
Progress toward Monte Carlo – Thermal Hydraulic

Coupling using Low-Order Nonlinear Diffusion

Acceleration Methods

Bryan R. Herman∗, Benoit Forget, Kord Smith

Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

Abstract

A new approach for coupled Monte Carlo (MC) and thermal hydraulics (TH)

simulations is proposed using low-order nonlinear diffusion acceleration meth-

ods. This approach uses new features such as coarse mesh finite difference

diffusion (CMFD), multipole representation for fuel temperature feedback on

microscopic cross sections, and support vector machine learning algorithms

(SVM) for iterations between CMFD and TH equations. The multipole rep-

resentation method showed small differences of about 0.3% root mean square

(RMS) error in converged assembly source distribution compared to a con-

ventional MC simulation with ACE data at the same temperature. This is

within two standard deviations of average real uncertainty. Eigenvalue dif-

ferences were on the order of 10 pcm. Support vector machine regression was

performed on-the-fly during MC simulations. Regression results of macro-

scopic cross sections parametrized by coolant density and fuel temperature

were successful and eliminated the need of partial derivative tables generated
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from lattice codes. All of these new tools were integrated together to per-

form MC-CMFD-TH-SVM iterations. Results showed that inner iterations

between CMFD-TH-SVM are needed to obtain a stable solution.

Keywords: Monte Carlo, thermal hydraulics, OpenMC, CMFD, support

vector machines, Multipole representation, BEAVRS

1. Introduction

One of the many goals in reactor analysis is to predict accurate spatial

power distributions. Currently, the industry standard is to perform simula-

tions using nodal diffusion methods accelerated by nonlinear diffusion accel-

eration (NDA) methods such as coarse mesh finite difference (CMFD). These

nodal methods rely on homogenized multigroup diffusion parameters (cross

sections, discontinuity factors, etc.) generated from separate lattice calcula-

tions. During homogenization, all detailed information is lost and can only

be recovered using reconstruction methods at the end of simulation. Thus,

refinement in space and energy is not possible to achieve a more accurate

solution. Nodal methods are commonly coupled to low-order thermal hy-

draulic (TH) methods to treat reactivity feedback through fuel temperature

(Doppler), coolant density, etc. Commonly, a full nodal solution is gener-

ated, thermal hydraulic fields such as fuel temperature and coolant density

are calculated, cross section interpolation is performed and the process re-

peats. This paper addresses coupling fuel temperature and coolant density

fields to a higher order continuous-energy Monte Carlo solution.

Monte Carlo methods are attractive for reactor analysis because multi-

group cross section generation is not required. These methods use point-wise
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in energy cross section data. In addition, geometry can be explicitly modeled

using constructive solid geometry. This class of methods can provide accu-

rate pin-wise power distributions because tallies can be scored on any size

mesh given that enough neutron histories are simulated. Because individ-

ual neutrons are simulated to obtain results, these methods are notoriously

slow. Also, the stochastic process of sampling probability distributions re-

quires that statistical uncertainty be accumulated and reported. Monte Carlo

methods are different in the fact that after a converged source is obtained,

tallies for spatial power distributions are then collected.

In this paper, progress toward a different approach is investigated where

thermal hydraulic fields are converged during the source convergence stage of

Monte Carlo through a low-order CMFD operator. A new on-the-fly Doppler

broadening technique called windowed multipole representation is used for

fuel temperature feedback (Forget et al., 2014; Josey et al., 2014). Differ-

ent acceleration methods are explored using machine learning techniques to

determine how CMFD parameters depend on TH parameters.

For the analyses presented in this work, the OpenMC Monte Carlo code

is used (Romano and Forget, 2013). Section 2 provides a background of

how Monte Carlo methods are used for analyzing reactors. Section 3 dis-

cusses CMFD and its implementation into OpenMC. The thermal hydraulic

model incorporated into the Monte Carlo code is presented in Section 4, and

the coupling between neutronic and thermal hydraulic fields is described in

Section 5. Finally, simulations performed and results are discussed in Sec-

tions 6 and 7, respectively.
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2. Monte Carlo simulations for reactor analysis

Monte Carlo methods for reactor analysis are commonly referred to as

eigenvalue or criticality simulations. These methods differ from fixed source

analyses because the neutron source is unknown and depends on the whole

system. Thus, eigenvalue simulations are separated into two parts: 1) inac-

tive source iterations to converge the spatial distribution of the fission source,

and 2) active source iterations where tallies are accumulated.

During inactive fission source generations, an initially assumed source is

iterated on until it is converged analogous to power iteration. Neutrons are

born from source sites contained in a finite source bank and simulated until

they escape the domain or are absorbed. As these neutrons are simulated

they can cause fission where a new site will be stored in the next source

bank. The number of inactive fission source generations is determined by the

user and convergence is commonly assessed with Shannon entropy (Brown,

2006). This diagnostic produces a scalar value for the spatial distribution

of the fission source. Once it is stationary about some mean, the source is

determined to be converged. The number of neutrons stored in the source

bank can also be controlled by the user and is referred to as number of

neutron histories per generation. Because we may tally CMFD quantities

during inactive fission source generations, each generation will also be a tally

batch. Thus, inactive fission source generations are the same as inactive

batches.

Once a source is converged, tally means and variances are accumulated.

To reduce bias, the source bank is updated at the end of each fission source

generation. Because source sites used in a generation are directly dependent
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on fission sites from the previous generation, generations are highly corre-

lated. This tends to produce inaccurate estimates of variances and confidence

intervals (Brissenden and Garlick, 1986; Ueki, 2010). Kelly et.al. have shown

that to reduce this inaccuracy, users can run multiple fission source genera-

tions in a tally batch (Kelly et al., 2012). All of these choices that users can

make affects the behavior of MC tally and source convergence. The termi-

nology presented in this section will be referred to throughout this paper.

3. CMFD diffusion acceleration

Coarse mesh finite difference diffusion methods were developed decades

ago and are now commonly used to accelerate fission source convergence in

nodal simulations (Smith, 1983). This nonlinear iteration strategy has been

proven to reduce both computational time and storage when used to acceler-

ate nodal methods. Recently, CMFD has been applied to eigenvalue Monte

Carlo simulations to accelerate fission source convergence (Lee et al., 2012).

When CMFD acceleration takes place, tallies need to be present during in-

active batches. The most important equation that needs to be satisfied by

MC tallies, to within stochastic uncertainty, is the neutron balance equation.

This equation is written for a uniform Cartesian CMFD mesh with dimen-

sions (∆u
l ,∆

v
m,∆

w
n ) as
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〉
−
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m∆w

n

〉
+
〈

Σ
g
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φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
=

G∑
h=1

〈
νsΣ

h→g

sl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉

+
1

k

G∑
h=1

〈
νfΣ

h→g

fl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉
. (1)

The parameters in brackets 〈·〉 in Eq. (1) are quantities that can be tallied

in MC. Each tally is described below:

•
〈
J
u,g

l±1/2,m,n∆v
m∆w

n

〉
— surface area integrated net current over surface

at (l± 1/2,m, n) with surface normal in direction u in energy group g.

By dividing this quantity by the transverse area, ∆v
m∆w

n , the surface

area averaged net current can be computed.

•
〈

Σ
g

tl,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
— volume integrated total reaction rate over

energy group g.

•
〈
νsΣ

h→g

sl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉
— volume integrated scattering production

rate of neutrons that begins with energy in group h and exits reaction in

group g. This reaction rate also includes the energy transfer of reactions

(except fission) that produce multiple neutrons such as (n,2n); hence,

the need for νs to represent neutron multiplicity.

• k — core multiplication factor.

•
〈
νfΣ

h→g

fl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉
— volume integrated fission production rate

of neutrons that begins with energy in group h and exits in group g.
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Batch i
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Run CMFD?
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Figure 1: Flow chart of CMFD execution between tally batches.
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MC tallies will satisfy this equation to within stochastic uncertainty as

tally batches are accumulated. CMFD parameters can be calculated from this

equation and a better fission source can be obtained. An outline of CMFD

accelerated MC is presented in Figure 1. After each batch of neutrons, CMFD

feedback may be applied before simulating the next batch of neutrons. The

details of each part of CMFD are detailed in the following subsections.

3.1. Calculation of macroscopic cross sections and diffusion coefficients

Results from MC tallies are used to compute macroscopic cross sections

(XS) and diffusion coefficients (DC) that are needed to solve the multigroup

diffusion equation. In Eq. (1), macroscopic cross sections are already detailed

out for each reaction rate. Macroscopic total, scattering production and

fission production are obtained respectively with:

Σ
g

tl,m,n
=

〈
Σ

g

tl,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
〈
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉 , (2)

νsΣ
h→g

sl,m,n
=

〈
νsΣ

h→g

sl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉
〈
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉 (3)

and

νfΣ
h→g

fl,m,n
=

〈
νfΣ

h→g

fl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉
〈
φ
h

l,m,n∆u
l ∆v

m∆w
n

〉 . (4)

The numerator and denominator in each of these equations is a single tally

bin in MC. Diffusion coefficients are needed to relate net current and scalar

flux in the diffusion equation. Because equivalence between diffusion theory
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and transport theory is performed in the next step, the perfect diffusion co-

efficient does not need to be obtained. However, better diffusion coefficients

will lead to faster convergence and a more stable acceleration. Diffusion co-

efficients are difficult to calculate in MC because a single volume-average

diffusion coefficient cannot describe the leakage out of each surface of a cell.

In addition, because we are using a coarse mesh, significant spatial truncation

error exists. Besides the previous issues, more accurate diffusion coefficient

suited for light water reactor (LWR) applications can be obtained by perform-

ing an in-scatter correction on anisotropic scattering isotopes and performing

an energy collapse from a fine distribution of diffusion coefficients to a few

groups (Herman et al., 2013b). The calculation of diffusion coefficients in

this work is as follows:

D
g

l,m,n =

〈
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
3
〈

Σ
g

trl,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉 , (5)

where 〈
Σ

g

trl,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
=
〈

Σ
g

tl,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
−
〈
νsΣ

g

s1l,m,n
φ
g

l,m,n∆u
l ∆v

m∆w
n

〉
. (6)

Note that in order to obtain the transport reaction rate, the total reaction

rate is reduced by the P1 scattering reaction rate.

3.2. Calculation of equivalence parameters

Using a second order finite volume discretization, surface area averaged

net current can be related to volume averaged scalar flux with

J
u,g

l+1/2,m,n = −D̃g
l+1/2,m,n

(
φ
g

l+1,m,n − φ
g

l,m,n

)
(7)
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Equation (7) represents an interface between two cells. The parameter

D̃g
l+1/2,m,n is a function of diffusion coefficients and cell dimensions. These

relationships are also derived for various boundary conditions. Equation (7)

can be combined with Eq. (1) to obtain a diffusion equation. This diffusion

equation is inconsistent with MC transport for many reasons. The first is

that leakage between cells, characterized by a diffusion coefficient, is not ac-

curate. Another reason is spatial truncation error that would result in the

solution because a coarse mesh is being used. To make the diffusion equa-

tion consistent with the transport solution, leakage is preserved between cells

using a modified form of Eq. (7),

J
u,g

l+1/2,m,n = −D̃g
l+1/2,m,n

(
φ
g

l+1,m,n − φ
g

l,m,n

)
+ D̂g

l+1/2,m,n

(
φ
g

l+1,m,n + φ
g

l,m,n

)
(8)

The parameter D̂g
l+1/2,m,n is calculated for every surface and energy group by

solving Eq. (8). All other parameters in this equation can be derived from

MC tallies.

If the neutron balance equation is satisfied by MC tallies on a coarse mesh,

reaction rates from this equation can be conserved by computing macroscopic

cross sections. Leakage rates can also be conserved by fixing the inconsisten-

cies from spatial truncation error and diffusion approximations with an extra

parameter that is derived from MC tallies. Note, this only provides accurate

averaged values over the coarse mesh to which it is applied.
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3.3. CMFD equations

Combining Eqs. (8) and (1), a linear system of equations can be created

for every spatial cell and energy group. These form a generalized eigenvalue

problem that has the form

∑
u∈x,y,x

1

∆u
l

[(
−D̃u,g

l−1/2,m,n − D̂
u,g
l−1/2,m,n

)
φ
g

l−1,m,n

+
(
D̃u,g

l−1/2,m,n + D̃u,g
l+1/2,m,n − D̂

u,g
l−1/2,m,n + D̂u,g

l+1/2,m,n

)
φ
g

l,m,n

+
(
−D̃u,g

l+1/2,m,n + D̂u,g
l+1/2,m,n

)
φ
g

l+1,m,n

]
+ Σ

g

tl,m,n
φ
g

l,m,n −
G∑

h=1

νsΣ
h→g

sl,m,n
φ
h

l,m,n =
1

k

G∑
h=1

νfΣ
h→g

fl,m,n
φ
h

l,m,n. (9)

Standard generalized eigenvalue solvers are used to solve this system such as

power iteration and Jacobian-free Newton Krylov methods.

At this step, the CMFD system of equations can also be used for other ap-

plications. Herman et al. (2013a) presented results where this set of equations

was used to compute adjoint distributions, higher harmonic distributions and

dominance ratio. Because these equations have consistent physics with the

transport solution, many applications are possible.

3.4. Modification of Monte Carlo source bank

Once a multigroup flux distribution is obtained from solving the trans-

port consistent diffusion equations, a normalized source distribution can be

calculated. This normalized source distribution represents the probability of

a source neutron being born in a given coarse mesh cell and energy group.
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This is obtained with

pgl,m,n =

∑G
h=1 νfΣ

h→g

fl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n∑

n

∑
m

∑
l

∑G
h=1 νfΣ

h→g

fl,m,n
φ
h

l,m,n∆u
l ∆v

m∆w
n

. (10)

By multiplying this equation by the total number of neutrons simulated in

a batch, the expected number of neutrons born in a spatial cell and energy

band is determined. The ratio of this quantity and the actual number of

neutrons in the MC source bank in each corresponding cell and energy band

can be calculated. This is shown as

f g
l,m,n =

Npgl,m,n∑
iwi

; i ∈ (g, l,m, n) , (11)

where N is the total number of neutrons simulated in a batch, wi is the weight

of neutrons in a corresponding energy group and spatial cell, and f g
l,m,n are

termed weight adjustment factors. If the distributions agree exactly, these

factors are unity. Otherwise, weights of neutrons in the MC source bank are

modified by this multiplicative factor,

w′i = wi × f g
l,m,n; i ∈ (g, l,m, n) . (12)

4. Thermal hydraulics

For the TH model, simplifications are made to obtain a simple set of equa-

tions because we are only interested in studying the coupling effect. Future

work will include using more complex models. The following assumptions

are made in the TH model:

1. Single-phase fully developed flow,
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i

i+ 1

i+ 2

i+ 3

i+ 4

i+ 5

i− 1/2

i+ 1/2

i+ 3/2

i+ 5/2

i+ 7/2

i+ 9/2

i+ 11/2

Figure 2: Diagram of TH domain.

2. Infinite mixing of coolant in an assembly and no cross flow between

assemblies,

3. Known flow rate into each assembly and pressure is fixed in each chan-

nel,

4. Fission energy deposition is local to volume and can be approximated

by fission neutron production rate,

5. Bundle averaged quantities are calculated.

Due to these assumptions, only an energy conservation equation is needed

to determine spatial distribution of coolant density. A simple diagram is

presented in Figure 2 to show how the energy equation is solved. Domain i is

used as an example. The inlet enthalpy at i−1/2, the energy deposited within

i and flow rate of coolant are known. The outgoing enthalpy is determined

from an energy balance with

hi+1/2 = hi−1/2 +
q̇i
ṁ
. (13)
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The inlet and exit enthalpy of a cell can be used to calculate a cell averaged

enthalpy. Here, we take a simple average. The average enthalpy and pressure

is used in the equation of state for water to determine density.

The second quantity of interest is the average fuel temperature. A sim-

ple conduction equation is applied between the coolant, clad, gap and fuel

to determine average fuel temperature. It is calculated with the following

formula:

T f = Tm +
q′

2π

[
1

4kf
+

1

Rghg
+

1

kc
ln

(
Rco

Rci

)
+

1

Rcohm

]
, (14)

where

• T f is the average fuel temperature,

• Tm is the temperature of water in the cell determined from equation of

state,

• q′ is the linear heat rate,

• kf is the fuel conductivity,

• Rg is the mean gap radius calculated by taking the average of clad

inner radius and fuel pellet radius,

• hg is the gap conductivity,

• kc is the conductivity of clad,

• Rco and Rci are outer and inner clad radius, respectively,

• and hm is the coolant heat transfer coefficient.
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The linear heat rate is calculated by dividing cell power by the height of the

cell. Geometry information is discussed in Section 6. The fuel conductivity

and clad conductivity are 2.4 W/m-K and 17 W/m-K, respectively. The gap

conductivity is held constant at 31000 W
m2−K . The only parameter that needs

to be calculated is the heat transfer coefficient of water. This is performed

using the Dittus-Boelter correlation (Todreas and Kazimi, 2010).

5. Neutronic - TH coupling

Coupling MC neutronics data to TH is a rather straightforward process

assuming that a tally mesh is placed over the MC geometry that is on the

same nodalization for TH physics. During the MC simulation, energy de-

position tallies are accumulated (approximated by fission production rate)

and are then normalized to produce power peaking factors over that mesh.

Then, local power in each cell can be computed by multiplying average cell

power with its power peaking factor. This is then used directly in the energy

equation presented in Eq. (13).

The TH physics produces a spatial distribution of coolant density and

fuel temperature over the tally mesh. To feedback coolant density to MC,

number densities of coolant nuclides must be recalculated. To have a unique

water material for coolant density feedback in each assembly, water mate-

rial objects are replicated in the OpenMC materials input file. Another

option for this feedback is to change the number densities on the fly by

finding the cell in which the particle is currently in, every time water cross

sections are needed. Fuel temperature changes affect microscopic cross sec-

tions through Doppler broadening. There are several different methods that
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have been used to account for varying fuel temperature and are described by

Vazquez (Vazquez et al., 2012). These include loading explicit cross sections

at a certain temperature interval, performing on-the-fly Doppler broadening

and mixing cross sections of different temperatures with a certain weighted

average. In this work, the multipole representation method is used to perform

on-the-fly Doppler broadening for U-235 and U-238 in the resolved resonance

range and is discussed in Section 5.2.

The conventional method for coupling neutronic and TH together is to

run a full MC simulation, compute thermal hydraulics and then rerun MC

simulation again. Increased computational efficiency can be achieved by not

running fully converged MC simulations until later iterations and also start-

ing from the previously converged source distribution. This is illustrated in

Fig. 3, except TH feedback is performed between batches. In this paper, a

different approach is used where MC, CMFD and TH will converge together

during inactive fission source generations. Because CMFD is being used to

accelerate source convergence, CMFD-TH iterations can be fully converged

when acceleration is applied. This process is highlighted in Figure 4. This

will be compared to MC directly coupled to TH during inactive fission source

generations presented in Figure 3. However, because CMFD-TH iterations

are now considered, macroscopic cross sections and diffusion coefficients that

are used in CMFD equations are dependent on coolant density and fuel tem-

perature. For deterministic transport/diffusion codes and multigroup MC

codes, this is provided through given functional relationships or lookup ta-

bles generated from lattice calculations. In continuous energy MC, we want

to directly use ACE libraries and, therefore, are not able to precompute these
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Batch i Batch i + 1

Extract

Power Tally

T/H Update

Update

OpenMC

Data: ρc andT f

Figure 3: Conventional MC-TH coupling except feedback is applied during fission source

iterations.

relationships. To overcome this challenge, Machine Learning techniques are

used to learn these dependencies during MC simulations. This is reflected by

the Train SVR with XS and Predict XS with SVR blocks in Figure 4. This

is discussed more thoroughly in the next section.

5.1. Support vector machines for XS regression

Support Vector Machines (SVM) is a machine learning method that is

widely used for classification (SVC) and regression (SVR) (Chistianini and

Shawe-Taylor, 2000). This section will provide a high level view of SVMs.

This type of machine learning is supervised where training data are provided

before predictions are made. Training data are given to SVR tools in the form

{(~x1, y1) , . . . , (~xn, yn)}, where ~x is a feature vector that describes a label y.

In the context of TH feedback, a feature vector may include information such

as fuel temperature and coolant density, and a label may be a macroscopic

cross section.
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Batch i Batch i + 1

Train SVR with XS

CMFD

T/H Update Done?

Predict XS

with SVR

Update

OpenMC Data:

ρc, T f and

source weights

no

yes

Figure 4: Proposed new coupling methodolgy where inner CMFD-TH iterations are con-

verged between MC fission source iterations.

The easiest regression to perform is linear. A linear function in SVR is

represented as

f(~x) = 〈~w, ~x〉+ b, (15)

where ~w is a vector of weights and b is the offset from the origin. The goal of

this process is to minimize the norm of the weight vector. Cortes and Vapnik

formulated the following optimization problem (Cortes and Vapnik, 1995):

minimize 1
2

+ C
l∑

i=1

(ξi + ξ∗i )

subject to


yi − 〈~w, ~x〉 − b ≤ ε+ ξi

〈~w, ~x〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

.
(16)
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el
y
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Figure 5: ε-insensitive loss function in linear SVR.

In Equation (16), ξi and ξ∗i are defined as slack variables that help with

constraints of the optimization problem and improve generalization. The pa-

rameter C is introduced as a regularization parameter which penalizes more

complex models to avoid over-fitting the training data. The parameter ε is

used in the ε-insensitive loss function where values outside of ±ε are penal-

ized. Figure 5 depicts this type of loss function where only points outside of

the shaded ±ε region contribute to the loss. For nonlinear algorithms, fea-

ture vectors are mapped to higher dimensional feature spaces, represented

as ~x → Φ(~x), using kernels. A nice trick with kernels is that the explicit

mapping of the feature vector to the feature space, Φ(~x), is not required.

Rather, only an implicit mapping is required because SVM algorithms only

depend on inner products of feature vectors. A kernel is therefore defined

as K (~xi, ~xj) ≡ 〈Φ(~xi),Φ(~xi)〉. The kernel function used in this work is the

Gaussian radial basis function, formulated as

K (~xi, ~xj) = exp
(
−γ ‖~xi − ~xj‖2

)
, (17)
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where γ is a free parameter commonly taken as the inverse of the number

of features. The capability of nonlinear regression will be very important in

TH feedback, especially when combined effects of TH parameters, spectral

effects and depletion are considered.

For each cross section, a separate SVR problem is solved. The specifics

of feature vectors and labels will be discussed in Section 6. Once each SVR

problem is trained, a prediction can be made for what the change in cross

section should be. A cross section change is preferred because the MC sim-

ulation already provides a good estimate of the cross-section at the previous

conditions. As an example, if both coolant density and fuel temperature are

independent TH parameters used in regression, a new cross section at TH

iteration i can be calculated with

Σi
(
T i
f , ρ

i
)

= Σ0
(
T 0
f , ρ

0
)

+
∂Σ

∂Tf

(
T i
f − T 0

f

)
+
∂Σ

∂ρ

(
ρi − ρ0

)
, (18)

where Σ represents a macroscopic cross section, Tf is fuel temperature, ρ

is coolant density, i is current thermal iteration and 0 represents reference

conditions at which partial derivatives were computed. Equation (18) shows

a simple multidimensional linear interpolation where each TH parameter

is considered as a separate impact. This assumption is adequate because

dependencies on TH parameters are performed separately in single assembly

lattice calculation. However, when the same type of understanding is being

performed on-the-fly with a full core model, nonlinear terms will impact cross

section values. To account for this, when macroscopic cross section feedback

is performed for CMFD diffusion iterations, the following feedback model is
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used:

Σi
MC

(
T i
f , ρ

i
)

= Σ0
MC

(
T 0
f , ρ

0
)

+
[
Σi

SV R

(
T i
f , ρ

i
)
− Σ0

SV R

(
T 0
f , ρ

0
)]
. (19)

In Eq. (19), ΣMC is the cross section computed from MC tallies and ΣSV R

is the cross section evaluated by the SVR problem. Reference TH conditions

are coolant density and fuel temperature distributions used during the MC

simulation. All nonlinear effects are accounted for in the difference between

what SVR thinks the cross section should be at the new TH conditions and

the cross sections at the reference TH conditions, which might differ slightly

from the MC result.

5.2. Multipole method for fuel temperature feedback

One of the most difficult parts in coupling TH to MC neutronics is how to

take into account how Doppler broadening affects microscopic cross sections.

The brute-force approach is to load cross section libraries at a wide range

of temperatures and perform interpolation on-the-fly. This approach was

studied by Trumbull (2006) and concluded thattens to hundreds of gigabytes

would be required. Over the past decade, other on-the-fly Doppler broaden-

ing techniques have been created that reduce this storage size requirement to

tens of gigabytes (Vitanen and Leppänen, 2012; Yesilyurt et al., 2012). Re-

cently, Forget et.al. studied and implemented the multipole representation

method to perform on-the-fly Doppler broadening which further reduce the

storage size to 100s of megabytes (Forget et al., 2014).

Forget implemented this approach in OpenMC for the resolved energy

range of U-235 and U-238. Results were compared between point-wise cross
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section data sets at a specific temperature and the multipole representation

approach at that same temperature. Comparisons yielded good agreement

between the two methods with a slight increase in computational cost of

about 10%. Recent work has focused on optimizing the windowed multipole

method that would eliminate the computational increase (Josey et al., 2014).

In the results presented in this paper, the multipole method was used

to perform fuel temperature feedback. This was performed specifically for

U-235 and U-238 in the resolved energy range. Outside this energy range,

cross sections are taken from standard point-wise ACE files at one specified

temperature.

6. Description of simulations

OpenMC will be used to perform all Monte Carlo simulations. CMFD

and TH solvers have been embedded into OpenMC. The code is linked to

LIBSVM through a custom Fortran/C++ interface to perform SVM cal-

culations (Chang and Lin, 2011). To test various new components of the

proposed methodology, a 2-D version of the MIT BEAVRS benchmark is

used. Specifications of the benchmark are described in Reference (Horelik

et al., 2013). To create the 2-D model, a radial slice was taken at 225.0 cm.

A diagram of this radial slice is shown in Figure 6. There are no grid spacers

or control rods present in this model and all instrument tubes are replaced

with guide tubes such that the core is quarter symmetric. Although the core

is symmetric, a full azimuthal model is used in the MC simulations. This

is important because it exacerbates dominance ratio effects when converging

fission source distributions and other tallies.
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Figure 6: BEAVRS 2-D geometry plot used in simulations.
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An assembly mesh is used both for CMFD acceleration and TH calcula-

tions. Diffusion calculations performed in the CMFD methodology will only

encompass assemblies and not mesh corners that only contain moderator

and structural material. Therefore, an unstructured Cartesian mesh is used

where boundary conditions between core/reflector interface are needed. In

OpenMC, partial current tallies on mesh surfaces can be accumulated. By

allowing partial current tallies instead of net current, albedos (ratio of in-

coming to outgoing current on a surface) can be calculated for every mesh

surface between core and reflector. This is very important to do because

mesh cells far away from the core will have very few neutrons contributing

to tally bins. This approach circumvents the need for good tally estimates

in these peripheral regions.

Instead of starting the system at hot zero power conditions as specified in

the benchmark, random distributions of assembly averaged coolant density

and fuel temperature are used. This is important when performing SVR,

because a large sample space of coolant density and fuel temperature needs

to be provided so that SVR can learn trends in cross section data. The

following cross sections are used in the regression: (1) fast absorption, Σ1
a,

(2) thermal absorption, Σ2
a, (3) effective downscatter, Σ̂1→2

s , (4) fast fission

production, νΣ1
f , (5) thermal fission production, νΣ2

f , (6) fast transport, Σ1
tr

and (7) thermal transport, Σ2
tr. From these basic cross sections, all CMFD

parameters can be calculated. In the core, there are nine types of assemblies,

listed below:

1. 1.6% enrichment no burnable poisons (BPs) - 65 bundles,

2. 2.4% enrichment no BPs - 4 bundles,
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3. 2.4% enrichment 12 BPs - 28 bundles,

4. 2.4% enrichment 16 BPs - 32 bundles,

5. 3.1% enrichment no BPs - 32 bundles,

6. 3.1% enrichment 6 BPs - 12 bundles,

7. 3.1% enrichment 15 BPs - 4 bundles,

8. 3.1% enrichment 16 BPs - 8 bundles,

9. 3.1% enrichment 20 BPs - 8 bundles.

Each of these assemblies can have a different coolant density and fuel temper-

ature combination. Four attributes are selected for each training data: (1)

enrichment, (2) number of BPs, (3) coolant density and (4) fuel temperature.

Items (1) and (2) are used to classify the bundle type and the last two are

TH parameters.

7. Results

This section presents results of different components needed to perform

integral TH feedback. This includes the performance of CMFD acceleration

for neutronic-only simulations, as well as the effect of using multipole repre-

sentation to account for Doppler broadening of Uranium resonances in the

resolved resonance energy range.

7.1. CMFD acceleration at HZP TH conditions

The effect of CMFD acceleration on multigroup Monte Carlo source con-

vergence has been studied extensively by Lee et.al (Lee et al., 2012). The

results shown here are for accelerating a continuous energy Monte Carlo code
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where point-wise representation of resonances are used. This can make con-

vergence more difficult because more neutrons are needed in the simulation

to resolve each resonance. A simulation of a case where no CMFD is com-

pared to a CMFD case. Both simulations start with HZP conditions from

an initial uniform spatial source guess using 20 million neutrons per fission

source generation.

Source convergence is determined by using the Shannon entropy diag-

nostic on an assembly mesh. This is one method for determining when the

source becomes stationary and better methods to determine convergence are

beyond the scope of this analysis. Results are presented in Figure 7. From

the plot, it takes approximately 25 batches for the CMFD entropy to become

stationary. The entropy where CMFD is not applied does not converge until

150 batches. CMFD looks to converge to about the same Shannon entropy

as the base case without CMFD. It will not agree exactly, because there is

always uncertainty in the converged fission source distribution. The CMFD

entropy trend looks very erratic initially compared to the smooth decrease

of a conventional MC case. The first drop in entropy is from performing

the first CMFD calculation. This estimate of the source distribution, cal-

culated by CMFD, mispredicts the converged source distribution. However,

it quickly rises back after a few CMFD iterations. The other depressions in

the entropy result from resetting tally bins to eliminate initial source guess

bias. After a few resets, the CMFD entropy settles down to a stationary

trend. This convergence is exacerbated because of the initial random dis-

tribution of temperature and density. This random distribution is needed

because it allows the SVM machine learning tool to explore a wide space of
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Figure 7: CMFD acceleration of fission source convergence for HZP conditions.

temperatures and densities. Normally, an isothermal starting guess is used

and Monte Carlo converges more rapidly. CMFD will also follow this trend

and converge more rapidly.

7.2. Multipole results

Before using the multipole method for fuel temperature feedback, compar-

isons are performed against conventional MC. Three cases are performed: (1)

conventional MC with ACE libraries at 900K, (2) multipole MC at 900K with

ACE libraries at 900K and (3) multipole MC at 900K and ACE libraries at

600K. Although the multipole method does not require ACE libraries, these

libraries are still required for cross sections outside of the resolved resonance

range. Therefore, when TH feedback is performed on-the-fly, cross sections

calculated outside of the resolved resonance range will be at the temperature

of the ACE library. This issue is studied by comparing cases (2) and (3).

Simulations were performed with 20 million neutrons per batch, one fission

source generation per batch, 200 inactive fission source generations and 200

27



R P N M L K J H G F E D C B A

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1
-

0.15

-

0.21

-

0.47

-

0.59

-

0.61

-

0.51

-

0.48-

0.82

-

0.45

-

0.32

-

0.23

-

0.34

-

0.36

-

0.38

-

0.39

-

0.18
0.01 0.17

-

0.73

-

0.74

-

0.71

-

0.50

-

0.38

-

0.19

-

0.23

-

0.16

-

0.01
0.07 0.05 0.08

-

0.01-

0.67

-

0.72

-

0.71

-

0.44

-

0.11

-

0.04

-

0.02

-

0.13

-

0.03
0.13 0.17 0.26 0.14

-

0.59

-

0.75

-

0.77

-

0.67

-

0.33

-

0.04
0.08 0.07

-

0.02
0.08 0.26 0.16 0.17 0.23 0.07

-

0.18

-

0.24

-

0.48

-

0.51

-

0.31

-

0.05
0.05 0.14 0.03

-

0.05
0.14 0.17 0.17 0.12 0.14

-

0.02

-

0.07

-

0.23

-

0.25

-

0.17

-

0.02
0.10 0.07 0.06 0.07 0.21 0.23 0.18 0.10

-

0.04-

0.05

-

0.07

-

0.16

-

0.15

-

0.02
0.05 0.03 0.02 0.07

-

0.04

-

0.05
0.17 0.13

-

0.02

-

0.08
0.26 0.08 0.14 0.22 0.04

-

0.03

-

0.13

-

0.09
0.02

-

0.07
0.14 0.25 0.18 0.11

-

0.12
0.41 0.42 0.25 0.37 0.16 0.04 0.10

-

0.10

-

0.13

-

0.16
0.00

-

0.01
0.21 0.05

-

0.15
0.45 0.62 0.50 0.37 0.32 0.31 0.30 0.08

-

0.00

-

0.00

-

0.02

-

0.10
0.06 0.07

-

0.12
0.71 0.55 0.50 0.39 0.35 0.26 0.20 0.09

-

0.04

-

0.07

-

0.08

-

0.02

-

0.09
0.62 0.49 0.58 0.40 0.20 0.32 0.23 0.13

-

0.02

-

0.01
0.04 0.04

-

0.10
0.33 0.56 0.53 0.30 0.20 0.13 0.10

-

0.01

-

0.10

-

0.07
0.04

0.53 0.38 0.31 0.22 0.09
-

0.01

-

0.02

Figure 8: Relative percent error between conventional ACE cross sections and multipole

representation method at 900K.

tally batches. In these cases, a uniform random assembly averaged coolant

density distribution was used instead of a constant density.

A comparison of assembly fission source tallies is first performed between

cases (1) and (2). These results are presented in Figure 8. Results show that

errors are in the tenths of percent with the largest difference being 0.82% and

root mean square error of 0.298%. Another interesting observation is that

although the core is symmetrically loaded, error distributions in the source

are not. This is caused by high dominance ratio and correlated sampling

effects. The eigenvalues of case (1) and case (2) were about 10 pcm different.

Case (1) yielded a k-effective of 0.99646(1) and case (2) yielded a k-effective

of 0.99658(1). Although these are out of the statistical uncertainty range
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Figure 9: Comparison of fuel temperature effects (relative percent difference) not captured

by multipole method outside of resonance range.

of a couple of pcm, the comparison is still good taking into account that a

completely different representation of resonances was used.

Cases (2) and (3) were compared and results are presented in Figure 9.

Differences observed in this comparison are very similar to the ones observed

in the previous comparison. The largest error observed is 0.89% and root

mean square error of 0.288%. The eigenvalue of case (3) is 0.99697(1). This

is about 40 pcm different than the eigenvalue reported from case (2). There-

fore, although we do not see much difference in the source distribution, the

eigenvalues show more difference than between cases (1) and (2). This extra

difference can be attributed to temperature dependent effects in the fuel out-

side of the resolved resonance range. This case showed a 300 K perturbation

between multipole and ACE library temperatures. When fuel temperature
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Figure 10: Training and prediction data for coolant density regression of effective down-

scatter cross section.

feedback is performed, 300 K deviations are not expected between feedback

temperature and default ACE library temperature. Future work will study

on-the-fly possibilities for regions outside the resolved resonance range.

7.3. Support vector regression on cross sections

This section presents results for three different types of regressions. The

first is coolant density, the second is fuel temperature and the last is both

TH parameters. The parameters set for SVM regressions are, C = 1.0, ε =

1× 10−6 and γ = 0.25 in Eqs. (16) and (17). These parameters were chosen

by performing cross-validation tests where 95% of training was used to train

the SVM model and the extra 5% was used for prediction. Root mean square

error values were then computed for an array of the above parameters and the

chosen values represented data well. For each regression, a full MC simulation

was performed with 20 million neutrons per fission source generation, 200

inactive generations, a single generation per tally batch and 300 tally batches.

After tallies were collected, each cross section type was trained in separate
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SVM models from assembly averaged values. The first result presented is a

regression test of effective downscatter cross section with density shown in

Figure 10. In this figure, six assemblies were chosen to compare prediction

regressions and training data. Although data is shown by bundle type, only

one SVM model was used to obtain these regression data. Overall, agreement

is good between training data and prediction trends. Although training data

can be noisy, some of the training data has different spectrum effects which

is not represented in the feature vector currently. Even with these effects,

the data is linear as expected because coolant density has a direct effect on

the magnitude of macroscopic cross sections.

A similar analysis was performed for fuel temperature. In Figure 11,

fuel temperature regression data is shown for fast absorption cross section.

Most of the trends have a slight bend in them. This is consistent with fuel

temperature usually being represented as a square root to achieve a linear

trend. Finally, regression on both fuel temperature and coolant density was

performed and is presented in Figure 12. The 2-D color map on this plot

represents the magnitude of the fast absorption cross section for a given

coolant density and fuel temperature. The points plotted in the axial direc-

tion represents the absolute difference between training data and prediction

of training data using SVM model at a given spot on the 2-D map. Although

training and prediction of training data do not need to agree, it is expected

that the error is small and no trends exist. The RMS between these data is

0.05%. This analysis shows that SVM machine learning tools implemented

into OpenMC are behaving as expected.
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Figure 11: Training and prediction data for fuel temperature regression of fast absorption

cross section.
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Figure 13: Source convergence for TH feedback using MC source distribution.

7.4. Thermal hydraulic feedback

The 2-D BEAVRS model was used to study axially-integrated TH feed-

back from a process standpoint. Axially-integrated refers to the fact that

axial 1-D assembly TH distributions of coolant density and fuel temperature

are averaged axially to one parameter per assembly. Results presented in

this section show how different TH feedback strategies perform. This infor-

mation will help when studying full 3-D simulations. The first set of results

for TH feedback includes no CMFD diffusion calculations. This method, de-

scribed by Fig. 3, uses the MC source distribution to compute and update

TH parameters. This is very similar to the conventional style of performing

MC-TH feedback, except here we perform the feedback process during the

convergence of inactive fission source generations. This was performed for 3

running strategies and results are shown in Fig. 13. Each of the curves plot-

ted start TH feedback at different batches. For the runs that began at batch

5 and 10, TH feedback was performed every 5 batches. For the last run that

began at batch 20, TH feedback was performed every 20 batches. Different
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initial batch numbers were chosen to verify that the same final entropy was

reached independent of what the initial source was that performed the initial

TH feedback. This feedback process was performed at two different inter-

vals to study the dependence on the number of tally batches accumulated

between feedback stages. Figure 13 shows that all plots converge to the same

final entropy and each has different characteristics depending on when they

started and how often feedback was applied. Shannon entropy indicates that

all simulations converge by batch 65. These trends converge very nicely and

converge much sooner than the initial guess which took 150 batches accord-

ing to results presented in Figure 7. This is in part because running TH

feedback provides a flatter distribution of density and temperature closer to

the initial uniform source guess than a fission source with HZP conditions.

The next set of analyses studied the effects of incorporating CMFD into

the feedback process. For this study, 4 different simulations were compared:

1. TH feedback using MC source with no CMFD,

2. TH feedback using MC source with CMFD,

3. TH feedback using CMFD source with no CMFD-TH inner iterations,

4. TH feedback using CMFD source with CMFD-TH inner iterations us-

ing SVM.

In each case above, TH iterations began at batch 10 and updates were ap-

plied at an interval of 10 batches. For the cases 2-4, CMFD began at batch

5. Shannon entropy source convergence results are shown in Fig. 14 for

simulations 1, 2, 3 and 4. In addition, because CMFD tallies must be reset

periodically because TH conditions are changing, a moving tally window was

implemented. For example, at a certain CMFD iteration tally batches 2-5
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Figure 14: Source convergence for different TH feedback methods.

may be used to compute CMFD cross sections. On the next CMFD iter-

ation, batch 2 is removed and tallies from batches 3-6 are used. The first

observation in Fig. 14 is that case 2 and case 3 exhibit oscillatory behavior.

This may be due to the fact that MC and TH are performed one after an-

other and are never fully consistent like in case 4. However, eventually, these

simulations converge to a steady value. One positive result form this study

is that inner iterations between CMFD, TH and SVM must be performed

when using CMFD. By performing this inner iteration process, more stable

convergence behavior was achieved. The next step in the coupling process

is to look at convergence rates of fuel temperature and coolant density, not

just the MC source distribution. In addition, these simulations need to be

extended to full 3-D reactor models.

8. Conclusions

In this paper, progress toward TH feedback in MC simulations was dis-

cussed. Two methodologies were investigated. The first is similar to con-
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ventional MC-TH iterations, except tallies are accumulated during inactive

fission source generations and TH feedback is applied during source conver-

gence. The second is to extend CMFD source acceleration to perform coupled

TH iterations on the diffusion level before feeding back coolant density and

fuel temperature to MC. Both of these methods showed stable iteration pro-

cesses where Shannon entropy was used as a metric for source convergence.

In order to perform MC feedback of fuel temperature, the multipole rep-

resentation method was used. This method allowed cross sections to be

reconstructed at any temperature that TH equations predicted in the re-

solved resonance range. A study was performed to look at the differences of

using the multipole method compared to direct ACE cross sections. Differ-

ences of about 0.3% RMS in source distribution were found and eigenvalue

differences on the order of 10 pcm. Part of this 0.3% RMS error is due to

statistical uncertainty, as well as cross section representation difference. In

order to perform CMFD-TH iterations, the dependence of diffusion parame-

ters on TH fields must be estimated. Because this dependence is not known

beforehand, a SVM learning tool was introduced. In order for this tool to

learn trends in data, a random distribution of coolant density and fuel tem-

perature was used and training data for machine learning was produced from

MC tallies. A study was performed that indicated that SVM could predict

trends of macroscopic cross sections with respect to both fuel temperature

and coolant density.

Finally, TH iterations were performed with conventional MC source and

CMFD source. Conventional MC showed very nice convergence to a station-

ary source distribution. Inner CMFD-TH iterations were needed because
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a one pass through CMFD-TH equations yielded oscillatory results. More

analyses are needed to look at why this instability occurs. Although this

paper shows that CMFD-TH-SVM iterations are stable, convergence rates of

TH fields must be studied to determine if CMFD accelerates convergence for

both source and TH distributions. This work must be extended to full 3-D

core simulations to study the impact of convergence when TH parameters

vary axially.
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