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Abstract 

Understanding diverse performance trajectories of projects is of interest to 

operations researchers and practitioners. Interactions between multiple phases of a project 

are commonly assumed to be important in project dynamics, yet the strength of these 

feedback mechanisms has not been rigorously evaluated. In this study we use data from 

15 construction projects to estimate the feedbacks between design and construction 

phases. The estimated factors reveal that undiscovered design rework diminishes 

construction quality and production rate significantly and construction completion speeds 

up the detection of undiscovered design rework. Together these feedbacks can explain as 

much as 20% of variability in overall project costs. Comparison of model predictions 

with a separate set of 15 projects shows good predictive power for cost and schedule 

outcomes and their uncertainty. The estimation and prediction framework offers a 

template for using data from multiple cases to estimate both case-specific and industry-

wide parameters of project models, and for leveraging those estimates for project 

planning. 
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1- Introduction 

Projects are critical to how modern organizations structure work. Moreover, faster 

product life cycles and increasingly global supply chains require firms to organize many 

steps of once routine operations, such as manufacturing and production processes, as 

projects (Gunasekaran and Ngai 2012). Therefore project management is increasingly an 

important part of operations management research and practice. Related operations 

literature has largely focused on designing algorithms for efficiently planning the 

execution of a project and offering decision support based on this algorithmic framework 

(Tavares 2002). Besides this academic literature, practitioner knowledge communities, 

such as the Project Management Institute, have elicited and codified best practices and 

offer various training and certification options to individuals and organizations (Williams 

2005).  

Despite the importance of projects and the management tools designed and 

applied by the research and practitioner communities, many projects fall short of their 

targets. From software (Moløkken and Jørgensen 2003) to construction (Mansfield, 

Ugwu and Doran 1994), infrastructure (Flyvbjerg, Holm and Buhl 2003), and military 

applications (Drezner, Jarvaise, Hess et al. 1993), delays, cost overruns, and quality 

problems have plagued many projects. For example, Standish Group’s biennial surveys 

of the IT industry have found significant cost and budget overruns and cancellations in 

the majority of surveyed projects and a Procter & Gamble survey found that 15% of 
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authorized projects cost over 50% more than the original budget (Scott-Young and 

Samson 2008). Similarly, the U.S. General Accounting Office found cost overruns 

between 40% and 400% in a sample of 20 large infrastructure projects across 17 states 

(General Accounting Office 2002). In fact, disagreements over projects’ fates instigate 

many legal disputes (Callahan, Bramble and Lurie 1990), some of them in the billions of 

dollars, and may even play a role in national politics (Pear, LaFraniere and Austen 2013).  

Significant delays and cost overruns have motivated a more critical look at the 

assumptions that underlie operations research on projects. Specifically, the conventional 

project management paradigm is based on the decomposition of total project work into 

smaller, sequentially dependent tasks and algorithmic planning of the optimal sequencing 

and resource allocation within a project (Pollack 2007). However, there is an increasing 

realization that projects include many uncertainties and structural, dynamic, and socio-

political complexities (Checkland and Winter 2006; Winter 2006; Geraldi, Maylor and 

Williams 2011). These complexities require a more systemic approach that is able to 

incorporate organizational and psychological antecedents to project performance (Hong, 

Nahm and Doll 2004; Bendoly and Swink 2007; Hagen and Park 2013) as well as 

feedback loops and nonlinearities that may trigger unintended consequences of the 

conventional approach to project planning (Ackermann, Eden and Williams 1997; 

Williams 2005; Lyneis and Ford 2007; Mingers and White 2010).  

In response, research into understanding the root causes of project challenges has 

followed two complementary directions. Several empirical studies in this domain have 

used surveys of clients, contractors, and design personnel to assess the magnitude of cost 
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and schedule overruns and their root causes (Mansfield et al. 1994; Assaf, Alkhalil and 

Alhazmi 1995; Chan and Kumaraswamy 1997; Flyvbjerg et al. 2003; Sambasivan and 

Soon 2007; Scott-Young et al. 2008). A few common themes emerge from these studies. 

First, the quality and the extent of early design and planning are key to project 

performance. Second, factors that influence the quality of task implementation, from 

experience to technical complexity, are critical contributors to overall performance. 

Third, late changes requested by clients often lead to many ripple effects that cost the 

project beyond the direct cost of those changes.  Finally, the leadership and team 

structure and incentives moderate the impact of project-specific factors on performance. 

Nevertheless, different survey designs, and recall and other biases associated with 

retrospective studies, complicate the quantitative integration of these findings to tease out 

different causal mechanisms responsible for project performance and to provide 

quantitative decision support. 

A second research stream has applied simulation modeling to understanding 

project dynamics and improving project management (Lyneis et al. 2007; Mingers et al. 

2010). From task interdependence, to design and implementation quality, testing, and 

intermittent change requests, projects involve tightly interconnected factors that interact 

over time to determine project performance. Starting with a model that informed the 

arbitration of a ship-building project lawsuit (Cooper 1980), this line of modeling has 

grown to be one of the most successful areas of system dynamics (SD) practice (Lyneis et 

al. 2007). The rework cycle—the phenomenon of low work quality resulting in rework 

and change orders that extend required resources and duration—is at the core of project 

models and has ample empirical support (Hanna, Russell, Gotzion et al. 1999; Hanna and 
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Gunduz 2004; Ibbs 2005; Moselhi, Assem and El-Rayes 2005; Alnuaimi, Taha, Al 

Mohsin et al. 2010; Jarratt, Eckert, Caldwell et al. 2011). Moreover, from early on the 

modelers identified the importance of disaggregating these models to include multiple 

phases or task groupings (Lyneis et al. 2007). Formulating multi-phase project models 

was discussed in detail by Ford and Sterman (1998) and many applications have used 

different variants of this formulation in different industries (Lee, Han and Pena-Mora 

2009; Park, Kim, Lee et al. 2011; Khoueiry, Srour and Yassine 2013). In this formulation 

each phase of the project is modeled with a separate rework cycle, with the knock-on 

effects of the quality and progress of each phase on the successive phases. Different 

effects could be conceived in this setup, the most prominent of which are the impact of 

early phase quality on later phase productivity, the effect of early quality on later quality, 

and the effect of later completion of tasks on the discovery of errors in earlier phases. 

These effects could then activate endogenous rework, schedule pressure, and morale 

feedback loops within different phases, leading to much variability in project 

performance, quality, and costs (Ford et al. 1998; Lyneis et al. 2007). However, the 

strengths of these feedback mechanisms have been assumed based on qualitative 

knowledge or single case study estimates. Rigorous and multi-project empirical estimates 

are lacking in the literature, partly due to limited data. Yet such estimates are critical for 

understanding the relative impact of different dynamic mechanisms that underlie project 

performance heterogeneity.  

A few statistical studies have analyzed the latent impact of design error on the 

construction phase.  Baruti and colleagues (1992) reported that design defects are 

responsible for 79% of total change costs, and 9.5% of total project cost. Cusack (1992) 
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showed that documentation errors increase project costs 10%. Hanna and colleagues 

(2002) found that design errors lead to 38%-50% of change orders in the projects they 

studied. And recently, Lopez and Love (2012) showed that the average of direct and 

indirect costs for design errors is about 7% of contract value. Nevertheless, estimates that 

clearly delineate the different causal pathways through which design errors influence the 

quality and productivity of construction work are lacking.  

Moreover, the impact of these feedbacks is most relevant in the context of their 

interaction with other feedback mechanisms in the project dynamics. For example, design 

quality problems may lead to construction delays exacerbating burnout and morale 

problems, which can lead to further deterioration of construction quality and a more 

salient rework problem. Capturing such interactions is necessary for understanding the 

many instances of late and failed projects and requires a dynamic modeling framework 

that provides reliable estimates of the interacting factors. 

In this study we develop a system dynamics model of project dynamics, 

empirically estimating both project-specific parameters and industry-wide inter-phase 

feedbacks. In light of the important roles these feedback effects play in many project 

models, a reliable quantitative estimate will deepen our theoretical understanding of the 

causal pathways in project performance, allow us to assess the relative role of these 

feedbacks in project performance heterogeneity, and strengthen the practical models for 

project planning and project dispute resolution. Moreover, our methodological approach 

provides a blueprint for estimating and using project-specific and industry-wide 
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parameters of dynamic models across other contexts, such as software, energy, 

infrastructure, military, and aerospace projects.  

2- Data and Methods  

In this study, we quantify the design-construction feedback relationships in 

design-bid-build (DBB) construction projects. In contrast to concurrent design and 

construction, DBB is a project delivery method in which design services to produce 

construction documents (CD Design) are performed separately from, and before, actual 

construction. Moreover, in the construction phase a design firm—usually the same firm 

that was hired for the design phase—is hired to provide inspection and design services 

during construction. While overlapping design and construction is common in 

construction projects due to their time savings (Ford and Sterman 2003), the institution 

owning the projects in our sample opted for DBB to reduce the risk of unanticipated 

iterations.  

A generic dynamic model with two phases of design and construction is 

developed based on the SD literature. Historical data from 30 building construction 

projects is used to estimate and validate the model. The model is calibrated with 15 

randomly selected projects and the other 15 projects are used for validation. The 

calibration process is used to estimate three distinct effects: 1) impact of design quality 

on construction quality, 2) the effect of design quality on construction productivity, and 

3) the effect of construction progress on error discovery rate in design. The validation 

process verifies the feasibility of using simple SD models to estimate the likely 

distribution of project outcomes for new projects, a key step in project planning activities. 



8 
 

2.1- Data 

A sample of thirty small-to-medium-sized projects was selected from a public 

university construction project archive. Data from DBB projects with the same facility 

type (educational building) were collected, leading to a sample of projects with $0.5-$60 

million in budget. The dataset includes, for each project, the (initially) estimated duration 

(duration based on planning), initially estimated cost, actual duration, actual cost, and the 

cost change trajectory of the project over time (based on owner payments), all separated 

by the design and construction phases. The sample statistics for estimated time-to-finish 

(F0), the ratio of actual to estimated time to finish (F/F0), estimated cost (W0), and the 

ratio of actual to estimated cost (W/W0) are shown in Table 1 for design (D) and 

construction (C) phases of calibration and validation projects.1 Projects in our sample 

show, on average, 10-50% schedule or cost overrun, depending on the phase and 

subsample. Coming from the same organization, industry, project type, and size, this 

sample allows us to control for some of the factors contributing to performance variation 

but unobservable in our data. However, the homogeneity of our sample also limits the 

generalizability of the results. 

Table 1: Descriptive statistics of calibration (n=15) and validation (n=15) data 
 

                                                 
1 Variable names start with the phase (C for Construction and D for Design) followed by the descriptive 
concept. 
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2.2- Model development 

We developed a system dynamics construction project model that was informed 

by the literature, first author’s direct observations in the field, and a few interviews with 

project stakeholders. The model is developed at the level of design and construction 

phases. In each phase, the completion of tasks was followed by a review process (called 

Design Review and Inspection in the design and construction phases, respectively (Figure 

1)). In each phase, the work and review activities are modeled utilizing a simple rework 

cycle formulation (Richardson and Pugh 1981)(Richardson G. P. and Pugh, 

1981)(Richardson G. P. and Pugh, 1981)(Richardson G. P. and Pugh, 1981)(Richardson 

G. P. and Pugh, 1981)(Richardson G. P. and Pugh, 1981). While more complex rework 

cycle formulations exist (e.g., see Rahmandad and Hu 2010), the simple formulation, 

with three stocks for Work To Do, Accepted Work, and Undiscovered Rework, is 

consistent with the level of aggregation available from our data, which does not include 

details on individual tasks. Moreover, we allow negative values for rework to capture 

Sample Variable Unit Mean Std Dev Median  Minimum Maximum
Calibration D_F0 Month 10.9 7.70 5.83 3.5 26.3

D F/F0 Dmnl 1.4 0.37 1.22 1.0 2.1
D W0 $ (M) 1.48 1.59 0.60 0.07 4.42
D W/W0 Dmnl 1.3 0.31 1.21 0.9 2.2
C F0 Month 32.0 18.39 31.10 9.4 65.0
C F/F0 Dmnl 1.4 0.47 1.42 0.9 2.6
C W0 $ (M) 18.14 20.56 6.35 0.35 55.06
C W/W0 Dmnl 1.1 0.29 1.05 0.7 1.8

Validation D F0 Month 12.0 10.81 10.43 3.3 47.2
D F/F0 Dmnl 1.2 0.26 1.07 1.0 1.7
D W0 $ (M) 1.12 1.27 0.58 0.11 4.06
D W/W0 Dmnl 1.1 0.19 1.11 0.9 1.7
C F0 Month 27.7 16.64 24.97 11.0 68.6
C F/F0 Dmnl 1.5 0.39 1.43 1.0 2.1
C W0 $ (M) 12.06 14.28 6.37 0.35 42.32
C W/W0 Dmnl 1.1 0.07 1.07 0.9 1.2
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scope reduction. However, scope reduction is conceptually different from rework and 

thus is fed into a separate stock that is kept out of the rework cycle, while the positive 

rework flows through the Undiscovered Rework stock and later shows up for rework. The 

value of the negative rework stock is subtracted from Work To Do to reflect the actual 

scope at any point in time. 

 
Figure 1: Construction project work flow 

Figure 2 overviews the model developed in Vensim™. The model captures two 

phases of design and construction in two separate rework loops. The project-specific 

parameters of production rate (P), error rate (E), and time to detect undiscovered rework 

(D), are normalized by project initial values (i.e., initial work (W0) and Duration (T0)) to 

make them comparable across different projects. 

In practice, the starting and finishing of each DBB project is regulated by five 

events: 1) Design Start, 2) Construction Document (CD) Finish, 3) Construction Start, 4) 

Construction Finish, and 5) Design Service (DS) Finish. Design Start, D_Start, is the 

event that initiates design. Design finishes when construction documents (CD) are 

approved and delivered for the bidding process. We track the time at which the design 

phase is perceived to be complete by the variable DCD_Finish. We consider the design 

phase as complete when no known task is left to do, even though some undiscovered 

rework may exist. Design CD finish triggers the start of the bidding process, during 

Design ConstructionReview Inspection

Design Phase Construction Phase
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which neither design nor construction activities progress, and therefore we do not include 

this period in our models. The next event, the construction start (C_Start), commences at 

the end of the bidding process. Construction proceeds until the construction finish, 

C_Finish, event occurs, when the construction progress passes a 99% threshold of scope.  

Meanwhile, some design rework, undiscovered at the design finish, will be discovered 

and fixed during the construction phase. 

In DBB projects, usually the same architectural and engineering (A/E) designer 

who did the initial design is recruited to provide design services (DS) during the 

construction phase; therefore the initial design and later design services could be seen as 

the same process and are both represented within a single stock-and-flow diagram. The 

last event is the end of design services, DDS_Finish, which is triggered when the 

approved design work passes the 99% threshold of scope. We use our data to specify the 

D_Start and C_Start events for each project, while the DCD_Finish, C_Finish, and 

DDS_Finish are all endogenously calculated through simulation.   

Inter-phase relationships between design and construction have been discussed in 

prior literature. Some researchers have proposed the design rework/error as the main 

contributor to (lack of) construction quality. Lyneis and Ford (2007) call this the Errors 

Build Errors effect as the quality of downstream work, e.g. Construction, is reduced by 

undiscovered errors in upstream work, e.g. design. They include consulting evidence 

(Cooper 1980; Lyneis, Cooper and Els 2001) and several academic studies as examples in 

which these inter-phase effects are explicitly included (Abdel-Hamid and Madnick 1991; 

Rodrigues and Bowers 1996; Ford et al. 1998; Ford, Anderson, Damron et al. 2004). 
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Others have proposed design change as the main contributor to reduced construction 

labor productivity (Ibbs 1997; Hanna et al. 1999; Hanna et al. 2002; Hanna et al. 2004; 

Ibbs 2005; Moselhi et al. 2005). Ford and Sterman (1998) developed a four-phase 

product development project model, in which they identified three inter-phase 

interactions: 1) work progress in upstream activities constrains progress in downstream 

activities, 2) downstream work is corrupted by upstream errors, and 3) coordination 

between downstream and upstream activities is required to correct errors. 

In specifying the key feedbacks, we augmented the literature with qualitative data. 

The first author interviewed three senior project managers who had been involved in 

several of the projects in our sample. The field experts were individually interviewed in 

five separate sessions. We first provided them with a brief background of notations and 

basic ideas in project modeling, including the Rework Cycle. The experts were then 

asked to list the important design and construction interactions based on their experience 

and to support each with a real example. At the end of the interviews, we asked our 

experts to rank the first three high-impact causal links across the two phases. Consistent 

with the prior literature, the following inter-phase relationships were overwhelmingly 

selected by our panel as the most important mechanisms, worthy of further consideration. 

1. Undiscovered design rework may increase construction error rate 

2. Undiscovered design rework may slow down construction production rate 

3. Construction progress may increase the detection rate of undiscovered design 

rework 

We therefore model these three feedback mechanisms between design and 

construction phases. We capture the first knock-on mechanism, Error Domino Effect, in 
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Equation 1. The parameter SED specifies the strength of the Error Domino Effect, which 

we estimate as an industry-wide (i.e., project-independent) parameter. We assume the 

construction error rate is a function of the undiscovered rework in the design phase 

multiplied by a project-specific parameter representing base construction error rate, 

detailed in Equation 2. The undiscovered design rework (D_UndiscoveredRework) is 

normalized against initial design scope, DW0. As noted above, we allow negative values 

for rework to capture scope reduction, but account for these separately in a stock for 

scope reduction.  

Error Domino Effect = 1/(1+D_UndiscoveredRework / DW0)SED 
Equation 1 

 

C_InfluencedErrorRate = Min(1,Max(-1, CE * Error domino effect)) 
Equation 2 

 

In the absence of data on human resources allocated to the project, in each phase a 

single productivity parameter is used to capture both the number of project employees 

and the productivity per full-time equivalent (FTE) employee. While this factor, DP is 

assumed constant in the design phase for each project (but different across different 

projects), the construction work rate is impacted by the undiscovered rework in the 

previous (i.e., design) phase, through the Slowdown Effect (Equation 3). This is the 

second knock-on effect in our model and includes an industry-wide parameter for the 

strength of the slowdown effect, SSD, that we estimate in the calibration. Equation 4 

demonstrates how we calculate the work rate using a project-specific parameter for 
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production (CP or DP, depending on the phase; to be estimated in calibration) and two 

project-specific data inputs: initial work (W0) and estimated work duration (T0). 

Slowdown Effect =1/ (1 + D_UndiscoveredRework / DW0)SSD Equation 3 
 

C_WorkRate = CW0 / CT0 * CP * Slowdown Effect Equation 4 
 

Rework discovery is assumed to happen through a first-order draining from the 

stock of undiscovered rework. The time constant for this delay is set as another project-

specific constant (D) for the construction phase. However, we assume the construction 

progress allows faster discovery of design problems and therefore will reduce the time 

constant for rework discovery in the design phase. We call this third inter-phase factor 

the Reality Check Effect (Equation 5). We estimate the strength of the Reality Check 

Effect, SRC, in calibration. Equation 6 shows how time to detect rework (D) is normalized 

and how Reality Check Effect influences the design rework detection rate. 

Reality Check Effect = 1/(1+C_Progress)SRC Equation 5 

D_DetectionRate = D_UndiscoveredRework / (DD * DT0 * Reality Check 

Effect) 

Equation 6 

Figure 2 provides an overview of the causal relationships in the model. For 

clarity, the switches and variables that regulate the activation of different phases are not 

shown. Parameters that are calibrated are highlighted in bold and larger font, with 
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exogenous variables such as initial scope and schedule in underlined italics. Full model 

documentation  (Martinez-Moyano 2012), following minimum model documentation 

guidelines (Rahmandad and Sterman 2012), is available in an online appendix with the 

complete simulation model.   

 
Figure 2: Overview of the model causal structure 

3- Model Estimation  

In the calibration step we estimate the parameters of our generic model to match 

the 15 randomly selected calibration projects. The estimation results are used for two 

purposes. First, they inform the range and distribution of project-specific parameters (i.e., 

error rate (E), production rate (P), and time to detect rework (D) for the two phases of 

design and construction). This information can then be used to form expectations on these 

parameter values when simulating a new project. Second, and central to the goal of this 

paper, we want to estimate the three inter-phase feedback effects (Error Domino, 

Slowdown, and Reality Check effects). These estimates are relevant both theoretically 

and for practical project planning purposes.  

3.1- Estimation Framework 
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Calibration is typically conducted as a numerical optimization to estimate model 

parameters by minimizing the error between the model outputs and data (Oliva 2003). In 

our project we minimize an objective (payoff) function that is a linear combination of 

three sources of error: the differences between data and model in finish time, total cost, 

and cost curve, across both phases. Figure 3 illustrates these payoff function components.  

 

 
Figure 3: Calibration payoff function components 

Equation 7 and Equation 8 formulate the payoff functions for design and 

construction, respectively. Equation 7 includes four elements for the design phase, 

summed over project index i: 1) the squared percentage2 error of design construction 

document finish (DCD), 2) the squared percentage error of design services during 
                                                 
2 In calculating the percentages we use the average of actual and simulated in the denominator. This avoids 
division by zero early in the calibration process, while keeping the payoff function robust. The alternative 
formulation that includes only the actual values in the denominator does not make any qualitative 
difference in the results but leads to more computational errors. 
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construction (DDS), 3) the squared percentage error of design total cost (DCT) and 4) the 

squared percentage error of design cost curve (DCC(t)). We approximate design cost 

curve by adding actual changes to a linear trajectory of cost distributed over project life. 

Equation 8 formulates the construction payoff function in the same manner, except that 

the construction payoff function has only one component for time, which is construction 

finish time (CF).  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝐶𝐶𝑡𝑡𝐷𝐷𝑃𝑃𝐷𝐷)

= ��𝑊𝑊𝐷𝐷𝐶𝐶 �
 𝐷𝐷𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 −  𝐷𝐷𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠  
�𝐷𝐷𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠� +  �𝐷𝐷𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠�

�
2

+ 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 �
 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 −  𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠  
�𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠� +  �𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠�

�
2

 
𝑠𝑠

+ 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷  
1

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠
� �

 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠(𝑡𝑡) −  𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠(𝑡𝑡) 
�𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠(𝑡𝑡)� +  �𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎,𝑠𝑠(𝑡𝑡)�

�
2

 𝑑𝑑𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠

0
 � 

Equation 8 
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The errors are normalized into percentages so that they can be linearly combined 

using weights which represent the relative importance of different components. These 

weights are specified subjectively based on the researchers’ relative confidence in the 

precision of the data and the amount of information contained. For example, the cost 

curve is less reliable because it was reconstructed using the project invoice log, which 

does not perfectly match the actual completion.  Therefore we reduce the weight for the 

cost curve and increase it for the more reliable final time and cost. Consequently, the 

following weights are used in the calibration results reported here: 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 = 1
3

,𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 =

1
3

,𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 = 1
6

,𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 = 1
6
 , and 𝑊𝑊𝐷𝐷𝐶𝐶 = 1

2
, 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 = 1

4
,𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 = 1

4
. Finally, the design and 

construction payoff functions are combined with equal weights (𝑊𝑊𝐷𝐷 = 1
2

,𝑊𝑊𝐷𝐷 = 1
2
 ), to 

construct the total payoff to be minimized (see Equation 9). We perform some sensitivity 

analysis on the assumptions regarding the weights for the payoff function components 

and find little substantial difference within reasonable ranges for these parameters (see 

the section “Robustness of Calibration Results”). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑊𝑊𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑊𝑊𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝐶𝐶𝑡𝑡𝐷𝐷𝑃𝑃𝐷𝐷 Equation 9 
 

For calibration, 15 projects out of the 30 are randomly selected. Each project is 

simulated separately in the model. However, to maximize the statistical power in 

estimating the inter-phase feedback effects, we assume that the parameters for those 

effects, SED, SSD, and SRC, are common industry-wide and thus are the same across these 

15 projects. Therefore the 15 projects are linked together through these parameters and 
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this requires simultaneous estimation of all projects (rather than one-by-one estimation). 

In general, we can classify the model parameters into two groups: 1) project-specific 

parameters, which are independent from one project to another, and 2) industry-wide 

parameters, which are common across all projects. The project-specific parameters 

consist of production rate (P), error rate (E), and time to detect undiscovered reworks (D) 

for each phase (a total of 6 parameters for each project), while the industry parameters 

include SED, SSD, and SRC. Calibration was conducted in Vensim DSS 5.8 by 

simultaneously estimating the project-specific and industry parameters over 15 

calibration projects, leading to a total of 93 (=15*6+3) parameters to be estimated.  

The large parameter space required us to perform the calibration in three phases. 

First, we conducted an optimization using Vensim’s built-in Powell conjugate search 

algorithm with multiple start points in the parameter space, and using a coarse time step 

and convergence threshold to find a promising neighborhood for parameters. In the 

second phase we first fixed industry parameters, SED, SSD, and SRC (using values from step 

1), and optimized the model, project by project, changing the project-specific parameters 

P, E, and D. These 15 separate calibrations provide reliable neighborhoods for all project-

specific parameters. Then we fixed project-specific parameters P, E, and D and optimized 

the model on all projects, only allowing industry parameters SED, SSD, and SRC to change. 

These steps were repeated iteratively until parameter values converged. In phase three, 

we fine-tuned the results in a single optimization, starting from the point found in the 

previous step and allowing all the parameters to change with higher-resolution time-step 

and optimization settings. For more details, please see model documentation in the online 

appendix.  
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3.2- Estimation Results 

Following the preceding procedure, industry parameters were estimated as 

SED=2.528, SSD=1.262, and SRC=1.188. Table 2 shows the mean, standard deviation, and 

correlation matrix of the project-specific calibrated parameters.  

Table 2: Descriptive statistics and Correlation matrix of calibrated project-level parameters. These  
parameters are dimensionless. 

 Mean StdDev D_P D_E D_D C_P C_E C_D 
D_P 0.95 0.22 1.00      
D_E 0.21 0.12 0.41 1.00     
D_D 1.32 0.81 -0.43 -0.71 1.00    
C_P 0.86 0.44 0.21 0.34 -0.47 1.00   
C_E 0.07 0.14 0.02 -0.46 0.60 -0.35 1.00  
C_D 0.43 0.50 0.21 0.05 0.09 -0.48 -0.19 1.00 

Figure 4 and Figure 5 show the absolute percent error (APE) of finish time, final 

cost, and cost curve of design and construction, respectively, for the 15 projects. DAPE 

and CAPE are the weighted average errors linearly combined with the same weights used 

in the payoff function. The sequence of projects on the horizontal axis is based on these 

values sorted in descending order. Figure 6 and Figure 7  report the best and worst fits 

among the calibrated projects. 
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Figure 4: Design calibration error 

 
 

 
Figure 5: Construction calibration errors 
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Figure 6: Simulation result of Project P011 (Best fit).  Design CD Finish = 23.4 (Simulated), 23.8 

(Actual). Construction Finish = 74.5 (Simulated), 74.2 (Actual) 
 
 

 
Figure 7: Simulation result of Project P062 (Worst fit). Design CD Finish = 6.6 (Simulated), 

7.0(Actual). Construction Finish = 17.6 (Simulated), 19.9 (Actual) 
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3.3- Robustness of Estimation Results 
We conduct two sets of sensitivity analyses to assess the robustness of calibration 

results. First, we evaluate the confidence we can have in the values reported for the 

feedback parameters SED, SSD, and SRC. Specifically, we change these parameters around 

their estimated value and measure the fractional change in the payoff. In the absence of a 

formal maximum likelihood interpretation for the payoff function, we heuristically use a 

5% change in payoff as a threshold that signals incongruence between the parameters and 

the data.3 The results offer the following approximate feasible ranges for the three 

parameters: 0.2<SED<4.2, 0.56<SSD<1.64, and 0.91<SRC<1.39. All effects remain positive 

in this confidence interval. The tightest estimates belong to SRC (the Reality Check 

effect), followed by SSD (the Slowdown effect). 

A second sensitivity analysis is conducted to assess the weighting functions used 

in defining the calibration payoff. Ten different scenarios are defined with different sets 

of weights listed in Table 3. The model is re-calibrated under each scenario. The impact 

of error weight on different scenarios is calculated by the average of the absolute 

percentage change of calibrated parameters. The results show no more than 6% variation 

in this metric across all scenarios. These findings suggest that the calibration results are 

robust in the reasonable range of payoff weights. 

                                                 
3 While the complex non-parametric structure of the distributions rules out theoretical proofs, we think the 
5% threshold is reasonable. For demonstration, consider a maximum likelihood-based payoff function with 
normally distributed errors (which, similarly to our setting, leads to normalized squared error terms in the 
log-likelihood function). For a sample with N effective data points (i.e., total data points minus the number 
of parameters), the range of a typical log-likelihood function at the best-fit position is (roughly speaking, 
being a chi-square distribution with N degrees of freedom) around N. In such a setting, depending on the 
confidence levels required, a reduction of approximately 4 units in the log-likelihood (i.e., 4/N in fractional 
terms) signifies reasonable confidence intervals (e.g., around 95%). With an N value well above 100 in our 
setting (15 projects each having 5 single data points and 2 time series of approximately 10 data points, 
minus the 93 parameters estimated), a fractional change in payoff of 5%  provides realistic approximate 
bounds on the estimated parameters. 
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Table 3: Scenarios of error weight sensitivity analysis 
Scenario WD_CD WD_DS WD_CT WD_CC WC_F WC_CT WC_CC 

1 1 1 1 1 1 1 1 
2 1 1 2 1 1 2 1 
3 1 1 1 2 1 1 2 
4 20 20 1 1 2 1 1 
5 2 2 10 1 2 1 1 
6 2 2 1 10 2 1 1 
7 2 2 1 1 20 1 1 
8 2 2 1 1 2 10 1 
9 2 2 1 1 2 1 10 

10 20 20 10 10 2 1 1 

3-4. Inter-phase Project Feedback Effects 
Figure 8 shows the magnitude of the inter-phase feedback impacts on construction 

error rate (diamonds in Panel a), construction production rate (squares in Panel a) and 

time to detect undiscovered design rework (Panel b) using the calibrated values 

(SED=2.528, SSD=1.262 and SRC=1.188). Looking at the simulations across our full 

sample, we note that the fraction of undiscovered design error of initial design work (x-

axis in panel a) does not exceed 20%. This range confines the Error Domino and 

Slowdown effects to about 50% and extrapolation outside of this range is not warranted 

based on the current analysis. The Reality Check effect’s input, construction progress, 

ranges in the full scale of 0 to 1 and influences rework discovery time in the design 

phase. 

  
 

Fraction 

b 
 

a 
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Figure 8: a) Impact of Error Domino Effect and Slowdown Effect b) Impact of Reality Check Effect 
 

4- Predicting the Performance of New Projects 

Project planning could be an important use-case for any dynamic model of 

projects. The parameters estimated in the previous section can be used to forecast the 

trajectory of a new project before it has started, potentially offering enhanced prediction 

and risk assessment for project planning. A simple approach is to use the averages of the 

15 sets of calibrated parameters for the parameters of the prediction model. This 

approach, however, ignores the significant variability observed in the parameters across 

different projects. Ignoring the variability would give more confidence to the projections 

than is warranted and deprive the user of much valuable information regarding the 

expected distribution of potential performance outcomes. Therefore, we use a more 

realistic approach that assumes the six project-specific parameters are random variables 

with a given mean and covariance structure, which can be found from our estimated 

parameters. We will then generate 1000 samples with the same mean and covariance 

matrices for these six parameters using the variance-covariance method.  

The estimated parameters are correlated, with statistics reported in Table 2, and 

their distribution is skewed. After some exploratory analysis we find log-normal to be a 

good distribution to characterize them. We therefore first apply a logarithmic 

transformation to the estimated project-level parameters and calculate the mean (μ) and 

covariance (∑) of the resulting multivariate normal distribution. Next, using Equation 10, 

a multivariate normal sample, R, is produced that matches the joint distribution of the 

(transformed) calibrated parameters. Here R0-1 is standard normal distribution and matrix 
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U is the square root of the covariance matrix, ∑, calculated by Cholesky decomposition 

method (Golub and Van Loan 1996). Finally, the resulting sample is transformed back 

into log-normal distributions, generating RT, to be used in the Monte-Carlo simulation 

experiments.  

[R]=[µ]+ [U]*[R0-1] Equation 10 
 

Where:  [∑]=[U]T [U] Equation 11 
 

Next, a Monte-Carlo simulation generates the distribution of model outcomes 

using sample RT and a given initial plan (i.e., DW0, CW0, DT0, and CT0).  Figure 9 shows 

the simulation result for an example project against actual outcomes. Initial scope and 

schedule are typically available at the beginning of any project, but are unreliable and 

often underestimate the actual costs and schedule significantly. These estimates are the 

only project-specific inputs we need in our model to generate the ensemble of possible 

performance projections for a new project. The project above is simulated with the 1000 

sets of randomly generated parameters discussed above. Of the samples, 11% (113 out of 

1000) were found infeasible as they did not result in design and construction completion 

in a reasonable amount of time. Comparing actual project outcomes against remaining 

simulations, we find design and construction times slightly higher than the predicted 

simulated sample median, and costs lower than the median. In all cases the actual values 

are within the 95% confidence levels from the simulated samples. The general fit is 

reasonable, given that many other relevant factors such as project type (new/renovation), 

location, and complexity, were not considered in this analysis. 
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The failure of some of the simulated projects to reach completion results from 

parameter combinations that lead to very high error rates and/or low productivity, and 

extend the project duration beyond reasonable ranges. This could reflect both 

inaccuracies in the parameter distributions as well as real-world mechanisms that may 

lead to failure of actual projects. In fact, many projects fail to reach completion in 

practice due to feedbacks that compromise the quality and productivity of troubled 

projects (Repenning 2001; Taylor and Ford 2006). However, given the small sample we 

use for calibration and the resulting uncertainty in the generation of joint distributions, 

the fraction of failed projects in this simulation is not a reliable indicator of actual 

projects’ propensity to fail. 
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Figure 9: Comparison of actual outcomes for one validation project against Monte-Carlo 

simulations. a) Design finish, Mean=16.1, StDev=3.72, Actual=18.1(month) b) Construction finish, 
Mean=46.3.0, StDev=11.76, Actual=65.9(month) c) Design final cost, Mean=$1.8M, StDev=$0.28M, 

Actual=$1.5 d) Construction final cost, Mean=$18.9M, StDev=$3.15M, Actual=$18.5M 
 

4.1- Validation: How well can new projects be predicted? 
Building on the ideas above, we now formally assess the ability of the model to predict 

the actual performance of new projects, given their original scope and schedule. 

Specifically, we repeat the Monte-Carlo process above for the 15 validation projects, 

using the 887 feasible random parameter sets. We consider four metrics, including 

construction document finish time (DF), design cost (DC), construction finish time (CF), 

and construction final cost (CC). The distribution of samples produced by the Monte-

Carlo simulation should be compared with the actual values for each metric and each 

Actual 

Actual 

Actual 
Actual 

a b 

c d 
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project. To simplify the presentation of results and comparisons across different projects, 

the simulated metrics are normalized against the actual values so that the value 1 

represents the true value. These results are reported in Figure 10 in boxplot format 

displaying the interquartile range, mean (plus symbol), and median (solid line), and the 

maximum and minimum. The actual values never fall outside of the prediction envelopes 

and systematic biases are hard to detect by eye. To further explore the existence of such 

biases, we consider how well the overall distribution of predicted metrics matches the 

simulated distributions. 

  

  

Figure 10- Mean (plus symbol), median (line), inter-quartile range, minimum and maximum for 
simulated metrics of each project, normalized around true value (1). a) design construction document 
finish (DF) b) design final cost (DC) c) construction finish (CF) d) construction final cost (CC)  

a b 

c d 
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The best predictive model is the one which not only gets the performance 

measures correct on average (i.e., has no bias in the mean across many samples), but also 

correctly estimates the variability expected in performance. For example, the model 

would have been overestimating the variance if the model’s mean performance always 

matched the actual numbers (i.e., all boxes were set squarely on value 1), because the 

projected variability in outcomes was not borne out by the data. On the other hand, if 

most boxes were above, or below, the true value line, we would identify a bias in the 

model’s predictions. To better assess the overall fit of the projected model metrics against 

the validation data, we create a variant of Q-Q plot which combines the data from all four 

metrics and 15 projects into a single diagnostic graph. Consider n=60 (15*4) actual 

metrics and their corresponding simulated distributions obtained through the Monte-

Carlo results above. First, we find what percentile each data point belongs to on the 

corresponding simulated distribution. The resulting data set includes 60 data points with 

different percentile values. We sort this data set in the ascending order of percentiles and 

graph its values on the x-axis against the y-axis of k/(n+1) for data point k (see Figure 

11). A perfect match will be on the 45-degree line, where the empirical metrics match the 

corresponding percentiles in simulation distributions exactly.  A bias is identified if the 

graph is generally above or below the 45-degree line. A line much steeper than 45 

degrees suggests the model is overestimating the variation in the actual metrics, i.e., it 

predicts many far-fetched values that never actually materialize in practice. Conversely, a 

line less steep than 45 degrees signals the model’s overconfidence, i.e., projecting as 

unlikely the values that are seen regularly in practice. Finally, the goodness of fit between 
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a linear model and the data indicates how close the overall distribution of actual 

outcomes is to the predictions. 

 
Figure 11: Q-Q plot, Percentile of true value against uniform distribution 

 

The linear regression analysis performed on the Q-Q data series shows a very 

good fit between the data and the regressed line with R2 of 0.99. Moreover, the deviations 

of estimated values (intercept=0.014 with standard deviation of 0.008 and slope=0.976 

with standard deviation of 0.014) from the theoretical values for a perfect model 

(intercept=0 and slope=1) are not statistically significant at a 95% confidence level. 

Combined with the high quality of fit, these metrics suggest that the overall distribution 

of the predicted outcomes is indistinguishable from the actual distributions in the 

validation set. Therefore, this analysis provides further evidence in support of the 

viability of our predictive model: not only does our model offer a good prediction for the 

actual outcomes, but it also indicates the variance that can be expected in the outcomes of 

the projects. 
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Despite the reliable fit provided by our prediction method, the range of variation 

for the predicted metrics is notable. Essentially, the model predicts much potential 

variation in projects due to factors that are not endogenously captured in the current 

simulation, but are reflected in the uncertainty in the key project-level parameters. 

Therefore, absence of data on other relevant factors such as project type, location, and 

complexity may explain the large range of variation in predicted outcomes. If such data is 

available, it could be integrated into our framework as predictors of productivity, quality, 

and error discovery time parameters, offering a natural connection between the traditional 

project estimation methods and the dynamic framework we propose. 

5- How important are inter-phase feedback effects? 

How much of the variation in project schedule and costs can be attributed to the 

feedback loops we have quantified? The feedback effects we identify are only a subset of 

factors relevant to project heterogeneity. From intra-phase feedbacks (such as burnout, 

morale, and corner cutting), to other inter-phase feedbacks we did not consider, and 

diverse project-specific factors (e.g., size, complexity, novelty, management, 

organization), many other issues are relevant to understanding why projects may end up 

with different outcomes. Our model provides one way to tease out the effects of the 

feedbacks we quantify. Specifically, a good estimate of these impacts requires one to run 

experiments in which only the specific feedback loops are turned on and off, keeping 

everything else constant, so that their unique contribution can be measured. Such 

controlled experiments are not feasible in actual projects, but could be conducted here 

because we have estimated the distributions of project-level parameters that capture 

different contributors to variation, and therefore we can control for those factors. We 
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simulate five different scenarios with the ensemble of 887 feasible project-level 

parameter sets (see section 4), and switching on/off the three feedback mechanisms. In 

the base scenario we remove all the feedback effects (SED=SSD=SRC=0), in scenarios 1-

3 we include them one at a time, and in scenario 4 we include all the feedbacks 

simultaneously. We then measure the change in the mean of main project outcomes 

(schedule and cost, for each phase, and total) as well as the change in the standard 

deviation of the outcomes. While the change in mean indicates how much the various 

feedbacks contribute to delay and costs, the latter change measure indicates how much of 

variability in project outcomes is due to each reinforcing loop. These results are reported 

in Table 4. 

Table 4: The percent change of mean and standard deviation in duration and cost across 
different scenarios as compared to the scenario with no feedback.  

 

Scenario Metric Design 
Duration 

Const. 
Duration 

Total 
Duration 

Design 
Cost 

Const. 
Cost 

Total 
Cost 

Scenario 2 
Error Domino 

Δ Mean 0.0% 2.5% 1.6% 0.0% 1.2% 1.0% 
Δ StDev 0.0% 2.7% 2.7% 0.0% 23.3% 24.9% 

Scenario 3 
Slowdown 

Δ Mean 0.0% 8.5% 5.4% 0.0% 0.0% 0.0% 
Δ StDev 0.0% 2.5% 2.5% 0.0% 0.1% 0.1% 

Scenario 4 
Reality Check 

Δ Mean -19.2% 0.0% 0.0% 0.1% 0.0% 0.0% 
Δ StDev -44.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

Scenario 5 
All Feedbacks 

Δ Mean -17.9% 9.2% 5.8% 0.1% 0.9% 0.8% 
Δ StDev -43.5% 4.2% 4.2% 0.0% 18.7% 20.0% 

Overall, the feedbacks have a relatively small effect on the average cost (~1%) 

and a modest but notable impact on average duration (5.8%). They provide a more 

important explanatory mechanism for understanding heterogeneity, explaining 4.2% of 

variation in schedule and 20% of cost variation. The biggest contributor to cost variation 

is the Error Domino effect. In fact, the other two feedbacks have very little impact on the 
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cost variation. The Slowdown effect is more relevant to understanding the changes in 

duration of projects, and variation in duration. The impact of Reality Check feedback is 

rather limited and largely related to the duration of design phase. Finally, noting the 

higher total cost and cost heterogeneity in Scenario 2 compared to Scenario 5, we can 

identify an interesting interaction between Error Domino and Slowdown effects. In the 

presence of the Slowdown effect (Scenario 5), the lower productivity leads to longer 

construction duration (9.2% vs. 2.5% in Scenario 2), which in turn increases the amount 

of design error discovered compared to Scenario 2. Increased error discovery helps avoid 

some of the rework in construction, which reduces the overall construction cost in 

Scenario 5 compared to 2, even though the total duration of the project is higher in the 

presence of both feedbacks. 

While these effects are not huge, they reflect the independent effect of the inter-

phase feedbacks we estimate after excluding many relevant feedback effects within each 

phase of the project as well as non-feedback sources of variation, from project size and 

complexity to technology. Hence, the fact that inter-phase feedbacks may actually be 

explaining as much as 20% of heterogeneity in project costs is notable. 

6- Discussion and Conclusions 

Theoretical and Empirical Findings. We empirically estimate three design-

construction feedback relationships and show that 1) undiscovered design rework 

increases construction error rate (Error Domino effect) 2) undiscovered design rework 

slows down construction production rate (Slowdown effect), and 3) construction progress 

increases the detection rate of undiscovered design rework (Reality Check effect). To our 
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knowledge this is the first empirical estimation of these feedback relationships, which we 

identify using empirical data from 15 construction projects. The empirical estimates 

validate qualitative hypotheses in this domain and suggest that the inter-phase feedback 

mechanisms on quality, productivity, and rework discovery time are important and of a 

magnitude that can make a significant impact on project dynamics. On average, we find 

these feedbacks may be explaining as much as 20% of variation in project costs and 6% 

of delays. The impact of these feedback mechanisms on a specific project’s performance 

also depends on the base values of project quality, and to a lesser extent, productivity. For 

example, cutting one of these feedbacks in projects with high error rates (CE ~ 30% in 

our sample) leads to 5-10% overall cost variation; the effects are less pronounced for 

projects that start with a high quality, and thus have limited room for variation in quality 

due to the feedback effects.  

Moreover, we find that error rates are typically higher in the design phase than 

construction (DE > CE), and take longer to be discovered (DD > CD). Interestingly, 

average productivity multipliers are higher in design (DP > CP), suggesting design 

phases that are completed on time, but with many undiscovered errors. Therefore, we 

expect higher emphasis on the design phase in many projects would prove fruitful. The 

estimated feedback effects explain a notable share of heterogeneity in project costs 

(~20%). We also find that much project variation originates from differences in the base 

value of quality and productivity. In our setting these base values aggregate diverse 

underlying factors, such as employee skills, project complexity, technology, management 

quality, and dynamic factors such as corner cutting, among others (Lyneis et al. 2007); 
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more detailed data can allow for unpacking project performance heterogeneity further 

using a similar simulation and calibration framework. 

Given the interactions between the baseline quality and the inter-phase feedbacks, 

we expect these feedback processes to be most important in explaining the fate of 

projects in the tail of performance distribution. While many projects are completed close 

to initial plans, tales of projects gone wrong are common and attract much public scrutiny 

(Pear et al. 2013). Our study highlights the risk of one relevant failure mode, identified 

by several other researchers (Repenning 2001; Repenning, Goncalves and Black 2001; 

Ford and Sterman 2003; Taylor et al. 2006), that is rooted in multiple reinforcing 

mechanisms: some projects spend too little on upfront design quality, leading to problems 

that are harder to discover and much more costly to fix down the line. The resulting 

unexpected rework pushes the project further out of control, so that multiple aspects of 

the project suffer simultaneously: design problems hurt the relationship between design 

and construction and slow rework; schedule pressure may lead to burnout, corner cutting, 

and further quality erosion; and loss of experienced employees escalates the rework costs 

(Hanna et al. 2002; Lyneis et al. 2007). Moreover, the resulting threats to reputation and 

job security may trigger defensive routines inside project organizations, promote a culture 

of opaqueness, and put at risk the future projects managed by the same organization 

(Ford et al. 2003). These dynamics may be intuitive, but time and again prove central to 

the troubles of organizations across different industries (Repenning 2001; Repenning and 

Sterman 2002). In fact, if impervious to these mechanisms, following the traditional 

project management mindset, which seeks above all to keep the project on plan, may 

actually exacerbate the problems by pushing the team to work harder and focus on the 
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deadline, rather than finding and fixing the root causes of emerging problems (Herroelen 

and Leus 2004; Williams 2005). 

Practical Implications. The managerial implications of these dynamics may 

seem straightforward: project managers need to put more emphasis on upfront design 

activities and ensure high quality early on. As a corollary, they should also be sensitive to 

signs of burnout, fear, mistrust, and communication breakdown in their teams. In fact, 

managing work pressure and resource loading should be pursued with a focus on 

avoiding such defensive organizational routines. Moreover, encouraging early discovery 

and revelation of problems and instituting root-cause analysis, automated testing, and 

other quality-inducing capabilities can help set the right tone inside the organization. 

Finally, given the large set of uncertainties involved, managers should be flexible in 

updating initial plans when the conditions on the ground call for that; and delegate more 

responsibility to those on the frontlines who often have a more nuanced understanding of 

the actual tasks, performance, and quality, and thus can solve the problems at their root. 

Operationalizing this advice may be easier said than done, however: the metrics of 

performance built into conventional project management tools (and education) ignore 

many of the relevant soft variables and the feedback mechanisms we discuss (Browning 

2010). Moreover, the worse-before-better tradeoffs involved in upfront quality and 

organizational capability investments make it harder to learn and pursue the more flexible 

learning-focused style of project management (Repenning et al. 2002; Williams 2005; 

Rahmandad 2008; Williams 2008), especially in large and uncertain projects with 

significant sociopolitical complexities (Geraldi et al. 2011).  Incorporating into project 
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tracking tools metrics that indicate the state of key feedback mechanisms may provide 

one avenue to operationalize this advice.  

Besides better quantifying the origins of fat tails in project performance 

distribution and the related managerial implications, our estimates are beneficial for 

resolving the resulting disagreements when projects go wrong. The large and notable 

failures in projects frequently lead to legal disputes and require model-based assessment 

of root causes of those failures to resolve such disputes (Cooper 1980; Ackermann et al. 

1997; Stephens, Graham and Lyneis 2005). These modeling applications require the 

allocation of cost overruns to factors for which customers were responsible (e.g., change 

orders), contractor responsibilities (e.g., errors), and various ripple effects due to project 

feedback mechanisms. Since those ripple effects are relatively large, often larger than the 

costs directly attributable to customers or contractors (Cooper 1980), the quantitative 

estimates for the strength of various feedback loops are essential for a fair allocation of 

costs.  Our estimates provide more reliable measures to quantify a subset of feedbacks 

central to those models.  

Methodological Contributions. Two novel methodological features of this study 

may prove helpful for future research. First, this paper provides a method for rigorous 

representation of project risks through simulation. The majority of operations research 

models of project planning offer a deterministic schedule (Herroelen et al. 2004), and the 

ones that consider risks often assume independence among different risk factors (Taroun 

2014). However, these risks are highly interdependent: on the one hand, quality, 

productivity, and other project-specific parameters share many common determinants, 
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and thus they are highly correlated. On the other hand, the feedback processes active in 

the evolution of a project over time couple different risks. For example, a project that 

falls behind on quality early on is more likely to face additional risks down the line due to 

corner cutting, error domino, slowdown, and other feedbacks. By estimating the 

covariance among project-specific parameters and explicitly modeling the feedbacks, we 

have provided a potential method for quantifying and tracking interdependent risks in 

projects. The resulting model performs very well to match calibration sample projects as 

well as the distributions of validation data. More realistic cost-benefit analysis, portfolio 

planning, and risk management can then be based on such distributions of likely 

outcomes. In fact, our model can be easily used for providing both baseline and risk 

estimates in construction projects with similar scope and complexity, and the basic 

approach can be replicated to inform other types of projects.  

Finally, this study provides a methodological innovation to better extend system 

dynamics modeling to multiple cases. In fact, building models that tackle a class of 

problems, rather than a single case, is among the founding principles of System 

Dynamics (Forrester 1961). However, in practice, given the data availability and 

computational complexities, SD models are often calibrated using data from a single 

case. In a few instances where data from more than one case study is available, the model 

is separately estimated for those cases, treating every model parameter as distinct across 

different cases (e.g., Homer 1987; Sterman 1989). Such treatment foregoes the statistical 

power and generalizability achievable by treating the subset of parameters that transcend 

different cases and thus can have a case-independent value. In the current study we show 

how one can leverage multiple case studies to estimate both case-specific and case-
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independent parameters in dynamic models, using a method that conceptually resembles 

fixed-effect regression. Given the general nonlinear structure of common SD models, 

computational costs and non-convexity of the payoff function could prove challenging in 

this method; nevertheless, careful design of optimization procedure—e.g., using the 

multi-stage method we followed here—can offer a feasible heuristic for finding reliable 

parameter estimates.   

Limitations and Future Research. This study includes several limitations that 

can motivate future research. We did not explicitly consider many potentially relevant 

factors such as project type (new/renovation), location, and project complexity. Such 

factors may impact the project behavior and cost curve, and moderate the feedback 

effects of interest in our setting. Predictions might become more accurate, if such data 

were available and used in the calibration-validation process. Future studies can combine 

surveys of projects with the quantitative and time series data such as those we use here to 

estimate the root causes of variations in productivity, error rate, and rework discovery 

parameters and offer more explicit managerial recommendations based on those. 

Experiments may also be designed to elicit various effects more directly (Bendoly, 

Swink, & Simpson, 2014). Our data was limited to small-to-medium-sized DBB 

construction projects in the U.S., limiting the generalizability of our findings, especially 

the project-specific parameters and their covariance matrix, to other settings. In fact, the 

use of these parameters for prediction in project settings substantially different from ours 

is not warranted. Given the low to moderate structural, dynamic, and sociopolitical 

complexity (Geraldi et al. 2011) of our setting, our estimates may be rather conservative 

in quantifying the impact of inter-phase feedbacks on overall project performance. 
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Additional complexity can interact with these feedbacks, leading to more extreme cases 

of failure; however, the basic mechanisms should remain similar, and thus one may 

expect the estimated individual feedback effects to be less variable with project 

complexity. Finally, more detailed data about the type and scope of different tasks and 

resources allocated to them can enhance the quality of estimation and offer avenues for 

better integration of system dynamics models of projects with traditional project 

management software. 
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