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The immense and growing repositories of transcriptional data may contain critical insights for

developing new therapies. Current approaches to mining these data largely rely on binary

classifications of disease vs. control, and are not able to incorporate measures of disease

severity. We report an analytical approach to integrate ordinal clinical information with

transcriptomics. We apply this method to public data for a large cohort of Huntington’s

disease patients and controls, identifying and prioritizing phenotype-associated genes. We

verify the role of a high-ranked gene in dysregulation of sphingolipid metabolism in

the disease and demonstrate that inhibiting the enzyme, sphingosine-1-phosphate lyase 1

(SPL), has neuroprotective effects in Huntington’s disease models. Finally, we show that one

consequence of inhibiting SPL is intracellular inhibition of histone deacetylases, thus linking

our observations in sphingolipid metabolism to a well-characterized Huntington’s disease

pathway. Our approach is easily applied to any data with ordinal clinical measurements, and

may deepen our understanding of disease processes.
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Transcriptional profiling technologies are now so routine
that databases such as the NCBI Gene Expression
Omnibus (GEO) and ArrayExpress each contain more

than 1.5 million samples. This growth has led to a significant need
for computational methods to infer biological insights from
these data1. Methods have been developed to identify clusters of
biological samples with specific pattern of expression, enabling
molecular stratification of diseases such as cancer2. Expression
data have also facilitated discovery of biomarkers3, identification
of signatures corresponding to disease progression, and
profiles resulting from cellular perturbations4. Nevertheless,
identification and prioritization of gene subsets that influence
disease phenotypes remain challenging.

The search for disease-associated genes and biomarkers relies
on the discovery of statistical links between gene expression and
disease phenotype. In most methods, clinical metrics are treated
as binary data5 (e.g., disease vs. control). However, in many cases,
even the most basic clinical data provide a richer description of
the disease process. Rating scales such as the Tumor, Node,
Metastasis staging of tumors6, Glasgow Outcome Score related to
brain injuries and Clinical Dementia Rating7 provide a measure
of the degree of severity or progression of a disease that are
typically excluded from analyses. Systematic integration of these
ordinal clinical metrics with gene expression data may lead to
identifying a subset of the genes that play a critical role in disease
progression. Once experimentally validated, these genes could be
important candidates for therapeutic targets.

However, existing approaches for discovering genes associated
with ordinal clinical categories, such as multi-way ANOVA
analysis and the Kruskal–Wallis test, do not take into account the
ordinal relationship between the categories. These tests have been
widely used for comparing multiple phenotypic categories8, but
these methods consider the categories independently. On the
other hand, approaches that are based on correlation analysis9

consider the relative ranking value of ordinal categories. However,
clinical phenotypes have a qualitative nature, and a severity score
of four does not represent twice the severity of a score of two.

To develop an approach that can take advantage of
information on the severity of the disease, we analyzed gene
expression data from the brains of patients who suffered from
Huntington’s disease (HD), a genetic neurological disorder
caused by a CAG repeat expansion in the gene encoding
the huntingtin protein. Transcriptional dysregulation is one of the
earliest and most fundamental events in disease pathogenesis10,
and has been reported in multiple HD models11, making it
likely that some expression changes could cause later pathology.
In addition, the neurophysiology of HD is well understood.
Neurons in the striatum and other brain regions atrophy, and
these losses are strongly associated with the clinical manifestation
of HD12. Patients who died of HD can be classified in five
categories, called Vonsattel grades, based on the severity and
pattern of neurodegeneration13. We reasoned that combining the
qualitative neurohistology represented by the Vonsattel grades
with transcriptomic data from patient brains could be used to
identify a subset of genes whose transcriptional dysregulation
leads to neuropathological changes.

Using a systematic, data-driven approach, we analyzed the
relationship between the Vonsattel grade and gene expression
data in a large cohort of HD patients and controls. By adapting a
principled statistical method, we identified SGPL1 (a key
regulator of sphingolipid metabolism) as a gene whose
transcriptional dysregulation is strongly associated with
progressive neurodegeneration in HD. We then confirmed the
importance of the expression changes through a meta-analysis of
gene expression in five distinct HD models. These data confirmed
that genes involved in the sphingolipid pathway are dysregulated
in HD models. We then validated the role of SGPL1 as a potential
therapeutic target in well-established models of the disease using
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Fig. 1 Combining transcriptomic data with ordinal clinical information. a Schematic representation of postmortem brain tissues, which are categorized in
four groups based on their degree of neurodegeneration. The formula shows an ordinal regression model in which the expression of a gene explains the
degree of neuronal loss. This model is implemented using the proportional odds assumption, where the slope of the fitted lines (β) is considered equal for
all categories. b In this plot, the X axis shows the expression of a gene, while the Y axis shows neurodegenerative grades. Each dot represents the
expression of a gene from a sample with neurodegenerative grade y. c The plot shows the ordinal regression model, in which a linear function of the
expression of a gene is related to the probability of an ordinal category. d In this plot, the expression of a gene is represented in the X axis, while the Y axis
shows a function of the cumulative probability of ordinal categories. The parallel lines display fitted lines by implementing the proportional odds
assumption
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knock-down and chemical inhibition of the enzyme. These
experiments also pointed to potential mechanisms of action by
which targeting SGPL1 exerts cell-protective effects. Our
approach for systematic integrative analysis of transcriptomic
data and ordinal clinical information has provided new insight
into HD, and can be applied broadly to the identification of novel
therapeutic targets in other diseases.

Results
Ordinal regression model to link clinical and transcriptomic
data. To distinguish and prioritize genes whose transcriptional
dysregulation is associated with pathogenic effects, we jointly
analyzed transcriptomic data with an ordinal, qualitative measure
of the clinical state of postmortem brain tissues from HD
patients. We first compiled gene expression data from the caudate
nucleus of 38 HD patients and 32 neurologically normal controls
that we obtained from the NCBI GEO database11. Clinical metrics
corresponding to disease phenotype for these samples are publicly
available (detailed in Methods). Specifically, we categorized the
patients based on the reported severity of neurodegeneration.

Next, we sought to identify and rank genes that are linked
strongly to the severity of HD neurodegeneration (Fig. 1a).
For this purpose, we adapted a statistical model known as ordinal
regression to integrate real-valued expression data with the
Vonsattel grade, which represents macroscopic and microscopic
changes in the striatum and is significantly associated with
the clinical symptoms of HD13. The ordinal regression model
makes no assumptions about the relative quantitative value of the
scale. In this regression model, the values of the response variable
have an ordinal relationship, e.g., low, medium and high. Using
this model, we sought to identify genes whose expression is
associated with the degree of neurodegeneration (Fig. 1b, c).

To fit the ordinal regression models, we employed the
proportional odds assumption for which the slope of the fitted

lines is equal among odds-ratios of categories (Fig. 1d). The use of
the proportional odds assumption decreases the number of fitted
parameters, and thus reduces the bias towards input data.
One important advantage of the ordinal regression model
implemented with the proportional odds assumption is the
ability to overcome the challenges posed by gene expression data
of tissues with advanced neurodegeneration. Stage four caudate
nucleus is likely to have far fewer neurons than stage one. As a
result, simply looking for genes that have large differences in
expression between early and late stages may be misleading, as the
results will be dominated by changes in cell type. By contrast, our
approach requires that the genes be altered even in the early stage
of HD, before significant neuronal loss, and it requires that the
expression of the gene must consistently increase or decrease with
HD progression.

Using this approach, we identified 848 genes (termed
phenotype-associated genes, PAGs, Supplementary Data 1) whose
transcriptional dysregulation was significantly associated with
neuropathological severity (two-tailed z-test, p-value of all the
fitted parameters <1e-6). The magnitude of the β parameter,
which is fitted for each gene, correlates to the rate by which
the expression of a gene is altered with the increase of the grade
in HD neurodegeneration. We identified 226 consistently
upregulated PAGs, and 622 consistently downregulated PAGs
due to progressive neurodegeneration. Gene ontology (GO)
analyses assessed the enrichment of upregulated genes
in biological processes, including RNA metabolic processes;
downregulated genes were enriched in neuronal processes such as
synaptic transmission and ion transport (Supplementary Table 1).
We then ranked PAGs based on the slope of the fitted lines.

Next, we compared the results of our ordinal regression model
to the ones obtained from differential analysis of gene expression
data of control and disease categories, disregarding their severity
(Fig. 2a). We first inferred 4421 differentially expressed genes
(DEGs, corrected Limma test, p< 0.001, detailed in Methods)
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Fig. 2 Comparisons of PAGs with DEGs. a 848 genes are identified by considering the severity of the disease, while 4421 genes (corrected Limma
p< 0.001) are identified when disease samples with different grades of severity are considered as one group. b PAGs are a small fraction (<20%) of DEGs,
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between control and HD samples (detailed in Methods), which
were enriched in 186 biological processes (Hypergeometric test,
corrected p< 0.01). In comparison, PAGs were a small subset of
these DEGs (<20%), and they were enriched in 112 of these
processes (Fig. 2b). Interestingly, the DEGs that were not
identified by ordinal regression were enriched in only 12
biological processes (Fig. 2b, Hypergeometric test, corrected
p< 0.01). Notably, the enrichment scores (defined in Methods)
for these processes were significantly higher for PAGs than DEGs
(Fig. 2c, p= 1.1 × 10−15, two-tailed t-test unless specified from
now on). Additionally, PAGs had higher enrichment scores in
known dysregulated biological processes in HD10, including
synaptic transmission, neurotransmitter transport and secretion
and calcium transport (Supplementary Fig. 1). Therefore, our
method can select and prioritize a subset of DEGs with higher
enrichment for HD-related processes.

High-ranked phenotype associated genes have roles in HD.
As the slope of the fitted lines indicates the rate by which the
expression of a gene changes with progressive neurodegeneration,
we hypothesized that genes with larger slopes would be likely to
have important roles in the disease. Indeed, the top two genes
were Bcl-2-like protein 11 (BCL2L11, Supplementary Fig. 2a)
and specificity protein 1(SP1, Supplementary Fig. 2b), both
of which have known roles in HD. BCL2L11 is a member of the
Bcl-2 protein family. The members of this family are involved
in mitochondrial apoptosis14, mitochondrial morphogenesis15,
and metabolism16. The upregulation of BimEL, which is the most
common isoform transcribed by BCL2L11 in brain neurons17,
has been shown in several HD models18. BimEL upregulation has
been further associated with the toxicity of the mutated
HD gene14. The gene ranked second, SP1, encodes a transcription
factor that has been well-studied in association with HD
pathogenesis19. The SP1 protein regulates the expression of
genes involved in processes such as cell growth, apoptosis,

differentiation, and immune responses20. Although there is no
consensus on the exact role of the SP1 transcription factor in HD
pathogenesis, several studies have shown that SP1 is upregulated
in HD models, and its suppression has protective effects21.

We next sought to determine whether our approach could
identify novel disease-associated genes. For this purpose, we used
the well-established STHdh cell line model of HD. STHdh cells
are mouse striatal progenitors that express either the wild-type
huntingtin gene, with 7 CAG repeats (STHdh Q7), or a mutated
form with 111 CAG repeats (STHdh Q111)22. We first identified
differentially expressed genes between wild-type and disease
samples using previously published RNA-sequencing data from
these cell lines23. We then identified 78 genes that were
differentially expressed in STHdh cell lines and whose human
homologs were identified in the ordinal regression model
(Fig. 3a).

We validated the role of high-ranked genes by performing
small interfering RNA-mediated (siRNA) knock-down experi-
ments (Fig. 3b, c). We first selected four high-ranked upregulated
genes for these experiments: sphingosine-1-phosphate lyase 1
(Sgpl1), AHNAK nucleoprotein (Ahnak), transcription factor 12
(Tcf12) and tensin 1 (Tns1, Supplementary Fig. 3). For this
purpose, we transfected STHdh Q111 cells with either siRNAs
specifically directed against the transcripts of these selected genes
or siRNA negative control for 48 h. We assessed the silencing
efficiency by real-time qPCR (Supplementary Fig. 4). We then
carried out cell viability experiments after exposing the cells to
serum starvation for 24 h. We chose this stress condition because
STHdh Q111 cells are known to be more sensitive to serum
starvation than STHdh Q7 cells due to the toxicity of the mutated
huntingtin protein (mHtt); in fact, the expression of mHtt was
associated with enhanced caspase activation24 and decreased ATP
levels25 in serum-deprived striatal cells. Our results showed
three of these high-ranked genes (75%) are modulators of
cellular viability (Fig. 3b, c). While knocking-down Sgpl1 and
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Ahnak significantly decreased the toxicity of mHtt in diseased
cells (p= 2.42 × 10−15 and p= 6.89 × 10−4, respectively), Tcf12
knock-down significantly increased its toxicity (p= 2.20 × 10−9,
Fig. 3b, c), which indicates the potential compensatory role of this
gene. We did not observe changes in cell viability after Tns1
silencing (Supplementary Fig. 5).

Dysregulated sphingosine metabolism in HD. We investigated
the potential modulatory role of SGPL1 in HD pathogenesis, since
it is the highest ranked gene among the 78 overlapping genes
between PAGs and STHdh DEGs. SGPL1 encodes the
sphingosine-1-phosphate lyase 1 (SPL) enzyme, which is involved
in sphingolipid metabolism26. We first measured SPL expression
in STHdh cells and human samples by western blot (WB)
analysis. The results showed that the level of SPL was increased
in STHdh Q111 compared to STHdh Q7 cells (p< 0.01, Fig. 4a
and Supplementary Fig. 7a). siRNA-mediated knock-down
experiments validated the specificity of the antibody raised
against mouse SPL protein (Fig. 4b and Supplementary Fig. 7b).
We further performed WB experiments on human postmortem
cortical brain tissue. Information about these samples is provided
in the Supplementary Table 2. Even though the most striking
HD-related neuropathological alterations are found in striatum,
we decided to test SPL expression in cortical brain tissue for the
following reason: cerebral cortex displays pathological features
of HD27, but it exhibits less dramatic neuronal loss than striatum
as determined by flow cytometry counts of NeuN-postive cell
fraction of HD and control samples28. Therefore, this tissue
allowed us to validate the ability of the proportional odds
model in detecting HD-related genes independent of significant
variations in cell-type composition. In line with our findings from
the ordinal regression model, we observed a significant increase
in SPL level in HD patients (p< 0.001, Fig. 4c and Supplementary
Fig. 7c).

Since SPL is one of the key modulators of the sphingolipid
pathways29, we investigated the levels of several sphingosine
bases in R6/2 mouse model of HD. Using lipid extraction
followed by mass spectrometry experiments, we measured

these lipids from the striatum of 6-week-old R6/2 mice on a
hybrid C57BL/6×CBA (B6/CBA) background. First, our results
showed a significant decrease in the levels of the substrate of SPL,
d20:1 sphingosine-1-phosphate (S1P, p= 0.03, Supplementary
Fig. 6a) in R6/2 compared to wild-type mice. Additionally,
we showed a significant decrease in the total levels of
sphingosine bases (p= 0.05, Supplementary Fig. 6f), as well as
several sphingolipids, including d18:0 sphinganine-1-phosphate
(p= 0.009, Supplementary Fig. 6b), d20:0 sphinganine-1-
phosphate (p= 0.01, Supplementary Fig. 6c), d18:0 sphinganine
(p= 0.03, Supplementary Fig. 6d), and d20:1 sphingosine
(p= 0.028, Supplementary Fig. 6e).

Interestingly, we demonstrated that the levels of S1P decrease
significantly with the progression of HD. We first measured S1P
levels in the striatum of 6-week-old and 22-week-old R6/2 mice
on a pure C57Bl6/J background. These mice show a milder HD
phenotype than R6/2 animals on a mixed B6/CBA background,
thus allowing us to monitor the changes in S1P levels for an
extended period of time30. We found that d18:1 S1P levels are
significantly decreased in 6-week-old R6/2 mice compared to the
corresponding controls (p= 0.03, Fig. 5a). In addition to
sphingolipids with a chain length of 18 carbons, which include
the main components of cellular sphingolipids31, we detected
changes in sphingolipids with a chain length of 20 carbons.
Interestingly, the detection of these sphingolipids has been
reported in brain and central nervous systems31, and their
dysregulation has been associated with neurodegeneration32. We
found that the levels of d20:1 S1P and total phosphorylated
sphingoid bases are significantly decreased in both 6-week
(Fig. 5b, c respectively) and 22-week (Fig. 5d, e respectively)
R6/2 mice compared to the corresponding controls. Furthermore,
we discovered the decrease in d20:1 S1P levels is significantly
associated with the age of the R6/2 mice and disease progression
(R= −0.83, p< 0.0098, Fig. 5f).

Additionally, we determined that the expression of several
genes involved in the sphingolipid pathway is dysregulated in
multiple HD models by performing a meta-analyses of gene
expression data from five HD models including R6/2, R6/1,
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YAC128, human postmortem tissues, and the STHdh cell line.
Expression data from these models were obtained from published
data deposited at the NCBI GEO database. Initially, we identified
33 human and mouse homolog genes that are involved in the
sphingolipid pathway from the KEGG database. Then, we
inferred that 14 (≥42%) of the genes involved in this pathway
were dysregulated in at least one of these HD models
(Supplementary Table 3). Collectively, our results indicate the
importance of dysregulation of SPL and sphingolipid metabolism
to HD pathogenesis, and the potential therapeutic benefits of
targeting this pathway.

SPL inhibition exerts neuroprotective effects. To assess the
therapeutic potential of targeting the SPL enzyme, we tested the
effect of inhibiting its activity on cell viability. To this purpose, we
added a well-known SPL inhibitor, 4-deoxypyridoxine (DOP)33,
to the culture medium of STHdh Q7 and STHdh Q111 cells in the
absence of serum for 24 h. Since the SPL enzyme lyses the S1P
lipid, we first evaluated the levels of intracellular S1P after the
DOP treatment using liquid chromatography–mass spectrometry
experiments. We observed a statistically significant increase in
S1P levels after the treatment with 4 mM DOP (p= 5.03 × 10−5,
Fig. 6a). We subsequently measured cell death by high-content
imaging. Consistent with previous evidence from the literature,
STHdh Q111 cells showed higher sensitivity to serum starvation
than STHdh Q7 cells (mean cell death: 30.3% and 5.9%,
respectively; p= 1.74 × 10−26, Fig. 6b, c). Treatment with DOP
significantly reduced apoptosis in serum-deprived STHdh
Q111 cells (mean cell death: 24.7%, p= 2.4 × 10−4, Fig. 6b, c),

while only a slight change in viability was observed for STHdh Q7
cells after DOP treatment (mean cell death: 5.2%; p= 0.022,
Fig. 6b, c).

We further showed that inhibiting SPL exerts neuroprotective
effects in an ex vivo model of HD consisting of the biolistic
transfection of rat corticostriatal brain slices with a DNA
construct derived from the human mutant HD allele. The
advantage of this tissue-contextual phenotypic platform over
in vitro HD cellular models is that explanted tissues maintain the
cytoarchitecture of the brain regions, including glial–neuronal
interactions, thus mimicking the multicellular environment
present in vivo. These brain slices were co-transfected with a
construct encoding the yellow fluorescent protein (YFP) and a
construct expressing the mutated exon-1 of huntingtin gene
harboring 73 CAG repeats (Httex1-Q73). The YFP marker was
used to quantify the medium spiny neurons (MSNs) and assess
their viability as described by Reinhart et al.34 and Crittenden
et al.35. Over the course of 4 days, ~50% of Htt-transfected striatal
neurons degenerated. Inhibition of SPL by 0.4 and 4 mM DOP
showed a significant increase in the number of healthy MSNs (p
< 0.05 and p< 0.01, respectively, ANOVA followed by Dunnett’s
post hoc comparison test, Fig. 7).

SPL inhibition modulates histone acetylation. We decided to
examine the effects of S1P inhibition on the epigenome based
on recent studies demonstrating the role of S1P in epigenetic
regulation and the fact that epigenetic events are associated with
neuronal dysfunctions36. S1P directly inhibits the activity of
histone deacetylases (HDAC1 and HDAC2), which leads to
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Fig. 5 Decreased levels of phosphorylated sphingoid bases in R6/2 mice. The box plots show the levels of phosphorylated sphingoid bases in 6-week-old
and 22-week-old R6/2 mice and corresponding control animals. d18:1 S1P (p= 0.03, (a)), d20:1 S1P (p= 0.05, (b)), and total S1P (p= 0.027, (c)) levels are
significantly decreased in 6-week-old R6/2 mice compared to controls. Additionally, d20:1 S1P (p= 5.0 × 10−4, (d)) and total S1P (p= 9.3 × 10−3, (e)) levels
are significantly decreased in 22-week-old R6/2 mice compared to their corresponding wild-type animals. Two-tailed t-tests were performed to calculate
statistical significance. Each boxplot shows the distribution of the levels of phosphorylated sphingoid bases. The top and the bottom of the boxplots show first
and third quartiles of each data set, and middle line show the medium. Statistical significant is calculated using two-tailed t-test. f The S1P levels are
significantly anti-correlated with the age of R6/2 mice (R= −0.83, two-tailed t-test, p= 0.0098). The dots show the normalized S1P levels in 6-week-old
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linear regression model, predicting the age of the animals based on the S1P levels
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increased acetylation of specific histone residues, particularly the
lysine 9 of histone H3 (H3K9ac)37. Alterations in histone
acetylation levels have been reported in various neurodegenera-
tive diseases such as HD38. In fact, histone H3 and H4
hypo-acetylation has been reported in several HD models38

including R6/2 transgenic mice. Notably, histone deacetylase
inhibitors have been demonstrated to exert neuroprotective
effects39. Previous investigations have shown that the balance
between H3K9ac and H3K9 methylation is affected in HD models
such as R6/2 and 82Q mice, and that correcting this ratio
improves HD phenotype40. Since H3K9ac plays an important role
in neuronal functions and S1P can inhibit HDACs, we measured
the effect of S1P on H3K9ac in STHdh cell lines.

Chemical inhibition of the SPL enzyme by DOP led to a
significant increase in overall levels of H3K9ac (Fig. 8a and
Supplementary Fig. 7); the fold change of this increase was
significantly higher in treated STHdhQ111 cells compared to
treated STHdhQ7 (p= 0.025). Furthermore, we confirmed that
the incubation of nuclear extracts from STHdhQ111 cells with
S1P inhibited HDAC activity (p= 0.008, Fig. 8b). Consistent with
this result, we showed that treating STHdhQ111 cells with DOP
also significantly decreased HDAC activity (p= 0.01, Fig. 8c).

Protective mechanisms associated with increase in H3K9ac.
We next determined the potential downstream effects of the
increase in H3K9ac by analyzing transcriptomic and H3K9ac
ChIP-sequencing data. For this purpose, we first performed
RNA-sequencing experiments in serum-deprived STHdh
Q111 cells treated with either DOP or vehicle (Methods). We
compared the results with those obtained from serum-deprived
STHdh Q7 cells. We identified 3097 differentially expressed
genes after DOP treatment of STHdh Q111 cells (using Cuffdiff
analysis, corrected p< 0.01). Among these genes, we identified a
cluster of genes whose expression is downregulated after DOP

treatment and corrected toward STHdh Q7 levels (cluster A,
Fig. 9). Cluster A genes are involved in biological processes
such as stress response, interferon-beta and immune response
(Supplementary Table 4). Similarly, we detected two clusters
(cluster B and C, Fig. 9) whose expression levels are increased
after DOP treatment and corrected toward STHdh Q7 levels.
The genes in cluster B and C are significantly enriched in the
regulation of axonogenesis and neurogenesis, Ras and Rho signal
transduction, and regulation of neuronal projection development
(Supplementary Table 4).

Next, we combined these transcriptomic data with ChIP-seq
data for H3K9ac in order to identify and rank genes that are likely
to be regulated by an increase in H3K9ac levels (Fig. 10a). We
first identified 291 genes that were not only significantly
upregulated (using Cuffdiff analysis, corrected p< 0.01) after
DOP treatment, but also had at least one H3K9ac peak within 10
kb of their promoters (Fig. 10b). We then quantified the mediated
effect of H3K9ac score on the gene expression fold-change by
calculating the interaction effect (IE) statistic (Methods). We
identified 146 genes with an IE score higher than the average.
These genes were enriched in components of cytoskeleton,
neuronal part and cell body, and cell projection (hyper geometric
test, corrected p< 0.01, Supplementary Table 5) as well as in
biological functions such as protein, ion, cytoskeletal protein
bindings and Ras guanyl-nucleotide exchange factor activity
(Supplementary Table 5). Collectively, these results show that SPL
inhibition and the subsequent increase in H3K9ac activate
biological functions involved in neuronal processes.

Discussion
We have demonstrated a principled statistical method for
identifying genes whose expression is associated with ordinal
clinical metrics, and we used this method to elicit novel biological
insight from previously published data. Transcriptomic profiling
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is now ubiquitous, and has been used to detect many genes
associated with phenotypes in humans, model organisms and
other settings. However, existing methods for analyzing gene
expression cannot be easily adapted to incorporate clinical
rankings of disease severity5. These qualitative measures derive
from expert knowledge and are used throughout medicine to
categorize the severity of symptoms across the spectrum of
human maladies. To enable leverage such data, we developed an
analytical approach and used it to analyze gene expression
data and ordinal clinical information from HD patients
and corresponding controls. Our approach identified 848
phenotype-associated genes. These genes show changes in
expression that begin at the earliest stage of the disease, when
there are no macroscopic changes to the brain, and consistently
increase or decrease with disease progression. The categories of
genes identified by this analysis were highly consistent with prior
literature on HD, and the top-ranked genes were well-studied in
the context of this disease.

We carried out experiments to determine whether the changes
in the levels of the PAGs were merely correlated with
disease progression or can play a causal role. To that end,
we knocked-down several top ranked genes and found that 75%
of the tested genes altered viability in a cell-based model of HD.
To explore the potential for this method to uncover novel
disease-related genes, we studied SGPL1, one of the top-ranked
genes, in detail. We demonstrated that SGPL1 has the potential

to be a therapeutic target in HD. SGPL1 encodes the SPL enzyme,
a key regulator of sphingolipid metabolism26. Sphingolipids
are abundant in neuronal cells and maintaining balanced
concentrations of sphingolipids is essential for proper neuronal
functions. Enzymes involved in the sphingolipid pathway
are dysregulated in many neurodegenerative diseases including
Alzheimer’s disease (AD)41, amyotrophic lateral sclerosis42, and
HIV-dementia43. In particular, previous studies showed the
upregulation of the SPL enzyme and downregulation of S1P in
AD brains compared to controls44. A few studies have specifically
examined this pathway in the context of HD. In Pirhaji et al.45,
we showed the dysregulation of sphingolipid metabolism in a
cellular model of HD, and downregulation of complex
sphingolipids including gangliosides has been shown in HD46.
Furthermore, treatment with ganglioside GM1 has been shown to
reduce the toxicity of mutant huntingtin47. Here, we showed
that the levels of several sphingolipids such as phosphorylated
sphingoid bases are significantly decreased in R6/2 mouse
model of HD compared to controls. Additionally, our
meta-analyses of gene expression data from five HD models
determined that more than 42% of the genes involved in the
sphingolipid pathway are dysregulated. We also observed
upregulation of the SPL enzyme in human postmortem cortical
brain tissue from HD patients compared to neurologically
normal controls. Collectively, our results provide evidence of
dysregulation of sphingolipid metabolism in HD.
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In addition to demonstrating that inhibiting the SPL enzyme
significantly increased survival of cells with mutant huntingtin in
the STHdh cell line model of HD, we also found a survival
advantage from SPL inhibition in coronal brain slices transfected
with mutated huntingtin. Furthermore, we showed that the
inhibition of the SPL enzyme and the consequent increase in S1P
levels exerted an effect on the epigenome, through changes in the
levels of acetylation of H3K9. S1P is an important bioactive
molecule that activates intracellular and extracellular signaling
pathways leading to proliferation and anti-apoptotic effects48.
Although the extracellular activities of S1P are well known49,
the intracellular role of S1P in epigenetic regulation was only
discovered recently. S1P directly inhibits HDAC1/2 activities,
which leads to increased levels of specific classes of histone
acetylation, including H3K937. H3K9 acetylation is essential for
neuronal function and exerts an important role in learning and
memory36. Additionally, HDAC inhibition and the subsequent
increased acetylation, including H3K9ac, ameliorate HD
symptoms39. Here, we demonstrated that one potential protective
mechanism of action of SPL inhibition is the modulation of
HDAC activities and consequent increase in H3K9ac levels.

In conclusion, we have demonstrated that the combination of
transcriptomic data with ordinal clinical information advances
our understanding of biological processes in disease progression
and can lead to the discovery of novel genes with potential
therapeutic roles. Considering the exponential increases in
publicly accessible transcriptional data, we envision that our
systematic approach will have broad applications in biological
research in human diseases.

Methods
Gene expression data. We obtained gene expression data for human, mouse
and cell line models of HD from the NCBI Gene Expression Omnibus (GEO)
database50. The human gene expression compendium includes transcriptional data
of postmortem striatal tissues for 38 HD patients and 32 unaffected controls,
(NCBI GEO entry GSE3790)11. In addition to gene expression data, the Vonsattel
grade representing the severity of neurodegeneration is available for each patient.
We compiled mouse gene expression from the following sources: striata of 12-week
R6/2 mice (NCBI GEO entries GSE9803 and GSE9804)51, striata of 22-month
CHL2 mice (NCBI GEO entry GSE10202)51, striata of 3-month and 18-month
HdhQ92 mice (NCBI GEO entry GSE7958)51, the brains of 18-week, 22-week, and
27-week R6/1 mice (NCBI GEO entry GSE3621)52, and the striata of 12-month and
24-month YAC128 mice (NCBI GEO entry GSE19677)53, and corresponding
controls for each model. This compendium includes 19 101 genes and 74 arrays.
We further obtained transcriptional data for the STHdh cell line model of HD
using the NCBI GEO database accession number GSE4343323.

To analyze microarrays from human and mouse, we applied a two-step
normalization process. First, expression data of each microarray chip was
normalized using the robust multi-array average method54 with the R
Bioconductor package55. In the second step, a quintile normalization was used on
the entire gene expression compendium to scale the distributions of expression
arrays56. Each gene was assigned the average of expression levels for its
corresponding probes. Next, we identified differentially expressed genes between
each HD model and corresponding controls using the Limma R package57. Human
homologs of differentially expressed genes in mouse models were further identified
using the NCBI HomoloGene database50.

GO enrichment assessment was performed using GOrilla software58. The
enrichment score for each GO term is calculated as the ratio of the frequency of the
genes associated with a GO term from the target gene list compared to that from
the background gene list.

Ordinal regression model. Ordinal regression models are useful when more than
two categorical responses are present as an ordered series, e.g., high, medium, and
low59. For k+1 ordered categories, an ordinal regression model has k equations and
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defined as60:

odds Y � ið Þ ¼ P Y � ið Þ
1� P Y � ið Þ

odds Y � ið Þ ¼ f αi þ βiXð Þ; i ¼ 1; ¼ ; k

To reduce the number of free parameters, we applied the commonly used
proportional odds assumption, in which the β parameter is the same for all
odds-ratios. Thus, the proportional odds assumption requires determining k
intercept values (αi) and one value for the slope (β)). The proportional odds
model for k+1 ordinal response categories is:

odds Y � ið Þ ¼ f αi þ βXð Þ; i ¼ 1; ¼ ; k

To fit this model, we applied the R ordinal package. We implemented the probit
link function, which is the inverse of the cumulative distribution function for the
Gaussian distribution61, since we assume there exists an underlying latent normal
distribution in the response variable. The p-values for inferred parameters from
this ordinal regression model were calculated using the two-tailed z-test for the null
hypothesis, which consists of a coefficient that is equal to zero.

Next, we applied the ordinal regression model to the human expression
compendium and identified genes whose expression levels are explained by the
progression of neurodegeneration. Our human gene expression compendium was
composed of expression data for 18 898 genes from 32 unaffected controls and 38
HD patients. Clinical information of these patients are classified into ordinal
categories based on the grade of neurodegeneration (i.e., Vonsattel grade). Here, we
classified these samples into four ordinal categories (Supplementary Table 6), and
fitted an ordinal regression model for each gene.

Cell culture. The conditionally immortalized murine striatal progenitors
expressing either wild type (STHdh Q7) or mutant Htt (STHdh Q111) were
purchased from Coriell (CH00097 and CH00095, respectively) and grown as
described in Trettel et al.22. Cells were maintained at permissive temperature
(33 °C) in a humidified incubator with 5% CO2 and cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Corning, 10-013), supplemented with 10% fetal
bovine serum (FBS, Gemini Bio-Products, 100–106), 1% penicillin/streptomycin
(Gemini Bio-Products, 400-109) and 400 μg/ml G418 (Gemini Bio-Products,
400-113). Cells were routinely tested for mycoplasma contamination using
Mycoplasma PCR Detection kit (Applied Biological Materials, G238), and they

were sub-cultured at 85–90% confluency. Passage number was maintained
below 14. For cell treatment experiments, the medium was removed 24 h after
seeding and cells were washed once with Dulbecco’s Phosphate-Buffered Saline
(DPBS) solution. Serum-free medium containing either vehicle (DPBS) or 4 mM
4-deoxypyridoxine hydrochloride (DOP—Sigma Aldrich, D0501) was subsequently
added for 24 h. Cells were then washed three times with ice-cold DPBS, scraped on
ice and centrifuged at 500×g for 5 min at 4 °C. The pellets were flash-frozen with
liquid nitrogen and stored at −80 °C until needed.

Protein extraction and WBs. To quantify SPL protein expression, 2 × 106 striatal
cells and 20 mg of frozen pulverized brain tissues (cerebral cortex) from twelve
HD and eight neurologically normal controls (all male) were resuspended in 200 μl
ice-cold RIPA buffer (50 mM Tris‐HCl pH 7.4, 150 mM NaCl, % NP‐40, 0.5 %
Sodium Deoxycholate, 0.1 % SDS) supplemented with freshly made 1 mM DTT
and Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific, 78442).
Brain tissue samples were kindly provided by Prof. Richard H. Myers of Boston
University. These samples were homogenized with disposable plastic pestles, while
cells were vortexed for 30 s before incubation on ice for 30 min. Samples were
subsequently centrifuged at 16 000×g for 10 min at 4 °C and the supernatant,
containing the protein extracts, was collected. Protein concentration was measured
with the Bradford Assay. WB experiments were carried out using the Odyssey
infrared imaging system (Li-Cor Biosciences), as described by Ng et al.23.
The following primary antibodies were used: anti-SGPL1 (for WB on human
postmortem samples—Sigma Aldrich, SAB1408645, dilution 1:1000); anti-SGPL1
(for WB on mouse striatal cells—Abcam, ab56183, dilution 1:500); anti-Actin
(Abcam, ab3280, dilution 1:10 000).

To quantify histone acetylation levels, nuclear extracts were prepared as
described by Schreiber et al.62, and 30 μg loaded on the gel for WB. The following
primary antibodies were used: anti-Acetyl-Histone H3 (Lys9) (C5B11) (Cell
Signaling, 9649, dilution 1:600); anti-Histone H3 (Abcam, ab10799, dilution
1:1000).

Corticostriatal organotypic brain slice assay. Coronal brain slices containing
both cortex and striatum (250 μm thick) were prepared from Sprague-Dawley
rat pups (Charles River, postnatal day 10) using a vibratome and placed into
interface culture atop 0.5% agarose (JT Baker) set in Neurobasal A (Invitrogen)
based culture medium34. All experimental procedures including the sacrificing
of animals were done in accordance with NIH guidelines and under Duke IACUC
approval and oversight. Brain slices were then biolistically co-transfected (Helios
Gene Gun; Bio-Rad) with YFP to visualize transfected neurons together with a
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mutant huntingtin expression construct for human huntingtin exon-1 containing
a 73 CAG repeat (Httex1-Q73). DOP was added to cultures at the time of slice
preparation and transfection at the indicated concentrations. After 4 days, YFP
co-transfected MSNs were identified based on their location in the striatal regions
of each brain slice and by their characteristic dendritic morphology, and scored
as healthy if exhibiting continuous and even expression of YFP throughout the
cell soma and all processes, and at least two clear primary dendrites that were
at least two cell bodies long34, 35. MSNs exhibiting typically sized cell soma,
continuous and even expression of YFP in the cell body and all processes, and at
least two clear primary dendrites that were at least two cell bodies long were scored
as healthy.

Targeted lipid measurements in STHdh cell lines. For the measurement of S1P
in STHdh cell lines, metabolites were extracted from cell pellets (3 × 107 cells)
in 80% methanol containing Prostaglandin E2-d4 (PGE2-d4) as an internal
standard (Cayman Chemical Co). A standard solution containing S1P (Cayman
Chemical Co, 62570) was prepared in methanol and analyzed alongside the
samples to match the retention time of the observed features. The LC–MS system
used for the analysis comprises a Nexera X2 U-HPLC system (Shimadzu Scientific
Instruments; Marlborough, MA) and a Q Exactive hybrid quadrupole orbitrap
mass spectrometer (Thermo Fisher Scientific; Waltham, MA). Cell extracts and 0.4
ng of the S1P standard were injected onto a 150 × 2mm ACQUITY T3 column
(Waters; Milford, MA). MS analyses were carried out using electrospray ionization
in the negative ion mode using full scan analysis is with an ion spray voltage of −3.
5 kV, capillary temperature of 320 °C and probe heater temperature of 300 °C.
Targeted processing and manual inspection of S1P was conducted using
TraceFinder software (Thermo Fisher Scientific; Waltham, MA).

Sphingolipid measurement from brain samples of R6/2 mice. R6/2 transgenic
mice (CAG repeat length 320–350; C57BL/6 J background, and hybrid C57BL/
6×CBA (B6/CBA) background) and non-transgenic littermate controls were
maintained in accordance with the IACUC policies on animal welfare at The
Rockefeller University, and the ethics for the animal study was approved by The
Rockefeller University Institutional Animal Care and Use Committee. Striatal
tissue from the animals was rapidly dissected, placed into ice-cold lysis buffer
(10 mM HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl2), and disrupted by
homogenization and sonication. Samples were flash frozen in liquid nitrogen and
stored at −80 °C until use. For the measurement of sphingolipid species, internal
standards were spiked into all samples (Avanti Polar Lipids (LM-6002); Avanti
Polar Lipids, Alabaster, AL) and metabolites were then extracted in 2:1 HPLC
methanol and chloroform. Samples were then placed in a bath sonicator for 30 min
and incubated at 48 °C overnight. After allowing samples to reach room
temperature, 1 M KOH in methanol was added to each sample and samples
were sonicated for 2 h. Acetic acid was then added to all samples. For sphingoid
base analysis, half of the extracted sample was centrifuged and the pellet was
re-extracted with 2:1 HPLC chloroform:methanol, re-sonicated, centrifuged, and
dried under nitrogen. Sphingoid bases were reconstituted in 60:40 mixture of
mobile phases A and B, which consisted of 58:41:1 methanol:water:glacial acetic
acid, 5 mM ammonium acetate and 99:1 methanol:glacial acetic acid, 5 mM
ammonium acetate, respectively. Samples were sonicated, vortexed, and then
submitted to mass spec. Samples were run on a Waters Acquity UPLC/Sciex 5500
QTrap tandem quadrapole system and assayed in positive mode according to
scheduled multiple reaction monitoring for individual sphingoid bases, sphingoid-

1-phosphates. Compound separation was performed by gradient elution on a
reversed phase UPLC column under gradient conditions.

Cell viability assays. Cell viability was assessed using a three-color fluorescence
assay and high-content imaging. For DOP treatment and siRNA-mediated
knockdown, 6000 and 2500 striatal cells, respectively, were seeded in sterile, black
96-well microplates. For DOP treatment, cells were incubated for 24 h in phenol
red-free and serum-free DMEM, containing either vehicle (DPBS) or 4 mM
DOP. For knockdown of target genes, cells were transfected for 48 h with the
appropriate siRNAs. siRNA transfected cells were washed with 1× DPBS and
further incubated for 24 h in serum-free DMEM. After the 24-h incubation, Calcein
AM (Thermo Scientific, C3099—final concentration: 1 µg/ml), Propidium Iodide
(Thermo Scientific, P3566—final concentration: 2 µg/ml) and Hoechst 333442
(Thermo Scientific, H3570—final concentration: 2 µg/ml) were added to quantify
live, dead, and total cells, respectively. After 20 min incubation at 33 °C, image
acquisition was carried out with a Cellomics Arrayscan Platform (Thermo
Scientific). Seven fields per well were scanned at 10× magnification and quantitative
analysis was performed using Cellomics proprietary algorithm for cell viability.
Cell loss was calculated as the ratio of propidium iodide-positive cells to the
total cell counts.

siRNA knockdown of target genes. 2500 STHdh Q111 cells were seeded in sterile,
black 96-well microplates. After 24 h, cells were transfected with one of 50 nM
Silencer Select siRNA against Sgpl1 (Thermo Fisher, 4390771: siRNA ID # s73644),
25 nM Silencer Select siRNA against Ahnak (Thermo Fisher, 4390771: siRNA ID#
s83166), 50 nM Silencer Select siRNA against Tcf12 (Thermo Fisher, 4390771:
siRNA ID# s74812), 50 nM Silencer Select siRNA against Tns1 (Thermo Fisher,
4390771: siRNA ID# s75344) 50 nM Silencer Select Negative Control siRNA
(Thermo Fisher, 4390843) or BLOCK-iT Alexa Fluor Red Fluorescent Control
(Thermo Fisher, 465318) using the Lipofectamine RNAiMAX Transfection
Reagent (Thermo Fisher, 13778030). Silencer Select Negative Control siRNA has a
sequence that does not target any mouse gene transcript. After 48 h, transfection
efficiency was estimated using fluorescence from cells transfected with 25 nM
and 50 nM BLOCK-iT. To determine the levels of target genes after silencing,
transfected cells were washed twice with DPBS, and RNA was extracted using
the RNA/DNA/Protein Purification Plus Micro Kit (Norgen Biotek Corp., 51600).
Reverse transcription was carried out using the Transcriptor First Strand cDNA
Synthesis Kit (Roche, 04379012001) and qPCR was performed with the KAPA
SYBR FAST qPCR Kit (KapaBiosystems, KK4611) and KiCqStart SYBR Green
Predesigned Primers (Sigma Aldrich) for mouse Sgpl1 (gene ID: 20397; primer
pair # 1), mouse Ahnak (primer pair # 1), mouse Tcf12 (gene ID: 21406; primer
pair # 1), mouse Tns1 (gene ID: 21961; primer pair # 1), and mouse Actb
(gene ID:1146; primer pair # 1). The latter was used as internal control. Relative
gene expression was calculated with the ddCt method.

Measurement of HDAC activity. HDAC activity was assessed using the Color de
Lys HDAC Colorimetric Assay Kit (Enzo Life Sciences, BML-AK501), according to
the manufacturer’s specifications. Briefly, 25 µg of nuclear protein extracts from
STHdh Q111 cells were incubated with 10 µM S1P (Cayman Chemical Co, 62570)
in the presence of the Assay Buffer and the Color de Lys Substrate. After 15 min at
37 °C, the Color de Lys Developer was added to the samples which were further
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incubated for 15 min at 37 °C. Absorbance at 405 nm was then measured using the
Varioskan Flash Spectral Scanning Multimode Reader (Thermo Fisher Scientific).

To measure HDAC activity after the cell treatment with DOP, STHdh
Q111 cells were incubated with either vehicle or 4 mM DOP in serum-free
medium. After 24 h the cells were collected, nuclear extracts were prepared and
HDAC activity was measured as described above.

mRNA-sequencing. RNA from striatal cell lines was extracted with the
RNA/DNA/Protein Purification Kit (Norgen Biotek Corp., 23500), treated with
DNase I and quantified with Nanodrop 2000 (Thermo Scientific). RNA quality
and integrity were evaluated using the Fragment Analyzer (Advanced Analytical).
All samples had an RNA Quality Number higher than 9.8. 1 µg of total RNA was
used for library preparation. Libraries were generated using the TruSeq Stranded
mRNA Library Prep Kit (Illumina, RS-122-2101), according to the manufacturer’s
instructions. Samples were submitted for single-end sequencing using an Illumina
HiSeq 2000 platform, available at the MIT BioMicroCenter.

mRNA-sequencing data analyses. To analyze RNA-seq data, we first aligned raw
sequencing reads to the mouse reference genome (University of California, Santa
Cruz (UCSC), mm9) using TopHat 2 software63. We identified differentially
expressed genes between DOP treated and untreated samples using Cuffdiff
2 software64. As a result, we identified 3097 genes with significant changes in
expression levels (corrected p< 0.01). For each gene, we then calculated the log2
fold-change of the average for the transcript per million mapped (FPKM) reads
between treated and untreated samples. Finally, we performed GO enrichment
analyses on differentially expressed genes using GOrilla software58.

ChIP-sequencing. Chromatin immunoprecipitation coupled with next generation
sequencing (ChIP-seq) was carried out as described by Ng et al.23. The ChIP-grade
anti-Histone H3 (acetyl K9) antibody (Abcam, ab4441) was used for immuno-
precipitation. A negative control ChIP reaction was performed using normal
rabbit IgG (Santa Cruz Biotechnology, sc-2027). Libraries were submitted for
single-end sequencing.

ChIP-sequencing data analyses. Raw sequencing data were first aligned to a
mouse reference genome (University of California, Santa Cruz (UCSC), mm9)
using Bowtie 2 software65. Using GPS software66, we then identified peaks
representing regions of the genome associated with H3K9ac. We identified 30 791
peaks for STHdh samples treated with DOP and 29 496 peaks for the untreated
samples. To measure the relative changes in read densities of the H3K9ac peaks,
we compared detected peaks from treated and untreated conditions using MAnorm
software67. MAnorm software normalizes peak intensities, then calculates an
M-value for each peak that is representative of the relative peak intensity between
two conditions (q-value< 0.05). To identify the nearest gene to these peaks,
peak annotation was performed using ChIPseeker R package68.

The IE of H3K9ac on gene expression. To detect genes whose expression levels
are affected by an increase in H3K9ac, we first calculated an H3K9ac score for each
gene. We identified 291 genes that are significantly upregulated following DOP
treatment and with at least one annotated peak within 10 kb of their promoter.
Next, we calculated an H3K9ac score for each one of these genes as a summation of
M-values for the annotated peak located in the 10 kb region of the gene promoter.

To quantify the effect of H3K9ac on increased gene expression, we used an IE
statistic. An IE measures the effect of two continuous variables on a response
variable, and is defined as69:

Y ¼ γ0 þ γ1X1 þ γ2X2 þ γ3X1X2

Here, we represent the effect of H3K9ac on gene expression, Y, as the mediated
effect of the H3K9as score (X1) for each gene on the fold-change of gene expression
(X2) following DOP treatment. We then calculated the z-score of the IE (IEZ), and
ranked genes accordingly. High-ranked genes have expression levels that correlate
to increase in H3K9ac levels. We then considered genes with IEZ> 0 as primary
candidates for functional analysis using GOrilla software58.

To calculate IEZ, we considered that γ0 equals to zero since it does not affect
the rank of genes based on IEZ, while remaining γ parameters are assumed equal to
one (γ1\=γ2=γ3=1). To measure the robustness of our results based on the value of
γ parameters, we calculated IEZ of randomly selected values for γ parameters,
and identified genes for which IEZ> 0. This process was repeated for 100 times.
Our results demonstrate that for more than 92% of all iterations an identical set of
genes was identified.

Data Availability. mRNA-sequencing and ChIP-sequencing data collected in this
study are deposited at Gene Expression Omnibus (GEO), and are publicly available
with accession number GSE98740. All relevant data are available from the authors
upon request.
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