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Abstract  1	

The discharges from industrial processes constitute the main source of copper 2	

contamination in aqueous ecosystems. In this study we investigated the capacity of 3	

different types of biochar (derived from chicken manure, eucalyptus, corncob, olive mill 4	

and pine sawdust) to remove copper from aqueous solution in a continuous-flow 5	

system. The flow rate of the system strongly influenced the amount of copper retained. 6	

The adsorption to the corncob biochar varied from 5.51 to 3.48 mg Cu g-1 as the flux 7	

decreased from 13 to 2.5 mL min-1. The physicochemical characteristics of biochar 8	

determine the copper retention capacity and the underlying immobilization mechanisms. 9	

Biochars with high inorganic contents retain the largest amounts of copper and may be 10	

suitable for using in water treatment systems to remove heavy metals. The copper 11	

retention capacity of the biochars ranged between ~1.3 and 26 mg g-1 and varied in the 12	

following order:  chicken manure > olive mill >> corncob > eucalyptus > sawdust pine. 13	

 14	
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1. Introduction 1	

Increased industrialization during the last century has had a substantial impact on the 2	

environment due to the accumulation of heavy metals in soils and sediments. These 3	

heavy metals are persistent, non-biodegradable and show high toxicity, affecting flora 4	

and fauna of the ecosystems. Copper is one of the most widely used metals as it is 5	

required in many industrial processes (metallurgy, power generation and transmission, 6	

electronic manufacturing, mining and agriculture). The waste produced during these 7	

processes constitutes the main source of copper and other metals in soils and water.1 8	

The harmful effects of such contaminants have driven the development of remediation 9	

methods based on chemical precipitation, adsorption/co-precipitation on metal oxides, 10	

ionic exchange and filtration. However, some treatments require expensive reagents 11	

and/or equipment and may also generate huge amounts of waste.2  12	

The increasing use of inexpensive materials to remove pollutants from the environment 13	

has prompted an interest in carrying out adsorption studies. The main goal of these 14	

adsorption studies is to test different types of material with a view to extrapolating the 15	

results to larger scale application. Among the different types of biomass tested for their 16	

capacity to scavenge heavy metals, algae and fungi have gained attention because of 17	

their elevated retention capacities as well as their wide availability and affordability.3,4 18	

The use of biochar (BC) as an adsorbent material also represents an inexpensive option 19	

for the efficient removal of contaminants from waste water. Biochar is a low-density 20	

carbonized material obtained by the combustion of biomass under conditions of low 21	

oxygen atmosphere and low temperature.5 Various types of plant and animal-derived 22	

waste have been used to produce BCs in recent years.6,7 Different studies have 23	

demonstrated the ability of BCs to remove Pb, Cu, Zn, Ni and Cr from aqueous 24	

solutions.8-10 Biochar is considered suitable for restoring heavily contaminated 25	
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environments, such as areas affected by acid mine drainage, because of its high capacity 1	

to retain metals.11 The high retention capacity is due to the affinity of BC for metal 2	

species and to changes in the chemical and physical properties of soil in relation to pH, 3	

electric conductivity and cationic exchange capacity. The retention capacity of BC can 4	

be due to (i) electrostatic interactions, (ii) ionic exchange, and (iii) sorption by p 5	

electrons delocalized from carbon.12 Alternative immobilization mechanisms may 6	

involve precipitation and complexation.6,9 Most studies that assess the ability of 7	

adsorbent materials to retain contaminants are based on batch experiments. However, 8	

the performance of these bioadsorbents should also be assessed in continuous systems 9	

to provide a more accurate picture of how they act in real situations, e.g. for 10	

decontaminating water.13,14  11	

 Continuous-flow experiments carried out using adsorption columns have provided 12	

useful information in addition to that obtained in batch adsorption experiments.15,16 13	

Ramírez-Pérez et al.17 performed column experiments to assess the ability of mussel 14	

shell amendments to retain heavy metals from a mine soil. These authors concluded that 15	

the addition of this waste material to the soil increased the retention capacity and the pH 16	

of the soil and decreased the potential desorption of heavy metals. The effects of the 17	

physical and chemical properties of the column influent must be established in addition 18	

to the optimal operational parameters in order to increase the efficiency of the adsorbent 19	

materials. For example, an increase in the ionic concentration and pH of the influent 20	

solution led to the removal of more copper from solution when activated carbon was 21	

used in fixed-bed columns.18 Fixed-bed column experiments with an alkali-modified 22	

biochar derived from hickory wood showed good immobilization of heavy metals (Pb, 23	

Cd, Cu, Zn, Ni) from aqueous solution, and regeneration of the column was possible 24	

after washing with acid solution.19  25	
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The main of the present study was to assess the performance of different types of BC to 1	

remove copper from an aqueous solution in continuous-flow adsorption columns. For 2	

this purpose, BCs were produced by pyrolysis of different types of feedstock material at 3	

low temperature. The specific objectives of the study were (i) to determine the influence 4	

of the flow rate on the efficiency of the biochar to remove copper in a continuous flow 5	

system, (ii) to determine and compare the capacity of the different types of biochar to 6	

retain copper from aqueous solution, and (iii) to determine the relationships between the 7	

characteristics of the different types of BC and their copper retention capacity. 8	

2. Materials and Methods 9	

2.1. Preparation and characterization of the biochar samples 10	

Biochars were produced from different types of waste material: chicken manure 11	

(CMBC), eucalyptus (EBC), corncob (CCBC), olive mill waste (OBC) and pine 12	

sawdust (SBC). The details of the pyrolysis process for CMBC, EBC, CCBC and OBC, 13	

as well as the physical treatments applied to the different BCs are described in a 14	

previously published paper.9 Briefly, the BCs were produced by slow pyrolysis at 300ºC 15	

for 4 h under oxygen−limited conditions.  16	

Total C, H, N and S contents were determined in an element analyzer (TruSpec CHN-17	

1000, LecoSC-144DR). The ash content was determined by combustion of samples at 18	

1000 ºC for 6 h in muffle furnace (C.H.E. S.A. HT BT S7 RP 1200 ⁰C). The O content 19	

was determined as follows: O (%) = 100 − (C% +  H% +  N% +  S% +  Ash%). The 20	

surface area (SBET) was determined by N2 adsorption with a Micromeritics Gemini 2360 21	

V2.01 instrument. The physicochemical characteristics of the different types of BC are 22	

summarized in Table 1. 23	
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2.2. Fixed−bed column experiments 1	

The continuous flow adsorption experiments were conducted in a glass column, of 15 2	

mm internal diameter and 40 cm length, filled with 5 g of BC. The BC samples were 3	

packed in the columns as follows (Figure 1). First, a layer of glass wool was packed in 4	

the bottom of the column, to support the fixed bed. A 5 cm layer of acid−cleaned quartz 5	

sand (0.5–0.6 mm average particle size) was then placed on top of the glass wool. The 6	

central part of the column was packed with the BC samples (1-2 mm average particle 7	

size) to form a layer of thickness 9 cm. The BC particle size was selected to avoid 8	

clogging problems and high-pressures inside the column systems, which particles <0.5-9	

1 cm may cause.20 Finally, a layer (10 cm thick) of acid-cleaned quartz sand was packed 10	

in the top of the column to prevent loss of biomass and to ensure that all of the material 11	

was tightly packed. The column was washed with double distilled water for 0.5 h, and a 12	

copper solution (5 mg·L-1) (prepared from a Cu(NO3)2⋅3H2O salt, Merck) was then fed 13	

through the column at different flow rates  by a peristaltic pump (Masterflex) connected 14	

to the bottom end of the column and operating in up-flow mode. The pH of the copper 15	

influent solution was adjusted to 5.0 ± 0.1 in all experiments by addition of small 16	

aliquots of 0.1 M NaOH or HNO3 solutions. 17	

Several experiments were conducted at different flow rates (2.5, 5.0, 7.0 and 13.0 mL 18	

min-1), with CCBC as the sorbent material, to evaluate the effect of the flow rate on the 19	

removal of copper from aqueous solution. Subsequent continuous-flow experiments 20	

were then carried out at a constant flow rate of 7.0 mL min-1, to compare the capacity of 21	

the different types of BC to remove copper from the solution. Aliquots of the effluent 22	

were collected periodically with an autosampler, and the concentration of copper was 23	

determined by atomic absorption spectroscopy (AAS, Perkin Elmer 1100B). For 24	
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selected experiments, the concentration of free copper in the effluent was determined by 1	

ion selective electrode (ISE) potentiometry with an ELIT 8227 crystal membrane 2	

electrode. Finally, the pH of the samples collected was measured with Radiometer 3	

GK2401C pH electrode (Ag/AgCl reference). All experiments were performed in 4	

duplicate, at room temperature. Average values and the corresponding standard 5	

deviations were calculated for the exact replicates. 6	

2.3. Analysis of column data  7	

2.3.1. Mathematical analysis 8	

Copper retention in BC columns was assessed by examination of breakthrough curves, 9	

which show the shape of the concentration profile, expressed as the ratio between the 10	

concentration of copper in the effluent and in the influent (C/C0) over time. Numerical 11	

integration of the breakthrough curves provides several useful parameters, including the 12	

total amount of copper retained by the column, qtotal (mg), which is expressed by the 13	

following equation: 14	

𝑞!"!#$ =
𝐹

1000 𝐶!"#
!!!

!!!
𝑑𝑡 (1) 

where Cads (mg L-1) is the difference between the initial concentration of copper in the 15	

influent (C0) and the concentration in the effluent (C) at any time; t (min) is the time 16	

during which the solution sample circulates through the column, and F (mL min-1) is the 17	

flow rate. The amount of copper retained in equilibrium (qe), expressed in mg g-1, can 18	

be calculated as 𝑞! = 𝑞!"!#$/𝑀, where M (g) is the amount of adsorbent material in the 19	

column. Other important parameters used to describe the breakthrough curves include 20	

the breakthrough point (tb), which is usually defined as the time needed for the C/C0 21	

ratio in the effluent to decrease to a value of 0.5 (i.e. so that only 50% of the sorbate 22	
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remains in the outflowing solution). However, the limiting value of C/C0 can be 1	

established at different values, depending on the purpose and aims of the study and any 2	

further applications intended for the effluent. Thus, reductions in the initial 3	

concentration of between 3 and 5% have been used by Chen et al. 18 to study copper 4	

retention by activated carbon. On the other hand, Lodeiro et al. 3 established an even 5	

lower value for this ratio, based on European directives, and recommended specific 6	

limits for dissolved Cd in water from industrial effluents. In the present study, the C/C0 7	

ratio was established as 0.05, which is equivalent to 0.25 mg L-1 of copper in the 8	

effluent. This value corresponds to the limit for wastewater discharges established by 9	

the BSR (Business for Social Responsibility) Water Quality Guidelines. 21 This limit is 10	

quite strict in view of the range of existing limits in international legislation, which vary 11	

from 0.5 to 3 mg L-1 for waste water discharges22, 23, and from 0.05 to 2 mg L-1 for 12	

water destined for human consumption or for irrigation. 24-26 Additional parameters 13	

include the exhaustion time (te), defined as the time when the ratio C/C0 reaches a value 14	

of 0.95, and the length of the mass transference front (Zm), which can be derived from 15	

the following equation: 16	

𝑍! = 𝑍 (1−
𝑡!
𝑡!
) (2) 

where Z is the length of the column, in cm, and the time interval between tb and te (Δt), 17	

known as adsorption zone, is indicative of the rate of mass transfer. 18	

2.3.2. Modelling the breakthrough curves 19	

A non-linear equation based on the Bohart-Adams model27 was used to fit the 20	

breakthrough curves obtained from the column experiments. The Bohart-Adams model 21	

can be used for systems in which the equilibrium is highly favorable. This model 22	

assumes that the surface reaction is the rate-limiting step, and uses an irreversible 23	
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(rectangular) sorption isotherm to describe equilibrium. Despite the premises of its 1	

derivation and of its simplicity, the Bohart-Adams model is able to reproduce the 2	

experimental breakthrough curves and has been widely used to describe fixed bed 3	

continuous-flow systems and to calculate the maximum adsorption capacity of 4	

adsorbents. 28,29 Moreover, fitting data to the Bohart-Adams model generally results in 5	

lower errors than using its mathematically equivalent Thomas model30, especially for 6	

times far from the breakthrough point. The expression proposed by Yan et al.27 for the 7	

modified Bohart-Adams model, which is based on statistical analysis of experimental 8	

data, was used in the present study and is expressed as follows: 9	

𝐶/𝐶! = 1−
1

1+ !! ∗ !
!!"#∗!

∗ 𝑡
! (3) 

where a is an empirical parameter related to the slope of the regression function and 10	

qmax is the maximum adsorption capacity of the BC (mg g–1). Both parameters, qmax and 11	

a, were used as fitting parameters. The models derived from the Bohart-Adams model 12	

were only used to describe the experimental breakthrough curves, regardless of 13	

theoretical considerations, and to detect any correlations between the model parameters 14	

and the experimental variables. 15	

3. Results and Discussion 16	

3.1. Characterization of the biochar samples 17	

The different BC samples were classified according to their C contents, as follows: high 18	

C content (85.2%), CCBC; intermediate C content (69.3 and 62.6%), EBC and SBC, 19	

and low C content (32.6 and 31.1 %), CMBC and OBC. The C content was lowest in 20	

the BCs with the highest inorganic contents, i.e. with more than 45% ash (Table 1). The 21	

inorganic fraction of these biochars was previously characterized by X-ray 22	
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diffractometry (XRD) and the main mineral components identified in CMBC and OBC 1	

were quartz (SiO2), calcite (CaCO3) and struvite (MgNH4PO4·6H2O).9  The N content 2	

varied between 0.41 % and 3.02 %, and the S content between 0.01 % and 0.32 %. The 3	

N contents were much higher in the BCs with the lowest C contents, as reported by 4	

Ahmad et al.31, who attributed this finding (which is also applicable to S) to the type of 5	

feedstock material used to produce the BC rather than to the pyrolysis conditions.  6	

The degree of carbonization and condensation of aromatic rings can be described on the 7	

basis of the H/C molar ratio. Low H/C ratios indicate a high degree of aromatization 8	

and good stability. Conversely, high H/C ratios are indicative of materials that are 9	

scarcely transformed by pyrolysis or that have low contents of lignocellulosic 10	

compounds. H/C ratio has been reported as a smart linkage between BC characteristics 11	

and pyrolytic temperatures.32 Xiao et al.32 obtained a quantitative relationship between 12	

pyrolysis temperature and H/C atomic ratio for a wide range of BC despite the great 13	

variety of precursor feedstock.  This relationship showed a decrease in H/C, that is, an 14	

increase in aromaticity, with the heating temperature. The H/C ratio of the BCs studied 15	

here varied between 0.29 and 1.45 (Table 1). These values are within the range reported 16	

by Xiao et al.32 for BC obtained at a pyrolysis temperature around 300 °C. Values 17	

within a similar range and pyrolysis temperature have been also reported by other 18	

authors: 0.67 for BCs derived from peanut shells33, 0.52 for a BC derived from 19	

hardwood 34 or 0.75 for a pine needles derived BC. The O/C molar ratio of the BCs 20	

varied between 0.07 and 0.37 (Table 1). High polarity (due to the presence of abundant 21	

oxygenated functional groups) leads to high O/C ratios (>0.25), such as those obtained 22	

for SBC, CMBC and OBC. On the other hand, O/C ratios ≤0.25, such as those obtained 23	

for CCBC and EBC, are indicative of low polarity. Intermediate O/C values similar to 24	

those obtained for most of the samples of the present study ranged between 0.27 and 25	
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0.29 for plant-derived BCs at the same pyrolysis temperature33-35.  O/C values in the 1	

range 0.1-0.63 have been reported for BCs elaborated from pine needles, the lowest 2	

value corresponding to BC produced by pyrolysis of the material at high temperature 3	

(600 ºC) and the highest value for the BC produced by pyrolysis at a lower temperature 4	

(100 ºC).35 Lower O/C values, in the range 0.06-0.107, have been reported for BC 5	

derived from wheat residue combusted at different pyrolysis temperatures.36 The Van 6	

Krevelen diagram for the different types of BC in the present study showed that the 7	

values of both ratios (H/C and O/C) were within the range of values reported for 8	

different types of biochar, derived from plants, animal material or residues such as 9	

sewage sludge (Figure S1). 10	

The specific surface area (SBET) data provided a very heterogeneous set of values for the 11	

different types of BC (Table 1), ranging from 1.60 m2 g-1 for EBC to 173 m2 g-1 for 12	

CCBC. The surface area of BC is affected by the nature of the feedstock material and 13	

also by pyrolysis conditions, with higher temperatures yielding larger surface areas. 14	

Moreover, pre-treatment with NaOH or KOH facilitates opening and cleaning of the 15	

pores, thus also producing a larger surface area.19,36  16	

3.2. Effect of flow rate on the optimization of working conditions of the columns  17	

The copper breakthrough curves obtained for the CCBC fixed-bed column at the 18	

different flow rates are shown in Fig. 2. An increase in the inflow rate caused a decrease 19	

in the saturation time. The parameters derived from the experimental data plotted in the 20	

breakthrough curves (Table 2) revealed different relationships with the operational flow 21	

rate. Integration of the breakthrough curves for copper adsorption on CCBC led to an 22	

increase in qtotal and Zm as the flow rate was increased up to 7.0 mL min-1. Nevertheless, 23	

no further increase was observed in qtotal between 7.0 and 13.0 mL min-1, which is 24	
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consistent with the almost coincident breakthrough curves obtained at both flow rates 1	

(Figure 2). Analysis of breakthrough time, tb, and saturation time, te, plotted against the 2	

flow rate revealed inverse linear correlations within the interval 2.5-7.0 mL min-1. Less 3	

variation was observed in these two parameters for the interval 7.0-13 mL min-1 (Figure 4	

3). This finding can be explained by considering that an increase in the flow rate beyond 5	

a certain value will reduce the residence time of the solution in the column, thus 6	

preventing the solution from reaching the interior of the pores and causing the 7	

appearance of the solute in the effluent before the adsorption equilibrium is reached. 8	

This effect has been reported for copper and other contaminants at high flow rates.37,38 9	

The reduction in the flow rate resulted in less steep breakthrough curves (Figure 2) as a 10	

consequence of the longer breakthrough and saturation times required for complete 11	

exhaustion of the column (Table 2). Parameter Δt was strongly and negatively 12	

correlated (R=-0.999) with the flow rate, leading to an increase in the transference zone 13	

as the flow rate increases. Taking these results into account, the optimal operational 14	

flow rate of the fixed-bed columns was 7.0 mL min-1, and this rate was used in 15	

subsequent experiments carried out to investigate the capacity of the different types of 16	

BC to remove copper from aqueous solution. 17	

The modified Bohart-Adams model provided acceptable fits for the experimental data 18	

obtained at the different flow rates, with correlations > 0.980 and squared sum of 19	

residuals < 0.11 (Figure 2). The fitting parameters are listed in Table 3. The qmax value 20	

increased linearly with the flow rate (R2 > 0.737). The highest qmax value, 5.51 mg g-1, 21	

was obtained for a flow rate of 13 mL min-1, and the lowest value, 3.48 mg g-1, 22	

corresponded to a flow rate of 2.5 mL min-1. The fitting parameter a, which is related to 23	

the slope of the regression, varied between 3.2 and 6.7. The decrease in parameter a 24	

with the increase in flow rate was also linear (R2 = 0.978).  25	
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3.3. Comparison of copper sorption on different types of biochar  1	

The copper breakthrough curves obtained with the BC samples under study are shown 2	

in Figure 4, and the parameters derived from these curves are shown in Table 4. All 3	

experiments were conducted at the same flow rate (7.0 mL min-1) and with a fixed bed 4	

height of the adsorbent layer (9 cm). The copper concentration in the effluent did not 5	

quantitatively change between the AAS and ISE measurements. The breakthrough 6	

curves show that the BCs can be classified in two groups, with respectively a high and 7	

low capacity to remove copper from solution. The BCs with the highest copper 8	

retention capacities (CMBC and OBC) corresponded to those with the highest qe and tb 9	

values, and the BCs with the lowest copper retention capacities (CCBC, EBC, SBC) 10	

were those with low qe and tb values (Table 4). There was no significant difference in 11	

the breakthrough time, tb, obtained for CMBC and OBC, approximately 45 h. The 12	

breakthrough times for the other three samples were all below 10 h. The difference 13	

between breakthrough and saturation time, Δt, which is related to the rate of mass 14	

transfer, is consistent with the previous classification. The samples with the longest 15	

transfer intervals, CMBC and OBC, produced breakthrough curves with smoother 16	

slopes, whereas the slopes for CCBC, EBC and SBC, with shorter transfer intervals, 17	

were steeper. Smoother slopes indicate that saturation of the biochar material in the 18	

column takes longer. Curves with steeper slopes and short breakthrough times indicate 19	

that the retention capacity of the material is relatively low.  20	

The initial effluents of the column filled with the sample EBC were yellow-brown 21	

coloured, pointing out to the presence of dissolved organic carbon (DOC). The content 22	

of soluble organic matter may affect the sorption capacity of the biochar. In a previous 23	

study, the DOC released from the sample EBC and its contribution to the binding of Cu 24	

was measured in batch experiments, accounting for ~18 mg C/L and 75.7% of the Cu 25	
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bound, respectively.9 Although DOC was not measured in the column effluents, the 1	

results obtained by AAS and ISE showed no significant differences in the amount of 2	

copper in solution thus meaning that all the Cu was sorbed in the biochar material 3	

within the column and not bound to the DOC released (see discussion in Aran et al.9).  4	

Some of the parameters defined by the breakthrough curves were correlated with the 5	

physicochemical characteristics of the BCs. In previous batch studies of copper 6	

retention on BC, some physicochemical characteristics (i.e. pH, O/C ratio and ash, P 7	

and C content) were found to affect the amount of copper retained.9 The pH of the 8	

effluent was measured as the copper containing solution went through the column.  For 9	

those BC samples with pH ≤ 7 there was no difference between the initial pH of the 10	

solution entering the column and the effluent, whereas for the alkaline BC samples, e.g. 11	

OBC and CCBC, the pH decreased in the effluent during the working time of the 12	

column. In these cases, a steady pH value of 6.5 was reached after 4 h (Figure S2). 13	

Copper is known to precipitate in slightly acidic to alkaline conditions as oxide, 14	

hydroxide or carbonate mineral forms. In the present study, Visual MINTEQ 3.1 was 15	

used to calculate the saturation indices and the formation of copper mineral phases 16	

under the experimental conditions.39 Results revealed that the formation of tenorite 17	

(CuO) is favoured in the OBC and CCBC columns (Figure S3). Since the variation in 18	

the pH is comparable in both alkaline BCs, the difference observed for the retention 19	

capacity in these samples arises from their different chemical composition. According 20	

to this result, the mechanism of retention was found to differ depending on the amount 21	

of the inorganic and organic fractions, i.e. the predominance of the mineral fraction over 22	

the organic fraction resulted in higher retention capacities due to the combination of 23	

adsorption and precipitation processes. In the present study, copper retention was 24	

highest in samples with an O/C molar ratio higher than 0.3 and high ash and phosphorus 25	
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contents, above 40% and 3 g PO4 kg-1, respectively (Table 1). As indicated by Xu et 1	

al.40, the formation of metal carbonates and phosphate precipitates is favored in mineral-2	

rich biochars. Uchimiya et al.41, also indicated that heavy metals retention by biochar is 3	

enhanced in low carbonized biochar materials. Peng et al.42 observed an enhancement in 4	

heavy metals retention on phosphoric modified BCs in comparison with the pristine BC 5	

due to the formation of additional complexes between functional groups, such as P=O 6	

and P=OOH, and the metal ions.  In our previous study9, higher sorption of metals in 7	

batch experiments for mineral-rich biochars was explained by their higher cation 8	

exchange capacity and the precipitation of Cu3(PO4)2. Equilibrium concentration of PO4 9	

in distilled water was quantified for the sample OBC using a 1:10 solid:solution ratio.43 10	

This value was thereafter used to calculate the saturation indices for different copper 11	

phosphate mineral phases with Visual MINTEQ 3.1. These calculations revealed that 12	

formation of these compounds is possible under the experimental conditions of the 13	

fixed-bed column sorption experiment at pH values above 5.5 (Figure S3). According to 14	

the physicochemical characteristics of sample CMBC, circumneutral pH and high 15	

concentration of total phosphate, the immobilization mechanism for copper is expected 16	

to be similar to that of the OBC. Similar correlations between physicochemical 17	

properties and retention capacity were observed for other metals such as lead, zinc and 18	

cadmium, and the retention capacity was highest in BCs with the highest ash contents, 19	

i.e. in which the mineral fraction predominates.6,40 In the present study, the 20	

physicochemical properties that were most closely correlated with the parameters of the 21	

breakthrough curves (qe, tb, te) were %C, %N and %ash (Table S1). The highest positive 22	

correlation was found with the %ash, e.g. copper retention was favourable in the BCs 23	

with the highest inorganic contents, which is consistent with the results of batch 24	
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experiments.9 As expected, the parameters of the breakthrough curves were negatively 1	

correlated with the %C.   2	

The modified Bohart-Adams model fitted well to the experimental data (Figure 4), 3	

yielding R2 values higher than 0.970 and RRSE lower than 0.10 (Table 5). The qmax 4	

values obtained for the different BC materials, i.e. the maximum retention capacity, 5	

varied as follow: CMBC > OBC > EBC > CCBC > SBC. The samples with the highest 6	

inorganic content, CMBC and OBC, retained more copper: 26.63 and 25.30 mg g-1, 7	

respectively. As expected, this parameter was closely correlated with the ash content (R2 8	

= 0.980). The BC with high organic content, reflected in higher %C and lower ash 9	

content, retained less copper, with a decrease in the qmax values ranging from 79 to 95 % 10	

(Table 5). Parameter a, obtained by fitting the modified Bohart-Adams model to the 11	

data, was not correlated with the physicochemical properties of the BCs. The values of 12	

this parameter ranged between 0.66 for SBC and 9.12 for OBC (Table 5). 13	

The affinity sequence is consistent with the maximum adsorption capacity obtained in 14	

batch experiments conducted with the same BCs.9 A good correlation was observed 15	

between the maximum adsorption capacities obtained with the Langmuir-Freundlich 16	

model (batch experiments) and those obtained with the modified Bohart-Adams model 17	

(continuous experiments) (Figure 5). The maximum retention capacity predicted by the 18	

modified Bohart-Adams model was also closely correlated with the breakthrough time 19	

(tb) (R2=0.991) (Figure S4). The good correlations between parameters enable direct 20	

prediction of the behavior of a given biochar in continuous systems and also enable the 21	

operational conditions of the columns to be established using the available information 22	

obtained in batch experiments. 23	
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The copper retention capacity of the BCs were similar to or higher than observed for 1	

other BCs. Biochar or activated carbon derived from different types of plant-waste such 2	

as pine, pomegranate wood, silver birch, jarrah and wheat straw had similar Cu 3	

retention capacities, of between 0.129 and 17.83 mg g-1.18,44-47 Biochar materials derived 4	

from plant residues usually contain limited mineral components, but those derived from 5	

animal residues generally present higher mineral content and larger sorption capacities; 6	

e.g. swine manure  and dairy manure biochars showed maximum sorption capacities of 7	

20.11 and 35.2 mg g-1, respectively.6, 48 Among the biochars used in the present study, 8	

CMBC and OBC appear to be the most suitable types of BC for copper retention, 9	

because they can remove higher amounts of Cu from aqueous solution and also because 10	

the removal mechanism involves co-precipitation and adsorption, thus producing more 11	

stable forms. The plant-derived biochars EBC, SBC and CCBC showed lower 12	

efficiency for the removal of copper from aqueous solution, which is partially caused by 13	

their lower content of mineral components. Further studies are needed to develop 14	

economical and suitable strategies for simultaneous metal sorption, regeneration 15	

methods and potential applications for the metal-loaded biochar materials.	16	

4. Conclusions 17	

Flow rate is a key parameter in continuous flow systems with a high adsorption 18	

capacity. In the present study, high flow rates (> 7 mL min-1) yielded short 19	

breakthrough and saturation times, whereas intermediate to low flow rates provided 20	

optimal conditions for retention of copper by BC. Columns filled with CCBC and 21	

operating at flow rates of 7 and 5 mL min-1 yielded breakthrough times of 5 and 12 22	

hours and maximum copper retention capacities of 3.78 and 4.55 mg g-1, respectively.  23	
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The copper retention capacities of the different types of BC tested in the present study 1	

were high, with values ranging from 1.28 mg g-1 for SBC to 26.63 mg g-1 for CMBC. 2	

Biochars may therefore be effective and economic alternatives to other sorbent 3	

materials for removing heavy metals from aqueous systems. The physicochemical 4	

characteristics of the materials used to produce the BCs determine the copper retention 5	

capacity and the underlying immobilization mechanisms. The biochars with the highest 6	

retention capacity, CMBC and OBC, were also those containing the highest amounts of 7	

inorganic compounds. These biochars may be suitable for use in water treatment 8	

systems to remove copper or other heavy metals. Finally, a good correlation was 9	

observed between the sorption parameters in continuous flow systems and in 10	

discontinuous systems. This enables prediction of the behaviour of BC materials and 11	

optimization of the operational conditions with very few sorption experiments.  12	
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Figure captions 1	

Figure 1. Experimental set-up of adsorption columns  2	

Figure 2. Breakthrough curves for Cu removal by CCBC at different flow rates. The 3	
symbols represent the average of two independent experimental replicates. The error 4	
bars represent the standard deviation of the experimental replicates. The lines represent 5	
the modified Bohart-Adams model fit 6	

Figure 3. Variation in breakthrough, tb, and exhaustion, te, times in relation to the flow 7	
rate 8	

Figure 4. Breakthrough curves for Cu removal by different types of BC at a constant 9	
flow rate 7 mL min-1. The symbols represent the average of two independent 10	
experimental replicates. The error bars represent the standard deviation of the 11	
experimental replicates. The lines represent the modified Bohart-Adams model fit  12	

Figure 5. Correlation between the maximum retention capacities predicted by the 13	
empirical models for batch and continuous flow experiments. Qmax values obtained with 14	
the Lagmuir-Freundlich model are taken from Arán et al.9 15	

 16	

 17	

 18	
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Table captions 1	

Table 1. Physicochemical characteristics of the different types of biochar 2	

Table 2. Parameters obtained from the breakthrough curves of copper adsorption by 3	
CCBC at different flow rates  4	

Table 3. Parameters obtained from the non-linear fit of the modified Bohart-Adams 5	
model to the breakthrough curve for CCBC  6	

Table 4. Parameters obtained from the breakthrough curves of copper adsorption by 7	
different types of BC at a constant flow rate of 7.0 mL min-1 8	

Table 5. Parameters obtained by fitting the modified Bohart-Adams model to the 9	
breakthrough curves for the different BCs 10	

  11	
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Table 1. Physicochemical characteristics of the different types of biochar. 1	

 OBC CMBC SBC EBC CCBC 
pH 9.57 7.15 4.94 5.19 10.10 
%C 31.1 32.6 62.6 69.3 85.2 
%N 2.10 3.02 0.67 0.41 0.80 
%H 2.40 3.90 3.67 5.10 2.10 
%S 0.08 0.32 0.04 0.01 0.10 

%Ash 49.5 46.4 2.13 1.90 3.90 
%O 14.8 13.7 30.8 23.2 7.90 
O/C 0.35 0.32 0.37 0.25 0.07 
H/C 0.94 1.45 0.70 0.88 0.29 

SBET (m2 g-1) 3.80 1.79 43.28 1.60 173.0 
P (g kg-1) 3.29 15.30 0.24 0.21 0.86 

	2	

  3	
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Table 2. Parameters obtained from the breakthrough curves of copper adsorption by 1	
CCBC at different flow rates.  2	

Flow (mL min-1) 13.0 7.0 5.0 2.5 

qt  (mg) 32.16 32.14 24.46 18.22 

qe (mg g -1) 6.43 6.64 4.89 3.64 

tb (h) 3.08 5.17 11.66 18.25 

te (h) 19.54 24.0 31.00 39.63 

Zm (cm) 7.58 7.06 5.61 4.83 

Δt (h) 15.96 18.83 20.00 21.38 
 3	

  4	



31	
	

Table 3. Parameters obtained from the non-linear fit of the modified Bohart-Adams 1	
model to the breakthrough curve for CCBC. 2	

Flow rate (mL min-1) qmax (mg g-1) a R2 RRS 

13 5.51 ± 0.06 3.2 ± 0.1 0.995 0.023 

7.0 3.78 ± 0.03 4.6 ± 0.2 0.992 0.036 

5.0 4.55 ± 0.06 5.6 ± 0.3 0.988 0.045 

2.5 3.48 ± 0.04 6.7 ± 0.4 0.984 0.102 

 3	

 4	

  5	



32	
	

Table 4. Parameters obtained from the breakthrough curves of copper adsorption by 1	
different types of BC at a constant flow rate of 7.0 mL min-1. 2	

Type of BC CMBC OBC EBC CCBC SBC 

qtotal (mg) 136.98 124.35 26.79 32.14 14.87 

qe (mg g -1) 27.40 24.87 5.36 6.64 2.97 

tb (h) 47.00 47.25 9.50 5.17 0.25 

te (h) 86.00 82.00 25.30 24.0 16.00 

Zm (cm) 4.08 3.81 5.62 7.06 8.86 

Δt (h) 39.00 34.75 15.80 18.83 17.75 
 3	

  4	
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Table 5. Parameters obtained by fitting the modified Bohart-Adams model to the 1	
breakthrough curves for the different BCs. 2	

 

qmax (mg g-1) a R2 RRSE 

CMBC 26.6 ± 0.26 6.43 ± 0.46 0.978 0.042 

OBC 25.3 ± 0.11 9.12 ± 0.36 0.992 0.022 

EBC 5.28 ± 0.08 6.40 ± 0.52 0.978 0.008 

CCBC 3.78 ± 0.03 4.62 ± 0.19 0.992 0.036 

SBC 1.28 ± 0.07 0.66 ± 0.03 0.980 0.007 
 3	

	4	

  5	
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Graphical Abstract 1	

 2	

 3	
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Figure 1. Experimental set-up of adsorption columns  1	

 2	

  3	
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Figure 2. Breakthrough curves for Cu removal by CCBC at different flow rates. The 1	
symbols represent the average of two independent experimental replicates. The error 2	
bars represent the standard deviation of the experimental replicates. The lines represent 3	
the modified Bohart-Adams model fit 4	

 5	

 6	
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Figure 3. Variation in breakthrough, tb, and exhaustion, te, times in relation to the flow 1	
rate 2	

 3	

 4	
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Figure 4. Breakthrough curves for Cu removal by different types of BC at a constant 1	
flow rate 7 mL min-1. The symbols represent the average of two independent 2	
experimental replicates. The error bars represent the standard deviation of the 3	
experimental replicates. The lines represent the modified Bohart-Adams model fit  4	

 5	

 6	
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Figure 5. Correlation between the maximum retention capacities predicted by the 1	
empirical models for batch and continuous flow experiments. Qmax values obtained with 2	
the Lagmuir-Freundlich model are taken from Arán et al.9 3	

 4	

 5	


