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1. INTRODUCTION

The capital requirement from financial institutions is determined based on
the amount of risk carried in their portfolios. The risk associated with a
portfolio may be originated from:

1. fluctuations in the value of financial assets composing the portfolio
(market risk),

2. fluctuations in the credibility of debtors (credit risk),

3. uncertainty connected with technical, personal and natural factors that
may influence the portfolio value (operational risk).

In order to investigate the risk of a portfolio, the assets subjected to risk (risk
factors) should be identified and the changes in the portfolio value caused by
the risk factors evaluated. Specially relevant for risk management purposes
are negative changes - the portfolio losses.

The Value-at-Risk (VaR) is a measure that quantifies the riskness of a port-
folio. This measure and its accuracy are from crucial importance in deter-
mining the capital requirement from financial institutions. That is one of the
reasons why increasing attention has been paid to VaR computing methods.

The losses and the probabilities associated with them (the distribution of
losses) are necessary to describe the degree of portfolio riskness. The riskier
the portfolio, the higher is the probability of losses being larger than a certain
amount. Formulating in another way, the riskier the portfolio, the larger are
the minimal losses for a certain probability (also called level). That is exactly
the VaR definition: VaR is a quantile of the distribution of portfolio losses
representing the minimal losses for a certain level.

Looking carefully at the distribution of losses, one verifies that large losses
are influenced by simultaneous losses in risk factors. Hence, the distribution
of losses depends on joint distribution of risk factors.
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Understanding the joint distribution of risk factors is fundamental for inves-
tigating and computing the Value-at-Risk. The conventional procedure to
model joint distributions of financial returns is to approximate them with
multivariate normal distributions.

That implies, however, that the dependence structure of the returns is re-
duced to a fixed type. Even if the autocorrelation structure is neglected,
predeterminig a multivariate normal distribution means that the following
assumptions hold:

1. symmetric distribution of returns,

2. the tails of the distribution are not too heavy,

3. linear dependence.

Empirical evidence for these assumptions are barely verified and an alterna-
tive model is needed, with more flexible dependence structure and arbitrary
marginal distributions. These are exactly the charactesitics of copulae.

Copulae are very useful for modelling and estimating multivariate distribu-
tions. The flexibilty of copulae follows basically from Sklar’s Theorem, which
tells that each joint distribution can be ”decomposed” into its marginal dis-
tributions and a copula C ”responsible” for the dependence structure:

F (x1 . . . , xd) = C{F1(x1), . . . , Fd(xd)}

Two important facts for practical applications rely on this theorem:

1. the construction of multivariate distributions may be done in two inde-
pendent steps: the specification of marginal distributions - not neces-
sarily identical - and the specification of a dependence structure. Cop-
ulae ”couples together” the marginal distributions into a multivariate
distribution with the desired dependence structure.

2. joint distributions can be separately estimated from a sample of obser-
vations: the marginal distributions are estimated first, the dependence
structure later.

The copula approach frees the modelling from the usual normality assump-
tions: marginal distributions with asymmetric heavy tails (typical for finan-
cial returns) can be combined together with different dependence structures,
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resulting in multivariate distributions (far different from the multivariate
normal) that better describe the empirical characteristics of financial returns
distribution.

Moreover, copulae allow for dynamical modelling and adaption to portfo-
lios: different copulae with distinct properties can be associated to different
portfolios according to their specific dependence structures. Furthermore,
copulae may change as time evolves, reflecting the evolution of the depen-
dence between financial assets. Summarizing, the Value-at-Risk estimation
with copulae is more efficient and flexible than methods based on normality
assumption.



2. COPULAE

This section presents the basic copulae definitions and theorems. The most
important copulae, together with their standard construction and simula-
tion methods are also discussed. For the proofs and deeper mathematical
treatment refer to Joe (1997) and Nelsen (1998).

2.1 Definitions and Properties

Definition 2.1.1 (Copula):
A d-dimensional copula is a function C : [0, 1]d → [0, 1] satisfying the follow-
ing properties for every u = (u1, . . . , ud)

> ∈ [0, 1]d and j ∈ {1, . . . , d}:

1. if uj = 0 then C(u1, . . . , ud) = 0

2. C(1, . . . , 1, uj, 1, . . . , 1) = uj

3. for every v = (v1, . . . , vd)
> ∈ [0, 1]d, vj ≤ uj

Vc(u, v) ≥ 0

where VC(u, v) is given by

2∑
i1=1

. . .
2∑

id=1

(−1)ii+...+idC(g1i1 , . . . , gdid)

and gj1 = vj and gj2 = uj

As a consequence from the properties above, copulae are multivariate uniform
distributions. The first and third properties state that copulae are grounded
functions and that all d-dimensional boxes with vertices in [0, 1]d have non-
negative C-volume. Together they guarantee that copulae are distribution
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functions, while the second property tells that copulae have uniform marginal
disributions.

Note: considering random variables X1, . . . , Xd with univariate distribution
functions F1, . . . , Fd and the random variables Ui = FXi

(Xi), i = 1, . . . , d uni-
form distributed in [0, 1], a copula may be interpreted as the joint distribution
of the marginal distributions.

For all u = (u1, . . . , ud)
> ∈ [0, 1]d, every copula C satisfies

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud)

where
M(u1, . . . , ud) = min(u1, . . . , ud) (2.1)

and

W (u1, . . . , ud) = max

(
d∑

i=1

ui − d+ 1, 0

)
(2.2)

M(u1, . . . , ud) is called Fréchet-Hoeffding upper bound and W (u1, . . . , ud) the
Fréchet-Hoeffding lower bound. While M is not a copula for d > 2, W is a
copula for all d. Besides the Fréchet-Hoeffding bounds, the product copula
Π(u1, . . . , ud) is also from fundamental importance. The product copula is
given by:

Π(u1, . . . , ud) =
d∏

j=1

uj (2.3)

Figure 2.1 ilustrates the Fréchet-Hoeffding bounds and the product copulae.

The following theorem connects copulae with distribution functions and shows
that:

• every distribution function can be ”decomposed” into its marginal dis-
tribution and a (at least) one copula.

• a (unique) copula is obtained from ”coupling together” every (continu-
ous) multivariate distribution function and its marginal distributions.

Theorem 2.1.1 (Sklar’s theorem): Let F be a d-dimensional distribution func-
tion with marginals F1 . . . , Fd. Then there exists a copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.4)
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Fig. 2.1: Fréchet-Hoeffding upper bound W (u1, u2) (left), product copula
Π(u1, u2) (middle), Fréchet-Hoeffding lower bound M(u1, u2) (right).

SFEfrechet.xpl

for every x1, . . . , xd ∈ R. If F1, . . . , Fd are continuous, then C is unique. On
the other hand, if C is a copula and F1, . . . , Fd are distribution functions,
then the function F defined in (2.4) is a joint distribution function with
marginals F1, . . . , Fd.

Hence, for a joint distribution F with continuous marginals F1, . . . , Fd the
unique copula C can be obtained from (2.4) for all u = (u1, . . . , ud)

> ∈ [0, 1]d

as

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)} (2.5)

Definition 2.1.2 (Copula of a random variable): Let X = (X1, . . . , Xd)
> be

a random vector with distribution X ∼ FX and continuous marginals Xj ∼
FXj

. The copula of X is the distribution function CX of u = (u1, . . . , ud)
>

where uj = FXj
(xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F
−1
Xd

(ud)} (2.6)

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEfrechet
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For independent random variables X1, . . . , Xd the copula of X is the product
copula defined in (2.3):

CX(u1, . . . , ud) = FX(x1, . . . , xd)

=
d∏

j=1

FXj
(xj)

= Π{FX1(x1), . . . , FXd
(xd)}

= Π(u1, . . . , ud)

Note that the product copula is the same for any marginal distributions, i.e.,
it determines the dependence structure between the univariate variables for
abitrary marginals.

The next theorem shows that copulae are invariant under monotone increas-
ing transformations. This property is very useful for obtaining copula families
in subsequent sections.

Theorem 2.1.2 (Invariance under monotone increasing transformations):
Let X = (X1, . . . , Xd)

> be a random vector with continuous marginals and
copula CX and T1, . . . , Td be strictly increasing functions onRanX1, . . . , RanXd.
Let Y = (Y1, . . . , Yd)

>, Yi = Ti(Xi) be a random vector with copula CY . Then
CX = CY almost everywhere.

A d-dimensional random variable determines a copula through its joint and
marginal distributions. Moreover, monotone increasing transformations on
the random variable do not affect the copula. These are the main ideas used
to obtain the Gaussian copula: the random variable X = (X1, . . . , Xd)

> with
multivariate normal distribution and copula CX is monotone increasingly
tranformed into the standardised variable Z = (Z1, . . . , Zd)

>, Zj ∼ N(0, 1).
The copula of the random variable Z is CX .

For absolute continuous copula, there exists a copula densitiy. Copula den-
sities are essential for estimation procedures, as seen in chapter3.

Definition 2.1.3 (Copula density): For an absolutely continuous copula C,
the copula density is defined as

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud

(2.7)
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Given a random variable X = (X1, . . . , Xd)
>, with absolute continuous dis-

tribution function F and copula CX , the density cX is obtained differentiating
(2.6):

cX(u1, . . . , ud) =
f{F−1

X1
(u1), . . . , F

−1
Xd

(ud)}∏d
j=1 fj{F−1

Xj
(uj)}

(2.8)

where f is the joint density of FX and fj the density of FXj
. The density

from the copula of X can be determined from its joint density and inverse
marginal distributions.

2.2 Gaussian Copula

The Gaussian copula represents the dependence structure from the multivari-
ate normal distribution, that means, normal marginal distributions combined
with Gaussian copula form multivariate normal distributions.

The combination of non-normal marginal distributions results in meta-Gaussian
distributions, i.e., distributions where only the dependence structure is Gaussian
(an example is plotted in the upper left part from figure 2.4).

To obtain the Gaussian copula, let X = (X1, . . . , Xd)
> ∼ Nd(µ,Σ) with

Xj ∼ N(µj, σj) and σj = Σjj for j = 1, . . . , d. From Sklar’s Theorem there
exists a copula CX such that:

FX(x1, . . . , xd) = CX{FX1(x1), . . . , FXd
(xd)}

where FXi
is the distribution function of Xi and FX the distribution function

of X.

Let Yj = Tj(Xj), where T (x) is the transformation

Tj(x) =
x− µj

σj

Then Yj ∼ N(0, 1) and Y = (Y1, . . . , Yd)
> ∼ Nd(0,Ψ) where Ψ is the

correlation matrix associated with Σ. Moreover, there exists a copula CGa
Ψ ,

called Gaussian copula, such that:

FY (x1, . . . , xd) = CGa
Ψ {Φ(x1), . . . ,Φ(xd)} (2.9)
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where Φ is the distribution function of Yj and FY the distribution function
of Y . An explicit expression for the Gaussian copula is obtained rewriting
(2.9) with uj = Φ(xj):

CGa
Ψ (u1, . . . , ud) = FY {Φ−1(u1), . . . ,Φ

−1(ud)}

=

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
2π−

d
2 | Ψ |−

1
2 e(−

1
2
r>Ψ−1r)dr1 . . . drd

where r = (r1, . . . , rd)
>.

As T (x) is increasing it follows from theorem 2.1.2 that

CX = CGa
Ψ

Thus, any multivariate normal distribution can be constructed from its mar-
ginal distributions and the Gaussian copula CGa

Ψ with the desired correlation
matrix Ψ.

Remark 2.1: If Ψ = Id the Gaussian copula becomes the product copula as

CGa
Id

(u1, . . . , ud) =

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
2π−

d
2 e(−

1
2

Pd
j=1 r2

j )dr1 . . . drd

=

∫ Φ−1(u1)

−∞

1√
2π
e−

1
2
r2
1dr1 . . .

∫ Φ−1(ud)

−∞

1√
2π
e−

1
2
r2
ddrd

= Φ{Φ−1(u1)} . . .Φ{Φ−1(ud)}

= Π(u1, . . . , ud)

The density of the Gaussian copula (figure 2.2) is obtained by differentiating
(2.9),

| 2πΨ |−
1
2 exp

(
−1

2
x>Ψ−1x

)
= cGa

Ψ {Φ(x1), . . . ,Φ(xd)}
d∏

j=1

2π−
1
2 exp

(
−1

2
x2

j

)
rearranging terms and defining ζj = Φ−1(uj), ζ = (ζ1, . . . , ζd)

>:

cGa
Ψ (u1, . . . , ud) = | Ψ |−

1
2 exp

{
−1

2
ζ>(Ψ−1 − Id)ζ

}
(2.10)
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Fig. 2.2: Density of Gaussian copula, cGa
Ψ (u1, u2), ψ12 = 0.5.

SFEgausscop.xpl

2.3 Student’s t-Copula

The t-copula, containing the dependence structure form the multivariate t-
distribution, may be obtained in a similar way.

Let X = (X1, . . . , Xd)
> ∼ td(ν, µ,Σ) and Y = (Y1, . . . , Yd)

> ∼ td(ν, 0,Ψ)
where Ψ is the correlation matrix associated with Σ. The unique copula from
Y is the Student’s t-copula Ct

ν,Ψ. Moreover, it follows from theorem 2.1.2 that
CX = Ct

ν,Ψ.

For u = (u1, . . . , ud)
> ∈ [0, 1]d, the Student’s t-copula is given by

Ct
ν,Ψ(u1, . . . , ud) = tν,Ψ{t−1

ν (u1), . . . , t
−1
ν (ud)}

where t−1
ν is the quantile function from the univariate t-distribution and tν,Ψ

the distribution function of Y .

The density of the t-copula (figure 2.3) is given by

ctν,Ψ(u1, . . . , ud) =
tν,Ψ{t−1

ν (u1), . . . , t
−1
ν (ud)}∏d

j=1 tν,Ψ{t−1
ν (uj)}

(2.11)

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEgausscop
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Fig. 2.3: Density of t-copula, ctν,Ψ(u1, u2), ψ12 = 0.2, ν = 3.

SFEtcop.xpl

With ζj = t−1
ν (uj) the density of the t-copula can be expressed as:

ctν,Ψ(u1, . . . , ud) = | Ψ |−
1
2
Γ(ν+d

2
)
{
Γ(ν

2
)
}d−1 (

1 + 1
ν
ζ>Ψ−1ζ

)− ν+d
2{

Γ(ν+1
2

)
}d∏d

j=1

(
1 + 1

ν
ζ2
j

)− ν+1
2

(2.12)

2.4 Archimedean Copulae

Definition 2.4.1: Let φ : [0, 1] → [0,∞] be a continuous, strictly decreasing
function with φ(1) = 0. The pseudo inverse of φ is the function φ[−1] such
that

φ[−1] =

{
φ−1(t), 0 ≤ t ≤ φ(0)
0, φ(0) ≤ t ≤ ∞

Theorem 2.4.1: Let φ : [0, 1] → [0,∞] be a convex, strictly decreasing con-
tinuous function with φ(1) = 0. Then the function C : [0, 1]2 → [0, 1]

C(u1, u2) = φ[−1]{φ(u1) + φ(u2)} (2.13)

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEtcop
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is a copula.

Copulae of the form (2.13) are called Archimedean copulae and the functions
φ their generators. If in addition φ(0) = ∞, φ is called a strict generator and
φ[−1] = φ−1.

2.4.1 Example: Gumbel copula

The function φ(t) = (− ln t)θ, θ ∈ [1,∞) is convex, strictly decreasing and
continuous in [0, 1] with φ(0) = ∞ and φ(1) = 0, thus it is a strict generator
and φ−1(t) = e−tθ−1

. The function C : [0, 1]2 → [0, 1]

C(u1, u2) = e−{(− ln u1)θ+(− ln u2)θ}θ−1

is the Gumbel copula . For θ = 1 we obtain the product copula: C(u1, u2) =
Π(u1, u2), for θ →∞ we obtain the Fréchet-Hoeffding upper bound:

Cθ(u1, u2)
θ→∞−→ min(u1, u2)

2.5 Multivariate Archimedean Copulae

The next theorem generalizes the concepts of archimedean copulae for the
d-dimensional case. Detailed treatment and proofs can be found in Nelsen
(1998).

Definition 2.5.1: A function f(t) is completely monotonic in an interval [a, b]
if for t ∈ [a, b] and k ∈ N it satisfies

(−1)k d
k

dtk
f(t) ≥ 0

Theorem 2.5.1: Let φ be a strict generator. The function Cd : [0, 1]d → [0, 1]

Cd(u1, . . . , ud) = φ−1{φ(u1) + . . .+ φ(ud)}

is a copula for all d ≥ 2 if and only if φ−1 is completely monotonic in [0,∞).

Some d-dimensional archimedean copulae are presented below. For more
generators, copula families and respective properties, see Joe (1997).
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1. Frank copula, 0 < θ ≤ ∞

Cθ(u1, . . . , ud) = −1

θ
ln


1 +

d∏
j=1

(e−θuj − 1)

(e−θ − 1)d−1


2. Gumbel copula, 1 ≤ θ ≤ ∞

Cθ(u1, . . . , ud) = exp

−{ d∑
j=1

(− lnuj)
θ

}θ−1
3. Ali-Mikhail-Haq copula, −1 ≤ θ < 1

Cθ(u1, . . . , ud) =

d∏
j=1

uj

1− θ

(
d∏

j=1

1− uj

)

4. Clayton copula, θ > 0

Cθ(u1, . . . , ud) =

{(
d∑

j=1

u−θ
j

)
− d+ 1

}− 1
θ

where the density of the Clayton copula is given by

cθ(u1, . . . , ud) =
d∏

j=1

{1 + (j − 1)θ}u−(θ+1)
j

(
d∑

j=1

u−θ
j − d+ 1

)−(θ−1+d)

2.6 Distributions Constructed with Copulae

Joint distributions with different dependence between the marginal distrib-
utions can be easily constructed with copulae. As an example, the standard
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normal and t3 marginal distributions are be coupled with 4 distinct copulae
C to build the joint distribtuion F given by

F (x1, x2) = C{Φ(x1), t3(x2)}

The density function of F is

f(x1, x2) = c{Φ(x1), t3(x2)}ϕ(x1)ft,3(x2)

where ϕ(x) is the density function from the standard normal distribution and
ft,3(x) from the t-distribution with 3 degrees of freedom. The contour plots
from f(x1, x2) are shown in figure 2.4 for the respective copula choices.

2.7 Monte Carlo Simulation

The simulation from d pseudo random variables with joint distribution de-
fined by a copula C and d marginal distributions Fn, n = 1, . . . , d, may
follow different techniques. A standard method for archimedean copulae is
the conditional distribution method, shortly described in the sequence. For
more details and different methods, see Bouyé (2000), Devroye (1986) and
Embrechts (2005).

Defining the copulae n-dimensional marginal distribution Cn for n = 2, . . . , d−
1 as

Cn(u1, . . . , un) = C(u1, . . . , un, 1, . . . , 1)

and the derivative of Cn with respect to the first n− 1 arguments as

cnn−1(u1, . . . , un) =
∂n−1Cn(u1, . . . , un)

∂u1, . . . , ∂un−1

the probability P (Un ≤ un, U1 = u1, . . . , Un−1 = un−1) can be written as

lim
∆u1,...,∆un−1→0

Cn(u1 + ∆u1, . . . , un−1 + ∆un−1, un)− Cn(u1, . . . , un)

∆u1, . . . ,∆un−1

=

= cnn−1(u1, . . . , un)

Thus, the conditional probability Λ(un) is a function of the ratio of deriva-
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Fig. 2.4: Pdf contour plots, F (x1, x2) = C{Φ(x1), t3(x2)} with (clockwise)
Gaussian (ρ = 0), Clayton (θ = 0.9), Frank (θ = 8) and Gumbel (θ = 2)
copulae.

SFEplotCop.xpl

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEplotCop
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Fig. 2.5: Monte Carlo sample of 10.000 realizations of pseudo random variable with
uniform marginals in [0, 1] and dependence structure given by Clayton
copula, θ = 0.79.

SFEclaytonMC.xpl

tives:

Λ(un) = P (Un ≤ un | U1 = u1, . . . , Un−1 = un−1)

=
P (Un ≤ un, U1 = u1, . . . , Un−1 = un−1)

P (U1 = u1, . . . , Un−1 = un−1)

=
cnn−1(u1, . . . , un)

cn−1
n−1(u1, . . . , un−1)

The generation of d pseudo random numbers with given marginal distrib-
utions Fn, n = 1, . . . , d and dependence structure given by the copula C
follows the steps:

1. generate pseudo random numbers v1, . . . , vd independent and uniformly
distributed in [0, 1].

2. for n = 1, . . . , d generate the pseudo random numbers as un = Λ−1(vn).
The pseudo random numbers u1, . . . , ud have uniform marginal distri-
butions in [0, 1] and dependence structure given by the copula C.

3. set xn = F−1
n (un). The pseudo random numbers x1, . . . , xd are distrib-

uted with the desired marginal distributions and dependence structure.

If C is the Gaussian copula, the simulation follows:

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEclaytonMC


2. Copulae 24

1. generate pseudo random numbers v1, . . . , vd distributed as N(0,Ψ)

2. set un = Φ(vn), n = 1, . . . , d. The pseudo random numbers u =
(u1, . . . , ud) have uniform marginal distributions in [0, 1] and depen-
dence structure given by CGa

Ψ .

3. set xn = F−1
n (un). The pseudo random numbers x1, . . . , xd are distrib-

uted with the desired marginal distributions and dependence structure.

If the marginal distributions are normal, the pseudo random numbers are
multivariate normal distributed. Otherwise their distribution is called Meta-
Gaussian distribution.

If C is the t-copula, the simulation follows:

1. generate pseudo random numbers v1, . . . , vd distributed as td(ν, 0,Ψ)

2. set un = tν(vn), n = 1, . . . , d where tν is the univariate t distribu-
tion with ν degrees of freedom. The pseudo random numbers u =
(u1, . . . , ud) have uniform marginal distributions in [0, 1] and depen-
dence structure given by Ct

ν,Ψ.

3. set xn = F−1
n (un). The pseudo random numbers x1, . . . , xd are distrib-

uted with the desired marginal distributions and dependence structure.

If the marginal distributions are tν , the pseudo random numbers are multi-
variate t distributed. Otherwise their distribution is called Meta-t distribu-
tion.

Repeating one of the procedures above T times yields a Monte Carlo sample
{xn,t}T

t=1, for n = 1, . . . , d of a random variable distributed as desired.
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Fig. 2.6: Monte Carlo sample of 10.000 realizations of pseudo random variable with
standard normal marginals and dependence structure given by Clayton
copula with θ = 0.79.

SFEclaytonMC.xpl
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Fig. 2.7: Scatterplots of Monte Carlo sample (5.000 realizations) of pseudo random
variable X = (X1, X2, X3)> with uniform (above) and t3 marginal dis-
tributions (below). Dependence structure given by t-copula with ν = 3
and ψi,j = 0.5, i, j = 1, 2, 3, i 6= j.

SFEtMC.xpl

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEclaytonMC
http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEtMC


3. COPULAE ESTIMATION

Let X be a d-dimensional random variable with parametric univariate mar-
ginal distributions FXj

(xj; δj), j = 1, . . . , d. Further let a copula belong to a
parametric family C = {Cθ, θ ∈ Θ}. From Sklar’s Theorem the distribution
of X can be expressed as

FX(x1, . . . , xd) = C{FX1(x1; δ1), . . . , FXd
(xd; δd); θ}

and its density as

f(x1, . . . , xd; δ1, . . . , δd, θ) = c{FX1(x1; δ1), . . . , FXd
(xd; δd); θ}

d∏
j=1

fj(xj; δj)

where

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud

For a sample of observations {xt}T
t=1, xt = (x1,t, . . . , xd,t)

> and a vector of
parameters α = (δ1, . . . , δd, θ)

> ∈ Rk+1 the likelihood function is given by

L(α;x1, . . . , xT ) =
T∏

t=1

f(x1,t, . . . , xd,t; δ1, . . . , δd, θ)

and the log-likelihood function by

`(α;x1, . . . , xT ) =
T∑

t=1

ln c{FX1(x1,t; δ1), . . . , FXd
(xd,t; δd); θ}+

T∑
t=1

d∑
j=1

ln fj(xj,t; δj)

The vector of parameters α = (δ1, . . . , δd, θ)
> contains d parameters δj from

the marginals and the copula parameter θ. All these parameters can be
estimated in one step. For practical applications, however, a two steps esti-
mation procedure is more efficient.
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3.1 Maximum Likelihood Estimation

In the Maximum Likelihood estimation method (also called full maximum
likelihood), the vector of parameters α is estimated in one single step through

α̃FML = arg max
α

`(α)

The estimates α̃FML = (δ̃1, . . . , δ̃d, θ̃)
> solve

(∂`/∂δ1, . . . , ∂`/∂δd, ∂`/∂θ) = 0

3.2 IFM - Inference for Margins

In the IFM (inference for margins) method, the parameters δj from the
marginal distributions are estimated in the first step and used to estimate
the dependece parameter θ in the second step:

1. for j = 1, . . . , d the log-likelihood function for each of the marginal
distributions are

`j(δj) =
T∑

t=1

ln fj(xj,t; δj)

and the estimated parameters

δ̂j = arg max
δ

`j(δj)

2. the pseudo log-likelihood function

`(θ, δ̂1, . . . , δ̂d) =
T∑

t=1

ln c{FX1(x1,t; δ̂1), . . . , FXd
(xd,t; δ̂d); θ}

is maximized over θ to get the dependence parameter estimate θ̂.

The estimates α̂IFM = (δ̂1, . . . , δ̂d, θ̂)
> solve

(∂`1/∂δ1, . . . , ∂`d/∂δd, ∂`/∂θ) = 0
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3.3 CML - Canonical Maximum Likelihood

In the CML (canonical maximum likelihood) method, the univariate marginal
distributions are estimated through the empirical distribution function F̂ .
For j = 1, . . . , d

F̂j(x) =
1

T + 1

T∑
t=1

I(xj,t ≤ x)

The pseudo log-likelihood function is

`(θ) =
T∑

t=1

ln c{F̂1(x1,t), . . . , F̂d(xd,t); θ}

and the copula parameter estimator θ̂CML is given by

θ̂CML = arg max
θ

`(θ)

Notice that the first step of the IMF and CML methods estimates the mar-
ginal distributions. After marginals are estimated, a pseudo sample {ut}
of observations transformed in the unit d-cube is obtained and used in the
copula estimation.

3.4 Gaussian Copula Estimation

From a pseudo sample {ut}T
t=1 where u = (u1, . . . , ud)

> ∈ [0, 1]d, the density
of the Gaussian copula is given by

cGa
Ψ (u1, . . . , ud) = | Ψ |−

1
2 exp

{
−1

2
ζ>(Ψ−1 − Id)ζ

}
and the pseudo log-likelihood function by

`(Ψ;u1,t, . . . , ud,t) = −T
2

ln | Ψ | −1

2

T∑
t=1

ζ>t (Ψ−1 − Id)ζt

where ζt = (ζ1,t, . . . , ζd,t)
> and ζj,t = Φ−1(uj,t).

The maximum-likelihood estimator for Ψ is
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Ψ̂ = arg max
Ψ∈P

`(Ψ)

where P is the set of all lower-triangular matrices with one in the diago-
nal. The maximization is feasible but very slow for high dimensions, see
Embrechts (2005). An approximate solution can be obtained using the ML
estimator for the covariance matrix Σ as

Σ̂ = arg max
Σ

`(Σ)

The estimator is then

Σ̂ =
1

T

T∑
t=1

ζ>t ζt

and defining
Λ = diag(Σ̂ii)

we obtain
Ψ̂ = Λ−1Σ̂Λ−1

3.5 Student’s t-Copula Estimation

One possible estimation method for the Student’s t-copula is based on the
estimation from Kendall’s tau with method of moments, as in Embrechts
(2005). For a pseudo sample {ut}T

t=1 where u = (u1, . . . , ud)
> ∈ [0, 1]d, the

Kendall’s tau coefficient for each pair of observations i, j = 1, . . . , d is given
by

ρ̂τ (ui, uj) =

(
T

2

)−1 ∑
1≤t1≤t2≤T

sign(ui,t1 − ui,t2)(uj,t1 − uj,t2)

Each element from the correlation matrix Ψ is estimated as

ψ̂ij = sin
{π

2
ρ̂τ (ui, uj)

}
The parameter ν is estimated through maximum-likelihood with the esti-
mated matrix Ψ̂ held fixed. In this case the pseudo log-likelihood function is
given by

`(ν;u1,t, . . . , ud,t) =
T∑

t=1

ln{ct
ν,Ψ̂

(u1,t, . . . , ud,t)}
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where ct
ν,Ψ̂

(u1,t, . . . , ud,t) is defined in equation 2.11. The estimator for the

number of degrees of freedom is then

ν̂ = arg max
ν∈N+

`(ν)



4. VALUE-AT-RISK AND COPULAE

This section introduces the main assumptions and steps necessary for esti-
mating the VaR from a linear portfolio using copulae. Static and time-varying
methods as well as their VaR performance evaluation through backtesting are
described in the sequence.

4.1 Value-at-Risk

Let w = (w1, . . . , wd)
> ∈ Rd a portfolio of positions on d assets and St =

(S1,t, . . . , Sd,t)
> be a non-negative random vector representing the prices of

the assets at t, where t is a time index. The value Vt of the portfolio w is
given by

Vt =
d∑

j=1

wjSj,t (4.1)

and the random variable

Lt+τ = (Vt+τ − Vt) (4.2)

also called profit and loss (P&L) function, expresses the change in the port-
folio value between τ periods.

Defining the log-returns Xt+τ in τ periods as Xt+τ = lnSt+τ − lnSt and
considering τ = 1, equation (4.2) can be written as

Lt+1 =
d∑

j=1

wjSj,t(e
Xj,t+1 − 1) (4.3)

The distribution function from L, dropping the time index, is given by

FL(x) = P (L ≤ x) (4.4)
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The Value-at-Risk at level α from a portfolio w is defined as the α-quantile
from FL:

V aR(α) = F−1
L (α) (4.5)

It follows from equations 4.3 and 4.4 that FL depends on the d-dimensional
distribution of log-returns FX . In general, the loss distribution FL depends
on a random process representing the risk factors influencing the P&L from
a portfolio. In the present case log-returns are a suitable risk factor choice.
Thus, modelling their distribution is essential to obtain the quantiles from
FL.

A log-returns process {Xt} can be modelled as

Xj,t = µj,t + σj,tεj,t

where εt = (ε1,t, . . . , εd,t)
> are standardised i.i.d. innovations with E[εj,t] = 0

and E[ε2
j,t] = 1 for j = 1, . . . , d, It is the available information at time t,

µj,t = E[Xj,t | It−1]

is the conditional mean given It−1 and

σ2
j,t = E[(Xj,t − µj,t)

2 | It−1]

is the conditional variance given It−1. The innovations ε = (ε1, . . . , εd)
>

have joint distribution Fε and εj has continuous marginal distributions Fj,
j = 1, . . . , d.

4.2 VaR estimation with Copulae

The innovations ε have distribution function described by

Fε(ε1, . . . , εd) = Cθ{F1(ε1), . . . , Fd(εd)} (4.6)

where Cθ is a copula belonging to a parametric family C = {Cθ, θ ∈ Θ}. To
obtain the Value-at-Risk in this set up, the dependence parameter and dis-
tribution function from residuals are estimated from a sample of log-returns
and used to generate P&L Monte Carlo samples. Their quantiles at differ-
ent levels are the estimators for the Value-at-Risk. The whole procedure is
summarized below.

For a portfolio w on d assets and a sample {xj,t}T
t=1, j = 1, . . . , d of log-

returns, the Value-at-Risk at level 1−α is estimated according to the following
steps:
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1. estimation of residuals ε̂t

2. specification and estimation of marginal distributions Fj(ε̂j)

3. specification of a parametric copula family C and estimation of depen-
dence parameter θ

4. generation of Monte Carlo sample of innovations ε and losses L

5. estimation of V̂ aR(1− α), the empirical (1− α)-quantile from L.

4.3 Time-varying Copulae and Backtesting

The application of the (static) procedure described above on different subsets
of a sample {xj,t}T

t=1 delivers a sequence of fitted dependence parameters for
a copula family. Hence the denomination time-varying copulae.

Using subsets of size w scrolled on the sample (i.e., a moving window of size
w),

{xt}s
t=s−w+1

for s = w, . . . , T , the procedure above generates the time series {V̂ aRt}T
t=w

of Value-at-Risk and {θ̂t}T
t=w dependence parameters estimates.

Backtesting is used to evaluate the performance of the specified copula family
C. The estimated values for the VaR are compared with the true realizations
{lt} of the P&L function, an exceedance occuring for each lt smaller than

V̂ aRt(1 − α). The ratio of the number of exceedances to the number of
observations gives the exceedances ratio α̂:

α̂ =
1

T − w

T∑
t=w

I{lt < V̂ aRt(1− α)}



5. EMPIRICAL RESULTS

The estimation methods described in the preceeding section are used on two
exchange rates portfolio, the first composed of 2 positions, the second of 5
positions. Different copulae are used in static and dynamic set up and their
VaR performance is compared based on backtesting.

5.1 2-dimensional Exchange Rate Portfolio

In this section, the Value-at-Risk of portfolios on exchange rates (DEM/USD
and GBP/USD from 01.12.1979 to 01.04.1994) is computed using different
copulae. Assuming the log-returns {Xj,t} follow a GARCH(1,1) process we
have

Xj,t = µj,t + σj,tεj,t

where
σ2

j,t = ωj + αjσ
2
j,t−1 + βj(Xj,t−1 − µj,t−1)

2

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.

The fit of a GARCH(1,1) model to the sample of log returns {xt}T
t=1, xt =

(x1,t, x2,t)
>, T = 3718, gives the estimates ω̂j, α̂j and β̂j, as in table 5.1, and

empirical residuals {ε̂t}T
t=1, where ε̂t = (ε̂1,t, ε̂2,t)

>. The scatterplot of epirical
residuals is depicted in figure 5.1.

ω̂j α̂j β̂j

j = 1 0.00 0.07 0.89
j = 2 0.00 0.05 0.93

Tab. 5.1: GARCH(1,1) parameters, 2-dimensional portfolio
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µ̂j σ̂j

j = 1 0.0081 0.9987
j = 2 0.1887 0.9991

Tab. 5.2: Parameters from marginal distributions

Copula θ̂

Gaussian 0.767
Clayton 1.861
Gumbel 2.283

Tab. 5.3: Dependence parameter for different static copulae.

The marginal distributions are specified as normal, i.e., ε̂j ∼ N(µ̂j, σ̂j) with

parameters δ̂j = (µ̂j, σ̂j) estimated from the data as in table 5.2.

Static Copulae

The dependence parameters are estimated (table 5.3) for different copula
families (Gaussian, Clayton and Gumbel). Variuos portfolios are used to
generate the P&L samples and the estimated Value-at-Risk for each of them
are in table 5.4.

Time-varying Copulae

In the dynamic approach, the empirical residuals are sampled in moving
windows with fixed size w = 250, {ε̂t}s

t=s−w+1, for s = w, . . . , T . The time
series from estimated dependence parameters for each copula family are in
figure 5.4.

The same portfolio compositions as in the static case are used to generate
P&L samples. The series of estimated Value-at-Risk and the P&L function
for selected portfolios are plotted in figure 5.5, 5.6. and 5.7. Backtesting
results for each copula, portfolio and quantiles at levels 1− α ofr α1 = 0.05,
α2 = 0.01, α3 = 0.005 and α4 = 0.001 are in tables 5.5, 5.6 and 5.7.
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Fig. 5.1: Scatterplot from residuals ε̂1 and ε̂2.
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Fig. 5.2: Kernel density estimator of the residuals (red) and of the normal density
(black) from DEM/USD (left) and GBP/USD (right). Quartic kernel,
ĥ = 2.78σ̂n−0.2.

SFEresDens.xpl

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEresGarch
http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEresDens
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α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) -0.030 -0.042 -0.046 -0.055
-0.026 -0.038 -0.042 -0.049
-0.026 -0.043 -0.051 -0.078

(1, 2) -0.031 -0.044 -0.049 -0.058
-0.029 -0.043 -0.048 -0.056
-0.028 -0.048 -0.056 -0.089

(1, 3) -0.033 -0.046 -0.052 -0.062
-0.033 -0.048 -0.054 -0.064
-0.031 -0.053 -0.062 -0.099

(2, 1) -0.058 -0.083 -0.091 -0.109
-0.049 -0.071 -0.079 -0.093
-0.049 -0.082 -0.097 -0.147

(2, 3) -0.061 -0.086 -0.095 -0.113
-0.056 -0.081 -0.091 -0.106
-0.054 -0.090 -0.108 -0.168

(3, 2) -0.061 -0.086 -0.095 -0.113
-0.075 -0.109 -0.122 -0.143
-0.074 -0.125 -0.149 -0.226

(−1, 1) -0.027 -0.039 -0.043 -0.052
-0.026 -0.031 -0.034 -0.041
-0.020 -0.028 -0.031 -0.037

(−1, 2) -0.026 -0.037 -0.040 -0.050
-0.020 -0.029 -0.034 -0.040
-0.017 -0.024 -0.026 -0.030

(−1, 3) -0.025 -0.035 -0.039 -0.048
-0.019 -0.029 -0.032 -0.040
-0.015 -0.021 -0.023 -0.025

(−2, 1) -0.056 -0.080 -0.088 -0.106
-0.044 -0.064 -0.070 -0.084
-0.043 -0.062 -0.069 -0.082

(−2, 3) -0.054 -0.075 -0.083 -0.102
-0.042 -0.061 -0.068 -0.081
-0.037 -0.052 -0.058 -0.069

(−3, 2) -0.084 -0.118 -0.132 -0.159
-0.066 -0.096 -0.105 -0.125
-0.063 -0.090 -0.100 -0.119

Tab. 5.4: V̂ aR(1 − α) for different portfolios and α values (static copulae). For
each portfolio estimated with Gaussian, (first), Clayton (second) and
Gumbel copula (third row).
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Fig. 5.3: Residuals ε̂ and fitted copulae: Gaussian (ρ̂ = 0.76898), Clayton (θ̂ =
1.8611), Gumbel (θ̂ = 2.2833).

SFEstaticCop.xpl

α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 4.81 1.58 1.00 0.37
(1, 2) 4.61 1.41 0.92 0.34
(1, 3) 4.75 1.41 0.95 0.37
(2, 1) 5.07 1.81 1.03 0.43
(2, 3) 4.61 1.44 0.92 0.34
(3, 2) 4.98 1.64 1.03 0.43

(−1, 1) 3.51 0.72 0.34 0.14
(−1, 2) 1.84 0.37 0.23 0.11
(−1, 3) 1.96 0.46 0.23 0.11
(−2, 1) 4.18 1.06 0.72 0.20
(−2, 3) 2.76 0.43 0.17 0.14
(−3, 2) 3.83 0.89 0.57 0.17

avg 3.91 1.10 0.68 0.27
std.dev. 1.15 0.52 0.35 0.12

Tab. 5.5: Clayton copula, exceedances ratio α̂(×102) for different portfolios.

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEstaticCop
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Fig. 5.4: Dependence parameter θ̂, estimated using IFM method, Gaussian
(black), Clayton (red) and Gumbel (blue) copulae, moving window
(w = 250).
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http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEdynCop
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Fig. 5.5: V̂ aR(1 − α) (yellow), P&L (black) and exceedances (red), α = 0.05,
α̂ = 0.04987, w = (3, 2)>. P&L samples generated with Clayton copula.

SFEclaytonSIM2ptv.xpl

VaR - Gumbel Copula
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Fig. 5.6: V̂ aR(1− α) (green), P&L (black) and exceedances (red), α = 0.05, α̂ =
0.0521, w = (3, 2)>. P&L samples generated with Gumbel copula.

SFEgumbelSIM2ptv.xpl

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEclaytonSIM2ptv
http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEgumbelSIM2ptv
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VaR: Gumbel - Clayton - Gaussian
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Fig. 5.7: V̂ aR(1− α) and P&L (black), α = 0.01, estimated with Gumbel copula
(green), α̂ = 0.0167, Clayton copula (blue), α̂ = 0.0106, and Gaussian
copula (red), α̂ = 0.0034, w = (−2, 1)>.

SFEClayGumbGauss.xpl

α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 5.21 1.09 0.43 0.09
(1, 2) 5.16 1.03 0.43 0.09
(1, 3) 4.92 0.98 0.49 0.09
(2, 1) 5.21 1.03 0.49 0.12
(2, 3) 5.16 1.00 0.49 0.09
(3, 2) 5.21 1.06 0.46 0.12

(−1, 1) 5.21 1.90 1.33 0.58
(−1, 2) 5.96 1.67 1.04 0.46
(−1, 3) 4.64 1.09 0.52 0.26
(−2, 1) 5.10 1.67 1.12 0.52
(−2, 3) 5.53 2.07 1.30 0.55
(−3, 2) 5.01 1.72 1.15 0.52
avg. 5.20 1.36 0.77 0.29

std.dev. 0.32 0.41 0.38 0.22

Tab. 5.6: Gumbel copula, exceedances ratio α̂(×102) for different portfolios.

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFEClayGumbGauss
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α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 3.72 1.09 0.66 0.23
(1, 2) 5.13 1.64 1.21 0.52
(1, 3) 6.14 1.96 1.55 0.75
(2, 1) 3.29 0.78 0.58 0.14
(2, 3) 4.32 1.47 0.92 0.43
(3, 2) 3.34 0.86 0.63 0.20

(−1, 1) 1.28 0.23 0.14 0.09
(−1, 2) 0.84 0.17 0.12 0.01
(−1, 3) 1.04 0.32 0.20 0.01
(−2, 1) 1.99 0.35 0.17 0.09
(−2, 3) 0.98 0.23 0.14 0.09
(−3, 2) 1.76 0.32 0.14 0.09
avg. 2.81 0.80 0.54 0.23

std.dev. 1.75 0.63 0.48 0.21

Tab. 5.7: Gaussian copula, exceedances ratio α̂(×102) for different portfolios.

5.2 5-dimensional Exchange Rate Portfolio

In this section, the Value-at-Risk of exchange rate portfolios composed of 5
positions (USD value of GBP, FRF, CHF, DEM and AUD from 04.01.1994
to 15.08.1997) is computed using time-varying Clayton copula.

The fit of a GARCH(1,1) model to the sample of log returns {xt}T
t=1, xt =

(x1,t, . . . , x5,t)
>, T = 907, gives the estimates ω̂j, α̂j and β̂j, as in table

5.2, and empirical residuals {ε̂t}T
t=1, where ε̂t = (ε̂1,t, . . . , ε̂5,t)

>, as in upper
right part of figure 5.8. The marginal distributions are specified as normal,
ε̂j ∼ N(µ̂j, σ̂j), the estimated parameters δ̂j = (µ̂j, σ̂j) are in table 5.9.

The estimated Value-at-Risk at level 1− α together with the P&L function
are plotted in figure 5.9. Backtesting results for each portfolio for α1 = 0.05,
α2 = 0.01, α3 = 0.005 and α4 = 0.001 are in table 5.10.
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ω̂ α̂ β̂

x1 0.000 0.043 0.931
x2 0.000 0.047 0.932
x3 0.000 0.099 0.813
x4 0.000 0.043 0.940
x5 0.000 0.002 0.000

Tab. 5.8: GARCH(1,1) parameters, 5-dimensional portfolio

µ̂(×102) σ̂

j = 1 2.52 1.00
j = 2 -0.46 0.99
j = 3 -0.36 1.00
j = 4 -0.86 1.00
j = 5 2.28 1.00

Tab. 5.9: Parameters from marginal distributions.

α(×102)
Portfolio 5 1 0.5 0.1

(1, 1, 1, 1, 1) 5.02 0.61 0.47 0.15
(1, 2, 3, 2, 1) 5.78 0.91 0.47 0.47
(1, 3, 1, 2, 3) 3.96 0.47 0.47 0.30
(2, 1, 2, 3, 1) 5.33 0.91 0.61 0.47
(2, 1, 3, 2, 1) 5.63 0.91 0.47 0.47
(2, 3, 1, 1, 2) 3.96 0.76 0.61 0.15
(2, 3, 3, 2, 1) 5.78 0.91 0.47 0.47
(3, 1, 2, 1, 3) 3.96 0.76 0.61 0.15
(3, 1, 2, 2, 2) 4.87 0.76 0.61 0.15
(3, 2, 3, 2, 3) 4.57 0.61 0.61 0.15

avg. 4.79 0.75 0.50 0.38
std.dev. 0.77 0.15 0.07 0.08

Tab. 5.10: Clayton copula, exceedances ratio α̂ for different portfolios.
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Fig. 5.8: Scatterplots from GARCH residulas (upper triangular) and from residu-
als mapped on unit square by the cdf (lower triangular).

SFE5dim.xpl

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFE5dim
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Fig. 5.9: V̂ aR(1−α) and P&L (black), estimated with Clayton copula, α1 = 0.05
(yellow), α2 = 0.01 (green), α3 = 0.005 (red) and α4 = 0.001 (blue),
w = (3, 1, 2, 1, 3)>.

SFE5dim.xpl

5.3 Conclusion

Three different copulae - Gumbel, Clayton and Gaussian - were used to
estimate the Value-at-Risk from the 2-dimensional portfolio (DEM/USD,
GBP/USD). From the time series of estimated dependence parameters, we
verify that the dependence structure is represented in similar form with all
copula families, as in figure 5.4.

Using backtest results to compare the performance in the VaR estimation,
we remark that in average the Clayton and Gaussian copulae overestimated
the VaR. In terms of capital requirement, a financial institution computing
VaR with those copulae would be requested to keep more capital aside than
necessary to guarantee the desired confidence level.

The estimation with Gumbel copula, on another side, produced results close
to the desired level. Gumbel copulae seems to represent specific data depen-
dence structures (like lower tail dependencies, relevant to explain simultane-
ous losses) better than Gaussian and Clayton copulae (it is well known that
Gaussian copula does not present any tail dependencies).

Hence, the choice of the best copula for VaR estimation based on backtesting

http://ise.wiwi.hu-berlin.de/~giacomin/Copula/codes/SFE5dim
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performance depends on the dependence structure of the data set used and
should be investigated case by case. The theory for copula model selection
tests is developed in Chen (2004) for static set up. That may be the first step
to develop dynamic model selection tests, where after testing in a window
for the best copula, the Value-at-Risk is estimated with the choosen copula
family.
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