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ABSTRACT7

Poromechanics of heterogeneous media is reformulated in a discrete framework using Lattice8

Element Method (LEM) that accounts for the presence of interfaces as well as local microtextural9

and elastic variations. The exchange of mechanical information between pore and solid(s) is10

captured by means of force field potentials for these domains, which eliminate the requirement of11

scale separability of continuum-based poromechanics approaches. In congruence with µVT and12

NPT ensembles of statistical mechanics, discrete expressions for Biot poroelastic coefficients are13
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derived. Considering harmonic-type interaction potentials for each link, analytical expressions for14

both isotropic and transversely isotropic effective elasticity are presented. The theory is validated15

against continuum based expressions of Biot poroelastic coefficients for porousmedia with isotropic16

and transversely isotropic elastic solid behavior.17

INTRODUCTION18

Poromechanics is dedicated to modeling and prediction of how porous materials deform in19

response to various external loadings. These loadings range from fluid-solid interactions by a20

variety of pressures at the liquid-solid interface to complex physical chemistry phenomena at the21

pore scale that produce a mechanical deformation (incl. fracture) of the solid. The classical22

backbone of poromechanics is based on continuum theories, ever since Maurice A. Biot defined23

the kinematics of deformation of the skeleton within the classical continuum mechanics framework24

as the reference for the description of flow of liquid phase through the pore space (Biot 1941), with25

the state equations for stress, Σ, and porosity change, φ− φ0, given in the linear poroelastic case by:26

Σ =
1
V
∂Epot

∂E
= C : E − bp (1)27

φ − φ0 = −
1
V
∂Epot

∂p
= b : E+

p
N

(2)28

where Epot is the potential energy of the solid phase of the solid-pore composite of volume V ,29

subjected to an average strain E = 〈ε〉V at the boundary ∂V , and a pressure p at the solid-30

pore interface. C is the fourth-order elastic stiffness tensor, b is the second-order tensor of Biot31

pore pressure coefficients, and N denotes the solid Biot modulus. This continuum framework also32

provided the backbone for the development of the close-to-equilibrium thermodynamics framework33

of irreversible deformation of porous media pioneered by Coussy (Coussy 1995), and its extension34

to a large range of phase change and adsorption phenomena (Coussy 2010). In the same vein,35

microporomechanics theories can be viewed as refined extensions of the continuum framework to36

the microscale, in that they adapt continuum micromechanics theory (Suquet 1987; Zaoui 2002)37

to the specific nature of porous materials viewed as solid-pore composite materials (Dormieux38
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et al. 2002; Dormieux et al. 2006). While the continuum poromechanics theory has entered39

and transformed many engineering fields ranging from Civil- and Environmental Engineering40

and geophysics applications to biomechanics and the food industry (see for e.g. (Hellmich et al.41

2013)), the intrinsic limitations of the theory relate to the very foundations of the continuummodel,42

including scale separability and its impact on the relevance of the differential operators defining43

the momentum balance and displacement–strain operators. This is a serious limitation of the44

theory in its applicability to highly heterogeneous materials. For instance, such a continuum theory45

will fail for microstructure resolutions achieved by micro and nano Computed Tomography (CT)46

imaging techniques of highly heterogeneousmaterials, in which the characteristic length scale of the47

heterogeneity is of a similar scale as the sample size, or for multiscale heterogeneous materials for48

which a single representative elementary volume (rev) cannot be defined. It is for such systems that49

a discrete form of poromechanics theory is proposed, in which physical interactions replace volume50

descriptors. This approach is much akin to molecular representations of material systems with51

interaction forces between mass points derived from potentials that define the out-of-equilibrium52

state of the system w.r.t. a relaxed equilibrium configuration.53

Herein, the elements of such a discrete poromechanics approach are developed using statistical54

mechanics ensemble definitions within the context of the Lattice Element Method (Topin et al.55

2007; Affes et al. 2012) using the framework of effective potentials (Laubie et al. 2017b). By way56

of validation, some pore-solid morphologies are revisited to determine poroelastic constants within57

and beyond the classical continuum limits of scale separability.58

LATTICE ELEMENT METHOD APPLIED TO PORE-SOLID COMPOSITES59

Consider a porous material composed of a solid (volume Vs) and pore space (volume Vp).60

Following the Lattice Element Method (Topin et al. 2007; Affes et al. 2012; Laubie et al. 2017b),61

the two domains are discretized into a number of unit cells (or voxels), the center of which defines62

a mass point that interacts with a fixed number of neighboring mass points forming a regular or63

irregular lattice structure. The interaction forces and moments between two mass points i and j64

derive from an effective potential Ui j as a function of the translational, ®δi = ®xi − ®Xi, and rotational,65
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®ϑi, degrees of freedom, where ®Xi and ®xi denote the position vectors of mass point i in the reference66

and the deformed configurations, respectively (for a detailed derivation, see (Laubie et al. 2017b)):67

®F j
i = −

∂Ui j

∂ ®δi
; ®F j

i +
®Fi

j =
®0 (3)68

®M j
i = −

∂Ui j

∂ ®ϑi

; ®M j
i +
®M i

j + ®ri j × ®Fi
j =
®0 (4)69

where ®ri j = l0
i j ®e

i j
n is the vector connecting node i to node j of rest-length l0

i j and oriented by the unit70

vector ®ei j
n in a local orthonormal basis (®en, ®eb, ®et). For such discrete system, the stresses are modeled71

using the Virial expression (Christoffersen et al. 1981) σ = ρc〈®r ⊗ ®F〉, where ρc represents the72

number of interaction bonds per unit volume, 〈.〉 denotes the first moment of ®r ⊗ ®F distribution73

over interaction bonds; while neglecting the momentum term. In LEM for mass point i, this Virial74

expression can be written as:75

σi =
1
Vi

Nb
i∑

j=1
®ri j ⊗ ®F j

i (5)76

withVi denoting the volume of the unit cell, and Nb
i representing the number of node i’s neighboring77

mass points. The Virial expression provides a truly discrete description of the system as opposed to78

the continuum-based stress definition employed in classical finite-element based approaches. The79

stress in volume V composed of a total of Nt unit cells is simply the volume average of the local80

stresses; that is:81

σ =
1

2V

Nt∑
i=1

Viσi (6)82

What thus differs between different material domains is the interaction potential from which forces83

and moments are derived.84

Effective Solid Potentials85

The effective potential employed here for the solid phase(s) considers both two-body and three-86

body interactions between two mass points i and j, in the form:87

Ui j = Us
i j +Ub

i j ∀i ∈ Vs (7)88
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where Us
i j = Us

i j

( (
®x j − ®xi

)
· ®en = δ

n
j − δ

n
i

)
stands for any suitable pairwise potential representative89

of the solid. For linear poroelastic systems this necessarily implies a harmonic expression for this90

pairwise potential:91

Us
i j =

1
2
εn

i j

(
δn

j − δ
n
i

l0
i j

)2

(8)92

with εn
i j denoting the axial energy parameter. Similarly, the three-body and rotational interactions93

read in the harmonic case (Laubie et al. 2017b):94

Ub
i j =

1
2
ε t

i j


(
δb

j − δ
b
i

l0
i j

− ϑt
i

)2

+

(
δt

j − δ
t
i

l0
i j

+ ϑb
i

)2

95

+

(
δb

j − δ
b
i

l0
i j

− ϑt
i

) (
ϑt

i − ϑ
t
j

)
+

(
δt

j − δ
t
i

l0
i j

+ ϑb
i

) (
ϑb

j − ϑ
b
i

)
(9)96

+
1
3

((
ϑb

j − ϑ
b
i

)2
+

(
ϑt

i − ϑ
t
j

)2
)}

97

where ε t
i j is the transverse energy parameter. With Eq. (7) at hand, the forces and moments read:98



®F j
i = −

∂Ui j

∂ ®δi
=

εn
i j

l0
i j

(
δn

j − δ
n
i

l0
i j

)
︸          ︷︷          ︸

F j,n
i

®en +
ε t

i j

l0
i j

(
δb

j − δ
b
i

l0
i j

− 1
2

(
ϑt

j + ϑ
t
i

))
︸                               ︷︷                               ︸

F j,b
i

®eb +
ε t

i j

l0
i j

(
δt

j − δ
t
i

l0
i j

+
1
2

(
ϑb

j + ϑ
b
i

))
︸                               ︷︷                               ︸

F j,t
i

®et

®M j
i = −

∂Ui j

∂ ®ϑi
= −

ε t
i j

2

(
δt

j − δ
t
i

l0
i j

+
1
3

(
ϑb

j + 2ϑb
i

))
︸                                  ︷︷                                  ︸

M j,b
i

®eb +
ε t

i j

2

(
δb

j − δ
b
i

l0
i j

− 1
3

(
ϑt

j + 2ϑt
i

))
︸                                ︷︷                                ︸

M j,t
i

®et

.

(10)99

It should be noted that the defined harmonic potentials are merely Taylor expansions of non-100

harmonic potentials around the equilibrium state of the system in LEM (Laubie et al. 2017b). Thus,101

the linear poroelastic formulation herein presented could be extended to non-linear poroelastic102

systems when considering non-harmonic potentials without much loss of generality. Additionally,103

one can calibrate the energy parameters to reproduce an effective elastic behavior based on the104

lattice and the network chosen. This point will be developed further in the Application section for105
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two different elastic symmetries.106

Effective Pore-Pressure Force Field Potential107

The simplest case to consider the deformation behavior of the solid phase due to a pressure in108

the pore space is the saturated drained situation, in which the fluid in the pore domain is assumed109

to communicate with an outside reservoir maintained at a constant pressure p, so that in the relaxed110

state, the same pressure will prevail in the pore domain. Such a hydrostatic drained stress state,111

σ = −p1, necessarily implies that only central-forces are active on each mass point in the pore112

domain, ®F j
i = F j,n

i ®en so that the Virial stress expression for the entire pore domain of volume Vp113

and Np voxels becomes:114

σ = −p1 =
np
`

2Vp
〈ri j F

j,n
i ®en ⊗ ®en〉 =

1
2Vp

Np∑
i=1

Nb
i∑

j=1
ri j F j,n

i ®ei j
n ⊗ ®ei j

n (11)115

where np
`
denotes number of links in the pore domain. In a zeroth-order description of the116

microtexture, F j,n
i and ri j are considered to be independently distributed and thus not correlated117

(Radjai et al. 1998; Radjai et al. 2009; Azema and Radjai 2014) which allows Eq. (11) to be118

expressed as σ = np
`

2Vp
〈rFn〉〈®en ⊗ ®en〉, which leads to the equality of traces:119

3p =
np
`

2Vp
〈rFn〉 (12)120

Now, by way of analogy with logarithmic equations of state for bulk fluids (Poirier and Tarantola121

1998), consider a logarithmic potential, U
(
ri j

)
= ω ln

(
l0
i j/ri j

)
, and hence F j,n

i = −∂U/∂ri j =122

ω/ri j , where ω = 〈rFn〉 (of dimension of work) can be viewed as a fluid characteristic and should123

be constant. 〈rFn〉 can be made independent of ri j (which is dependent on the orientation ®en of the124

bonds) by simply setting:125

F j,n
i = −6p

ri j

Vp

np
`

(13)126
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This relation ensures that the mean pressure is p and the equality (12) is satisfied. This paves the127

way for imposing a pressure inside a domain discretized by a regular lattice:128

p = −
ωnp

`

6Vp
(14)129

Equation (13) defines the interaction between pore and solid mass points in the form of externally130

supplied work. This perturbation of the system’s equilibrium is resolved through the theory of131

minimum potential energy as a new equilibrium position is sought through energy minimization132

(see (Laubie et al. 2017b)). Lastly, it is readily recognized that 〈®en ⊗ ®en〉 is the fabric tensor, Hp,133

characterizing the morphology of the pore space. It can be expanded in the following way:134

Hp =
1
np
`

Np∑
i=1

Nb
i∑

j=1
®en ⊗ ®en (15)135

For Eq. (11) to hold, the fabric tensor, Eq. (15), should be diagonal, Hp =
1
3

tr (Hp) 1 with no136

deviatoric components, i.e. dev (Hp) = Hp − 1/3 tr (Hp) 1 = 0, which holds true for any regular137

lattice. Furthermore, tr (Hp)=1 by construction. Note that, if the underlying lattice is not regular138

and hence not diagonal, then the values of F j,n
i would have been dependent not only on the average139

pressure to be imposed, but also the orientations of the bonds.140

POROELASTIC PROPERTIES AND ENSEMBLE DEFINITIONS141

The poroelastic properties of materials formmuch of the backbone of application of the porome-142

chanics theory. This includes the elasticity tensor, C, the tensor of Biot coefficients, b, and the143

solid Biot modulus N. From the composite structure of porous materials, it is readily understood144

that these macroscopic properties call for averages. Such averages are best defined, in statistical145

mechanics, within the context of specific statistical ensembles which –at least theoretically– include146

every possible microscopic state of the system. The advantage of using statistical ensembles for the147

determination of the poroelastic properties is that each ensemble is associated with a characteristic148

state function or thermodynamic potential that uniquely define –upon minimization– the equilib-149
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rium state of the system in function of a few observable parameters; much akin to the classical150

minima theorems of elasticity employed in continuum mechanics, e.g. for the derivation of the151

state equations of poroelasticity (1) and (2) (Dormieux et al. 2002; Dormieux et al. 2006). It is thus152

shown that making the link between statistical ensembles and such boundary conditions is quite153

helpful for the determination of the poroelastic constants from discrete simulations.154

Drained Elasticity Properties in the NVT-Ensemble155

The first quantity of interest is the drained elasticity tensor, which is obtained by letting156

p ∼ ω = 0. In this drained situation, a regular displacement boundary condition is prescribed at157

the boundary (∂V) of the simulation box:158

®ξ = E · ®x ∀®x ∈ ∂V (16)159

where E refers to macroscopic strain tensor. Such a mechanical boundary condition is akin160

to an NVT-ensemble (or canonical ensemble) at the composite (solid + pore) scale, in that the161

total number of particles Nt is constant, the volume (or more generally, the displacement) of162

the system (V) is controlled via the boundary condition (16), and temperature (T) is maintained163

constant. The thermodynamic potential that defines such an ensemble is the Helmholtz free energy164

Ψ of the composite system, which realizes a minimum value at equilibrium (r → r0). Given the165

mechanical boundary value problem (E,p = 0), theminimumof theHelmholtz free energy is strictly166

equivalent to the minimum of the potential energy of the solid phase subjected at its boundary to the167

(displacement) boundary condition, Eq. (16), and a zero pressure in the pore space; and coincides168

with the free energy of the solid phase(s):169

E s
pot(E) = Ψ (Nt,V,T) = min

®δi, ®ϑi

∑
links ij∈V s

0

Ui j

(
®δ j − ®δi + ®ri j × ®ϑi; ®ϑ j − ®ϑi

)
(17)170
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The fourth-order stiffness tensor is then obtained by considering the curvature of the potential171

energy of the system around the relaxed state (r → r0):172

C =
1
V

∂

∂E

(
∂E s

pot

∂E

)����
ω=0;r→r0

(18)173

Biot Pore Pressure Coefficients in the µVT-Ensemble174

The determination of the tensor of the Biot pore pressure coefficients, b, and the solid’s Biot175

modulus, N, requires some further considerations. From the first macroscopic state equation,176

Eq. (1), it is realized that the tensor of Biot coefficients is obtained from the average stresses177

in an experiment where the strain, E, is zero, while a constant pressure p prevails in the pore178

space; exerting this pressure onto the solid–pore interface. Such conditions are akin to the Grand179

canonical ensemble or µVT ensemble at the composite (solid + pore) scale, in that (1) the porous180

system is open at a specified chemical potential µ; and (2) the overall volume is conserved with181

E = 0; and (3) the temperature, T , is maintained constant. In this µVT-ensemble, the characteristic182

state function that needs to be minimized is the so called Landau potential (or Grand potential),183

Ω (µ,V,T) = Ψ − µN f , where Ψ is the Helmholtz free energy, µ the chemical potential and N f184

the number of particles (here fluid particles). For the open system, the free energy is the sum of185

the free energy of the solid (Ψs) and of the fluid phase (Ψ f ) [see (Coussy 1995) for a detailed186

derivation of the thermodynamics of the porous continuum as an open system]; and the latter is but187

the difference between the potential energy of the fluid at constant pressure (µN f ) and the work188

by the fluid in the pore space; i.e. Ψ f = µN f − p
(
V p − V p

0

)
(where V p and V p

0 stand for the pore189

volumes respectively after and before deformation; i.e. V p = Vφ; V p
0 = Vφ0, with φ the Lagrangian190

porosity). The Landau potential for the composite system thus reduces to the classical expression191

of the potential energy of the solid phase for the considered boundary conditions (E = 0, p); that is:192

E s
pot (E = 0, p) ≡ Ω (µ,V,T) = min

®δi, ®ϑi

(
Ψ
(µVT)
s − pV (φ − φ0)

)
(19)193
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where Ψ(µVT)
s =

∑
links ij∈V s

0

Ui j

(
®δ j − ®δi + ®ri j × ®ϑi; ®ϑ j − ®ϑi

)
is the Helmholtz free energy of the solid194

phase.195

With the characteristic state function thus defined, the inter-particle forces ®F j
i in the solid domain196

are readily determined, permitting the determination of the stress via the virial expression in the197

composite µVT ensemble:198

Σ(µVT) =
1

2V

∑
i∈V

Nb
i∑

j=1
®ri j ⊗ ®F j

i = −
©« 1
2V

∑
i∈Vs

Nb
i∑

j=1
®ri j ⊗ ®F j

i + φ0p1ª®¬ (20)199

where the first term on the r.h.s. of Eq. (20) is the contribution of the solid phase with inter-particle200

forces ®F j
i = ∂Ψ

(µVT)
s /∂ ®ri j , whereas the second term represents the contribution of the pressure201

prevailing in the (Lagrangian) porosity, φ0 =
(
Vp/V

)
, with pressure p defined by Eq. (14). A202

straightforward comparison with the classical equation of state of poroelasticity, Eq. (1), thus leads203

to the following definition of the second-order tensor of Biot pore pressure coefficients, b:204

b = −Σ
(µVT)

p
=

1
p

©« 1
2V

∑
i∈Vs

Nb
i∑

j=1
®ri j ⊗ ®F j

i
ª®¬ + φ01 (21)205

Hence, all what it takes to obtain the tensor of Biot coefficient is to determine, in the µVT ensemble,206

the inter-particle forces ®F j
i in the solid domain that result from the pore-pressure loading using the207

Landau potential expression (19).208

Biot Modulus in the NPT-Ensemble209

The classical way of determining the Biot modulus is by means of the so-called unjacketed210

test, originally proposed by Biot and Willis (Biot and Willis 1957). The test consists of placing a211

sample into a pressure vessel maintained at the same pressure p as the fluid in the pore space. Such212

test conditions are akin to the isothermal–isobaric, NPT–ensemble of the solid phase (i.e. at the213

constituent scale, in contrast to the composite scale), in that (1) the number of solid particles Ns are214

maintained constant, (2) the solid is subjected at its (entire) boundary ∂Vs to a pressure p, while215

(3) the temperature, T , is maintained constant. The thermodynamic potential that characterizes the216
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NPT-ensemble is the Gibbs free energy of the solid phase, G (Ns, p,T), which strictly coincides for217

the pressure boundary condition to which the solid is subjected to the solid’s potential energy:218

E s
pot ≡ G (Ns, p,T) = min

®δi, ®ϑi

(
Ψ
(NPT)
s −Wp

)
(22)219

where Ψ(NPT)
s is the Helmholtz free energy of the solid phase in the considered ensemble:220

Ψ
(NPT)
s =

∑
links ij∈V s

0

Ui j

(
®δ j − ®δi + ®ri j × ®ϑi; ®ϑ j − ®ϑi

)
(23)221

while Wp = −p
(
V s − V s

0

)
is the external work realized by the prescribed pressure p on the solids222

boundary, with V s − V s
0 = V0 (Ev − (φ − φ0)) the volume change of the solid phase; that is:223

Wp = −pV0 (Ev − (φ − φ0)) (24)224

Herein, Ev = (V − V0) /V0 = 1 : E is the relative volume variation of the simulation box and225

φ − φ0 represents the change of the (Lagrangian) porosity, compared to the reference porosity φ0.226

Evaluation of (22) thus requires measurements of the volume strain (Ev) and the porosity change227

(φ−φ0) in the simulations (as classically done in laboratory tests using the unjacketed test). Around228

the equilibrium state, defined by harmonic interactions, such determination can be circumvented,229

when evoking Clapeyron’s formula which permits a direct determination of the free energy of the230

solid, in the NPT ensemble, from the external work; i.e., Wp = 2Ψ(NPT)
s . This in turn provides a231

direct means to assess the porosity change from both Eq. (2) and (24):232

(φ − φ0) = b : E +
p
N
= 1 : E +

2Ψ(NPT)
s

pV0
(25)233
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Finally, it should be noted that under the considered boundary conditions in the isothermal-isobaric234

ensemble (relative to the solid), the effective stress obtained from the Virial expression is zero:235

Σ(NPT) + p1 =
1

2V

∑
i∈Vs

Nb
i∑

j=1
®ri j ⊗ ®F j

i + (1 − φ0) p1 = 0 (26)236

where the interaction forces, ®F j
i , are obtained by minimizing the potential energy in this isothermal-237

isobaric ensemble (i.e., Eq. (22)). Expanding Eq. (25 with strain tensor E = −S : (1 − b) p and238

S = C−1, the drained compliance tensor of the composite as predicted by Eq. (1) forΣ(NPT)+p1 = 0,239

leads to the solid Biot modulus:240

1
N
=

2Ψ(NPT)
s

p2V0
− (1 − b) : S : (1 − b) (27)241

It should be emphasized that this determination of the Biot modulus is strictly valid only when242

the behavior of the solid phase is defined by harmonic potentials, for which Clapeyron’s formula243

applies. This still holds for non-harmonic potentials around the equilibrium state, r → r0, for which244

most non-harmonic potential expressions (e.g. Lennard-Jones) degenerate to harmonic expressions.245

The Biot modulus is thus confirmed as a measure of the solid’s elasticity around the equilibrium246

state, much akin to the drained elasticity tensor, as defined by Eq. (18).247

APPLICATION248

By way of application, the proposed discrete model of poroelasticity is implemented for Simple249

Cubic (SC) lattice systems. The LEM-approach here employed follows the approach developed250

by Laubie et al. (Laubie et al. 2017b) for solids, where specific details about calibration and251

numerical implementation of the method can be found. In short, for all the cases considered herein,252

a cubic simulation box of side length L = a0 (n − 1) composed of (n − 1)3 unit cells of size a0 are253

employed, where n stands for the number of mass points in any given direction. The mass points254

form a regular lattice with their interactions encapsulated by a network of links that connects a mass255

point to its 26 neighboring mass points. Thus, mechanical information are propagated through this256
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lattice network in 13 directions. This forms the so-called D3Q26 lattice structure consisting of 6257

box-links of rest-length l0 = a0, 8 cross-diagonal links of length
√

3a0, and 12 in-plane-diagonal258

links of length
√

2a0 (see Fig. 1).259

Solid Potential Parameter Calibration260

With a focus on linear poroelasticity, the interactions between mass points of the solid phase(s)261

(volume Vs) are defined by harmonic potentials, requiring the calibration of the energy parameters262

ε
(n,t)
i j for mass points i belonging to a specific solid phase and link j = 1, 26, with the understanding263

that links in same directions have same energy parameters. These energy parameters define the264

curvature of the potential energy around the equilibrium state, in the sense of expressions (17) and265

(18) for a pure solid phase subjected at its boundary to the regular displacement condition (16).266

It is thus readily understood that the 2 × 13 = 26 energy parameters, ε (n,t)i j , need to be calibrated267

with respect to the elasticity of the solid, expressed by stiffness tensor Cs. However, the choice of268

lattice/network used imposes some constraints on the range of elastic behavior that can be captured.269

This is consistent with the current understanding of the link between texture (here lattice structure)270

and deformation behavior of materials (Greaves et al. 2011). Specifically, in the isotropic case, it271

has been shown that the D3Q26 lattice structure in LEM, with non-negative normal and tangential272

energy parameters ε (n,t)i j ≥ 0, is able to capture the following range of solid Poisson’s ratios (Laubie273

et al. 2017b):274

− 1 ≤ νs =
Cs

13(
Cs

11 + Cs
13

) ≤ 1/4 (28)275

where the Voigt notations for stiffness constants is employed; i.e. Cs
11 = Cs

1111, Cs
13 = Cs

1133. The276

upper bound in (28) is the limit on Poisson’s ratios for the central-force lattice, when three-body277

interactions are neglected (ε t
i j = 0). For ν > 1/4, one needs to consider a different combination278

of lattice/network (see e.g. (Norris 2014)). Given isotropic symmetry, a maximum of 6 non-zero279

energy parameters can be used to calibrate the isotropic elastic behavior. For 0 ≤ νs ≤ 1/4,280

among possible calibrations, only three non-zero energy parameters are required
(
εn
1 , ε

t
1
)
for the281

6 box-links of rest-length l0 = a0, and εn
4 for the 12 in-plane-diagonal links of length

√
2a0 (for282
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numbering of the links, see Fig. 1). Considering a discretization by n mass points of unit cell size283

a0, the following explicit parameterization of these energy parameters in function of the isotropic284

plane-strain modulus, M s = Cs
11 −

(
Cs

13

)2
/Cs

11 = E s/
(
1 − (νs)2

)
(with E s = Young’s modulus)285

and the Poisson’s ratio νs ∈ [0, 1/4] is obtained:286



εn
1

M sa3
0
=
(n − 1)2

n2
(1 − 3νs) (1 − νs)

1 − 2νs

εn
4

M sa3
0
=
(n − 1)

n
νs (1 − νs)

1 − 2νs

ε t
1

M sa3
0
=
(n − 1)2

n2
(1 − 4νs) (1 − νs)

1 − 2νs

(29)287

From this parametrization it is also recognized that the three energy parameters are not independent,288

but related by the Poisson’s ratio:289

ε t
1
εn
1
=
(1 − 4νs)
(1 − 3νs) ≤ 1;

εn
4
εn
1
=

n
n + 1

νs

(1 − 3νs) (30)290

That is, one energy parameter is required in the isotropic case, with the other ones being scaled by291

Poisson’s ratio of the solid.292

Similar restrictions can be derived for transversely isotropic materials, for which the non-zero293

components of the stiffness tensor – in Voigt notation – are Cs
11 = Cs

22, Cs
12, Cs

13 = Cs
23, Cs

33,294

Cs
44 = Cs

55, while Cs
11 − Cs

12 = 2Cs
66; namely (Laubie et al. 2017b):295

Cs
12 ≤ Cs

66

(
i.e., Cs

12 ≤
1
3

Cs
11

)
; Cs

13 ≤ Cs
44 (31)296

Considering rotational material symmetry around the ®e3−axis, there are, a priori, a total of 8 energy297

parameters that can be used for fitting the elastic properties, which reduce (thanks to the condition298

C11 − C12 = 2C66) to six; namely
(
εn
1 , ε

t
1
)
and

(
εn
4 , ε

t
4
)
for links in the plane of symmetry ®e1 × ®e2299

[
(
εn
1 , ε

t
1
)
for the 4 box-links of rest length l0 = a0 oriented in the ®e1− and ®e2− directions, and

(
εn
4 , ε

t
4
)

300

for the 4 in-plane diagonals of length
√

2a0; see Fig. 1] and εn
3 and εn

6 for links in the ®e3 × ®e1301
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and ®e3 × ®e2 plane [εn
3 for the 2 box-links oriented in the ®e3−direction; and εn

6 for the 8 in-plane302

diagonals of length
√

2a0; Fig. 1], for which the non-zero elastic constants of the transversely303

isotropic material are linearly linked to the energy parameters by:304

©«

Cs
11

Cs
12

Cs
33

Cs
13

Cs
44

Cs
11 − Cs

12 − 2Cs
66 = 0

ª®®®®®®®®®®®®®®®¬

=
1
a3

0



n2

(n−1)2
n

2(n−1) 0 n
2(n−1) 0 n

n−1

0 n
2(n−1) 0 0 0 − n

2(n−1)

0 0 n2

(n−1)2
n

n−1 0 n
n−1

0 0 0 n
2(n−1) 0 − n

2(n−1)

0 0 0 n
2(n−1)

n2

2(n−1)2
n

2(n−1)
n2

(n−1)2 − n
n−1 0 n

2(n−1) −
n2

(n−1)2
n

n−1



©«

εn
1

εn
4

εn
3

εn
6

ε t
1

ε t
4

ª®®®®®®®®®®®®®®®¬

(32)305

Continuum Micromechanics Reference Solutions306

A cubic simulation box of size L = a0 (n − 1), with a centric spherical pore of different pore307

radius R corresponding to different porosities is considered:308

φ0 =
np

(n − 1)3
(33)309

where (n − 1)3 is the total number of mass points discretizing the solid and the pore volumes, and310

np the number of mass points defining the pore space in a simple cubic lattice. The focus of the311

validation examples is to compare the poroelastic properties one obtains using the discrete approach312

with analytical expressions of microporomechanics based on the assumption of scale separability.313

In this vein, the pore morphology herein considered is akin to a matrix-pore inclusion microtexture314

often associated with the Mori-Tanaka effective estimates (Mori and Tanaka 1973; Beneviste 1987)315

for which linear homogenization methods provide the following expressions for (1) the drained316

stiffness tensor (Dormieux et al. 2002; Dormieux et al. 2006):317

C = (1 − φ0)Cs : 〈A〉Vs
(34)318
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(2) the tensor of Biot pore pressure coefficients, with φ01 and 1 as its lower and upper bounds,319

respectively:320

b = 1 : (I − Ss : C) (35)321

and (3) the solid Biot modulus:322

1
N
= 1 : Ss : (b − φ01) (36)323

where 〈A〉Vs
in Eq. (34) is the average strain localization tensor over the solid phase (Vs). In324

continuum micromechanics, the strain localization tensor links the macroscopic strain E imposed325

as a boundary condition (16) to the continuous microstrains ε
(
®z
)
= A

(
®z
)

: E into the solid phase,326

∀®z ∈ Vs. In general, the average strain localization tensor for the rth phase given a matrix stiffness327

Cs, reads:328

〈A〉r = [I + P : (Cr − Cs)]−1 : 〈[I + P : (Cr − Cs)−1]〉−1
V (37)329

with P, the generalized Hill concentration tensor defined as (Zaoui 2002):330

Pi j kl = −
(

∂2

∂x j∂xl

∫
Ω

Gik
(
®x − ®x′

) )
(i j)(kl)

(38)331

where (ij)(kl) indicates symmetrization, and Gi j(®x − ®x′) is the second order Green’s tensor for332

generalized linear elastic anisotropic media. In the micro- and macro- isotropic case, i.e. C =333

3KJ + 2GK and b = b1, the previous relations simplify, for a matrix-inclusion microtexture, as334

follows (Dormieux et al. 2006):335

K
k s =

4gs (1 − φ0)
3k sφ0 + 4gs (39)336

G
gs =

(9k s + 8gs) (1 − φ0)
(6φ0 + 9) k s + (12φ0 + 8) gs (40)337

b = 1 − K
k s (41)338

1
N
=

b − φ0
k s (42)339
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For the transversely isotropic case, the effective elasticity can be obtained from Eq. (34) while340

expressions (35) and (36) in this case, i.e. b = b1
(
1 − ®e3 ⊗ ®e3

)
+ b3 ®e3 ⊗ ®e3, read:341

b1 (= b2) = 1 −
(
Ss

11 + Ss
12

)
(C11 + C12) − Ss

13 (C11 + C12 + 2C13) − Ss
33C13 (43)342

b3 = 1 − 2Ss
11C13 − 2Ss

12C13 − 2Ss
13 (C13 + C33) − Ss

33C33 (44)343

1
N
= 2 (b1 − φ0)

(
Ss

11 + Ss
12 + Ss

13
)
+ (b3 − φ0)

(
2Ss

13 + Ss
33

)
(45)344

For comparison of the elasticity content in the transversely isotropic case, the indentation moduli345

expressions for transversely isotropic materials are employed, which nicely condense the different346

macro- and micro-stiffness parameters into two single elasticity parameters that can be probed in347

contact experiments, in and normal to the axis of rotational symmetry (Delafargue and Ulm 2004):348

349

M3 (x3)
ms

3
=

2
ms

3

√
C11C33 − C2

13
C11

(
1

C44
+

2
√

C11C33 + C13

)−1
(46a)350

M1 (x1)
ms

1
' 1

ms
1

√√
C11
C33

C2
11 − C2

12
C11

M3 (46b)351

where ms
3 and ms

1 are the indentation moduli of the solid phase. These continuum micromechanics352

solutions are strictly valid only in the case of scale separability between the size of the heterogeneity353

(pore size R/a0 =
(

3
4πnp

)1/3
) and the size of the representative volume element (r.e.v. size354

L/a0 = (n − 1)); and hence for np � 4π
3 (n − 1)3, a condition to be challenged in the LEM355

simulations. The continuum relations are thus an ideal target to compare with the discrete solutions,356

using Eq. (18) for the elasticity, and the ensemble definitions of the tensor of Biot coefficients (21)357

and of the solid Biot modulus (27), respectively.358

Validation Results359

Cubic simulation boxes of different lengths L={50,70,90}, with a0 = 1, were considered with a360

spherical pore centered inside. The pore radius, R, was gradually increased, with a maximum pore361

radius - to - box size ratio R/L = 0.45 corresponding to a porosity φ0 =
4π
3 (R/L)

3 = 0.38. The362
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case of isotropic solid behavior, defined by a bulk modulus k s = 20 GPa and a Poisson’s ratio of363

νs = 0.2 is considered first. The energy parameters ε (n,t)i j for the solid were thus calibrated using Eq.364

(29). The effective stiffness tensor C was obtained through evaluation of Eq. (18) by considering,365

in the simulations, appropriate displacement boundary conditions as defined in Eq. (16). Figure366

2a compares the simulation results with the effective stiffness coefficients obtained from the Mori-367

Tanaka homogenization scheme, Eqs. (39) and (40). Furthermore, the effective moduli, K and368

G(= C44), are displayed in Figs. 2c and 2e, respectively. Next, poroelastic properties are considered369

by first focusing on the µVT ensemble and the discrete definition of Biot pore pressure coefficient,370

b. A pressure p/k s = 0.05 is imposed inside the pore space using Eq. (14) in the µVT ensemble.371

Utilizing the theorem of minimum potential energy as stated in Eq.(22), inter-particle forces ®F j
i372

induced from the pore-pressure loading are obtained. This paves the way to evaluate b from Eq.373

(21). Figure 3a compares the simulation results with the reference solution (41), using either the374

previously determined effective bulk moduli, K (labeled "Direct" in Fig. 2c) or the Mori-Tanaka375

estimate (labeled "MT" in Fig. 2c) via Eq. (39). Lastly, Biot solid modulus, N, is obtained by376

considering its NPT ensemble definition (25), which in the isotropic case reads:377

1
N(NPT) =

2U(NPT)

p2V0
− 3 (b − 1)2

C11 + 2C12
(47)378

The evaluation is achieved here by prescribing, in the simulations, a pressure p/k s = 0.05 both379

inside the pore space utilizing Eq. (14) and on the boundaries of the simulation box. Thus, all it takes380

for obtaining N from Eq. (47) is the computation of the free energy of the solid, U(NPT), once the381

structure finds its new equilibrium through Eq. (22), and the previously determined Biot coefficient.382

Figure 3b displays the comparison between the NPT-simulation results, using b fromdiscrete theory383

in the µVT ensemble labeled as "LEM (NPT)∗" and b determined directly from simulated effective384

elasticity in LEM, labeled as "LEM (NPT)∗∗" against its continuum reference solution, Eq. (42),385

labeled in Figure 3b as "Direct". The same cubic simulation boxes were considered for validating386

the transversely isotropic poroelastic properties obtained from simulation vis-á-vis their continuum387
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counterparts. To this end, the energy parameters ε (n,t)i j were calibrated using Eq. (32) to reproduce388

the following solid elastic properties, Cs
11 = 55 GPa, Cs

12 = 10 GPa, Cs
13 = 14 GPa, Cs

33 = 28 GPa,389

and Cs
44 = 17 GPa, and thus the solid indentation moduli (according to Eq.46), ms

3 = 31.8 GPa,390

and ms
1 = 48.7 GPa. Figure 2b shows the comparison of the simulated effective elasticity against391

the continuum values from the matrix-pore inclusion model captured via Mori-Tanaka effective392

estimates. Furthermore, the elasticity content is condensed into the normalized indentation moduli393

(46) and compared with the continuum matrix-pore inclusion (Mori-Tanaka) model, Eq. (34),394

as displayed in Figures 2d and 2f. Using the same µVT simulation strategy as in the isotropic395

case, a pore pressure loading normalized by the average Voigt-Reuss-Hill (VRH) bulk modulus396

for materials with hexagonal symmetry (see e.g. (Berryman 2005)), p/k s
V RH = 0.05 is imposed.397

Figures (4a) and (4b) display a comparison of the µVT simulation results of the Biot coefficients of398

the considered transversely isotropic medium, b = b1
(
1 − ®e3 ⊗ ®e3

)
+ b3 ®e3 ⊗ ®e3, with the analytical399

solutions (43) and (44) using as inputs either the simulated effective elasticity obtained by LEM,400

labeled as "Direct" or the analytical homogenized elasticity as obtained from Eq. (34), labeled401

"MT". Finally, a comparison of the NPT simulation results with the analytical expression (45)402

is shown in Figure 4c, displaying the evolution of the solid Biot modulus N with R/L. In the403

evaluation of N from the NPT simulation results (i.e. same pressure p/k s
V RH = 0.05 imposed on404

the pore wall and on the simulation box), a specification of Eq. (25) for the transversely isotropic405

case reads:406

1
N(NPT) =

2U(NPT)

p2V0
−

(
2C11 (b1 − 1)2

(C11 − C12) (C11 + 2C12)
+
(b3 − 1) ((b3 − 1) (C11 + C12) − 4C13 (b1 − 1))

C33 (C11 + C12) − 2C2
13

)
(48)407

whereU(NPT) is the free energy of the solid links in the NPT ensemble, while the effective elasticity408

Ci j and Biot coefficients b1 and b3 are previously determined by simulations (see Figs. 2b, 4a and409

4b).410

DISCUSSIONS411

The idealized structures considered in this study represent a microtexture best captured by412
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the Mori-Tanaka homogenization scheme. The Mori-Tanaka scheme is often associated with a413

matrix-inclusion microtexture where the matrix phase overshadows the mechanical response of414

the inclusion phase(s), while considering interactions between inclusions (in contrast to the dilute415

scheme; see, for instance, (Dormieux et al. 2006)). Furthermore, for a two-phase composite with416

spherical inclusions, the Mori-Tanaka scheme corresponds to the Hashin-Shtrikman bounds (Weng417

1984) and specifically for spherical voids, the upper Hashin-Shtrikman bound. However, it is worth418

noting that the presented methodology to estimate poroelastic properties of heterogeneous media419

is independent of microtextures being considered.420

While the discrete simulation results compare well against their continuum poroelastic counterparts421

for both the isotropic and the transversely isotropic cases, a deviation is observed at higher porosity422

values that merit further discussion. Specifically, for small porosities, φ0 < 5×10−3 (or R/L ≤ 0.1),423

the two approaches provide similar results. This is not surprising since – within this limit – scale424

separability, delineating the domain of application of the continuum models (here the Mori-Tanaka425

model) strictly applies. Beyond that limit, however, the results obtained from the discrete and the426

continuum approach begin to differ. One possible reason for the observed deviations is related to427

finite size effects associated with the finite size of the simulation box, noting that the elementary428

voxel size (a0) remainsmuch smaller than the size of the elementary heterogeneity at high porosities.429

To explore this further, two quantities, δiso. and δti. are defined to capture any deviations from the430

imposed elastic solid symmetry for the isotropic and transversely isotropic cases; that is, for the431

isotropic case:432

δiso. =
|C44 − 1

2 (C11 − C12) |
C44

× 100 (49)433

and for the transversely isotropic case:434

δti. =
|C66 − 1

2 (C11 − C12) |
C66

× 100 (50)435

Using the elasticity constants Ci j obtained from the simulations, Figs. 2g and 2h plot δiso. and δti.436

vs. R/L, showing that for R/L > 0.1 the effective (i.e. composite) elasticity content captured by the437
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simulations departs from thematerial symmetries of the solid phase. Within the range of considered438

values, δiso. ≤ 4 in the isotropic case and δti. ≤ 8 in the transversely isotropic case. On the other439

hand, the simulation results deviate from the continuum solution for the poroelastic constants (see440

Figs. 2a, 2b), for which the continuum solutions (i.e. Eqs. (41), (42) in the isotropic case, and Eqs.441

(43) through (45) for the transversely isotropic case) hold irrespective of elastic homogenization442

scheme. Thus, the observed deviation between discrete simulations and continuum calculations in443

the high porosity limit for elastic and poroelastic properties seem to be rooted in the finite size of444

the system as it challenges both the application of Eshelby’s solution for an ellipsoidal inclusion445

in an infinite medium (Eshelby 1957) and Mori-Tanaka homogenization scheme’s subjection of446

inclusions to the first moment (mean) of matrix stresses (Mori and Tanaka 1973; Beneviste 1987).447

The same deviation is observed for highly disordered systems (Laubie et al. 2017a) but attributed448

to the high stress concentrations between pore walls. In this vein, the probability density function449

(pdf) of normalized solid stresses of the considered idealized pore-matrix structures in the µVT450

ensemble are plotted in Fig. 5 for three different R/L ratios. In violation of scale separability, for451

R/L = 0.157 and R/L = 0.229 normalized stresses follow Gaussian distributions. However, the452

long tails for R/L = 0.443 indicate areas of high stress concentration, a feature not captured by453

mean-field based theories of micromechanics. This is intimately related to the requirement of scale454

separability in homogenization theory. A key property of scale separability exploited in the theory455

of homogenization is that the local problem cannot see the boundaries (Pavliotis and Stuart 2007)456

which clearly is violated in cases of high R/L ratios studied here.457

Surface energy effects are incorporated in poromechanics by making a distinction between458

the free energy stored elastically into the solid matrix, ψs, and energy u stored at the solid-fluid459

interface; such thatΨs = ψs (E, p)+u (E, p), with the energy balance for the interface at equilibrium460

expressed as (Vandamme et al. 2010; Brochard et al. 2012):461

du = σ̃sds (51)462
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where σ̃s denotes surface stress and s represents the actual area of the pore walls per unit volume of463

porous material in its reference configuration. Furthermore, for example in the case of adsorption464

in a linearly elastic isotropic porous material, one can obtain material parameters αε and αϕ, to465

quantify strain and porosity changes due to surface stresses, respectively (Vandamme et al. 2010).466

In this vein, the proposed method can be extended to capture adsorption-induced structural phase467

transitions in a porous material employing an osmotic ensemble (Snurr et al. 1993; Mehta and468

Kofke 1994; Coudert et al. 2011):469

Ωos. (T, P) = Ψs + PV −
∫ P

0
Nads. (T, p)Vm (T, p) dp (52)470

where T, P,Ψs,V, Nads. andVm are temperature, pressure, the free energy of the solid in the absence471

of adsorbed molecules, the volume of the porous host, the number of adsorbed molecules inside the472

host, and the molar volume of the adsorbing species in its bulk state, respectively. Then, one seeks473

for the structure that minimizes Ωos.. Once this structure is obtained, Nads. (T, P) can be predicted474

with standard Grand Canonical Monte Carlo (GCMC) simulations. Classically, the main challenge475

of using Eq. (52) is access to Ψs, which would be readily available via LEM.476

CONCLUSIONS477

As the resolution of microtexture and heterogeneity of porous materials is progressing rapidly478

thanks to advancements in e.g. CT-imaging techniques (Hubler et al. 2017), there is a need to adapt479

the tools of poromechanics to model and to predict the deformation of porous materials in response480

to various external loadings. The discrete poromechanics approach proposed and implemented in481

the Lattice Element Method (LEM) aims at contributing to this effort, well beyond the classical482

mean-field based theories of continuum microporomechanics which do not capture microtextural483

information beyond one-point correlation functions and confined in its application by the scale484

separability condition. Specifically, the discrete nature of the approach provides access to local485

stresses and displacements as well as force flow in a heterogeneous system, which can illuminate486

the path for understanding stress and strain localization in a multiphase porous composite, and form487
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a basis for subsequent refinements to include irreversible deformation (incl. fracture), deformation488

during flow, and so on. The following points of observation deserve attention:489

1. The discrete approach herein proposed considers a porous materials as an ensemble of490

mass points that interact via forces and moments that derive from effective potentials.491

Illustrated here for harmonic potentials for both 2-body and 3-body interactions, it is492

thus readily understood that both the solid and the composite responses are relevant for493

linear poroelastic theory only. However, this linear discrete poromechanics model can,494

in a straightforward manner, be extended to the nonlinear case through the consideration495

of non-harmonic effective potentials (such as Lennard-Jones, Morse potential, and so on),496

whose Taylor expansion around the (undeformed) equilibrium configuration is the harmonic497

case. Otherwise said, the calibration procedure herein suggested for the interaction energies498

(‘well-depth’) remain valid and just need to be refined to calibrate the nonlinear potential499

parameters. As such, LEM can be contrasted with finite-element based approaches, as it500

provides a consistent framework to coarse grain interaction potentials validated at a lower501

scale.502

2. Re-formulated within the context of statistical physics, the discrete approach thus derived503

provides access to the classical poroelastic properties of highly heterogeneous porous ma-504

terials as macroscopic properties relevant to specific statistical ensemble definitions. It was505

thus shown, that the results from an µVT-ensemble provide access to the tensor of Biot506

pore pressure coefficients, b, while the results from an NPT-ensemble permit determination507

of the Biot solid modulus, N. To achieve this goal, an original reformulation of drained508

pressure conditions was proposed to translate pressure in the pore space into interaction509

forces. While the approach was here derived for a constant pressure prevailing in the pore510

space, it could equally be applied to varying pressures prevailing in the pore space. The511

approach as such could thus possibly be used for coupled flow-deformation problems, and512

via some minor adaptation for partially saturated situations, which will be reported in future513

work.514
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3. The discrete approach herein proposed removes by its very nature the assumption of scale515

separability that delineates continuum microporomechanics approaches. This opens new516

insights into the intimate interplay between constituent behavior and composite behavior of517

porous materials. The proposed approach can be viewed as a powerful tool to link micro-518

to macro-behavior of porous materials; specifically for porous materials exhibiting a large519

size range of heterogeneities that does not permit scale separation.520
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