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Abstract. We explore reformulation of nonlinear stochastic programs with
several joint chance constraints by stochastic programs with suitably chosen
penalty-type objectives. We show that the two problems are asymptotically
equivalent. Simpler cases with one chance constraint and particular penalty
functions were studied in [5, 9]. The obtained problems with penalties and
with a fixed set of feasible solutions are simpler to solve and analyze then
the chance constrained programs. We discuss solving both problems using
Monte-Carlo simulation techniques for the cases when the set of feasible so-
lution is finite or infinite bounded. The approach is applied to the financial
optimization problem with Value at Risk constraint, transaction costs and in-
teger allocations. We compare the ability to generate a feasible solution of
the original chance constrained problem using the sample approximations of
the chance constraints directly or via sample approximation of the penalty
function objective.

1. Introduction

Stochastic programming treats problems where optimization and uncertainty
appears together. Such problems arise in economy, finance, industry, agriculture
and logistics, cf. [21].

In general, we consider the following program with a random factor

min {f(x) : x ∈ X, gi(x, ω) ≤ 0, i = 1, . . . , k} ,(1.1)

where gi, i = 0, . . . , k, are real functions on Rn × Rn′ , X ⊆ Rn and ω ∈ Rn′ is
a realization of a n′-dimensional random vector defined on the probability space
(Ω,F , P ). However, ω is unknown for us, hence a question is how to deal with the
uncertain constraints. In [14], three suggestions how to deal with the stochastic
constraints of the form gi(x, ω) = ωi−hi(x) ≤ 0, i = 1, . . . , k, where ωi are random
bounds with marginal distributions Pi, are introduced. First, the constraints can
be incorporated into the objective function of the optimization problems as the
penalty function

k∑
i=1

Ni

ˆ ∞
hi(x)

[ωi − hi(x)]Pi(dω).

with Ni > 0 being constant. Next, the reliability type model with a chance or
probabilistic constraint can be considered

P (hi(x) ≥ ωi, i = 1, . . . , k) ≥ 1− ε
for some level ε ∈ (0, 1). Finally, the constraints involving the conditional expecta-
tions can be used

E[ωi − hi(x)|ωi − hi(x) > 0] ≤ li, i = 1, . . . , k
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for some small levels li > 0.
Solving the chance constrained problems is not easy. In general, the feasible

region is not convex even if the functions are convex and in many cases it is even not
easy to check feasibility because it leads to computations of multivariate integrals.
On the other hand, there are some special cases under which the convexity is
preserved, e.g. the log-concave distributions [16], or it is relatively easy to check
the feasibility of a point, e.g. for the normal distribution. There are several methods
for numerical solving of particular chance constrained problems, you can see [17].
For the problems with discretely distributed random variables, p-efficient points can
be used, cf. [15]. For continuously distributed random variables the methods based
on supporting hyperplanes and reduced gradients are available. In the case that the
underlying distribution is continuous or discrete with many realizations, the sample
approximation techniques and mixed-integer programming reformulation can help
us to solve the problem approximately, see [1, 12].

In this paper, we will study the relation between the nonlinear problems with
several chance constraints and the penalty function problems. We will show that
the model with chance constraints and the penalty type model are asymptotically
equivalent under quite mild assumptions. In [9], the equivalence between the prob-
lem with one joint chance constraint and the problem with simple penalty function
was shown. The approach was recently extended to a whole class of penalty func-
tions in [5]. We propose further extension to multiple jointly chance constrained
problems which cover the joint as well as the separate chance constrained problems
as special cases.

The approach for solving nonlinear deterministic programs with several con-
straints using the penalty functions is well studied in literature. Algorithms and
basic theory based on continuity and Karush-Kuhn-Tucker conditions are explained
in [3, 11]. Theoretical analysis of the penalty function method is provided by [19].
The penalized objective function epiconverges to the objective function of the non-
linear problem with several constraints, which implies "stable" behaviour of optimal
values and optimal solutions.

We will show that the penalty function approach can be helpful in numerical
solution of stochastic optimization problems with chance constraints. The reformu-
lation of chance constrained problems using the penalties was applied in insurance
and water-management, cf. [8, 9]. We will draw our attention to the nonconvex
case with a finite set of feasible solutions, which can appear in bounded integer
programming, and with an infinite bounded set. We will extend the result on
the rates of convergence for the sample approximations of the chance constrained
problems and summarize the results for the problems with the expectation in the
objective which cover the penalty function problems. The approach will be applied
to the financial optimization problem with Value at Risk constraint, transaction
costs and integer allocations. We compare the ability to generate a feasible solu-
tion of the original chance constrained problem using the sample approximations of
the chance constraints directly or via sample approximation of the penalty function
objective.

The paper is organized as follows. In section 2, we formulate the multiple jointly
chance constrained problem and the problem with penalty type objective and we
show that they are asymptotically equivalent. In section 3, Monte Carlo techniques
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for solving the problems are discussed. Numerical study is included in section 4.
In section 5, we will summarize our results.

2. Reformulation

Let gji(x, ω), i = 0, . . . , kj , j = 1, . . . ,m, be real functions on Rn×Rn′ measurable
in ω for all x ∈ X. Then the multiple chance constrained problem can be formulated
as follows:

ψε = minx∈X f(x),
s.t.

P
(
g11(x, ω) ≤ 0, . . . , g1k1(x, ω) ≤ 0

)
≥ 1− ε1,
...

P
(
gm1(x, ω) ≤ 0, . . . , gmkm(x, ω) ≤ 0

)
≥ 1− εm,

(2.1)

with an optimal solution xε, where ε = (ε1, . . . , εm), with the levels εj ∈ (0, 1). The
formulation covers the joint (k1 > 1 and m = 1) as well as the separate (kj = 1
and m > 1) chance constrained problems as special cases.

In [9], asymptotic equivalence between the problem with one joint chance con-
straint and the problem with simple penalty function is shown. The approach by
[9] can be extended to a whole class of penalty functions with desirable properties
which was done in [5]. We propose further extension to the multiple jointly chance
constrained problems (2.1).

Below, we will consider the penalty functions ϑj : Rkj → R+, j = 1, . . . ,m,

which are continuous nondecreasing in their components, equal to 0 on Rkj− and
positive otherwise. Two special penalty functions are readily available: ϑ1,o(u) =∑k
i=1([ui]

+)o, o > 0, where ϑ1,1(u) =
∑k
i=1[ui]

+ was applied in [9], and ϑ2(u) =
max1≤i≤k[ui]

+ applied in [8]. Both functions preserve convexity, ϑ2 is usually used
for the joint chance constraints. Another penalty functions are also available:

ϑ3(u) = min
{
t ≥ 0 : ui − t ≤ 0, i = 1, . . . , k

}
,

and the ideal (perfect) penalty function, which is closely connected to the duality
in nonlinear programming:

ϑ4(u) = sup
y≥0

k∑
i=1

yiui,

where y ∈ Rk. For any nonpositive u it holds ϑ4(u) = 0, and ϑ4(u) =∞ otherwise.
We denote

pj(x, ω) = ϑj(gj1(x, ω), . . . , gjkj (x, ω)) : Rn × Rn
′
→ R

the penalized constraints. Our choice is appropriate, because it holds

P
(
gji(x, ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj ⇐⇒ P

(
pj(x, ω) > 0

)
≤ εj .(2.2)

The corresponding penalty function problem can be formulated as follows:

(2.3) ϕN = min
x∈X

[
f(x) +N ·

m∑
j=1

E[pj(x, ω)]
]

with N a positive parameter. We denote xN an optimal solution of (2.3).
A rigorous proof of the relationship between the optimal values of (2.1) and those

of (2.3) for a special additive penalty function and one chance constraint was given



4 MARTIN BRANDA

by [9]. The following main theorem states the asymptotic equivalence of the models
in generalized settings.

Theorem 2.1. Consider the two problems (2.1) and (2.3) and assume: X 6= ∅ is
compact, f(x) is a continuous function,
ϑj : Rkj → R+, j = 1, . . . ,m, are continuous functions, nondecreasing in their
components, which are equal to 0 on Rkj− and positive otherwise, denote

pj(x, ω) = ϑj(gj1(x, ω), . . . , gjkj (x, ω)), j = 1, . . . ,m,

and assume

(i) gji(·, ω), i = 1, . . . , kj , j = 1, . . . ,m, are almost surely continuous;
(ii) there exists a nonnegative random variable C(ω) with E[C1+κ(ω)] <∞ for

some κ > 0, such that |pj(x, ω)| ≤ C(ω), j = 1, . . . ,m, for all x ∈ X;
(iii) E[pj(x

′
, ω)] = 0, j = 1, . . . ,m, for some x

′ ∈ X;
(iv) P (gji(x, ω) = 0) = 0, i = 1, . . . , kj , j = 1, . . . ,m, for all x ∈ X.

Denote η = κ/(2(1 + κ)), and for arbitrary N > 0 and ε ∈ (0, 1)m put

εj(x) = P
(
pj(x, ω) > 0

)
, j = 1, . . . ,m,

αN (x) = N ·
m∑
j=1

E[pj(x, ω)],

βε(x) = ε−ηmax

m∑
j=1

E[pj(x, ω)],

where εmax denotes maximum of the vector ε = (ε1, . . . , εm)
and [1/N1/η] = (1/N1/η, . . . , 1/N1/η) is the vector of length m.

THEN for any prescribed ε ∈ (0, 1)m there always exists N large enough so that
minimization (2.3) generates optimal solutions xN which also satisfy the chance
constraints (2.1) with the given ε.

Moreover, bounds on the optimal value ψε of (2.1) based on the optimal value
ϕN of (2.3) and vice versa can be constructed:

ϕ1/εηmax(xN ) − βε(xN )(xε(xN )) ≤ ψε(xN ) ≤ ϕN − αN (xN ),
ψε(xN ) + αN (xN ) ≤ ϕN ≤ ψ[1/N1/η ] + β[1/N1/η](x[1/N1/η ]),

(2.4)

with

lim
N→+∞

αN (xN ) = lim
N→+∞

εj(xN ) = lim
εmax→0+

βε(xε) = 0

for any sequences of optimal solutions xN and xε.

PROOF. We denote

δN =

m∑
j=1

E[pj(xN , ω)]

for some sequence xN of optimal solutions of the problem (2.3). Our assumptions
and general properties of the penalty function method, see [3, Theorem 9.2.2],
ensure that for any sequence xN of optimal solutions δN → 0+ and also αN (xN ) =



REFORMULATION OF GENERAL CCP USING THE PENALTY FUNCTIONS 5

NδN → 0 as N →∞. Then by Chebyshev inequality

P
(
pj(xN , ω) > 0

)
=

= P
(

0 < pj(xN , ω) ≤
√
δN

)
+ P

(
pj(xN , ω) >

√
δN

)
≤ Gj(xN ,

√
δN )−Gj(xN , 0) +

1√
δN

E[pj(xN , ω)]

≤ Gj(xN ,
√
δN )−Gj(xN , 0) +

√
δN → 0, as N →∞, j = 1, . . . ,m.

Here for a fixed x, Gj(x, ·) denotes the distribution function of pj(x, ω) defined by

Gj(x, y) = P
(
pj(x, ω) ≤ y

)
, j = 1, . . . ,m.

Assumption (iii) implies that for every vector ε > 0 (with small components) there
exists some xε ∈ X such that

P
(
gji(xε, ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj , j = 1, . . . ,m.

Then for any ε > 0 the following relations hold
m∑
j=1

E[pj(xε, ω)] =

=

m∑
j=1

ˆ
Ω

|pj(xε, ω)|I(pj(xε,ω)>0)P (dω)

≤
m∑
j=1

ˆ
Ω

C(ω)I(pj(xε,ω)>0)P (dω)

≤

(ˆ
Ω

C1+κ(ω)P (dω)

)1/(1+κ)

·
m∑
j=1

(ˆ
Ω

I(pj(xε,ω)>0)P (dω)

)κ/(1+κ)

≤ c ·
m∑
j=1

P
(
pj(xε, ω) > 0

)κ/(1+κ)

≤ c ·m · εκ/(1+κ)
max ,

where c :=
( ´

Ω
C1+κ(ω)P (dω)

)1/(1+κ)

, which is finite due to the assumption (ii).
Accordingly, for εmax → 0+

0 ≤
m∑
j=1

E[pj(xε, ω)] ≤ c ·m · εκ/(1+κ)
max → 0,

and also βε(xε)→ 0. If we set

εj(xN ) = P
(
pj(xN , ω) > 0

)
, j = 1, . . . ,m,

then the optimal solution xN of the expected value problem is feasible for the chance
constrained program with ε(xN ) = (ε1(xN ), . . . , εm(xN )), because the following
relations hold

P
(
gji(xN , ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj(xN )

⇐⇒ P
(
pj(xN , ω) > 0

)
≤ εj(xN ).
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Hence, we get the inequality

ϕN = f(xN ) +N ·
m∑
j=1

E[pj(xN , ω)]

≥ f(xε(xN )) +N ·
m∑
j=1

E[pj(xN , ω)]

= ψε(xN ) + αN (xN ).

Finally,

ψε =

(
ψε + ε−ηmax

m∑
j=1

E
[
pj(xε, ω)

])
− ε−ηmax

m∑
j=1

E[pj(xε, ω)]

≥ ϕε−ηmax − ε
−η
max

m∑
j=1

E
[
pj(xε, ω)

]
= ϕε−ηmax − βε(xε).

This completes the proof.
Note that the theorem does not make any statement on the convergence of

optimal solutions but it relates optimal values for certain values of the levels and
the penalty parameter. We will investigate the behaviour of the optimal solutions
in the numerical study.

Remark. The assumption (iii) can be very strong. The problem is that the overall
feasible set may shrink with increasing levels to the empty set, which makes the
approach less appropriate for probability measures with an unbounded support.

Remark. The assumption (iv) ensures that the probability function

P
(
gji(x, ω) ≤ 0, i = 1, . . . , kj

)
is continuous in the decision vector, which can be easy seen if we realize that the
only point of discontinuity of the function is gji(x, ω) = 0, i = 1, . . . , kj for any x.

The bounds (2.4) and the terms αN (x), ε(x) and βε(x) depend on the choice
of the penalty function ϑ. Notice, however, that when we want to evaluate one of
the bounds in (2.4), we must be prepared to face some problems. We are able to
compute αN (xN ), ε(xN ), hence the upper bound for the optimal value ψε(xN ) of
the chance constrained program (2.1) with probability levels ε(xN ). But we are not
able to compute βε(xN )(xε(xN )) without having the solution xε(xN ) which we do not
want to find or even may not be able to find.

3. Sample approximations using Monte-Carlo techniques

In this part, we will address the rates of convergence for the chance constrained
problems and the problems with expectation type objectives which cover the penalty
type objectives. Usually, the sample approximation of the chance constrained prob-
lems leads only to the feasible solutions of the original problem. Moreover, the
sample reformulation results in a large mixed-integer optimization problem, see
below. Hence, it may be interesting to investigate the ability to generate the feasi-
ble solutions of the original chance constrained problem using the penalty function
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Table 1. Formulation and approximation schema

1. 2. 3.
Stochastic Sample Solution

prog. approx. validation
formulation (SA)

Program −→ Chance constrained −→ SA CCP −→ Reliability
with a random problem (CCP)

factor ↘ ↓

Penalty function −→ SA PFP −→ Reliability
problem (PFP)

problems, where no additional integer variables are necessary. Our approach is is
summarized in Table 1.

For the case when the set of feasible solutions, the objective function and the
constraints are convex, stronger results on the sample approximations are valid,
cf. [6]. The results below generalize those of [1, 10, 13] for the case with several
chance constraints and they are valid without assuming convexity of any parts of
the problems. We will draw our attention to the case when the set of feasible
solutions is finite, i.e. |X| <∞, and to the bounded infinite X.

In this section, we will refer to the problem (2.1) as the original problem. We
denote the probability functions using the equivalence (2.2)

qj(x) = P
(
pj(x, ω) > 0

)
.(3.1)

Then the multiple chance constrained problem (2.1) can be rewritten as

ψε = minx∈X f(x),
s.t.

q1(x) ≤ ε1,
...

qm(x) ≤ εm,

(3.2)

Let ω1, . . . , ωS be an independent Monte Carlo sample of the random vector ω.
Then, the sample version of the function qj is defined to be

q̂Sj (x) = S−1
S∑
s=1

I(0,∞)

(
pj(x, ω

s)
)
.(3.3)

Finally, the sample version of the multiple jointly chance constrained problem (3.2)
is defined as

ψ̂Sγ = minx∈X f(x),
s.t.

q̂S1 (x) ≤ γ1,
...

q̂Sm(x) ≤ γm,

(3.4)

where the levels γj are allowed to be different from the original levels εj . Let the
set X be compact and gji(·, ωs) be continuous for all triplets (i, j, s). The sample
approximation of the chance constrained problem can be reformulated as a large
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mixed-integer nonlinear program

min(x,u)∈X×{0,1}mS f(x)
s.t.

g1i(x, ω
s)−M(1− u1s) ≤ 0, i = 1, . . . , k1, s = 1, . . . , S

...
gmi(x, ω

s)−M(1− ums) ≤ 0, i = 1, . . . , km, s = 1, . . . , S,
1
S

∑S
s=1 u1s ≥ 1− ε1,

...
1
S

∑S
s=1 ums ≥ 1− εm,

u1s, . . . , ums ∈ {0, 1}, s = 1, . . . , S,

(3.5)

where we set M = maxj=1,...,m maxi=1,...,kj maxs=1,...,S supx∈X gji(x, ω
s). Due to

the increasing number of binary variables ums, it may be very difficult to solve the
problem (3.5) even using special solvers for the mixed-integer problems.

3.1. Lower bound for the chance constrained problem. We will assume that
it holds γj > εj for all j, i.e. that the levels of the sample approximated problem
are less restrictive. We derive the rate of convergence of the probability that the
feasible solution of the original problem is feasible for the sample approximated
problem. Hence, the optimal value of the sample approximated problems is lower
bound for the optimal value of the original problem with some probability.

For a fixed x ∈ X, the probability of the event pj(x, ωn) > 0 is qj(x). If the x is
feasible for the original chance constrained problem, we get qj(x) ≤ εj , j = 1, . . . ,m.
Using Bonferroni inequality

P (∩mj=1Aj) ≥ 1−
m∑
j=1

(
1− P (Aj)

)
for the events Aj = {pj(x, ω) > 0} and the inequality based on the Chernoff
inequality for the cumulative distribution function of the binomial distribution,
see [1, 12, 13],

1− P
(
q̂Sj (x) ≤ γj

)
≤ exp

{
− S(γj − εj)2/(2εj)

}
,

we obtain

P
(
q̂S1 (x) ≤ γ1, . . . , q̂

S
m(x) ≤ γm

)
≥ 1−

m∑
j=1

exp
{
− S(γj − εj)2/(2εj)

}
≥ 1−m exp

{
− S/2 min

j∈{1,...,m}
(γj − εj)2/εj

}
.(3.6)

This means, that we can choose the sample size S to obtain that the feasible solution
x is also feasible for the sample approximation with a probability at least 1− δ, i.e.

S ≥ 2

minj∈{1,...,m}(γj − εj)2/εj
ln
m

δ
,(3.7)

which corresponds to the result of [1] form = 1. Previous analysis also implies, that
the probability P (ψ̂Sγ ≤ ψε) increases exponentially fast with increasing sample size
S.
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3.2. Feasibility for the chance constrained problem. We derive the rate of
convergence of the probability that the set of feasible solutions of the sample ap-
proximated problem is contained in the feasibility set of the original problem.

3.2.1. Finite |X|. First, we will draw our attention to the case when the set of
feasible solutions is finite, i.e. |X| < ∞, which appears in the bounded integer
programs. We will assume that it holds γj < εj for all j, i.e. that the levels of the
sample approximated problem are more restrictive.

We define the random variable Ysj = I(pj(x,ωs)≤0), i.e. Yjs = 1 if pj(x, ωs) ≤ 0
and 0 otherwise. Let

XS
γj = {x ∈ X :

1

S

S∑
s=1

Yjs ≥ 1− γj},

Xεj = {x ∈ X : P (pj(x, ω) ≤ 0) ≥ 1− εj},

XS
γ =

m⋂
j=1

XS
γj ,

Xε =

m⋂
j=1

Xεj .

Then, for x ∈ X \Xεj we obtain E[Yjs] = P (pj(x, ω) ≤ 0) < 1− εj , which we can
use to get an estimate for the probability

P (x ∈ XS
γj ) = P

(
1

S

S∑
s=1

Yjs ≥ 1− γj
)

≤ P

( S∑
s=1

(Yjs − E[Yjs]) ≥ S(εj − γj)
)

≤ exp
{
− 2S(εj − γj)2

}
,(3.8)

where we used Hoeffding’s inequality, cf. [7]. We use this estimate to get an up-
per bound for the probability that there exists a feasible solution of the sample
approximated problem which is infeasible for the original problem.

1− P (XS
γ ⊆ Xε) = P

(
∃j̃∈{1,...,m}∃x∈XSγ : P (pj̃(x, ω) ≤ 0) < 1− εj̃

)
≤

m∑
j=1

∑
x∈X\Xεj

P (x ∈ XS
γj )

≤ |X \Xε|
m∑
j=1

exp
{
− 2S(εj − γj)2

}
≤ m|X \Xε| exp

{
− 2S min

j∈{1,...,m}
(εj − γj)2

}
.

Using previous upper bound it is possible to estimate the sample size S such that
the feasible solutions of the sample approximated problems are feasible for the
original problem with a high probability 1− δ, i.e.

S ≥ 1

2 minj∈{1,...,m}(γj − εj)2
ln
m|X \Xε|

δ
.(3.9)

If we set m = 1, we get the same inequality as [10].
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3.2.2. Bounded |X|. Below we will consider the case when the set of feasible solu-
tions X is bounded but infinite in general. Again, let γj < εj for all j. However,
we will need the following additional assumption which states Lipschitz continuity
of the penalized constraints, i.e.

|pj(x, ω)− pj(x′, ω)| ≤ Lj ‖x− x′‖ , ∀x, x′ ∈ X, ∀ω ∈ Ω, ∀j,

for some Lj 0. Let D = sup{‖x− x′‖∞ : x, x′ ∈ X} be the diameter of X. In this
case, it is necessary to consider the constraints which are satisfied strictly, i.e. with
some deviation τ :

XS
γj ,τ = {x ∈ X :

1

S

S∑
s=1

I(pj(x,ωs)+τ≤0) ≥ 1− γj}.

XS
γ,τ =

m⋂
j=1

XS
γj ,τ .

According to the proof of [10, Theorem 10], for λj ∈ (0, εj − γj) there exist finite
sets Zτj ⊆ X with

|Zτj | ≤ d1/λje d2LjD/τe
n

where d·e denotes the upper integer part, and for any x ∈ XS
γ,τ and any j there

exists z ∈ Zτj such that ‖z − x‖∞ ≤ τ/Lj . Using the finite sets Zτj we can define

Zτ,Sγj = {x ∈ Zτj :
1

S

S∑
s=1

I(pj(x,ωs)≤0) ≥ 1− γj},

Zτεj−λj = {x ∈ Zτj : P (pj(x, ω) ≤ 0) ≥ 1− εj + λj},

Zτ,Sγ =

m⋂
j=1

Zτ,Sγj ,

Zτε−λ =

m⋂
j=1

Zτεj−λj ,

Moreover, for all j it holds that Zτ,Sγj ⊆ Zτεj−λj implies Xτ,S
γj ⊆ Xεj . For the

previous finite sets, the inequality (3.8) is valid, i.e. we obtain

1− P (Zτ,Sγ ⊆ Zτε−λ) ≤ m

⌈
1

minj∈{1,...,m} λj

⌉⌈
2LmaxD

τ

⌉n
exp

{
− 2S min

j∈{1,...,m}
(εj − γj − λj)2

}
,

where Lmax = maxj Lj . Since Zτ,Sγ ⊆ Zτε−λ implies Xτ,S
γ ⊆ Xε, we get the inequal-

ity for the probabilities

P (XS
γ,τ ⊆ Xε) ≥ P (Zτ,Sγ ⊆ Zτε−λ).

Using the bound it is possible to estimate the sample size S such that the feasible
solutions of the sample approximated problems are feasible for the original problem
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with a high probability 1− δ, i.e.

S ≥ 1

2 minj∈{1,...,m}(εj − γj − λj)2(
ln
m

δ
+ ln

⌈
1

minj∈{1,...,m} λj

⌉
+ n ln

⌈
2LmaxD

τ

⌉)
.

If we choose λj = (εj − γj)/2, we obtain

S ≥ 2

minj∈{1,...,m}(εj − γj)2(
ln
m

δ
+ ln

⌈
2

minj∈{1,...,m}(εj − γj)

⌉
+ n ln

⌈
2LmaxD

τ

⌉)
.

Setting m = 1 we obtain the same estimate as [10].

3.3. Sample approximation for stochastic programs with expectation type
objectives. In this section we will review the main results of [20] on the sample
average approximation (SAA) techniques for the expectation type stochastic pro-
grams with a finite or bounded set of feasible solutions.

3.3.1. Finite |X|. Let F (x, ω) denote the objective function which is integrated
over ω, e.g. in the penalty approach

F (x, ω) = f(x) +N ·
m∑
j=1

pj(x, ω),

and f(x) = E[F (x, ω)] be its expectation. Let Φζ be the set of ζ−optimal solutions.
Let

Y (x, ω) = F (u(x), ω)− F (x, ω),

where u is a function from X \ Φζ into the set X such that

f(u(x)) ≤ f(x)− ζ∗, ∀x ∈ X \ Φζ

for some ζ∗ > ζ. Denote

ν(ζ̂, ζ) = min
x∈X\Φζ

R(x,−ζ̂),

where R is the large deviations rate function of the random variable Y which is
defined as the conjugate function to the logarithmic moment generating function,
i.e.

R(x, ζ) = sup
t∈R

{
tζ − lnE[etY (x,ω)]

}
.

Then, for the probability that the set of ζ̂−optimal solutions of the sample average
approximated problem is included in the set of ζ−optimal solutions, it holds

1− P
(
Φ̂S
ζ̂
⊆ Φζ

)
≤ |X| exp{−Sν(ζ̂, ζ)}.

The function ν can be further estimated as

ν(ζ̂, ζ) ≥ (ζ − ζ̂)2

3σ2
max

,
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where

σ2
max = max

x∈X\Φζ
V ar[F (u(x), ω)− F (x, ω)].

Then, the sample size S, which is necessary to generate ζ̂−optimal solutions which
are also ζ−optimal for the original problem with a high probability 1 − δ, can be
estimated as, cf. [20],

S ≥ 3σ2
max

(ζ − ζ̂)2
ln
|X|
δ
,

where 1− δ is the prescribed probability. It is necessary to mention that the term
σ2
max depends on the penalty parameter N in quadratic manner.

3.3.2. Bounded |X|. In the case that the set of feasible solutions X is bounded, not
necessarily finite, and the function F (x, ω) is Lipschitz continuous on X modulus
L which does not depend on ω, i.e.

|F (x, ω)− F (x′, ω)| ≤ L ‖x− x′‖ , ∀x, x′ ∈ X, ∀ω ∈ Ω,

then we can get the following estimate for the sample size necessary to generate
ζ̂−optimal solutions which are also ζ−optimal for the original problem with a high
probability 1− δ, cf. [20],

S ≥ 12σ2
max

(ζ − ζ̂)2

(
n ln

2DL

ζ − ζ̂
− ln δ

)
.

As can be easily seen, the estimate depends linearly on the dimension n of the
decision variables x.

4. Mixed-integer VaR and penalty function problems

In this section, we compare the penalty function approach with the chance con-
strained problems on a mixed-integer portfolio problem of a small investor. We
consider 13 most liquid assets which are traded on the main market (SPAD) on
Prague Stock Exchange. Weekly returns from the period 6th February 2009 to
10th February 2010 are used to estimate the means and the variance matrix. Sup-
pose that the small investor trades assets on the "mini-SPAD" market. This market
enables to trade "mini-lots" (standardized number of assets) with favoured trans-
action costs.

We denoteQi the quotation of the "mini-lot" of security i, fi the fixed transaction
costs (not depending on the investment amount), ci the proportional transaction
costs (depending on the investment amount), Ri the random return of the security
i, xi the number of "mini-lots", yi binary variables which indicate, whether the
security i is bought or not. Then, the random loss function depending on our
decisions and the random returns has the following form

−
n∑
i=1

(Ri − ci)Qixi +

n∑
i=1

fiyi.
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The chance constrained portfolio problem can be formulated as follows

min
(r,x,y)∈R×X

r

P

(
−

n∑
i=1

(Ri − ci)Qixi +

n∑
i=1

fiyi ≤ r
)
≥ 1− ε,(4.1)

which is in fact minimization of Value at Risk (VaR). Corresponding penalty func-
tion problem using the penalty ϑ1,1 is

min
(r,x,y)∈R×X

r +N · E
[
−

n∑
i=1

(Ri − ci)Qixi +

n∑
i=1

fiyi − r
]+

.(4.2)

Setting N = 1/(1 − ε) we minimize Conditional Value at Risk (CVaR) exactly,
see [18]. Similar problem with CVaR and transaction costs was considered by [2]
and its stability was studied by [4].

The set of feasible solutions contains a budget constraint and the restrictions on
the minimal and the maximal number of "mini-lots" which can be bought, i.e.

X = {x ∈ Nn × {0, 1}n
Bl ≤

∑n
i=1(1 + ci)Qixi +

∑n
i=1 fiyi ≤ Bu,

liyi ≤ xi ≤ uiyi, i = 1, . . . , n},

where Bl and Bu are the lower and the upper bound on the capital available for
the portfolio investment, li > 0 and ui > 0 are the lower and the upper number of
units for each security i.

4.1. Estimated sample sizes. In our case, the cardinality of the integer part of
the set of feasible solutions is bounded, i.e. |X| ≤ 11613 · 213. Moreover, if the
support of the distribution of the returns is bounded, than the free variable t can
be restricted to the closed interval which is bounded by the worst loss and by the
best profit which can occur for our loss function considering the restrictions. Then
we get the following estimate for the sample size which is necessary to generate a
lower bound for the optimal value

S ≥ 2ε

(γ − ε)2
ln

1

δ
,

and to generate a feasible solution

S ≥ 2

(ε− γ)2

(
ln

1

δ
+ 13 ln 116 + 13 ln 2 + ln

⌈
2

(ε− γ)

⌉
+ ln

⌈
2D

τ

⌉)
,

which is based on the decomposition of the set of feasible solutions into the integer
and real bounded part. In Tables 2 and 3, there are examples of the sample sizes for
different combinations of the parameters γ, ε, δ where we have chosen τ = 10−6 and
D = 2 · 106 which is the difference between the worst loss and the best profit. The
sample size which is necessary to generate the lower bound for the optimal value
of the original problem is quite low and will be covered partly by the following
numerical experiment, see Table 2. However, the samples, which are necessary to
ensure that the set of feasible solutions of the sample approximated problem is
contained in the feasibility set of the original problem, are quite large and rapidly
increase with decreasing level ε, see Table 3.
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Table 2. Sample sizes - lower bound

ε γ δ S

0.1 0.2 0.01 93
0.05 0.1 0.01 185
0.01 0.02 0.01 9211
0.1 0.2 0.001 139
0.05 0.1 0.001 277
0.01 0.02 0.001 13816

Table 3. Sample sizes - feasibility

ε γ δ S

0.1 0.05 0.01 86496
0.05 0.025 0.01 348199
0.01 0.005 0.01 901792970
0.1 0.05 0.001 88338
0.05 0.025 0.001 355567
0.01 0.005 0.001 920213650

4.2. Numerical comparison. We generated 100 samples for each sample size S,
i.e. 100×S realizations, from the truncated normal distribution where the trunca-
tion points were set to −1 for all random returns. We used the modelling system
GAMS and the solver CPLEX to solve the sample approximations of the chance
constrained problems (4.1) and the penalty function problems (4.2) for different
sample sizes S, levels γ and penalty parameters N . Descriptive statistics for the
results are contained in Tables 4, 5, 6. As we can see from Table 6, the "Penalty
term"

N · E
[
−

n∑
i=1

(Ri − ci)Qixi +

n∑
i=1

fiyi − r
]+

really decreases with increasing penalty parameter N and reduces violations of the
constraint (Ri − ci)Qixi +

∑n
i=1 fiyi − r ≤ 0 for each sample size.

To verify the reliability of the obtained optimal solutions, we used the indepen-
dent samples of 10 000 realizations from the truncated normal distribution which
was used to model the random returns. The columns "Reliability" contain relative
number of realizations for which the chance constraint is fulfilled. As can be easy
seen, the reliability of the obtained solutions increases with increasing levels γ and
penalty parameters N for each sample size S. Both problems are also able to gen-
erate comparable solutions for the same sample sizes, see Tables 4, 5. Furthermore,
we can compare the descriptive statistics of the optimal values ψ̂Sγ , ϕ̂SN and the
optimal solutions r̂SN of the problems. We observe that the variability of the values
increases with the sample size. Thus, we pay for the increasing reliability of the op-
timal solutions by decreasing reliability of the optimal values when we increase the
size of the sample. Finally, we can compare the used sample sizes with theoretically
estimated sizes in Tables 2 and 3, which can be now seen as very conservative.
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Table 4. Chance constrained problems

Reliability ψ̂Sγ

S γ min max mean st.dev min max mean st.dev
100 0.1 0.8844 0.9967 0.9592 0.0255 29739.36 66854.82 41784.66 7525.69
100 0.05 0.9054 0.9869 0.9516 0.0189 29739.36 66854.82 41821.60 7465.46
100 0.01 0.8939 0.9941 0.9456 0.0250 29680.35 69513.05 42312.34 7612.11
250 0.1 0.9546 0.9968 0.9824 0.0098 37609.63 121252.72 52429.77 9887.54
250 0.05 0.9545 0.9950 0.9820 0.0086 37609.63 121252.72 52431.23 9884.16
250 0.01 0.9555 0.9950 0.9807 0.0115 38260.62 121972.21 52626.23 9909.60
500 0.1 0.9744 0.9982 0.9903 0.0043 45085.97 125638.34 67824.32 15849.91
500 0.05 0.9744 0.9982 0.9903 0.0043 45085.97 125638.34 67824.32 15849.91
500 0.01 0.9726 0.9982 0.9906 0.0043 45085.97 125638.34 67942.02 15757.14
750 0.1 0.9849 0.9994 0.9952 0.0033 48562.73 160984.79 74655.08 19435.11
750 0.05 0.9849 0.9994 0.9952 0.0033 48562.73 160984.79 74652.82 19436.71
750 0.01 0.9866 0.9994 0.9953 0.0032 48562.73 155469.46 74679.40 19187.28
1000 0.1 0.9870 1.0000 0.9966 0.0025 59129.41 187831.95 93390.26 28293.28
1000 0.05 0.9870 1.0000 0.9966 0.0025 59129.41 187831.95 93414.25 28269.13
1000 0.01 0.9870 1.0000 0.9966 0.0025 59129.41 187831.95 93384.85 28264.63

5. Conclusion

Reformulation of chance constrained programs by incorporating a suitably cho-
sen penalty function into the objective helps to arrive at problems with expectation
in the objective and a fixed set of feasible solutions. The obtained problems are
much simpler to solve and analyze then the chance constrained programs. The rec-
ommended form of the penalty function follows the basic ideas of penalty methods
and its suitable properties follow by generalization of the results from [5, 9].

The numerical study shows that not only the sample approximated chance con-
strained problems but also the penalty function problems are able to generate the
solutions which are feasible for the original chance constrained problem with a high
reliability.
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Table 5. Penalty function problems

Reliability r̂SN
S N min max mean st.dev min max mean st.dev
100 0 0.5504 0.5504 0.5504 0.0000 0.00 0.00 0.00 0.00
100 0.1 0.0000 0.0225 0.0030 0.0049 -9731888 -107661 -3400803 3404909
100 1 0.7622 0.9480 0.8770 0.0303 14479.93 40608.34 25672.46 3800.89
100 10 0.8967 0.9976 0.9581 0.0220 30739.36 67854.82 42827.32 7492.45
100 100 0.8967 0.9976 0.9581 0.0219 30739.36 67854.82 42902.79 7484.36
100 1000 0.8967 0.9976 0.9581 0.0218 30739.36 67854.82 42903.93 7474.20
250 0 0.5453 0.5453 0.5453 0.0000 0.00 0.00 0.00 0.00
250 0.1 0.0000 0.0105 0.0007 0.0018 -9840593.01 -193870 -5387627 3120485
250 1 0.8330 0.9290 0.8888 0.0199 20333.22 62991.61 27709.38 4866.67
250 10 0.9495 0.9950 0.9788 0.0101 36429.23 116137.42 49586.12 8798.91
250 100 0.9571 0.9973 0.9841 0.0089 39630.90 122252.72 53493.47 9862.21
250 1000 0.9571 0.9973 0.9840 0.0089 39630.90 122252.72 53458.34 9898.87
500 0 0.5408 0.5408 0.5408 0.0000 0.00 0.00 0.00 0.00
500 0.1 0.0000 0.0061 0.0004 0.0011 -9880574 -248703 -5721038 3324282
500 1 0.8716 0.9270 0.9016 0.0134 22916.95 54037.31 31671.51 5783.07
500 10 0.9723 0.9955 0.9871 0.0044 42674.84 100497.95 58776.94 12368.39
500 100 0.9813 0.9996 0.9935 0.0033 46085.97 126638.34 68995.38 15851.31
500 1000 0.9813 0.9995 0.9934 0.0033 46085.97 126638.34 68914.67 15748.83
750 0 0.5408 0.5408 0.5408 0.0000 0.00 0.00 0.00 0.00
750 0.1 0.0000 0.0032 0.0002 0.0006 -9912905 -281868 -6224877 3088217
750 1 0.8697 0.9330 0.8990 0.0108 23694.91 51361.54 31731.28 5614.38
750 10 0.9785 0.9950 0.9878 0.0036 43208.99 133243.07 60923.36 14886.03
750 100 0.9890 0.9995 0.9957 0.0026 49562.73 157103.91 75669.31 19379.62
750 1000 0.9890 0.9993 0.9956 0.0026 49562.73 157103.91 75541.31 19234.11
1000 0 0.5537 0.5537 0.5537 0.0000 0.00 0.00 0.00 0.00
1000 0.1 0.0000 0.0026 0.0002 0.0005 -9818182 -291063 -6513630 3051261
1000 1 0.8739 0.9253 0.8976 0.0097 25121.67 59977.76 35192.10 7145.00
1000 10 0.9753 0.9964 0.9886 0.0038 46083.49 134622.66 72959.07 19872.90
1000 100 0.9900 0.9999 0.9966 0.0023 59121.39 182075.76 94331.08 27977.78
1000 1000 0.9900 0.9999 0.9966 0.0023 59121.39 182561.86 94357.45 28209.17
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