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Abstract

In this article we consider iterative operator-splitting methods for nonlin-
ear differential equations with bounded and unbounded operators. The
main feature of the proposed idea is the embedding of Newton’s method
for solving the split parts of the nonlinear equation at each step. The con-
vergence properties of such a mixed method are studied and demonstrated.
We confirm with numerical applications the effectiveness of the proposed
scheme in comparison with the standard operator-splitting methods by
providing improved results and convergence rates. We apply our results
to deposition processes.
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1 Introduction

Our study is motivated by complex models with coupled processes, e.g. transport
and reaction equations with nonlinear parameters. The ideas for these models
came from the simulation of heat transport in an engineering apparatus, e.g.
crystal growth, cf. [13], or the simulation of chemical reaction and transport, e.g.
in bio-remediation or waste disposals, cf. [11]. In the past many software tools
have been developed for multi-dimensional and multi-physical problems, e.g.
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for the multi-dimensional transport reaction based on different PDE and ODE
solvers. In the future a coupling between various software tools with different
solver methods will be of interest and could be done using the fractional splitting
method.

The paper is organized as follows. A mathematical model based on the nonlinear
convection-diffusion equation is introduced in Section 2. The iterative splitting
method for the nonlinear equation is given in Section 3. The error analysis is
discussed in 4. We introduce the numerical results in Section 5. Finally we
discuss our future works in the area of splitting and decomposition methods.

2 Mathematical model

When gas transport is physically more complex because of combined flows in
three dimensions, the fundamental equations of fluid dynamics become starting
points of the analysis. For our models with small Knudsen numbers, we can
assume a continuum flow, and the fluid equations can be treated with a Navier-
Stokes or especially with a convection-diffusion equation.

Three basic equations describe the conservation of mass, momentum, and
energy, that are sufficient to describe the gas transport in the reactors, see [26].

1. Continuity: The conservation of mass requires the net rate of the mass
accumulation in a region to be equal to the difference between the inflow
and outflow rate.

2. Navier-Stokes: Momentum conservation requires the net rate of momen-
tum accumulation in a region to be equal to the difference between the in
and out rate of the momentum, plus the sum of the forces acting on the
system.

3. Energy: The rate of accumulation of internal and kinetic energy in a region
is equal to the net rate of internal and kinetic energy by convection, plus
the net rate of heat flow by conduction, minus the rate of work done by
the fluid.

We will concentrate on the conservation of mass and assume that the energy
and momentum is conserved, see [14]. Therefore the continuum flow can be
described as a convection-diffusion equation given as:

∂tc +∇F −Rg = 0, in Ω× [0, T ] (1)
F = −D∇c, (2)

c(x, 0) = c0(x), on Ω,

c(x, t) = c1(x, t), on ∂Ω× [0, T ],

where c is the molar concentration and F the flux of the species. D is the
diffusion matrix and Rg is the reaction term. The initial value is given as c0

and we assume a Dirichlet boundary with the function c1(x, t) being sufficiently
smooth.
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3 The iterative splitting method

The previously defined sequential operator-splitting methods have several draw-
backs besides their benefits. For instance, for non-commuting operators there
might be a very large constant in the splitting error which requires the use of
an unrealistically small time step. Also, splitting the original problem into the
different subproblems with one operator, i.e. neglecting the other components,
is physically questionable.

In order to avoid these problems, one can use the iterative operator-splitting
method on an interval [0, T ]. This algorithm is based on the iteration with fixed
splitting discretization step-size τ . On every time interval [tn, tn+1] the method
solves the following subproblems consecutively for i = 1, 3, . . . 2m + 1.

∂tci(x, t) = Aci(x, t) + Bci−1(x, t), with ci(x, tn) = cn (3)
∂tci+1(x, t) = Aci(x, t) + Bci+1(x, t), with ci+1(x, tn) = cn, (4)
and ci+1(x, t) = ci(x, t) = c1 on ∂Ω× (0, T ),

where cn is the known split approximation at time level t = tn (see [8]). The
approximation at time step t = tn+1 is now given as cn+1 = c2m+2(x, tn+1).
c0(x, t) is given by an initialization process, e.g. c0(x, t) = cn or c0(x, t) ≡ 0.
This algorithm constitutes an iterative method which in each step involves both
operators A and B. Hence, there is no real separation of the different physical
processes in these equations.

3.1 Iterative operator-splitting method as fixed-point scheme

The iterative operator-splitting method is used as a fixed-point scheme to lin-
earize the nonlinear operators, see [12] and [17].

We concentrate again on nonlinear differential equations of the form

∂tc = A(c)c + B(c)c, (5)

where A(c), B(c) are matrices with nonlinear entries and densely defined, where
we assume that the entries involve the spatial derivatives of c, see [33]. In
the following we discuss the standard iterative operator-splitting method as a
fixed-point iteration method to linearize the operators.

We split our nonlinear differential equation (5) by applying

∂tci = A(ci−1)ci + B(ci−1)ci−1, with ci(x, tn) = cn, (6)
∂tci+1 = A(ci−1)ci + B(ci−1)ci+1, with ci+1(x, tn) = cn, (7)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
c0(x, t) = cn is the initial solution, where we assume that the solution cn+1 is
near cn, or c0(x, t) ≡ 0. Thus we have to solve the local fixed-point problem.
cn is the known split approximation at time level t = tn.
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The split approximation at time level t = tn+1 is defined as cn+1 = c2m+2(x, tn+1).
We assume that the operators A(ci−1(x, tn+1)), B(ci−1(x, tn+1)) are constant for
i = 1, 3, . . . , 2m + 1. Here the linearization is done with respect to the itera-
tions, such that A(ci−1), B(ci−1) are at least non-dependent operators in the
iterative equations, and we can apply the linear theory. For the linearization
we assume at least in the first equation A(ci−1(x, t)) ≈ A(ci(x, t)), and in the
second equation B(ci−1(x, t)) ≈ B(ci+1(x, t)), for small t.
We have

||A(ci−1(x, tn+1))ci(x, tn+1)−A(c(x, tn+1))c(x, tn+1)|| ≤ ε,
for sufficient iterations i ∈ {1, 3, . . . , 2m + 1} and exact solution c.

Remark 3.1 The linearization with the fixed-point scheme can be used for
smooth or weak nonlinear operators, otherwise we loose the convergence behav-
ior, while we did not converge to the local fixed point, see [17].

3.2 Operator-splitting method with embedded iterative
Jacobian-Newton’s method

The Newton’s method is used to solve the nonlinear parts of the iterative
operator-splitting method, see the linearization techniques in [17], [18]. We
apply the iterative operator-splitting method and obtain:

F1(ci) = ∂tci −A(ci)ci −B(ci−1)ci−1 = 0,

with ci(x, tn) = cn,

F2(ci+1) = ∂tci+1 −A(ci)ci −B(ci+1)ci+1 = 0,

with ci+1(x, tn) = cn,

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
c0(x, t) ≡ 0 or c0(x, t) = cn is the starting solution and cn is the known split
approximation at time level t = tn. The results of the methods are cn+1 =
c2m+2(x, tn+1). The splitting method with embedded Newton’s method is given
as

c
(k+1)
i = c

(k)
i −D(F1(c

(k)
i ))−1(∂tc

(k)
i −A(c(k)
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i −B(c(k)

i−1)c
(k)
i−1),

with D(F1(c
(k)
i )) = −(A(c(k)

i ) +
∂A(c(k)

i )
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and l = 0, 1, 2, . . . , L, with c
(l+1)
i+1 (x, tn) = cn.
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Remark 3.2 For the iterative operator-splitting method with Newton’s method
we have two iteration procedures. The first iteration is Newton’s method for
computing the solution of the nonlinear equations, the second iteration is the
iterative splitting method, which computes the resulting solution of the coupled
equation systems. The embedded method is used for strong nonlinearities.

3.3 Stabilization of the initial values of the iterative New-
ton’s method

To stabilize the initial conditions for the Newton’s method we can apply the
following ideas:

1) Apply the implicit value for B to stabilize the diagonal of the matrix.

2) Apply first the linear operator, if one operator is linear.

3) Apply an iterated pre-step for the first value.

1) For the stabilization, we use the B operator and balance the diagonal entries
of the matrices.
For i ≥ 0 we have:

c
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i −D(F1(c
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i ),

and k = 0, 1, 2, . . . , K, with c
(k+1)
i (x, tn) = cn,
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and l = 0, 1, 2, . . . , L, with c
(l+1)
i+1 (x, tn) = cn.

Here we stabilize Newton’s method with further entries in the diagonals.

2) If B is linear, then use

c
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c
(l+1)
i+1 = c

(l)
i+1 −D(F2(c

(l)
i+1))

−1(∂tc
(l)
i+1 −A(c(l)

i )c(l)
i −B(c(l)

i+1)c
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with D(F2(c
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(l)
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c
(l)
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and l = 0, 1, 2, . . . , L, with c
(l+1)
i+1 (x, tn) = cn.

3) As pre-step, we use

∂tci−1 = A(ci−2)ci−2 + Bci−1

with ci−1(x, tn) = cn.

Remark 3.3 For the iterative operator-splitting method with Newton’s method
we have two iteration procedures. The first iteration is Newton’s method for
computing the solution of the nonlinear equations, the second iteration is the
iterative splitting method, which computes the resulting solution of the coupled
equation systems. The embedded method is used for strong nonlinearities.

4 Error analysis

Subsequently we demonstrate the error analysis for the linear and nonlinear
decomposition methods. In this section we designate ei(x, t) := c(x, t)− ci(x, t)
as error between the exact solution and the approximated solution after i iter-
ations.

4.1 Error analysis for the linear method

We present the convergence and the rate of convergence of method (3)–(4),
where m tends to infinity.

Theorem 4.1 Let us consider the abstract Cauchy problem in a Banach space
X

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ T ,

c(x, 0) = c0(x),

where A,B, A + B :X → X are given linear bounded operators being generators
of a C0-semigroup and c0 ∈ X is a given element.
Then the iteration process (3)–(4) for i = 1, 3, . . . , 2m + 1 is consistent with
order O(τ2m+1

n ).
The estimate is given as:

‖ei+1‖ = K1τ
2
n‖ei−1‖+O(τ3

n). (8)
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A proof can be found in [8].
The a priori error expression is given in the following result (see [17]).

Corollary 4.2 Equation (8) shows that after one more iteration step (i = 2m+
1) we have the estimate

‖e2m+1‖ = Km‖e0‖τ2m
n +O(τ2m+1

n ), (9)

where c0(x, t) is the initial guess, e.g. c0(x, t) ≡ 0 or c0(x, t) = cn.

The global error is given in the next theorem (see [17]).

Theorem 4.3 We assume the local error of the estimate (8) and a kth-order
discretization method for time. After i = 2m + 1 iteration steps there holds

‖c(x, tn)− c2m+1(x, tn)‖ = tknKm‖e0‖τ2m
n + tnO(τ2m+1

n ), (10)

where c0(x, t) is the initial guess.

The proof uses classical operator-splitting methods (see [30]).

Remark 4.4 If A and B are matrices, we obtain a system of ordinary differen-
tial equations. To estimate the growth of the matrices, we can use the concept
of the logarithmic norm and obtain more detailed results, see [16].

Remark 4.5 We note that a huge class of important differential operators gen-
erate a contractive semigroup. This means that for such problems – assuming
the exact solvability of the split subproblems – the iterative splitting method is
convergent in second order to the exact solution.

4.2 Error analysis for the nonlinear method

Here we discuss the linearization techniques and their approximations.

4.2.1 Linearization by iterative splitting method

Theorem 4.6 Let us consider the following problem

∂tc = A(c)c + B(c)c, for (x, t) ∈ Ω× [0, T ],

c(x, 0) = c0(x),

where A,B are nonlinear differentiable bounded operators A,B in a Banach
space X.
Linearizing the nonlinear operators yields the linearized equation
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∂tc(x, t) = Ãc(x, t) + B̃c(x, t) + R(cĩ)cĩ, 0 < t ≤ T,

Ã = A(cĩ) + ∂A(cĩ)
∂c cĩ,

B̃ = B(cĩ) + ∂B(cĩ)
∂c cĩ,

R(cĩ) = ∂A(cĩ)
∂c cĩ + ∂B(cĩ)

∂c cĩ,
c(x, 0) = c0(x),

(11)

where Ã, B̃, Ã+ B̃ :X → X are given, linear bounded operators being generators
of the C0-semigroup and c0 ∈ X is a given element. The linearization is of the
form A(c)c ≈ A(cĩ)cĩ + (∂A(cĩ)

∂c cĩ)(c− cĩ) where cĩ ∈ X is a linearized solution,
we further assume that (∂A(cĩ)

∂c )cĩ is a constant Jacobian matrix.
We assume that the iteration process (3)–(4) is convergent and the convergence
is of second order.
There holds

‖ei‖ = Kτn‖ei−1‖+O(τ2
n), (12)

where K is an estimation of the residual ||R(c̃)|| ≤ Rmax ∈ IR+ for all c̃ ∈ X
and ||B̃|| ≤ K̃.

We can also obtain the result with Lipschitz constants.
We now prove the argument using the semigroup theory.
Proof .
Let us consider the iteration (3)–(4) in the subinterval [tn, tn+1].
The linearized splitting method is given as

∂tci = Ãci + B̃ci−1 + R(ci−1)ci−1, (13)
with ci(x, tn) = cn,

∂tci+1 = Ãci + B̃ci+1 + R(ci−1)ci−1, (14)
with ci+1(x, tn) = cn,

where cn is the known split approximation at time level t = tn. We solve the
subproblems consecutively for i = 1, 3, . . . , 2m+1 and obtain cn+1 = c2m+2(x, t).

For the error function ei(x, t) = c(x, t)− ci(x, t) we have the relations

∂tei = Ã(ei) + B̃(ei−1) + R(ei−1)ei−1, x ∈ Ω, t ∈ (tn, tn+1],

ei(x, tn) = c(x, tn)− cn,
(15)

and

∂tei+1 = Ã(ei) + B̃(ei+1) + R(ei−1)ei−1, x ∈ Ω, t ∈ (tn, tn+1],

ei+1(x, tn) = c(x, tn)− cn,
(16)
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for i = 1, 3, 5, . . . , with e0(x, 0) = 0 and

Ã = A(ei−1) +
∂A(ei−1)

∂c
ei−1,

B̃ = B(ei−1) +
∂B(ei−1)

∂c
ei−1,

R(ei−1) =
∂A(ei−1)

∂c
ei−1 +

∂B(ei−1)
∂c

ei−1.

In the following we derive the linearized equations. We use the notation X2

for the product space X×X enabled with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖}
(u, v ∈ X). The elements Ei(x, t), Fi(x, t) ∈ X2, and the linear operator A :
X2 → X2 are defined as follows

Ei(x, t) =
[

ei(x, t)
ei+1(x, t)

]
; A =

[
Ã 0
Ã B̃

]
, (17)

Fi(x, t) =
[

R(ei−1)ei−1 + B̃ei−1

R(ei−1)ei−1

]
, (18)

where we have the bounded and linearized operators Ã, B̃, and R.
Using notations (17) and (18), the relations (15)–(16) can be written in the

form
∂tEi(x, t) = AEi(x, t) + Fi(x, t), x ∈ Ω, t ∈ (tn, tn+1],

Ei(x, tn) = 0.
(19)

Due to our assumptions that A and B are bounded and differentiable and that
we have a Lipschitz domain, A is a generator of the one-parameter C0-semigroup
(A(t))t≥0. We also assume the estimate of our term Fi(x, t) with the growth
conditions.

We can estimate the right-hand side Fi(x, t) with help of Lemma 4.7 pre-
sented after this proof. Hence, using the variations of constants formula, the
solution of the abstract Cauchy problem (19) with homogeneous initial condition
can be written as (cf. e.g. [7])

Ei(x, t) =
∫ x,t

tn

exp(A(t− s))Fi(x, s)ds, x ∈ Ω, t ∈ [tn, tn+1]. (20)

Hence, using the notation

‖Ei‖∞ = supt∈[tn,tn+1] ‖Ei(x, t)‖ , (21)

and taking into account Lemma 4.7, we have

‖Ei(x, t)‖∞ ≤ ‖Fi‖∞
∫ t

tn

‖exp(A(t− s))‖ds

≤ C ‖ei−1(t)‖
∫ t

tn

‖exp(A(t− s))‖ds, x ∈ Ω, t ∈ [tn, tn+1].

(22)
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Since (A(t))t≥0 is a semigroup, the so-called growth estimate is

‖ exp(At)‖ ≤ K exp(ωt), t ≥ 0, (23)

with some numbers K ≥ 0 and ω ∈ IR (see [7]).

• Assume that (A(t))t≥0 is a bounded or exponentially stable semigroup,
i.e. that (23) holds with some ω ≤ 0. Then obviously the inequality

‖ exp(At)‖ ≤ K; t ≥ 0 (24)

holds, and hence from (22) we have

‖Ei(x, t)‖∞ ≤ Kτn‖ei−1(x, t)‖, x ∈ Ω, t ∈ (0, τn). (25)

• Assume that (A(t))t≥0 has exponential growth with some ω > 0. From
(23) we have

∫ tn+1

tn

‖exp(A(t− s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (26)

where
Kω(t) =

K

ω
(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1], (27)

and hence

Kω(t) ≤ K

ω
(exp(ωτn)− 1) = Kτn +O(τ2

n), (28)

where τn = tn+1 − tn. The estimations (25) and (28) result in

‖Ei‖∞ = Kτn‖ei−1‖+O(τ2
n). (29)

Taking into account the definition of Ei and the norm ‖ · ‖∞, that result in the
estimation ||ei+1|| ≤ ||ei||, we obtain

‖ei‖ = Kτn‖ei−1‖+O(τ2
n),

which proves our statement. ¤

Lemma 4.7 The term Fi(x, t) given by (18) can be estimated as

||Fi(x, t)|| ≤ C||ei−1||, (30)

where we assume the boundedness of R(ei−1) and B̃, see Theorem 4.6.
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Proof . We have the norm ||Fi(x, t)|| = max{Fi1(x, t),Fi2(x, t)}.
Each term can be bounded as follows.

||Fi1(x, t)|| ≤ ||(R(ei−1(x, t)) + B̃)ei−1(x, t)||
≤ (Rmax + K̃)||ei−1(x, t)||, (31)

||Fi2(x, t)|| ≤ ||R(ei−1(x, t))ei−1(x, t)||
≤ Rmax||ei−1(x, t)||, (32)

where Rmax and K̃ are constants and defined in Theorem 4.6.
Thus we obtain the estimate

||Fi(x, t)|| ≤ C||ei−1(x, t)||,
where C = Rmax + K̃. ¤

4.2.2 Linearization by Newton’s Method

In this approach we use Newton’s method for a linearization. Here we have two
steps in the proof of the error analysis.

1) Error of Newton’s method;
2) Error of the iterative or non-iterative operator-splitting method.

Theorem 4.8 Consider the problem

∂tc(x, t) = A(c(x, t)) + B(c(x, t)), x ∈ Ω, 0 < t ≤ T,

c(x, 0) = c0(x),
(33)

where A,B are nonlinear differentiable bounded operators in a Banach space X.
We apply Newton’s method to solve the nonlinear equations and obtain

c
(k+1)
i = c

(k)
i −D(F1(c

(k)
i ))−1(∂tc

(k)
i −A(c(k)

i )c(k)
i −B(c(k)

i−1)c
(k)
i−1),

with D(F1(c
(k)
i )) = −(A(c(k)

i ) +
∂A(c(k)

i )

∂c
(k)
i

c
(k)
i ),

with ci(x, tn) = cn,

c
(k+1)
i+1 = c

(k)
i+1 −D(F2(c

(k)
i+1))

−1(∂tc
(k)
i+1 −A(c(k)

i )c(k)
i −B(c(k)

i+1)c
(k)
i+1),

with D(F2(c
(k)
i+1)) = −(B(c(k)

i+1) +
∂B(c(k)

i+1)

∂c
(k)
i+1

c
(k)
i+1),

and k = 0, 1, 2, . . . ,

with ci+1(x, tn) = cn.

The iterations are i = 1, 3, . . . , 2m + 1. c0(x, t) ≡ 0 or c0(x, t) = cn is the
starting solution and cn is the known split approximation at time level t = tn.
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The result of the schemes is cn+1 = c2m+2(x, tn+1).

The following inequality holds,

‖ei(x, t)(k+1)‖ ≤ Kτ2
n‖e(k)

i−1(x, t)‖2, (34)

where τn = tn+1−tn, K is a constant, and k the index for the Newton iteration.

Proof .
The sketch of the proof is outlined in two parts. The first part gives the ap-
proximation error of Newton’s method and the second part the approximation
error of the iterative operator-splitting method.

First Part:
The error for Newton’s method can be derived as

‖e(k+1)
i ‖ ≤ K1‖e(k)

i ‖2, (35)

where e
(k+1)
i = c

(k+1)
i − c, c is the exact solution of the nonlinear problem, and

K1 is a constant, see [21].

Second Part:
For the iterative operator-splitting method, we obtain the approximation error

‖e(k)
i ‖ = K2τn‖e(k)

i−1‖+O(τ2
n), (36)

where K2 is an estimation of the residual, see Theorem 4.6, and τn = tn+1− tn.
We insert the result of 35 into 36 and obtain the error of the nonlinear

splitting scheme, which is given as:

‖e(k+1)
i (x, t)‖ ≤ Kτ2

n‖e(k)
i−1(x, t)‖2,

where K is a combination of the constants K1 and K2.
¤

5 Numerical examples

In the next experiments we deal with nonlinear differential equations. Because
of the regularity assumptions to our splitting method we apply 2-4 iteration
steps.

In the numerical examples, operator B is linear. Therefore the iterative
Newton’s method is given by

c
(k+1)
i = c

(k)
i −D(F (c(k)

i−1))
−1(∂tc

(k)
i −A(c(k)

i−1)c
(k)
i −Bc

(k+1)
i ), (37)

with D(F (c(k)
i−1)) = −∂A(c(k)

i−1)

∂c
(k)
i−1

c
(k)
i , ci(x, tn) = cn,

and k = 0, 1, 2, . . . , K,

∂tci+1 = A(ci−1)ci + Bci+1, with ci+1(x, tn) = cn. (38)
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5.1 Test example 1: Burgers equation

We deal with a 2D example where we can derive an analytical solution and com-
pare the classical iterative operator-splitting method with the iterative Newton’s
method.

∂tc = −c∂xc− c∂yc + µ(∂xxc + ∂yyc) + f(x, y, t), (39)
for (x, y, t) ∈ Ω× [0, T ]
c(x, y, 0) = cana(x, y, 0), (x, y) ∈ Ω
with c(x, y, t) = cana(x, y, t) on∂Ω× [0, T ],

where Ω = [0, 1]× [0, 1], T = 1.25, and µ is the viscosity.
The analytical solution is given as

cana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1, (40)

where f(x, y, t) = 0.

The operators are given as:

A(c)c = −c∂xc− c∂yc, hence A(c) = −c∂x − c∂y (the nonlinear operator),
Bc = µ(∂xxc + ∂yyc) + f(x, y, t) (the linear operator).

We apply the nonlinear Algorithm 6 to the first equation and obtain

A(ci−1)ci = −ci−1∂xci − ci−1∂yci and
Bci−1 = µ(∂xx + ∂yy)ci−1 + f ,

and we obtain linear operators, because ci−1 is known from the previous time
step.

In the second equation we obtain by using Algorithm 7:

A(ci−1)ci = −ci−1∂xci − ci−1∂yci and
Bci+1 = µ(∂xx + ∂yy)ci+1 + f ,

and we have also linear operators.

The maximal error at end time t = T is given as

errmax = |cnum − cana| = p
max
i=1

|cnum(xi, yi, t)− cana(xi, yi, t)|,

the numerical convergence rate is given as

ρ = log(errh/2/errh)/ log(0.5).
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∆x = ∆y ∆t errL1 errmax ρL1 ρmax

1/10 1/10 0.0549 0.1867
1/20 1/10 0.0468 0.1599 0.2303 0.2234
1/40 1/10 0.0418 0.1431 0.1630 0.1608
1/10 1/20 0.0447 0.1626
1/20 1/20 0.0331 0.1215 0.4353 0.4210
1/40 1/20 0.0262 0.0943 0.3352 0.3645
1/10 1/40 0.0405 0.1551
1/20 1/40 0.0265 0.1040 0.6108 0.5768
1/40 1/40 0.0181 0.0695 0.5517 0.5804

Table 1: Numerical results for the Burgers equation with viscosity µ = 0.05,
initial condition c0(x, y, t) = cn, and two iterations per time step.

∆x = ∆y ∆t errL1 errmax ρL1 ρmax

1/10 1/10 1.1168 · 10−7 2.4390 · 10−7

1/20 1/10 8.2098 · 10−8 1.7163 · 10−7 0.4439 0.5070
1/40 1/10 6.4506 · 10−8 1.3360 · 10−7 0.3479 0.3614
1/10 1/20 3.8260 · 10−8 9.0093 · 10−8

1/20 1/20 2.5713 · 10−8 5.6943 · 10−8 0.5733 0.6619
1/40 1/20 1.8738 · 10−8 4.0020 · 10−8 0.4565 0.5088
1/10 1/40 1.9609 · 10−8 4.9688 · 10−8

1/20 1/40 1.1863 · 10−8 2.8510 · 10−8 0.7250 0.8014
1/40 1/40 7.8625 · 10−9 1.8191 · 10−8 0.5934 0.6482

Table 2: Numerical results for the Burgers equation with viscosity µ = 5, initial
condition c0(x, y, t) = cn, and two iterations per time step.

We have the following results, see Tables 1 and 2, for different steps in time and
space and different viscosities.

Figure 1 presents the profile of the 2D nonlinear Burgers equation.

Remark 5.1 In the examples, we have two different cases of µ, which smoothes
our equation. In the first test we use a very small µ = 0.05, such that we have
a dominant hyperbolic behavior, due to this we have a loss in regularity and
sharp front. The iterative splitting method looses one order. In the second test,
we have increased the smoothness with setting µ = 5, we get a more parabolic
behavior. We have shown that the results are improved and we achieve higher
accuracy.
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∆x = ∆y ∆t errL1 errmax ρL1 ρmax

1/10 1/10 2.5038 · 10−8 7.3067 · 10−8

1/20 1/10 1.9001 · 10−8 5.5507 · 10−8 0.39804 0.39655
1/40 1/10 1.5992 · 10−8 4.7145 · 10−8 0.24873 0.23557
1/10 1/20 1.9503 · 10−8 5.6176 · 10−8

1/20 1/20 1.3250 · 10−8 3.8448 · 10−8 0.55767 0.54705
1/40 1/20 1.0177 · 10−8 3.0008 · 10−8 0.38063 0.35755
1/10 1/40 1.6329 · 10−8 4.7092 · 10−8

1/20 1/40 9.9375 · 10−9 2.9072 · 10−8 0.71645 0.69587
1/40 1/40 6.8369 · 10−9 2.0423 · 10−8 0.53955 0.50945

Table 3: Numerical results for the Burgers equation with viscosity µ = 5, initial
condition c0(x, y, t) = cn, two iterations per time step and K = 2 using iterative
Newton’s method.
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Figure 1: Burgers equation at initial time t = 0.0 (left figure) and end time
t = 1.25 (right figure) for viscosity µ = 0.05.

5.2 Test example 2: mixed convection-diffusion and Burg-
ers equation

We deal with a 2D example which is a mixture of a convection-diffusion and
Burgers equation. We can derive an analytical solution.

∂tc = −1/2c∂xc− 1/2c∂yc− 1/2∂xc− 1/2∂yc

+µ(∂xxc + ∂yyc) + f(x, y, t), (x, y, t) ∈ Ω× [0, T ] (41)
c(x, y, 0) = cana(x, y, 0), (x, y) ∈ Ω
with c(x, y, t) = cana(x, y, t) on∂Ω× [0, T ],

where Ω = [0, 1]× [0, 1], T = 1.25, and µ is the viscosity.
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The analytical solution is given as

cana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
), (42)

where we compute f(x, y, t) accordingly.
We split the convection-diffusion and the Burgers equation. The operators

are given as:

A(c)c = −1/2c∂xc− 1/2c∂yc + 1/2µ(∂xxc + ∂yyc), hence
A(c) = 1/2(−c∂x − c∂y + µ(∂xx + ∂yy)) (the Burgers term), and

Bc = −1/2∂xc − 1/2∂yc + 1/2µ(∂xxc + ∂yyc) + f(x, y, t) (the convection-
diffusion term).

For the first equation we apply the nonlinear Algorithm 6 and obtain

A(ci−1)ci = −1/2ci−1∂xci − 1/2ci−1∂yci + 1/2µ(∂xxci + ∂yyci) and
Bci−1 = 1/2(−∂x − ∂y + µ(∂xx + ∂yy))ci−1,

and we obtain linear operators, because ci−1 is known from the previous time
step.

In the second equation we obtain by using Algorithm 7:

A(ci−1)ci = −1/2ci−1∂xci − 1/2ci−1∂yci + 1/2µ(∂xxci + ∂yyci) and
Bci+1 = 1/2(−∂x − ∂y + µ(∂xx + ∂yy))ci+1,

and we have linear operators.

We deal with different viscosities µ as well as different step sizes in time and
space. We have the following results, see Tables 4 and 5.
Figure 2 presents the profile of the 2D linear and nonlinear convection-diffusion
equation.

Remark 5.2 In the examples, we deal with more iteration steps to obtain
higher-order convergence results. In the first test we have four iterative steps
but a smaller viscosity (µ = 0.5), such that we can reach at least a second-
order method. In the second test we use a higher viscosity about µ = 5 and
get the second-order result with two iteration steps. Here we see the loss of
differentiability due to the stiff equation parts. To obtain the same results,
we have to increase the number of iteration steps. Thus we could show an
improvement of the convergence order with respect to the iteration steps.
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∆x = ∆y ∆t errL1 errmax ρL1 ρmax

1/5 1/20 0.0137 0.0354
1/10 1/20 0.0055 0.0139 1.3264 1.3499
1/20 1/20 0.0017 0.0043 1.6868 1.6900
1/40 1/20 8.8839 · 10−5 3.8893 · 10−4 4.2588 3.4663
1/5 1/40 0.0146 0.0377
1/10 1/40 0.0064 0.0160 1.1984 1.2315
1/20 1/40 0.0026 0.0063 1.3004 1.3375
1/40 1/40 8.2653 · 10−4 0.0021 1.6478 1.6236

Table 4: Numerical results for the mixed convection-diffusion and Burgers equa-
tion with viscosity µ = 0.5, initial condition c0(x, y, t) = cn, and four iterations
per time step.

∆x = ∆y ∆t errL1 errmax ρL1 ρmax

1/5 1/20 1.3166 · 10−5 2.9819 · 10−5

1/10 1/20 5.6944 · 10−6 1.3541 · 10−5 1.2092 1.1389
1/20 1/20 1.6986 · 10−6 4.5816 · 10−6 1.7452 1.5634
1/40 1/20 7.8145 · 10−7 2.0413 · 10−6 1.1201 1.1663
1/5 1/40 1.4425 · 10−5 3.2036 · 10−5

1/10 1/40 7.2343 · 10−6 1.5762 · 10−5 0.9957 1.0233
1/20 1/40 3.0776 · 10−6 6.7999 · 10−6 1.2330 1.2129
1/40 1/40 9.8650 · 10−7 2.3352 · 10−6 1.6414 1.5420

Table 5: Numerical results for the mixed convection-diffusion and Burgers equa-
tion with viscosity µ = 5, initial condition c0(x, y, t) = cn, and two iterations
per time step.

5.3 Test example 3: momentum equation (molecular flow)

We deal with an example of a momentum equation, that is used to model the
viscous flow of a fluid.

∂tc = −c · ∇c + 2µ∇(D(c) + 1/3∇c) + f(x, y, t), (43)
(x, y, t) ∈ Ω× [0, T ], c(x, y, 0) = c0(x, y), (x, y) ∈ Ω
with c(x, y, t) = cana(x, y, t) on ∂Ω× [0, T ] (enclosed flow),

where c = (c1, c2)t is the solution and Ω = [0, 1] × [0, 1], T = 1.25, µ = 5, and
v = (0.001, 0.001)t are the parameters and I is the unit matrix.

The nonlinear function D(c) = c · c + v · c is the viscosity flow, and v is a
constant velocity.
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Figure 2: Mixed convection-diffusion and Burgers equation at initial time t = 0.0
(left figure) and end time t = 1.25 (right figure) for viscosity µ = 0.5.

We can derive the analytical solution with the functions:

c1,ana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
), (44)

c2,ana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
). (45)

For the splitting method our operators are given as:

A(c)c = −c∇c + 2µ∇D(c) (the nonlinear operator), and
Bc = 2/3µ∆c (the linear operator).

We first deal with the one-dimensional case,

∂tc = −c · ∂xc + 2µ∂x(D(c) + 1/3∂xc) + f(x, t), (x, t) ∈ Ω× [0, T ] (46)
c(x, 0) = c0(x), (x) ∈ Ω
with c(x, t) = cana(x, t) on ∂Ω× [0, T ] (enclosed flow),

where c is the solution and Ω = [0, 1], T = 1.25, µ = 5, and v = 0.001 are the
parameters.

Then the operators are given as:

A(c)c = −c∂xc + 2µ∂xD(c) (the nonlinear operator), and
Bc = 2/3µ∂xxc (the linear operator).

For the iterative operator-splitting method as fixed-point scheme, we have the
following results, see Tables 6 and 7.

Figure 3 presents the profile of the 1D momentum equation.
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∆x ∆t errL1 errmax ρL1 ρmax

1/10 1/20 0.0213 0.0495
1/20 1/20 0.0203 0.0470 0.0689 0.0746
1/40 1/20 0.0198 0.0457 0.0401 0.0402
1/80 1/20 0.0195 0.0450 0.0216 0.0209
1/10 1/40 0.0134 0.0312
1/20 1/40 0.0117 0.0271 0.1957 0.2009
1/40 1/40 0.0108 0.0249 0.1213 0.1211
1/80 1/40 0.0103 0.0238 0.0682 0.0674
1/10 1/80 0.0094 0.0217
1/20 1/80 0.0073 0.0169 0.3591 0.3641
1/40 1/80 0.0062 0.0143 0.2451 0.2448
1/80 1/80 0.0056 0.0129 0.1478 0.1469

Table 6: Numerical results for the 1D momentum equation with µ = 5, v =
0.001, initial condition c0(x, t) = cn, and two iterations per time step.

∆x ∆t errL1 errmax ρL1 ρmax

1/10 1/20 2.7352 · 10−6 6.4129 · 10−6

1/20 1/20 2.3320 · 10−6 5.4284 · 10−6 0.2301 0.2404
1/40 1/20 2.1144 · 10−6 4.9247 · 10−6 0.1413 0.1405
1/80 1/20 2.0021 · 10−6 4.6614 · 10−6 0.0787 0.0793
1/10 1/40 2.1711 · 10−6 5.2875 · 10−6

1/20 1/40 1.7001 · 10−6 4.1292 · 10−6 0.3528 0.3567
1/40 1/40 1.4388 · 10−6 3.4979 · 10−6 0.2408 0.2394
1/80 1/40 1.3023 · 10−6 3.1694 · 10−6 0.1438 0.1423
1/10 1/80 1.6788 · 10−6 4.1163 · 10−6

1/20 1/80 1.1870 · 10−6 2.9138 · 10−6 0.5001 0.4984
1/40 1/80 9.1123 · 10−7 2.2535 · 10−6 0.3814 0.3707
1/80 1/80 7.6585 · 10−7 1.9025 · 10−6 0.2507 0.2443

Table 7: Numerical results for the 1D momentum equation with µ = 50, v = 0.1,
initial condition c0(x, t) = cn, and two iterations per time step.

We have the following results for the 2D case, see Tables 8, 9, and 10.

Figure 4 presents the profile of the 2D momentum equation.

Remark 5.3 In the more realistic examples of a 1D and 2D momentum equa-
tion, we also observe the stiff problem, which we obtain with a more hyperbolic
behavior. In the 1D experiments we deal with a more hyperbolic behavior and
obtain at least first-order convergence with 2 iteration steps. In the 2D ex-
periments we obtain nearly second-order convergence results with 2 iteration
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Figure 3: 1D momentum equation at initial time t = 0.0 (left figure) and end
time t = 1.25 (right figure) for µ = 5 and v = 0.001.

∆x ∆t errL1 errmax ρL1 ρmax errL1 errmax ρL1 ρmax

= ∆y 1st c. 1st c. 1st c. 1st c. 2nd c. 2nd c. 2nd c. 2nd c.
1/5 1/20 0.0027 0.0112 0.0145 0.0321
1/10 1/20 0.0016 0.0039 0.7425 1.5230 0.0033 0.0072 2.1526 2.1519
1/20 1/20 0.0007 0.0022 1.2712 0.8597 0.0021 0.0042 0.6391 0.7967
1/5 1/40 0.0045 0.0148 0.0288 0.0601
1/10 1/40 0.0032 0.0088 0.5124 0.7497 0.0125 0.0239 1.2012 1.3341
1/20 1/40 0.0014 0.0034 1.1693 1.3764 0.0029 0.0054 2.1263 2.1325
1/5 1/80 0.0136 0.0425 0.0493 0.1111
1/10 1/80 0.0080 0.0241 0.7679 0.8197 0.0278 0.0572 0.8285 0.9579
1/20 1/80 0.0039 0.0113 1.0166 1.0872 0.0115 0.0231 1.2746 1.3058

Table 8: Numerical results for the 2D momentum equation with µ = 2, v =
(1, 1)t, initial condition c0(x, y, t) = cn, and two iterations per time step.

steps, if we increase the parabolic behavior, e.g. larger µ and v values. For
such methods, we have to balance the usage of the iteration steps, refinement
in time and space with respect to the hyperbolicity of the equations. At least
we can obtain a second-order method with more than 2 iteration steps. Hence
the stiffness influences the number of iteration steps.

6 Conclusions and Discussions

We present a new method to solve complicate mixed coupled partial differen-
tial equations. Based on a standard method we derive different new methods
and reorder the operators for different scales. Such a reordering reduces the
decomposition error. The more hyperbolic behavior of the equations leads to
an increasement of the number of iteration steps of our method. At least we
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∆x ∆t errL1 errmax ρL1 ρmax

= ∆y 1st c. 1st c. 1st c. 1st c.
1/5 1/20 1.5438 · 10−5 3.4309 · 10−5

1/10 1/20 4.9141 · 10−6 1.0522 · 10−5 1.6515 1.7052
1/20 1/20 1.5506 · 10−6 2.9160 · 10−6 1.6641 1.8513
1/5 1/40 2.8839 · 10−5 5.5444 · 10−5

1/10 1/40 1.3790 · 10−5 2.3806 · 10−5 1.0645 1.2197
1/20 1/40 3.8495 · 10−6 6.8075 · 10−6 1.8408 1.8061
1/5 1/80 3.1295 · 10−5 5.5073 · 10−5

1/10 1/80 1.7722 · 10−5 2.6822 · 10−5 0.8204 1.0379
1/20 1/80 7.6640 · 10−6 1.1356 · 10−5 1.2094 1.2400

Table 9: Numerical results for the 2D momentum equation for the first com-
ponent with µ = 50, v = (100, 0.01)t, initial condition c0(x, y, t) = cn, and two
iterations per time step.

∆x ∆t errL1 errmax ρL1 ρmax

= ∆y 2nd c. 2nd c. 2nd c. 2nd c.
1/5 1/20 4.3543 · 10−5 1.4944 · 10−4

1/10 1/20 3.3673 · 10−5 7.9483 · 10−5 0.3708 0.9109
1/20 1/20 2.6026 · 10−5 5.8697 · 10−5 0.3717 0.4374
1/5 1/40 3.4961 · 10−5 2.2384 · 10−4

1/10 1/40 1.7944 · 10−5 8.9509 · 10−5 0.9622 1.3224
1/20 1/40 1.5956 · 10−5 3.6902 · 10−5 0.1695 1.2783
1/5 1/80 9.9887 · 10−5 3.3905 · 10−4

1/10 1/80 3.5572 · 10−5 1.3625 · 10−4 1.4896 1.3153
1/20 1/80 1.0557 · 10−5 4.4096 · 10−5 1.7525 1.6275

Table 10: Numerical results for the 2D momentum equation for the second
component with µ = 50, v = (100, 0.01)t, initial condition c0(x, y, t) = cn, and
two iterations per time step.

obtain a second-order method. Such iterative splitting methods can balance
the different behaviors of the underlying operators. One operator smoothes the
solution process, while the other operator decreases the smoothness. Further a
balance between the implicit and explicit discretization with the iterative split-
ting method is a new method that reveals the mixed behavior in an unsplitted
method.
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Figure 4: 2D momentum equation at initial time t = 0.0 (left figure) and end
time t = 1.25 (right figure) for µ = 0.5 and v = (1, 1)t for the first and second
component of the numerical solution.
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