of the human transcriptome is thought to be regulated by the microbiota [4], primarily 

through epigenetic means [10]. The vast majority of affected genes are related to functions such 

as energy production, metabolism, and fat storage [10,13,35–37]. Microbial species typically 

found in the gut up-regulate carbohydrate metabolism and basic cell-productivity functions such 

as translation and ribosome biogenesis, while down-regulating genes related to lipid production 

[38].  



The microbiome modifies a wide variety of both natural and man-made compounds  [39], 

but perhaps plays its most influential role in the fermentation of otherwise indigestible fibers and 

carbohydrates. By breaking these large compounds into monosaccharides, short-chain fatty acids 

(SCFAs), and other digestible compounds, they provide an additional source of metabolic energy 

[13,34,40]. In practice, this means that the microbiomes of obese individuals process and store 

energy more efficiently than those of lean individuals [41,42] –  in fact, transplantation of an 

obese mouse’s microbiome into a lean subject has been sufficient to induce symptoms of obesity 

[43]. Gnotobiotic animals (those lacking a microbiome) are leaner than their conventionally 

raised counterparts, despite having a variety of other developmental deficiencies [36]. From this 

we can conclude that diet influences human health in large part through altering the composition 

of the microbiome. We know that changes in diet and sanitation associated with a modern 

Westernized lifestyle have led to a marked decrease in microbiome diversity, a change that is 

thought to be linked to "Western diseases" such as obesity, diabetes, and allergies[11] [44,45].  

 

2.1 Immune homeostasis and development 

 One point in favor of the above is that “Western diseases” typically have an autoimmune 

component – for example, obesity can be thought of as “continuous low-grade inflammation [34]” 

– and commensal microbes are intimately involved in immune development and response. The gut 

is very large in terms of surface area – if stretched out, it would have approximately the area of a 

tennis court [1] – and collectively forms the largest area of direct contact between the body and 

potential foreign invaders [34]. Because nutrients must be taken up through the epithelial lining, 

the surface of the gut must remain somewhat porous – but at the same time, it must also form 



enough of a barrier to keep out pathogens. As a result, the gastrointestinal tract itself is commonly 

thought of as an extension of the immune system [46].   

 In other words, that commensal microbes shape the environmental conditions of the gut 

means they also powerfully shape immune response and development [1,2,11]. In fact, the mere 

presence of commensal species can help protect against disease [13]. Competition for resources 

itself helps drive out pathogens, and many common gut flora species – Lactobacillus and 

Bifidobacterium varieties in particular – produce antimicrobial peptides that can stave off infection 

[1,3]. Commensals also modulate the immune system itself: shoring up epithelial barriers [47], 

assisting with wound healing [48], recruiting neutrophils and leukocytes [13], and protecting 

against inflammation. The DNA of commensal bacteria is known to promote immune homeostasis 

in the gut [13]. In some studies, commensal DNA helps the host respond to potential pathogens – 

or even stave off cancer [48,49] – by regulating the levels of different types of T-cells [50]. Other 

commensal DNA motifs have been shown to have a suppressive effect, reducing inflammation 

[51]. This reflects the complicated and contradictory role of the mucosal immune system, which 

must defend against invaders while also tolerating the wealth of symbiotic species living there.  

 In this balancing act, the immune system is aided by members of the gut microbiota, which 

have a long history of coevolution [7,11] leading to a complex web of interdependence with their 

host. Metabolites produced by commensal microbes, such as the short-chain fatty acids discussed 

above, are taken up by the body at high rates [13] and regulate many aspects of homeostasis. 

Butyrate, for example, suppresses NF-κB signaling through down-regulation of TNF-α [52] and 

induces mucin synthesis [53], and SCFAs in general are known to interact with neutrophils via the 

FFAR2 receptor [54]. In addition, commensal species, specifically Bifidobacterium infantis and 

Clostridium species [55], are known to induce the secretion of anti-inflammatory cytokines such 



as IL-10. These compounds help trigger the formation of the regulatory T-cells (Treg cells) that 

modulate and prevent inappropriate immune response. In B. infantis-fed mice, those pathways lead 

to the elevation of CD4+ T-cell levels [56].  The recruitment of immune cells to the gut by Treg 

cells also helps maintain the mucosal barrier [13]. 

 With this degree of interdependence, it is no surprise that the gut microbiome is hugely 

intertwined with, not just immune homeostasis, but immune development [34]. Gnotobiotic mice, 

which have no microbiota, display striking defects in this department – sharply decreased levels 

of IgA-producing plasma cells and CD4+ T-cells in the lamina propria (the layer of connective 

tissue beneath the epithelium) [57], a thinner and abnormally composed mucus layer, and impaired 

expression of defensins [19]. These abnormalities are widespread and affect the overall structure 

of the gastrointestinal tract: gut-associated lymphoid tissues (Peyer’s patches, mesenteric lymph 

nodes) were smaller and comprised fewer cells in gnotobiotic mice compared to mice with an 

intact microbiota. Even parts of the gut that are not strictly immune-related, such as the shape of 

microvilli and the size of the cecum [3,15], are affected [13,19]. Accordingly, germ-free mice are 

more susceptible to bacterial infection [11] and may suffer more severe symptoms of certain 

diseases [58]. On the other end of things, autoimmune diseases of the gut such as IBD can be 

thought of as essentially “unrestrained immune-cell activation and pro-inflammatory cytokine 

production” [11]. These symptoms are widely believed to be triggered by dysbiosis of the gut 

microbiome.  Multiple studies have linked imbalance in levels of Bacteroides to IBD [59], and 

antibiotics have an palliative effect on animal models [60] of the disease. Certain types of colitis 

can even be communicated through cross-fostering with affected animals [61]. That some of these 

defects can be partially ameliorated by transplantation of a conventional microbiota [62] confirms 

that the influence of these “foreign bodies” can be immense.  



 

2.2 – Nervous system response and development 

The gut microbiome is known to have a profound effect on various aspects of the nervous system, 

including mood, stress, and aging [1,3,12,24,63–65]. We are still uncovering the extent of the 

interdependence behind what is known as the “gut-brain axis” – but it is apparent that the two 

systems have a powerful reciprocal effect on one another [66]. For example, physical and 

psychological stress can disturb the lining of the gut, causing gastrointestinal distress [3], an 

underlying factor behind many cases of IBD and other gastrointestinal disorders. Similarly, 

neurological conditions such as autism and mood disorders are associated with irregular digestive 

function [12]. The vagus nerve is widely thought to be involved in this interplay, since the effects 

of probiotics on emotional behavior (studied via ingestion of a Lactobacillus strain in mice) are 

attenuated when it is removed [67]. Through this channel, and perhaps others, signaling molecules 

from the gut and gut microbiome can be transmitted to the neuroendocrine system. Indeed, many 

commensal bacterial species produce neurotransmitters (serotonin, dopamine, acetylcholine, 

among others) and neurotransmitter precursors [12], as well as other regulatory molecules. One 

notable example are short-chain fatty acids, which in addition to their immunomodulatory effects, 

can mediate microglial homeostasis [13]. 

 Perhaps because of this production of regulatory molecules, the microbiome has a great 

effect on the early development of the nervous system, particularly the serotonergic (involving 

serotonin) system. Germ-free mice exhibit shorter, stubbier, less branched neurons in the 

hippocampus, as well as lower levels of BDNF (short for brain-derived neurotropic factor), which 

promotes neuron growth and development, in the cortex and amygdala [3,12]. The hippocampus 

and amygdala, which mediate social behavior, learning, memory, stress, and mood – and are 



associated with disorders from autism to anxiety disorders – are both larger in volume, and studies 

also point to differential regulation of serotonin receptors. A 2015 study by Erny et al. also points 

to down-regulation of immune-related genes in the brain in germ-free mice, leading, among other 

things, to the formation of immature microglia [64]. Whether due to these specific defects or as-

yet undiscovered ones, gnotobiotic mice display decreased sociability and an increase in 

stereotyped/repetitive behaviors – an effect that, like many phenotypic differences in germ-free 

mice, can be partially ameliorated by colonization with conventional microbiota [12]. Finally, the 

state of immunosenescence that accompanies aging, which can cause a "chronic low-grade 

inflammatory status in the gut" [68], is also linked to widespread differences in the composition 

and diversity of the microbiome. These differences, in turn, are likely to influence the progression 

of healthy aging and the development of neurodegenerative diseases such as Alzheimer's. Blood-

brain-barrier integrity, a key component of age-related disease, is at least partially dependent on 

microbiome composition [69], and researchers have linked the severity of Parkinson’s symptoms 

to changes in levels of Prevotellaceae and Entereobacteriacae in the gut [12]. Studies have even 

shown that probiotic treatment can slow the age-related attenuation of long-term potentiation [70].  

 

3 Synthetic probiotic species – engineered for delivery of therapeutic compounds 

Since the gut microbiome is important to so many aspects of human health and dysbiosis 

of the microbiome is closely linked to disease states, it becomes natural for us to attempt to treat 

these disease states by rebalancing the microbiome through the administration of beneficial 

microbial species – in other words, through probiotics. Probiotics have shown some success in 

treating a wide variety of disorders, including virus-induced diarrhea [71], colitis [72], eczema and 

dermatitis [73], anxiety disorders [18,24], and depression [74]. However, in human clinical trials, 



results are mixed – the only disease where probiotic treatment consistently shows positive results 

is C. difficile infection [75] – perhaps because we do not fully understand the physiology of the 

species we use. Probiotic species are complicated organisms, performing myriad functions, 

producing complex and sometimes contradictory signals. To create targeted systems that treat 

specific ailments with precision, we must fine-tune our control of probiotics through 

bioengineering. 

 

3.1 – A survey of engineered probiotic therapies 

 Thus far, probiotic species engineered to produce therapeutic biomolecules have been used 

to help fight off infection, reduce inflammation, and treat diet-induced obesity [76]. In a 2011 

study by Lagenaur et al., a Lactobacillus jensenii strain modified to express the antiviral protein 

cyanovirin N successfully decreased simian HIV (SHIV) transmission in macaques by 63% [77]. 

In the gut itself, researchers have successfully disrupted the virulence patterns of pathogenic 

species Vibro cholerae, which produces its toxins only at low concentrations, using an altered 

version of the probiotic E. coli strain Nissle (EcN)[78]. Other approaches, rather than targeting 

pathogens directly, have attempted to take advantage of the human body's natural protective 

mechanisms and pathways. N-acylethanolamides (NAEs) are a family of anorexigenic lipids 

synthesized by the small intestine in response to feeding. Administration of bacteria producing 

NAE precursors (NAPEs) to a polygenic mouse model of obesity successfully inhibited weight 

gain, as mice fed NAPE-producing E. coli exhibit a decreased food intake and increased metabolic 

rate [27]. Elsewhere, commensal species expressing anti-inflammatory compounds such as IL-10 

[25], TGF-β1 [79], KGF-2 [80,81], serine protease inhibitors [82] and elafin [83] have been used 

to treat mouse models of induced colitis (Table 1), and trefoil factor-1 secreting L. lactis can 



ameliorate the inflammatory effects of chemotherapy and radiation therapy, although studies in 

this case focused on oral mucositis [84]. As a treatment for IBD, IL-10 L. lactis has even reached 

phase I clinical trials [28]. There are also indications that engineered probiotics may be able to 

change cells in a profound and potentially even lasting manner. Another study by Duan et al. 

attempted to treat a rat model of diabetes through inoculation of an E. coli/Nissle strain expressing 

GLP-1 [85], a peptide that stimulates production of insulin in intestinal cells in a glucose-

dependent manner [86]. This strain successfully managed to “reprogram” a proportion of cells into 

insulin-producing cells. The cells displayed characteristic markers [79] involved in insulin 

production and signaling, and the kinetics of insulin secretion in the reprogrammed cells were 

similar to those in normal (non-diabetic) β cells [85].  

Notably, previous studies involving intraperitoneal injection of GLP-1 had encountered 

difficulties due to the short half-life of the active peptide [87]. The use of commensal bacteria as 

a delivery mechanism was more effective in this regard, demonstrating the potential usefulness of 

probiotics in applying therapeutics that are difficult to administer by more traditional means [85]. 

Similarly, tests of IL-10 producing L. lactis in mouse models demonstrate that they are as effective 

as traditional antibody treatments in ameliorating chemically-induced and genetic (spontaneous, 

caused by IL-10 -/- phenotype) colitis, at much lower doses than would be necessary using 

intraperitoneal injection [25]. Subsequent studies by other labs use a cocktail of IL-10- and 

antioxidant-producing probiotics to prevent colorectal cancer [88], or pair IL-10-secreting bacteria 

with more traditional antibody therapies to reverse diabetic symptoms [89,90], finding that 

combination therapies  were more effective than any type of individual treatment alone [88,89]. 

Genetically engineered probiotics might therefore be made even more potent if they are made to 



express multiple therapeutic compounds with different effects, reprogramming cells by targeting 

multiple beneficial pathways or overwhelming one. 

 

3.2 – The future of biomolecular therapies 

 At the moment, probiotic drug delivery is limited to compounds that can be readily 

synthesized or altered by commensal bacteria species – mostly proteinaceous compounds natively 

produced by living organisms rather than synthetic drugs [91]. At the same time, however, some 

studies point to a path through which we might contemplate the integration of this therapeutic 

approach with other technologies. Work by Xiang et al. establishes a system by which shRNA 

targeting mammalian genes can be delivered through commensal bacteria. The bacterial chassis 

used expresses invasin, a protein that allows bacteria to enter mammalian cells, and HlyA, which 

enables genetic material to pass through vesicles. Using this system, they successfully managed to 

induce targeted silencing of CTNNB1, a cancer gene, in the intestinal epithelium. This technique 

can potentially be modified to deliver any number of sequences, enabling combination of siRNA 

and other non-coding RNA-based technologies with a probiotic delivery system [92]. Elsewhere, 

Vandenbroucke et al. utilize engineered versions of antibodies known as Nanobodies, which can 

be produced in vivo by bacteria and yeast and have a number of structural advantages over 

traditional antibodies [93]. Bivalent versions of these Nanobodies targeting TNF-α (thought to 

contribute to IBD symptoms) secreted by L. lactis were highly effective in treating both 

chemically-induced colitis and a genetically induced version (mice lacking IL-10 expression will 

spontaneously develop enterocolitis) [94]. One important direction for the future will be to 

continue to expand the biosynthesis capacities of common probiotic species, to improve the 

versatility of therapies using these species as a drug delivery mechanism. To make full use of 



probiotics, we will need to move from the production of strictly ribosomally synthesized 

compounds to peptides that are post-translationally modified, and from there to non-ribosomal 

compounds, such as, for example, most common antibiotics [91]. 

 

4 Devices and pathways – new frontiers in engineered probiotics 

The limitations of a system that constitutively produces a single therapeutic compound, as 

most of the previously discussed studies focus on, are obvious. The gut microbiome is hugely 

individualized, even between members of the same family, certainly across ethnic and cultural 

lines [6], and also changes significantly throughout a person's life [68]. Not only that, conditions 

in the microenvironment of the gut are in constant flux, and homeostasis is a fine balance – an 

anti-inflammatory cytokine that is helpful in treating IBD under one set of conditions may simply 

make the body more susceptible to infection under another. There is therefore a powerful need for 

engineered probiotics that can sense, and subsequently respond to, environmental stimuli, 

changing behavior based on individualized conditions. Fortunately, these tools are already 

beginning to be developed by synthetic biologists. Over the past decade, scientists have used 

natural biological mechanisms as well as electrical circuits as a model for the construction of 

increasingly complex gene networks: switches, oscillators, counters, and cell-cell communication 

modules, among others [95]. A few of these devices have even been applied to the gut microbiome: 

a 2014 study by Kotula et al., for example, successfully implements an aTc-driven bistable switch 

(Fig. 2A) in E. coli that colonize the guts of mice. Oral feeding of the inducer to host mice switched 

the bacteria to a lacZ-expressing state, a state which was remembered by the cells even after 

removal of stimulus, across generations and over the course of days [96]. Similarly, work by 

Archer et al. demonstrates the viability of a bistable switch (Fig. 2C) in detecting nitric oxide, a 



crucial marker of inflammation, in a mouse explant model [29]. Both switch systems are 

irreversible – the nitric oxide switch is recombinase-based – but have potential application as a 

non-invasive diagnostic that can be detected in fecal matter in addition to the proof of principle 

they provide.  

 Adding an extra step of complexity is 2015 work by Mimee et al., which introduces tools 

such as sugar-inducible promoters and an integrase-based memory array into a common gut 

commensal species, Bacteroides thetaiotaomicron. The results show successful induction of three 

different sugar-dependent constructs via oral feeding: a simple arabinogalactan-inducible reporter 

construct, an IPTG-dependent implementation of CRISPR-based interference (CRISPRi), and the 

aforementioned memory array, triggered by administration of rhamnose [30]. Crucially, that all 

three are sugar- or sugar-mimic-based means that they can potentially be geared to respond to 

ambient environmental conditions in the gut, not just specific (fed) triggers. Indeed, studies have 

demonstrated the relevance of lactose and rhamnose in regulating metabolism [97–100]. 

Moreover, these tools provide the capability for genetic memory and for responsiveness: the 

inducible luciferase reporter can respond to changing conditions in real-time while the memory 

array (Fig. 2B) serves as a ‘permanent’ record of gene induction/environmental conditions at 

points in the past. One can envision the two being combined into a microbial system that can both 

respond in the near-term to an environmental danger signal with production of a therapeutic, and 

also record the presence of the signal to aid in later diagnosis.  

 Of course, the systems discussed above are only tools that, to be useful, need to be 

combined into an engineered system with a defined function. The next challenge for synthetic 

biologists will be to apply these tools in the rational design of systems that address problems of 

gastrointestinal health. Few models for these systems exist, as modulation of the gut microbiome 



is somewhat understudied as a therapeutic technique. Most existing synthetic biology-based 

therapeutic systems use mammalian cell vectors [101–103]; however, a few bacterial systems have 

been developed to target pathogens in the gastrointestinal tract and elsewhere, most notably a toxin 

delivery system designed to combat Pseudomonas aeruginosa, an opportunistic pathogen that 

infects the gastrointestinal tract and is resistant to traditional antimicrobials. Saiedi et al. reasoned 

that bacteriocins might be more effective because, as of yet, there is no evidence that resistance to 

these ribosomally synthesized peptides can be conferred through horizontal gene transfer [104], 

and identified pyocin S5, a bacteriocin that displays strong bactericidal activity against  P. 

aeruginosa but not against E. coli. Researchers then utilized the natural quorum-sensing 

mechanisms of P. aeruginosa to detect the pathogen, coupling these to production of a lysis protein 

E7, here chosen for its size and modularity. The result was an elegant system that, in co-culture, 

successfully reduced P. aeruginosa biofilm formation by close to 90%. One additional useful point 

is that, while the death of the E. coli chassis is a necessary consequence of this mechanism of 

delivery, it also fits the needs of this system. Since the modified E. coli species is a treatment for 

an opportunistic infection –  in other words, an acute event – there is little utility in having the 

bacteria persist in the gut environment long-term. (The issue of long-term colonization of the gut 

by engineered probiotics – both the potential necessity and the potential pitfalls – is something we 

will discuss further below.) This system has been successfully tested in a C. elegans and murine 

gut model [105], and this model of targeted delivery, modified thoughtfully according to the 

function of the molecule being delivered, could be useful in a wide variety of therapeutic 

applications. [31] 

 

 



5 Building a system – the biological chassis and biocontainment 

We cannot conclude this review without addressing the issue of which bacterial species form the 

most appropriate chassis for synthetic probiotic systems, and the complicated trade-offs between 

persistence and safety that this brings to our attention. Existing systems commonly use either L. 

lactis (or other Lactobacillus species) or E. coli to house their biological machinery, since these 

species are in common use because of their industrial and laboratory roles. These species, however, 

are not common inhabitants of the gut – many commonly used Lactobacillus species are not native 

to the human microbiome at all – and therefore tend to be ‘flushed out’ by better-adapted microbes 

within a matter of days. Multiple studies have demonstrated that antibiotic treatment is necessary 

for these strains to colonize the gut in a long-term fashion, which introduces a confounding factor 

into any such treatment of gut dysbiosis.  

 Some researchers are beginning to experiment with species that dominate/comprise a larger 

portion of the native gut microbiome, the most common being B. thetaiotaomicron – unfortunately, 

however, the sets of parts and devices available in these alternative systems are considerably 

smaller than those of the traditional probiotic species, which have been in common laboratory use 

for decades. Moving forward, we may also wish to experiment with genetic engineering techniques 

to improve the stability of synthetic microbes colonizing the gut. Gibson et al. [106] detail a 

process that can be used to screen for bacterial genes that enable stable colonization; however, 

these genes may have unexpected effects on the balance of the gut microbiome. Not only that, 

stability itself may be thought of as a double-edged sword: there are many risks associated with 

having one particular species dominate the gut microbiome, particularly one which has been 

heavily altered for a specific purpose. In practice, this means that a potential synthetic probiotic is 

unlikely to be approved for clinical use without some kind of failsafe mechanism that can be 



triggered to initiate lysis or destruction of the engineered bacteria, should that become necessary. 

Steidler et al., for example, removed a crucial thymidylate synthase gene from the genome of their 

IL-10 producing L. lactis strain, rendering growth of the species dependent on outside 

administration of thymidine [107]. A similar approach is seen in the "Deadman" and "Passcode" 

kill switches designed by Chan et al. [108], in which continuous input of one or more molecular 

ligands is required to maintain repression of a toxin. The risk is that noise or leaky expression may 

prematurely activate the self-destruction sequence, an issue that may be ameliorated by increasing 

the specificity of the destruction circuit, as the use of AND-gating accomplishes in the "Passcode" 

switch [108]. More mechanisms of this sort could be built on the same principles, utilizing different 

ligands to enable the orthogonal deactivation of multiple probiotic systems. 

 

6 Future directions: next steps and challenges 

A component of the synthetic biology approach is the adoption of a ground-up, parts-based 

engineering approach to solving biological problems. In this case, we might find clarity in 

modeling our (desired) biological behavior as a mechanical process or set of decision states. What 

does an ideal synthetic probiotic (i.e. a bacterial species that detects and treats disease from inside 

the gut) look like? What behaviors and capabilities would it exhibit? We propose that such a system 

(Fig. 3) might have some or all of the following properties: 

1) colonize the gut stably for the duration of treatment; 

2) assign (diagnose) a particular disease state based on a series of inputs (presence or absence 

of symptoms); 

3) based on that assigned disease state, initiates a program of outputs (production of 

therapeutic genes, alteration of signaling molecules etc.); 



4) is able to adjust output in response to changes in the environment (diet, stress, cessation of 

symptoms due to treatment) 

5) may have its output adjusted from by the doctor/patient in a non-invasive manner (for 

example, by feeding a specific compound or drug to the patient); and 

6) when the host reaches a stable, healthy state, can be easily removed from the environment 

(self-destruction program). 

Obviously, significant work must still be done to achieve these goals. The bacterial systems that 

have been engineered so far for this purpose comprise a very limited set of simple if-A-then-B 

systems, if that. (The majority of engineered probiotics reviewed above are unable to respond to 

environmental cues at all.) The set of biosensors (input detectors) that have been verified in vivo 

is limited; the set of possible products (outputs) is larger but is still bounded by the current 

capabilities of metabolic engineering. We must continue to expand our capabilities by developing 

sensors of biologically relevant compounds, improving biosynthesis techniques, and continuing to 

integrate other technologies into the probiotic model, as has been done with CRISPRi [30] and 

siRNA [92]. We must also improve mechanisms of delivery and secretion, particularly if we want 

to use this method to treat distant parts of the body. Lastly, metabolic engineering issues such as 

metabolic load and yield are equally relevant here –  insufficient yield in particular may be the 

reason IL-10 secreting systems have not progressed beyond phase I clinical trials [109]. 

 More than that, however, in order for therapeutic probiotics to be versatile, responsive, and 

effective, they need to be able to evaluate complex states. In practice, the diagnosis of polygenic, 

systemic diseases such as diabetes, IBS, and so forth is not based on the presence or absence of a 

single compound, but on the accumulation of a set of phenotypic symptoms, which may in turn be 

represented by many different processes on the molecular level. It is in the recognition of complex 



states that synthetic biology can be most relevant to the development of probiotics, as capturing 

complexity using biological systems is one of the major preoccupations of the field. The 

development of AND, OR and NOR gate systems [108,110–113] will enable synthetic organisms 

to initiate biological programming based on divergent combinations of inputs, as opposed to one 

singular one. Similarly, attempts to precisely capture analog logic in bioengineered systems will 

allow us to respond to the extent (severity) and duration (persistence) of symptoms. It will be 

necessary to move systems such as the chimeric logic gate system described in Shis et al. [111] 

and the comparators developed by Rubens et al. [114] into an appropriate probiotic chassis and 

adapt and tune them so that they respond to physiologically relevant changes in the environment. 

 Similarly, native biological responses to stressors and pathogens are complex and graded, 

and response states initiated by these synthetic systems must recapitulate that complexity and 

nuance if they are to be effective. Moving forward, it will be necessary to continue developing 

systems that are multifaceted in their response to stimuli. Fortunately, this can be accomplished 

more easily with existing tools such as fusion proteins, common promoters, etc., in combination 

with the development of a wider library of potential therapeutic biomolecules. The use of synthetic 

biology devices such as oscillators and counters will also enable us to produce more complex 

patterns of response, and achieve the spatial and temporal variance of expression that characterizes 

living organisms. Lastly, many effective therapies involve multiple discrete stages; combination 

therapy which follows traditional antibody therapy with the administration of immunomodulatory 

probiotics is significantly more effective in treating type 1 diabetes than either approach alone 

[89]. Ideally, we would want to recapitulate this in a self-contained probiotic system by including 

programming for multiple states between sickness and health.  
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Table 1. A survey of existing studies in which molecular therapeutics are delivered by 
engineered probiotic species, and their functions in each case. 

Molecular 
therapeutic 

Producing strain Purpose 

AI-2 [78] Escherichia coli strain 
Nissle 1917 (EcN) 

Circumvention of Vibrio cholerae 
quorum-sensing mechanisms 

Pyocin S5 [31] E. coli (EcN) Toxin targeting Pseudomonas 
aeruginosa 

IL-10 
[25,88,115,116] 

Lactococcus lactis Anti-inflammatory cytokine 

TNF-a antibodies 
[94] 

L. lactis Antagonism of pro-inflammatory 
cytokines 

TGF-B1 [82] L. lactis, Bacteroides ovatus Anti-inflammatory cytokine 
KGF-2 [80] B. ovatus Growth factor involved in intestinal 

homeostasis and repair 
SPLI [82] L. lactis Serine protease inhibitor 
elafin [82,83] L. lactis, L. casei Serine protease inhibitor 
Anti-CTNNB1 
miRNA [92] 

E. coli Oncogene silencing 

  



Figure 1. Overview of the ways in which the gut microbiome influences the human body. The 
microbiota is known to have a profound effect on the gastrointestinal, immune, and 
neuroendocrine systems. 

Figure 2. Synthetic biology "devices" applied in the (simulated or otherwise) environment of the 
mammalian gut, and expected behavior of reporter genes when tested (blue shading signifies 
addition of inducer). C) was conducted in mouse GI tract explants, while A) and B) were 
successfully tested in a living mouse model. A) An aTC-triggered variation on the lambda cI/cro 
bistable switch, in which one of two stable states is maintained over time unless the other state is 
deliberately triggered. B) A serine integrase-based memory array, consisting of multiple 
recognition sites which are successively inverted when integrase expression is induced through 
the presence of rhamnose. C) A nitric oxide-sensing recombinase-based switch which inverts a 
promoter when activated, switching from production of YFP to CFP.  

Figure 3. Comparison of existing therapeutic probiotics with proposed future model. a) Existing 
therapeutic probiotics are either constitutive or respond to a single-molecule input to produce a 
single-molecule therapeutic. b) Ideally, in the future, we would like engineered probiotics to 1) 
integrate a variety of different types of information 2) diagnose a disease state based on that 
information 3) output a therapeutic program of multiple genes if the body is in a disease state. 
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