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Abstract

As the blueprint of life, the natural exploits of DNA are admirable. However, DNA should not 

only be viewed within a biological context. It is an elegantly simple yet functionally complex 

chemical polymer with properties that make it an ideal platform for engineering new 

nanotechnologies. Rapidly advancing synthesis and sequencing technologies are enabling novel 

unnatural applications for DNA beyond the realm of genetics. Here we explore the chemical 

biology of DNA nanotechnology for emerging applications in communication and digital data 

storage. Early studies of DNA as an alternative to magnetic and optical storage mediums have not 

only been promising, but have demonstrated the potential of DNA to revolutionize the way we 

interact with digital data in the future.

DNA wears many hats. Yet our common conception of DNA is largely centered on its role in 

genetics. After all, nature has used DNA to store biological information for billions of years, 

entrusting it with some great secrets brought to light by the discovery of the structure of 

DNA by Watson and Crick [1]. However, the landscape of biology has dramatically changed 

over the past half-century. While in the past we were limited to only observing biology from 

a distance, we are now able to directly manipulate and synthesize biological components for 

non-biological applications.

DNA nanotechnology has been largely viewed in terms of the self-assembly of DNA 

molecules to form nanostructures (see recent reviews [2–4]). Traditionally, proteins are 

considered to be the molecular scaffolds of nature and have been adapted for genetically 

encodable molecular self-assembly [5]. Yet the coordinated base pairing of nucleotides and 

advances in DNA synthesis have been exploited for using DNA as a structural scaffold 

rather than a storage molecule of genetic information, leading to the construction of 

programmable and complex self-assembling 3D architectures [6–8].
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The chemical synthesis of DNA for creating synthetic genomes and developing unnatural 

genetic alphabets has also been hallmarks of DNA nanotechnology (see recent reviews [9–

11]). These synthetic biology approaches can allow us to probe abiogenesis, shedding light 

on the origins of life [12]. To illustrate, recent studies have demonstrated an ability to 

expand the genetic alphabet beyond A, G, C, and T in living cells [13], or have employed 

synthetic genetic polymers to develop new catalysts called XNAzymes [14].

Here we review new and emerging applications for DNA outside of a biological context. 

Billions of years of evolution have optimized DNA as an efficient biopolymer for data 

transmission and storage within cells, between species, and across generations. With rapidly 

declining synthesis costs [15] and emerging portable sequencing technology [16–18], 

synthetic DNA appears as an attractive chemical polymer for future applications in digital 

data communication and storage.

Digital data: challenges and opportunities

Over the past several decades, we have witnessed revolutionary changes in how we transmit, 

process, and consume information. Digital and online data communication and storage have 

provided great speed and convenience, yet they have also raised important concerns 

regarding capacity and security. Everyday we produce ever-increasing amounts of digital 

information using writing, reading, and storage technologies that are rapidly evolving. As 

our personal and professional information is increasingly in a vulnerable digital space, 

security must also be at the forefront of our thoughts. In order to be able to access our 

information in the future, we must ask ourselves:

i. What is the most efficient way to store this information?

ii. How secure is the stored data against intervention by unauthorized individuals?

iii. How stable is the data storage platform?

iv. How easy is it to reproduce—copy & paste—the data?

v. How will we read and re-write the information in future years when the 

technologies used to write the original information no longer exist?

As we consider the next revolutionary technological advancement in communication and 

data storage, key attributes of DNA for information storage warrant further consideration 

(Figure 1) [19,20]:

i. High-density data storage: DNA has 1,000,000-fold higher data storage capacity 

than current commercial magnetic and optical platforms [21].

ii. Static data maintenance: Data maintained in synthetic DNA represents a static 

offline system that is not subject to undesired sequence change or evolution, and it 

cannot be accessed remotely using the Internet.

iii. Stability: DNA can be stably maintained for millennia, with a fossilized bone half-

life of 521 years [22] and the oldest sequenced complete genome being from an 

ancient horse living 560,000–780,000 years ago [23]. Furthermore, accelerated 
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aging experiments predict digital data in DNA can be recovered after >2 million 

years [24].

iv. Reproducibility: Encoded data can be rapidly, cost-effectively, and exponentially 

reproduced via routine polymerase amplification.

v. Lack of technological obsolescence: Rapidly changing digital technologies mean 

that we constantly have to update our electronic gadgets, but we are stuck with 

DNA for the long haul. Since knowledge of DNA sequences are essential for 

medicine, it is reasonable to assume that as long as we live in an advanced society 

we shall maintain the means to read and interpret DNA sequences. Thus, the tools 

to read and write in DNA are likely to be around for the foreseeable future.

The information age has witnessed an explosion in digital data production, with an estimated 

2013 global digital content of 4.4 ZB, set to increase to 44 ZB by 2020 [25]. This continuous 

generation of knowledge must be preserved to ensure future generations have access to the 

information, and that knowledge is not lost in time [26–28]. In this context, DNA is actively 

used to provide a window in to our biological past, whether allowing us to read the history 

of hominin evolution [29], identifying the 530-year-old remains of a king killed in battle 

[30], or tracking the early spread of HIV in humans [31], it gives us access to information 

archived for us by previous generations.

DNA Communication

DNA communication is best for niche applications, where security is more important than 

speed. The transfer of information to DNA is currently time consuming, laborious, and 

expensive. However, in addition to being able to contain and transmit encrypted information 

similar to digital communication mediums, DNA is also invisible to the naked eye and data 

extraction requires skills in molecular biology. This makes DNA a discreet communication 

channel that can provide the highest levels of security [32,33]. Furthermore, information can 

be incorporated in both the direct sequence and the 3D architecture of assembled DNA 

molecules.

In 1999, Bancroft and colleagues were the first to demonstrate the concept of using DNA for 

communication [34]. Their proof-of-concept experiment was designed to initiate a 

discussion on the additional security that could be afforded to communication channels by 

integration of molecular biology techniques. They constructed a substitution table-based 

encryption key to encode “JUNE 6 INVASION: NORMANDY” that was further secured 

with steganography—the art of concealing information amongst other different information

—by mixing with non-coding DNA. The DNA message was then stored in a printed 

microdot, posted in the mail, and read via PCR amplification and sequencing.

Information can also be embedded in the artificial 3D architectures of programmed and self-

assembled DNA [35]. For instance, Mao et al. constructed DNA tiles composed of four 

DNA molecules that assembled into three double helices [33]. Individual tiles possessed 

sticky ends that contained information to direct further assembly with other tiles, thereby 

allowing cumulative XOR computation, where two identical bits produce an output of 0 and 

two different bits produce an output of 1 [36]. For example, if two DNA tiles representing 0 
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combine then they produce an output of 0, similarly if two tiles are 1 then the output is 0, 

and if one tile is 0 and the other is 1 then the output is 1. This method can be used for 

executing unbreakable one-time pad encryption [32,37,38]. A one-time pad is an encryption 

key that is random and is only used once. Therefore, if one wants to encrypt the data 

0110110 with one-time pad XOR computation, then they can randomly generate an 

encryption key such as 1001011, and executing this key on the original data will produce the 

encrypted information 1111101, which can only be decrypted with the single-use encryption 

key.

DNA can also be used for communicating the identity of products for biosecurity 

applications [39,40]. Genetic modification of organisms has become a routine procedure 

[41], and there is interest in establishing rapid identification methods in case they are 

environmentally released. One simple method would be through standardized watermarking 

of genetically engineered organisms [42,43]. Furthermore, DNA barcoding can serve as a 

valuable method for tracking food and agricultural products for authentication and safety 

concerns [44].

Long-Term Data Storage in DNA

The high capacity and chemical stability of DNA make it an ideal platform for long-term 

data storage. Yet high writing and reading costs mean that DNA storage is best for 

infrequently accessed information that needs to be available to future generations.

To demonstrate the potential of DNA for storing a large volume of data, Church and 

colleagues encoded a book containing 53,426 words and 11 images in DNA, totaling 659 kB 

[21]. The digital html file was converted from bits to bases by substitution, where 0 = A or C 

and 1 = T or G (Figure 2). Stretches of homopolymers represent a technical challenge in 

synthesis and sequencing procedures, resulting in increased rates of error [45]. Therefore, 

for engineering reasons the authors disallowed homopolymeric stretches of 4 or more. With 

these considerations, the data was encoded in 159 nt oligonucleotides printed on DNA 

microchips utilizing a total of 54,898 oligonucleotides, where each contained a 96 nt data 

region, a 19 nt barcode, and a 22 nt sequence used for writing (amplification) and reading 

(sequencing). This represented a data storage density of 5.5 × 1015 bits/mm3, far greater than 

a conventional hard disk with a capacity of 3.1 × 109 bits/mm3. The book was then read 

using next-generation sequencing followed by data assembly.

Goldman and colleagues went a step further and stored ASCII text, PDF, JPEG, and MP3 

file formats in DNA, totaling 757 kB [46]. By encoding the complete set of Shakespearian 

sonnets, a scientific paper, a picture, the recording of a famous speech, and the Huffman 

code that was used to convert the digital files to bases and then shipping the DNA around the 

world under standard conditions, the authors demonstrated the versatility of DNA for not 

only information storage but also for stability under everyday handling conditions. 

Furthermore, the Goldman study used trits to convert bits to bases and in the process 

excluded homopolymeric runs. Trits are base-3 digits composed of 0, 1, and 2. Therefore 

instead of encoding bytes based on binary code (0 and 1), they developed software to encode 

all of the 256 possible bytes using 5 or 6 unique trits (represented by nucleotides). For 
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example, the character ‘a’ was converted to ‘01112’ in trits, which was then encoded as 

‘GAGAT’ in DNA. Overall, the study used a total of 153,335 strings of 117 nt to provide 

four-fold coverage of all of the encoded data, with estimated costs of $12,400/MB for 

writing and $220/MB for reading.

Recently, Grass and colleagues addressed two important concerns related to DNA data 

storage—error correction and chemical preservation methods—while encoding 83 kB of text 

into 4991 DNA strands of 158 nt [24]. Briefly, Reed-Solomon error-correcting codes were 

adapted to a DNA codon wheel to introduce encoding redundancy that provided error 

tolerance. The conversion of digital information into bases was also structured to ensure 

homopolymeric runs of more than three bases were not possible. Furthermore, they 

compared the robustness of four different storage methods of DNA: (i) dried, (ii) infused in 

filter paper, (iii) in a biopolymer mimicking conditions in seeds and spores, and (iv) 

encapsulated in a silica sphere. Following accelerated aging experiments, silica spheres 

provided the most robust storage condition. This was likely the result of reduced exposure to 

water as silica provides a physical inorganic barrier between DNA and water, thereby 

reducing the local humidity around DNA and aiding in long-term stability. Based on their 

error-correction and silica storage methods, the authors estimated that digital data stored in 

DNA could be recovered error-free following archiving in permafrost conditions for more 

than 2 million years.

Future Outlook

DNA holds great promise for meeting our future data storage needs. However, much further 

research is still required to establish it as a legitimate storage medium. Many opportunities 

exist for innovation, such as incorporating XNA technology into chemical synthesis methods 

to increase the DNA alphabet, or developing DNA-specific cryptography and steganography 

methodologies for increasing information security [47–49]. However, key limitations that 

need to be addressed before DNA storage can be more broadly adopted are (Figure 3):

i. Sequencing obfuscation: What if we would like to keep our data in DNA and let it 

be easily read (sequenced) by authorized individuals, but obfuscate sequencing 

attempts by unauthorized individuals as a means of physical security? Can we 

camouflage DNA?

ii. DNA language: Can we develop a unique DNA language with insights from 

biology, computer science, and linguistics that is purpose built for encoding digital 

information in DNA?

iii. Write/read cost: Can we adapt DNA write/read technologies specifically for data 

storage—instead of conventional biological applications—to maximize efficiency?

iv. Write/read speed: Can we adapt write/read technologies to be purely based on 

chemistry—instead of using sensitive enzymes—to allow for fast and robust in-

field functionality?

DNA has the potential be a disruptive technology that can dramatically change the digital 

storage landscape. With further research to address key concerns, then that old warhorse 

DNA can embark on yet another exciting adventure.
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Highlights

• Advances in DNA synthesis have provided new opportunities for DNA 

nanotechnology.

• DNA has several key attributes that make it ideal for storing digital data.

• Communication and data archiving are emerging applications for synthetic 

DNA.
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Figure 1. 
Key attributes of DNA for long-term data archiving.
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Figure 2. 
Conversion of data from a digital format (0/1) to a DNA format (A/G/C/T). The Church 

[20], Goldman [42], and Grass [23] studies all employed different methods to encode 

information in DNA, but they all achieved reliable data storage.
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Figure 3. 
Grand challenges that should be addressed in order to realize the potential of DNA for long-

term data archiving.
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