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1. INTRODUCTION 

Although the basic principles and contribution of inheritance in human diseases 
as well as other traits were previously elucidated by ancient physicians and 
scientists such as Hippocrates and Aristotle, the first modern principles of 
inheritance patterns were described by Gregor Mendel in the 19th century 
[Mendel 1866]. Sir Archibald Edward Garrod was the first to link a specific 
disorder to Mendelian inheritance pattern by correctly stating that alkaptonuria 
is a recessive disorder in 1902 [Garrod 1902]. It took another half a century 
before sufficient methods for analysing human chromosomes were developed 
and the correct number of chromosomes in human cells was identified as 46 
[Tjio and Levan 1956]. The chromosomal aberration trisomy 21 (which includes 
an extra copy of chromosome 21) was discovered as the cause of Down 
syndrome in 1959 [Lejeune et al. 1959a; Lejeune et al. 1959b], making it the 
first genetic disease with known molecular aetiology. This led to the growth of 
clinical cytogenetics as a field in diagnostic medicine.  

Methods used in molecular genetics began to evolve after the discovery of 
the structure of DNA in 1953 [Watson and Crick 1953]. Soon the central dogma 
of molecular biology was stated [Crick 1970; Crick 1958] and the genetic code 
deciphered [Nirenberg and Leder 1964]. The first gene associated with 
monogenic or Mendelian disorders was mapped to a specific locus in the human 
genome in 1983 when Huntington’s disease was shown to be linked to a genetic 
marker on chromosome 4 [Gusella et al. 1983]. The exact mechanism of 
trinucleotide CAG-repeat expansion in the HTT gene took another ten years to 
be discovered [MacDonald et al. 1993].  

Since the implementation of cytogenetic and molecular testing in clinical 
diagnostics, identification of genetic diagnosis in combination with proper 
patient counselling has been the main aim for clinical genetics services [Bowles 
Biesecker and Marteau 1999]. Identification of the specific aetiology of a 
patient’s disorder allows appropriate genetic counselling for the family, and can 
be used for accurate risk predictions, prenatal diagnostics, estimating prognosis, 
and also for finding suitable treatment options [ACMG Board of Directors 
2015]. Clinical genetics focuses on Mendelian disorders that represent a large 
group of diseases following either autosomal dominant (AD), autosomal recessive 
(AR) or X-linked (XL) inheritance patterns characterised by monogenic or 
monolocus causes and high penetrance [Antonarakis and Beckmann 2006]. 
Most Mendelian disorders can be classified as rare disorders, which are defined 
in the European Union as affecting less than one person per two thousand 
[Orphanet]. Most of the rare diseases listed in the Orphanet database are genetic 
in origin and according to the current knowledge and classification the total 
number of rare disorders is six to seven thousand, a large proportion of which the 
cause remains unknown.  

In Estonia, chromosomal microarray analysis (CMA), genome-wide mole-
cular assays that detect small DNA deletions and duplications in the submicros-
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copic range (i.e., copy number variations [CNVs]), were first implemented in 
clinical practice in 2009. Since 2011, CMA has served as a first-tier diagnostic 
genetic testing method for patients with developmental delay (DD)/intellectual 
disability (ID), autism spectrum disorders (ASD) and/or multiple congenital 
anomalies (MCA). The use of CMA has been studied in Estonia by a few 
researchers. Dr Katrin Männik’s PhD studies focused on the role of CNVs in 
patients with ID as well as in the general population [Männik 2012; Männik et 
al. 2011], whereas Dr Olga Žilina studied the diagnostic utility of CMA in the 
clinical setting in Estonia [Žilina 2014; Žilina et al. 2014a; Žilina et al. 2012; 
Žilina et al. 2014b]. Also, many case reports have been published based on the 
findings discovered by CMA [Leffler et al. 2016; Pajusalu et al. 2015a; 
Simenson et al. 2014; Vals et al. 2015; Õiglane-Šlik et al. 2014; Õunap et al. 
2016]. The diagnostic role of long contiguous stretches of homozygosity 
(LCSHs), a frequent variant of unclear significance (VUS), has not been studied 
in Estonia before, and thus this study focuses partly on copy-number neutral 
LCSHs detected by CMA and aims to clarify their clinical utility in an outbred 
Estonian population.  

Whole-exome sequencing (WES), which enables sequencing of all genes 
simultaneously, was first performed in a clinical setting for selected cases in 
2013, but since 2014, the Estonian Health Insurance Fund began reimbursing 
WES for both proband-only and proband-parent trio approaches. Large gene 
panel or Mendeliome sequencing was introduced into clinical practice in 2015 
in Estonia, and since then it has become one of the most commonly performed 
molecular genetic testing service at Tartu University Hospital. Several case 
reports, mainly resulting from Estonian research studies, of WES and next-
generation sequencing (NGS) panel findings have been published [Maasalu et 
al. 2015; Reinson et al. 2016; Thompson et al. 2016; Vaher et al. 2014; Vals et 
al. 2014]. Due to reimbursement by the Estonian Health Insurance Fund that 
enables the use of NGS analyses in routine clinical diagnostics, it is important 
to evaluate the utility, diagnostic yield, and outcomes from the first years of 
practice. This study is the first to systematically evaluate the clinical utility of 
NGS investigations for diagnostics of Mendelian disorders in Estonia. In addition, 
reports on two interesting cases solved by WES are included in this study to 
illustrate crucial aspects of genome-wide diagnostics such as incorporating data 
from different genome-wide analyses and the necessity of functional experiments 
to achieve conclusive diagnosis.  
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2. LITERATURE REVIEW 

2.1. Genetic analyses in diagnostics and discovery  
of Mendelian disorders 

Since the early discoveries of gene-phenotype associations, novel genetic 
technologies and methods have facilitated and accelerated the discovery of new 
genetic disorders [Boycott et al. 2013]. The two early revolutionising methods 
enabling the discovery of DNA primary structure or the nucleotide sequences 
were Sanger sequencing [Sanger and Coulson 1975] and polymerase chain 
reaction (PCR) methods [Mullis et al. 1986], both still widely used in molecular 
diagnostic laboratories. The most transforming next step advancing the 
discovery of genes related to disease was the implementation of CMA and NGS 
into medical genetics research as well as diagnostics in the 2000s [Boycott et al. 
2013]. Since the discovery of these methods, new gene-disease associations 
have been published at least weekly as of today and there are 3,733 genes with 
known phenotype-causing gene variants as well as 5,981 separate disease 
entities or phenotypes with known molecular basis in the OMIM database as of 
22 April 2017.  

Until recently, diagnostic efficiency in patients with suspected genetic dis-
orders was very low, and mainly cases with clinically recognizable syndromes 
such as Down syndrome or Williams syndrome received confirmed diagnoses 
after genetic testing [Rauch et al. 2006]. Thus, after excluding Down syndrome 
cases, the diagnostic yield of conventional karyotyping for other subjects with 
DD/ID remained under 3% [Miller et al. 2010]. Fortunately, new genetic 
technologies like CMA that enable the detection of microdeletions and micro-
duplications in the so-called submicroscopic range (i.e., smaller than 5 Mb in 
size) and NGS applications that are suitable for large scale mutation screening 
for both known and novel single nucleotide variants (SNVs) have been rapidly 
implemented in clinical diagnostics due to their vast potential in assisting 
diagnostics and patient care. For example, in the first large scale CMA study 
using first-tier CMA, potential pathogenic CNVs were detected in up to 25% of 
patients [Ahn et al. 2013]. Regarding NGS, the first proof-of-principle pilot 
study describing WES in 12 humans was published in 2009 [Ng et al. 2009], 
and then in 2011, Ambry Genetics, a commercial laboratory in the USA, 
launched clinical diagnostic WES services claiming to be the first in the world. 
Shortly the diagnostic yield of 25% was reported from routine clinical 
diagnostics [Yang et al. 2013]. In contrast to improved diagnostic yields, the 
rapid implementation of NGS testing has probably caused some problems [van 
El et al. 2013]. The lack of standardised algorithms for both laboratory experi-
ments, bioinformatics, and interpretation have led to many different approaches 
on the reporting VUSs and the incidental findings between centres, as well as 
raised many other ethical and organizational concerns [van El et al. 2013]. 
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Generally, genetic tests used in diagnostics of monogenic disorders can be 
divided into cytogenetic and molecular assays; the former detecting structural 
and copy-number variations in DNA molecules or chromosomes and the latter 
investigating aberrations within genes (Table 1). Both can be further divided by 
the resolution and scale of the tests [Katsanis and Katsanis 2013]. The scale 
ranges from targeted (only one or multiple loci being assessed) to genome-wide 
(whole genome scanned in one test). The choice of test for identifying the cause 
of the disease is dependent on the diagnostic hypothesis. For example, geno-
typing only one nucleotide is sufficient for diagnosing most cases of achondro-
plasia, the most common form of AD short-limb dwarfism [Rousseau et al. 
1994; Shiang et al. 1994], whereas whole-exome studies are often needed for 
identification of disease causing variants in non-syndromic ID [Vissers et al. 
2016].  

 
Table 1. Cytogenetic and molecular DNA tests used in clinical diagnostics for 
Mendelian disorders. 

Assay Scale Resolution Primary mutation type 
targeted**  

Cytogenetic tests    

Karyotyping Genome-wide >5 Mb Aneuploidies, large 
structural variations 

FISH Targeted >10 kb* Microdeletions 

CMA Genome-wide >100 kb (>1 kb)* Microdeletions, 
microduplications 

Molecular genetic 
tests 

   

PCR and restriction 
digest 

Targeted 1 bp SNVs, indels, CNVs* 

Sanger sequencing Targeted 1 bp SNCs, indels 

Repeat expansion 
assays 

Targeted 1 repeat 
(3–4 bps) 

Repeat expansions 

Methylation-
specific assays 

Targeted NA Methylation profile 

MLPA Targeted 1 exon CNVs 

Mutation arrays Wide-scale* 1 bp Multiple SNVs, small 
indels 

NGS panels Wide-scale* 1 bp SNVs, indels 

WES Genome-wide 1 bp SNVs, indels 

*Depends on a probe, microarray, etc., used. 
**Other mutation types can be detected by some assays if a specific analysis is performed. 
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2.2. Chromosomal microarray analysis 

2.2.1. Technology and types of chromosomal microarrays 

Generally, there are two types of chromosomal microarrays widely used for 
detecting submicroscopic (i.e. smaller than 5Mb in size) chromosomal aberra-
tions: a) array comparative genomic hybridisation (aCGH) and b) single nuc-
leotide polymorphism (SNP)-arrays [Alkan et al. 2011; Emanuel and Saitta 
2007]. aCGH makes use of two differently labelled genomic DNAs (a reference 
and a test sample) hybridized to a microarray [Pinkel and Albertson 2005]. Sub-
sequently the signal ratios between reference and test samples are assessed for each 
measured probe and a copy number for each locus may be estimated (Figure 1a).  

 

Figure 1. Array CGH versus SNP microarray detection. Parts A and B: visualization of 
aCGH and SNP-array outputs for different types of copy number alterations. Part C: 
comparison of different arrays based on their resolution and ability to detect CNVs of 
different sizes. Reprinted by permission from Macmillan Publishers Ltd: Nature 
Reviews Genetics 12(5), 363–376. Alkan, C., Coe, B. P., & Eichler, E. E. Genome 
structural variation discovery and genotyping., copyright 2011. 
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SNP-arrays enable simultaneous genotyping of hundreds of thousands to 
millions of SNPs, while two parameters are detected for each genotyped 
SNP: a signal intensity (Log ratio) and a B-allele frequency (BAF) 
(Figure 1b) [Alkan et al. 2011]. The signal intensity can be used to assess 
the copy number [Heinrichs and Look 2007]. BAF resembles a genotype 
and has a supporting role for copy number detection as deleted regions 
lose heterozygosity and duplicated regions have four possible genotypes 
instead of three as in disomic loci [Alkan et al. 2011]. The specific 
resolution and coverage is dependent on the probes used for aCGH 
design and the number as well as the content of SNPs selected for SNP-
arrays (Figure 1c) [Alkan et al. 2011; Emanuel and Saitta 2007]. In 
Estonia, SNP-arrays have been used since the implementation of CMA 
into clinical diagnostics [Žilina et al. 2014b]. 

 
 

2.2.2. Clinical implementation and utility 

The usage of CMA in clinical diagnostics is justified by the large proportion of 
disease causing CNVs that are smaller than 5–10 Mb, and thus undetectable by 
conventional karyotyping methods [Vissers et al. 2010]. These CNVs, 1 kb–5 
Mb in size, are referred to as submicroscopic chromosomal rearrangements or 
as microdeletions and microduplications [Feuk et al. 2006; Rodriguez-Revenga 
et al. 2007]. Still, not all structural genomic variants can be detected by CMA. 
Thus, balanced, meaning copy-number neutral, chromosomal translocations and 
inversions as well as ring chromosomes and some other cytogenetic aberrations 
are still routinely detected by conventional karyotyping methods [South et al. 
2013]. However, newer NGS-based methods can detect these types of variants 
[Redin et al. 2017; Vissers et al. 2010].  

In many countries, including Estonia, CMA is the first-tier test used for 
clinical indications including but not strictly limited to DD/ID, ASD, and/or 
MCA [Ahn et al. 2013; Hochstenbach et al. 2009; Miller et al. 2010; Ozyilmaz et 
al. 2017; Žilina et al. 2014b; Vissers et al. 2010]. Besides postnatal cases, CMA 
has played an emerging role in prenatal diagnostics for high-risk pregnancies and 
foetal anomalies detected by ultrasound investigations [Oneda and Rauch 2017; 
Pons et al. 2017; Srebniak et al. 2017; Wapner et al. 2012]. Conventional 
karyotyping, however, has not been totally replaced in prenatal testing by CMA 
as of now [Oneda and Rauch 2017]. Non-invasive prenatal testing or NIPT, a 
technique which allows aneuploidy screening and in some cases also selected 
microdeletion testing non-invasively from maternal blood sample, has been 
widely implemented into prenatal genetic testing, but it has lower diagnostic yield 
than CMA due to missed microdeletions [Srebniak et al. 2017].  

In most studies, the diagnostic yield of CMA in postnatal cases collected 
from routine clinical diagnostics ranges from 10–25%, depending on patient 
selection and classification criteria used for pathogenicity estimations of detected 
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CNVs [Ahn et al. 2013; Neill et al. 2010; Ozyilmaz et al. 2017; Žilina et al. 
2014b]. To address the problem of nonuniformity in CNV interpretation criteria 
between diagnostic laboratories, the American College of Medical Genetics and 
Genomics (ACMG) has published guidelines for reporting CNVs in the clinical 
setting which are summarised in Table 2 [Kearney et al. 2011b]. The guidelines 
advocate for the classification of each CNV into one of the three main 
pathogenicity classes: 1) pathogenic, 2) uncertain clinical significance, and 3) 
benign. The class of uncertain clinical significance is further divided into three 
subclasses of 1) likely pathogenic, 2) likely benign, and 3) no subclassification 
[Kearney et al. 2011b]. 

 
Table 2. ACMG guidelines stating different aspects to be considered for clinical 
interpretation of CNVs. Adapted from [Kearney et al. 2011b]. 

Aspects of 
interpretation 

Resources Comments 

Familiarity with 
well-known 
contiguous gene 
syndromes 

OMIM, 
GeneReviews, 
DECIPHER 

Well-known microdeletion/-duplication 
syndromes must be always mapped.  

CNV size Not applicable Usually larger CNVs are more likely to be 
pathogenic, but very large benign CNVs exist. 

Genomic content 
in CNV interval 

OMIM Check if CNVs encompass genes associated 
with known phenotypes that are caused by 
different types of mutations. 

CNV frequency 
in databases 

DGV, in-house 
databases 

Important to assess clinical characterization of 
“normal” individuals. 

Inheritance of 
the CNV 

Not applicable De novo state supports pathogenicity. If 
inherited, the carrier parent should be medically 
evaluated. 

 
Based on their recurrence among both population-based cohorts of healthy 
individuals as well as affected patients, CNVs can be grossly divided into recur-
rent and non-recurrent categories [Lee et al. 2007]. Many recurrent CNVs emerge 
due to flanking segmental duplications that lead to increased mutation rates 
[Sharp et al. 2005]. A well-known example of recurrent CNV is microdeletion 
and microduplication of 16p11.2 region [Jacquemont et al. 2011; Zufferey et al. 
2012; Walters et al. 2010]. Interestingly, microdeletion and microduplication of 
16p11.2 show mirror phenotypes in body mass index [Jacquemont et al. 2011], 
but are also associated with many other clinical features [D'Angelo et al. 2016; 
Maillard et al. 2015; Shinawi et al. 2010]. The clinical interpretation of many 
recurrent CNVs is complicated by the variable expressivity and reduced 
penetrance for some phenotypes, which is illustrated by their presence in 
population-based cohorts [Männik et al. 2015]. In addition, recent studies have 
highlighted the role of maternally inherited CNVs as risk factors for neuro-
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developmental disorders like autism in affected sons [Krumm et al. 2015]. In 
the prenatal setting, the lack of clarity for clinical significance of many CNVs 
detected by CMA brings even greater ethical and practical concerns, which 
makes proper genetic counselling essential [Oneda and Rauch 2017]. 
 
 

2.2.3. Long contiguous stretches of homozygosity 

In addition to CNVs, copy-number neutral regions of homozygosity can be 
detected by CMA, but only if SNP-arrays are used [Alkan et al. 2011] (Figure 
1b). These regions are often also described as areas, regions, or runs of homo-
zygosity, but in this study, they are referred to as long contiguous stretches of 
homozygosity (LCSHs). Generally, LCSHs rarely cause disease on their own, 
with the exception of known uniparental disomy (UPD) syndromes, but they are 
still reported back to referring physicians as VUSs by some laboratories due to 
the possible role for recessive disorders [Žilina et al. 2014b; Wang et al. 2015]. 
The reporting policies regarding LCSHs vary between diagnostic centres and no 
internationally recognised guidelines exist. Still, 5 Mb is frequently used as a 
cut-off for LCSH reporting due to an observation that homozygous stretches 
shorter than 4 Mb are relatively common in outbred European populations 
[McQuillan et al. 2008]. The mechanism leading to the appearance of LCSHs 
can be either UPD, parental consanguinity or ancestral homozygosity [Kearney 
et al. 2011a]. If homozygosity is due to a chromosomal segment inherited from a 
common ancestor, it is referred to as identity by descent (IBD) [Wang et al. 
2015]. 

In 1980, Professor Engel hypothesized that in rare instances both chromo-
somes could arise from only one parent, and proposed the term “uniparental 
disomy” or UPD to mark this cytogenetic abnormality [Engel 1980]. Later, 
UPD was first identified as the disease mechanism in a girl with cystic fibrosis 
by observing excessive homozygosity and lack of paternally inherited poly-
morphic markers on chromosome 7 [Spence et al. 1988]. In addition to loss of 
heterozygosity and thus increased risk for recessive disorders, another disease-
causing mechanism of UPD is due to altered genomic imprinting, a pheno-
menon wherein gene expression is dependent on parental origin of a gene 
[Yamazawa et al. 2010]. It is important to note that UPD causes imprinting 
disorders only if it appears on certain chromosomes, namely 6, 7, 14, 15, 16, 
and 20 [Eggermann et al. 2015]. For example, maternal UPD of chromosome 15 
causes Prader-Willi syndrome [Nicholls et al. 1989], whereas paternal UPD of 
chromosome 15 leads to Angelman syndrome [Nicholls et al. 1992]. Two types 
of UPD exist: in isodisomy, both chromosomes are identical to each other and 
represent copies of a single parental homologue, whereas in heterodisomy, both 
parental homologues are also present in an offspring [Yamazawa et al. 2010]. 
The mechanisms of UPD involve monosomy and trisomy rescues, gamete 
complementation, and post-fertilization mitotic errors [Engel 2006]. With 
respect to CMA, only isodisomic UPD regions can be detected from proband-
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only analysis by SNP-arrays, whereas heterodisomy requires comparison of 
genotypes (BAFs) between a parent and an offspring [Conlin et al. 2010]. UPD 
should be suspected when there is one very long (>20 Mb) or multiple LCSHs 
restricted to one chromosome as isodisomic and heterodisomic segments can 
neighbour each other [Conlin et al. 2010; Wang et al. 2015]. If there is a 
suspicion of imprinting disorders but no isodisomic regions are detected, a 
specific test like methylation specific PCR or multiplex ligation-dependent probe 
amplification (MLPA) can be used in addition to parental SNP-array analysis 
followed by genotype comparison to exclude UPDs [Yamazawa et al. 2010]. 

Parental consanguinity is a well-known risk factor for recessive disorders 
[Bittles 2001]. SNP-arrays reveal parental consanguinity as multiple LCSHs 
located on multiple chromosomes with the total length exceeding 1.5% if the 
definition of parental consanguinity as “second cousin or closer” is used [Sund 
et al. 2013]. Moreover, the degree of consanguinity can be reliably assessed 
from SNP-array data by the proportion of the total length of LCSHs out of the 
total autosomal genome, i.e., 2800 Mb [Sund et al. 2013]. From a diagnostic 
perspective, identified or known parental consanguinity increases the chance of 
finding homozygous variants rather than compound heterozygous variants if 
sequencing investigations are carried out [Makrythanasis et al. 2014; Najmabadi 
et al. 2011]. Parental consanguinity is rare in Northern Europe including 
Estonia, which is also supported by the low number (4 out of 1191 patients) of 
multiple LCSHs detected among CMA samples in Estonia [Žilina et al. 2014b]. 

The clinical utility of LCSHs in cases where UPD and parental con-
sanguinity is excluded, i.e., only one or two LCSHs detected with total length 
below 1% of the autosomal genome or 28 Mb, has been less studied. A study 
conducted in California (USA), found that 4% of patients with no reported 
CNVs had at least one LCSH over 5 Mb in size [Wang et al. 2015]. They also 
noted that five regions (two on the X-chromosome and another three on 
autosomes) were homozygous in multiple individuals and thus considered as 
polymorphic [Wang et al. 2015]. One can hypothesize that even a single LCSH 
can aid candidate gene identification, because recessive disease causing genes 
encompassed within LCSHs can harbour homozygous variants, just as in the 
case of multiple LCSHs in consanguineous families [Alkuraya 2010]. Wang et 
al. found nine individuals with a recessive candidate gene matching with the 
patient’s phenotype, and in seven patients, pathogenic variants were detected by 
sequencing [Wang et al. 2015]. Homozygosity mapping, another method also 
derived from studies on consanguineous families, was used in a study in an 
outbred population of siblings with shared phenotypes and thus assumed reces-
sive inheritance [Schuurs-Hoeijmakers et al. 2011]. They focused on recessive 
IDs, used a cut-off length of 1 Mb for shared homozygous regions, and conc-
luded that the method could contribute to novel recessive ID gene discoveries 
[Schuurs-Hoeijmakers et al. 2011]. To aid in candidate gene identification, 
computational tools have been developed, e.g., Genomic Oligoarray and SNP 
array evaluation tool [Wierenga et al. 2013]. 
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2.3. Next-generation sequencing 

2.3.1. NGS technologies and applications 

The term “next-generation sequencing” or NGS refers to many different high-
throughput nucleotide sequencing technologies that differ from Sanger 
sequencing, which was virtually the only sequencing method for almost thirty 
years [Schuster 2008]. The first NGS methods, both published in 2005, described 
methods on how to massively parallelize sequencing reactions on either agarose 
thin layers or picotiter plates [Margulies et al. 2005; Shendure et al. 2005]. 
Since then, massively parallel sequencing has been served as a synonym for 
NGS more accurately describing the methodological difference from Sanger 
sequencing [Rogers and Venter 2005]. Currently used NGS technologies can be 
generally divided based on the length of single reads into short-read and long-
read NGS, with the former being more widely applied, at least in human 
genetics [Goodwin et al. 2016]. One of the revolutionizing effects of NGS has 
been the tremendous drop in sequencing price over the last 15 years; the cost of 
sequencing one human genome was almost 100 million dollars in 2001, while 
one thousand dollars per genome was almost reached 15 years later by the end 
of 2015 [Wetterstrand 2016].  

All sequencing experiments described in this study have been carried out 
using short-length sequencing technologies commercialised by Illumina 
(Illumina Inc., San Diego, CA, USA) and thus this technology is described in 
detail, although the methods are generalised when possible. Illumina technologies 
are currently the most widely used in sequencing studies including human DNA 
sequencing perhaps due to lowest per-base cost and highest throughput ability 
[Goodwin et al. 2016; Liu et al. 2012; van Dijk et al. 2014]. 

Generally, all DNA sequencing methods follow the following basic steps of 
library preparation that are required to be carried out before sequencing [van 
Dijk et al. 2014]: 
1) Genomic DNA is extracted from the tissue of interest. 
2) Long DNA molecules are fragmented into shorter molecules of desired 

length (50–500 nucleotides typically). 
3) Adapters and indices are added to fragmented DNA molecules. For single-

end sequencing, one sequencing primer is used, whereas for paired-end 
sequencing, two sequencing primers are used on both ends of the inserts. 
Oligonucleotide indices enable multiple samples to be sequenced during the 
same run, as demultiplexing can be easily performed afterwards using bio-
informatic tools. 

4) Some protocols need size-selection to eliminate inserts with too short or too 
long lengths as well as short free adapters. 

5) Probes can be hybridized to enrich the library for desired targeted appli-
cation if needed. 

6) PCR is used for amplifying (enriching) the library. 
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In the case of Illumina sequencing, after the library has been prepared it can be 
transferred to a solid surface covered with adapter oligonucleotides binding to 
both ends of library inserts [van Dijk et al. 2014]. After another amplification 
step, the clusters containing approximately 1000 copies of single-stranded DNA 
are created to be sequenced [van Dijk et al. 2014]. 

The sequencing techniques used by Illumina platforms are based on basic 
principles similar to Sanger sequencing in which synthesis is terminated by 
blocking the ribose 3ʹ-OH group and subsequent incorporation of the labelled 
deoxynucleotide into the synthesized polynucleotide is detected [Guo et al. 
2008; Ju et al. 2006; Seo et al. 2005]. As termination of synthesis is reversible, 
there can be tens to hundreds of cycles involving termination of the synthesis 
followed by detection of the incorporated fluorescently labelled nucleotide, and 
thus single read-length is determined by the number of cycles performed 
[Goodwin et al. 2016]. There are both four-channel (e.g., HiSeq and MiSeq) and 
two-channel (e.g., NextSeq and MiniSeq) platforms produced by Illumina 
[Goodwin et al. 2016]. The possibility of using only two channels for detecting 
four possible combinations (red for C, green for T, red + green = yellow for A 
and no signal for G) has enabled desktop sequencers to efficiently shorten the 
time needed for sequencing runs [Goodwin et al. 2016; Neveling et al. 2016]. 

In human genomics, the most widely used NGS applications are for sequen-
cing of targeted gene panels, whole exomes, or whole genomes [Sun et al. 
2015]. Gene panel sequencing and WES rely on enrichment of targeted genomic 
regions [Hodges et al. 2007], and thus many different designs exist depending 
on the targets: from virtually few to all genes. Although whole genome 
sequencing (WGS) does not need an enrichment step during library preparation, 
the huge size of the genome makes WGS still many times more expensive than 
WES or gene panel sequencing [Sun et al. 2015]. Amplicon based methods, 
wherein targeted regions are PCR-amplified with specific primers rather than 
captured by hybridisation as in WES and large gene panel sequencing protocols, 
are another kind of very targeted NGS method used for applications where ultra-
deep coverage is needed, e.g., somatic mutation testing in clinical oncology 
[Chang and Li 2013]. The choice of different application is guided by the 
diagnostic request and heterogeneity of tested disease; small targeted panels can 
be used when a reasonable number of genes are known to cause the phenotype 
(e.g., cardiomyopathy) [Akinrinade et al. 2015]. A genome-wide approach, 
however, is needed if the number of disorder-associated genes is quite large and 
novel disease gene discovery is likely, as is the case for IDs [Vissers et al. 2016].  

 
 

2.3.2. Bioinformatics data processing 

After raw sequencing reads are produced by the NGS platform, the data needs 
to be further processed before interpretation. Generally, for every NGS study 
the following bioinformatics processing steps must be carried out to generate 
adequate sets of detected variants ready for biological or clinical interpretation 
[Nielsen et al. 2011]: 
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1) Raw sequencing reads are mapped to the reference genome. 
2) Mapped reads are sorted, duplicate reads removed, indels realigned, and base 

quality scores recalibrated. 
3) Variants are called from pre-processed aligned reads. 
4) Detected variants are filtered, genotypes refined, and genotype scores recali-

brated. 
5) The final set of detected variants are annotated with biological, and clinical 

information from population-based and clinical databases. 
Currently, many different algorithms and bioinformatics tools exist for each 
data analysis step making the number of different possible pipelines (i.e., 
combinations of different data processing tools used subsequently usually in an 
automated fashion) almost infinite. Thus, multiple studies have highlighted the 
importance of evaluation and standardization of different pipelines [Brownstein 
et al. 2014; Hwang et al. 2015; Zook et al. 2014]. Moreover, the discordance 
between different pipelines is well known, and thus caution is needed when 
clinical NGS services are established [O'Rawe et al. 2013]. In different studies, 
the concordance of variant calling pipelines used on Illumina data have ranged 
from 57% to 99% [Cornish and Guda 2015; Laurie et al. 2016; O'Rawe et al. 
2013]. However, as the newer versions of software have been developed, the 
concordance between different pipelines has increased [Hwang et al. 2015]. 
Generally, the concordance as well as sensitivity and specificity are higher for 
SNVs when compared to indels [Laurie et al. 2016]. 

Although de novo assembly is possible for human genomes and has the 
potential advantage in detecting genomic structural variants, the computational 
demand and non-suitability for targeted NGS applications like WES have 
reasoned for using a resequencing approach in clinical genomics [Li 2012]. 
Burrows-Wheeler Aligner (BWA) [Li and Durbin 2009], a widely used short-
read aligner, was used for all experiments in the present study. BWA consists of 
three different algorithms (BWA-backtrack, BWA-SW, and BWA-MEM) that 
all make use of Burrows–Wheeler transform [Burrows and Wheeler 1994] and 
is meant for aligning short reads to large reference genomes like the human 
genome [Li and Durbin 2009]. Importantly, BWA is able to perform gapped 
alignment, supports paired-end sequencing, generates mapping quality metrics 
making, and outputs a file in SAM format, which makes it a powerful and 
convenient tool for the first step of bioinformatics processing of raw sequencing 
reads [Li and Durbin 2009]. 

After the reads have been aligned to a reference genome, a few steps need to 
be carried out to prepare the data file for the best quality variant identification. 
Best practice guidelines have been published for using the Genome Analysis 
Toolkit (GATK) [DePristo et al. 2011; Van der Auwera et al. 2013], which are 
widely accepted as the current gold standard in the field. First, the reads are 
sorted and SAM files are converted to binary BAM files to make the analysis 
faster [Van der Auwera et al. 2013]. Duplicate reads are marked to be ignored in 
subsequent steps, as they are likely to be produced from the same DNA 
molecule and thus do not add additional support for calling variants [Van der 
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Auwera et al. 2013]. This can be done by using Picard software package’s tool 
MarkDuplicates, which compares 5’ sequences of reads and marks lower 
quality reads with identical starting positions as duplicates. In addition, as 
variant calling depends on quality scores assigned to each base by sequencing 
platforms, these scores should be recalibrated (e.g., by using GATK base 
quality score recalibration pipeline) to address systematic technical errors, and 
thus achieve more accurate base quality scores [DePristo et al. 2011; Van der 
Auwera et al. 2013]. As indels are more difficult to detect and are prone to 
mapping discrepancies after alignment steps, the regions consisting probable 
indels can be realigned by tools like GATK IndelRealigner. However, as the 
current best practice tool for variant calling, GATK Haplotype Caller (HC), 
uses local haplotype reassembly for variant detection, indel realignment does 
not need to be performed beforehand. 

Probably the most crucial step after read alignment is variant identification. 
Although there are specialised variant callers that only detect either SNVs or 
indels, most modern tools such as GATK HC and Unified Genotyper (UG) 
[McKenna et al. 2010], Platypus [Rimmer et al. 2014], and VarScan [Koboldt et 
al. 2009] can detect both simultaneously. While older tools such as GATK UG 
[McKenna et al. 2010] and samtools [Li et al. 2009] use simple read pileup for 
variant identification, the most current best practice tools like GATK HC and 
Platypus use local reassembly where regions of interest (i.e., regions containing a 
probable sequence alteration) are first identified and then local de novo assembly 
of the region identifies the most probable gene variant, thus improving variant 
calling accuracy especially for indels [Rimmer et al. 2014]. Typically, between 
20,000–50,000 variants are identified using WES, depending on both laboratory 
protocols and bioinformatics pipelines [Gilissen et al. 2012]. The combination of 
BWA alignment and GATK HC variant calling results in a very high sensitivity 
and specificity for detecting SNVs (both >99.5%) for both WES and WGS 
experiments [Laurie et al. 2016]. Short indels were detected with a sensitivity 
and specificity of 98.5% using WGS; however for WES, the sensitivity was 
96% for both deletions and insertions and the specificity was 72% and 87%, 
respectively, in the same study [Laurie et al. 2016]. Detection of other classes of 
variants such as CNVs and long indels is reviewed in Section 2.4. 

After the variants are called, the genotypes can be filtered based on their 
quality estimates produced by the variant caller [Nielsen et al. 2011]. Also, 
adding pedigree information (familial prior probabilities) and known population 
genetic variance (population prior probabilities) can aid in genotype refining by 
calculating posterior genotype probabilities [Kojima et al. 2013; Van der 
Auwera et al. 2013]. Finally, the variant callset is annotated, which is another 
crucial step to be able to assess the molecular as well as clinical significance of 
variants [McCarthy et al. 2014; Salgado et al. 2016]. A few examples of widely 
used variant annotators are Annovar [Wang et al. 2010], snpEFF [Cingolani et 
al. 2012b], and Variant Effect Predictor [McLaren et al. 2016]. Importantly, 
discrepancies between variant annotators are well known, with the largest 
differences laying among splicing variants [McCarthy et al. 2014; Salgado et al. 
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2016]. Generally, annotations are either variant or gene level information 
associated with detected variant [Salgado et al. 2016]. Variant-level annotations 
may include:  
• naming the variant according to HGVS nomenclature including a description 

of the change in nucleotide as well as amino acid; 
• variant frequencies in population databases like ExAC [Lek et al. 2016] or 

1000 genomes project [1000 Genomes Project Consortium et al. 2015], and 
in-house database; 

• annotations from pathogenic variant databases like ClinVar or HGMD 
[Stenson et al. 2009]; 

• in-silico pathogenicity predictions like SIFT [Kumar et al. 2009], PolyPhen 
[Adzhubei et al. 2010] or CADD [Kircher et al. 2014]; 

• evolutionary conservation scores like PhyloP [Pollard et al. 2010]. 
In addition, gene-based annotations that link the gene to known disease (e.g., 

OMIM diseases), phenotypic features (e.g., Human Phenotype Ontology (HPO) 
terms [Kohler et al. 2017]) or biological information (e.g., gene ontology terms 
[Ashburner et al. 2000; The Gene Ontology Consortium 2015]) can be added to 
guide diagnostic interpretation of variants. 

 
 

2.3.3. Clinical utility of NGS applications 

The diagnostic yield of NGS has been of great interest since the introduction of 
NGS into clinical diagnostics, and many reports have been published on its 
clinical utility. The first report of diagnosing a genetic disease by WES was an 
article published in 2009 describing a patient with suspected Bartter syndrome 
caused by homozygous variant in SLC26A3 detected by WES [Choi et al. 
2009]. During the following years, most reports were on research studies 
focusing on particular syndromes or phenotypes and applying WES to associate 
new genes with disorders [Bilguvar et al. 2010; Gilissen et al. 2010; Ng et al. 
2010a; Ng et al. 2010b].  

In 2012, however, the first articles were published on groups of patients not 
selected for common phenotypes, but based on the clinical diagnostic setting. A 
group from Duke University School of Medicine reported six out of twelve 
patients receiving molecular confirmation to the diagnosis after genetic 
disorders were suspected, but with no shared phenotypes [Need et al. 2012]. 
Two large ID WES cohorts were also published in 2012. First, a study by Rauch 
et al. highlighted the role of de novo mutations as a cause of ID when they 
reported 16 cases out of 51 (31.4%) carried a de novo mutation in a known ID-
gene and an additional 6 (11.8%) had de novo loss-of-function (LoF) variants in 
strong candidate genes [Rauch et al. 2012]. Second, a similar study by de Ligt et 
al. identified a molecular cause for 16 ID patients out of 100, and in addition, 22 
patients were identified as carrying a strong candidate variants [de Ligt et al. 
2012]. This study, similar to Rauch et al., highlighted the role of de novo 
mutations as a prominent cause for ID discovered in a clear majority of solved 
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cases after using parents-offspring trio approach in both cohorts [de Ligt et al. 
2012; Rauch et al. 2012].  

Since the first research projects, WES has been demonstrated as a valuable 
diagnostic tool as well [Ku et al. 2012]. The first study describing the clinical 
utility of WES as a routine test in non-selected patients was published only at 
the end of 2013 [Yang et al. 2013]. This study reported on 250 patients in whom 
WES was performed as a proband only approach and molecular diagnosis was 
made in 62 (25%) [Yang et al. 2013]. Like in the previous ID cohorts, they also 
noted a high percentage of de novo mutations, which were confirmed by con-
ventional sequencing of parental samples after WES [Yang et al. 2013]. Since 
then, many diagnostic WES cohorts have been published (see Table 3 for 
summary). Notably, all comparable studies in large cohorts with unselected 
patients and not focusing on any disease group have reported very similar 
diagnostic yields ranging from 25% to 31%. Most of the diagnostic findings in 
patients without parental consanguinity are due to dominant heterozygous 
variants appearing de novo [Farwell et al. 2015; Lee et al. 2014; Yang et al. 
2014]. In the consanguineous population, however, AR disorders are due to 
predominating homozygous variants [Trujillano et al. 2017]. Studies comparing 
the diagnostic yields between trio-sequencing and proband-only approaches 
generally show the advantage of trio sequencing due to discovered de novo 
mutations [Farwell et al. 2015; Lee et al. 2014; Retterer et al. 2016]. In these 
studies, trio exome sequencing had a diagnostic rate of 31–41% [Farwell et al. 
2015; Lee et al. 2014; Retterer et al. 2016]. 

 
Table 3. Summary of large WES studies reporting on diagnostic yield in clinical setting 
in non-selected patients with variable indications for testing.  

Study Number of 
index patients

Diagnosed 
cases 

Diagnostic 
yield 

Comments 

Yang et al. 
[2013] 

250 62 25% Proband-only approach 

Farwell et al. 
[2015] 

500 152 30% Both trios and proband-
only cases, trios showing 
higher yield. 

Lee et al. 
[2014] 

814 213 26% Both trios and proband-
only cases, trios showing 
higher yield. 

Trujillano et 
al. [2017] 

1000 307 31% Mostly trios, 45.3% of the 
cases had parental 
consanguinity 

Yang et al. 
[2014] 

2000 504 25% Proband-only approach 

Retterer et al. 
[2016] 

3040 876 29% Proband-only, duo, trio 
and other designs, trios 
showing higher yield. 
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Many other diagnostic WES cohorts focusing on single disease groups have 
been published as well. For example, the diagnostic yield of WES was 51% in 
266 Dutch patients with visual impairments [Haer-Wigman et al. 2017] and 
33.5% in 200 patients with hearing impairments [Zazo Seco et al. 2017]. Other 
interesting comparisons have been made in the literature as well. For example, a 
study revealed a significantly higher diagnostic yield in patients having epilepsy 
than in those without epilepsy [Helbig et al. 2016].  

Other NGS applications have not been studied as frequently in the clinical 
setting. For example, although used in many clinics, the diagnostic utility of 
large (i.e., covering thousands of genes) panels or Mendeliome sequencing has 
been less investigated. In a large study describing the use of custom large gene 
panels in patients from a highly consanguineous population, the diagnostic yield 
was 43% [Saudi Mendeliome Group 2015]. Also, different gene panels have 
been used efficiently in cohorts selected for different disease groups [Akinrinade 
et al. 2015; Ellingford et al. 2016; Poninska et al. 2016; Vega et al. 2016]. WGS 
has not been widely implemented into routine clinical practise yet because it is 
still more expensive than WES. Even more importantly, WGS is computatio-
nally very laborious and non-coding variants are mostly impossible to interpret 
in clinical settings due to their unpredictable effects [Sawyer et al. 2016]. A few 
studies, however, have been published demonstrating the benefit of WGS over 
WES. For example, 42% additional diagnostic yield was attributed to WGS in a 
cohort of severe ID due to the ability of WGS to detect the comprehensive 
spectrum of DNA variations including CNVs [Gilissen et al. 2014]. Another 
study estimated that 15% of variants discovered by WGS would have been 
missed by WES [Taylor et al. 2015]. There are no large diagnostic WGS cohorts 
reported in the literature as of the time of writing this thesis. 

An additional aspect of diagnostic efficacy is the comparison of the clinical 
utility of NGS over traditional genetic tests. A pilot post hoc study demonstrated 
the significantly increased yield of WES compared to Sanger sequencing of 
single genes in patients with blindness, hearing impairments, mitochondrial 
disorders, and movement disorders [Neveling et al. 2013]. Another study showed 
a diagnostic yield of 29% for WES in children with rare disorders, whereas 
most remained unsolved after extensive screening by traditional methods 
involving single gene sequencing [Sawyer et al. 2016]. The authors concluded 
that the main reasons for patients being undiagnosed before WES were genetic 
heterogeneity and atypical presentations of underlying disorders [Sawyer et al. 
2016]. Recently, a study was published assessing the clinical utility of WES 
versus conventional testing in paediatric patients with complex neurological 
disorders by performing both the standard diagnostic workup (including brain 
magnetic resonance imaging [MRI], muscle biopsies, and sequential single gene 
testing) and WES in parallel [Vissers et al. 2017]. They showed that a signi-
ficantly increased proportion of conclusive diagnoses were obtained using WES 
compared to traditional methods (29.3% vs 7.3%) [Vissers et al. 2017]. Notably, 
the cost of the WES pipeline was not more expensive and may even reduce 
health-care costs at least for some cases [Vissers et al. 2017]. A different study 
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with a similar design (parallel use of standard and WES workup) carried out in 
80 infants with suspected monogenic disorders revealed a diagnostic yield of 
57.5% for singleton WES versus 13.75% for standard investigations [Stark et al. 
2016]. They highlighted that in one third of the WES-diagnosed cases, clinical 
management was changed after the diagnosis.  

No clear diagnostic guidelines have been published on using WES in clinical 
practice. One proposed position for NGS in the context of clinical genetics 
workup would be a second-tier test if more specific tests driven by clinical 
presentation remain negative or for nonspecific phenotypes, even a first-tier test 
along with CMA, depending on the phenotype (Figure 2) [Shashi et al. 2014]. 
The selection of whether to start testing by CMA or NGS should also be 
considered by taking the analysis of cost and technical details (ability to call 
CNVs from NGS data) into account [Shashi et al. 2014]. 
 

 

Figure 2. Algorithm to identify patients in a general genetics clinic most likely to 
benefit from NGS. Reprinted by permission from Macmillan Publishers Ltd: Genetics 
in Medicine 12(5), 363–376. Shashi V. et al. The utility of the traditional medical 
genetics diagnostic evaluation in the context of next-generation sequencing for 
undiagnosed genetic disorders, copyright 2014. 

 
The ACMG has also listed indications when to consider WES/WGS in the 
diagnostic setting [ACMG Board of Directors 2012]:  
• The phenotype or family history data strongly implicate a genetic aetiology, 

but the phenotype does not correspond with a specific disorder for which a 
genetic test targeting a specific gene is available on a clinical basis. 
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• A patient presents with a defined genetic disorder that demonstrates a high 
degree of genetic heterogeneity, making WES or WGS analysis of multiple 
genes simultaneously a more practical approach. 

• A patient presents with a likely genetic disorder, but specific genetic tests 
available for that phenotype have failed to arrive at a diagnosis. 

• A fetus with a likely genetic disorder in which specific genetic tests, including 
targeted sequencing tests, available for that phenotype have failed to arrive 
at a diagnosis. 
 

 2.4. Mutation types: detection, classifications and 
relevance in clinical diagnostics 

DNA variants can be divided according to their size into the following categories: 
SNVs, indels, CNVs, and large chromosomal aberrations (including aneuploidies) 
(Figure 3). Although different cut-off lengths have been proposed to differentiate 
between these classes, usually indels are considered to be 1 to 100 bp deletions 
and duplications, and CNVs represent the size range from 100 bp to 3 Mb 
[Zhang et al. 2009]. Also a cut-off from 50 bp [Sudmant et al. 2015] to 10 kb 
[Mills et al. 2006] has been suggested to separate indels from CNVs. Due to the 
wide spread use of targeted sequencing applications such as WES and NGS 
panels where exons are considered as targets for enrichment, an exon rather 
than a certain length in bps is considered as the measure for size for a CNV 
[Johansson et al. 2016; Krumm et al. 2012]. Thus, in the context of targeted 
resequencing studies, a simplification can be made as follows: SNVs represent 
substitutions of single nucleotides, indels are deletions and duplications smaller 
than one exon, and finally, CNVs can be defined as deletions and duplications 
from a single exon to multiple genes. Other forms of structural variations such 
as inversions, translocations, mobile element insertions, repeat expansions, and 
aneuploidies are all important components of genomic variations and are known 
to be associated with genetic disorders [Weischenfeldt et al. 2013], but are not 
the focus of this study. 

SNVs as well as short indels representing the most prominent types of DNA 
variations causing Mendelian disorders and identified by NGS applications are 
detected by routine bioinformatics pipelines for NGS variant calling with high 
sensitivity and specificity as described in Section 2.3.2. Indels up to 30 bps in 
size can be detected by routine pipelines, but longer indels have to be called by 
specific variant callers [Marschall et al. 2013]. Tools developed for indel calling 
like Pindel, which uses a pattern growth algorithm [Ye et al. 2009], have superior 
sensitivity for indel detection compared to more widely used callers such as 
GATK HC and UG [Ghoneim et al. 2014; Marschall et al. 2013]. Currently, 
variant callers claim to be more universal and detect multiple mutation types (e.g., 
Platypus) [Rimmer et al. 2014]. Indel calling using WES and other enrichment 
based NGS applications is complicated by the fragmented nature of the data, 
and the non-uniform distribution of the reads [Karakoc et al. 2011]. 
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Studies assessing the clinical utility of using specialised indel callers for 
targeted NGS investigations in the diagnostic setting have not been published at 
the time of writing this thesis. Long indels are thought to be an under-represented 
group of genetic variations in many studies, and thus their contribution to human 
disease remains unknown [Hehir-Kwa et al. 2016]. We have demonstrated the 
ability to increase the diagnostic yield by approximately 1% in patients with ID 
by using specialized indel callers to detect variants in the size range of 20–200 
bps [Pajusalu et al. submitted]. 

Regarding CNV calling, most widespread methods use read-depth analysis in 
which normalized per target (exon) read depths are compared to a panel of 
reference samples, and CNVs are detected by deviations from the average; 
higher read-depths indicate duplication and lower read-depths indicate deletions 
[Hehir-Kwa et al. 2015]. A tool called CoNIFER makes use of this approach 
and claims to detect CNVs consisting of at least three flanking exons [Krumm 
et al. 2012] whereas another tool called CoNVaDING [Johansson et al. 2016] 
enables even single exon deletion detection. In a recent large-scale (2,603 
patients) diagnostic WES study, an added yield of 2% was reported for read-
depth CNV screening [Pfundt et al. 2016]. Importantly, different disease groups 
show variance in detected number of causal CNVs; the CNV-associated diag-
nostic yield was highest for patients with hearing impairments (5.8%), complex 

 
 
Figure 3. Classes of DNA variation based on size in basepairs and detection methods. 
Conventional diagnostic methods are grouped inside the green box whereas different 
NGS methods are presented at the top. 
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phenotypes (5.5%), and renal disorders (3.6%); however, no causal CNVs were 
detected in patients with sexual development disorders, craniofacial anomalies, 
metabolic disorders, or hereditary cancers [Pfundt et al. 2016]. In addition to 
read-depth based methods, other CNV calling algorithms have also been 
developed using one or combinations of the following principles: insert size 
abnormalities, split-read alignments, and de novo assembly [Marschall et al. 
2013].  

Another important classification of variants is the distinction between benign 
variations and pathogenic mutations. Although “mutation” should be used as a 
term for a permanent nucleotide change and a “polymorphism” is defined as a 
genetic variant appearing in at least 1% of the population, in medical literature, 
the terms are often used to describe pathogenic and benign variations, respec-
tively [Richards et al. 2015]. To address this confusion, ACMG guidelines 
recommend using the term “variant” instead of both “mutation” and “poly-
morphism”, with the following modifiers to be added for clarifying pathogenicity: 
(1) benign, (2) likely benign, (3) uncertain significance, (4) likely pathogenic, or 
(5) pathogenic [Richards et al. 2015]. The ACMG guidelines for variant 
interpretation consist of multiple criteria and rules for combining the criteria 
result in a variant classification scheme (Figure 4) [Richards et al. 2015]. The 
most important criteria that can be used for classifying most of each individual’s 
genetic variation as benign is variant frequency in large population databases 
like ExAC [Lek et al. 2016]. Importantly, a newer database called gnomAD, 
which includes 123,136 exomes and 15,496 genomes from unrelated individuals, 
incorporates WGS data from more than two thousand Estonians that partici-
pated in a biobank at the Estonian Genome Centre at the University of Tartu, 
providing an important reference for variant interpretation. It must be high-
lighted that the pathogenicity or damaging effect of the variant does not always 
mean causality for the phenotype, which is especially important regarding the 
genes in which very little biological or clinical information is available [Richards 
et al. 2015]. Importantly, after adequate classification, only pathogenic and 
likely pathogenic variants should be used for clinical decision making [Richards 
et al. 2015]. 
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 2.5. KPTN gene and its role in neurodevelopmental 
disorders 

Kaptin, a protein encoded by the KPTN gene (OMIM 615620) located in chro-
mosomal band 19q13.32, was first discovered as an actin-associated protein. It 
was identified by monoclonal antibody 2E4 originally raised against human 
platelet protein that eluted from F-actin with ATP [Bearer 1992]. The original 
study demonstrated that after stimulating undifferentiated cells with nerve 
growth factor, the 2E4 antibody stained mainly the neurite and growth cone, 
thus highlighting the role of KPTN in neurodevelopment [Bearer 1992]. In 
1999, the KPTN gene was cloned [Bearer and Abraham 1999]. The discovery of 
kaptin being present at the tips of the elongating stereocilium, and thus having a 
probable role in stereocilia formation in addition to platelet activation [Bearer 
and Abraham 1999], led to the hypothesis that variants in KPTN could be 
associated with hearing loss [Bearer et al. 2000]. The KPTN gene was both 
functionally and positionally a great candidate gene for non-syndromic AD 
deafness (DFNA4 locus) [Bearer et al. 2000], supported by a report on a patient 
with a 0.8 Mb de novo deletion encompassing KPTN and having hearing 
impairment [Leal et al. 2009]. It was, however, only later found that the real 
causative genes for AD hearing loss at the 19q13 locus were MYH14 [Donaudy 
et al. 2004] and CEACAM16 [Zheng et al. 2011]. 

The first real patient-derived evidence of a disease-causing role for KPTN 
variants was published by Baple et al. only in 2014 when they described a large 
Amish pedigree where biallelic KPTN variants segregated with a syndrome of 
neurodevelopmental delay, macrocephaly, and seizures [Baple et al. 2014]. 
They identified altogether nine individuals from four related families carrying 
either homozygous nonsense variant c.776C>A p.Ser259* in four individuals or 
compound heterozygous variants with the same p.Ser259* variant and an 
additional 18-bp duplication (c.714_731dup p.Met241_Gln246dup) in five 
individuals [Baple et al. 2014]. The recurrent features in individuals with 
KPTN-related disorder (OMIM 615637, Mental retardation, AR 41) were mild 
to severe ID, increased occipitofrontal circumference (2.1–5.4 SDs), expressive 
and receptive language deficit, childhood hypotonia, seizures, and behavioural 
disturbances (stereotypies, repetitive speech, and anxiety) [Baple et al. 2014]. 
There were no characteristic dysmorphic features present in affected family 
members other than macrocephaly-associated frontal bossing and prominent 
chin [Baple et al. 2014]. Despite the small cohort, the authors suspected that 
nonsense-mutation homozygotes were more severely affected than those carrying 
in-frame duplication on one allele due to demonstrated retained in-vivo 
functionality of p.Met241_Gln246dup variant [Baple et al. 2014]. Besides the 
study by Baple et al. no more patients were reported in the medical literature with 
KPTN-related disorder prior to this study making it a very novel disease gene. 

In addition to the clinical characterization of a novel AR ID syndrome, the 
authors performed functional studies to characterize both the physiological role 
of kaptin in neurons as well as the molecular and cellular effects of mutations 
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identified in affected individuals [Baple et al. 2014]. Kaptin was shown to be 
enriched in neuronal growth cones as well as discrete cortical sites during early 
development [Baple et al. 2014]. In mature neurons, kaptin was found at 
postsynapses as well [Baple et al. 2014]. The locations where kaptin is enriched 
were also high in F-actin content, which is expected due to the prior discovery 
of the association between kaptin and actin [Baple et al. 2014; Bearer 1992]. The 
p.Ser259* was demonstrated expectedly to result in degradation of the mutated 
transcript due to nonsense mediated decay, whereas p.Met241_Gln246dup was 
predicted to disrupt α-helix 4, but retained limited functionality in vivo [Baple et 
al. 2014].  

As a part of the International Mouse Phenotyping Consortium (IMPC), a Kptn 
knock-out mouse model was generated and phenotypically characterized. Kptn-
deficient mice showed increased body weight on a high-fat diet and normal 
hearing [White et al. 2013]. The IMPC web browser also lists other phenotypic 
alterations in addition to increased body weight and total body fat amount 
including: abnormal behaviour, increased circulating total protein and serum 
albumin levels, and increased circulating alkaline phosphatase and calcium levels. 
Furthermore, Kptn-knockout mice, similar to humans with KPTN-deficiency, 
show macrocephaly (personal communication, unpublished data). 

Very recently, a study published in Nature demonstrated that kaptin is part of 
a larger protein complex that the authors called KICSTOR containing also 
ITFG2, C12orf66, and SZT2 [Wolfson et al. 2017]. The KICSTOR complex 
was shown to be a lysosome-associated negative regulator of mechanistic target 
of rapamycin complex 1 (mTORC1) signalling [Wolfson et al. 2017]. Thus, 
LoF variants in KICSTOR components may have similar consequences with 
mTOR activating mutations such as LoFs in other negative regulators (e.g., 
tuberous sclerosis complex genes TSC1 and TSC2) [Laplante and Sabatini 
2012]. Similar to KPTN-related syndrome, many mTOR activating disorders 
like tuberous sclerosis, neurofibromatosis, Noonan syndrome, and other 
rasopathies present clinical symptoms such as absolute or relative macrocephaly 
as well as increased risk for seizures and neurodevelopmental problems [Winden 
et al. 2015]. Importantly, the discovered link between KPTN and the mTOR 
pathway might facilitate the identification of novel treatment options for 
patients with KPTN-related disorders as drugs such as rapamycin are known to 
inhibit mTOR signalling [Wolfson et al. 2017].  

 
 

2.6. MYH7-related disorders: genotype-phenotype 
associations 

The MYH7 gene (OMIM 160760), located in the chromosomal region 14q11.2, 
encodes a slow/beta heavy chain of myosin expressed in slow (type 1) muscle 
fibres and in the ventricles of the heart [Fiorillo et al. 2016]. In the OMIM 
database, MYH7 pathogenic variants are associated with seven distinct disorders 
mostly following AD inheritance patterns (Table 4). In addition, some patients 
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carrying MYH7 variants and suffering from muscle disorders reported in the 
literature do not fall into any OMIM-listed disorders, having instead muscle 
and/or clinical phenotypes characteristic of limb-girdle syndromes [Muelas et 
al. 2010] or congenital fibre type disproportion (CFTD) [Ortolano et al. 2011]. 
Still, Laing distal myopathy (LDM) and myosin storage myopathy (MSM) 
represent the main MYH7-associated skeletal muscle phenotypes, with the main 
difference being the pattern of affected muscles; LDM affects primarily distal 
muscles [Laing et al. 1995], whereas MSM as well as CFTD cause proximal 
muscle weakness [Ortolano et al. 2011; Tajsharghi and Oldfors 2013]. Regarding 
cardiomyopathies, heterozygous mostly missense MYH7 mutations are the most 
prevalent cause of hypertrophic cardiomyopathy besides MYBPC3 pathogenic 
variants [Maron et al. 2012]. In dilated cardiomyopathy patients, the genetic 
mutation profile is more heterogeneous, but MYH7 variants are well documented, 
although not the most frequent cause of dilated cardiomyopathy, as well 
[McNally et al. 2013]. 
 
Table 4. MYH7-related disorders in the OMIM database. 

Disorder Phenotype 
MIM number 

Inheritance 

Cardiomyopathy, dilated, 1S 613426 AD 

Cardiomyopathy, hypertrophic, 1 192600 AD 

Laing distal myopathy 160500 AD 

Left ventricular noncompaction 5 613426 AD 

Myopathy, myosin storage, autosomal dominant 608358 AD 

Myopathy, myosin storage, autosomal recessive 255160 AR 

Scapuloperoneal syndrome, myopathic type 181430 AD 

 
Importantly, a well described genotype-phenotype association exists between 
MYH7 variants and associated phenotypes. In cardiomyopathy, significantly 
more variants are identified in the head and neck regions of the gene compared 
to the tail region, although generally cardiomyopathy causing variants are spread 
over the entire MYH7 gene [Walsh et al. 2010]. In skeletal muscle disorders, 
however, disease causing variants almost exclusively reside in the tail region, 
with LDM-causing variants appearing in exons 32–36 and MSM-causing 
variants in very distal exons 37–40 [Udd 2009] (Figure 5). Although the first 
reports concluded that the phenotype of skeletal and cardiac muscle disorders 
do not overlap, there have been reports of patients having both skeletal and 
cardiac muscle involvement [Fiorillo et al. 2016]. 
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Figure 5. A schematic of the MYH7 gene, indicating the position of gene mutations 
causing hypertrophic or dilated cardiomyopathy, myosin storage myopathy or Laing 
distal myopathy. HCM – hypertrophic cardiomyopathy, DCM – dilated 
cardiomyopathy, MSM – myosin storage myopathy, MPD1 – Laing early onset distal 
myopathy, MmD – multiminicore myopathy. Reprinted by permission from John Wiley 
and Sons: Human Mutation 35(7):868–879. Lamont PJ et al. Novel mutations widen the 
phenotypic spectrum of slow skeletal/beta-cardiac myosin (MYH7) distal myopathy. 
copyright 2014. 
 
Most of the MYH7 disease causing variants are missense and in-frame deletions, 
with both de novo and inherited mutations being described [Lamont et al. 2014]. 
LoF variants, however, appear to be non-pathogenic due to the relative high 
frequency in population databases. For example, combined allele frequency for 
LoF variants in the ExAC database is 1:3000. Moreover, based on the ExAC 
data, MYH7 is under missense constraint (z = 6.54), but not under LoF constraint 
(probability of LoF intolerance or pLI = 0) [Lek et al. 2016]. Nevertheless, 
MYH7 LoF variants have been reported to cause cardiomyopathies [Waldmuller 
et al. 2011]. Interestingly, multiple variants that change amino acid residues into 
prolines have been reported [Lamont et al. 2014]. Another recurrent missense 
variant is a charge changing substitution of glutamate to lysine, which is 
associated with mixed skeletal and cardiac muscle involvement [Udd 2009]. 
Additionally, two stop-codon altering mutations have been described [Fiorillo et 
al. 2016; Ortolano et al. 2011]. After we published a report on the first exon-
skipping mutation [Pajusalu et al. 2016], other similar variants have been 

 
 

 



35 

detected [Fiorillo et al. 2016]. Remarkably, even in one family, the clinical 
phenotype caused by the MYH7 variant may differ [Fiorillo et al. 2016]. 
Supporting this phenomenon, it has been also reported that muscle histology 
may differ at different ages, namely in a family with congenital fibre type dis-
proportion, myosin storage was seen only in the oldest affected family member 
[Ortolano et al. 2011].  
 
 

2.7. Summary of literature review 

Genome-wide diagnostics of Mendelian disorders has been rapidly evolving 
since the implementation of CMAs and NGS-based analyses into routine 
clinical practice during the last decade. This has also accelerated the discovery 
of new genetic disorders and genotype-phenotype correlations. Nevertheless, 
many specific fields in modern genetic diagnostics remain understudied. For 
example, although very frequently reported after diagnostic CMA, the clinical 
value of detected LCSH has not been sufficiently investigated. Regarding NGS-
based analyses, there have been many clinical WES cohorts described, but the 
utility of other NGS applications (e.g. Mendeliome sequencing) has been much 
less investigated. Although the clinical efficiency of genome-wide assays can be 
investigated only by studying large cohorts, some cases which may emerge 
from larger research studies or clinical diagnostics can provide specific novel 
information about rare disorders and thus remain of scientific interest.  
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3. AIMS OF THE PRESENT STUDY 

1) To assess the diagnostic utility of single long contiguous stretches of 
homozygosity in patients without parental consanguinity in Estonia (Paper I). 

2) To assess the diagnostic utility of large gene panel sequencing in the clinical 
diagnostic setting (Paper II). 

3) To characterize and molecularly specify KPTN-related ID syndrome in two 
adult siblings (Paper III). 

4) To investigate the molecular and clinical effect of a novel de novo mutation 
in the MYH7 gene detected by trio whole exome sequencing (Paper IV). 
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4. MATERIALS AND METHODS 

4.1. Study subjects 

4.1.1. Cohort for CMA study and inclusion criteria (Paper I) 

After excluding prenatal and non-affected parental samples, the primary study 
group for investigating the clinical role of single LCSHs consisted of 2110 
consecutive patients analysed by CMA in our department during the years 2011 
to 2014. The most patients received CMA as a first-tier genetic investigation 
due to MCA, ID, and/or ASD. Other indications and testing scenarios, however, 
were also included. Although CMA was first introduced to the cytogenetic 
diagnostics in 2009 in Estonia, the Estonian Health Insurance Fund started to 
reimburse the test in 2011. Thus, patients included in this study are all a part of 
routine diagnostics and not selected for severest phenotypes [Žilina et al. 2014b]. 

Patient inclusion criteria for the subsequent analysis was the presence of one 
or two LCSHs with a minimal length of 5 Mb per LCSH, but a total length not 
exceeding 28 Mb. Cases with the co-occurrence of pathogenic, likely patho-
genic, or unclearly significant CNVs were excluded to focus solely on the clinical 
utility of LCSHs. The upper limits of LCSH length were used to eliminate 
parental consanguinity, as 28 Mb equals approximately 1% of the total auto-
somal genome, which is below the expected percentage for the subject’s parents 
being second cousins [Sund et al. 2013]. Additionally, the maximum number of 
two LCSHs was used, as it is more likely that parental consanguinity results in 
multiple LCSHs on different chromosomes. We further excluded all patients 
carrying LCSHs with lengths greater than 25% of the whole chromosome on 
which they occurred to eliminate possible UPDs. Finally, to compile the main 
study cohort, we eliminated patients carrying only recurrent LCSHs, which we 
defined as being present in at least three unrelated patients. One patient from the 
final study group was investigated further and described in detail in Paper III 
and in the Sections 4.1.3 and 5.3 of this thesis. 

 
 

4.1.2. Study group investigated by large NGS panel (Paper II) 

The main characteristics of the NGS panel sequencing cohort are presented in 
Table 5. In summary, 501 consecutive unselected patients (children, adults, and 
11 prenatal cases) referred for NGS gene panel sequencing due to various 
indications were included in this study. These tests were performed between 
April 2015 and August 2016. For many, but not all, patients, prior DNA-testing 
had been performed. Thus, screening for pathogenic large CNVs by CMA, for 
example, had been performed prior to NGS in most cases with ID/DD and/or 
MCA. The phenotypic details were collected from referral forms (open text with 
no predefined fields). Referring doctors were also asked to list candidate genes 
for the patient’s disorder, or pick one or more predefined subpanels, e.g., ID, 
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epilepsy, metabolic disorders, etc. (11 to 600 genes), with no limit on the total 
number of genes/panels. In addition, referral forms describing only phenotypes 
were accepted – in these 14 cases, the candidate gene list was compiled by a 
laboratory molecular geneticist. In all cases, sequencing was performed on 
probands only. Parental samples, however, were collected and investigated only 
for single candidate variants for carrier status or familial segregation, if needed 
and available.  
 
Table 5. The main characteristics of our study cohort, which included 501 first 
unselected cases for whom TruSight One panel (Illumina Inc.) sequencing was 
performed as a clinical diagnostic test. Adapted from [Pajusalu et al. 2017]. 

Total number of analysed cases 501 

 Children (0–18 years) 313 

 Adults (19 or more years) 177 

 Prenatal cases 11 

Females/males (postnatal cases) 226/264 

Median age in full years, range (postnatal cases) 11.5, 0–78 

Referrals by department profiles  

 Clinical genetics 374 

 Paediatrics (incl. child neurology, child haematology and others) 84 

 Paediatric (incl. neonatal) intensive care unit 3 

 Adult neurology 30 

 Others (ophthalmology, internal medicine, adult intensive care) 10 

 
 

4.1.3. Clinical description of two siblings  
with KPTN mutations (Paper III) 

The probands were a 32-year-old Estonain man and his 24-year-old sister with 
ID of unknown cause. They have two healthy older sisters. Although the parents 
did not report known consanguinity, they were born in the same rural Estonian 
parish. There are no known genetic disorders in the family. The family consulted 
a medical geneticist due to suspected genetic disorder in 1993 when the brother 
and sister were 10 and 2 years of age respectively, but at the time no cause for 
DD was found and conventional karyotyping revealed no abnormalities. Now, 
as adults, the affected sibs live in a special home for the intellectually disabled. 
They have basic self-care and communication skills. The level of ID in both sibs 
was classified as moderate, although formal IQ-assessments have not been 
performed. 

The brother was born with normal growth parameters (occipitofrontal circum-
ference [OFC] 34 cm) as the third child in the family. He had no significant 
early motor DD, and started regular school. During the first grades, DD was 
diagnosed and he was transferred to a special school. He had one episode of 



39 

generalized seizures at the age of 10 months during bronchitis, leading to a few 
months of anti-convulsive therapy. The seizures recurred only once afterwards 
at the age of 10 years when he had one episode of unprovoked generalized 
seizures during sleep. At 7 years of age, no abnormalities were found on 
computed tomography (CT) brain scan. Electroencephalography (EEG) was done 
at the age of 10 years, and generalized slowing of background activity (more 
pronounced over the posterior brain) without epileptiform discharges was noted. 
Since childhood, he has had anxiety and behavioural disorder with autistic 
features, stereotypic movements and utterances, and some self-aggression. Now, 
at the age of 32, he is of normal height and weight, but he has macrocephaly – 
his OFC is 63 cm (+4.5 SD). He has a prominent forehead, high palate, and 
slight microretrognathia. He still has behavioural disorder and his language 
abilities are poor with repetitive speech occurring.  

The sister was born with normal growth parameters (OFC 37 cm) as the 
fourth child in the family. No DD was noted in the first years of life, but due to 
markedly delayed speech development, ID was diagnosed in preschool age, and 
therefore she went to a special school. She has never had seizures, although 
generalized slowing of background activity (more over the posterior brain) was 
described on EEG at the age of 3 years. Currently, at the age of 24 years, she 
has macrocephaly with OFC of 60 cm (+4 SD). Her speech abilities are low, but 
she can understand basic commands. She has also had high anxiety levels, but 
less than her brother and without remarkable behavioural disturbances. She has 
a prominent forehead, high palate and microretrognathia. 

 
 

4.1.4. Clinical description of a patient  
with MYH7-related myopathy (Paper IV) 

The patient is a boy of Estonian and Spanish origin with early-onset muscular 
hypotonia and delayed motor development. He was born after an uneventful 
pregnancy and delivery and had normal growth parameters. He was referred to a 
paediatric neurologist at 3.5 months of age. At the time, he had a complete lack 
of motor head control, and severe muscular hypotonia was observed in the neck 
and shoulder girdle but was less pronounced in the legs. ENMG at 3.5 months 
was interpreted as normal, but at 6 months the repeated test showed features of 
myopathy. At 6 months, he still could not control his head upon traction and 
had a positive dropped head sign, and generalized muscular hypotonia.  

At 13 months of age, he had marked muscular weakness and hypotonia most 
prominently in the neck extensors, with a hypomimic face and mild bilateral 
ptosis. Despite the weakness of proximal lower limb and trunk muscles, he 
could put weight on his legs if supported, but his head control was remarkably 
poor and the dropped head sign was still present. Moderate calf hypertrophy 
was noticed. There were no weaknesses or functional deficits in gross-motor 
functions of the hands, but he lacked fine motor skills. Despite the hypotonia, 
his deep tendon reflexes were exaggerated but with no pathological reflexes. He 
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had a normal head circumference (47 cm). Serum creatine kinase and lactate 
levels were within normal range and spinal fluid analysis was also normal. 
Echocardiography as well as MRI scans of brain and spinal cord showed no 
pathologic findings. The muscle biopsy from the left anterior tibial muscle 
revealed fiber-type disproportion with no inclusions (Figure 6). Although he 
had marked motor developmental delay, his mental and social skills were 
assessed to be normal for his age. Clinically the phenotype could be classified 
as congenital myopathy. 

 
At the age of 21 months, the child is able to walk without support, but muscle 
hypotonia and weakness are still present, more pronounced in proximal muscles 
of lower limbs with Gower’s sign and in the neck muscles. He uses orthosis to 
stabilize the trunk. He speaks two-word sentences and has no problems with 
breathing or swallowing. Repeated cardiac investigations showed no pathological 
findings.  
 
 

4.2. Methods 

Considering terminology, it must be noted that although according to ACMG 
guidelines, “variant” is preferred over “mutation” in many instances [Richards 
et al. 2015], in this thesis the term “mutation” is widely used to match the style 
with the four publications on which the dissertation is based. 

 
 

4.2.1. The study of CMA-detected homozygous stretches (Paper I) 

Genomic DNA was extracted from peripheral blood samples. CMA was per-
formed on all samples using HumanCytoSNP-12 BeadChips (Illumina Inc.) at 

 

 

Figure 6. Cryosections of the patient’s anterior tibial muscle. (A) Hematoxylin and 
eosin staining shows marked variation in fiber size, and (B) ATPase histochemical stain 
at pH 4.3 shows that type 1 muscle fibers (dark) are much smaller than type 2 muscle 
fibers (pale). Figure was prepared by Dr. Sanna Puusepp. 
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the Estonian Genome Centre at the University of Tartu or Estonian Biocenter, 
both in Tartu, Estonia, and clinically interpreted at Tartu University Hospital. 
Genotypes were called by GenomeStudio software v2010.3 (Illumina Inc.). The 
GenomeStudio’s cnvPartition plugin was used to detect LCSHs, with the 
minimum region size set to 5 Mb. All chromosomes of each sample were also 
visually inspected by a clinical cytogeneticist to eliminate false-positive and 
false-negative calls. 

All LCSHs belonging to the subjects of the final study group were evaluated 
for clinical significance by searching for encompassed, AR disease-associated 
genes. This was done using the web-based Genomic Oligoarray and SNP array 
evaluation tool v.2.0 [Wierenga et al. 2013]. The search criterion used was 
“OMIM genes with recessive inheritance pattern”. For every patient, the list of 
genes and associated phenotypes found by the software were compared with the 
patient’s clinical information stated on the referral documents. If a candidate 
gene matching the patient’s phenotype was found, WES was performed to find 
the causative mutation either from the identified candidate gene or any other 
genes not belonging to the LCSH. All probable pathogenic mutations identified 
by WES were confirmed by Sanger sequencing.  

In the secondary analysis, we included all patients from the study group with 
LCSHs that did not encompass a good candidate gene and for whom WES was 
performed previously, although not as a part of this study. In cases of a 
homozygous pathogenic mutations, the CMA data were re-analysed to look for 
a <5 Mb LCSH in the region of the mutation. 

 
 

4.2.2. Large gene panel sequencing and  
variant interpretation (Paper II) 

After extraction, DNA was sent to either of two collaborating sequencing 
facilities (Asper Biotech or the Estonian Genome Centre at the University of 
Tartu, both located in Tartu, Estonia) in batches of 3, 9, 12, or 18 samples. 
Libraries were generated according to the manufacturer’s protocols using 
TruSight One kits (Illumina Inc.). Sequencing was carried out on MiSeq or HiSeq 
platforms (Illumina Inc.) to mean sequencing depths of at least 70x and 150x, 
respectively. The bioinformatics analysis, including variant calling, was per-
formed at sequencing facilities using their pipelines, which varied only in a few 
details between batches. In general, reads were aligned to reference genomes 
hg19 or b37 by Burrows-Wheeler Aligner [Li and Durbin 2009], and variants 
were called by GATK tools (UG or HC) [McKenna et al. 2010]. Variant call 
format (vcf) and bam files were transferred back to Tartu University Hospital 
for downstream analysis.  

For the first few batches, variants from vcf files were annotated by 
VariantStudio (Illumina Inc.), but later this was shifted to an in-house variant 
annotation pipeline tailored to our needs. Annotations included, but were not 
limited to reference databases from ExAC [Lek et al. 2016] and 1000 Genomes 
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Project [1000 Genomes Project Consortium et al. 2015], and ClinVar patho-
genicity annotations [Landrum et al. 2016], as well as HPO terms [Kohler et al. 
2014] and OMIM disorders as gene-based annotations. Additionally, allele 
counts from our growing in-house database of variants detected among all NGS 
analyses (panels and WES) performed in our department (latest version used for 
this study consisted of 1011 samples) were annotated to every detected variant 
making it possible to exclude platform-specific false positive calls as well as to 
compare phenotypes of rare variant carriers. 

CNVs were called using CoNIFER software [Krumm et al. 2012]. First, 
reads per thousand bases per million reads sequenced (RPKM) values were 
calculated for each sample separately. Second, all available samples from dif-
ferent batches were joined for CNV calling, depending on the sequencing plat-
form (two different data sets of RPKM values for MiSeq and HiSeq samples). 
CNV detection and image generation for detected CNVs were carried out 
subsequently according to CoNIFER guidelines. In cases of high suspicion for 
single candidate genes (e.g., a single pathogenic mutation detected in a 
recessive gene), singular value decomposed Z-RPKM (SVD-ZRPKM) values 
were in addition evaluated manually, so as not to miss deletions smaller than three 
exons (i.e., below CNV detection size limit reported in original publication of 
CoNIFER).  

In addition, coverage of requested genes was calculated using the GATK 
DepthOfCoverage tool. Sexes of the samples were estimated using the dif-
ference of expected versus observed heterozygosity on non-pseudoautosomal 
regions of chromosome X using VCFtools software [Danecek et al. 2011]. To 
detect discrepancies indicating suboptimal quality or sample swaps, sex esti-
mations were subsequently compared to national identification codes (social 
security numbers), which state the sex as coded in the first digit. 

As the first step of clinical interpretation of annotated variants, all non-
requested genes were filtered out, thus eliminating the chance of detecting 
unsolicited findings. Variants were classified according to ACMG guidelines 
[Richards et al. 2015]. Alamut software (Interactive Biosoftware, Rouen, 
France) and Human Gene Mutation Database (HGMD® Professional) from 
BIOBASE Corporation [Stenson et al. 2009] were used to aid interpretation. 
Finally, class 5 (pathogenic) and class 4 (likely pathogenic) variants were 
reported back to the referring doctor. In addition, class 3 (VUS) variants were 
reported if variant classification was subject to change after additional studies 
(e.g., testing for segregation in family). For example, a novel heterozygous 
missense mutation in a dominant disease gene with multiple computational 
evidence of pathogenicity may have initially been reported as class 3, but after 
confirmation of de novo state, the variant could be reclassified as class 4. For 
compound heterozygous mutations, parental testing was performed by Sanger 
sequencing to confirm trans-position of the putative causal variants. Here, final 
variant classifications were used in assessing the clinical utility.  

Most reported SNVs were confirmed by Sanger sequencing, including all 
low-quality variants (GATK quality score below 500). A clear majority of 
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higher quality variants were also confirmed among familial segregation analysis 
or parental carrier testing where index patients served as positive controls. All 
reported CNVs were confirmed by an alternative method, either MLPA or 
CMA, based on the size of the CNV and availability of the specific assay. 

To assess whether diagnostic yield is dependent on the number of genes 
listed for analysis on the referral form, indicating the level of confidence for 
clinical hypothesis, two subgroups of the total study sample were created. The 
cut-off used was 10 genes or more for a large-panel group and less than 10 for a 
small-panel group. All samples for which no gene list was provided on the 
referral form were added to a large-panel subgroup. The statistical significance 
of the difference between diagnostic yields in two subgroups was tested using a 
two-sided Fisher’s exact test. All statistical analyses were conducted in R 
version 3.3.1 [R Core Team 2016]. 

 
 

4.2.3. Genetic investigations performed in siblings with ID (Paper III) 

To investigate probable genetic cause of the disorder, CMA on DNA samples 
from both sibs was performed using HumanCytoSNP-12 array (Illumina Inc.). 
To test the hypothesis of finding homozygous disease-causing mutation, WES 
was carried out on the brother’s DNA sample. Library preparation and a 
sequencing run were performed by the company ServiceXS (Leiden, The 
Netherlands) using SureSelect XT Human All Exon v5 enrichment kit (Agilent 
Technologies, Santa Clara, CA) and HiSeq sequencer (Illumina Inc.). The fastq 
files were transferred to us. Subsequently, raw sequencing reads from fastq files 
were aligned to the hg19 reference genome using BWA [Li and Durbin 2009]. 
Bioinformatics processing, variant calling, and annotation were performed 
following GATK best practice guidelines [Van der Auwera et al. 2013] using 
Picard, GATK [DePristo et al. 2011; McKenna et al. 2010], Annovar [Wang et 
al. 2010] and SnpSift [Cingolani et al. 2012a] software. Variant interpretation 
was mostly focused on rare protein-damaging homozygous variants due to 
suspected shared ancestry in parents supported by LCSHs in the CMA results. 
The identified variant most likely to be causative for the phenotype for 
confirmed in the brother and tested for in the sister as well as in both parents by 
Sanger sequencing. 

 
 
4.2.4. Molecular investigations in the patient with myopathy  

(Paper IV) 

WES of the parents-offspring trio carried out in the Estonian Genome Centre at 
the University of Tartu. DNA libraries were performed using Nextera Rapid 
Capture Exome 37 Mb kit (Illumina Inc.) according to the manufacturer’s 
protocols. The HiSeq 2500 (Illumina Inc.) platform was used for paired-end 
2×100 bp sequencing. The bioinformatics data processing made use of BWA 
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[Li and Durbin 2009], which mapped the reads to the b37 reference genome; 
different Picard and GATK tools; and GenomeTrax from BIOBASE Corporation. 
The variant interpretation was focused on de novo and recessively inherited 
variants due to parents being healthy. Sanger sequencing was used for 
confirmation of the finding. 

To investigate the detected mutation’s effect on splicing, first, in silico 
analysis using both MutationTaster [Schwarz et al. 2014] and MutPred Splice 
[Mort et al. 2014] was performed. Subsequently, total RNA was extracted from 
the same muscle sample used for histologic analysis. After cDNA synthesis, 
PCR amplification was performed using three primers: a) MYH7_F1 (in exon 
37): 5’-CATTAAGGACCTGCAGCACC-3’, b) MYH7_R1 (in exon 39):  
5’-AGCTTGTTGACCTGGGACTC-3’, and c) MYH7_F2 (in exon 38):  
5’-CGGAGGAGGACAGGAAAAAC-3’. Sanger sequencing was performed on 
PCR products extracted from gel fragments to check for skipping of exons.  

 
 

4.3. Ethics 

The study on the clinical utility of LCSHs (Paper I) was approved by the 
Research Ethics Committee of the University of Tartu (approval number 243/T-3, 
date 1/13/2015).  

The part of the study which focused on NGS diagnostics (Paper II) was solely 
based on the results of clinical diagnostic investigations without any additional 
experiments or personalized data analysis performed for the study. Before the 
blood was collected, all patients, or as in the case of children, parents or legal 
guardians signed written informed consent forms approved by Tartu University 
Hospital or other local referring hospitals as subjects to routine clinical investi-
gations. All samples were collected and analyses were performed according to 
national legislation and rules of Tartu University Hospital.  

In both cases described in detail (Papers III and IV), the parents as legal 
guardians first signed written consents for performing the WES, and in addition, 
the consent for publishing photos in a scientific article.  
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5. RESULTS AND DISCUSSION 

5.1. Single long contiguous stretches of homozygosity 
detected by diagnostic chromosomal microarray analysis 

and their clinical utility (Paper I) 

During the study period, 172 (8.2%) patients out of 2,110 presented with an 
isolated finding of one or two LCSHs when considering the inclusion and 
exclusion criteria (other than recurrence). From a total of 172 patients, 161 
patients carried a single LCSH and 11 patients carried two LCSHs, thus a total 
of 183 LCSHs were detected among the cohort. 

As previously described, LCSHs represent the majority of VUSs reported 
after CMA in our diagnostic laboratory [Žilina et al. 2014b]. One of the most 
straightforward ways to decrease the number of VUSs is to identify recurrent 
LCSHs and to interpret them as benign polymorphisms, which can be left 
unreported depending on laboratory policies. In this study, we identified six 
different recurrent LCSHs totalling 52 events or 28.9% of all isolated LCSH 
findings (Table 6). Thus, we could clarify the clinical significance of nearly 
one-third of all LCSHs by classifying them as likely benign. Nevertheless, 
caution is still needed in classifying recurrent LCSHs as benign, because there 
is a possibility that shared haplotypes could be mutated in both parents. More-
over, shared recurrent LCSHs may indicate distant shared ancestry possibly 
increasing the risk for AR disorders, although this could not be investigated 
among this study due to lack of sufficient number of samples. Interestingly, out 
of six chromosomal regions where we identified a recurrence of a LCSH, only 
two matched with the five regions reported by Wang et al. [2014]. This could be 
attributed to different study populations, which clearly indicates the need for 
population-specific LCSH databases. 

After excluding all recurrent LCSHs, 120 patients (5.7%) with 129 LCSHs 
remained in the final study sample (Table 7). Searching for genes associated 
with recessive disorders revealed a median of three genes per LCSH (range  
0–15). In two cases, an appropriate candidate gene was discovered. First, in a  
1-year-old girl with transfusion-dependent hemolytic anemia, an LCSH on 
chromosome 1 encompassed the PKLR gene known to cause pyruvate kinase 
deficiency leading to hemolysis and anemia. WES revealed a novel mutation in 
the PKLR gene that was predicted to cause an in-frame deletion of a single 
amino acid (NM_000298.5: c.1137_1139del p.(Lys380del)). Although enzyme 
analysis on the affected child was uninformative due to recurrent red blood cell 
transfusions, the pathogenicity of the mutation was still confirmed by detection 
of significantly decreased pyruvate kinase activity in both heterozygous parents. 
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Second, in a 6-year-old boy with growth failure, DD, ataxia, and cerebellar 
atrophy, a LSCH on chromosome 5 was found to encompass the SIL1 gene that is 
associated with Marinesco-Sjögren syndrome. WES revealed a homozygous 
one-base-pair duplication in the SIL1 gene that was predicted to cause a 
translational frameshift, thereby resulting in a truncated protein; NM_022464.4: 
c.947dupT p.(Arg317Glufs*35). The mutation was first reported as disease-
causing by Senderek et al. [2005]. The parents were confirmed to be hetero-
zygous carriers by Sanger sequencing. 
 
Table 7. Main characteristics of non-recurrent, long contiguous stretches of 
homozygosity (LCSH) detected in this study. Adapted from [Pajusalu et al. 2015c]. 

Total number of patients with non-recurrent LCSH  
(% of a total of 2,110 patients) 

120 (5.7%) 

Number of patients with one/two LCSHs 111/9 

Non-recurrent LCSH count  129 

Size range of single LCSHs 5–28 Mb 

Size range of the sum of two LCSHs in one patient 11.1–25.1 Mb 

Average size of a single LCSH  7.7 Mb 

Number of genes causing a recessive disorder in a LCSH 
(median) 

0–15 (3) 

Number of cases with candidate recessive gene in a LCSH 2 (in both, the  
mutation was confirmed) 

Total number of patients with non-recurrent LCSH  
(% of a total of 2,110 patients) 

120 (5.7%) 

Number of patients with one/two LCSHs 111/9 

Non-recurrent LCSH count  129 

Size range of single LCSHs 5–28 Mb 

 
For patients for whom WES had been ordered outside this study, seven had 
been previously found to carry a LCSH by CMA that did not encompass a good 
candidate gene, and two of them had a recurrent LCSH. Of these seven patients, 
two received a definitive diagnosis by WES. First, WES in an adult man with 
ID and macrocephaly (reported in detail by our previous publication [Pajusalu 
et al. 2015b] and further discussed in Section 5.3) revealed a homozygous one-
base-pair duplication in the KPTN gene (19q13.32) that is associated with a 
similar phenotype [Baple et al. 2014]. The patient also has a sister with a similar 
phenotype who carried the same homozygous mutation. A previous CMA found 
two LCSHs in the man (17.6 Mb in 1q25.3-q32.1 and 7.5 Mb in 14q13.3-
q21.2), but only one of them (in 14q13.3-q21.2) was also present in his sister. 
However, the KPTN gene is not located in either of these LCSHs. Reanalysis of 
the CMA data revealed a 1.5-Mb LCSH on chromosome 19 that encompasses 
the KPTN gene and which is shared by both sibs (Figure 7). This LCSH was not 
reported after the initial CMA interpretation due to 5-Mb cut-off length 
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routinely used in our laboratory. The parents of the sibs did not report 
consanguinity, but were born in the same parish. Therefore, if there is a strong 
indication for recessive inheritance and distant consanguinity or common 
ancestry is likely, lowering the cut-off of the LCSH size can aid in identification 
of candidate genes. For example, a LCSH minimum cut-off length of 1 Mb was 
used in a study that focused on familial recessive IDs in outbred families 
[Schuurs-Hoeijmakers et al. 2011]. Second, in a girl carrying a LCSH on the X 
chromosome, compound heterozygous mutations were found in the REN gene 
(1p32.1), resulting in renal tubular dysgenesis. Thus, one should not presume 
that the finding of homozygosity is a general rule in patients with single 
LSCHs. Comprehensive analysis of WES data is needed to maximize the 
diagnostic yield. 

 
During the last decade, studies have demonstrated the great utility of CMA in 
clinical diagnostics as a first-tier diagnostic cytogenetic test for patients with 
IDs, ASDs, and MCAs [Ahn et al. 2013; Hochstenbach et al. 2009; Miller et al. 
2010; Vissers et al. 2010]. The primary goal of CMA is to find a causative 
microdeletion or microduplication. SNP-arrays have the advantage of also 
revealing genotype information, which allows detection of copy number neutral 

Figure 7. Graphical representation of the SNP-array data from both sibs in the 
chromosomal region encompassing the KPTN gene. 1.5 Mb shared region of 
homozygosity was detected after reanalyzing chromosomal microarray data. Figure was 
prepared using GenomeStudio v2011.1 software (Illumina Inc.). 
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chromosomal aberrations associated with an increased risk of AR disorders. 
Multiple LCSHs on different chromosomes that indicate close parental 
consanguinity, as well as LCSHs that cover the majority of single chromosome 
and are caused by UPD, have been studied during the last few years, and their 
clinical implications are thus better understood [Papenhausen et al. 2011; Wang 
et al. 2014]. Single LCSHs in patients without parental consanguinity are not 
infrequently found during routine diagnostics in centers where SNP array 
technology is in use, but their clinical significance remains unclear in most of 
the cases [Žilina et al. 2014b]. Reporting a VUS can cause anxiety in patients 
and frustration in referring doctors who are not specialists in the field of 
medical genetics [Coughlin et al. 2012; Žilina et al. 2014b]. Therefore, it is of 
great importance to work toward minimising the number of reported VUSs. 

Although the homozygosity of a chromosomal region can be intuitively 
attributed to the increased risk of AR disorders, the clinical significance of 
single LCSHs remains unclear. In this study, only patients with one or two 
LCSHs, with total length not exceeding 28 Mb (i.e., 1% of autosomal genome), 
were analysed. As suspected, because only a very small proportion of the whole 
genome was covered, finding a candidate gene closely associated with a patient’s 
phenotype was very rare. Nevertheless, if a well-matched candidate gene is 
found, the confirmation of pathogenic mutation is likely. This is illustrated by 
the described two patients with a plausible candidate gene inside the single 
LCSH and confirmed pathogenic variants in both. Wang et al. [2014] found 
nine patients with good candidate genes and a pathogenic variant was detected 
in seven of them. Although the study sample of Wang et al. was almost seven 
times larger than this study, and patients with parental consanguinity were also 
included, it can be concluded that the results are consistent with the previously 
published study [Wang et al. 2014] due to the very small number of cases with 
identified causal variants and the associated probability of a large statistical 
error. Despite the low success rate in this study, it can be can still recommended 
to look through detected, non-recurrent LCSHs for candidate genes, as this can 
lead to a molecular diagnosis. Additionally, if software tools such as the 
Genomic Oligoarray and SNP array evaluation tool [Wierenga et al. 2013], are 
used, the evaluation of LCSH regions is not very time-consuming, as the 
median number of genes causing a recessive disorder per LCSH was only three 
in our study group. 

However, as genome-wide sequencing investigations are becoming more 
available and often already used as first-tier or the second test after inconclusive 
CMA results, the diagnostic value of LCSHs detected by CMA probably 
decreases, as rare homozygous variants can be easily prioritized without prior 
knowledge of LSCHs. Nevertheless, it could be hypothesised that if sequencing 
of coding regions does not reveal pathogenic variant in a good candidate gene 
located in LCSH, it may be worth doing additional studies on the gene to reveal 
non-coding variants. Thus, the information from detected LSCHs may remain 
important even in the NGS era. 
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5.2. Clinical utility of large gene panel sequencing  
in routine diagnostics of suspected Mendelian  

disorders (Paper II) 

For 132 out of total 501 consecutive patients who received NGS gene panel 
testing during the study period, diagnosis for a specific genetic disorder was 
established (at least likely pathogenic variant consistent with patient phenotype). 
Summary characteristics of detected mutations are presented in Table 8. 
 
Table 8. Summary of detected mutations. Adapted from [Pajusalu et al. 2017]. 

Total number of cases 501 

Solved cases 132 (26.3%) 

Partially solved cases 2 (0.4%) 

Cases with reported VUS 43 (8.6%) 

Patients with negative reports 323 (64.5%) 

Total number of genetic disorders in solved cases 133 

Types of causative mutations in solved cases:  

SNVs and indels 125 (94%) 

Intragenic (exonic) deletions 3 (2.3%) 

SNV + CNV compound 2 (1.5%) 

Microdeletion 2 (1.5%) 

X-chromosome monosomy 1 (0.75%) 

Total number of reported causative variants 157 

Number of recurrent mutations (total recurrences) 4 (9) 

Number of non-recurrent genic mutations 146 

Number of novel mutations 67 (46%) 

Diagnosed disorders by inheritance  

Dominant 86 (65%) 

Heterozygous mutation 84 

Inherited 29 

De novo 19 

Unknown 36 

Mosaic variant 2 

Recessive 31 (23%) 

Compound heterozygous mutations 23 

Homozygous mutation 8 

X-linked recessive 14 (10.5%) 

Other 2 (1.5%) 

VUS – variant of unknown significance. SNV – single nucleotide variant, indel – small insertion 
or deletion, CNV – copy number variant. 
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The overall diagnostic yield of NGS gene panel testing was revealed to be 
26.3%. In addition, for two patients (0.4%), partial diagnosis was established, 
meaning that only some of the phenotype could be confidently explained by a 
detected class 4 or 5 variant. VUS or class 3 variants were reported for 43 
patients (8.6%), and not clarified by the time of writing this manuscript. All 
reported mutations are listed in Table 9, case numbers in this text section follow 
the numeration in Table 9 

In the 132 solved diagnostic cases, we established a diagnosis for 133 
genetic disorders (Table 9), due to double diagnosis in one patient who had both 
hereditary ovarian cancer and congenital myotonia (Case #24). Out of these 133 
disorders, 125 (94%) were caused by either SNVs or indels, three by intragenic 
CNVs, and two by a combination of CNV and SNV. In addition, two patho-
genic microdeletions encompassing many genes and one monosomy of X 
chromosome were detected. X chromosome monosomy, or Turner syndrome 
(Case #126), in a girl with congenital liver disorder was incidentally discovered 
by mismatch in expected and observed sex estimation during quality control of 
the data, and later confirmed by conventional karyotyping.  

After leaving out the Turner syndrome case, 86 of the 132 remaining disorders 
(65%) were dominant. Of all dominant cases, 84 were caused by germline 
heterozygous mutations, including four cases of dominant X-linked disorders in 
females (#51, #62, #120, #129), and two were caused by mosaic mutations. Of 
the 84 cases with dominant disorders (mosaics excluded), we possessed data 
from testing of both parents for 49 cases. Out of these 49 cases, 29 (59%) 
carried an inherited mutation segregating with the phenotype, 19 (39%) had a de 
novo mutation and one (Case #110) was identified as carrying a maternally 
inherited mutation in the UBE3A gene, consistent with the diagnosis of 
Angelman syndrome due to gene imprinting. In 31 cases (23%), an AR disorder 
was diagnosed and in most of such cases (23 patients), compound heterozygous 
mutations were detected, with the remaining eight being caused by homozygous 
mutations. 

X-linked recessive disorders were diagnosed in 14 males (11%), 13 carrying 
hemizygous mutations, and one mosaic mutation causing Danon disease (Case 
#68). In the remaining case (#124), two rare, likely pathogenic, mutations on 
different alleles were found in the MYH7 gene in a boy with early-onset 
cardiomyopathy. Both mutations were also apparent in his sister with a similar 
phenotype. Although mutations in MYH7 are known to cause dominant cardio-
myopathy, we cannot rule out the possibility of a modifying effect of the second 
mutation, thus causing a more severe phenotype.  

Due to compound heterozygosity, 157 causative mutations were found in 132 
solved cases (Table 9). Of these, 67 (43%) were not reported in the HGMD 
professional database, and thus were considered to be novel. We detected several 
recurring mutations. NM_000083.2(CLCN1):c.2680C>T p.(Arg894*) appeared 
in six patients, in either a homozygous or compound heterozygous state with 
another pathogenic mutation. Three other recurrent mutations appeared twice: 
NM_001171.5(ABCC6):c.3421C>T p.(Arg1141*), NM_000334.4(SCN4A): 
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c.4765G>A p.(Val1589Met) and NM_000401.3(EXT2):c.635G>C p.(Arg212Thr). 
Out of all recurrences, to our knowledge, only the SCN4A mutation causing 
congenital paramyotonia was due to close relatedness between patients. After 
removing recurrences and larger chromosomal events (microdeletions and 
monosomy of the X chromosome), 146 non-recurrent gene mutations remained, 
with the proportion of novel mutations increasing to 46%.  

As there are no similar studies published on clinical utility of large gene 
panel sequencing in routine clinical setting, the comparison of the yield may be 
done only in the context of published WES cohorts. Despite many limitations, 
including the fixed and not entirely comprehensive content of the used panel, 
restriction of the analyses to requested genes only and sequencing only probands, 
the diagnostic yield in the presented cohort was comparable to previously 
published WES studies performed in unselected clinical cohorts [de Ligt et al. 
2012; Farwell et al. 2015; Lee et al. 2014; Yang et al. 2013; Yang et al. 2014].  

The diagnostic yield of our WES cohort of 68 families at the time of 
completing this study was 28%, with an additional 21% of families receiving a 
report containing VUS. Thus, the efficiency of WES is very similar at our centre 
if compared our results to other published clinical cohorts. It can be argued that 
our relatively high diagnostic yield is influenced by selection of cases – panel 
sequencing was generally favoured over WES in cases where a clearer clinical 
hypothesis was established prior to genetic testing. WES was available in 
parallel and was used in more complex cases.  

The assumption of higher diagnostic yield in cases with a clear diagnostic 
hypothesis is supported by our observation that the subgroup of patients in whom 
less than ten genes were requested to be analysed showed a significantly higher 
yield than the larger panel subgroup. Namely, for 238 patients, one to nine genes 
were listed for analysis on referral forms, and a larger panel was requested for the 
remaining 263 samples. The diagnostic yield in the small-panel subgroup was 
31.5%, compared to 21.7% in the large-panel subgroup. The difference was 
statistically significant (p = 0.015). The subgroups did not differ in age (p = 0.7) 
or sex (p = 0.63) distribution.  

It should be noted that gene panel sequencing was also used for many cases 
with very clear indication for testing of one or two genes, such as in the cases of 
tuberous sclerosis, polycystic kidney disease, or Duchenne muscular dystrophy. 
This was mostly due to the absence of routine availability of separate single 
gene tests for these and many other disorders in Estonia, supported with the 
relatively low cost of gene panel sequencing.  

Another difference from previously reported WES clinical cohorts, as well 
as our own experience with WES, was a significantly higher proportion of 
inherited autosomal dominant mutations, which outnumbered the de novo cases. 
In WES-based cohorts, inherited dominant mutations are rarely seen because of 
the selection bias towards severe paediatric cases with unaffected parents 
[Farwell et al. 2015; Lee et al. 2014]. The other obvious reason, however, could 
be the limitation of our single patient-based approach, where de novo mutations 
are confirmed only after separate testing of parents. Thus, some de novo 
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mutations could have been misinterpreted as VUSs in initial analysis due to lack 
of parental genetic information. Regarding AR disorders, causative compound 
heterozygous mutations appeared more often than did homozygous mutations, 
which is consistent with WES-based studies of outbred populations [Lee et al. 
2014; Yang et al. 2014], as well as our previous study showing that homo-
zygous stretches detected by CMA are rarely associated with genetic disorders 
in Estonia, discussed in Section 5.1 and in publication [Pajusalu et al. 2015c].  

NGS-based methods allow screening for many types of mutations. In our 
cohort, we found, in addition to SNVs and indels, CNVs of different sizes, from 
single exon to over a Mb in length, and an incidental finding of Turner syndrome 
due to a discrepancy found during quality control when estimating sexes of 
samples. It is worth noting that in two cases, pathogenic CNVs and SNVs were 
found in a compound heterozygous state. The ability to simultaneously detect 
different types of mutations is a major advantage of NGS over Sanger 
sequencing-based assays. We cannot, however, recommend the routine usage of 
gene panel sequencing instead of CMA due to unknown sensitivity and 
dependence of gene panel targets for detecting microdeletions and micro-
duplications. Nevertheless, for the disease groups where CNVs, especially non-
coding CNVs, are an unlikely cause, the gene panel sequencing can be used as a 
preferred first-tier diagnostic test. In our cohort, CNVs contributed to genetic 
diagnosis in seven cases, increasing the diagnostic yield by 1.4%, which is com-
parable to a recent report on WES-based CNV detection in clinical diagnostic 
samples [Pfundt et al. 2016]. Despite being possible only in a few cases, the 
ability of NGS to obtain allelic information without additional testing of family 
members could be considered as another advantage of NGS, if compared to 
routine Sanger sequencing. For example, due to the proximity of causative 
mutations in patients #1 and #16 (Table 9), we were able to physically phase 
two heterozygous mutations into different alleles, allowing us to instantly 
clarify the trans-position of mutations (Figure 8 illustrates Case #1). Due to the 
observed high rate of previously unreported variants detected in our cohort 
(46%), the advantage over array-based mutation testing, which relies on known 
information about disease causing variations, is clearly recognizable.  
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Although having many pros, there are some disadvantages of large capture-
based sequencing panels compared to either Sanger sequencing or smaller 
amplicon-based NGS panels. The major issue, which is no different from WES, 
is a decrease in sensitivity due to incomplete coverage of some genes or exons. 
Although large gene panels are generally able to obtain informative (i.e., over 
20-fold) coverage of approximately 95% of targeted bases, the poor coverage of 
some genes remains a considerable drawback. To face this issue, we have made 
the information about average gene-based coverage (percentage of targeted 
bases with over 20-fold depth) available for referring doctors, guiding them in 
choosing the most appropriate test for their patients. In addition, we report back 
the coverage of requested genes calculated individually for every sample after 
the completion of test, thus providing an estimation of sensitivity. Due to its 
limitation regarding coverage, large gene panel sequencing, which can be 
referred to as a class C NGS test according to European guidelines [Matthijs et 
al. 2016], is not suitable for excluding pathogenic variation for many disorders. 
Nevertheless, the ability to efficiently screen for a large proportion of mutations 
justifies its use in clinical diagnostics. 
 

 
Figure 8. PMM2 compound heterozygous mutations in Case #1 showing the ability to 
physically phase closely located gene variants. In this case, two heterozygous mutations 
appear on different chromosomes, as there are no reads encompassing both mutations. 
Figure was prepared using Integrative Genomics Viewer [Robinson et al. 2011]. 
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5.3. KPTN-related intellectual disability-macrocephaly 
syndrome (Paper III) 

In the brother and sister with ID and macrocephaly, no significant CNVs were 
detected by CMA. However, two LCSHs greater than 5 Mb were found in the 
brother: chr1:182,559,510-200,136,582 and chr14:37,290,124-44,790,527 
(hg19). The sister had only one large LCSH that was identical to the brother’s 
LCSH in chromosome 14. Although WES from the brother’s DNA sample did 
not reveal any mutations associated with the patient’s phenotype in the shared 
LCSH, further search for rare homozygous deleterious mutations led to the 
discovery of a one-nucleotide duplication in exon 7 of the KPTN gene predicted 
to result in a frameshift: c.665dupA p.(Ser223Glnfs*18) (RefSeq NM_007059.2). 
The variant was not present in ExAC or ClinVar databases. Less than a year 
before this analysis was performed, KPTN mutations were associated with 
Mendelian disorders for the first time in a large Anabaptist kindred with many 
affected by ID-macrocephaly syndrome [Baple et al. 2014]. Sanger sequencing 
confirmed the homozygous variant in both affected sibs and heterozygous 
variant in both parents. Reanalysis of the CMA data revealed a 1.5 Mb LCSH 
encompassing the KPTN gene (Figure 7). Based on the occurrence of multiple 
LCSHs, we suspect distant parental consanguinity. 

Baple et al. conducted extensive functional studies showing that both 
founder mutations causing the genetic disorder in the Anabaptist population 
result in loss of function of kaptin protein [Baple et al. 2014]. Kaptin associates 
with dynamic actin cytoskeletal structures in neurons and the loss of the 
association caused by loss-of-function mutations leads to neurodevelopmental 
alterations [Baple et al. 2014]. The authors proposed that KPTN mutations result 
in a clinically distinctive syndrome with the core phenotype of macrocephaly, 
global DD, behavioural abnormalities, and seizures [Baple et al. 2014]. Including 
patients, we can conclude that the cardinal features of the syndrome are 
macrocephaly and ID. It is also likely that there is an increased risk for seizures 
and behavioural problems, but these are not fully penetrant features. Based on 
our patients, the intellectual and language abilities tend to be more severe than 
motor development. Our patients and the Anabaptist patients did not share any 
dysmorphic features besides a prominent forehead or frontal bossing, which 
could be associated with macrocephaly. Like previously reported patients [Baple 
et al. 2014], ours did not have any documented hearing problems, thus the 
hypothesis about KPTN being a candidate gene for hearing loss [Bearer et al. 
2000] is not supported. We also support the hypothesis that the KPTN-related 
syndrome is widespread and not restricted to the Anabaptist population [Baple 
et al. 2014]. 

The recent discovery of the KICSTOR protein complex links KPTN-related 
disorders to other mTOR-pathway associated disorders like tuberous sclerosis 
[Wolfson et al. 2017]. There are some clinical similarities in the described 
siblings to other mTOR-related disorders, mainly macrocephaly and increased 
risk for seizures and neurodevelopmental problems. As the KICSTOR complex 
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serves as negative regulator for the mTOR signalling pathway, KPTN LoF 
mutations may result in hyperactivation of the mTOR pathway. It can thus be 
hypothesized that rapamycin and similar known mTOR signalling inhibitors 
could have a positive effect on patients with KPTN-related disorders similarly to 
those affected by tuberous sclerosis. However, more studies investigating the 
pathogenetic mechanisms of KPTN-related disorders are needed before con-
sidering drug trials. Also, by the time of writing this thesis, the reported KPTN-
related syndrome cases were limited to eleven patients from two kindreds and 
three pathogenic mutations, which is undoubtedly too few to make definitive 
conclusions on either the clinical spectrum of the disorder or the molecular 
effects of the mutations. Animal models would serve as excellent research 
subjects, supported by the macrocephaly present in Kptn knock-out mice (IMPC, 
personal communication, unpublished data) thus resembling the human 
phenotype. Further clinical reports, as well as studies on kaptin function and the 
mutation effects are needed to further delineate the KPTN-related syndrome. 

Identification of the disease-causing mutation in the KPTN gene was 
straightforward in this case due to suspicion towards homozygous mutations 
based on LCSHs detected by CMA, and the ability of WES to detect virtually 
all rare coding homozygous mutations. Nevertheless, it must be noted that if the 
analysis would have been performed before the first report of KPTN-related 
syndrome [Baple et al. 2014], the conclusive interpretation would have been 
much more difficult to make. Also, if TruSight One panel (Illumina Inc.), which 
is widely used in our centre as a diagnostic test, would have been used in this 
patient, the case would have not been solved since the KPTN gene is not 
covered in the panel. This justifies the use of WES as the preferred assay in 
research settings. 

 
 

5.4. Molecular and clinical phenotype of a novel  
MYH7 mutation detected in a boy with congenital 

myopathy (Paper IV) 

To investigate the molecular cause of a muscle disorder in a boy with congenital 
myopathy and fiber type disproportion, WES of the parents-offspring trio was 
carried out on the clinical diagnostic indications. De novo synonymous 
c.5655G>A, p.(Ala1885=) transition of the last nucleotide in exon 38 of MYH7 
gene (RefSeq NM_000257.3) was identified. The mutation was confirmed by 
Sanger sequencing. In silico analysis using both MutationTaster [Schwarz et al. 
2014] and MutPred Splice [Mort et al. 2014] predicted that the variant disrupts 
splicing. 

To clarify the mutation’s effect on splicing, RNA studies were performed. 
After cDNA synthesis, PCR amplification using aforementioned primers 
detected three fragments with different sizes by agarose gel electrophoresis as 
expected for disrupted splicing: fragment #1 (393 bp) and #2 (297 bp) with 
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primers MYH7_F1 and MYH7_R1, and fragment #3 (199 bp) with primers 
MYH7_F2 and MYH7_R1. Sanger sequencing of extracted gel fragments #2 
and #3 confirmed the skipping of exon 38 in fragment #2 (Figure 9). The 
change at the mRNA level can be described as NM_000257.3:r.5560_5655del 
and predicted on the protein level as an in-frame deletion 
NP_000248:p.(1854_1885del).  

 
The MYH7-releated myopathies represent a wide spectrum of clinical pheno-
types caused by mutations in the myosin-tail domain of the gene. In the era of 
genome-wide sequencing, the range of gene-associated phenotypes is predicted 
to widen even more because genetic testing does not focus only on known 
phenotype-genotype associations [Komlosi et al. 2014]. Thus, one can suppose 
that phenotypes once reported as distinct will show more overlap as new 
patients are reported [Ortolano et al. 2011]. 

The patient reported here presented early in infancy with muscular hypotonia 
and weakness in proximal muscles of the lower limbs and trunk (positive 
Gower’s sign) and extremely prominent weakness in the neck extensor muscles 
(positive dropped head sign). It is important to emphasise that up to almost 

 

 

Figure 9. Results of RNA studies confirming exon-skipping. The upper part of the 
figure shows the alignment of muscle tissue cDNA PCR products (fragments #2 and #3) 
with the MYH7 gene. The sequences of the exon-exon boundaries from the same 
fragments (#2 and #3) are presented in the lower part. It can be clearly seen that in 
fragment #2, exon 38 has been skipped, and the mutation detected at the DNA level is 
not present in fragment #3 where the c.5655G position is indicated with an arrow. 
Figure was prepared by Dr. Tarmo Annilo. 
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2 years of age the disease has not progressed; on the contrary, his motor abilities 
are improving along with only lagging motor head control. His phenotype 
correlates more with MSM than LDM. Interestingly, exaggerated deep tendon 
reflexes were present in our patient, although the other patients with MYH7-
related CFTD/MSM show absent or hypoactive tendon reflexes [Sobrido et al. 
2005]. At 1 year and 9 months he had no cardiac abnormalities detected by echo-
cardiography, consistent with a low prevalence of cardiomyopathy in MYH7-
related skeletal muscle disorders [Tajsharghi and Oldfors 2013]. Because no 
myosin storage was found on muscle biopsy, we cannot diagnose the patient as 
having MSM. CFTD is not suggested as suitable for formal diagnosis because it 
represents a syndrome [Clarke 2011], but our case does not fit the diagnosis of 
either MSM or LDM. We therefore propose the general term MYH7-related 
myopathy to be the most accurate for cases like ours. 

Although more severely affected, our patient shows clinical similarity with 
the patients from one family first described by Sobrido et al. [2005] and later 
with genetic investigations by Ortolano et al. [2011]. Among affected members 
of the kindred, myosin storage was seen only in the oldest patient while the 
younger patients had isolated CFTD, leading to the hypothesis that CFTD is an 
early histopathologic sign of MSM [Ortolano et al. 2011], which we cannot rule 
out in our patient either because the muscle biopsy was taken during infancy. 
We should note that our patient is one of the youngest ones reported and this 
could also explain some differences seen in the phenotype. 

The described novel pathogenic mutation was the first single-nucleotide 
substitution in the MYH7 gene demonstrated to cause in-frame skipping of exon 
38, thus shortening the encoded protein by 32 amino acids. The unique type of 
mutation could be the cause for the clinical differences and relatively more severe 
phenotype compared to those of previously reported patients. After publishing 
our case, two next patients with mutations leading to skipping of exon 38 were 
described [Fiorillo et al. 2016]. Although the effect on mRNA was the same, the 
phenotypes differed between patients. Similarly to our patient, the dropped head 
sign due to axial muscles involvement was the leading feature in one case, but 
together with heart dysfunction; the other patient, however, presented with 
infantile onset of respiratory muscle impairment [Fiorillo et al. 2016]. Interes-
tingly, neither of the two other patients had any findings of fibre type dispro-
portion on muscle biopsy [Fiorillo et al. 2016]. Our finding that synonymous 
mutations disrupt splicing indicates that caution is needed when filtering out 
synonymous changes during WES data interpretation. Also, this report illustrates 
the importance of the RNA studies in the final interpretation of some cases of 
diagnostic WES where the clinical significance of detected mutations is difficult 
to predict. It is worth noting that although the locus of the reported transition is 
highly conserved in mammals, the dog has reference nucleotide A instead of the 
human reference G at this position (according to the Dog Sep. 2011 [Broad 
CanFam3.1/canFam3] assembly and transcript ENSCAFT00000027883). This 
appears not to cause altered splicing in dogs according to numerous mRNA and 
Expressed Sequence Tag (EST) sequences available in the GenBank. 
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The demonstrated skipping of exon 38 removes half of the assembly 
competence domain for the slow myosin protein [Sohn et al. 1997], indicating 
the phenotype seen in the reported patient could be caused by impaired myosin 
assembly into thick filaments. If the deletion completely prevented myosin 
dimerization, the pathogenetic mechanism could be described as haploinsuffi-
ciency. Loss-of-function mutations appear in the ExAC database with an allele 
frequency of approximately 1:3000, which might indicate that haploinsuffi-
ciency of the MYH7 is not pathogenic. Nevertheless, both frameshift and non-
sense mutations in the MYH7 gene have been shown to cause cardiomyopathy 
[Waldmuller et al. 2011]. Also, as the described exon-skipping mutation is in-
frame and does not remove the whole assembly competence domain, it probably 
does not result in complete loss of function, and rather is similar to in-frame 
deletions seen in Becker muscular dystrophy [Aartsma-Rus et al. 2006].  

The clinical phenotype and the novel exon-skipping mutation of the patient 
expand the knowledge about MYH7-related disorders. Therefore, we advise 
suspecting mutations in the MYH7 gene in patients with a dropped head sign 
and general hypotonia. More reports on patients with exonic deletions are 
needed to clarify the role of intragenic deletions in the muscular phenotype. 
Further functional studies on myosin can bring insight into pathogenetic mecha-
nisms arising from proteins with in-frame deletions. 
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6. CONCLUSIONS 

1. The results of a study concentrating on the diagnostic utility of single long 
contiguous stretches of homozygosity in patients without parental con-
sanguinity based on a routine clinical diagnostic laboratory’s CMA data 
(2,110 patients) from a four-year period were reported. 
1.1 In Estonia, 8.2% of patients carry one or two LCSH over 5 Mb in size, 

making LCSHs the most frequently reported class of VUSs from CMA.  
1.2 Six different recurrent LCSHs were identified resulting in 52 events or 

28.9% of all isolated LCSH findings. Thus, we could clarify the clinical 
significance of nearly one-third of all LCSHs by classifying them as 
likely benign. Out of six recurrent LCSH-regions, only two were pre-
viously described in other populations, indicating the population speci-
ficity. 

1.3 Out of 129 non-recurrent LCSHs, two were identified to encompass a 
candidate gene for AR disorder matching with the clinical phenotype. In 
both cases, the homozygous disease-causing variant in the candidate 
genes were identified. Although finding a good candidate gene from 
single LCSHs is a rare event, systematic analysis of the genes inside 
LCSH can provide valuable clues for candidate gene prioritization. 

1.4 If no good candidate genes are identified in LCSH, it may still increase 
the probability of detecting homozygous mutations due to possible distant 
relatedness of parents, as illustrated by the case of siblings carrying a 
homozygous frameshift mutation in the KPTN gene. 

2. Based on our centre’s experience from the first 501 diagnostic cases in a 
whom large panel of 4,813 genes was sequenced and subsequently analysed 
based on virtual subpanels as requested by referring doctors, it can be conc-
luded that large gene panel sequencing can make use of many capabilities of 
NGS for detection of a large variety of mutations.  
2.1 Out of 501 patients, 132 received a conclusive diagnosis after large gene 

panel sequencing. Thus, the diagnostic yield was 26.3%, making it 
comparable with large WES cohorts previously reported in the literature. 

2.2 From all reported disease-causing variants, 46% were novel (not reported 
before), advocating for sequencing whole coding regions of genes 
instead of testing for only known pathogenic variants in the diagnostics 
of rare disorders. 

2.3 The most common class of pathogenic variants were SNVs and small 
indels (94% of reported variants). However, as CNV calling was perfor-
med from NGS data, additional 7 cases were diagnosed either by 
detecting the single causative deletion or duplication or detecting CNV 
in compound heterozygous state with pathogenic SNV. 

2.4 The subgroup of patients in whom less than ten genes were requested to 
be analysed showed a significantly higher yield than the larger panel 
subgroup (31.5% vs 21.7%, p = 0.015). This indicates that good clinical 
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phenotyping can efficiently guide the selection of patients most likely to 
benefit from sequencing studies. 

2.5 Our experience from a relatively small clinical laboratory demonstrates 
that large gene panels can be used for many different diagnostic scenarios 
in a cost- and time-efficient manner. 

3. Clinical phenotype and molecular findings from two adult siblings with ID 
caused by a homozygous variant in the KPTN gene were described. This 
delineates the core phenotype of this novel AR genetic syndrome. 
3.1 CMA revealed shared LCSH in both siblings. WES was performed in the 

brother to search for rare homozygous variants. A novel homozygous 
frameshift mutation c.665dupA p.(Ser223Glnfs*18) in the KPTN gene 
was detected, not encompassed in the shared LCSH. Sanger sequencing 
confirmed the sister as a homozygote for this variant as well. 

3.2 This was the second case of KPTN-related ID-syndrome reported in the 
medical literature after the first Anabaptist kindred. Thus, we support 
the hypothesis of the first-describing authors that the KPTN-related 
syndrome is widespread and not restricted to Anabaptist population. 

3.3 The cardinal features of the KPTN-related AR syndrome are macro-
cephaly and ID. Seizures and behavioural problems seem to be more 
frequent than in the general population, but these are not fully penetrant 
features. The intellectual and language disorders tend to be more severe 
than motor development. 

4. Molecular investigations in a boy with congenital myopathy and fiber-type 
disproportion revealed a novel MYH7 variant leading to the exon skipping in 
the mRNA, thus expanding the genotypic and phenotypic spectra of MYH7-
related myopathies. 
4.1 WES of the parents-offspring trio carried out on clinical diagnostic indi-

cations identified a novel de novo synonymous c.5655G>A, p.(Ala1885=) 
transition of the last nucleotide in exon 38. This mutation was confirmed 
by Sanger sequencing. 

4.2 The studies performed on RNA extracted from the muscle tissue 
confirmed the molecular effect of the mutation as skipping of exon 38. 
This was the first report of a patient with an exon-skipping mutation in 
the MYH7 gene, as other pathogenic mutations were missense or in-
frame deletions of single amino acids. 

4.3 The phenotypic spectrum of MYH7-related phenotypes is broad and was 
even further expanded by this report. Thus, the MYH7 gene should be 
included in the candidate gene list in patients with a dropped head sign 
and general hypotonia.  

4.4 From a diagnostics perspective, this case highlighted the needed caution 
in filtering out synonymous changes during WES data interpretation. 
Moreover, as illustrated here, the collaboration with research institutions 
with capabilities for RNA as well as other molecular investigations is 
crucial in solving some challenging diagnostic WES cases. 
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This study demonstrated the usefulness of genome-wide analyses for many 
diagnostic scenarios and revealed the diagnostic yields of different genetic tests 
in clinical settings. The implementation of modern NGS-techniques and CMA 
into clinical practice has greatly improved the diagnostics of Mendelian 
disorders in Estonia. The knowledge gained from this study can be further used 
to improve diagnostic algorithms for different diseases. 
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SUMMARY IN ESTONIAN 

Mendeliaarsete haiguste ülegenoomne diagnostika: 
kromosomaalsest mikrokiibi analüüsist järgmise  

põlvkonna sekveneerimiseni 

20. sajandi teises pooles muutus tänu teaduse ja kliinilise meditsiini arengule 
võimalikuks geneetiliste haiguste tsüto- või molekulaargeneetiline diagnostika. 
Täpne geneetiline diagnoos on aga kliinilise geneetika kui arstliku eriala keskne 
eesmärk, mis omakorda võimaldab pakkuda patsiendile ja tema perekonnale 
adekvaatset nõustamist, hinnata kordusriske perele, teha sünnieelset diag-
nostikat ning üha sagedamini leida ka paremat ja personaliseeritumat ravi 
[ACMG Board of Directors 2015]. Kliinilises geneetikas keskendutakse pea-
miselt mendeliaarsete haiguste diagnostikale ja ravile. Mendeliaarseteks haigus-
teks nimetatakse arvukat gruppi kõrge penetrantsusega geneetilisi haiguseid, 
mis järgivad autosoom-retsessiivset, autosoom-dominantset või X-liitelist 
pärandumisviisi ja on põhjustatud ühe geeni või lookuse muteerumisest [Anto-
narakis and Beckmann 2006]. Enamik mendeliaarsetest haigustest on klassifit-
seeritavad kui harvikhaigused ehk nende esinemissagedus on alla ühe isiku 
2000-st [Orphanet]. Enamik tänaseks kirjeldatud u 7000 harvikhaigusest on 
geneetilise etioloogiaga, kuid samas on paljude haiguste täpne molekulaarne 
tekkepõhjus siiani avastamata. 

Kui klassikaliselt rajanes geneetiliste haiguste diagnostika võimalikult täpsel 
kandidaatgeenide valikul vastavalt patsiendi fenotüübile ja anamneesile, siis on 
uuemate ülegenoomsete analüüside juurutamine kliinilisse praktikasse võimal-
danud uurida korraga ka suuri genoomipiirkondi ehk paljusid või ka kõiki geene 
korraga. Esimeseks kaasaegseks ülegenoomseks uuringuks kliinilises geneetikas 
oli kromosomaalne mikrokiibi analüüs (KMA), mis võimaldab uurida DNAd 
koopia-arvu muutuste (mikrodeletsioonide ja -duplikatsioonide) suhtes enam 
kui 100 korda täpsema resolutsiooniga kui klassikalisel mikroskopeerimisel 
põhineva kromosoomianalüüsiga. Eestis võeti KMA kliinilises diagnostikas 
kasutusele 2009. aastal, kuid alates 2011. aastast kuulub see Eesti Haigekassa 
tasustatavate teenuste nimekirja. KMA tulemuslikkust on uurinud Eestis dr 
Katrin Männik ja dr Olga Žilina oma doktoriuuringute raames [Männik 2012; 
Žilina 2014]. Dr Žilina uuringutest selgus, et KMA alusel leitakse täpne diag-
noos 11%-l uuritutest. Samas esineb ka hulgaliselt ebaselge kliinilise tähen-
dusega leide, millest kõige sagedasemad on pikad homosügootsed alad. Kromo-
soomiregiooni homosügootsus ei põhjusta haigust iseenesest, kuid võib suuren-
dada autosoom-retsessiivsete haiguste riski. Pikkade homosügootsete alade 
kliinilist tähendust on siiani vähe uuritud, eriti riikides, kus vanemate lähi-
sugulus on harv. 

Veelgi uuemateks ülegenoomseteks uuringuteks on nn järgmise põlvkonna 
sekveneerimisel (ingl k next-generation sequencing ehk NGS) põhinevad geeni-
analüüsid. NGS tehnoloogia võimaldab korraga analüüsida suurt hulka geene 
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(eksoneid) sõltuvalt kasutatavast metoodikast. Enamlevinud on kogu eksoomi 
ehk kõigi valku kodeerivate geenipiirkondade (eksonite) sekveneerimine (ingl k 
whole exome sequencing ehk WES) ning erinevate geenipaneelide analüüsid. 
Geenipaneelide disaine on äärmiselt erinevaid, olles suunatud üksikutele kuni 
tuhandetele geenidele. Üheks levinumaks geenipaneeliks on u 5000 mende-
liaarse haigusega seostatud geeni (mendelioomi) uuriv analüüs. Eestis on WES 
kliinilises kasutuses alates 2013. aastast (Haigekassa hinnakirjas alates 2014. 
aastast), mendelioomi sekveneerimisega alustasime Tartu Ülikooli Kliinikumis 
(TÜK) 2015. aasta aprillis. Kuigi teaduskirjanduses on avaldatud üksikuid juhu-
kirjeldusi, ei ole süstemaatilist analüüsi NGS analüüside kliinilise tulemus-
likkuse kohta Eestis seni tehtud. NGS metoodikate üks oluline aspekt on võime-
kus tuvastada nii teadaoleva patogeensusega kui ka varem kirjeldamata geeni-
variante ning avastada uusi genotüüp-fenotüüp seoseid. Keerukamad juhtumid 
uute mutatsioonide kliinilise tähenduse selgitamiseks vajavad aga tihti lahenda-
miseks rutiinsest diagnostikast välja jäävaid teaduslikke eksperimente. 
 
Käesoleva uuringu eesmärgid 
1. Hinnata pikkade homosügootsete alade kliinilist tähendust Eesti pat-

sientidel, kellel ei esine vanemate lähisugulust (artikkel I).  
2. Hinnata suure geenipaneeli ehk mendelioomi sekveneerimise tulemus-

likkust kliinilises diagnostikas (artikkel II). 
3. Kirjeldada ja molekulaarselt täpsustada KPTN-seoselist intellektipuude 

sündroomi täiskasvanud vennal ja õel (artikkel III). 
4. Uurida trio-WES-il tuvastatud uudse MYH7 geeni de novo mutatsiooni 

molekulaarset ja kliinilist tagajärge (artikkel IV). 
 
Patsientide ja meetodite lühikirjeldus 
Pikkade homosügootsete alade kliinilise tähenduse uurimiseks analüüsiti uuesti 
KMA andmeid 2110 patsiendil, kellele oli analüüs tehtud TÜK ühendlabori 
kliinilise geneetika keskuses aastatel 2011–2014. Lõplikusse uuringuvalimisse 
kaasati patsiendid, kellel esines üks või kaks pikka (üle 5 miljoni aluspaari ehk 
megabaasi) homosügootset ala kogupikkusega alla 28 megabaasi (st 1% kogu 
autosoomsest genoomist). Neil patsientidel uuriti homosügootsetes alades esi-
nevate autosoom-retsessiivseid haigusi põhjustavate geenide sobivust patsiendi 
kliiniliste sümptomitega. Sobiva kandidaatgeeni leidmisel tehti WES, et uurida, 
kas patogeenne mutatsioon lokaliseerub homosügootse ala kandidaatgeeni või 
mõnesse teise geeni.  

Geenipaneeli sekveneerimise tulemuslikkuse hindamiseks analüüsiti 501 
järjestikkust patsienti, kellele oli aastatel 2015–2016 tehtud TÜK molekulaar-
diagnostika laboris sekveneerimisanalüüs, kasutades TruSight One paneeli (Illu-
mina Inc.). Kõik analüüsid tehti diagnostiliste uuringutena ning kliinilised 
andmed koguti saatekirjadelt. Diagnostiline interpretatsioon lähtus arstide telli-
tud geenidest/paneelidest, mis moodustasid igale patsiendile personaalse vir-
tuaalse alapaneeli ehk valiku kõigist paneeliga kaetud 4813 geenist. Nii välditi 
juhuleidude avastamist ja lähtuti konkreetsele diagnostilisele küsimusele vasta-
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misest. Peale punktmutatsioonide ja lühikeste insertsioonide/deletsioonide ehk 
indelite kasutati ka NGS andmetest koopiaarvumuutuste tuvastamise algoritmi.  

Lisaks on käesoleva uurimustöö osa kahe geenidiagnostika erinevaid aspekte 
illustreeriva haigusjuhu kirjeldus. Seni teadmata põhjusega intellektipuude ja 
makrotsefaaliaga õele-vennale tehti KMA ning pärast jagatud homosügootse ala 
tuvastamist vennale WES. Perekondlik segregatsioonianalüüs tehti Sanger 
sekveneerimisega. Teiseks haigusjuhuks oli kaasasündinud müopaatiaga 2-aas-
tane poiss lihaskiutüüpide disproportsiooniga, kellel tehti geneetilise etioloogia 
selgitamiseks trio-WES (laps ja mõlemad vanemad). Tuvastatud sünonüümse de 
novo mutatsiooni molekulaarse efekti hindamiseks tehti lihaskoest eraldatud 
RNA PCR-amplifikatsioon ja Sanger sekveneerimine.  
 
Peamised tulemused ja järeldused 
1. KMA tehti rutiinse kliinilise uuringuna TÜK tsütogeneetika laboris nelja-

aastase uuringuperioodi vältel 2110 korral. Selles valimis uuriti üksikute 
homosügootsete alade tähendust patsientidel, kelle vanemad ei olnud sugu-
lased.  
1.1 8,2% patsientidest kannavad ühte või kahte homosügootset ala pikku-

sega üle 5 megabaasi. See teeb homosügootsetest aladest kõige sage-
dasema KMA vastuses kajastatud ebaselge tähendusega leidude klassi. 

1.2 Leiti kuus patsientidel korduvat homosügootset ala (kokku 52 ehk 
28,9% kõigist üksikutest homosügootsetest aladest). Seega õnnestus sel-
gitada peaaegu kolmandiku homosügootsete alade tähendust, klassifit-
seerides need tõenäoliselt healoomulisteks variantideks. Kuuest kordu-
vast homosügootsest regioonist ainult kaks olid varem kirjeldatud USAs 
läbi viidud uuringus, mis näitab populatsioonist tulenevat erisust. 

1.3 129 mittekorduvast homosügootsest alast kaks sisaldasid autosoom-
retsessiivset haigust põhjustavat kandidaatgeeni, mis sobis patsiendi 
kliinilise fenotüübiga. Mõlemal juhul tuvastati neis kandidaatgeenides 
haigust põhjustav homosügootne variant. Kuigi kliiniliselt sobiva kandi-
daatgeeni avastamine üksikust homosügootsest alast on harv juhus, võib 
süstemaatiline homosügootsetes alades esinevate geenide analüüs aidata 
kaasa sobivate kandidaatgeenide leidmisele. 

1.4 Kui kliiniliselt sobivat kandidaatgeeni üksikus pikas homosügootses alas 
ei tuvastata, võib see siiski tõsta homosügootse haigusseoselise mutat-
siooni esinemise tõenäosust, arvestades vanemate kauge suguluse või-
malikkust. Seda illustreeris juhtum, kus õel ja vennal tuvastati homo-
sügootne raaminihke mutatsioon KPTN-geenis, mis ei asunud nendel 
mõlemal esinenud pikas homosügootses alas. 

2. Tuginedes TÜK molekulaardiagnostika labori kogemusele esimese 501 diag-
nostilise juhtumi kohta, kellele tehti 4813 geeni paneelsekveneerimine ja 
sellele järgnenud analüüs vastavalt arstide tellitud alapaneelidele, saab järel-
dada, et laia paneeli kasutamine võimaldab ära kasutada mitmeid NGSi eeli-
seid, et tuvastada erinevaid mutatsioonitüüpe. 
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2.1 501 patsiendist 132-le õnnestus leida geenipaneeli sekveneerimisel põh-
juslik diagnoos. Seega oli diagnostiline saagis 26,3%, mis on võrreldav 
varasemalt kirjanduses avaldatud suurte kliiniliste WES kohortide tule-
muslikkusega. 

2.2 Kõigist tuvastatud haigusseoselistest mutatsioonidest 46% olid uudsed 
(varem haigusseoseliste mutatsioonide andmebaasides kajastamata). See 
toetab haruldaste haiguste diagnostikas sekveneerimisanalüüside eelista-
mist võrrelduna vaid varasemalt teadaolevate mutatsioonide testimisele. 

2.3 Kõige sagedasemad patogeensete geenivariantide tüübid olid punkt-
mutatsioonid ja lühikesed indelid. Kuna kasutati ka NGS andmetest koo-
piaarvumuutuste tuvastamise algoritme, tuvastati lisaks punktmutat-
sioonidele seitsmel juhul haigusseoselise muutusena ka koopiaarvu 
muutus, kas üksikuna või punktmutatsiooniga liitheterosügootsena.  

2.4 Diagnostiline saagis oli tunduvalt kõrgem nende patsientide hulgas, 
kellele oli tellitud 10 või vähema geeni analüüs võrrelduna suurema ala-
paneeliga tellimustega (vastavalt 31,5% ja 21,7%, p = 0,015). Sellest 
järeldub, et hea kliiniline fenotüpiseerimine võib aidata valida patsiente, 
kellel on kõige suurem tõenäosus tuvastada sekveneerimisanalüüsi abil 
diagnostiline leid. 

2.5 TÜK molekulaardiagnostika labori kui maailma mastaabis suhteliselt 
väikese kliinilise labori kogemus näitab, et suure geenipaneeli sekve-
neerimist on võimalik kasutada paljude erinevate diagnostiliste juhtu-
mite korral nii kulu- kui ka ajatõhusalt, laiendades laboris uuritavate 
geenide hulka märkimisväärselt.  

3. Kahel intellektipuudega õel-vennal tuvastati KPTN geenis homosügootne 
geenivariant, mis võimaldas kirjeldada uue autosoom-retsessiivse geneetilise 
sündroomi tuumikfenotüüpi. 
3.1 KMA tuvastas õel-vennal jagatud pika homosügootse ala. Haruldaste 

homosügootsete mutatsioonide leidmiseks tehti vennale WES, mis 
tuvastas KPTN geenis varem kirjeldamata homosügootse raaminihke-
mutatsiooni c.665dupA p.(Ser223Glnfs*18). KPTN geen ei asunud eel-
nevalt teada olevas pikas homosügootses alas. Sangeri järgi sekveneeri-
mine kinnitas homosügootse leiu ka õel. 

3.2 Antud juhtum oli maailmas teine KPTN-seoselise intellektipuudega pat-
sientide kirjeldus pärast esmakirjeldust USAs Ohios amišite kogukon-
nas. KPTN-seoselise intellektipuude kirjeldamine Eestis toetab esma-
kirjeldajate hüpoteesi, et sündroomi esineb ka mujal maailmas väljas-
pool amišite isolaati. 

3.3 KPTN-seoselise autosoom-retsessiivse sündroomi peamised tunnused 
on makrotsefaalia ja vaimse arengu mahajäämus. Epileptilised hood ja 
käitumishäired on arvatavasti sagedasemad kui üldrahvastikus, kuid on 
mittetäieliku penetrantsusega tunnused. Vaimse ja kõne arengu maha-
jäämus esineb neil patsientidel raskemas astmes kui motoorse arengu 
mahajäämus. 
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4. Kaasasündinud müopaatia ja kiutüüpide disproportsiooniga poisile tehtud 
molekulaargeneetilised analüüsid tuvastasid uudse mutatsiooni MYH7 
geenis, mille tulemusel jäetakse mRNA-s üks ekson vahele. See kirjeldus 
laiendas MYH7-seoseliste müopaatiate geneetilist ja kliinilist spektrit. 
4.1 WES, mis tehti lapsele ja tema vanematele diagnostilise trio-analüüsina, 

tuvastas patsiendil varem kirjeldamata uustekkese (de novo) süno-
nüümse mutatsiooni c.5655G>A, p.(Ala1885=). Muteerunud nukleotiid 
oli 38. eksoni viimane (RefSeq NM_000257.3). Mutatsiooni olemasolu 
kinnitus Sangeri järgi sekveneerimisega. 

4.2 Lihaskoest eraldatud RNA uuringud tõestasid mutatsiooni molekulaarse 
efektina 38. eksoni vahele jätmise. See oli esimene kirjeldus eksoni 
vahele jätmist põhjustavast mutatsioonist MYH7 geenis, kuivõrd teised 
kirjeldatud haigusseoselised mutatsioonid on olnud missense muutused 
või ühe aminohappe kadu põhjustavad raaminihketa mutatsioonid. 

4.3 MYH7 mutatsioonide põhjustatud fenotüüpide spekter on lai ning antud 
uuring võimaldas seda veelgi laiendada. MYH7 geen tuleks lisada 
kandidaatgeenide nimekirja patsientidel, kellel esineb generaliseerunud 
hüpotoonia ja kaelalihaste nõrkusest tulenev raskus pea hoidmisel. 

4.4 Diagnostika vaatepunktist rõhutab antud juhtum, et sünonüümsete 
(neutraalsete) mutatsioonide väljafiltreerimisel WES interpretatsioonil 
peab suhtuma ettevaatusega. Samuti illustreerib juhtum RNA ja teiste 
bioloogiliste uuringute võimekusega teaduslaboritega koostöö vaja-
likkust keerukamate diagnostiliste WES analüüside lahendamisel. 

Käesolev uuring näitas ülegenoomsete analüüside kasu mitmete erinevate diag-
nostiliste stsenaariumite korral ja võimaldas hinnata erinevate geneetiliste uurin-
gute diagnostilist efektiivsust kliinilises praktikas. Uute NGS ja KMA ana-
lüüside juurutamine rutiinsete meditsiiniuuringutena on võimaldanud oluliselt 
parandada mendeliaarsete haiguste diagnostikat Eestis. Antud uuringu tulemusi 
saab tulevikus kasutada erinevate haiguste kliiniliste käsitlusjuhiste arenda-
miseks. 
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