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1 Introduction

Hadronic multi-body decays with more than two final-state hadrons constitute a large part

of the branching fraction for heavy hadron non-leptonic decays. In principle, three- and

more body decays have non-trivial kinematics and the phase space distributions contain

far more information than the two-body decays.

For D decays there exists a large amount of data on multi-body decays. However,

the charm quark mass is not large enough for heavy quark methods, since the typical

invariant masses mij of final state hadron pairs are roughly mc/
√
N , where N is the final

state multiplicity. Already for three-body decays of charmed hadrons this is outside the

perturbative region and hence there is no chance to discuss the resulting amplitudes on the

basis of some factorization theorem.

For B decays the situation may be slightly better, as we pointed out in a recent

publication [1]. For three-body decays such as B → πππ the bottom-quark mass turns out

to be still too small to allow for a complete factorization in the central region of the Dalitz

plot. However, it seems that one can make use of a “partial factorization” at the edges of

the Dalitz distribution, where the invariant mass of two of the pions is small.

It has been discussed in [1, 2] that for this part of the phase space the same proof

of factorization as for the two-body decays [3–6] is valid. However, the non-perturbative

input given by the matrix elements of the factorized operators is different: in the case of

three-body decays the light-cone distribution of two collinearly moving pions and the soft

B → ππ form factor are needed. At least the edges of the Dalitz plot can be described

in terms of these quantities; however, as has been argued in [1] this formalism may be

extrapolated to the more central parts of the Dalitz plot.
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Hadronic multi-body decays are also interesting for studies of CP violation. Although

the integrated (direct) CP asymmetries are small, local CP asymmetries (i.e. the CP asym-

metry for fixed values of the final-state invariant masses) are measured to be large in some

regions of the phase space and exhibit a rich structure [7–12]. Assuming the well known

CKM mechanism for CP violation, the requirement for its appearance is an interference

between at least two amplitudes with different weak and strong phases. Since the weak

phases are independent of the kinematics, any dependence on the kinematical variables of

the local CP asymmetries reflects kinematics-dependent strong-phase differences.

In the present paper we discuss an approach for three-body decay amplitudes based

on QCD factorization. We will take into account the leading term only, which is equivalent

to adopting naive factorization for the hadronic matrix elements. The main purpose is

to study to which extent such a framework can properly describe the observed Dalitz

distribution and local CP asymmetries in B− → π−π+π−.

In the next section we summarize the QCDF formula for three-body decays, then we

discuss the non-perturbative input needed in the factorization formula. In section 4 we

compute the Dalitz distributions and the local CP asymmetries in our framework, with a

fit to experimental data. We conclude with a discussion of the results.

2 QCD-factorization for B− → π−π+π−

In the following we will discuss charmless hadronic three-body decays and as a concrete

example we consider B− → π−π+π−. We define the external momenta

B−(pB)→ π−(k1) + π+(k2) + π−(k3) , (2.1)

where pB = k1 + k2 + k3 and, for massless pions,

p2
B = m2

B, k2
i = 0, sij ≡

(ki + kj)
2

m2
B

, (2.2)

such that s12 + s13 + s23 = 1. For B− → π−π+π− the Dalitz distribution is symmetric in

s12 and s23. Experimentally these variables cannot be distinguished, and we define k1 and

k3 by slow
± ≡ s12 and shigh

± ≡ s23, with slow
± < shigh

± .

The application to other combinations of charges as well as to final states with kaons

is obvious. As we have discussed in our previous paper [1], the structure of the amplitude

in the region slow
± � 1 is very similar to the two body case within the QCD-factorization

framework. The only difference is that the matrix elements of the operators will eventually

induce new non-perturbative quantities.

In this region, the B− → π−π+π− amplitude at leading order in αs and at leading

twist is given by [1]

A(slow
± ,shigh

± ) =
GF√

2

{[
λu(a2−au4)−λcac4

]
m2
B f+(slow

± )(1−slow
± −2shigh

± )F em
π (slow

± )

+
[
λu(a1+au4)+λca

c
4

]
fπmπ

[
F I=0
t (slow

± ,shigh
± )+F I=1

t (slow
± ,shigh

± )
]}
. (2.3)
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The quantities λp ≡ VpbV ∗
pd encode the CKM factors, a1,2 and au,c4 are constructed from Wil-

son coefficients, loop functions and convolutions with light-cone distributions (see section 4

and ref. [6]), and the objects fπ, f+, F
em
π and F It are non-perturbative quantities to be

discussed in section 3. The amplitude in eq. (2.3) is the key formula in this paper.

At this order and twist, this formula coincides with the result obtained by applying

the “naive-factorization” ansatz (see e.g. [13]), and we find it convenient to use some of its

notation here. To this end, we can simply take the QCD-factorized effective Hamiltonian

from [3], which reads:

Heff =
GF√

2
(λuTu + λcTc) (2.4)

with

Tu = au1
[
(ūb)V−A × (d̄u)V−A

]
+ au2

[
(d̄b)V−A × (ūu)V−A

]
+ a3

∑
q

[
(d̄b)V−A × (q̄q)V−A

]
+ au4

∑
q

[
(q̄b)V−A × (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A × (q̄q)V+A

]
− 2au6

∑
q

[
(q̄b)S−P × (d̄q)S+P

]
, (2.5)

Tc = a3

∑
q

[
(d̄b)V−A × (q̄q)V−A

]
+ ac4

∑
q

[
(q̄b)V−A × (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A × (q̄q)V+A

]
− 2ac6

∑
q

[
(q̄b)S−P × (d̄q)S+P

]
. (2.6)

The notation of the operators means that the matrix element is to be evaluated in the

factorized form as a product of two matrix elements. To be specific, for the case at hand

we have the two cases

〈π−(k1)π+(k2)π−(k3)|
[
(ūb)V−A × (d̄u)V−A

]
|B−(pB)〉

= 〈π−(k1)π+(k2)|(ūb)V−A|B−(pB)〉 〈π−(k3)|(d̄u)V−A|0〉+ k1 ↔ k3 , (2.7)

〈π−(k1)π+(k2)π−(k3)|
[
(d̄b)V−A × (ūu)V−A

]
|B−(pB)〉

= 〈π−(k3)|(d̄b)V−A|B−(pB)〉 〈π−(k1)π+(k2)|(ūu)V−A|0〉+ k1 ↔ k3 . (2.8)

The relevant non-perturbative objects in the leading-order amplitude are the pion

decay constant fπ, the B → π form factor f+, the time-like helicity B → ππ form factors

F I=0
t and F I=1

t , and the pion form factor in the time-like region Fπ. In the following

section we give proper definitions for these objects and specify how they will be fixed in

our approach.

3 Non-perturbative input

The strength of our QCD-factorization based model is that non-perturbative inputs may

be obtained from data. The pion decay constant and the B → π form factors can both be

taken as real, but the new B → ππ and pion form factors contain non-perturbative strong

phases which will be driving the CP asymmetry distribution.

– 3 –
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Figure 1. Pion vector form factor F em
π (k2) = |F em

π |eiδ in the time-like region.

3.1 The pion decay constant and the timelike pion form factors

We define the pion decay constant in the usual way

〈π−(k3)|(d̄u)V−A|0〉 = −〈π−(k3)|d̄γµγ5u|0〉 = ifπk
µ
3 , (3.1)

with the numerical value fπ ∼ 130 MeV.

The pion form factor is defined by〈
π−(k1)π+(k2)|q̄γµq|0

〉
= F em

π (k2)(k1 − k2)µ , k2 ≡ (k1 + k2)2 ≥ 0 (3.2)

and can be obtained from electromagnetic probes. Note that in the time-like region this

form factor picks up a non-trivial strong phase. Here we use the parametrization of ref. [14]

fitted to the measurements of e+e− → π+π−(γ) [15] (see also ref. [16]). The absolute value

and the phase of this form factor are shown in figure 1. Unfortunately, while the absolute

value is very precisely measured up to k2 ∼ 3.5 GeV2, its phase is not so well constrained.

This will add to the level of model dependence of our approach.

We will also need the corresponding form factor for the scalar current:〈
π−(k1)π+(k2)|muūu+mdd̄d|0

〉
= m2

πF
S
π (k2) , (3.3)

where the mass factors are chosen such that a proper chiral limit exists [17]. This form

factor can be obtained using a coupled channel analysis. We use the results of ref. [18],

which are valid up to around k2 ' 3 GeV2, as shown in figure 2. Similar results have been

obtained in ref. [17] in connection with a study on B → J/ψππ. We note that the shape

of FSπ (k2) around low-lying scalar resonances such as the f0(500) does not even remotely

resemble the shape of a Breit-Wigner function.

3.2 The B → π form factor

We use the following definitions for the vector form factors [19]:〈
π−(k3)|d̄γµb|B−(pB)

〉
= f+(k2)

[
pµB + kµ3 −

m2
B −m2

π

k2
kµ
]

+f0(k2)
m2
B−m2

π

k2
kµ , (3.4)

where k = pB − k3 = k1 + k2.

– 4 –
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Figure 2. Pion scalar form factor FSπ (k2) = |FSπ |eiδS in the time-like region.

When applying the factorization formula (2.8), this expression is contracted with the

time-like vector form factor for the two other pions. Using the fact that the current of

these two pions is conserved, we get for (2.8)

〈π−(k3)|(d̄b)V−A|B−(pB)〉 〈π−(k1)π+(k2)|(ūu)V−A|0〉 = f+(k2)F em
π (k2) 2k3 · k̄ , (3.5)

where k̄ ≡ k1 − k2. For the form factor f+ we use the LCSR calculation in ref. [20].

3.3 The B → ππ form factors

The form factors appearing in the B → ππ transitions have been studied in [21, 22] for

B → ππ`ν and we use the definitions from these papers. However, when applying (2.7)

we only need the contraction with the matrix element (3.1), and hence only a single form

factor appears 〈
π−(k1)π+(k2)|ū/k3γ5b|B−(pB)

〉
= imπFt(k

2, k3 · k̄) , (3.6)

where we used that k2
3 = m2

π, and

k3 · k̄ =
βπ
2

√
λ cos θπ =

m2
B

2
(1− slow

± − 2shigh
± ) (3.7)

defines the polar angle θπ of the π− in the rest frame of the dipion, where β2
π=(k2−4m2

π)/k2

and λ = λ(m2
B,m

2
π, k

2)= (m2
B −m2

π − k2)2 − 4m2
πk

2 is the Källén function.

The two pions can have isospin I = 0 or I = 1, such that

Ft = F I=0
t + F I=1

t . (3.8)

The isovector form factor F I=1
t has been studied using QCD light-cone sum rules

in [23, 24], (see also [25] for a similar study of the other P -wave form factors). Analogous

studies of the isoscalar form factor F I=0
t have not been performed. Here we model the

form factor F I=1
t by assuming that the decay B → ππ proceeds only resonantly through

– 5 –
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B → ρ→ ππ. In this approximation we need the form factors for the B → ρ transition via

the left-handed current. In general, this requires four form factors, but when applying (2.7)

this reduces to a single form factor for the axial vector current〈
ρ0(k, ε)|ūγνγ5b|B−(pB)

〉
=

i√
2
qν(ε∗ · q)2mρ

q2
A0(q2) + · · · , (3.9)

where ε is the polarization vector of the ρ meson with momentum k, and q is the momentum

transfer.

Treating the ρ as an intermediate resonance we obtain〈
π−(k1)π+(k2)|ūγν(1− γ5)b|B−(pB)

〉
=∑

ε

〈
π−(k1)π+(k2)|ρ0(k, ε)

〉
Bρ(k2)

〈
ρ0(l, ε)|ūγν(1− γ5)b|B−(pB)

〉
, (3.10)

where we sum over the ρ polarizations∑
ε

εµε
∗
ν = −gµν +

kµkν
k2

and introduce the Breit-Wigner function

BP (k2) =
1

k2 −m2
P + i

√
k2ΓP

, (3.11)

where ΓP is the total decay width of the particle P .

The decay matrix element for the ρ→ ππ transition is defined as〈
π−(k1)π+(k2)|ρ0

〉
= gρπ−π+(k1 − k2)µεµ , (3.12)

and gρπ−π+ can be obtained from the decay width of the ρ resonance.

Combining the various ingredients and contracting with q = k3 gives〈
π−(k1)π+(k2)|ū/k3(1− γ5)b|B−(pB)

〉
=

2imρ√
2
gρππ(k̄ · k3)A0(m2

π)Bρ(k) . (3.13)

Replacing the outgoing two pion state by a ρ resonance described by a simple Breit-

Wigner shape is clearly a crude approximation for both the absolute value and the phase.

We refine this approximation in the following way: we use the same model for the time-like

form factor, and we determine a replacement for the Breit-Wigner function in terms of the

measured pion form factor in figure 1. First, we have:〈
π−(k1)π+(k2)|ūγν(1−γ5)u|0

〉
= (k1−k2)νF

em
π (k2) (3.14)

=
∑
ε

〈
π−(k1)π+(k2)|ρ0(k,ε)

〉
Bρ(k)

〈
ρ0(k,ε)|ūγν(1−γ5)u|0

〉
.

The ρ-meson decay constant is then defined by〈
ρ0|ūγµ(1− γ5)u|0

〉
=

1√
2
fρmρε

∗
µ (3.15)

– 6 –
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which allows us to write the pion form factor as

F em
π (k2) =

−fρmρ gρπ+π−
√

2
Bρ(k2) . (3.16)

We can now solve for gρππBP and insert this into (3.13). Finally, using (3.6) yields

F I=1
t (k2, k3 · k̄) = 2k3 · k̄

F em
π (k2)

fρmπ
A0(m2

π) , (3.17)

where fρ = 0.209 GeV and A0(m2
π) ' A0(0) = 0.36± 0.04 [26, 27].

A similar procedure can be applied to the I = 0 channel, assuming dominance of a

scalar resonance, B → S0 → ππ. We write〈
π−(k1)π+(k2)|ūγν(1− γ5)b|B−〉 =

〈
π−(k1)π+(k2)|S0

〉
BS(k)

〈
S0(k)|ūγν(1− γ5)b|B−〉 ,

where the relevant part of the form factor for the B → S0 transition is defined as (see

e.g. [28]) 〈
S0(k)|ūγν(1− γ5)b|B−(pB)

〉
= −iqν

m2
B −m2

S

q2
FBS0 (q2) , (3.18)

with q = pB − k. Similarly, we can write FSπ in the same way

FSπ (k2) =
(mu +md)

m2
π

fSm
2
SgSπ−π+BS(k2) , (3.19)

where the decay constant and the strong coupling constant are defined by〈
S0|ūu+ d̄d|0

〉
= fSmS ,

〈
π−(k1)π+(k2)|S0

〉
= gSπ−π+mS . (3.20)

Finally, we substitute again gSπ−π+BS for FSπ . However, FBS0 and fS are unknown for the

lightest scalar resonances. We thus model the isoscalar form factor through

F I=0
t (k2, k3 · k̄) =

m2
B

mπfπ
βeiφFSπ (k2) , (3.21)

where the model parameters β and φ can be obtained from a fit to data. The approxima-

tions made to obtain the B → ππ form factors in terms of the pion form factors are currently

unavoidable. In the future this modelling might be circumvented using QCD sum rules that

employ the pion distribution amplitudes [24, 25]. In addition, these models can be fitted

separately to the light-cone sum rules with B distribution amplitudes, as done in ref. [23].

4 CP violation in B− → π−π+π−

We start from the amplitude in eq. (2.3), use F I=1
t in (3.17) and we model F I=0

t using (3.21).

Our model thus contains only two free parameters: β and the phase φ.

The CP asymmetry is given by

ACP(slow
± , shigh

± ) =
|A(slow

± , shigh
± )|2 − |Ā(slow

± , shigh
± )|2

|A(slow
± , shigh

± )|2 + |Ā(slow
± , shigh

± )|2
, (4.1)

– 7 –
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where Ā is equal to A with all weak phases conjugated. The required weak phase difference

is given through the different structures with λu = VubV
∗
ud = |VudVub|e−iγ , where γ is the

corresponding weak phase of the Unitarity Triangle and λc = VcbVcd = |VcbVcd| is real

within our convention. We will use the values quoted in [29].

At tree level au4 = ac4 and the coefficients ai are given by the Wilson coefficients Ci [3, 5]

a1,2,4 = C1,2,4 +
C2,1,3

NC
, (4.2)

where NC = 3 denotes the number of colors. At O(αs) the coefficients ai also acquire

perturbative strong phases [3, 30, 31]. These can be included using the partial QCD

factorization formalism discussed in ref. [1], which requires taking into account the con-

volutions of the hard kernels with the generalized 2π distribution amplitude (DA) (see

also [32–34]). At leading order, the pion DA and the generalized 2π DA reduce to their

local limits, corresponding to eqs. (3.1) and (3.2), respectively. Since these O(α) correction

cannot generate large CP asymmetries, we work at leading order, where the coefficients ai
are real, leaving higher-order effects for future studies. The required strong phase difference

to generate CP violation should thus come from the interference between the form factors

F em
π and Ft.

In our model, the phases of F em
π and F I=1

t are identical. For elastic scattering (below

the threshold of the first inelasticity in ππ scattering) this is a general statement following

from Watson’s theorem. This condition has been emphasized within the framework of

QCD sum rules in ref. [23].

We define, as before, the strong phases δS and δ as

FSπ = |FSπ (slow
± )|eiδS(slow± ) , F em

π = |F em
π (slow

± )|eiδ(slow± ) .

Inserting the amplitude in eq. (2.3) into (4.1), one finds that the CP asymmetry is propor-

tional to

ACP(slow
± , cos θπ) = β sin γ sin(δS(slow

± ) + φ− δ(slow
± )) cos θπ |FSπ (slow

± )| |F em
π (slow

± )| g(slow
± ) ,

(4.3)

where g(slow
± ) is a real function that can be computed from eqs. (2.3) and (4.1). We

have replaced the shigh
± variable with cos θπ following eq. (3.7). We see that only the

interference between F em
π and F I=0

t terms contribute to the CP asymmetry. Therefore,

the specific parametrizations for F em
π and F I=0

t are of crucial importance. Here we use the

parametrizations discussed in section 3 and depicted in figures 1 and 2, which allow us to

perform a first analysis of our QCD-based model. The model dependence of our approach

could be reduced in the future when more data for the form factors is available. We do not

take into account uncertainties for the pion form factors.

Using the data from the LHCb Collaboration [7], we may fit our model parameters

β and φ directly. Unfortunately, the full efficiency- and background-corrected Dalitz dis-

tribution is not provided by the LHCb analysis. Therefore, we use the projections of the

data given for B+ and B− decays, separated for cos θπ < 0 and cos θπ > 0. We show

these two regions in the B− → π−π+π− Dalitz distribution in figure 3, as given in ref. [7],

– 8 –
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Figure 3. Dalitz distribution for B− → π−π+π− (a) as measured by the LHCb Collaboration [7]

where the region below the line corresponds to cos θπ > 0 line as discussed in the text (b) Dalitz

distribution of our model including (5.1).

where cos θπ > 0 corresponds to shigh
± < 1

2(1− slow
± ), i.e. the lower part of the distribution.

Figure 4 shows the projections of the LHCb data for cos θπ < 0 and cos θπ > 0 in bins of

0.05 GeV for the variable m12 = k1 + k2.

We now perform a fit to the data to determine the most likely values for the model

parameters. The fit is performed by a standard χ2 minimization. Our model predicts

the decay rate for each bin; since the measurement of the absolute branching ratio is not

available we have to scale our results to match the arbitrary units used in figure 4. Fitting

this scaling parameter together with our parameters β and φ gives:

β = 0.18 and φ = 18◦ . (4.4)

The yield predictions with these best fit parameters are also included in figure 4. These

figures show that our fit represents the data for B+ at cos θ > 0 best, although in general

our fit describes the data very poorly. We therefore refrain from giving an error to our fit

parameters. These results call for refinements in the modelling of the form factors, which at

this stage has been relatively simplistic. A number of possibilities will be mentioned later.

A more clear picture of the situation is obtained by scrutinizing the CP asymmetry in

more detail. In figure 6 we show the complete CP distribution as provided by LHCb [7] in a

specific binning that ensures that each bin has the same number of events. The projections

for the B−-B+ yield differences are also given by LHCb [7]. We show these in figure 5

together with the outcome of our fit. The resulting CP violation in our model is much

smaller than that seen in the data, nevertheless it reproduces the gross structures except

for the region around 1.3 GeV.

In the region around mρ we expect our model to most accurate. The differences as

seen in the CP asymmetries might be due to the simplistic model used for F I=1
t in (3.17).

To study the effect of relaxing this assumption, we added another fit parameter to F I=It .

Performing then the χ2 analysis, leads to a slightly better agreement around the ρ peak,
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Figure 4. Best fit of our model for (a, b) B+ and (c, d) B− and the LHCb projections [7] as a

function of m12.

but the total fit still remains a poor description of the data. The neglected higher-order

terms might also give small modifications in this region. However, our model clearly fails

to describe the interesting behavior of the CP asymmetry around 1.3 GeV. Here there is a

positive CP asymmetry for both of the cos θ regions. In our model, the small CP violation in

this region switches sign as does the CP asymmetry in the ρ region. This is because ACP in

eq. (4.3) is only generated by a vector-scalar interference, which always comes with a cos θπ
term, and hence the CP asymmetry always switches sign when comparing cos θ > 0 and

cos θ < 0 (see also [35–37] for an elaborate discussion on these issues). However, if the CP

asymmetry were dominated by two S or S-D wave interferences, the CP asymmetry would

not switch sign, which could be an explanation for the behaviour in this region. Additional

S or D-wave terms might still arise in our approach when including higher-order (twist)

corrections, we leave the study of these corrections for future work. In addition, we note
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Figure 5. Difference between the B− and B+ yield in our best fit compared to the LHCb data [7].

that this region is also at the boundary of where the scalar form factor depicted in figure 2

can be trusted. Therefore, inelasticities may also play an important role.

For this first study, we have compared to the available projections of the LHCb data.

Therefore, important information about the CP asymmetry in the shigh
+− variable is essen-

tially washed out. Our simple model does not give a good quantitative description of the

CP asymmetries, however, several refinements are possible. For future studies it would be

beneficial and desirable to have the full information on the Dalitz and CP distributions.

5 Conclusion and comment on charm resonances

We have discussed a data-driven model based on QCD factorization to study CP violation

in B → πππ, which depends on the model parameters β and φ (a strong phase). The

form factors for the B → ππ transition as well as the time-like pion form factors have non-

perturbative strong phases that lead to a complicated phase structure of the amplitudes Tu
and Tc. Although we have shown that our simple model can describe some of the features

of the decay rates and CP asymmetries, it cannot capture all the physics which is relevant

for the local CP asymmetries. We have discussed some possible refinements of our model to

accommodate these features. Nonetheless, beyond the particular model-dependent choices

adopted in this analysis, the aim of being able to fix the amplitude in eq. (2.3) completely

from data on the time-like pion form factors is an important one. In this way one can

avoid the use of isobar assumptions [38, 39] and Breit-Wigner-shaped resonance models

(e.g. [40–43]). We are confident that progress will be made in this direction.

Since we use only the parametrizations of the scalar and vector form factors of the

pion, the modelled non-perturbative phases are only the ones related to the final-state in-

teractions of the two opposite-sign pions. This means that we can only expect this simple

model to work within the regions where this is the dominant effect, i.e. at the correspond-

ing edges of the phase space. Nevertheless, one might consider a possible extension of our
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Figure 6. CP distribution for (a) the LHCb data [7] and (b) our model including the charm-

resonance structure of (5.1).

model, especially when considering the measured CP asymmetry in figure 6. These mea-

surements find large local CP asymmetries at high slow
+− and in regions of the phase space

where there seem to be not many events when comparing with the Dalitz distribution in

figure 3. Unfortunately, projections of this high momentum region are not (yet) available.

It is possible to extrapolate the pion form factors up to larger invariant mass. However,

since there is no extra “structure” in this region this would fix the phases to around 180◦

everywhere, suppressing the local CP asymmetry at high slow
+− in contrast to the observation.

The observed CP asymmetry might be created by subleading effects that were thus far

assumed to be suppressed, but that might give significant effects at such high momenta.

We note that the amplitudes Tu and Tc differ by the fact that Tc contains penguins with

charm, and it is thus sensitive to the heavy charm-quark mass. Subleading terms in QCD

factorization for two-body decays generate perturbatively calculable strong phases for the

coefficient a4 which generates the CP violation in the B → ρπ decay. In the three-body

decay one might expect a similar effect from the charm quarks, which would modify the

shape of the local CP asymmetry. The details of this contribution will depend on the

non-perturbative interaction of the two charm quarks in Tc.

Clearly we do not have a way to actually compute this, so we have to make use of

some modelling to get a qualitative picture. We first regard the region close to the charm

threshold (2mc) as the relevant region where sharp charmed resonances may affect the CP

asymmetry. The simplest way to introduce non-trivial phases is to consider a resonance-

like structure in Tc described by a Breit-Wigner shape. Thus we modify our model by a

simple addition:

Tc = T (0)
c + g

4m2
c

m2
+− − 4m2

c + imcΓ
, (5.1)

Tu = T (0)
u , (5.2)
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where T
(0)
q is the leading order amplitude given in eq. (2.3) by the term proportional to λq.

As an example, we fix the constant g to be 0.02 and Γ = 0.15 GeV, and take mc = 1.6 GeV

for definiteness.

In figure 3 we show the resulting logarithmic Dalitz distribution, compared to the mea-

sured Dalitz distribution. Clearly the Dalitz plot is dominated by the resonance structure

given by the time-like pion form factor, and the subleading term modelled by eq. (5.1) yields

indeed small contributions as expected (and can be tuned with the constant g). However,

as mentioned earlier it is not possible to qualitatively compare our Dalitz distribution with

the measured one [7] because the latter is not background subtracted. A more thorough

comparison in the line of that in section 4 would require the data projections for the high

momentum part as well.

In figure 6 we also show the corresponding local CP asymmetry distribution. The

subleading term (5.1) now generates a non-perturbative, phase-space dependent phase

difference between Tc and Tu which induces sizeable local CP asymmetries in the region

around the charm threshold. We note that the actual CP distribution depends on the

values of g,Γ, β and φ. It might be interesting to include this charm-resonance model into

an amplitude analysis to obtain further insights on the behaviour on the CP asymmetry

at high momenta.

Obviously this is only a crude model. However, we note that the qualitative structure

is in agreement with the observations by LHCb [7]. The data are not yet very precise, but

the sizeable CP asymmetries observed by LHCb are compatible with structures originating

from charm-threshold effects as we model them in eq. (5.1). However, it is extremely

difficult to achieve a quantitative understanding of these effects from QCD. The issue of

the charm contributions has also been a hot topic of discussion in two-body decays, but

it is in three-body decays where there might be a chance to measure their effect and to

interpret it. We believe this qualitative discussion may provide some motivation.
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