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Equivalences of smooth and continuous principal bundles
with infinite-dimensional structure group
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Abstract. Let K be a Lie group, modeled on a locally convex space, and M a finite-dimensional
paracompact manifold with corners. We show that each continuous principal K-bundle over M is
continuously equivalent to a smooth one and that two smooth principal K-bundles over M which
are continuously equivalent are also smoothly equivalent. In the concluding section, we relate our
results to neighboring topics.
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Introduction

This paper deals with the close interplay between continuous and smooth principal K-
bundles over M , where K is a Lie group modeled on an arbitrary locally convex space
(following [22]) and M a finite-dimensional paracompact manifold with corners. In this
paper we give a complete proof (of a relative version) of the following theorem.

Theorem. Each continuous principal K-bundle over M is equivalent to a smooth prin-
cipal K-bundle. Moreover, two smooth principal K-bundles are continuously equivalent
if and only if they are smoothly equivalent.
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One approach to a proof of this theorem is to introduce smooth structures on classi-
fying spaces and to smooth classifying maps. As an example, the classifying space of
K = GLn is isomorphic to the direct limit of the Grassmanians

BGLn ∼= Grn(∞) := lim
−→

Grn(k).

Then [10, Theorem 3.1] provides a smooth manifold structure on BGLn, and one can
smooth classifying maps as in [14, Theorem 4.3.5] for the case of vector bundles or in
Proposition I.13, for arbitrary finite-dimensional principal bundles. In the infinite-dimen-
sional case, the classifying space of the diffeomorphism group BDiff(N) for a compact
manifoldN , which can be viewed as a nonlinear Grassmanian, can also be given a smooth
structure [16, 44.21].

Smooth structures on classifying spaces are considered in [23], but only generalized
de Rham cohomologies are constructed, and bundle theory is not discussed. However,
a general theory for differentiable structures on classifying spaces seems to be missing.
On the other hand, there exist partial answers to the above question arising from the
comparison of continuous and analytic fiber bundles (cf. [12], [27] and [13]). Since these
considerations use strong constraints on the structure group, e.g., its compactness in order
to ensure a smooth structure on its classifying space, they cannot be used in the generality
that we are aiming for.

We now describe our results in some detail. In the first section, we recall the ba-
sic facts on continuous and smooth principal bundles with a focus on the description of
bundles and bundle equivalences in terms of locally trivial covers and transition functions.
Furthermore, we recall briefly the concept of differential calculus and the concept of man-
ifolds with corners that we use in this text. In the end, we outline how to prove our results
for finite-dimensional structure groups by using smooth structures on classifying spaces.

The second section is exclusively devoted to the proofs of our main results and to their
technical prerequisites. Lacking any smooth structure on classifying spaces in general,
we have to employ totally different techniques coming from approximation results for Lie
group-valued functions (cf. Proposition I.13). This enables us to smooth representatives
of continuous bundles or bundle equivalences in combination with the fact that there is a
large freedom of choice in the description of principal bundles by locally trivial covers and
transition functions. In this way, we construct new representatives of bundles and bundle
equivalences that satisfy cocycle or compatibility conditions on probably finer locally
trivial covers, but which describe equivalent objects. Since this technique uses heavily
the local compactness of the base manifold, there seems to be no generalization of this
method to infinite-dimensional base manifolds. Eventually, we discover that the existence
of smooth equivalent bundles and smooth equivalences are a feature of convexity and
continuity rendering further requirements on BK unnecessary.

In the third section, we relate our results to some neighboring topics. In particular,
we line out the relations to Čech cohomology and to twisted K-theory. Concrete applica-
tions of the above theorem arise, for instance, in twisted K-theory (cf. [7], [21]) and for
obstruction classes of lifting gerbes (cf. [19]).
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I Principal fiber bundles

In this section we provide the basic material concerning manifolds with corners and
smooth and continuous principal bundles.

Definition I.1 (Continuous principal bundle). Let K be a topological group and M be a
topological space. Then a continuous principal K-bundle over M (or shortly a contin-
uous principal bundle) is a topological space P together with a continuous right action
P ×K → P , (p, k) 7→ p · k, and a map η : P →M such that there exists an open cover
(Ui)i∈I of M , called a locally trivial cover, and homeomorphisms

Ωi : η−1(Ui)→ Ui ×K,

called local trivializations, satisfying pr1 ◦ Ωi = η|η−1(Ui) and Ω(p · k) = Ω(p) · k. Here
K acts on Ui×K by right multiplication in the second factor. We will use the calligraphic
letter P for the tuple (K, η : P →M).

A morphism of continuous bundles or a continuous bundle map between two principal
K-bundles P and P ′ over M is a continuous map Ω : P → P ′ satisfying Ω(p · k) =
Ω(p) · k. Since P ′/K ∼= M ∼= P/K, it induces a map Ω# : M → M . We call Ω a
continuous bundle equivalence if it is an isomorphism and Ω# = idM .

Remark I.2 (Transition functions). If P is a continuous principal K-bundle over M ,
then the local trivializations define continuous mappings kij : Ui ∩ Uj → K by

Ω−1
i (x, e) · kij(x) = Ω−1

j (x, e) for all x ∈ Ui ∩ Uj , (1)

called transition functions. The kij satisfy the cocycle condition

kii(x) = e for all x ∈ Ui and
kij(x) · kjn(x) · kni(x) = e for all x ∈ Ui ∩ Uj ∩ Un. (2)

On the other hand, if (Vi)i∈I is an open cover and k = (kij)i,j∈I is a collection of
continuous maps kij : Vi ∩ Vj → K that satisfy condition (2), then

Pk :=
⋃
j∈J
{j} × Vj ×K/ ∼ with

(j, x, k) ∼ (j′, x′, k′)⇔ x = x′ and kj′j(x) · k = k′

defines a continuous principal K-bundle over M . Here η is given by [i, x, k] 7→ x,
the local trivializations by [(i, x, k)] 7→ (x, k) and the K-action by ([(i, x, k)], k′) 7→
[(i, x, kk′)]. We will write Pk for a bundle determined by a collection (M,K, (Vi)i∈I ,
(kij)i,j∈I).

If k arises from the local trivializations of a given bundle P as in (1), then

Ω : P → Pk, p 7→ [i,Ωi(p)] if p ∈ η−1(Ui)

defines a bundle equivalence between P and Pk whose inverse is given by [i, x, k] 7→
Ω−1
i (x, k).
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Definition I.3 (Differential calculus on locally convex spaces; cf. [11]). Let E and F be
locally convex spaces and U ⊆ E be open. Then f : U → F is called continuously
differentiable or C1 if it is continuous, for each v ∈ E the differential quotient

df(x).v := lim
h→0

1
h

(f(x+ hv)− f(x))

exists and the map df : U × E → F is continuous. For n > 1, we recursively define

dnf(x).(v1, . . . , vn) := lim
h→0

1
h

(
dn−1f(x+ h).(v1, . . . , vn−1)− dn−1f(x).(v1, . . . , vn)

)
and say that f is Cn if dkf : U × Ek → F exists for all k = 1, . . . , n and is continuous.
We say that f is C∞ or smooth if it is Cn for all n ∈ N.

Definition I.4 (Lie group). From the definition above, the notion of a Lie group is clear.
It is a group which is a smooth manifold modeled on a locally convex space such that the
group operations are smooth.

Remark I.5 (Convenient calculus). We briefly recall the basic definitions of the con-
venient calculus from [16]. Again, let E and F be locally convex spaces. A curve
f : R → E is called smooth if it is smooth in the sense of Definition I.3. Then the
c∞-topology on E is the final topology induced from all smooth curves f ∈ C∞(R, E).
If E is a Fréchet space, then the c∞-topology is again a locally convex vector topology
which coincides with the original topology [16, Theorem 4.11]. If U ⊆ E is c∞-open,
then f : U → F is said to be of class C∞ or smooth if

f∗(C∞(R, U)) ⊆ C∞(R, F ),

i.e. if f maps smooth curves to smooth curves. The chain rule [9, Proposition 1.15]
implies that each smooth map in the sense of Definition I.3 is smooth in the convenient
sense. On the other hand, [16, Theorem 12.8] implies that on a Fréchet space a smooth
map in the convenient sense is smooth in the sense of Definition I.3. Hence for Fréchet
spaces, the two notions coincide.

Remark I.6 (Manifold with corners). A d-dimensional manifold with corners is a para-
compact topological space such that each point has a neighborhood that is homeomorphic
to an open subset of

Rd+ = {(x1, . . . , xd) ∈ Rd : xi ≥ 0 for all i = 1, . . . , d}

and such that the corresponding coordinate changes are smooth (cf. [29], [20]). The
crucial point here is the notion of smoothness for non-open domains. We define a map
f : A ⊆ Rn → Rm to be smooth if for each x ∈ A, there exists a neighborhood Ux of x
which is open in Rn, and a smooth map fx : Ux → Rm such that fx

∣∣
A∩Ux

= f
∣∣
A∩Ux

.
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Remark I.7 (Paracompact spaces). We recall some basic facts from general topology. If
X is a topological space, then a collection of subsets (Ui)i∈I ofX is called locally finite if
each x ∈ X has a neighborhood that has non-empty intersection with only finitely many
Ui, and X is called paracompact if each open cover has a locally finite refinement. If X
is the union of countably many compact subsets, then it is called σ-compact, and if each
open cover has a countable subcover, it is called Lindelöf.

Now let M be a finite-dimensional manifold with corners, which is in particular lo-
cally compact and locally connected. For these spaces, [6, Theorems XI.7.2+3] imply
that M is paracompact if and only if each component is σ-compact, equivalently, Lin-
delöf. Furthermore, [6, Theorem VIII.2.2] implies that M is normal in each of these
cases.

Definition I.8 (Smooth principal bundle). If K is a Lie group and M is a smooth mani-
fold with corners, then a continuous principal K-bundle over M is called a smooth prin-
cipal K-bundle over M (or shortly a smooth principal bundle) if the transition functions
from Remark I.2 are smooth for some choice of local trivializations.

Remark I.9 (Smooth structure on smooth principal bundles). If P is a smooth principal
bundle, then we define on P the structure of a smooth manifold with corners by requiring
the local trivializations

Ωi : η−1(Ui)→ Ui ×K

that define the smooth transition functions from Definition I.8 to be diffeomorphisms.
This actually defines a smooth structure on P , since it is covered by (η−1(Ui))i∈I and
since the coordinate changes

(Ui ∩ Uj)×K → (Ui ∩ Uj)×K, (x, k) 7→ Ωj(Ω−1
i (x, k)) = (x, kij(x) · k)

are smooth because the kij are assumed to be smooth. A continuous bundle map be-
tween smooth principal bundles is called a morphism of smooth principal bundles (or a
smooth bundle map) if it is smooth with respect to the smooth structure on the bundles
just described.

Remark I.10 (Bundle equivalences). If P and P ′ are two principal K-bundles over M ,
then there exists an open cover (Ui)i∈I of M such that we have local trivializations

Ωi : η−1(Ui)→ Ui ×K,
Ω′i: η

′−1(Ui)→ Ui ×K

for P and P ′. In fact, if (Vj)j∈J and (V ′j′)j′∈J′ are locally trivial covers of M (for P and
for P ′, respectively), then

(Vj ∩ Vj′)(j,j′)∈J×J′

is simultaneously a locally trivial cover for both P and P ′, and the local trivializations are
given by restricting the original ones.
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If Pk and Pk′ are given by transition functions kij and k′ij with respect to the same
open cover (Ui)i∈I (i.e., kij : Ui ∩ Uj → K and k′ij : Ui ∩ Uj → K), then a bundle
equivalence Ω : Pk → Pk′ defines for each i ∈ I a continuous map

ϕi : Ui ×K → K by Ω([(i, x, k)]) = [(i, x, ϕi(x, k))]. (3)

Furthermore, we have ϕi(x, k) = ϕi(x, e) · k, since Ω satisfies Ω(p · k) = Ω(p) · k.
Setting fi(x) := ϕi(x, e), we thus obtain continuous maps fi : Ui → K satisfying the
compatibility condition

fj(x) = k′ji(x) · fi(x) · kij(x) for all x ∈ Ui ∩ Uj , (4)

since [(i, x, k)] = [(j, x, kji(x)k)] has to be mapped to the same element of Pk′ by Ω. On
the other hand, if for each i ∈ I we have continuous maps fi : Ui → K satisfying (4),
then

Pk 3 [(i, x, k)] 7→ [(i, x, fi(x) · k)] ∈ Pk′
defines a bundle equivalence between Pk and Pk′ which covers the identity on M .

If Pk and Pk′ are smooth and the maps kij and k′ij are smooth, then it follows directly
from (3) that a bundle equivalence described by continuous maps fi : Ui → K is smooth
if and only if these maps are smooth.

Lemma I.11 (Smooth and continuous homotopies coincide; [28, Corollary 12], [17]).
Let M be a finite-dimensional manifold with corners and N be a smooth manifold mod-
eled on a locally convex space. If f : M → N is continuous, then there exists a con-
tinuous map F : [0, 1] ×M → N such that F (0, x) = f(x) and F (1, · ) : M → N
is smooth. Furthermore, if f, g : M → N are smooth and there exists a continuous
homotopy between f and g, then there exists a smooth homotopy between f and g.

Lemma I.12 (Smooth structures on classifying spaces). If K is a compact Lie group,
then it has a smooth classifying bundle EK → BK (cf. [15, Chapter 4.11]), which is in
general infinite-dimensional.

Proof. Let Ok ⊆ GLk(R) denote the orthogonal group. If k is sufficiently large, then we
may identifyK with a subgroup of Ok, and from [26, Theorem 19.6] we get the following
formulae:

EK = lim
→

On /(On−k × idRk),

BK = lim
→

On /(On−k ×K).

Thus EK and BK are smooth manifolds by [10, Theorem 3.1], and since the action of
K is smooth, it follows that EK → BK is a smooth K-principal bundle. 2

Proposition I.13 (Smoothing finite-dimensional principal bundles). If P is a continuous
principal K-bundle over M , K is a finite-dimensional Lie group and M is a finite-di-
mensional manifold with corners, then there exists a smooth bundle which is continuously
equivalent to P . Moreover, two smooth principal K-bundles over M are smoothly equiv-
alent if and only if they are continuously equivalent.
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Proof. Let C be a maximal compact subgroup of K. Since K/C is contractible, there
exists a C-reduction of P , i.e., we may choose a locally trivial open cover (Ui)i∈I with
transition functions kij that take values inC. They define a continuous principalC-bundle
which is given by a classifying map f : M → BC.

By Lemma I.11, f is homotopic to some smooth map f̃ : M → BC which in turn
determines a smooth principal C-bundle P̃ over M given by smooth transition functions
k̃ij . Furthermore, since f and f̃ are homotopic, P and P̃ are equivalent, and we thus have
a continuous bundle equivalence given by continuous mappings fi : Ui → K. The claim
follows if we regard kij , k̃ij and fi as mappings into K.

Since smooth bundles yield smooth classifying maps and smooth homotopies of clas-
sifying maps yield smooth bundle equivalences (all the constructions in the topological
setting depend only on partitions of unity which we can assume to be smooth here), the
second claim is also immediate. 2

Remark I.14 (On the previous proof). The previous proof can also be obtained without
the need of passing to the direct limit in Proposition I.12, because On+k /On is already
a universal bundle if dim(M) ≤ n (cf. [26, Remark 19.7]).

II Equivalences of smooth and continuous bundles

In this section, we prove the two main results of this paper. We start with the description of
two important tools: a proposition for smoothing continuous maps and a lemma for fading
out continuous functions. Then we provide some technical data for the proofs, namely
covers of the finite-dimensional paracompact base manifold with corners and suitable
identity neighborhoods in the Lie group. On this basis, we finally prove our claims after
outlining the underlying ideas in Remark II.10.

Remark II.1 (Topology on C(X,G)). If X is a Hausdorff space and G is a topological
group, then C(X,G)c denotes the topological group of continuous functions with respect
to pointwise multiplication and the topology of compact convergence. A basic open iden-
tity neighborhood in this topology is given by

bC,W c := {f ∈ C(X,G) : f(C) ⊆W}

for a compact subset C ⊆ X and an open identity neighborhood W ⊆ G.

Proposition II.2 (Smoothing). Let M be a finite-dimensional manifold with corners, K
a Lie group modeled on a locally convex space and f ∈ C(M,K). If A ⊆ M is closed
and U ⊆ M is open such that f is smooth on a neighborhood of A \ U , then each open
neighborhood O of f in C(M,K)c contains a map g which is smooth on a neighborhood
of A and equals f on M \ U .

Proof. This is [28, Corollary 12], see also [24, Theorem A.3.3] or [14, Theorem 2.5]. 2
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Remark II.3 (Centered chart, convex subset). LetK be a Lie group modeled on a locally
convex topological vector space E. A chart ϕ : W → ϕ(W ) ⊆ E with e ∈ W and
ϕ(e) = 0 is called a centered chart. A subset L of W is called ϕ-convex if it is identified
with a convex subset ϕ(L) in E. If W itself is ϕ-convex, we speak of a convex centered
chart.

It is clear that every open identity neighborhood inK contains a ϕ-convex open neigh-
borhood for some centered chart ϕ, because we can pull back any convex open neighbor-
hood that is small enough from the underlying locally convex vector space.

Lemma II.4 (Fading-out). Let M be a finite-dimensional manifold with corners, A and
B be closed subsets satisfying B ⊆ A0, ϕ : W → ϕ(W ) be a convex centered chart
of a Lie group K modeled on a locally convex space, and f : A → W be a continuous
function. Then there is a continuous function F : M → W ⊆ K that coincides with f
on an open neighborhood of B and is the identity on an open neighborhood of M \ A0.
Moreover, F can be chosen in a way that if W ′ ⊆ W is another ϕ-convex set containing
e, then f(x) ∈W ′ implies F (x) ∈W ′ for each x ∈ A, and if f is smooth on an open set
U ⊆ A, then F is also smooth on U .

Proof. SinceM is paracompact and the closed setsM \A0 andB are disjoint by assump-
tion, there exists a smooth map λ : M → [0, 1] such that λ is identically 1 on a neigh-
borhood of B and is identically 0 on a neighborhood of M \A0 (see [14, Theorem 2.1]).
Since ϕ(W ) is a convex zero neighborhood in E, we have [0, 1] · ϕ(W ) ⊆ ϕ(W ). We
use this to define the continuous function

fλ : A→W, x 7→ ϕ−1(λ(x) · ϕ(f(x))),

that coincides, by the choice of λ, with f on M \ supp(1 − λ) ⊆ B and is identically e
on M \ supp(λ) ⊇M \A0. So we may extend fλ to the continuous function

F : M →W, x 7→

{
fλ(x), if x ∈ A
e, if x ∈M \A0

that satisfies all requirements. 2

Lemma II.5 (Squeezing-in manifolds with corners). Let W be an open neighborhood of
a point x in Rd+ (cf. Remark I.6) and C ⊆ W be a compact set containing x. Then there
exists an open set V satisfying x ∈ C ⊆ V ⊆ V ⊆ W whose closure V is a compact
manifold with corners.

Proof. For every x = (x1, . . . , xd) ∈ C, there is an εx > 0 such that

B(x, εx) := [x1 − εx, x1 + εx]× · · · × [xd − εx, xd + εx] ∩Rd+ (5)

is contained in W . The interiors Vx := B(x, εx)0 in Rd+ form an open cover of the
compact set C, of which we may choose a finite subcollection (Vxi)i=1,...,m covering
C. The union V :=

⋃m
i=1 Vxi satisfies all requirements. In particular, V is a compact

manifold with corners, because it is a finite union of cubes whose sides are orthogonal to
the coordinate axes. 2
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Proposition II.6 (Nested covers). LetM be a connected finite-dimensional manifold with
corners and (Uj)j∈J be an open cover of M . Then there exist countable open covers(
U

[∞]
i

)
i∈N and

(
U

[0]
i

)
i∈N of M such that U

[∞]

i := U
[∞]
i and U

[0]
i := U

[0]
i are com-

pact manifolds with corners, U
[∞]

i ⊆ U
[0]
i for all i ∈ N, and such that even the cover(

U
[0]
i

)
i∈N of M by compact sets is locally finite and subordinate to (Uj)j∈J .

In this situation, let L be any countable subset of the open interval (0,∞). Then
for every λ ∈ L, there exists a countable, locally finite cover

(
U

[λ]
i

)
i∈N of M by open

sets whose closures are compact manifolds with corners such that U
[λ]

i ⊆ U
[µ]
i holds

whenever 0 ≤ µ < λ ≤ ∞.

Proof. For every x ∈ M , we have x ∈ Uj(x) for some j(x) ∈ J . Let (Ux, ϕx) be a
chart of M around x such that Ux ⊆ Uj(x). We can even find an open neighborhood
Vx of x whose closure Vx is compact and contained in Ux. Since M is paracompact, the
open cover (Vx)x∈M has a locally finite subordinated cover (Vi)i∈I , where Vi ⊆ Vx and
Vi ⊆ Vx ⊆ Ux for suitable x = x(i). Since M is also Lindelöf, we may assume that
I = N.

To find suitable covers U [∞]
i and U [0]

i , we are going to enlarge the sets Vi so carefully
in two steps that the resulting covers remain locally finite. More precisely, U [∞]

i and U [0]
i

will be defined inductively so that even the family (V ik )k∈N with

V ik :=

{
U

[0]
k for k ≤ i

Vk for k > i

is still a locally finite cover of M for every i ∈ N0. We already know this for i = 0,
because V 0

k = Vk for all k ∈ N. For i > 0, we proceed by induction.
For every point y ∈ Vi, there is an open neighborhood Vi,y of y inside Ux(i) whose

intersection with just finitely many V i−1
j is non-empty. Under the chart ϕx(i), this neigh-

borhood Vi,y is mapped to an open neighborhood of ϕx(i)(y) in the modeling space Rd+
of M . There exist real numbers ε0(y) > ε∞(y) > 0 such that the cubes B(y, ε∞(y))
and B(y, ε0(y)) introduced in (5) are compact neighborhoods of ϕx(i)(y) contained in
ϕx(i)(Vi,y). Since Vi is compact, it is covered by finitely many sets Vi,y , say by (Vi,y)y∈Y
for a finite subset Y of Vi. We define the open sets

U
[∞]
i :=

⋃
y∈Y

ϕ−1
x(i)

(
B(y, ε∞(y))0) and U

[0]
i :=

⋃
y∈Y

ϕ−1
x(i)

(
B(y, ε0(y))0),

whose closures are compact manifolds with corners, because each is a finite union of
cubes under the chart ϕx(i). On the one hand, the construction guarantees

Vi ⊆ U [∞]
i ⊆ U [∞]

i ⊆ U [0]
i ⊆ U

[0]
i ⊆

⋃
y∈Y

Vi,y ⊆ Ux(i).

On the other hand, the cover
(
V ik
)
k∈N is locally finite, because it differs from the locally

finite cover
(
V i−1
k

)
k∈N in the single set V ii = U

[0]
i .
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For a proof of the second claim, we fix an enumeration λ1, λ2, . . . ofL for an inductive
construction of the covers. Then for any n ≥ 1 and i ∈ N, we apply Lemma II.5 to

C := ϕi
(
U

[λ]

i

)
andW := ϕi

(
U

[λ]
i

)
, where λ (respectively λ) is the smallest (respectively

largest) element of λ1, . . . , λn−1 larger than (respectively smaller than) λn for n > 1 and
∞ (respectively 0) for n = 1. We get open sets U [λn]

i such that the condition U
[λ]

i ⊆ U
[µ]
i

holds whenever 0 ≤ µ < λ ≤ ∞ are elements in {λ1, . . . , λn}, and eventually in L. This
completes the proof. 2

Remark II.7 (Locally finite covers by compact sets). If
(
U i
)
i∈I is a locally finite cover

of M by compact sets, then for fixed i ∈ I , the intersection U i ∩ U j is non-empty for
only finitely many j ∈ I . Indeed, for every x ∈ U i, there is an open neighborhood Ux of
x such that Ix := {j ∈ I : Ux ∩ U j 6= ∅} is finite. Since U i is compact, it is covered by
finitely many of these sets, say by Ux1 , . . . , Uxn . Then J := Ix1 ∪ · · · ∪ Ixn is the finite
set of indices j ∈ J such that U i ∩ U j is non-empty, proving the claim.

Remark II.8 (Intersections). From now on, multiple lower indices on subsets of M al-
ways indicate intersections, namely U1···r := U1 ∩ . . . ∩ Ur.

Lemma II.9 (Suitable identity neighborhoods). Let M be a finite-dimensional manifold
with corners that is covered locally finitely by countably many compact sets

(
U i
)
i∈N.

Moreover, let kij : U ij → K be continuous functions into a Lie group K so that
kij = k−1

ji holds for all i, j ∈ N. Then for any convex centered chart ϕ : W → ϕ(W ) of
K, each sequence of open unit neighborhoods (W ′j)j∈N with W ′j ⊆W and each α ∈ N,
there are ϕ-convex open identity neighborhoods Wα

ij ⊆ W in K for indices i < j and
Wα
j ⊆W ′j for j ∈ N that satisfy

kji(x) · (Wα
ij)
−1 ·Wα

i · kij(x) ⊆Wα
j for all x ∈ U ijα and i < j, (6)

kji(x) · (Wα
ij)
−1 ·Wα

in · kij(x) ⊆Wα
jn for all x ∈ U ijnα and i < j < n (7)

Proof. Initially, we set Wα
i := W ′i for all i, respectively Wα

ij := W for all i < j,
disregarding the conditions (6) and (7). These sets are shrinked later so that they satisfy
(6) and (7).

Our first goal is to satisfy (6). We note that the condition in (6) becomes trivial if U jα
is empty, because this implies U ijα = ∅. So we need to consider at most finitely many
conditions (6) corresponding to the finitely many j ∈ N such that U jα 6= ∅, and we deal
with those inductively in decreasing order of j, starting with the maximal such index.

For fixed j and all i < j with U ijα 6= ∅, we describe below how to make the ϕ-convex
identity neighborhoods Wα

ij and Wα
i on the left hand side smaller so that the correspond-

ing conditions (6) are satisfied. Making Wα
ij and Wα

i smaller does not compromise any
conditions on Wα

ij′ and Wα
j′ for j′ > j that we guaranteed before, because these sets can

only appear on the left hand side of such conditions.
To satisfy condition (6) for given i < j and Wα

j , we note that the function

ϕij : U ijα ×K ×K → K, (x, k, k′) 7→ kji(x) · k−1 · k′ · kij(x)
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is continuous and maps all the points (x, e, e) for x ∈ U ijα to the identity e in K. Hence
we may choose open neighborhoods Ux of x and ϕ-convex open identity neighborhoods
Wx ⊆Wα

ij andW ′x ⊆Wα
i such that ϕij(Ux×Wx×W ′x) ⊆Wα

j . Since U ijα is compact,
it is covered by finitely many Ux, say by (Ux)x∈F for a finite set F ⊆ U ijα. Then we
replace Wα

ij and Wα
i by their subsets

⋂
x∈F Wx and

⋂
x∈F W

′
x, respectively, which are

ϕ-convex open identity neighborhoods such that ϕij(U ijα×Wα
ij ×Wα

i ) ⊆Wα
j , in other

words, (6) is satisfied
Our second goal is to make the sets Wα

ij also satisfy (7), which is non-trivial for the
finitely many triples (i, j, n) ∈ N3 with i < j < n that satisfy U ijnα 6= ∅. We can argue
as above, except for a slightly more complicated order of processing the sets Wα

jn on the
right hand side. Namely, we define the following total order

(i, j) < (i′, j′) :⇔ j < j′ or (j = j′ and i < i′) (8)

on pairs of real numbers, in particular on pairs of indices (i, j) inN×N with i < j. Note
that this guarantees (i, j) < (j, n) and (i, n) < (j, n) whenever i, j, n are as in condition
(7). We process the pairs (j, n) with U ijnα 6= ∅ for some i in descending order, starting
with the maximal such pair. At each step, we fix Wα

jn and make Wα
ij and Wα

in smaller for
all relevant i < j so that (7) is satisfied. This does not violate any conditions (6) or (7)
that we guaranteed earlier in the process, because Wα

ij and Wα
in can only appear on the

left hand side of such conditions. For the choice of the smaller identity neighborhoods,
we use the continuous function

ϕijn : U ijnα ×K ×K → K, (x, k, k′) 7→ kji(x) · k−1 · k′ · kij(x)

and the compactness of U ijnα and argue as before. We thus accomplish our second
goal. 2

Remark II.10 (Outline of the proofs). Although the proofs of our main results are quite
technical, the underlying ideas are easy to explain. The following two theorems require us
to construct principal bundles and/or equivalences between them, and we always do so lo-
cally on countable covers of the base manifold by induction. In these constructions, every
new transition function (respectively, every new local representative of an equivalence)
• is already determined by cocycle conditions (respectively, by compatibility condi-

tions) on a subset of its domain,
• from which it will be “faded out” to a continuous function on the whole domain
• and smoothed, if necessary.

In each such step, we need a safety margin to modify the functions without compromising
previous achievements too much, and these safety margins are the nested open covers
provided by Proposition II.6. In order to “fade out” appropriately, we need to make sure
that the values of the corresponding functions stay in certain identity neighborhoods of
the structure group. This is achieved with the data from Lemma II.9.

Theorem II.11 (Smoothing continuous principal bundles). Let K be a Lie group mod-
eled on a locally convex space, M be a finite-dimensional connected paracompact mani-
fold with corners and P be a continuous principalK-bundle overM . If C ⊆M is closed
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and the restriction of P to some open neighborhood of C is smooth, then there exists an
open neighborhood T of C such that the restriction P|T extends to a smooth principal
K-bundle P̃ over M , in the sense that P|T is a K-invariant open subset of P̃ and the
K-action and bundle projection from P|T extend to the ones on P̃ . Furthermore, there
exists a continuous bundle equivalence Ω : P → P̃ , which restricts to the identity on
η−1(T ).

Proof. We assume that the continuous bundle P is given by Pk as in Remark I.2, where
(Uj)j∈J is a locally trivial cover of M and kij : Uij → K are continuous transition
functions that satisfy the cocycle condition kij · kjn = kin pointwise on Uijn. That P
is smooth on a neighborhood of C implies that there exists an open neighborhood S of
C such that the restriction of each kij to Uij ∩ S is smooth. In fact, let S′ be an open
neighborhood of C such that P|S′ is smooth. Since M is normal (see Remark I.7), we
find open sets S, T ⊆ M that satisfy C ⊆ T ⊆ T ⊆ S ⊆ S ⊆ S′, which we fix
from now on. In addition, there exists a locally trivial cover of S′, together with local
trivializations, such that the resulting transition functions are smooth. Restricting the
continuous transition functions of an arbitrary locally trivial cover to the complement
of S, adding the smooth ones and the ones induced by the cocycle condition yields the
desired collection of transition functions.

Proposition II.6 yields open covers
(
U

[∞]
i

)
i∈N and

(
U

[0]
i

)
i∈N of M subordinate to

(Uj)j∈J with U
[∞]

i ⊆ U [0]
i for all i ∈ N. For every i ∈ N, we denote by Ui an open set of

the cover (Uj)j∈J that contains U
[0]
i and observe that (Ui)i∈N is still a locally trivial open

cover of M . In our construction, we need open covers not only for pairs (j, n) ∈ N×N
with j < n, but also for pairs (j − 1/3, n), (j − 2/3, n) in-between and (n, n) to enable
continuous extensions and smoothing. The function

λ :
{

(j, n) ∈ 1
3
N0 ×N : j ≤ n

}
→ [0,∞), λ(j, n) =

n(n− 1)
2

+ j,

is tailored to map the pairs (0, 1), (1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), (1, 4), . . . to
the integers 0, 1, 2, . . . , respectively, and the other pairs in-between. If we apply the
second part of Proposition II.6 to the countable subset L := (imλ) \ {0} of (0,∞), we

get open setsU [jn]
i := U

[λ(j,n)]
i for all pairs (j, n) in the domain of λ such that

(
U

[jn]

i

)
i∈N

are again locally finite covers. We note that (j, n) < (j′, n′) in the sense of (8) implies

U
[j′n′]

i ⊆ U [jn]
i .

Let ϕ : W → ϕ(W ) be an arbitrary convex centered chart of K and consider the

countable compact cover
(
U

[0]
i

)
i∈N of M and the restrictions kij

∣∣
U

[0]
ij

of the continuous

transition functions to the corresponding intersections. Then Lemma II.9, applied to the
sequence of open unit neighborhoods which is constantly W , yields open ϕ-convex iden-
tity neighborhoods Wα

ij and Wα
i with the corresponding properties.

Our first goal is the construction of smooth maps k̃ij : U [0]
ij → K that satisfy the co-

cycle condition on the open cover
(
U

[∞]
i

)
i∈N of M , which uniquely determines a smooth

principal K-bundle Pk̃ by Remarks I.2 and I.9. Furthermore, we shall construct k̃ij in a
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way that guarantees
k̃ij

∣∣∣
U

[0]
ij ∩T

= kij

∣∣∣
U

[0]
ij ∩T

ensuring that we may view Pk̃|T as a subset of Pk. These maps k̃ij will be constructed
step-by-step in increasing order with respect to (8), starting with the minimal index (1, 2).
At all times during the construction, the conditions

(a) k̃jn = k̃ji · k̃in pointwise on U
[jn]

ijn for all i < j < n in N,

(b)
(
k̃jn · knj

)(
U

[jn]

jnα

)
⊆Wα

jn for all j < n and α in N and
(c) k̃jn

∣∣
U

[0]
jn∩T

= kjn
∣∣
U

[0]
jn∩T

for all j, n ∈ N

will be satisfied whenever all k̃ij involved have already been constructed. We are now
going to construct the smooth maps k̃jn for indices j < n in N (and implicitly k̃nj
as k̃nj(x) := k̃jn(x)−1), assuming that this has already been done for pairs of indices
smaller than (j, n).
• To satisfy all relevant cocycle conditions, we start with

k̃′jn :
⋃
i<j

U
[j−1,n]

ijn → K, k̃′jn(x) := k̃ji(x) · k̃in(x) for x ∈ U [j−1,n]

ijn .

This function is well-defined, because the cocycle conditions (a) for lower indices
assert that for any indices i′ < i < j and any point x ∈ U [j−1,n]

i′jn ∩U [j−1,n]

ijn , we have

k̃ji′(x) · k̃i′n(x) = k̃ji′(x) · k̃i′i(x) · k̃ii′(x) · k̃in(x) = k̃ji(x) · k̃in(x),

because U
[j−1,n]

i′ijn is contained in both U
[ij]

i′ij and U
[in]

i′in. Furthermore, k̃′jn coincides

with kjn on
⋃
i<j U

[j−1,n]

ijn ∩ T as k̃′jn(x) = k̃ji(x) · k̃in(x) = kji(x) · kin(x) =
kjn(x).

• Next, we want to extend the map k̃′jn on
⋃
i<j U

[j−1,n]

ijn to a continuous map k′jn on

U
[0]
jn without compromising the cocycle conditions too much. To do this, we consider

the function ϕjn := k̃′jn · knj :
⋃
i<j U

[j−1,n]

ijn → K. For all i < j, α ∈ N and

x ∈ U [j−1,n]

ijnα , conditions (b) above and (7) of Lemma II.9 imply

ϕjn(x) = (k̃′jnknj)(x) = kji(x) ·
(

(k̃ij · kji)(x)︸ ︷︷ ︸
∈Wα

ij

)−1 · (k̃in · kni)(x)︸ ︷︷ ︸
∈Wα

in

·kij(x)

∈ kji(x) · (Wα
ij)
−1 ·Wα

in · kij(x) ⊆Wα
jn,

because U
[j−1,n]

ijnα is contained in both U
[ij]

ijα and U
[in]

inα. Since the values of ϕjn are
contained in particular in the identity neighborhood W , we may apply Lemma II.4
to M := U

[0]
jn and its subsets A :=

⋃
i<j U

[j−1,n]

ijn and B :=
⋃
i<j U

[j−2/3,n]

ijn . This

yields a continuous function Φjn : U [0]
jn →W that coincides with ϕjn on a neighbor-

hood ofB, is the identity on a neighborhood of U [0]
jn \A0 and satisfies Φjn(x) ∈Wα

jn
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for all x ∈ U [j−1,n]

jnα . We define k′jn : U [0]
jn → K by k′jn := Φjnkjn and note that k′jn

coincides with the smooth function k̃′jn on a neighborhood of B and with kjn on a

neighborhood of U [0]
jn \ A0. In addition, Φjn is the identity on A ∩ T , because k̃′jn

and kjn coincide there. Furthermore, by the last conclusion from Lemma II.4, Φjn
is smooth on U [0]

jn ∩ S, because k̃′jn and knj are smooth on A0 ∩ S and Φjn is the

identity on an open neighborhood of U [0]
jn \A0. Consequently, k′jn coincides with kjn

on U [0]
jn ∩ T and is smooth on U [0]

jn ∩ S, which is an open neighborhood of U [0]
jn ∩ T .

• We finally get the smooth map k̃jn : U [0]
jn → K that we are looking for if we apply

Proposition II.2 to the function k′jn on M := A := U
[0]
jn , to the open complement U

of
⋃
i<j U

[j−1/3,n]

ijn ∪ (U [0]
jn ∩ T ) in M , and to the neighborhood

Ojn :=

(⋂
α∈N

⌊
U

[jn]

jnα,W
α
jn

⌋)
· kjn

of both kjn and k′jn, where k′jn ∈ Ojn follows from firstly Φjn(x) ∈ Wα
jn and

secondly k′jn(x) = Φjn(x) ·kjn(x) ∈Wα
jn ·kjn(x) for all x ∈ U [jn]

jnα. Note that Ojn

is really open, because Remark II.7 asserts that just finitely many of the sets U
[jn]

jnα

for fixed α ∈ N are non-empty and may influence the intersection.
By the choice of U , the result k̃jn coincides with both k′jn and k̃′jn on

⋃
i<j U

[jn]

ijn , so
it satisfies the cocycle conditions (a). It also satisfies (b) by the choice of Ojn and,
furthermore, (c), because k̃jn coincides with k′jn on U [0]

jn ∩ T by the choice of U and

k′jn coincides with kjn on U [0]
jn ∩ T .

This concludes the construction of the smooth principal K-bundle Pk̃. Since

k̃jn

∣∣∣
U

[∞]
jn ∩T

= kjn

∣∣∣
U

[∞]
jn ∩T

,

we may view Pk̃|η−1(T ) as the subset Pk|η−1(T ) of Pk. We use the same covers of M and

identity neighborhoods in K for the construction of continuous functions fi : U
[0]
i → K

such that
(d) fn = k̃nj · fj · kjn pointwise on U

[nn]

jn for all j < n inN,

(e) fn
(
U

[0]
nα

)
⊆Wα

n for all α, n ∈ N and

(f) fn
(
U

[0]
n ∩ T

)
= {e} for all n ∈ N.

Then Remark I.10 tells us that the restriction of the maps fi to the sets U [∞]
i of the

open cover is the local description of a bundle equivalence Ω : Pk → Pk̃. Indeed, all

the sets U
[nn]

jn of condition (d) contain the corresponding sets U [∞]
jn of the open cover.

Furthermore, condition (f) implies that the restriction of Ω to η−1(T ) is the identity.
We start with the constant function f1 ≡ e, which clearly satisfies conditions (e)

and (f). Then we construct fn for n > 1 inductively as follows:
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• To satisfy condition (d), we start with

f ′n :
⋃
j<n

U
[jn]

jn → K, f ′n(x) = k̃nj(x) · fj(x) · kjn(x) for x ∈ U [jn]

jn .

This continuous function is well-defined, since the conditions (d) for fj on

U
[jn]

j′jn ⊆ U
[jj]

j′j and (a) for j′ < j < n on U
[jn]

j′jn guarantee that

k̃nj(x) · fj(x) · kjn(x) = k̃nj(x) · k̃jj′(x) · fj′(x) · kj′j(x) · kjn(x)

= k̃nj′(x) · fj′(x) · kj′n(x)

holds for all x ∈ U [jn]

j′jn. In addition, f ′n is the identity on
⋃
j<n U

[jn]

jn ∩ T by condi-
tions (c) and (f).

• To apply Lemma II.4, we need to know something about the values of f ′n. For arbi-

trary α ∈ N and x ∈ U [jn]

jnα, conditions (b), (e), and (6) of Lemma II.9 imply

f ′n(x) = k̃nj(x) · fj(x) · kjn(x) = knj(x) ·
(
k̃jn(x) · knj(x)

)−1 · fj(x) · kjn(x)

∈ knj(x) ·
(
Wα
jn)−1 ·Wα

j · kjn(x) ⊆Wα
n ,

so that the values of f ′n are, altogether, contained in the identity neighborhood W of

K. If we apply Lemma II.4 to M := U
[0]
n , to f ′n on A :=

⋃
j<n U

[jn]

jn and to the

smaller set B :=
⋃
j<n U

[nn]

jn , then we get a continuous function fn : U
[0]
n → W ,

which satisfies the conditions (d), (e) and (f).

This concludes the construction of the bundle equivalence. 2

Theorem II.12 (Smoothing continuous bundle equivalences). Let P and P ′ be smooth
principal K-bundles over the finite-dimensional connected paracompact manifold with
corners M and let Ω : P → P ′ be a continuous bundle equivalence. If C ⊆ M is
closed and Ω is smooth on an open neighborhood of η−1(C), then there exists an open
neighborhood T of C and a smooth bundle equivalence Ω̃ : P → P ′ with

Ω
∣∣
η−1(T )

= Ω̃
∣∣
η−1(T )

.

Proof. Let (Uj)j∈J be an open cover of M that is locally trivial for both bundles P
and P ′. The Proposition II.6 yields locally finite open covers

(
U

[λ]
i

)
i∈N of M for every

λ ∈ {0,∞} ∪
(
1 + 1

3N
)

such that the closures U
[λ]

i are compact manifolds with corners
and

U
[∞]

i ⊆ U [j+1]
i ⊆ U [j+1]

i ⊆ U [j+2/3]
i ⊆ U [j+2/3]

i ⊆ U [j+1/3]
i

⊆ U [j+1/3]
i ⊆ U [j]

i ⊆ U
[0]
i ⊆ U

[0]
i ⊆ Ui

holds for all i, j ∈ N, where Ui denotes a suitable set of the cover (Uj)j∈J for every
i ∈ N. According to Remarks I.2 and I.9, we may then describe the smooth bundles
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P and P ′ by smooth transition functions k = (kij)i,j∈N and k′ = (k′ij)i,j∈N on the

open cover (Ui)i∈N, equivalently, by their restrictions to any open cover
(
U

[λ]
i

)
i∈N from

above. In these local descriptions of the bundles, the bundle equivalence Ω can, as in
Remark I.10, be seen as a family fi : Ui → K of continuous maps for i ∈ N that satisfy

fj(x) = k′ji(x) · fi(x) · kij(x) for all i, j ∈ N and x ∈ Uij . (9)

Let S ⊆ M be an open neighborhood of C such that Ω|S is smooth. This means that the
restriction of each fi to Ui ∩ S is smooth. In addition, there exists an open neighborhood
T of C with T ⊆ S since M is normal (see Remark I.7).

We shall inductively construct smooth maps f̃i : U
[0]
i → K such that

(a) f̃j = k′ji · f̃i · kij pointwise on U
[j]

ij for all i < j inN,

(b)
(
f̃i · f−1

i

)(
U

[i]

iα

)
⊆Wα

i for all i, α ∈ N and
(c) f̃i

∣∣
U

[0]
i ∩T

= fi
∣∣
U

[0]
i ∩T

for all i ∈ N

are satisfied at each step, where the Wα
i are ϕ-convex identity neighborhoods provided

by Lemma II.9 that we apply to the countable compact cover
(
U

[0]
i

)
i∈N, to the transition

functions k′ij , to a convex centered chart ϕ : W → ϕ(W ) of K and to the sequence of
unit neighborhoods which is constantly W (we do not need the Wα

ij in this proof). These
maps f̃i describe a smooth bundle equivalence between P and P ′ when restricted to the
open cover

(
U

[∞]
i

)
i∈N, because (a) asserts that f̃j = k′ji · f̃ ′i · kij is satisfied on U [∞]

ij for
all i < j, in particular.

To construct the smooth function f̃1 : U
[0]
1 → K, we apply Proposition II.2 to the

continuous map f := f1 on M := U
[0]
1 , the closed set A := U

[0]
1 ∩ T , the open set

U := U
[0]
1 \T and to the open neighborhood

O1 :=
⋂
α∈N

⌊
U

[0]
1α,W

α
1

⌋
· f1

of f1, which is indeed open, since only finitely many U
[0]
1α are non-empty by Remark II.7.

By construction, f̃1 satisfies (b) and (c). To construct the smooth function f̃j : U
[0]
j → K

inductively for j > 1, we need the usual three steps:
• In order to satisfy (b) in the end, we define a continuous map

f̃ ′j :
⋃
i<j

U
[j−1]
ij → K, f̃ ′j(x) := k′ji(x) · f̃i(x) · kij(x) for x ∈ U [j−1]

ij .

If x is an element of both U
[j−1]
ij and U

[j−1]
i′j for i′ < i < j, condition (a) for j − 1

and the cocycle conditions of both k and k′ assert that the so-defined values for f̃ ′j(x)
agree. Furthermore, the compatibility condition together with condition (c) ensure
that f̃ ′j coincides with fj on

⋃
i<j U

[j−1]
ij ∩ T .
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• This definition of f̃ ′j , along with (9) and property (6) in Lemma II.9 asserts that

ϕj(x) := f̃ ′j(x) · fj(x)−1 = k′ji(x) · f̃i(x) · kij(x) · fj(x)−1

= k′ji(x) · f̃i(x) · fi(x)−1︸ ︷︷ ︸
∈Wα

i

·k′ij(x) ∈Wα
j

holds for all x ∈ U
[j−1]
ijα , i < j and α in N. So we may apply Lemma II.4 to

A :=
⋃
i<j U

[j−1]
ij and B :=

⋃
i<j U

[j−2/3]
ij to fade out ϕj to a continuous map

Φj on M := U
[0]
j . Then Φj coincides with ϕi on B and maps U

[j]

jα into Wα
j .

Since f̃ ′j coincides with fj on A ∩ T , ϕj and, consequently, Φj is the identity on

(A ∩ T ) ∪ (U
[0]
j \A). Furthermore, ϕj is smooth on A0 ∩ S, because so are all its

constituents, and on a neighborhood of U
[0]
j \A0, because it is the identity there. By

the last conclusion of Lemma II.4, Φj is smooth on U
[0]
j ∩ S.

• Accordingly, Φj · fj is an element of the open (due to Remark II.7) neighborhood

Oj :=
⋂
α∈N

⌊
U

[j]

jα,W
α
j

⌋
· fj

of fj and is smooth on
⋃
i<j U

[j−2/3]
ij and on U

[0]
j ∩ S. If we apply Proposition II.2

to M := A := U
[0]
j , U := M \

(
T ∪

⋃
i<j U

[j−1/3]
ij

)
, Oj , and to f := Φj · fj , then

we obtain a smooth map f̃j : U
[0]
j → K.

The map f̃j satisfies (a), because so does f̃ ′j , with which it coincides on
⋃
i<j U

[j]

ij . More-
over, (b) is satisfied due to the choice of Oj . So is (c), because Φj is the identity on

U
[0]
j ∩ T and Φj · fj remains unchanged on M \ U ⊇ U

[0]
j ∩ T in the last step. This

concludes the construction. 2

Corollary II.13 (Equivalences of smooth and continuous bundles). Let K be a Lie
group modeled on a locally convex space and M be a finite-dimensional connected man-
ifold with corners. Then each continuous principal K-bundle over M is continuously
equivalent to a smooth principal bundle. Moreover, two smooth principal K-bundles
over M are smoothly equivalent if and only if they are continuously equivalent.

Proof. The first statement is Theorem II.11, applied to C = ∅. In the same way, the
second assertion follows from Theorem II.12. 2
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III Related topics

In this section, we explain the relations of the results of the preceding section to the prob-
lem of extending bundles from submanifolds, to non-abelian Čech cohomology and to
twisted K-theory. One encounters the first situation, e.g., in the construction of topo-
logical field theories. While non-abelian Čech cohomology is only an equivalent sheaf-
theoretic framework for the problem, we show in the end how applications arise in twisted
K-theory.

Remark III.1 (Abelian Čech cohomology). Let M be a paracompact topological space
with an open cover U = (Ui)i∈I and A be an abelian topological group. Then for n ≥ 0,
an n-cochain f is a collection of continuous functions fi1...in+1 : Ui1...in+1 → A, and we
denote the set of n-cochains by Cn(U , A) and set it to {0} if n < 0. We then define the
boundary operator

δn : Cn(U , A)→ Cn+1(U , A), δ(f)i0i1...in+1 =
n∑
k=0

(−1)kfi0...îk...in+1
,

where îk means that we omit the index ik. Then δn+1 ◦ δn = 0, and we define

Ȟn
c (U , A) := ker(δn)/ im(δn−1) and Ȟn

c (M,A) := lim
→
Ȟn
c (U , A). (10)

The group Ȟ1(M,A) is the n-th continuous Čech cohomology. If, in addition, M is a
smooth manifold with or without corners andA is a Lie group, then the same construction
with smooth instead of continuous functions leads to the corresponding n-th smooth Čech
cohomology.

Theorem III.2 (Isomorphism for abelian Čech cohomology). Let M be a finite-dimen-
sional connected manifold and A be an abelian locally convex Lie group, then for each
n ∈ N, the canonical map ι : Ȟn

s (M,A) → Ȟn
c (M,A) defines an isomorphism of

abelian groups.

Proof. It clearly suffices to show that ι is bijective, so take some [(fi)i∈Nn ], defining an
element of Hn

c (M,A). Then [(fi)i∈Nn ] is in some Hn
c (U , A) and as before, we may

assume that U is a countable cover of M . Choosing a bijection λ : Nn → N+ induces a
total order on Nn. From Proposition II.6, we obtain corresponding open covers U [i] for

each i ∈ Nn ∪ {0,∞} such that U
[∞]

i ⊆ U
[k]
i ⊆ U

[k]

i ⊆ U
[k′]
i ⊆ U

[k′]

i ⊆ U
[0]
i if k′ < k.

In addition, we choose an arbitrary ϕ-convex neighborhood W in A. We set the stage for
the induction by defining f̃i for the least n− 1 elements i1, . . . , in−1 ofNn to be smooth
functions f̃i ∈ C∞(Ui, A) with (f̃i · f−1

i )(Ui) ⊆W (cf. Proposition II.2).
Defining f̃k inductively on

⋃
i<k(Ui ∩ Uk) by the cocycle condition, fading it out

appropriately to Uk and smoothing it out, we obtain f̃k ∈ C∞(Uk, A), satisfying
(f̃k · f−1

k )(Uk) ⊆ W and satisfying the cocycle condition on (U [k]
i )i∈N. In the end,

this yields a cocycle [f̃i] in Ȟn
s (U [∞], A), which is equivalent to [(fi

∣∣
U

[∞]
i

)i∈Nn ]. This
yields the surjectivity and the injectivity may be achieved analogously. 2
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Remark III.3 (On the previous proof). Note we have no occurrence of Lemma II.9 in the
abelian case, as the adjoint action, occurring implicitly in the cocycle condition, is trivial
in this case. Thus we can achieve that f̃k · f−1

k always has values in one fixed identity
neighborhood, simplifying the proof significantly.

Remark III.4 (Non-abelian Čech cohomology; cf. [4, Section 12] and [8, 3.2.3]).
If n = 0, 1, then we can perform a similar construction as in the previous remark in the
case of a not necessarily abelian group K. The definition of an n-cochain is the same
as in the commutative case, but we run into problems when writing down the boundary
operator δ. However, we may define δ0(f)ij = fi · f−1

j , δ1(k)ijl = kij · kjl · kli and call
the elements of δ−1

1 ({e}) 2-cocycles (or cocycles, for short).
The way to circumvent difficulties for n = 1 is the observation that even in the non-

abelian case, C1
c(U ,K) acts on cocycles by (fi, kij) 7→ fi · kij · f−1

j . Thus we de-
fine two cocycles kij and k′ij to be equivalent if k′ij = fi · kij · f−1

j on Uij for some
fi ∈ C1(U ,K), and by Ȟ1

c (U ,K) the equivalence classes (or the orbit space) of this
action. Then Ȟ1

c (U ,K) is not a group, but we may nevertheless take the direct limit

Ȟ1
c (M,K) := lim

→
Ȟ1
c (U ,K)

of sets and define it to be the 1st (non-abelian) continuous Čech cohomology of M with
coefficients inK. A representing space of Ȟ1

c (M,K) would then be the set of equivalence
classes of continuous principal K-bundles over M .

Again, if M is a smooth manifold with corners and K is a Lie group, we can adopt
this construction to define the 1st (non-abelian) smooth Čech cohomology Ȟ1

s(M,K).

Theorem III.5 (Isomorphism for non-abelian Čech cohomology). IfM is a finite-dimen-
sional connected manifold with corners andK is a Lie group modeled on a locally convex
space, then the canonical map ι : Ȟ1

s(M,K)→ Ȟ1
c (M,K) is a bijection.

Proof. We identify smooth and continuous principal bundles with Čech 1-cocycles and
smooth and continuous bundle equivalences with Čech 0-cochains as in Remark I.10. For
each open cover U ofM , we have the canonical map Ȟ1

s(U ,K)→ Ȟ1
c (U ,K). Now each

cocycle kij : Uij → K defines a principal bundle P with locally trivial cover U . We may
assume by Corollary II.13 that P is continuously equivalent to a smooth principal bundle
P̃ , and thus that U is also a locally trivial covering for P̃ . This shows that the map is
surjective, and the injectivity follows from Corollary II.13 in the same way. Accordingly,
the map induced on the direct limit is a bijection. 2

Remark III.6 (The projective unitary group). Let H be a separable infinite-dimensional
Hilbert space and denote by U(H) the group of unitary operators. If we equip U(H) with
the norm topology, then the exponential series, restricted to skew-self-adjoint operators
L(U(H)), induces a Banach–Lie group structure on U(H) (cf. [22, Example 1.1]). Then
U(1) ∼= Z(U(H)), and it can also be shown that PU(H) := U(H)/U(1) is a Lie group
modeled on L(U(H))/iR.
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Remark III.7 (Eilenberg–MacLane spaces). If X is a topological space with trivial n-th
homotopy group πn(X) for all but one n ∈ N, then it is called an Eilenberg–MacLane
space K(n, πn(X)). Since U(1) is a K(1,Z), the long exact homotopy sequence [2,
Theorem VII.6.7] shows that PU(H) is a K(2,Z), since U(H) is contractible [18, The-
orem 3]. By the same argument, the classifying space B PU(H) is a K(3,Z), since its
total space E PU(H) is contractible. Thus

Ȟ3(M,Z) ∼= [M,B PU(H)] ∼= Ȟ1
c (M,PU(H))

by [2, Corollary VII.13.16]. The representing class [P] in Ȟ3(M,Z) is called the Dix-
mier–Douady class of P (cf. [3], [5]). It describes the obstruction of P to be the projec-
tivization of an (automatically trivial) principal U(H)-bundle.

Corollary III.8 (Smoothing PU(H)-bundles). If M is a finite-dimensional connected
manifold with corners, then

Ȟ3(M,Z) ∼= Ȟ1
c (M,PU(H)) ∼= Ȟ1

s(M,PU(H)).

Remark III.9 (Twisted K-theory; cf. [25, Section 2], [1]). The Dixmier–Douady class
of a principal PU(H)-bundle over M induces a twisting of the K-theory of M in the
following manner. For any paracompact space, the K-theory K0(M) is defined to be
the Grothendieck group of the monoid of equivalence classes of finite-dimensional com-
plex vector bundles over X , where addition and multiplication is defined by taking direct
sums and tensor products of vector bundles [15]. Furthermore, the space of Fredholm
operators Fred(H) is a representing space for K-theory, i.e. K0(M) ∼= [M,Fred(H)],
where [·, ·] denotes homotopy classes of continuous maps. Since PU(H) acts (continu-
ously) on Fred(H) by conjugation, we can form the associated vector bundle PFred(H) :=
Fred(H)×PU(H)P . Then the homotopy classes of sections [M,PFred(H)] (or equivalently,
the equivariant homotopy classes of equivariant maps [PFred(H),Fred(H)]PU(H)) define
the twisted K-theory KP(M). Now Corollary II.13 implies that we may assume P to
be smooth. Since the action of PU(H) on Fred(H) is locally given by conjugation, it is
smooth (recall that Fred(H) is an open subset ofB(H), giving it a natural manifold struc-
ture), whence is PFred(H). Due to Lemma I.11, we may, in the computation of KP(M),
restrict our attention to smooth sections and smooth homotopies.

Acknowledgements. The authors of this paper are grateful to Mathai Varghese and Karl-
Hermann Neeb for pointing out the problem and to Peter Teichner for pointing out the
need of Theorem III.2.
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[10] H. Glöckner, Fundamentals of direct limit Lie theory. Compos. Math. 141 (2005), 1551–1577.
MR2188449 (2007e:22012) Zbl 1082.22012

[11] H. Glöckner, K. H. Neeb, Infinite-dimensional Lie groups. Volume I, Basic Theory and Main
Examples, Springer-Verlag, book in preparation.

[12] H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135
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