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Slopey Quantizers Are Locally Optimal for Witsenhausen@ufiterexample

Amir Ajorlout and Ali Jadbabaie

Abstract—We study the perfect Bayesian equilibria of a
leader-follower game of incomplete information. The follaver
makes a noisy observation of the leader’s action (who moves
first) and chooses an action minimizing her expected deviain
from the leader’'s action. Knowing this, leader who observes
the realization of the state, chooses an action that minimes
her distance to the state of the world and the ex-ante expeae
deviation from the follower’'s action. We show the existencef
what we call “near piecewise-linear equilibria” when there is
strong complementarity between the leader and the follower
and the precision of the prior is poor. As a major consequence
of this result, we prove local optimality of a class ofslopey
guantization strategies which had been suspected of beingpe
optimal solution in the past, based on numerical evidence fo
Witsenhausen’s counterexample.

Index Terms— Decentralized control, optimal stochastic con-
trol, incomplete information games, perfect Bayesian equib-
rium.

I. INTRODUCTION

changed to a worst case induced norm, the linear controllers
dominate nonlinear policies. While [1] proves the exisgenc
of an optimal solution using tools from real and functional
analysis, other works such as ( [6], [8]) suggkfting the
problem to an equivalent optimization problem over the
space of probability measures and then employing tools from
the optimal transport theory [12].

Although the optimal strategy and optimal cost for Wit-
senhausen’s counterexample are still unknown, it can be
shown that carefully designed nonlinear strategies caehar
outperform the linear strategies (see, e.g., the multipoi
guantization strategies proposed by [5]). This result, in
particular, implies the fragility of the comparative stati
and policies solely derived based on the linear strategies i
problems with similar setting. A relevant line of researsh i
to provide error bounds on the proximity to optimality for
approximate solutions. [13]-[15] use information thewmret

In his seminal work [1], Witsenhausen constructed a simtechniques and vector versions of the original problem to

ple two-stage linear-quadratic-Gaussian (LQG) decenédl

provide such bounds. There are also several works aiming to

control problem where the optimal controller happens to bapproximate the optimal solution. [16]-[19] employ difet
nonlinear. This example showed for the first time that lineateuristic approaches, all confirming an almost piecewise-
quadratic Gaussian team problems can have nonlinear dijear form for the optimal controller. However, a complete
lutions. By resorting to Witsenhausen’s counterexam@g, [ optimality proof for such strategies has been elusive.
produced an example showing that the standard decenttalize In this paper, we view Witsenhausen’s problem as a

static output optimal control problem of linear determiicis

leader-follower coordination game in which the action & th

systems could also admit optimal nonlinear solutions. Fdeader is corrupted by an additive noise, before reachiag th
nearly half a century, this counterexample has been a dubjésllower. The leader aims to coordinate with the follower

of intense research across multiple communities ( [3]<[8]) while staying close to the observed state, recognizing that
The endogenous information structure of Witsenhausenser action is not observed perfectly. As a result, she needs
counterexample, where the signal observed in the secotw signal the follower in a manner that can be decoded
stage is a noisy version of the control action in the firsefficiently. More than a mere academic counterexample, the
stage, gives rise to a nonclassical information structurabove setup could model a scenario where coordination
While the problem looks deceptively simple and quadratihappens across generations and the insights of the leader
on first look, it is actually a very complicated, nonconvexwho is from a different generation is corrupted/lost by the
functional optimization problem. This counterexample hagme the message reaches the future generations. If therlead
shed light on intricacies of optimal decisions in stocl@astican internalize the fact that her actions will not be obsarve
team optimization problems with similar information struc perfectly, how should she act to make sure coordination
ture. Naturally, this problem has given rise to a large bodgccur? When the leader cares far more about coordination
of literature. For example, [9] provides a variant of Wit-with the follower than staying “on the message”, the near
senhausen’s counterexample with discrete primitive remdopiecewise-linear equilibrium strategy of the leader ceass
variables and finite support, where no optimal solutiontsxis the observation in well-spaced intervals, rather than iypere
Another interesting variant, with the same informatiomistr broadcasting a linearly scaled version of the observed st
ture but different cost function, is the Gaussian test ceannthe linear strategy would suggest. In this line, we prove the
( [4], [10]) where the linear strategies can be shown to bexistence of a superior equilibrium strategy which coassen
optimal. Also, [11] shows that if the objective function isthe message via a “slopey quantizer”, making both the leader
and follower better off compared to the linear equilibrium
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the leader and the follower combined with a prior with pooaction, s = a;, + § whered ~ N(0,1). The payoff of the
enough precision can give rise to nonlinear equilibria, anfbllower is
in particular, equilibria in form of slopey quantizers. Tret up = —(ap —ar)?. (2)
best of our knowledge, this work is the first providing an ) ) o
analytical rationale for the optimality of slopey quantiaza We consider the perfect Bayesian equilibria of the game
strategies for Witsenhausen’s counterexample. and show tha_\t they_ red_uce to the Bay_es Nash equilibria due
The main idea behind the proof is to carefully construct & the Gaussian noise in the observation. Denote wjtft)
class of what we calhear piecewise-lineastrategies for the @nd a(s) the equilibrium strategies, and with(-[s) the
leader that stays invariant under the best response operafgllower's belief about leader's action given Due to the
By a near piecewise-linear strategy, we mean a piecewi§@'mal noise in the observation; (-s) is fully determined
strategy where the changes in the derivative in each segm&t@z(¢) and the prior as there are no off-equilibrium-path
are very small, making the strategy in each segment almdgformation sets. Equilibrium strategies should thusséati
linear. Each strategy has a fixed number of segments, with o0
leader’s action changing very slowly within each segmest. A ap(s) =E.-[a}|s] = /
a result, leader’s actions stay very close to fixed pointheft . 0) — (0 —ar)?
strategy in each segment. These fixed points are the vaIue%L( ) _ar%?ax ri(0 - a)
of the state which the leader does not distort. Therefore, o0
well-spaced fixed points (combined with some appropriate -(1- TL)/
bounds on the relative prior of the state of the world in
different segments) reveal the leader’s actions to thevi@l Whereg(-) denotes the PDF of the standard normal distribu-
with high probability, making the “signal” easily decodabl tion. We can easily characterize the linear equilibria @ th
As a consequence, we can characterize the best responséane, following [1].
the follower to leader’s strategy. Using this characteitrg =~ Theorem 1:Linear Bayes strategies of the leader and
we show that the best response of the leader to followerfgllower are of the formuj,(s) = s andaj, (0) = A9, where
strategy also varies very little, essentially remainingme 1 = 145z and\ = £, andt is a real root of the equation
piecewise-linear as well.
A key challenge in deriving the invariance property for — (o0 —t)= A2 4)

this set of strategies for the leader is to bound and control o, main objective in this paper is to show the existence of
the displacement in the fixed points and endpoints of the, equilibrium with a near piecewise-linear strategy fa th
segments of leader’s strategy under the best response. A g qer in the regime where there is strong complementarity
observation here is t_hgt _the fixed points of the Iead_er’s bestiween the leader and the follower (whenis small) and
responses artcal minimizersof the expected deviation of 4, prior's precision is poor (or large). To this end, and

the leader’s action from the follower. This insight allows U ., tivated mainly by [1], we focus on regim}jeg ro? <1,

to show that the fixed points of the leader’s best response lig, 4 aim to prove the existence of such an equilibrium for
in a tight neighborhood of the fixed points of the foIIower’ssufﬁCienﬂy large values of (and hence smalt;).
strategy. We then show that the fixed points of the follower’s

strategy in turn lie in a vicinity of a convex combination of I11. NONLINEAR EQUILIBRIA
the leader’s fixed points and the expected value of the stateq |, approach for proving the existence of an equilibrium

of the vyorld within egch segment: Comblnlng the two, W&ith a near piecewise-linear strategy for the leader is to
can derive an approximate dynamics for the displacement jo ity 5 set of such strategies for the leader that is inver

the fixed points and endpoints of the segments in leader, jer the best response operator. We characterize such a set
strategy under the best response. Using this approXimaffine next section.

dynamics, we then characterize an invariant set of fixed
points and interval endpoints for leader's strategy, whiclA. An Invariant Set of Near Piecewise-Linear Strategies for
we can then use in order to prove the existence of a netre Leader

piecewise-linear equilibrium strategy for the leader.

arv*(ar|s)dar,,

— 00

(ak(s) —ar)’é(s —ar)ds, (3)

— 00

TrL t 1

Given m € N, consider a partition of the normal dis-
II. M ODEL tribution N(0,0?) into 2m + 1 segmentsJ;™ _ By, with
B = [b), b)) for k € Ny, B = (b°,07), andB?, =
(b2 41, 0% ], with 8%, = —b0 andb?, ., = b | =
+oc. Denote withc) the expected value of ~ N(0,0?)
in segmentB), that is, ) = En(,.2)[0|0 € By]. Clearly,

The game consists of a leaderand a followerF'. Before
the agents act, the state of the watl drawn from a normal
distribution with zero mean and varianeé. The leader can
observe the realization ¢f and acts first. The payoff of the

leader is given as ¢g=0andc?, = —j for k € Ny,
g We are in particular interested in a partition where the
up, = —rp(0 —ap)? — (1 —r)(ap —ar)?, (1) interval endpoints? are the midpoints ofc} ,,c?], i.e.,

wherear is the aCt'O_n of the _follower and.< rr <1.The 1Proofs are not included in this manuscript due to spacediinits. See
follower makes a private, noisy observation of the leader®go] for the proofs.
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bg = s— for k € N,,,. We can show that such a partition
exists and is unique. Next, we construct a se{fi + 1)-
segmented increasing odd functions, denoteddBy(r ., o)
satisfying the following properties.

Property 1: For everyar(0) € A} (rp,o), there ex-
ist 2m + 1 segmentsB;, = [bk,brt1), fOor k € N,
By = (—bl,bl), and B_y (b,kfl,b,k], with bm+1 =
—b_m—1 = 400 such that:

o az(0) is increasing and odd (i.ear(—6) = —ar(6)),

and is smooth over each interval.

« ar(f) has a unique fixed point in each segment. That

is, for each intervaBy, (—m < k < m), there exists a
uniquecy, € By such thatay, (ci) = ¢, with ¢ = 0.
We also impose a constraint on the slopeupf6) in each
interval, keeping the slope very closerto, as well as a linear
bound onay(#) in the tail. More precisely, we impose the
following property:

Property 2: For every—m < k < m andf € By, r <
Lar(9) <7, wherer = rp(1 —0.5r202) and7 = ry (1 +
2.5r2 02). For the tail intervalB,,, r < a.(0) < 7 for
by < 0 < ¢y + 02 Forf > ¢, + o? we havear (9) <
Cm + 5700 — ¢y +0).2
The largero, the closerr andr to r;,. For instance, choosing
o > 16 ensures” < 1.01ry andr > 0.998r,. Finally, we
impose the constraint that interval endpoibysemain close
to midpoints of[c;_1,¢;] and that fixed pointg;, remain
close toc)'s.

Property 3: For everyk € N,,,

|bk - w| S O.l’l’LO'. (5)
Moreover, 2h(2 K
M —
ICk—ciléT, (6)

where¢ = 0.44r2 % + (2m + 3.4)r2 o.

Our proof strategy is then to show that for any € N,
there existsr,, > 0 such that, for every > o, in regime
1 <rpo? <1, the set of strategied”(r;,, o) characterized

by Property 1-3 is invariant under the best response operato™

B. Best Response Analysis

The first step in verifying the invariance of}'(rz, o)
is to characterize the best response of the followg(s)
to the leader’s strategy(0) € A7 (rp,o). We can then

o There exists &' > 31no such that the lengths of the
half intervals in any strategy(0) € A7 (rp,o) are
lower-bounded byC. That is, -1 — bix| > C and
le, — bx| > C for k € N,,,. Moreover,c,, > ¢ and
by > 0.50.

o The lengths of the first half (second half) of the intervals

in any strategyar,(0) € A7 (rr,o) are in increasing

order. That is|cx — bg| < |ck+1 — brt1] and|eg—1 —

b| < |ex — biy1], for k € N,,,_1. Moreover,by — b; >

2b; ensuring an increasing order on the lengths of the

intervals as well.

Let ex, 0 < k < m, be the expected value df in

segmentBy, i.e., ex, = En(o,02)[0|0 € By]. Then, the

distances frome, to the endpointd, and b, also
satisfies the lower and upper bourtdsindo. Moreover,

en > 0.50.

By choosingo > ¢,,, we can exploit the properties stated
for A7 (rr,0) in the above lemma. In what follows, we
use these properties to prove the invariance of the set of
strategiesd}*(rr, o) under the best response. The follower’s
best response to the strategy of the leadg(f) is the
expected action of the leader given the observatiena +¢
and can be written as

ffooo ar(0)p(s — aL(Q))fb(%)d@
J75 o(s — ar(0))p(%)do

Using this, we can easily show thaf(s) is analytic and
increasing, With%ap(s) = Varfay|s] (see [1] for a proof).

In order to characterizer(s), we start by estimating the
expected action of the leader and its variance conditioned
on the interval to whict¥ belongs. Actions of the leader in
interval By (k # +m) are well-concentrated around. In
fact |ar,(0) — cx| < 7o for 6 € By, from which the lemma
below immediately follows.

Lemma 2:For 0 < k < m, |E[ar(0)|s,0 € Bi] — ci| <
7o and Vafar, (0)s,0 € Bi] < 720>

The analysis is a bit involved in the tail, since fér>
the leader’s actions are not in a bounded vicinitycgf
anymore. However, we can derive several useful properties
for the tail as well.

Lemma 3:Consider a tail observation by the leader (i.e.,
0 € B,,). Then,

. (7)

ar(s) =Eslarls] =

E[GL(9)|S,9 S Bm] — Cm S 770-1

(8)

use these properties to find the updated best response of the
leader toar(s), denoted bya(f) and enforce its inclusion for s < ¢, + o, and

in A7 (r,, o). Choosingo sufficiently large, we can ensure 0.01
several useful properties foty' (1, o) that can facilitate this ~ Elaz(0)ls,0 € Bin] —cm < 5roo(s —em +1+—5-), (9)

process. We state these properties in the lemma below.
Lemma 1:There existso,, > max(16,7m?) such that
forany o > o, in regime% < rpo? < 1 we have the
following:
» The lengths of the half intervals in any strategy(d)
AT (rp,, o) are upper-bounded by. That is, [cx—1 —
bi| <o and|c; — bg| < o for k € N,,.

2We only state the properties (and in many cases the analysig)for
6 > 0. The counterpart fof < 0 is immediate since the function is odd.

for s > ¢, + 0. Also, Elar,(0)|s,0 € By,] — ¢ > —T0. AS
for the variance,

3, for s <cmoy
Varlar, ()]s, 0 € By,] <} 0.647202, for c,y_1 < s <cm+0
8.8r20%(s — ¢p)?, for s > ¢, +o.
(10)
Let the signal observed by the follower be betwegmand
Cht1, 1.€.,8 = ¢+ With 0 < 0 < ¢x41—ck. Then, we claim



that the follower’s posterior o given s has a negligible Also,
probability out of the neighboring intervalB;, U By.1. We
first derive the following property for the relative prior 6f 0<—ap(s)<1.17e=2x+10I=T) (A} 4+ 270)2 +1.017%62.

in By's by relating it toe,’s and using the bounds on the s (18)

distance frome,, to the endpoints of the intervals, as well as Corollary 1: A useful consequence of Lemma 7 is that
the increasing order of the lengths of the intervals given by

Lemma 1. ap(s) > cpp1 — 117 261 0-TOA, 1 10170

Lemma 4:For any—m < k1, ks < m, we have ar(s) < cp + 1'176Ak+1(5+m)Ak+1 1 1.0170, (19)

Prod¢ € By (g —epy)?
%EB;;] <e o . (11)  wheres = Mit1 + 9, With ¢ < s < cpg1.

This lemma implies that the posterior 6iis more affected Note that the exponential terms in the above bounds vanish
by the likelihoods rather than relative priors. Using thigg ~ quite fast for largeC' and |4|. for small |5], another useful
can bound the posterior éfoutside the neighboring intervals upper bound on the derivative of-(s) is
to s (i.e., out of By U By11).

Lemma 5:Let the observed signal by the follower be- iaF(s) < l(Akﬂ +270)? 4+ 1.017%02.  (20)
cr + 6, where0 < § < ¢j41 — ¢ Then, for anyr > 1, ds 4
Profd € By, |s] 7245(%57377‘)2. w2 Th(é(;rollary 2: Lets = mpy1 + 9, with ¢, < s < ¢y
Prolé € Byls] — '
Similarly, ¢ — 1.570 < ap(s) <cr + 1.5r0 for § < —0.65
Prodé € Bjiry1]s] 7W 13) ckt1 — 1570 < ap(s) <cpy1 + 1.57c for 6 > 0.65(.21)

Prolo € B - . ,
Using thti{s Iem?ﬁélind the fact that the fixed points Roughly speaking, the above corollary says that, if the

are well-spaced, we can show that the effect of the intervafPServed signal by the follower is far enough from the mid-
other thanB,, and B,,1 on ar(s) are negligible. In order pomt of ¢, andcg 1, then the optimal actlor_w of the foIIOV\_/er
to characterize the follower's best response(s), we then IS Well-concentrated around, or c;..1 (whichever that is
need to focus only on the segments adjacent to the obsen@@ser), and changes very slowly according to Lemma 7.
signal, and in particular figure out the weight of each offoWever,ar(s) may have very high variations for close

these two neighboring intervals in the follower's posterio© 74-+1 @s can be seen from Lemma 7.
on 6. We do this in the following lemma. The following lemma characterizes-(s) when follower

Lemma 6:Define makes a tail observation.
Lemma 8:Let s = ¢, + 6, whered > 0. Then
1 Prold € B . mo '
Mpp1 = Ck +2c;€+1 + A n (P g B k] ) , (14) i) for § <o, ¢y —1.0170 < ap(s) < ¢y + 7o, and0 <
k41 roljf € Bj1] disaF(S) < 0.657202.
where A1 = cpy1 — cx. Also, write the signal observed ii) for § > o, ¢;,, — 1.0170 < ap(s) < ¢ + 5rpo(d + 1+
by the follower ass = my.1 +4d. Then, for0 <k <m—1, 2%) and0 < Lap(s) < 9r? o262
st 2 PO DL _ sy LA G o e st orter caractertosof
“Prolid € Brerls] ' P 040)
(15) AT (rp, o). We are now ready to analyze the leader’s best
responseir (6) to ar(s) and see if it stays i} (r, o).

For the case involving the tail segmeft,, We haveay, () = argmax,, uz(f,ar), where
7Am(5+FU)7&<PFOk{9 € Bm—1|$] <1168 A (—Fo)+ P2 - ) a2
¢ c s Proqe S Bm's] - ‘ (16) . UL( ’G’L) TL( aL)oo
—(1—r ap(s) —ar)?é(s — ar)ds.
It is worth mentioning thatn,., defined in the above ( L)/_oo( r(s) —an)él )
lemma is quite close to the midpoint of andc,;. In fact, (22)

it follows from Lemma 4 thatmy, — C”%| < %. _ )
We can now characterize the best response of the follower-€mma 9:Consideré < [cy, 1], 0 < k < m. Then,
ar(s) to the leader’s strategy; () € A} (rz,o) up to the there exists a uniqui.1 & [cx, cx41] such that

first order.

Lemma 7:Let s = myy1 + 6, With ¢, < s < cpyq. Then L (6) — cxl < 5o for 6 < beys,

A |ar(0) = crir| < 570 for 0 > by (23)
ar(s) > ¢ + bl ——— — 1.0170 The points b, determine the segments of the best
141,168~ Ar+r(0-ro)+ == response strategg,(6). We can bound the derivative of
ap(s) < cp + Akt —— + 10170, (17) ar,(0) over these segments by incorporating Lemma 7 and

1+ e~ Dryr(6+70)— 7= Corollary 1 and 2 into the above bound.



Lemma 10:Considert € [c,crq1], 0 < k < m, with  of the invariance ofA7'(rr,0) for ¢ > o, given by
0 % br11. Then, Lemma 1.
Theorem 2:Consider the regim% < rpo? < 1anda

d "L

—ar(0) > — % givenm € N. Then, there exists,, > 0 such that for any

dde ro+ (- TLQ(l +0.37%0%) o > o, the set of 2m+1)-segmented strategies) (r., o)
~ L

(24) for the leader, characterized by Property 1-3, is invariant
under the best response. Moreover, the game described in

. . _ 7 2 2
Using this IemmaQanQd the values= r.,(1 — 0.5170%)  goction | has an equilibrium for whiclt (0,7r,0) €
andr = rp(1 4 2.5r70%), we can easily verify that < A (rp, o)
L ’ .

i,v _ . .
ap@L(0) < 7. This means that Property 2 is preserved by Given m € N, the maximum deviation of fixed points

the best response fér€ [—cm, cr]. We study the tail case from their counterparts? for strategies inA7'(ry, o) is

later in Lemma 12. Next, we characterize the fixed points of* 9 9
the best response strategy(0). upper-bounded b§m?(0.44r0* + (2m+3.4)r0), accord-

g ing to (6). This upper bound does not grow unboundedly
Lemma 11.Def|neoo with o in the regime% < rro? < 1. Furthermore, if
Jr(ar) :/ (ar(s) — ar)?d(s —ar)ds. (25) O — +oo along a path wherep0? — 0, this upper
oo bound approaches zero, hence asymptotically identifyieg t
equilibrium strategy.
Proposition 1: Let a$ (6,7, o) be the (2m+1)-segmented
piecewise-linear strategy witlB)’s as segments and)’s
as fixed points and fixed common slope,, that is,
ik = argmin Jr(ar). (26) ay (0,rr,0) = ¢} +r(0 — ) for 0 € By. Then,

ar €[cy—5bTo,c+5T0]

— < .
d@aL(e) T+ (1 —rp)(1 —2.47202)

Then, Jy,(az) is strongly convex ovefey, — 57a, ¢, + 570,

. 2 =~ .
with L Jp(ar) > 2(1 — 2.47%02). Let &, be the unique
solution of

lim EN(O,U2)[|0’2(93 rrL, U) - a%(ea rrL, U)” — 0. (32)

Then,dL(ék) = Ck. TULji:oO
The above lemma implies that Property 1 is also preserved
under the best response. Next lemma describes the tail IV. NUMERICAL EXAMPLES
properties ofar, (). . ) .
Lemma 12:1f b,,, < 0 < &, 402, thenr < d%dL(@) < In [1], W|t§enhausen proves the existence of a nonlinear
Ford > é,, + o2, we have controller which outperforms the optimal linear strategy f
a simple two-stage LQG decentralized control problem. The
ar(0) < Cm +5rL(0 +0 — ¢p). (27)  equivalent regime under our setup ié0? = 1, where
Now, in order to verify that the updated strateg@y () k2= 1% Witsenhausen shows that for large enough values
satisfies Property 3, we need to bound the displacementsdfic the optimal controller in this regime is nonlinear. It has
the fixed points?, and endpointy. been a long-standing conjecture that the optimal controlle
Lemma 13:For the endpoints of the intervals correspondis a near piecewise-linear controller ( [14]). Theorem 2
ing to ar,(#), we have proves the existence of an equilibrium for the game of
B & + Cr Section_ I_I with a near piecewise-_linear strategy for th@l(_ﬂra
|bgr1 — ————| < 0.1rp0. (28) for sufficiently largeo in the regimel < r 0% < 1; This

Bounding the displacement i, has multiple steps: it implies the existence of a slopey quantized local optimum
involves relating the fixed point of the leader’s best reson * for Witsenhausen’s counterexample in this regime (it is
ar(0) in interval B, to the fixed point ofar(s) in B, easy to verify thatk?sc? = 1 falls in this regime, since
(i.e., sz), followed by estimatings; in terms ofc, ande, k*0® = 1yields L < rpo? = 1—r, < 1 for o > 2).
(recall thate, = Eno,02)[0|0 € Bxl, i.e., the expected value The aim of this section is to illustrate Theorem 2 for the
of 6 over By). Finally we bound the displacement in, special cases ofr = 1,2 by specifying explicit values for
with the displacement of the interval endpoints using salvero,, which guarantee the existence of 3-segmented and 5-

properties of truncated normal distribution. segmented near piecewise-linear equilibria, respewtivel
Lemma 14:Let s, be the fixed point ofar(s) in the Proposition 2 (3-Segmented EquilibriaBuppose  that
interval [c, — 570, ¢, + 570, i.e.,ap(sE) = sk. Then, 1 <rpo? <1 ando > 16. Then, the game described in

Section Il has an equilibrium with (6,71, 0) € AL (rp,0);

a; (0,rr,0) is a 3-segmented near piecewise-linear strategy
possessing Property 1-3.

sk — (1 —r)er — rren| < (2m + 3.3)r20. (30) The strip containing this nonlinear strategy for the leader

Using Lemma 14 and 15, we can reach at for the caser = 16 andr,0? = 1—r, is depicted in Figure 1
(the plot only shows the regiofh > 0; ar(—0) = —ar(0)).

& — sk| < 0.44r7 0. (29)
Lemma 15:s;, can be located based ep ande;, as

Ge—(1—rp)er—rrer| < 0.44r20% 4+ (2m+3.3)r20. (31)
L L

. 3This is indeed stronger than a local optimum since, at anlibguim,
We can now use (31) and Lemma 13 to Ve”fy that Property f%(ing one player’s strategy the deviation in the other ptsystrategy does

is also preserved by the best response, completing the proef have to be local.



the leader and the follower when the prior has very poor
precision. Our results provide the first analytical proof fo
the local optimality of near piecewise-linear controlléos

the well-known Witsenhausen’s counterexample, where the
optimal controller is conjectured to be a slopey quantizer.
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