
Rubik: Fast Analytical Power Management
for Latency-Critical Systems

Harshad Kasture Davide B. Bartolini Nathan Beckmann Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{hkasture, db2, beckmann, sanchez}@csail.mit.edu

ABSTRACT

Latency-critical workloads (e.g., web search), common
in datacenters, require stable tail (e.g., 95th percentile)
latencies of a few milliseconds. Servers running these
workloads are kept lightly loaded to meet these stringent
latency targets. This low utilization wastes billions of
dollars in energy and equipment annually.

Applying dynamic power management to latency-crit-
ical workloads is challenging. The fundamental issue
is coping with their inherent short-term variability : re-
quests arrive at unpredictable times and have variable
lengths. Without knowledge of the future, prior tech-
niques either adapt slowly and conservatively or rely on
application-specific heuristics to maintain tail latency.
We propose Rubik, a fine-grain DVFS scheme for

latency-critical workloads. Rubik copes with variability
through a novel, general, and efficient statistical per-
formance model. This model allows Rubik to adjust
frequencies at sub-millisecond granularity to save power
while meeting the target tail latency. Rubik saves up to
66% of core power, widely outperforms prior techniques,
and requires no application-specific tuning.
Beyond saving core power, Rubik robustly adapts to

sudden changes in load and system performance. We
use this capability to design RubikColoc, a colocation
scheme that uses Rubik to allow batch and latency-
critical work to share hardware resources more aggres-
sively than prior techniques. RubikColoc reduces data-
center power by up to 31% while using 41% fewer servers
than a datacenter that segregates latency-critical and
batch work, and achieves 100% core utilization.

Categories and Subject Descriptors

C.5.5 [Computer system implementation]: Servers

Keywords

DVFS, power management, colocation, latency-critical,
tail latency, interference, isolation, quality of service

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO-48, December 05–09, 2015, Waikiki, HI, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4034-2/15/12 ...$15.00

DOI: http://dx.doi.org/10.1145/2830772.2830797

1. INTRODUCTION

Latency-critical applications are common in current
datacenters and pose new challenges for system designers.
Tail latency, not average latency, determines the perfor-
mance of these applications. For example, web search
leaf nodes must provide 99th percentile latencies of a few
milliseconds [7,56]. Servers running latency-critical work
are kept lightly loaded to meet these latency targets,
with typical utilizations between 5% and 30% [1,8, 38].
This low utilization wastes billions of dollars in infras-
tructure and, since servers are not energy-proportional,
terawatt-hours of energy annually [1, 33,41].
Dynamic voltage/frequency scaling (DVFS) can re-

duce power consumption at low utilization, but it is
hard to apply without degrading tail latency. The key
challenge is coping with the inherent short-term vari-
ability of latency-critical applications: requests arrive
at unpredictable times and are often bursty, causing
short-term spikes and queuing delays that dominate tail
latency [22, 25]; and the amount of work per request
often varies by an order of magnitude or more [16,25].

Without knowledge of the future, DVFS schemes must
somehow cope with the uncertainty of latency-critical
workloads when they adjust frequencies to avoid tail la-
tency degradation. Traditional DVFS schemes focus on
long-term throughput and ignore short-term variability,
violating tail latency [33,39]. Recent work has proposed
techniques that account for uncertainty, but leave signifi-
cant performance on the table (Sec. 2). Pegasus [33] uses
a feedback controller to adjust voltage and frequency
every few seconds in response to changes in measured
latency. Pegasus adapts to diurnal variations, but not to
short-term, sub-millisecond variability. Adrenaline [16]
sets voltage and frequency at a per-query granularity,
using application-level information to identify and selec-
tively speed up long queries. Adrenaline adapts much
faster than Pegasus. However, it does not consider queu-
ing delays, which often dominate tail latency, and relies
on application-specific heuristics and tuning.
In this work we propose Rubik, a scheme that uses

fine-grain DVFS to quickly adapt to both long- and
short-term variability, minimizing power consumption
while meeting tail-latency bounds (Sec. 4). Rubik uses
a statistical model to account for the uncertainty of
latency-critical applications, including queuing delays
and per-request compute requirements. Rubik uses light-
weight online profiling to periodically update this model.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/127609315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

StaticOracle Rubik

30% 40% 50%

Load

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

re
 E

n
e

rg
y
 (

m
J
/r

e
q

)

(a) Core Energy

0.00

0.25

0.50

0.75

L
o
a
d

0.00
0.40
0.80
1.20
1.60

T
a
il

L
a
t

(m
s
)

0.0 1.0 2.0

Time (s)

0.0
0.8
1.6
2.4
3.2

F
re

q
s

(G
H

z
)

(b) Response to load change

Figure 1: Rubik and StaticOracle on masstree:
(a) Energy per request at 30–50% loads. (b) Re-
sponse to load changes: input load over time
(top panel), tail latency over a 200ms window
(middle panel), and Rubik’s frequencies over
time (bottom panel).

Rubik queries the model on each request arrival and
completion to determine the lowest safe frequency to use
given the current system state.
Fig. 1 shows Rubik in action on masstree, a high-

performance key-value store [36] (see Sec. 5.1 for method-
ology details). Fig. 1a compares the energy per request
of Rubik and StaticOracle, an oracular scheme that
chooses the lowest static frequency for a given request
trace, at three different loads: 30%, 40% and 50%. Rubik
outperforms StaticOracle because it adjusts frequencies
at sub-millisecond granularity, reducing core energy by
up to 23% over StaticOracle. Fig. 1b shows how these
schemes respond to a sudden change in load, from 30%
to 50%, at t = 1s. While StaticOracle misses the la-
tency target when load increases (middle panel), Rubik
adapts quickly, immediately choosing higher frequencies
(bottom panel) to maintain a flat tail latency.

Because Rubik adapts quickly, it can counter not only
short-term variability in the workload, but performance
variability due to shared hardware resources. We use this
capability to design RubikColoc, a scheme that colocates
and manages batch and latency-critical applications in
the same server, allowing them to share resources more
aggressively than prior techniques (Sec. 6). Specifically,
RubikColoc uses memory-system partitioning to guard
against interference in shared caches and main mem-
ory, and shares cores among batch and latency-critical
applications, using Rubik to guard against short-term
performance degradation. RubikColoc achieves 100%
core utilization without degrading tail latency.

In summary, we make the following contributions:
• We develop a novel statistical model that accurately
predicts the instantaneous performance needs of latency-
critical applications, accounting for per-request vari-
ability and queuing delays. Our model is general and
does not use application-specific heuristics.

• We present Rubik, a lightweight fine-grain DVFS scheme
that leverages this model to minimize power while
meeting strict latency bounds for latency-critical ap-
plications. We evaluate Rubik in simulation and on a
real system. Rubik reduces active core power by up
to 66%, and outperforms state-of-the-art techniques.

• We present RubikColoc, a colocation scheme that uses
Rubik to share resources among latency-critical and
batch work. RubikColoc reduces datacenter power by
up to 31% and uses 41% fewer servers than a data-
center that segregates latency-critical and batch work.

2. BACKGROUND AND RELATED WORK

Anatomy of latency-critical applications: Large-
scale online services (e.g., web search) operate on mas-
sive datasets spread among many nodes. Thousands of
nodes collaborate in serving each request [2, 7, 33], and
the few slowest nodes determine overall service latency.
Single-node latencies must therefore be small, tightly
distributed, and uniform across nodes. Interactivity re-
quirements dictate that these services achieve end-to-end
latencies of about 100ms [7, 52], which requires individ-
ual leaf nodes to have tail latencies (e.g., 95th or 99th

percentile latencies) of a few milliseconds [7,56] or lower.
These applications thus need guaranteed short-term per-
formance. Since tail latency increases quickly with load,
nodes run at low utilization to avoid large queuing delays
and handle traffic spikes gracefully [25,33].
These strict requirements preclude conventional dy-

namic power management and colocation techniques,
which hurt tail latency. We now discuss prior work that
focuses on these problems.

2.1 Dynamic Power Management

Prior work has proposed DVFS schemes to improve
efficiency in multithreaded [6, 17, 21] and multiprogram-
med [32, 51] batch applications. However, recent work
has shown that these schemes are unsuitable for latency-
critical applications since they focus on long-term per-
formance and severely hurt tail latency [24,33,34,39].
The strict latency requirements of these applications

also make it hard to use sleep states to reduce idle
power. Full-system idle power modes have transition
times on the order of seconds and are therefore un-
suitable. Deep CPU sleep states also hurt tail latency,
since they flush significant microarchitectural state (e.g.,
the last-level cache), causing long wakeup latencies [25],
while shallow sleep states save limited power [24]. In the
context of datacenters, recent work has proposed using
coordinated deep sleep modes with reduced transition
times [38, 41,57]. However, latency-critical applications
have extremely short idle periods (a few ms or less) even
at low utilization, and would need to batch tasks to
create sufficiently long idle periods to benefit from deep
sleep techniques, causing latency violations [33,39].

While off-chip regulators can take tens to hundreds of
microseconds to adjust voltage [27,39], recent techniques
based on on-chip voltage regulators [5, 12, 27, 44] have
sub-µs delays (e.g., 500 ns on Haswell [5]). Rubik lever-
ages these fast voltage transition times, updating volt-
age/frequency at sub-millisecond granularity to counter
short-term load variations (Sec. 4).

2.2 DVFS for Latency-Critical Applications

In designing Rubik, a key challenge was predicting
how frequency changes affect tail latency. This is hard

2

0.0 0.5 1.0 1.5 2.0 2.5

Normalized Instantaneous QPS

0

20

40

60

80

100
C

u
m

u
la

ti
v
e

 P
e

rc
e

n
t

masstree

moses

specjbb

shore

xapian

(a) Input QPS over time

0.0 1.0 2.0 3.0 4.0

Time (s)

0

500

1000

1500

2000

2500

Q
P

S

0.0 1.0 2.0 3.0 4.0

Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

S
e

rv
ic

e
T

im
e

 (
m

s
)

0.0 1.0 2.0 3.0 4.0

Time (s)

0

2

4

6

Q
u

e
u

e
L

e
n

0.0 1.0 2.0 3.0 4.0

Time (s)

0.0

0.3

0.6

0.9

1.2

1.5

R
e

s
p

o
n

s
e

T
im

e
 (

m
s
)

(b) Execution trace for masstree: QPS, service times,
queue lengths and response latencies over time

0 20 40 60 80 100

Utilization (%)

0

2

4

6

8

10

12

14

N
o

rm
a

liz
e

d
 T

a
il

L
a

t

masstree

moses

specjbb

shore

xapian

(c) Tail latency vs load

Figure 2: Analysis of main factors that add short-term variability and contribute to tail latency.

Application
Service
Time

Inst.
QPS

Queue
Length

masstree 0.03 0.09 0.94
moses 0.08 0.40 0.93
specjbb 0.40 0.08 0.66
shore 0.56 0.17 0.63
xapian 0.50 0.32 0.75

Table 1: Pearson correlation coefficients of end-
to-end response latency with service time, in-
stantaneous QPS, and queue length.

because tail latency depends on the complex interplay
of arrival, queuing, and service time distributions. Prior
work has avoided this problem in three ways.

First, schemes that optimize for responsiveness in
embedded systems, such as PACE [35,58] and Grace [60],
try to satisfy each request by a given deadline, and do
not consider queuing time. Ignoring queuing works well
in interactive systems that run one task at a time, but
is not applicable to datacenter servers, where queuing is
significant and unavoidable [22,25].

Second, Pegasus [33] takes a feedback-based approach:
it measures tail latency periodically and adjusts fre-
quency every few seconds to keep tail latency within a
given bound. Pegasus uses a workload-specific feedback
controller to drive its decisions. Relying exclusively on
feedback is simple, but it is unresponsive to short-term
variability, since reliably measuring tail latency takes a
large number of requests. Thus, pure feedback-based
approaches adapt to long-term variations (e.g., diur-
nal patterns), but cannot exploit short-term variability.
Instead, Rubik combines short-term, analytical adapta-
tion and long-term, feedback-based adaptation. These
complementary techniques let Rubik improve efficiency
further without degrading tail latency.

Third, Adrenaline [16] relies on the intuition that long
requests are more likely to contribute to the tail, and uses
application-level hints to identify these requests. These
long requests are boosted, i.e., run at a higher frequency
than other requests. The optimal frequency settings
for boosted and unboosted queries at each load level
are determined via a dynamic search process. Changes
in load are sensed by a load monitor at coarse gran-
ularity (tens of minutes), which triggers the dynamic
search process. Adrenaline is thus unable to respond

to sudden load changes. Additionally, Adrenaline re-
lies on application-level hints to identify long requests
before they start being served. As we show in Sec. 3,
not all applications are amenable to hints. Finally, tail
latency is often largely determined by queuing delay,
even at moderately low loads (Sec. 3). Adrenaline does
not account for queuing delays explicitly, so it needs
to choose conservative frequency settings to avoid tail
latency violations.

3. SHORT-TERM VARIABILITY IN LATEN-

CY-CRITICAL WORKLOADS

Rubik uses fast, per-core DVFS to quickly adapt to the
short-term performance variability inherent to latency-
critical applications. To do this, Rubik must determine
the appropriate frequency that maintains tail latency in
the presence of multiple sources of uncertainty: variabil-
ity in compute requirements across requests, changes
in input load, and queuing. Statistical modeling is a
natural way to achieve this, but for the model to be
practical, it needs to be simple enough to be used online,
and accurate enough to capture the key factors that
affect response time. We first analyze these factors.
Fig. 2a shows the cumulative distribution function

(CDF) of instantaneous load, measured in queries per
second (QPS) over a rolling 5 ms window, for five latency-
critical applications (see Sec. 5.1 for methodology de-
tails). For each application, the load is normalized to
the average load over the entire run. Instantaneous load
varies from nearly zero to more than twice the average
load. Intuitively, applications should run at low fre-
quency in low-load periods to save power, and at high
frequency in high-load periods to maintain tail latency.

However, determining the right frequency can be hard
in practice. Fig. 2b shows a four-second execution trace
of masstree, a high-performance key-value store [36].
We report input QPS (top left), request service times,
i.e., request latencies disregarding queuing (bottom left),
queue lengths (top right) and end-to-end response times
(bottom right). Average server utilization over the course
of the trace is 50%. Input QPS fluctuates apprecia-
bly over time, but is only weakly correlated with re-
sponse times. Request service times are fairly stable for
masstree, with only a few requests being appreciably
longer or shorter than the rest. Service times, therefore,

3

offer no useful hints about end-to-end response times
and the right frequency setting. Note, however, that
queue lengths are very well correlated with response
latency. This trend is not limited to masstree. Table 1
shows the Pearson correlation coefficients for response la-
tency with service times, instantaneous QPS, and queue
lengths for five latency-critical applications. In each
case, response latency is strongly correlated with queue
lengths. Its correlation with service times and input
QPS, however, is much weaker, and is essentially zero
for some applications (e.g., masstree).

The reason response latency is so well correlated with
queue lengths is that queuing delay often dominates
tail latency. Fig. 2c plots the tail latency (defined as
the 95th percentile of the response time distribution) at
various loads. For each application, the tail latency is
normalized to the 95th-percentile service latency for that
application. In the absence of queuing, the response
time distribution would be identical to the service time
distribution, and the normalized tail latency would be
1.0. However, Fig. 2c shows that normalized tail latency
is significantly higher even at low loads (e.g., specjbb
at 20% load), indicating that queuing plays a substan-
tial role in determining tail latency. The contribution
of queuing delay to tail latency increases rapidly with
load; queuing times account for more than half the tail
latency for four of our five applications beyond 40%
load (Fig. 2c). For applications with fairly uniform
service times (e.g. masstree, moses), response latency
is determined almost completely by queuing (Table 1).
For applications that exhibit greater variability in ser-
vice times (e.g., shore, xapian), both service times and
queuing delay determine the response latency (Table 1).

4. RUBIK: FAST DVFS FOR LATENCY-CRI-

TICAL APPLICATIONS

We leverage the insights above to design Rubik. Ru-
bik’s statistical model uses request service time distri-
butions, collected online, to account for the uncertainty
in compute requirements of individual requests. Ru-
bik then uses these distributions to predict the lowest
frequency that does not violate tail latency, given the
number of currently-queued requests and their arrival
times. Each time a new request arrives or is serviced,
Rubik makes a new prediction and changes the core’s
frequency, as shown in Fig. 3. To make these predic-
tions cheaply, Rubik periodically precomputes two small
lookup tables, called the target tail tables. These tables
encapsulate the beliefs of the statistical model, and are
consulted to make each prediction.
We first present Rubik’s statistical model, then de-

scribe how the target tail tables are computed and used
to support lightweight, fine-grain frequency adaptation.

4.1 Fast Analytical Frequency Control

Fig. 4 shows a concrete example of Rubik’s operation.
The application has received three requests, R0, R1, and
R2, which arrived t0, t1, and t2 time ago (Fig. 4a). The
application is currently processing R0, and has spent
ω cycles doing so; R1 and R2 are queued. For this

Figure 3: Rubik adjusts core frequency on each
request arrival and completion to enforce the tail
latency bound.

example, assume that requests are not memory-bound,
so performance scales linearly with frequency (we address
memory later). Fig. 4a shows that Rubik spans two
parallel timelines, measured in time (i.e., seconds) and
core cycles. The tail latency bound is given in time,
but requests complete after some number of core cycles
dictated by their compute requirements. Core frequency
(f) connects the two. Our goal is to set f to meet the
tail with minimal power.
Rubik achieves this by finding the lowest f that sat-

isfies the tail latency bound L for the current requests.
This bound is specified as a percentile. In this example,
95% of requests must be served by L = 2ms. Rubik
exploits the probabilistic nature of the problem as fol-
lows. First, Rubik treats the completion cycle for each
request Ri as a random variable, Si, with probability
distribution P[Si = c]. Fig. 4b shows these distributions
for R0, R1, and R2 (we discuss how to compute them
later). Second, Rubik finds the tail completion cycle of
each request, ci (the 95th percentile of each P[Si = c]),
shown in red in Fig. 4b. The timelines in Fig. 4a show
how frequency scaling maps each ci in cycles to ci/f
in time. Request Ri has already spent ti time in the
system, and the 95th percentile will be served by time
ci/f . Satisfying the tail bound for request Ri requires
ti + ci/f ≤ L, so to satisfy all current requests:

f ≥ max
i=0...N

ci
L− ti

(1)

In this example, request R1 has the most stringent
constraint—the longest time between t1 and c1/f—and
sets the frequency. Rubik computes f from Eq. 1 each
time a request arrives or completes, quickly adapting
to changing conditions. For example, if a new request,
R4, were to arrive at the current time, Eq. 1 would be
invoked for each of R0-R4.
Notice that the last request in the queue often does

not set the frequency, for two main reasons. First, later
requests arrived more recently (e.g., tN ≈ 0), so they
have more headroom than earlier requests (e.g., t0 ≈ L).
Second, the completion time of queued requests often
becomes more tightly distributed the longer the queue
length, which shortens the tail of their distributions (e.g.,
compare P[S1 = c] and P[S2 = c] in Fig. 4b).
Computing the distributions: Rubik computes the
completion cycle distributions by assuming the work
for each request is drawn independently from a single
distribution, P[S = c]. S gives how many cycles it takes

4

(a) Cycles/seconds timelines, frequency constraints to meet tail (L).

(b) Probability distributions of service cycles (S), cycles to serve the
running request (S0) and the queued requests (S1 and S2), used to
compute constraints.

Figure 4: Rubik example with three requests and no memory-
bound cycles.

c0 c1 c2 c15

ω = 0

ω < 25th pct

ω < 50th pct

ω < 75th pct

Otherwise

Target Tail Tables Times Since

Arrival

t0 t1 t2

)(22

2

tmL

c
f

m0 m1 m2 m15

ω = 0

ω < 25th pct

ω < 50th pct

ω < 75th pct

Otherwise

Figure 5: Rubik implementation:
Precomputed target tail tables (for
core cycles and memory times)
make it cheap to compute the fre-
quency constraints.

to process one request, not including queuing time. In-
dependence is a reasonable assumption for datacenter
nodes, because each node serves requests from many
users, and caches serve repeated requests before they
reach leaf nodes, reducing temporal correlations [3].
The completion time distribution of the current re-

quest, P[S0 = c], is the distribution P[S = c] conditioned
on ω cycles having already elapsed for R0:

P[S0 = c] = P[S = c+ ω|S > ω] =
P[S = c+ ω]

P[S > ω]

This scales and shifts P[S = c] at ω, as shown in Fig. 4b.
From S0 and S, we can derive the completion time

distributions of all queued requests. In order to service
the ith request, we must first service the i− 1 requests
preceding it. Hence S1 = S0 + S, and S2 = S1 + S =

S0 + S + S, and in general Si = S0 +
∑i

j=1
S. Using

independence, each Si is distributed according to the
convolution (∗) of S and Si−1 [13]. Thus if PX(x) =
P[X = x]:

PSi
= PSi−1

∗ PS = PS0
∗

i times

︷ ︸︸ ︷

PS ∗ . . . ∗ PS

Core DVFS and memory: Core frequency does not
affect stalls on LLC and main memory accesses, lim-
iting the impact of core DVFS. Rubik therefore uses
two probability distributions: per-request compute cy-
cles, P[C = c], and per-request memory-bound times,
P[M = t]. Work per request (in cycles) is the sum of
these two random variables at the current frequency:
S = C+Mf . Computing the lowest acceptable frequency
exactly would require considering the joint distribution
of C and M . Instead, Rubik makes the conservative
approximation that the tail of S is no better than the
combination of the tails of C and M (triangle inequal-
ity). For each request, Rubik computes the tails of each
distribution Ci and Mi, as discussed above for Si. This
yields tail compute cycles ci and tail memory time mi

until completion of request Ri. The mi values are a
fixed cost that DVFS cannot affect, so Eq. 1 becomes:

f ≥ max
i=0...N

ci
L− (ti +mi)

(2)

4.2 Rubik Implementation

Rubik is implemented as a software runtime and re-
quires minimal hardware support: fast, per-core DVFS,
and performance counters for computing CPI stacks.
Estimating probability distributions: Prior work
has shown that, using performance counters, one can
produce CPI stacks that separate compute and memory-
bound cycles, even for complex cores with significant
memory-level parallelism [11]. CPI stacks have been used
to perform memory-aware DVFS with batch apps [10,26,
42, 47]. Similarly, Rubik uses performance counters to
estimate per-request compute and memory-bound cycles,
and uses them to produce P[C = c] and P[M = t].
Target tail tables: Computing the ci and mi per-
centiles from scratch on each frequency adjustment
would be very expensive, but fortunately they can be
precomputed. Periodically, the runtime updates the
service cycle and time distributions, performs the convo-
lutions, and fills in the ci and mi values in the target tail
tables, as shown in Fig. 5. Each row has the ci and mi

values for selected quantiles of the service time distribu-
tion (quartiles in Fig. 5, octiles in our implementation).
On each request arrival and completion, Rubik picks
the appropriate row and computes the minimum f as
shown in Fig. 5. Computing each constraint requires
few instructions (Eq. 2), so updates take negligible time.
Large queues: In theory, the number of queued re-
quests is unbounded. In practice, we rarely observe
more than 10 queued requests in our benchmarks; still,
large queues could build up with lax tail bounds. For-
tunately, by Lyapunov’s Central Limit Theorem [4], at
large i, P[Si = c] converges to a Gaussian distribution
with mean E[S0] + i · E[S] and variance of var[S]. By
precomputing the tail value for the zero-centered Gaus-
sian with variance of var[S], each ci and mi for large
i can be computed by adding the mean. We use this
formulation for i ≥ 16, avoiding long tail tables.
Cost: Every 100ms in our implementation, Rubik up-
dates the service cycle and time distributions and uses
them to compute the target tail tables. We use 128-

5

Cores 6 x86-64 cores, detailed Westmere-like OOO [50]

L1 caches
32KB, 4-way set-associative, split D/I, 1-cycle
latency

L2 caches
256KB private per-core, 16-way set-associative,
inclusive, 7-cycle latency

L3 cache
6 banks, 12MBs total, 4-way 52-candidate
zcache [48], 20 cycles, inclusive, LRU (Rubik) /
Vantage [49] partitioning (RubikColoc)

Coherence
protocol

MESI protocol, 64-byte lines, in-cache directory,
no silent drops, TSO

Memory
48GB, 6 DDR3-1066-CL7 channels,
unpartitioned (Rubik) / partitioned [43]
(RubikColoc), 8.6GB/s per core

Power

2.4GHz nominal frequency; Haswell-like
FIVR [5] per-core DVFS: 0.8–3.4GHz frequency
range, in 200MHz steps, 4µs V/F transition
latency; core sleep with L1s & L2 flushed to
LLC (Haswell C3 [20]); 65W TDP

Table 2: Configuration of the simulated CMP.

bucket distributions, and use FFTs to accelerate con-
volutions. Each update of the target tail tables takes
0.2ms, resulting in a 0.2% overhead for periodic 100ms
updates. Moreover, updates happen when the applica-
tion is idle, so they do not impact its performance.
Feedback-based fine-tuning: Rubik as described so
far will satisfy the desired tail latency, provided the
available frequencies allow it to. However, since its
estimates are conservative, it may waste power by using
somewhat higher frequencies than needed. To improve
efficiency, we use a simple PI controller [55] that observes
the difference between the measured and predicted tail
latencies over a rolling 1-second window and adjusts
Rubik’s internal latency target. Adjustments are minor,
as the analytical model typically needs little correction.

5. RUBIK EVALUATION

We now evaluate Rubik in simulation and on a real
system. We first present exhaustive simulation results
evaluating Rubik’s power savings at various loads, as well
as its responsiveness to load changes. We then present
real system results for two representative applications,
and show that Rubik saves significant power despite the
limitations of current hardware.

5.1 Experimental Methodology

Simulated system: We extend zsim [50] to perform
microarchitectural simulation of a 6-core system with
parameters shown in Table 2. This configuration is
representative of modern high-performance servers [31,
53]. The system supports per-core DVFS and sleep states
modeled after Haswell [5, 14]. We conservatively model
voltage/frequency transition latencies of 4µs, longer
than the 0.5µs achievable with FIVR [5].
Power model: We evaluate Rubik’s power savings us-
ing an accurate power model that we construct with
a methodology similar to prior work [9,18,30,54]. We
fit the model to a Supermicro 5018D-MTF server with
a 4-core Haswell (Xeon E3-1240v3 [20]) and 32GB of
unbuffered DDR3-1600 ECC DRAM. We run the full
SPEC CPU2006 suite using different numbers of cores

App Workload configuration Requests

xapian English Wikipedia, zipfian query popularity 6000
masstree mycsb-a (50% GETs/PUTs), 1.1GB table 9000
moses opensubtitles.org corpora, phrase mode 900
shore TPC-C, 10 warehouses 7500
specjbb 1 warehouse 37500

Table 3: Configuration and number of requests
for latency-critical applications.

and frequencies, and measure key performance coun-
ters (instructions, cycles, and memory and cache ac-
cesses), per-component power (cores, uncore, DRAM)
using RAPL counters [46], and wall-plug power using a
WattsUp meter. We sample RAPL counters every 25ms
and the WattsUp meter every 1 s. We perform least-
squares regression to train a full-system power model
that depends on frequency, voltage, and performance
counters. The model reports power for cores, uncore,
main memory, and other components (power supply,
HDD, etc.). The DVFS range and step of our modeled
system (Table 2) match the tested Haswell chip; uncore
and DRAM power were scaled to account for the larger
LLC and main memory.

We use k-fold cross-validation [29] on SPECCPU2006
mixes to test model accuracy. On 20,000 25ms samples
of SPECCPU2006 mixes at different frequencies, the
model has 5.1% mean, and 11% worst-case absolute
power error; core, uncore, and DRAM have lower errors
(1.5% mean, 4% worst-case).
Benchmarks: We use five diverse latency-critical ap-
plications, similar to prior work [25]: xapian, a web
search engine configured as a leaf node [7,45]; masstree,
a high-performance key-value store [36]; moses, a statis-
tical machine translation system configured to perform
real-time translation (e.g., as in Google Translate) [28];
shore, an online transaction processing database run-
ning TPC-C [23]; and specjbb, a Java real-time mid-
dleware benchmark. Table 3 shows their input sets and
number of simulated requests.
To measure tail latency in simulation, we integrate

server and client under the same process. The client pro-
duces a request stream with exponentially distributed
interarrival times at a given rate (i.e., a Markov in-
put process, common in datacenter workloads [39,40]).
Client overheads are negligible (∼150 ns/request).
Tail latency: We define tail latency as the 95th-per-
centile latency, which is typical [33]. To ensure statis-
tically significant results, we perform enough runs per
experiment to achieve 95% confidence intervals below
1%.

5.2 Power Savings

We first evaluate Rubik’s power savings for each of our
five latency-critical applications. Our baseline scheme,
Fixed-frequency, always runs at nominal frequency (2.4
GHz for our simulated system, Table 2). For each appli-
cation, the latency target is set at the tail latency of the
Fixed-frequency scheme at 50% load. We compare Rubik
with two oracular schemes: StaticOracle and Adrenali-
neOracle. At each load, StaticOracle chooses the lowest

6

masstree moses shore specjbb xapian mean
30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50%

0

10

20

30

40

50

60

70
C

o
re

 P
o
w

e
r

S
a
v
in

g
s
 (

%
)

StaticOracle

AdrenalineOracle

Rubik

Figure 6: Core power savings for various schemes and applications at 30%, 40% and 50% loads.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Response latency (ms)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

Tail
Bound

masstree

StaticOracle

Adrenaline-
Oracle

Rubik

(a) Response latency CDF

Core frequency (GHz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
ra

c
ti
o
n
 o

f
ti
m

e

0.8 1.2 1.6 2.0 2.4 2.6 3.0 3.4

masstree

(b) Frequency histogram

Figure 7: Rubik on masstree: (a) Rubik serves
requests later without degrading tail latency,
and (b) Rubik uses low frequencies often to save
power.

static frequency that satisfies the latency target. Stati-
cOracle is an upper bound on the efficiency of feedback-
based controllers such as Pegasus [33]: real controllers
need to be more conservative to maintain tail latency
(e.g., using guardbands [33]). In fact, StaticOracle is
identical to the oracular iso-latency scheme that upper-
bounds the power savings from Pegasus [33, Sec. 4.1].
AdrenalineOracle implements an idealized, oracular ver-
sion of Adrenaline [16]. AdrenalineOracle can perfectly
distinguish long requests from short ones (Adrenaline as
presented in [16] relies on application-level hints to ap-
proximate this). In tuning AdrenalineOracle, we sweep
different values of the threshold between long and short
requests, and pick the best one. The frequency settings
for boosted and non-boosted requests are determined
in an offline training phase, and are different for each
application and load.
Fig. 6 reports power savings for each application at

three loads: 30%, 40%, and 50%. To simplify the dis-
cussion, we report active core power only (pipeline, L1s,
and L2). At each load, the reported power savings are
relative to the power consumed by the Fixed-frequency
scheme at that load. All three schemes save significant
power at low (30%) load. Rubik performs the best for
each application, reducing power by up to 66% (37%
average across all applications). While energy savings
for StaticOracle and AdrenalineOracle are similar to
Rubik’s for some applications (e.g., moses), Rubik sig-
nificantly outstrips them for others (e.g., specjbb).

0 1 2 3 4 5

Response latency (ms)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

Tail
Bound

xapian

StaticOracle

Adrenaline-
Oracle

Rubik

(a) Response latency CDF

Core frequency (GHz)

0.00

0.05

0.10

0.15

0.20

0.25

F
ra

c
ti
o
n
 o

f
ti
m

e

1.2 1.6 2.0 2.4 2.6 3.0 3.4

xapian

(b) Frequency histogram

Figure 8: Rubik on xapian: (a) Rubik serves re-
quests later without degrading tail latency, and
(b) Rubik uses low frequencies often to save
power.

As load increases, Rubik’s savings over the other
schemes become more pronounced. At 50% load, Stati-
cOracle saves no additional power over Fixed-frequency,
while AdrenalineOracle achieves significant power sav-
ings for just one application (masstree), saving 2%
power on average. By contrast, Rubik saves 15% power
on average, and up to 28%.
Rubik outperforms StaticOracle and AdrenalineOra-

cle because it is able to respond quickly and accurately
to short-term load variations. Rubik runs at low fre-
quency whenever possible, only increasing frequency
during periods of significant queuing, where its accurate
estimate of queued work allows it to determine the low-
est viable frequency. Moreover, since these estimates
are highly accurate, Rubik can respond to load changes
as early as possible, on each request arrival/completion,
further improving energy efficiency. By contrast, Stati-
cOracle must set frequency conservatively to account
for transient queuing. AdrenalineOracle mitigates this
problem somewhat, implicitly relying on the heuristic
that longer requests are more likely to cause queuing.
However, since it does not explicitly adapt to queuing,
its frequency settings must still be conservative.

We note that Rubik and Adrenaline, of which Adrenali-
neOracle is an oracular version, are complementary tech-
niques: Rubik focuses on short-term load variations,
while Adrenaline leverages knowledge of request classes
with varying compute requirements. These approaches
could be combined to further improve efficiency.

7

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.5

1.0

1.5

2.0

T
a
il

la
te

n
c
y
 (

m
s
)

masstree

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

5

10

15

20

25

30

T
a
il

la
te

n
c
y
 (

m
s
)

Tail
Bound

Fixed-freq Load
 at Tail Bound

Tail Bound
Unachievable

moses

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

1

2

3

4

5

T
a
il

la
te

n
c
y
 (

m
s
)

shore

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
a
il

la
te

n
c
y
 (

m
s
)

specjbb

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

2

4

6

8

10

T
a
il

la
te

n
c
y
 (

m
s
)

xapian

(a) Load-latency diagrams, showing 95th percentile tail latencies.

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
re

 e
n
e
rg

y
 (

m
J
/r

e
q
)

masstree

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

5

10

15

20

25

C
o
re

 e
n
e
rg

y
 (

m
J
/r

e
q
)

moses

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.5

1.0

1.5

2.0

C
o
re

 e
n
e
rg

y
 (

m
J
/r

e
q
)

shore

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.1

0.2

0.3

0.4

C
o
re

 e
n
e
rg

y
 (

m
J
/r

e
q
)

specjbb

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
re

 e
n
e
rg

y
 (

m
J
/r

e
q
)

xapian

(b) Load-energy diagrams, showing core energy per request (includes dynamic and static for pipeline, L1s, and L2).

Fixed frequency StaticOracle DynamicOracle Rubik (No Feedback Control) Rubik

Figure 9: Tail latencies and core energy per request for each latency-critical application under a fixed
frequency, StaticOracle, DynamicOracle, and Rubik. The tail latency at fixed-frequency under 50%
load is the tail latency bound for all other schemes. In the shaded areas, load is high enough that no
scheme can meet the tail bound.

Rubik on masstree and xapian: We now character-
ize Rubik in more detail for two representative apps,
masstree and xapian. Fig. 7a compares the response
latency CDFs for Rubik, StaticOracle and AdrenalineO-
racle on masstree at 50% load. All three schemes meet
the tail bound. However, Rubik’s fine-grain adaptation
allows it to push the lower end of the CDF to the right,
delaying short requests by running them at low frequen-
cies to save significant power. Indeed, Rubik’s frequency
histogram (Fig. 7b) shows that most time is spent at
low frequencies. By distinguishing between short and
long requests, AdrenalineOracle is able to shift the CDF
to the right somewhat. However, the shift is much less
pronounced than Rubik’s, and thus its power savings
are lower (Fig. 6). Fig. 8 presents a similar analysis for
xapian. xapian has more variable service times, causing
Rubik to choose more conservative frequency settings
due to the increased uncertainty. Thus, while the low
part of the response latency CDF does shift to the right
(Fig. 8a), the shift is less significant. As before, Adrenali-
neOracle shifts the low part of the CDF to the right by
a smaller amount. However, the increased variability
for xapian necessitates more conservative frequency set-
tings, so that the upper part of the CDF shifts to the
left, consuming more power than necessary.

5.3 Trace-Driven Characterization

We use trace-driven experiments to gain further in-
sight into Rubik’s operation. We capture per-request
arrival times, core cycles, memory-bound times, and per-
formance counters in zsim, and replay the trace under
different schemes. This setup allows us to compare Ru-
bik against two oracular schemes, StaticOracle and Dy-

namicOracle. StaticOracle operates as described above.
DynamicOracle finds the frequency schedule that min-
imizes power while staying within latency bounds. It
first computes, for each request, the lowest frequency
that meets the latency bound. Then, it progressively
reduces frequencies until 5% of the requests are above
the tail bound (if achievable), prioritizing the reductions
that save most power.
Fig. 9 shows the tail latency and average core en-

ergy per request as a function of load. A load of 100%
corresponds to the maximum request rate at nominal
frequency (2.4GHz). Each plot characterizes an app,
and each line shows a single scheme. The fixed-frequency
results run at nominal frequency, while the oracles and
Rubik can use all available frequencies (0.8–3.4GHz).
We show Rubik with and without feedback control. As
before, we use the tail latency of the fixed-frequency
scheme at 50% load as the target for all other schemes.

Focusing on Fig. 9a, the fixed-frequency results show
that tail latency is highly sensitive to load. By con-
trast, both oracles lower frequencies to match the latency
bound, producing a flat tail latency curve until at least
50% load in all apps. The oracles match the latency
bound as far as possible beyond 50% load; the region
where even the oracles cannot meet tail latency bounds
is shaded red in the graphs. Rubik without feedback
closely tracks the desired behavior: with loads below
50%, it achieves a near-flat tail, but its conservative
approximations produce a slightly lower tail than neces-
sary, especially for specjbb which has highly variable
service times; at high loads (shaded region), tail latency
is slightly above the minimum achievable tail, as set by
the oracles. Rubik’s feedback controller fixes these small

8

0.0
0.2
0.4
0.6
0.8

L
o

a
d

masstree

0.0
0.5
1.0
1.5
2.0

T
a

il
L

a
t

(m
s
)

0.0
1.0
2.0
3.0
4.0

P
o

w
e

r
(W

)

0 2 4 6 8 10 12

Time (s)

0.0
0.8
1.6
2.4
3.2

F
re

q
s

(G
H

z
)

0.0
0.2
0.4
0.6
0.8

moses

0.0

10.0

20.0

30.0

0.0

2.0

4.0

6.0

0 2 4 6 8 10 12

Time (s)

0.0
0.8
1.6
2.4
3.2

0.0
0.2
0.4
0.6
0.8

specjbb

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

0 2 4 6 8 10 12

Time (s)

0.0
0.8
1.6
2.4
3.2

0.0
0.2
0.4
0.6
0.8

shore

0.0

2.0

4.0

6.0

0.0
1.0
2.0
3.0
4.0

0 2 4 6 8 10 12

Time (s)

0.0
0.8
1.6
2.4
3.2

0.0
0.2
0.4
0.6
0.8

xapian

0.0
4.0
8.0

12.0
16.0

0.0
1.0
2.0
3.0
4.0

0 2 4 6 8 10 12

Time (s)

0.0
0.8
1.6
2.4
3.2

StaticOracle AdrenalineOracle Rubik

Figure 10: Tail latency and active power consumption for StaticOracle, AdrenalineOracle and Rubik,
and frequency distribution for Rubik. For each latency-critical app, input load goes from 25% to 50%
at t = 4s, and to 75% at t = 8s.

deviations and matches the latency curves of the oracles.
Fig. 9b shows the core energy per request of each

scheme. At a fixed frequency, active energy per request
does not change with load. Below 50% load, the three
adaptive schemes reduce frequencies often and lower
energy. Comparing StaticOracle and DynamicOracle
reveals the benefit of short-term adaptation: across the
range, DynamicOracle saves significantly more energy
than StaticOracle. At 50% load, DynamicOracle often
saves 20–45% of energy consumed by StaticOracle. Ru-
bik outperforms StaticOracle and reaps most of the ben-
efits of DynamicOracle, especially in apps with tightly
clustered service times (masstree, moses). With more
variable service times (shore, specjbb), Rubik saves
less power than DynamicOracle because it lacks knowl-
edge of the future and must guard against long requests.
Variability increases with load, so Rubik and DynamicO-
racle achieve larger power savings over StaticOracle as
well. Above 50% load, all three schemes often use higher
frequencies and more energy to keep the tail latency as
close to the target as possible. Rubik continues to use
less power than StaticOracle even at these high loads.

5.4 Responsiveness to Load Changes

In addition to increased power savings in steady state
(Fig. 6), Rubik’s design allows it to respond near-ins-
tantaneously to sudden changes in input load. This
happens because higher loads immediately translate to
longer queues, and Rubik reacts to changes in queue
length immediately. Note that the target tail tables de-
pend on the service-time distributions, not on queue
lengths. Thus, a sudden change in load makes Rubik
immediately shift to higher frequencies without any tun-
ing. By contrast, Pegasus reacts to load changes when it
measures a higher tail latency [33], which takes time and
hampers its responsiveness; and Adrenaline must both
accurately detect a change in input load and go through
a dynamic search phase to select new frequencies [16].

Fig. 10 shows how Rubik, StaticOracle, and Adrenali-
neOracle respond to sudden load changes. The top row
shows the input load, which grows in steps over a span

of 12 seconds, going from 25% to 50% and eventually
to 75%. As in Sec. 5.2, the latency bound is set at
the tail latency achieved when running at the nominal
frequency at 50% load. The second row shows the 95th

percentile latency and the third row shows the active
power consumption for the three schemes, both over a
rolling 200ms window. The bottom row shows Rubik’s
frequency settings over time.
Both StaticOracle and AdrenalineOracle are slow to

respond. At 25% load, they use overly aggressive fre-
quency settings, yielding unnecessarily low tail latencies
and wasting power. On the other hand, as load exceeds
50%, both schemes choose frequency settings that are
too low, suffering large latency violations.

By contrast, Rubik achieves stable tail latencies when
the load is 50% or lower. At low load (25%), Rubik
chooses lower frequencies to achieve tail latency close
to the latency bound, saving additional power. Rubik
adapts quickly when load changes, choosing progressively
higher frequencies as load increases. Beyond 50% load,
Rubik chooses higher frequencies to meet tail latency
requirements as best as possible. Even at 75% load,
Rubik suffers minimal latency degradation for masstree
and xapian. Even for apps for which latency violation
at 75% load is inevitable (e.g., shore), Rubik achieves
the lowest latency degradation of the three schemes.

5.5 Real-System Evaluation

We implement and evaluate Rubik on a real system
and explore the limitations of current hardware. We
use the same 4-core Haswell server used to train our
power model (Sec. 5.1). This chip has integrated voltage
regulators (FIVR [5]), but lacks per-core DVFS, so we
use a single core and turn the rest off. Applications are
less memory-bound than on the simulated system, since
they have the full 8MB LLC to themselves.
Despite the ∼500 ns voltage transition latencies ad-

vertised by FIVR [5], we observe transition latencies of
up to 130µs, even when setting frequencies by directly
writing MSRs. We conjecture that this delay is due
to the Power Control Unit [5], the internal microcon-

9

masstree moses
30% 40% 50% 30% 40% 50%

0

10

20

30

40

50

60

C
o

re
 P

o
w

e
r

S
a

v
in

g
s
 (

%
)

StaticOracle Rubik

Figure 11: Core power savings for Rubik and
StaticOracle on a real system.

troller that manages FIVR, for three reasons. First,
transition times are highly variable, and uncorrelated
with either the magnitude or direction of the frequency
change. Second, we also tested a Broadwell system (an
8-core Xeon D-1540) with second-generation FIVR, and
found transition times were about 4× higher and sim-
ilarly variable. Third, MSR write latencies are small
(1.2µs). High DVFS transition latencies limit Rubik’s
gains somewhat. We hope that this and other recent
work that requires fast DVFS [12,16] will motivate the
adoption of low-latency DVFS interfaces.
We implement Rubik as described in Sec. 4.2. Our

implementation is entirely in userspace. Request arrivals
are handled by a separate interrupt thread, scheduled
on a hyperthread that shares the same physical core as
the application. This thread dequeues network requests
and changes core frequency in response if needed. The
interrupt thread has negligible CPU utilization even
at high loads. We chose this design to avoid kernel
modifications; the interrupt thread could be avoided
with a few new kernel interrupts. We use the RAPL
interface [19] to measure core power, and set the nominal
frequency to 2.4GHz as in our simulations.
Since long DVFS transition latencies have a larger

impact with short requests, we focus on the applica-
tions with the shortest (masstree) and longest (moses)
tail latency targets (730µs and 5.54ms, respectively).
Fig. 11 reports the core power savings over the fixed-
frequency scheme achieved by Rubik and StaticOracle at
various loads on both applications. Rubik meets the tail
latency requirement in all cases (not shown). We were
somewhat surprised by Rubik’s resilience to DVFS lag,
especially for masstree, which has very short requests
(median service time 240 µs). The lag does diminish
Rubik’s power efficiency for masstree somewhat: since
frequency changes take longer, Rubik is forced to take
more conservative decisions to avoid degrading latency,
particularly at high loads where frequent request arrivals
force rapid frequency changes. Thus, while Rubik saves
significant power over StaticOracle for masstree at low
(30%) load, these additional savings diminish as load in-
creases, and Rubik and StaticOracle perform identically
at high (50%) load. For moses, which has longer requests
(median service time 3.95ms), Rubik saves significant
power over StaticOracle even at high load. Note that
both StaticOracle and Rubik achieve somewhat lower
power savings than the simulated system on moses. This

is because the server’s larger LLC makes moses more
compute-bound and causes more variable service times,
so both StaticOracle and Rubik set higher frequencies.
Nevertheless, Rubik saves substantial power: 51% at low
load, and 17% at high load.

6. RUBIKCOLOC: COLOCATING BATCH

AND LATENCY-CRITICAL WORK

While Rubik substantially reduces dynamic core power,
it does not reduce idle power. Even when servers are
fully idle, resources such as disks, network cards and
DRAM consume a significant amount of power [1,38,41].
This limits the efficiency gains from any DVFS scheme.
Fig. 12 shows the total system power savings achieved
by Rubik at 30% load. These savings, while substantial,
are modest relative to the savings in core power (Fig. 6).
An attractive way to reduce idle power is to colo-

cate latency-critical and batch applications in the same
server. Current datacenters execute a significant amount
of batch work (e.g., analytics) that only requires high
long-term throughput. In principle, batch applications
could run when latency-critical applications are idle,
amortizing idle power over a much larger amount of
work and reducing the number of datacenter servers.
However, this is not possible in conventional systems be-
cause colocated applications contend on shared resources,
causing large tail latency degradations [8, 25, 37, 59]. As
a result, current datacenters often segregate latency-
critical and batch applications to avoid interference, and
suffer from high idle power.

m
as

st
re

e

m
os

es

sh
or

e

sp
ec

jb
b

xa
pi
an

0

2

4

6

8

10

12

14

S
y
s
te

m
 P

o
w

e
r

S
a
v
in

g
s
 (

%
)

Figure 12: Rubik’s
full-system power
savings at 30% load.

We observe that the key
challenge in colocating batch
and latency-critical work is
the same as for DVFS: un-
certainty. While in DVFS
this uncertainty arises from
the unknown request lengths
and arrival times of the
latency-critical workload, in
colocation this uncertainty is
due to the unknown perfor-
mance degradation caused
by interference. Solutions to
both problems should be complementary. Indeed, we
now show that Rubik can be used to perform more
aggressive colocation than prior work.
Prior colocation schemes allow latency-critical and

batch applications to share memory system resources
(e.g., last level caches, DRAM bandwidth), using ei-
ther memory system partitioning [25] or conservative
coscheduling [37,59] to mitigate performance degrada-
tion in latency-critical applications. However, while
these schemes share memory system resources, they do
not share cores. This limits overall utilization. For exam-
ple, if half of the cores are dedicated to latency-critical
work that runs at 10% load, overall core utilization can-
not exceed 55%. It would be more efficient to time-mul-
tiplex latency-critical and batch applications on cores,
having batch applications run when latency-critical ap-
plications are idle.

10

RubikColoc

Datacenter Datacenter with RubikColoc

Latency-critical
Utilization

Idle

Batch
Utilization

(a) RubikColoc in the datacenter

Hardware SupportTarget CMP

Fine-grained LLC
partitioning (per app)

M
e
m

/ IO

M
e
m

/
IO

Core 0

L2 0

Core 1

L2 1

Core 2

L2 2

Core 3

L2 3

Core 4

L2 4

Core 5

L2 5

Partitioned

Last-Level Cache

Fast per-core DVFS
Core power gating
CPI stack counters

Partitioned memory
bandwidthLatency-critical and batch

workloads share cores

Cores

Memory System

(b) System architecture

Core

Activity

Latency-critical app

Batch app Time

Lat-Critical

Pending

Requests

Core

Frequency

Time

Time

1 Ghz

3 Ghz

Rubik

(c) Sharing-aware DVFS

Figure 13: RubikColoc uses fine-grain DVFS to colocate batch and latency-critical apps without
degrading tail latency. (a) By increasing server utilization and reducing power, RubikColoc improves
datacenter efficiency and reduces provisioned servers. (b) RubikColoc requires modest hardware
extensions over commodity systems. (c) RubikColoc adjusts core frequency on each request arrival
and completion to enforce the tail latency bound.

Unfortunately, sharing cores introduces uncertainty
that is hard to model: core microarchitectural state
(branch predictor, TLBs, L1s, L2, etc.) becomes a shared
resource and causes interference. Fortunately, core state
is small enough that DVFS can compensate for its inertia.
For example, private caches can be refilled from a“warm”
LLC in microseconds, compared to tens of milliseconds
needed to refill the LLC from main memory [25]. Other
state has similarly low inertia. Thus, given a warm LLC
partition, judicious DVFS can maintain tail latency.
We use this insight to propose RubikColoc, a scheme

that builds on Rubik to enable sharing of cores between
latency-critical and batch applications (Fig. 13b). Ru-
bikColoc seeks to maximize the throughput per watt
(TPW) of batch applications without degrading tail
latency for latency-critical applications. RubikColoc
partitions shared memory system resources (LLC capac-
ity and memory bandwidth) among latency-critical and
batch apps (as in prior work [25,43]) to avoid interference
in these resources, and uses Rubik to mitigate contention
in core microarchitectural state. RubikColoc prioritizes
latency-critical apps over batch apps: latency-critical
apps run whenever they have pending requests, and yield
the core to batch apps when idle (Fig. 13c). Rubik sets
the core frequency for latency-critical apps, while batch
apps run at the frequency that maximizes their TPW.
This allows batch apps to safely utilize spare core cycles
on latency-critical servers. RubikColoc significantly re-
duces datacenter power consumption while using fewer
machines than traditional segregated datacenters.

7. RUBIKCOLOC EVALUATION

Experimental setup: To evaluate RubikColoc, we
first consider a baseline datacenter that segregates batch
and latency-critical apps. As shown in Fig. 14, this
datacenter has 1000 servers that run the 5 latency-critical
apps, with 200 servers dedicated to each app. Each
latency-critical server runs 6 copies of the app at nominal
frequency. This datacenter also has 1000 servers running
batch work. We produce 20 mixes of six randomly
chosen SPEC CPU2006 apps, and dedicate 50 servers
to each mix. Each batch app is fast-forwarded 5 billion

Segregated Datacenter (Baseline)
1000 LC servers (200/app) 1000 batch servers (50/mix)

6x xapian 6x masstree 6x moses mix1 mix1 mix20

Colocated Datacenter

All run at fixed frequency

1 2 1000 1 2 1000

All apps run at optimal throughput/watt

… …

1000 LC+batch servers (200/app) Enough batch servers to match throughput

6x xapian 6x masstree 6x moses 3x mcf +

3x namd

LC apps run at low or high load

Batch apps achieve different throughputs

1 2 1000 1 2

All apps run at optimal throughput/watt

Enough apps to match baseline’s aggregate
throughput for each app (mcf, namd, …)

… …
+

mix1

+

mix1

+

mix20

4x mcf +

2x gobmk

+

+

Figure 14: Experimental setup used to compare
colocation schemes.

instructions, is simulated for 400 million instructions,
and is then restarted; the mix finishes when all apps
have restarted at least five times. Each batch app runs
at its optimal throughput per watt; because all servers
use a partitioned memory system, the optimal frequency
for each batch app does not depend on the apps it is
colocated with (batch apps do not run above the nominal
frequency to stay within the TDP).

We then evaluate a datacenter that uses RubikColoc
for colocation, as shown in Fig. 14. First, each latency-
critical server now also runs the mix from the correspond-
ing batch server of the segregated datacenter, becoming
a colocated server. Mixes are interleaved so that each
latency-critical app is co-scheduled with all batch mixes
equally. Second, because each app in the batch mixes
gets less throughput when colocated, we provision a vari-
able number of batch-only servers and run additional
copies of each batch app to match the throughput of the
segregated datacenter for each batch app.

This experiment is carefully designed to have three de-
sirable properties: it is fixed-work [15] (both RubikColoc
and the baseline segregated datacenter run matching
batch and latency-critical work), it allows comparing
end-to-end metrics (tail latencies, datacenter power, and
servers used), and, by interleaving mixes, it exposes each
latency-critical app to all batch apps. We do not claim
this is the best approach to manage datacenters with

11

latency-critical/batch mixes; it is just a controlled and
fair way to evaluate the benefits of RubikColoc.
Colocation schemes: In addition to RubikColoc, we
evaluate three other colocation schemes: StaticColoc,
HW-T, and HW-TPW. StaticColoc runs latency-critical
apps at the frequency determined by StaticOracle and
batch apps at their optimal TPW. HW-T and HW-TPW
are hardware-controlled schemes that perform coordi-
nated per-core DVFS: HW-T sets frequencies to maxi-
mize aggregate system throughput (IPC) while staying
below TDP; HW-TPW maximizes aggregate through-
put per watt. These schemes adapt every 100 µs, and
represent hardware-controlled DVFS schemes typical of
modern chips (e.g., Turbo Boost [34,46]). All schemes
use a partitioned memory system.

7.1 Impact of Colocation on Tail Latencies

0 20 40 60 80 100
Workload Mix

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o
rm

a
liz

e
d

T
a
il

La
t.

StaticColoc
RubikColoc

HW-T
HW-TPW

Figure 15: Distributions
of tail latency, relative to
the baseline, at 60% load
(lower is better).

Fig. 15 shows the dis-
tribution of tail laten-
cies achieved by differ-
ent colocation schemes
when latency-critical
apps run at a load of
60%. Each line repre-
sents a single scheme,
and the x-axis repre-
sents the 5× 20 = 100
latency-critical/batch
mixes in the 1000 colo-
cated servers. For
each scheme, mixes are
sorted from highest to
lowest tail latency, rel-
ative to the tail bound
(lower is better). HW-T and HW-TPW grossly vio-
late tail latencies, suffering degradations of up to 8.2×
and 3.2×, respectively. These hardware-managed DVFS
schemes are oblivious to the requirements of each ap-
plication, so they introduce interference among apps
and are not suitable for colocation. Even StaticColoc
degrades tail latency for 40% of the mixes (by up to
42%) due to interference in core microarchitectural state.
By contrast, RubikColoc maintains tail latency across
all mixes, making up for core sharing by automatically
using higher frequencies when needed. Thus, while naive
colocation can violate latency bounds, Rubik’s fine-grain
DVFS allows RubikColoc to share cores safely.

7.2 Efficiency Gains from Colocation

We now evaluate the efficiency gains from colocation
by comparing two datacenters: a colocated datacenter
managed by RubikColoc, and a segregated datacen-
ter, representative of non-colocating schemes like Pega-
sus [33], where the batch apps execute at their optimal
throughput-per-watt and StaticOracle sets the frequen-
cies of latency-critical apps (Sec. 5.2). We sweep the
latency-critical load from 10% to 60% to model diur-
nal variations [1, 33]. Fig. 16 reports total datacenter
power consumption and number of servers used for both
schemes, normalized to the values of the segregated dat-

10% 20% 30% 40% 50% 60%
LC Load

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 D

C
 P

o
w

e
r

10% 20% 30% 40% 50% 60%
LC Load

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 #

S
e
rv

e
rs

RubikColoc

StaticOracle (Segregated)

LC/Coloc. Servers

Batch Servers

Figure 16: Datacenter power and number of
servers for segregated and colocated datacenters
as the latency-critical load changes.

acenter at 60% load. For each metric, the contribution
from batch servers is hatched.

For the segregated datacenter, StaticOracle uses lower
frequencies at low loads, reducing dynamic power con-
sumption on latency-critical servers by over 90% as load
decreases from 60% to 10%. This corresponds to only a
33% reduction in total power for these servers, since idle
power remains significant. Moreover, since the power
consumed by batch servers remains unchanged, the re-
duction in total datacenter power is only 17%.
By contrast, RubikColoc migrates more batch work

to colocated servers as latency-critical load decreases,
using fewer batch servers and reducing static power.
Even at high (60%) load, colocation confers significant
efficiency gains (17% reduction in datacenter power, 19%
fewer servers than the segregated datacenter). These
savings are even more pronounced at lower loads; at
10% load, RubikColoc uses 43% less power and 41%
fewer servers than the baseline datacenter (segregated,
60% load). Relative to the segregated datacenter at the
same load (10%), RubikColoc reduces datacenter power
consumption by 31% while using 41% fewer servers.

8. CONCLUSIONS

We have presented Rubik, an analytical, fine-grain
power management technique that reduces active core
power consumption by up to 66%. Rubik uses a novel
statistical model to account for uncertainty in the behav-
ior of latency-critical applications, and does not require
application-specific heuristics. We use Rubik to design
RubikColoc, a scheme that allows aggressive colocation
of latency-critical and batch apps without degrading tail
latency. RubikColoc reduces datacenter power consump-
tion by up to 31% while using 41% fewer machines than
conventional, segregated datacenters.

9. ACKNOWLEDGMENTS

We thank Christina Delimitrou, Mark Jeffrey, Webb
Horn, Anurag Mukkara, Suvinay Subramanian, Guowei
Zhang, and the anonymous reviewers for their helpful
feedback. This work was supported in part by NSF grant
CCF-1318384 and a Google research award. Davide B.
Bartolini was supported in part by a Roberto Rocca
Doctoral Fellowship.

12

10. REFERENCES

[1] L. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Computer, 40(12), 2007.

[2] L. Barroso, J. Clidaras, and U. Hölzle, The datacenter as a
computer, 2nd ed. Morgan&Claypool, 2013.

[3] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The Google cluster architecture,” IEEE Micro, 23(2), 2003.

[4] P. Billingsley, Probability and measure. Wiley, 2008.
[5] E. Burton, G. Schrom, F. Paillet et al., “FIVR: Fully inte-

grated voltage regulators on 4th generation Intel Core SoCs,”
in APEC-29, 2014.

[6] R. Cochran, C. Hankendi, A. Coskun et al., “Pack&Cap:
Adaptive DVFS and thread packing under power caps,” in
MICRO-44, 2011.

[7] J. Dean and L. Barroso, “The tail at scale,” Comm. ACM,
56(2), 2013.

[8] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient
and QoS-aware cluster management,” in ASPLOS-XIX, 2014.

[9] Q. Deng, D. Meisner, A. Bhattacharjee et al., “CoScale: Coor-
dinating CPU and memory system DVFS in server systems,”
in MICRO-45, 2012.

[10] S. Eyerman and L. Eeckhout, “A counter architecture for
online DVFS profitability estimation,” IEEE Trans. on Com-
puters, 59(11), 2010.

[11] S. Eyerman, L. Eeckhout, T. Karkhanis et al., “A performance
counter architecture for computing accurate CPI components,”
in ASPLOS-XII, 2006.

[12] W. Godycki, C. Torng, I. Bukreyev et al., “Enabling realistic
fine-grain voltage scaling with reconfigurable power distribu-
tion networks,” in MICRO-47, 2014.

[13] C. Grinstead and J. Snell, Introduction to probability. Amer-
ican Mathematical Soc., 1998.

[14] P. Hammarlund, A. Martinez, A. Bajwa et al., “Haswell: The
fourth-generation intel core processor,” IEEE Micro, 34(2),
2014.

[15] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-
balanced multi-program workload methodology,” in MoBS,
2009.

[16] C.-H. Hsu, Y. Zhang, M. Laurenzano et al., “Adrenaline:
Pinpointing and reining in tail queries with quick voltage
boosting,” in HPCA-21, 2015.

[17] M. Huang, J. Renau, S.-M. Yoo et al., “A framework for
dynamic energy efficiency and temperature management,” in
MICRO-33, 2000.

[18] W. Huang, C. Lefurgy, W. Kuk et al., “Accurate fine-grained
processor power proxies,” in MICRO-45, 2012.

[19] Intel 64 and IA-32 architectures software developer’s manual,
Intel, 2014.

[20] Intel Xeon processor E3-1200 v3 product family datasheet,
Intel, 2014.

[21] C. Isci, A. Buyuktosunoglu, C.-Y. Cher et al., “An analysis of
efficient multi-core global power management policies: Maxi-
mizing performance for a given power budget,” in MICRO-39,
2006.

[22] M. Jeon, Y. He, S. Elnikety et al., “Adaptive parallelism for
web search,” in EuroSys, 2013.

[23] R. Johnson, I. Pandis, N. Hardavellas et al., “Shore-MT: A
scalable storage manager for the multicore era,” in EDBT,
2009.

[24] S. Kanev, K. Hazelwood, G.-Y. Wei et al., “Tradeoffs be-
tween power management and tail latency in warehouse-scale
applications,” in IISWC, 2014.

[25] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing
with strict QoS for latency-critical workloads,” in ASPLOS-
XIX, 2014.

[26] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-
based models for run-time DVFS orchestration in superscalar
processors,” in CF, 2010.

[27] W. Kim, M. S. Gupta, G.-Y. Wei et al., “System level analysis
of fast, per-core DVFS using on-chip switching regulators,”
in HPCA-14, 2008.

[28] P. Koehn, H. Hoang, A. Birch et al., “Moses: Open source
toolkit for statistical machine translation,” in ACL-45, 2007.

[29] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in IJCAI, 1995.

[30] K. Koukos, D. Black-Schaffer, V. Spiliopoulos et al., “To-

wards more efficient execution: A decoupled access-execute
approach,” in ICS’13, 2013.

[31] N. Kurd, S. Bhamidipati, C. Mozak et al., “Westmere: A
family of 32nm IA processors,” in ISSCC, 2010.

[32] J. Li and J. Mart́ınez, “Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors,” in
HPCA-12, 2006.

[33] D. Lo, L. Cheng, R. Govindaraju et al., “Towards energy
proportionality for large-scale latency-critical workloads,” in
ISCA-41, 2014.

[34] D. Lo and C. Kozyrakis, “Dynamic management of Turbo-
Mode in modern multi-core chips,” in HPCA-20, 2014.

[35] J. Lorch and A. Smith, “Improving dynamic voltage scaling
algorithms with PACE,” SIGMETRICS PER, 29(1), 2001.

[36] Y. Mao, E. Kohler, and R. Morris, “Cache craftiness for fast
multicore key-value storage,” in EuroSys, 2012.

[37] J. Mars, L. Tang, R. Hundt et al., “Bubble-Up: Increasing
utilization in modern warehouse scale computers via sensible
co-locations,” in MICRO-44, 2011.

[38] D. Meisner, B. Gold, and T. Wenisch, “The PowerNap server
architecture,” in ASPLOS-XIV, 2009.

[39] D. Meisner, C. Sadler, L. Barroso et al., “Power management
of online data-intensive services,” in ISCA-38, 2011.

[40] D. Meisner and T. Wenisch, “Stochastic queuing simulation
for data center workloads,” EXERT, 2010.

[41] D. Meisner and T. Wenisch, “DreamWeaver: Architectural
support for deep sleep,” in ASPLOS-XVII, 2012.

[42] R. Miftakhutdinov, E. Ebrahimi, and Y. Patt, “Predicting
performance impact of DVFS for realistic memory systems,”
in MICRO-45, 2012.

[43] S. Muralidhara, L. Subramanian, O. Mutlu et al., “Reducing
memory interference in multicore systems via application-
aware memory channel partitioning,” in MICRO-44, 2011.

[44] N. Pinckney, M. Fojtik, B. Giridhar et al., “Shortstop: An
on-chip fast supply boosting technique,” in VLSI, 2013.

[45] V. Reddi, B. Lee, T. Chilimbi et al., “Web search using mobile
cores: quantifying and mitigating the price of efficiency,” in
ISCA-37, 2010.

[46] E. Rotem, A. Naveh, A. Ananthakrishnan et al., “Power-
management architecture of the Intel microarchitecture code-
named Sandy Bridge,” IEEE Micro, 32(2), 2012.

[47] B. Rountree, D. Lowenthal, M. Schulz et al., “Practical perfor-
mance prediction under dynamic voltage frequency scaling,”
in IGCC, 2011.

[48] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways
and associativity,” in MICRO-43, 2010.

[49] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient
fine-grain cache partitioning,” in ISCA-38, 2011.

[50] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in
ISCA-40, 2013.

[51] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-
performance optimization in manycores,” in PACT-22, 2013.

[52] E. Schurman and J. Brutlag, “The user and business impact
of server delays, additional bytes, and HTTP chunking in
web search,” in Velocity, 2009.

[53] B. Sinharoy, R. Kalla, W. Starke et al., “IBM POWER7
multicore server processor,” IBM J. Res. Dev., 55(3), 2011.

[54] V. Spiliopoulos, A. Sembrant, and S. Kaxiras, “Power-sleuth:
A tool for investigating your program’s power behavior,” in
MASCOTS-20, 2012.

[55] J. Teo, J. P. How, and E. Lavretsky, “Proportional-integral
controllers for minimum-phase nonaffine-in-control systems,”
IEEE Trans. Autom. Control, 55(6), 2010.

[56] A. Vulimiri, P. B. Godfrey, R. Mittal et al., “Low latency via
redundancy,” in CoNEXT, 2013.

[57] D. Wong and M. Annavaram, “KnightShift: Scaling the en-
ergy proportionality wall through server-level heterogeneity,”
in MICRO-45, 2012.

[58] R. Xu, C. Xi, R. Melhem et al., “Practical PACE for embed-
ded systems,” in EMSOFT, 2004.

[59] H. Yang, A. Breslow, J. Mars et al., “Bubble-Flux: Precise
online QoS management for increased utilization in warehouse
scale computers,” in ISCA-40, 2013.

[60] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems,” in SOSP-19,
2003.

13

	Introduction
	Background and Related Work
	Dynamic Power Management
	DVFS for Latency-Critical Applications

	Short-Term Variability In Latency-Critical Workloads
	Rubik: Fast DVFS for Latency-Critical Applications
	Fast Analytical Frequency Control
	Rubik Implementation

	Rubik Evaluation
	Experimental Methodology
	Power Savings
	Trace-Driven Characterization
	Responsiveness to Load Changes
	Real-System Evaluation

	RubikColoc: Colocating Batch and Latency-Critical Work
	RubikColoc Evaluation
	Impact of Colocation on Tail Latencies
	Efficiency Gains from Colocation

	Conclusions
	Acknowledgments
	References

