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ABSTRACT 

 

Monolithic integration of nonreciprocal optical devices on semiconductor substrates has been a long-sought goal of the 

photonics community. One promising route to achieve this goal is to deposit high quality magneto-optical (MO) oxide 

thin films directly on a semiconductor substrate. In this article, we will review our ongoing progress in material 

development and device engineering towards enabling a monolithically integrated, high-performance magneto-optical 

nonreciprocal photonics platform. In particular, we will discuss our recent work which has led to a new pulsed laser 

deposition (PLD) technique of Ce or Bi substituted yttrium iron garnet (YIG) thin films with reduced thermal budget, 

simplified growth protocols and improved magneto-optical characteristics. These materials were incorporated in 

monolithic resonator and interferometer based isolator devices to demonstrate on-chip optical isolation with improved 

device figure of merit. Challenges and opportunities for monolithic magneto-optical devices will be discussed in the 

context of our latest material and device performance metrics. 
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1. NONRECIPROCAL PHOTONICS: AN OVERVIEW 

 

Nonreciprocal photonic devices exemplified by optical isolators and circulators are essential components for optical 

interconnects for both telecommunications and data communications. As the counterpart of electrical diodes in photonics, 

isolators and circulators play a critical role in PICs by preventing harmful feedback between different parts of the circuit. 

For example, an isolator is often used to protect a laser source from destabilizing feedback or damage from 

back-reflected light. The need for on-chip isolation becomes imperative as the level of photonic integration continues to 

scale, since unwanted reflections between the many integrated devices are very common and can be highly disruptive in 

a complex optical network. With the development of integrated lasers, waveguides, modulators and detectors, the isolator 

is becoming the missing component in a fully integrated photonic circuit. 

 

Fundamentally, optical isolation requires breaking the time-reversal symmetry of light propagation. Such optical 

nonreciprocity can be realized by using magnetooptical (MO) effects or non-magnetic approaches such as indirect 

interband photonic transitions1 and nonlinear optics2, 3. Traditional optical isolators used in free-space and fiber-optic 
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systems are almost exclusively based on Faraday rotation in MO crystals. These Faraday rotation isolators typically 

feature an isolation ratio of the order of 30 to 40 dB, an insertion loss below 1 dB, and an operation bandwidth exceeding 

50 nm in the telecommunication window4, 5. Despite the high performance of these free-space isolators, they are bulky 

discrete devices not suitable for planar on-chip integration. In addition, at present the price of a discrete isolator ranges 

anywhere from $30 up to over $1,000, a prohibitive cost for large-scale PICs. 

 

Development of on-chip isolators has been hampered by the incompatibility of traditional MO materials with monolithic 

integration on semiconductor substrate platforms. Unlike doped-glass-based fiber-optic isolators, the very limited real 

estate on a chip requires the use of materials with high Verdet constants (i.e. large Faraday rotation) in on-chip isolators. 

These materials, typically single-crystalline bismuth or cerium doped yttrium iron garnet (Bi:YIG, BixY3-xFe5O12 and 

Ce:YIG, CexY3-xFe5O12), cannot be monolithically grown on common semiconductor substrates (Si or InP) due to large 

lattice and thermal expansion mismatch6. 

 

Two routes have been pursued to resolve the integration challenge: the hybrid approach which relies on wafer bonding of 

garnet crystals7-11, and the monolithic approach which directly deposits polycrystalline ferromagnetic oxides or doped 

semiconductors/polymers12-15 on semiconductor substrates. The former approach can leverage the large Verdet constant 

and low material absorption in single-crystalline garnets to achieve good isolation performance; however, the wafer 

bonding process required by this approach can limit fabrication throughput and yield. Doped semiconductors and 

polymers can be readily integrated with semiconductors, although they often suffer from high optical loss (1000 dB/cm 

and above) due to incorporation of highly absorptive metallic iron16, 17. Deposited polycrystalline ferromagnetic oxides is 

an alternative material system for monolithic nonreciprocal device integration as we will discuss in the next sections. 

 

On-chip magnetooptical isolation based on these MO oxides can be achieved by Faraday rotation, nonreciprocal loss, 

nonreciprocal mode conversion/cut-off/coupling, as well as nonreciprocal phase shift (NRPS). In a Faraday rotator, a 

magnetic field is applied along the light propagation direction to induce circular birefringence and hence polarization 

rotation. This configuration, however, is very sensitive to waveguide birefringence and is not suitable for on-chip 

isolation18, 19 unless a quasi-phase match scheme is implemented20. Shimizu et al. demonstrated nonreciprocal optical 

loss in an InGaAsP waveguide coated on a sidewall with iron showing an isolation ratio of 14.7 dB/mm and 7.1 dB/mm 

insertion loss21. Van Parys et al. introduced a semiconductor optical amplifier to compensate for the loss and achieved 

transparency (zero insertion loss) with an injection current of 160 mA22. Nonreciprocal mode conversion, cut-off, 

resonant delocalization, and coupling have also been theoretically explored21-27. 

 

Unlike Faraday rotation, NRPS is implemented with magnetization perpendicular to the light propagation direction and 

is insensitive to birefringence. Experimental on-chip isolator demonstrations using the NRPS mechanism have utilized 

devices based on bonded garnet crystals as well as deposited polycrystalline films. NRPS has been exploited for isolation 

using several device geometries including interferometers28-30, micro-resonators31, 32, and photonic crystals33. Each of 

these device configurations has its own advantages and limitations. Interferometer devices feature large operation 

bandwidth as well as relatively good fabrication tolerance, and are thus ideal for high-speed PICs or applications 

involving broadband-tunable laser sources. The relatively large device footprint (several millimeters) of conventional 

interferometers, however, is not suitable for on-chip integration. Using a push-pull configuration can reduce the required 
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device size by half, but it complicates the magnetic design as the two interferometer arms need to be magnetized in 

opposite directions. On the other hand, optical resonator based isolators claim much reduced device footprint by 

capitalizing on the effectively “folded” optical path in a resonator. Nevertheless, resonator isolators suffer from small 

operation bandwidth (usually a few GHz), stringent fabrication tolerance requirements, and high sensitivity to 

environmental perturbations (e.g., temperature fluctuations). 

 

Besides magneto-optics, optical nonreciprocity can also be attained by non-magnetic approaches such as indirect 

interband photonic transitions34-36 and optical nonlinear effects37-39. However, nonlinear reciprocal devices cannot 

provide isolation for arbitrary backward-propagating noise and therefore cannot be used as isolators40. 

 

In this article, we will discuss our ongoing progress in material development and device engineering towards enabling a 

monolithically integrated, high-performance magneto-optical nonreciprocal photonics platform41-49, in particular 

focusing on a recently demonstrated single-step growth technique and device results based on the resulting material. The 

monolithic magneto-optical oxide growth methods are discussed in the next section. Isolator demonstration using the 

Ce:YIG material is described in Section 3. In the last section, we will provide a quantitative isolator performance 

analysis based on our experimentally measured material parameters. 

 

2. MATERIAL DEVELOPMENT 

 

We have established Ce:YIG growth method uses a two-step deposition process to stabilize the garnet phase and reduce 

the fabrication thermal budget of Ce:YIG films. Firstly a thin YIG buffer layer was deposited by pulsed laser deposition 

(PLD). The as-deposited amorphous YIG film was rapid thermal annealed (RTA) to crystallize into YIG phase. This thin 

YIG layer is necessary for forming the magneto-optically active garnet phase, as YIG crystallizes much faster than 

Ce:YIG and thus can function as a template for subsequent Ce:YIG growth. A second layer of Ce:YIG was deposited on 

the first layer by PLD followed by another annealing step. This versatile technique allows Ce:YIG growth on a varieties 

of substrates such as silicon, SiO2, and silicon nitride. Films grown using this technique exhibit high magneto-optical 

activity: for example, we have shown that Ce:YIG film grown on silicon nitride at a slow deposition rate has an Faraday 

Rotation (FR) up to 2,650 deg/cm, approaching the single crystal value of 3,300 deg/cm. The two-step growth protocols 

have also been implemented in sputtering deposition to obtain polycrystalline Ce:YIG films50. 

 

While the aforementioned growth method is capable of producing high-quality Ce:YIG films, it involves two separate 

deposition and annealing steps which severely limits the processing throughput. Here we describe an alternative PLD 

method for making Ce:YIG films on a variety of substrates in which a YIG layer acts as an in situ seed layer for Ce:YIG 

during the crystallization of both YIG and Ce:YIG42. Layers of both YIG and Ce:YIG are deposited in one step followed 

by an anneal. Crystallization of the Ce:YIG during RTA is facilitated by YIG layer(s) on top of or at the bottom of the 

stack. This simplifies the process flow because only one deposition step is required instead of two and leads to films with 

good magnetic and MO properties. The finding that a YIG overlayer can promote Ce:YIG crystallization as well as a 

conventional YIG underlayer enables Ce:YIG to be grown directly on a waveguide, maximizing its interaction with the 

guided light without the spacing loss caused by a weakly magneto-optical YIG underlayer. 
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Ce:YIG and YIG films with layer structures consisting of YIG 30 nm/Ce:YIG 60 nm/substrate and Ce:YIG 60 nm/YIG 

30 nm/substrate (with a total thickness of 90 nm) and trilayers YIG 30 nm/Ce:YIG 140 nm/YIG 30 nm and Ce:YIG 70 

nm/ YIG 60 nm/Ce:YIG 70 nm (with a total thickness of 200 nm) were deposited on (001) silicon (Si) and Z-cut (0001) 

quartz (Qz) using PLD, followed by annealing. Identical layer sequences were also grown on (100) GGG substrates as 

references. 

 

Figure 1 shows the XRD diffraction data for the bilayers and trilayers after RTA at 800 °C for 5 min. The YIG (400) peak 

exhibits the highest intensity in all samples on Si and Qz as shown in Figure 1a,b, which indicates that the film has a 

preferred (100) texture based on that of the Powder Diffraction File, in which (420) has the highest intensity. In contrast, 

the XRD results for the films grown on GGG after RTA are shown in Figure 1c, indicating an epitaxial single-crystal film 

for all layer sequences with no secondary phases. Garnet films grown and crystallized on Si and quartz are 

polycrystalline because there is no epitaxial relationship with the substrate. As a result, YIG (420) and (422) peaks are 

observed in addition to the major YIG (400) peak in Figure 1a,b. However, the garnet films on GGG (100) are 

lattice-matched and single-crystal, and the diffraction pattern shows YIG (h00) peaks near the GGG (h00) substrate 

peaks. The out-of-plane (OP) lattice constant of the films was 12.39 Å. The weak peak at 33.1 ± 0.05° for films on Si and 

Qz was attributed to hematite, α-Fe2O3, an antiferromagnet. 

 

 

Fig. 1. XRD results and AFM images of the films on different substrates after RTA. 1D XRD ω−2θ scans for the films on (a) silicon 

and (b) quartz, including scans of bare substrates for comparison. (c) 1D XRD ω−2θ scans for the films on single crystal GGG (100) 

substrates. AFM images of (d) YIG/CeYIG/Si, 10 μm × 10 μm area, and (e) CeYIG/YIG/Si, 1 μm × 1 μm area42. 
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The AFM surface morphology of the bilayer films on Si is shown in Figure 1d,e. For the YIG/Ce:YIG/Si, the grain size 

at the top surface was up to 5 μm, and the grains showed a radiating pattern, whereas in Ce:YIG/YIG/Si, dense 

topographic features up to ∼50 nm across were visible. 

 

 

Fig. 2. Magnetic properties of the films. (a) In-plane (IP) and (b) Out-of-plane (OP) hysteresis loops of films on Si after RTA. (c) IP 

and (d) OP hysteresis loops of films on quartz after RTA. IP hysteresis loops of films on the single crystal GGG (100) (e) before and (f) 

after RTA42. 

 

Magnetic properties of Ce:YIG films were measured with magnetic fields applied in-plane (IP) with the film or 

perpendicular to the film plane (out-of-plane, OP) at room temperature using a vibrating sample magnetometer (VSM). 

The hysteresis loops at room temperature are given in Figure 2a−f. The saturation magnetization (Ms, averaged over all 

the garnet layers) of the films was 115 emu cm−3 (with ∼5% error estimate) for the Ce:YIG/YIG/Si and 113 emu cm−3 

for the YIG/CeYIG/Si (Figure 2a,b). The Ms of the three-layer films on Si was 103 emu cm−3. The Ms of the films on Qz 

was about 108 emu cm−3 (Figure 2c,d). The Ms of the films on GGG after RTA was 110 emu cm−3, as shown in Figure 2f, 
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which is higher than the unannealed values (Figure 2e). These results are consistent with the samples being primarily 

garnet phase without significant magnetite or maghemite spinel phases. 

 

3. ISOLATOR DEVICE FABRICATION AND CHARACTERIZATION 

 

In our prior work we have focused on using optical resonators as the vehicle for material magneto-optical performance 

quantification. The material growth and device processing techniques, however, are equally applicable to other isolator 

device geometries such as interferometers. 

 

      

Fig. 3. (a) Schematic of the nonreciprocal optical resonator structure41; (b) Tilted-view SEM micrograph of the silicon-on-insulator 

waveguide (top) and an optical micrograph of the resonator (bottom)42. 

 

The resonator isolator structure used in our study operates under a homogeneously applied magnetic field. The device 

structure is shown in Fig. 3a. The isolator consists of a single-mode silicon racetrack resonator fabricated on an SOI 

wafer with a top cladding of 1-mm-thick SiO2. Part of the SiO2 top cladding is etched to form a ‘window’, which directly 

exposes the underlying silicon resonator waveguide surface. The magneto-optical film is subsequently deposited on the 

entire sample area without the need for etching. 

 

Our prior work using films grown by the two-step technique has led to resonator isolator devices with an isolation ratio 

of 19.5 dB and an insertion loss of 18.8 dB41. The high insertion loss is attributed to excessive optical loss in the 

SOI/garnet waveguides (58 dB/cm, compared to 5.2 dB/cm of ChG/garnet waveguides) and consequent resonant peak 

broadening. Two factors contribute to this high loss: 1) the Ce:YIG film deposited on SOI waveguide sidewalls is not 

fully crystallized due to reduced thickness of the YIG buffer layer on the sidewalls (this cannot be resolved by simply 

increasing the buffer layer thickness, as the YIG/Ce:YIG film total thickness is limited by thermal expansion mismatch 

between garnet and the substrate); and 2) the oxide window creates two abrupt junctions between waveguide sections 

with and without YIG coating, resulting in significant scattering loss. 

 

These sources of optical loss can be mitigated through careful process optimization. For example, optimized etching 

recipes yield vertical waveguide sidewalls can minimize deposition on the sidewalls and reduce optical loss. We have 

recently demonstrated a resonator isolator with much reduced insertion loss. Figure 4a and b plot the transmission 

spectra of quasi-transverse magnetic (TM) and quasi-transverse electric (TE) modes of the isolator, respectively, 
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measured for positive and negative magnetic fields applied in plane perpendicular to the garnet-clad section of the 

resonator. A resonant peak shift caused by non-reciprocal phase shift (NRPS) in the waveguide is clearly visible for the 

TM mode, whereas the TE mode exhibits negligible resonant peak shift, consistent with our magnetic field configuration. 

The device insertion loss is estimated to be (7.4 ± 1.8) dB, and the isolation ratio is (13 ± 2.2) dB. The insertion loss 

represents a significant improvement over our prior results. The resonant wavelengths obtained from the measurements 

are plotted in Figure 4c and d. The average peak shift from four separate measurements is (9.6 ± 4.1) pm for the TM 

mode and (1.7 ± 0.4) pm for the TE mode. The small drift over repeated measurements is likely a result of temperature 

change. Figure 4e plots the wavelength dependence of the non-reciprocal resonance shift. 

 

 
Fig. 4. (a) Transmission spectra of TM mode under applied magnetic fields of opposite directions. Insertion loss measured from the 

figure is 7.4 dB. (b) Transmission spectra of TE mode under applied magnetic fields of opposite directions. (c) TM mode resonant 

peak positions measured when the magnetic field direction was reversed ten consecutive times. (d) TE mode resonant peak positions 

measured when the magnetic field direction was reversed eight consecutive times. (e) Wavelength dependence of non-reciprocal 

resonant peak shift measured at several resonant peak locations42. 
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5. ISOLATOR PERFORMANCE PROJECTION 

The isolator device performance is closely related to the magneto-optical material figure-of-merit (FOM), which is 

defined as the ratio of Faraday Rotation (in deg/cm) over optical loss (in dB/cm). Here we present our modeling results 

quantitatively correlating the FOM with isolator device performance. Specifically, insertion loss is chosen as the device 

metric due to its explicit dependence on the FOM. In contrast, isolation ratio is not an intrinsic parameter reflecting the 

magneto-optical figure of merit of the isolator devices, because it can be maximized by approaching the critical coupling 

condition in micro-rings, or tuning the power splitting ratio in two interferometer arms in the case of Mach-Zehnder 

interferometers (MZI). 

 

Fig. 5. Isolator insertion loss as a function of magneto-optical material FOM. 

 

Figure 5 plots the model projection for both resonator and MZI isolators. In our model, the NRPS is maximized by 

choosing an appropriate SOI waveguide width. We further assume that the dominant source of optical loss results from 

attenuation in the magneto-optical material. The polycrystalline materials exhibit an FOM of approximately 66 deg/dB at 

1550 nm wavelength, corresponding to insertion loss of 1 dB for resonator isolators and 3 dB for MZI. Material 

deposition and processing optimization is expected to further improve the material FOM and the isolator performance. 

The ultimate performance limit is set forth by the FOM of single crystalline Ce:YIG materials epitaxially grown on GGG 

substrates. Our recent results have demonstrated a high FOM exceeding 900 deg/dB at 1550 nm wavelength, which 

predicts an on-chip isolator insertion loss less than 0.3 dB. 

 

6. SUMMARY 

In conclusion, we have shown that our recently demonstrated single-step grown technique significantly improves the 

processing throughput and reduces the insertion loss in resulting isolator devices. Our modeling further indicates a low 

insertion loss of 0.3 dB is possible with optimized Ce:YIG materials. Further material engineering and device 

optimization are anticipated to enable high-performance monolithic optical isolation and circulation for on-chip 

tegrated photonics.in
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