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Introduction

The dissertation contains three independent essays on the international natural

gas trade. Chapter 1 is a joint–work with Franz Hubert, and chapter 2 is published

as Cobanli (2014). The gas sector model, its calibration, and the cooperative ap-

proach, which are used in the dissertation, result from the research project with

Franz Hubert and Ekaterina Orlova in the Chair for Management Science at Hum-

boldt University of Berlin.

The International Energy Agency (IEA) forecasts in its New Policies Scenario that

the global primary energy demand will increase by 35% over the period from 2010

to 2035.1 Fossil fuels will make up 60% of the increase in energy demand and

prevail as the dominant source of energy. Among fossil fuels demand for natural

gas will be the fastest growing, thanks to its low carbon content. Over the period

natural gas demand will increase from 3.3 to 5 tcm (trillion cubic meters), a notable

growth of 50%. On the demand side, the growth will be fuelled by rising income

and population of emerging economies in the Asia Pacific region, such as China

and India, while demand in developed markets, such as Europe, will increase only

slightly. On the supply side, new suppliers, e.g., Brazil and East Africa, will come

into the picture, and half of the increase in gas supply will stem from unconventional

fields (IEA (2012b)).

According to the IEA, the increase in natural gas demand will bring with major

changes in the inter–regional trade of natural gas. The natural gas trade within

regions will almost double from 0.7 to 1.2 tcm over the period. While pipelines’

share in the trade will decrease gradually from 70 to 50%, liquefied natural gas

(LNG) shipments within overseas markets will account for most of the growth. The

1All forecasts in this chapter are given for the New Policies Scenario, which is the central scenario

in IEA studies. The scenario considers policies which have been already carried out or are waiting

for implementation. For a detailed presentation of the New Policies Scenario see IEA (2012b).
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increase in the LNG trade is expected to abate price differences within regions and

to create a single global natural gas market (IEA (2012b)).

Natural gas is the second most consumed fuel in the European Union’s (EU) energy

mix and accounts for a quarter of its primary energy consumption (EU (2012)). The

EU consumed 536 bcm (billion cubic meters) of natural gas in 2010. The IEA ex-

pects that European demand will remain stable in the mid term due to the sluggish

economic growth, the increase in renewable energy production, and low carbon

prices favoring coal in electricity generation (IEA (2012b)). However, a reform of

the EU Emission Trading Scheme and an introduction of capacity markets in elec-

tricity generation may promote consumption of natural gas and hence boost the

continent’s natural gas demand in the near future.

Although the EU is the world’s second largest consumer of natural gas, it owns less

than 1% of the world’s proven gas reserves. The European indigenous production

(mainly from the Netherlands and the UK) covers only one third of the continent’s

consumption and is in permanent decline. In 2010, the EU produced 201 bcm of

natural gas, and the IEA forecasts that its production will decrease to 158 bcm in

2015 and to 133 bcm in 2020 (IEA (2012b)). Unconventional supplies might com-

pensate the decline in the continent’s conventional production, but so far, the EU

has failed to replicate the United States’ breakthrough in unconventional shale gas

since resistance from environmental groups, difficult geology, and property rights

favoring states instead of landowners discourage investment in the continent.

Short in indigenous supply, the EU depends on non-EU suppliers to serve two thirds

of its natural gas consumption, and the share of non-EU suppliers in the continent’s

supply portfolio is expected to rise further. Around 80% of the European natural

gas imports are transported through pipelines from a small number of suppliers in

the continent’s near geography, i.e., Russia, Norway, Algeria, and Libya, while LNG

from overseas suppliers, such as Qatar and Nigeria, constitutes only one fifth of the

continent’s imports.

Accounting for 30% of the European natural gas imports, Russia is the dominant

supplier in the continent. Since 1970s Russia (the Soviet Union at that time) has

proven itself as a reliable supplier to Western Europe, even in the politically turbu-

lent times right after the dissolution of the Soviet Union. However, the dissolution

of the Soviet Union altered the constellation of the Eurasian natural gas trade rad-

ically. The former Western Soviet republics such as Ukraine and Belarus gained

2



their independence and emerged as the transit countries in the Europe-bound nat-

ural gas trade. In the further West, Russia lost its political influence in the former

members of the Warsaw Pact, such as Czech Republic, Slovakia, and Poland, and

hence control over their transit pipelines.

European energy companies and Russia handled to secure Europe–bound gas

deliveries as well as to safeguard their bargaining power vis–a–vis the new transit

countries. European energy companies acquired the ownership of the transmission

pipelines in Czech Republic, Slovakia, and Poland, which joined the EU in 2004,

while Russia took the control of the transmission pipelines in Belarus. In Ukraine

the EU has promoted the Energy Charter Treaty to open the country’s transmission

pipeline network to third parties while Russia has pursued its ownership through

political and economical pressure. However, Ukraine has resisted both sides to

waive the ownership and/or control of its transmission pipelines and became an

indispensable player in the Eurasian gas trade.

Inheriting the Soviet pipeline network, Ukraine transits half of Europe-bound Rus-

sian deliveries.2 Thanks to its market power in the natural gas transit, Ukraine has

paid for natural gas imports from Russia considerably lower prices than European

consumers. In other words, Russia has had to share rents from its Europe-bound

exports with Ukraine. However, the dependency in the natural gas trade is recipro-

cal. Ukraine relies on Russia for almost all of its imports and hence 60% of its con-

sumption.3 Russia has threatened Ukraine with sharp increases in the import price

as well as with disruptions of supplies if the latter fails to pay its accumulated debt

from imports. In exchange of the Ukrainian accumulated debt and a discounted im-

port price, Russia has sought the ownership of the country’s transmission pipelines.

These tensions peaked in 2006 as well as 2009 and resulted in the short-lived dis-

ruptions of Russian deliveries to Ukraine and Europe, which stained the Russian

reputation as a reliable supplier and have raised concerns about the European sup-

2After the dissolution of the Soviet Union at the beginning of the 1990s, all Russian deliveries

to Western Europe had to cross through Ukraine. In 1997, the inauguration of the Yamal pipeline

-a 4200 km long pipeline ranging from Yamal Peninsula in Western Siberia through Belarus and

Poland to Germany- added an outside option to the East-West gas trade and mitigated the Russian

dependency on Ukraine to 80%. In 2011, Nord Stream -an offshore pipeline from Russia through the

Baltic Sea to Germany- decreased the Ukrainian share in the natural gas transit to 50%.
3The dependency of Ukraine on Russia is not limited only to the natural gas trade. Russia accounts

for around 30% of the Ukrainian foreign trade, which amounted to 35 billion e in 2012 (EC (2014)).
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ply security in Brussels and other capitals of the continent.4

Three controversial pipeline projects have promised to alter the interdependen-

cies in the Eurasian natural gas trade thoroughly. Russia proposed two offshore

pipelines, i.e., Nord Stream and South Stream. Inaugurated in the late 2011, Nord

Stream connects Russia through the Baltic Sea to Germany. The pipeline was sup-

ported by the European Commission as a strategic infrastructure project despite

objections of Poland and the Baltic states. South Stream will link Russia through

the Black Sea to Bulgaria, from where gas will flow to Central Europe, Italy, and

Turkey. In the late 2012, Russia and its partners launched the construction of the

pipeline. However, the construction of the offshore section -the most crucial sec-

tion of the project- has not started yet. Russia and the European Commission still

disagree about third party access to the pipeline’s onshore section in the Balkans.5

Both of the offshore pipelines bypass Ukraine and Belarus and hence strengthen

the European supply security, but they do not diversify the continent’s suppliers.

The pipelines, especially South Stream, are often perceived as Russian attempts to

block the access of alternative suppliers to the European markets (EurActiv (2010)).

Worried about the Russian dominance in the continent, the European Commission

endorsed Nabucco. The pipeline would open a southern corridor through Turkey

and carry supplies from the Caspian Sea region, Central Asia, and the Middle East

to the Balkans and Central Europe. Although Nabucco was listed as a project of

European interest in the Trans-European Energy Networks (TEN-E), the pipeline

failed to secure commitments from potential suppliers and support from European

investors. After several postponements and a considerable downsizing of its range

and capacity Nabucco was abandoned in 2013. Currently, in the southern corridor

the Trans Adriatic and Trans Anatolian pipelines are on the agenda. Together they

will carry Azerbaijani supplies through Turkey to the Balkans and from there through

an offshore pipeline under the Adriatic Sea to Italy. However, the projects’ capac-

4In the recent Crimea crisis, the Russia-Ukraine disputes follow the same pattern. The parties

struggle to reach an agreement over the price of Ukrainian natural gas imports from Russia. On the

16th of June in 2014 Russia cut deliveries to Ukraine once again since the latter failed to pay its

accumulated debt from natural gas imports.
5Differing in their dependency on natural gas imports, the European governments disaccord about

South Stream. Russia signed construction agreements with Serbia and Bulgaria which are in conflict

with the European competition law. In June 2014, Bulgaria bowed to the pressure from the European

Commission and suspended the construction of the pipeline (Wall Street Journal (2014)). Serbia is

expected to follow.
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ity (10 bcm/a (billion cubic meters per annum)) is too small to diversify European

imports significantly.

The three pipeline projects, i.e., Nord Stream, South Stream, and Nabucco, jointly

would increase the transmission capacities between Europe and its suppliers by

150 bcm/a, equivalent to half of the then existing capacities. However, the stable

European demand and production possibilities of the suppliers suggest that these

additional transmission capacities will remain idle in the foreseeable future. Al-

though the pipeline projects are not needed to transport additional supplies, they

may alter the power structure, i.e., final payoffs of the players, in the international

natural gas trade substantially. Thereby, investments in the pipeline projects are

strategic.

Chapter 1, the joint–work with Franz Hubert, aims to rationalize players’ interest in

the three pipeline projects. The international natural gas network is represented by

a stylized disaggregated quantitative model.6 To investigate the pipelines’ strategic

role in the network, the model is calibrated in such a way that given consumers’

willingness to pay for natural gas and costs of production and transmission, the ex-

isting network has sufficient capacities to carry natural gas from production fields

to consumer markets efficiently. Hence, the investments in the pipeline projects are

socially inefficient. The grand coalition composed of all players or a social planner

aiming to maximize the joint benefit of all players would not undertake any of these

pipeline projects. However, a group of players might want to amend the network to

alter the power structure to their benefit. The geographical scope covers Europe

and the suppliers in the continent’s near geography such as Russia, Norway, North

Africa, the Caspian Sea region, Central Asia, and the Middle East, but regards

LNG as non-strategic. The results explain real investment patterns in the Eurasian

natural gas network. Large benefits accruing to Russia and Germany justify their

investment in Nord Stream while the transit countries, Ukraine and Belarus, suffer

significant losses. Nord Stream already in place, benefits from South Stream are

too small to cover the project’s large investment cost. Nabucco promises to miti-

gate Russia’s power in the Eurasian gas trade considerably, but the project ben-

efits mostly Turkey, i.e., the transit country in the southern corridor, instead of the

project’s European investors.

Chapter 2, Cobanli (2014), studies pipeline options of the Central Asian countries,

6Chapter 1 shares the model and its calibration with Hubert and Orlova (2014).
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i.e., Turkmenistan, Kazakhstan, and Uzbekistan, to diversify their transit routes and

export markets. Following the dissolution of the Soviet Union, the landlocked Cen-

tral Asian countries became major sovereign suppliers in the Eurasian natural gas

trade. They depended solely on the Soviet pipeline system running through Russia

to export their supplies to western markets. To mitigate their dependency on Rus-

sia, several Europe-bound pipeline projects have been proposed since the 1990s,

but none of the pipelines could be realized due to political conflicts in the region.

The inauguration of the Turkmenistan-China pipeline in 2009 introduced China as

an alternative market to Europe and altered the Eurasian natural gas game re-

markably. To investigate the interaction among the major powers such as Europe,

Russia, and China in Central Asia, the chapter extends the geographical scope of

the disaggregated quantitative model eastwards to Central Asia and China. The re-

sults explain the Central Asian countries’ endorsement for the Turkmenistan-China

pipeline instead of a westbound option and show negligible demand competition

between China and Europe for Central Asian supplies. Among the Europe-bound

pipeline options the Trans Caspian pipeline -an offshore pipeline under the Caspian

Sea from Turkmenistan to Azerbaijan and then to Turkey- is the most beneficial op-

tion for the Central Asian suppliers. The results also elucidate the recent pipeline

competition in the southern corridor, which will link rich fields in Azerbaijan through

Turkey to the European markets.

As matter of fact, the diversification of transit routes, suppliers, and markets through

pipelines entails strategic limitations. Pipelines are capital intensive infrastructure

projects, and once built, they cannot be moved or used for other purposes. Hence,

the both ends of a pipeline, i.e., the supplier and the consumer, are mutually de-

pendent on each other. Ranging over long distances, a pipeline may have to cross

through transit countries. The large number of parties involved in a pipeline com-

plicates the cooperation for its realization as well as the long-term rent sharing

after its completion. After a pipeline’s completion a transit country may demand the

renegotiation of the rent sharing since the pipeline increases its bargaining power

vis–a–vis other parties involved in the pipeline. There is no international authority

to regulate such disagreements within national parties. Therefore, a transit country

which lacks the credibility not to renegotiate ex-post might lead to a hold-up problem

and hence to an inefficient investment in the transmission network.7

7As an example, in the 1990s Russia invested in the Yamal pipeline through Belarus and Poland

instead of in the modernization of the Ukrainian transmission pipeline network although the latter was

considerably cheaper than the former. The Russia-Ukraine disputes compelled Russia to look for an
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LNG promises to be an attractive alternative to pipelines. The LNG chain is com-

posed of three distinctive steps: liquefaction, shipping, and regasification. Lique-

faction terminals liquefy natural gas and load it to special ships which can carry

gas to overseas markets as far as 7000 km. Then, regasification terminals process

LNG and serve natural gas to the pipeline network. In contrast to pipelines, the

LNG chain is free of transit countries. The long range of LNG ships opens 80%

of the world’s proven reserves to European consumers and hence diversifies the

supplier base of the continent remarkably. Since regasification terminals can be

served by any supplier, consumers may respond to price differences as well as

supply disruptions easily.

To benefit from LNG’s favorable characteristics, European countries expand their

regasification capacities. LNG imports from overseas suppliers will strengthen com-

petition in the European markets and hence leverage the continent’s bargaining

power vis–a–vis established suppliers, especially Russia. However, the global LNG

market is supply constrained. Almost fully utilized, liquefaction capacities amount to

only 40% of regasification capacities. A strong growth in LNG demand, e.g., in the

Asia Pacific region, may constrain liquefaction terminals and lead to an increase in

demand competition within LNG importers. In case of a tightness in the global LNG

market, LNG cargoes will sail to the market with the highest price, i.e., to the Asia

Pacific region instead of Europe, since the price in the former is 35-50% higher than

the price in the latter. LNG exports from the United States might relieve the tight-

ness in the global LNG market and change global trade patterns remarkably. In the

last decade, the shale gas boom has flooded the country’s markets with unconven-

tional supplies and depressed prices in its spot markets to one third of in Europe

and one sixth of in Japan. Despite the ongoing controversy about the export of

cheap supplies to overseas markets, several liquefaction terminals are under con-

struction on the country’s coasts. The U.S. Energy Information Administration (EIA)

forecasts that the United States will turn into a net LNG exporter in 2016 and a net

gas exporter in 2018 (EIA (2013)).

Chapter 3 studies major supply and demand developments in the global LNG mar-

ket as well as their impact on the power structure in the Eurasian natural gas trade.

The chapter models the global LNG market explicitly and considers LNG as a

strategic instrument. Thereby, the model pictures gas-to-gas competition in the

European markets in detail, i.e., the interplay within overseas suppliers of LNG and

alternative route to avoid an ex-post renegotiation of the rent sharing with Ukraine.
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established suppliers of pipeline gas. The geographical scope represents around

80% of the global LNG trade. Asia Pacific is the largest LNG consumer. Qatar,

Australia (including Malaysia and Indonesia), and Nigeria represent the supply side,

and the United States is a prospective LNG exporter. Given the enlargement of the

European regasification capacities, the supply and demand developments in the

global LNG market are illustrated in two scenarios: the United States’ LNG exports,

and the growth in Asia Pacific’s LNG imports. While the United States’ LNG exports

floods the global LNG market with supplies and increases supply competition in the

European markets, the growth in Asia Pacific’s LNG imports devours LNG supplies

and counters the former development. The two developments together benefit the

European consumers significantly but curtail barely the power of the established

suppliers in the European near geography, such as Russia.

For the analysis of the power structure in the international natural gas network two–

stage games proposed by Jackson and Wolinsky (1996) and Jackson (2010) are

well suited. Brandenburger and Nalebuff (1997) designate two–stage games also

as ”biform” games since different approaches are applied to solve the two stages.

In the non–cooperative first stage, players settle the equilibrium network by adding

or removing links. The dissertation does not attempt to determine the equilibrium

network in the first stage. Given real investment patterns, it defines the network

exogenously and considers only the second stage. The second stage is designed

as a cooperative game. The value function captures the interdependences in the

network, and the well known solution concepts, e.g., the Shapley value, core, and

nucleolus, allocate the surplus generated by the cooperation among the players. A

player’s final payoff is interpreted as its (bargaining) power.

Cooperative game theory is well suited to analyze the power structure in the sec-

ond stage. Firstly, the natural gas network is a vertical chain with a small number

of sophisticated players, and players at different stages have market power, such

as Russia in production and Ukraine in transit. A player with market power sets

a markup over its marginal cost which yields to double marginalization and hence

inefficiencies in the vertical chain. To ensure efficient exploitation of the network,

sophisticated players use long term contracts in their trade of natural gas. These

comprehensive contracts impose prices and quantities as well as tariffs to tran-

sit countries.8 In line with long term contracts, cooperative game theory assumes

that players make efficient use of the network. Secondly, in the natural gas trade

8See Energy Charter Secretariat (2007) for details on the contractual formats.
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bargaining within parties is clandestine and does not follow a firm procedure. Coop-

erative game theory abstains from any assumptions about bargaining procedures

and derives the power structure endogenously from the players’ role in the natural

gas network.

The natural gas trade provides a distinct opportunity to study strategic investment

in networks since the architecture of the natural gas network determines the power

structure. The natural gas network is one of the few networks providing enough

information to calibrate a network model, calculate the value function, and solve the

game. While it is difficult to obtain direct empirical evidence on the power structure,

indirect evidence is provided by investments into new pipelines and LNG terminals.

There exists a large and sophisticated literature on virtues of different solution con-

cepts for cooperative games and their mutual relations. However, beyond voting

games and cost allocation, cooperative game theory has been rarely applied to in-

dustrial relations. As a result, little is known about the intuitive appeal and explana-

tory power of solution concepts. Chapter 1 addresses this gap in the literature and

compares outcomes of two solution concepts, the Shapley value and the nucleo-

lus, with real investment patterns. New links, i.e., pipelines, will only be established

when the gains for participating players are larger than the investment cost. The

chapter relates the investment into the new pipelines with their impact on the power

structure and thereby makes conclusions about the explanatory power of the solu-

tion concepts. While the Shapley value can explain the recent investments in the

new pipelines as a rational attempt to alter the power structure in the network, the

nucleolus, in contrast, fails to replicate the empirical evidence.

After each chapter a dedicated appendix (A-B) presents the parameters used for

the calculation of the value function and their calibration in detail since the models

employed in chapters 1-3 differ in their geographical scope, set of regions, bench-

mark year, etc. Appendix C provides the technical documentation of the gas sector

model, which is used to calculate the value function and solve the game. An in-

terested reader may download the data files and codes published on the website

”http://www.ms-hns.de/research gas” and replicate the results presented in the dis-

sertation.
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Chapter 1

Pipeline Power: A Case Study of
Strategic Network Investments

Abstract

We use the Shapley value and the nucleolus to analyze the impact of three contro-

versial pipeline projects on the power structure in the Eurasian network for natural

gas. Two pipelines, ‘Nord Stream’ and ‘South Stream’, allow Russian gas to bypass

transit countries, Ukraine and Belarus. The third project, ‘Nabucco’, aims at diver-

sifying Europe’s gas imports by accessing producers in Middle East and Central

Asia. For the Shapley Value we obtain a clear ranking of the projects which corre-

sponds to the observed investment patterns. Nord Stream’s strategic value is huge,

easily justifying the high investment cost for Germany and Russia. The additional

leverage obtained through South Stream is much smaller and Nabucco is unviable.

For the nucleolus in contrast, none of the pipelines has any strategic relevance at

all, which contradicts the empirical evidence on investment.

Keywords: Cooperative games, Networks, Strategic Investment, Natural Gas,

Shapley Value, Nucleolus

JEL class.: C71, L5, L95, O22

Thanks for comments to seminar participants at Stony Brook Game Theory Festival, UECE Lisbon

Meeting, Higher School of Economics Moscow, and to Ekaterina Orlova for her contribution in pro-

gramming the network model. We are also thankful to Hans H. Reijnierse for providing us with code

for calculating the nucleolus.
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1.1 Introduction

Pipeline gas from the Russian Federation accounts for a quarter of the consumption

in the European Union (EU) and for more than 40% of its imports. Until 2011 es-

sentially all of these imports depended on transit through either Belarus or Ukraine,

both being major importers of Russian gas themselves. On both routes conflicts

over transit fees and gas prices led to several interruptions of supply, the most

serious one in January 2009 when transport through Ukraine was shut down for

three weeks with dire consequences for heating and power supply in the Balkans.9

European power companies and policy makers are struggling to find a coherent

response to these challenges. On the one hand, new pipeline links with Russia

diversify transit routes for Russian gas. On the other hand, such pipelines have

the potential to further increase the dependency on Russian gas and reduce the

viability of investments securing supplies from alternative sources.

The Eurasian pipeline network can be seen as a specific example of a network,

which enables the parties to trade. Its architecture determines not only the actual

trade flows but also the power of the parties, i.e., how they will share the gains from

trade. Hence, the actors are trying to shape the network to their own advantage.

By opening new options for trade a new link can decrease the value of established

links if substitutable, or increase their value if complementary.

That the formation or severance of trade links can be used to enhance the power

of a nation has been recognized long ago (Hirschman (1969)). But no generally

accepted approach has been established for the assessment of power relations

in networks. Analyzing communication networks Myerson (1980) proposed to use

cooperative game theory, and more specifically the Shapley value as a power index.

Jackson and Wolinsky (1996) and Jackson (2010) extended the idea to general

networks and delineated two stages. In the first, non-cooperative stage, players can

change the network architecture by adding or removing links. In the second stage,

a cooperative game defined by the existing network determines the final payoffs.

Brandenburger and Nalebuff (1997) coined the term ‘bi-form games’ to emphasize

that different approaches are used to determine outcomes at the two stages, but

they argue that the cooperative stage should be solved with the core, instead of the

Shapley value. The core, if not empty, is typically not unique, so they resort to an

9For a comprehensive account of major conflicts over transit through Belarus and Ukraine see

Bruce (2005) and Pirani et al. (2009), respectively.
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exogenous assumption on the ‘players’ confidence’ in their own bargaining power

to solve the indeterminacy. In addition, there is a literature on non-cooperative,

decentralized bargaining in networks, which invokes specific bargaining protocols

to single out particular solutions (e.g., Manea (2011), Elliott (2011)). In this paper

we avoid exogenous assumptions on bargaining power or bargaining protocols and

use the nucleolus instead of the core. The nucleolus is unique and in the core,

provided the latter is not empty.

There are good reasons to analyze gas trade in a given network, the second stage,

as a cooperative game. Most pipeline gas is traded under negotiated, comprehen-

sive price-quantity-contracts with so called ‘take–or–pay’ provisions. By stipulating

prices and quantities, contracts can ensure the efficient usage of the existing ca-

pacities and avoid double marginalization. Contracts with transit countries also

cover tariffs and quantities.10 So we assume that the pipeline system will be used

efficiently and the surplus is shared through negotiations among the partners.11

When the network is changed trough a new pipeline at the first stage, we obtain a

different game entailing gains for some and losses for other players. We say that

a project is a viable strategic option if the gains of the winners are larger than the

cost of the pipeline. Strategic viability does not necessarily imply that the pipeline

will be built. First, those players who would benefit, have to succeed in setting

up a consortium, sharing costs and benefits, etc., which might be difficult if the

gains spread over many regions or if some players cannot make credible long term

commitments. Second, those players who are set to lose power might dissuade

those who will gain from carrying out the project. Such a move might also require

a substantial amount of cooperation.

Again, there is no generally accepted approach to determine the equilibrium net-

work investments at the first stage. Obviously, some impediments to cooperation

have to be assumed, otherwise the two stages could be collapsed into a single co-

operative game, yielding efficient investment and trade. With imperfect coordination

at the investment stage inefficiencies may arise: under-investment, due to potential

hold up, and over-investment to improve the bargaining position.12 In this paper we

10For details on contractual formats see Energy Charter Secretariat (2007).
11There is also a literature using large scale non-cooperative models of gas trade with players

acting in a Cournot or Betrand fashion. See Smeers (2008) for a review and Hubert and Ikonnikova

(2011b) for a critic of the assumptions.
12The literature on incomplete contracts and the resulting issues of under–investment as well as
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do not try to predict the equilibrium network structure. Instead we simply quantify

the impact of a possible pipeline link on the power structure as measured by the

Shapley value or the nucleolus and compare it to its cost.

This framework is used to investigate three controversial pipeline projects, which

have the potential to thoroughly transform the Eurasian supply system for natu-

ral gas (for an illustration see figure 1.1). In the North, the offshore twin-pipeline

Nord Stream establishes a direct link between Russia and Germany through the

Baltic Sea. Initiated in 2005, it faced strong opposition from Poland and some

Baltic states. Nevertheless it received support form the EU as a strategic infras-

tructure project and was completed in 2012. Further to the South, Italy and Russia

discuss another offshore pipeline through the Black Sea, called South Stream. If

realized, it would provide a direct connection between Russia and Bulgaria, from

where gas should flow to Central Europe, Italy, and Turkey. By bypassing the tran-

sit countries, Belarus and Ukraine, both projects diversify transit routes for Russian

gas. However, critics argue that they will also increase the European dependency

on Russian exports and safeguard the Russian dominance in the European mar-

kets by preempting investments into alternative gas supplies.13 The EU’s support

for South Stream has been lukewarm and the Commission clearly favors a third

project, Nabucco, aiming at diversifying gas imports. It would open a southern

corridor through Turkey connecting Europe to new suppliers in the Middle East

and the Caspian region. Nabucco also offers a new transit option to producers in

Central Asia, which currently ship gas through Russia. The EU made Nabucco a

major strategic project under its Trans-European Energy Networks (TEN-E), but the

project failed to raise sufficient support from national governments and the private

sector.

Our focus is on the strategic role of the pipelines. Even if not needed to trans-

port additional gas, the pipelines may have a substantial impact on the balance of

power in the network. In fact, the size of these projects appears out of range with

both production possibilities and market demand. With 55 bcm/a and 63 bcm/a,

respectively, Nord Stream and South Stream would increase transport capacities

for Russian gas by 63% from approximately 186 bcm/a to almost 304 bcm/a. If

over–investment is extensive. For networks see among others Bloch and Jackson (2007), and Elliott

(2011), for gas pipelines Hubert and Ikonnikova (2011a), and Hubert and Suleymanova (2008).
13South Stream and Nabucco are often portrayed as competing projects because South Stream

might drain Nabucco of potential gas supplies in Central Asia and the Caspian region.
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compared to the peak of actual gas deliveries in 2008, the increase is almost 80%

(BP (2010)). Given growing domestic consumption and slow progress in develop-

ing new fields in Western Siberia, Russia will not be able to produce enough gas to

make use of the additional offshore transmission capacities any time soon.14 Taken

together all three pipelines would increase the European import capacities by 150

bcm/a (47%). While declining production in the EU makes an increase of imports a

likely scenario, pipeline gas faces stiff competition from liquefied natural gas (LNG),

which experienced a sharp drop in prices due to decreasing cost and competing

supplies of non-conventional shale gas. Hence, we consider it as very unlikely that

demand could take up so much additional pipeline gas in the foreseeable future.15

When assessing the power structure with the Shapley Value we find that Nord

Stream’s strategic value is huge, easily justifying the high investment cost for Ger-

many and Russia. It severely curtails the power of the transit countries, Belarus

and Ukraine, outside producer Norway, and the EU’s main producer, Netherlands.

In principle, South Stream fulfills a similar strategic role. However, with Nord Stream

already in place, the additional leverage obtained through South Stream is too small

to make the project viable for its main beneficiaries; i.e., Russia, Germany, and

some central European countries. Nabucco has a large potential to curtail Russia’s

power, but the benefits accrue mainly to Turkey, which will diversify its gas imports

and become a major potential transit hub. The gains for the consortium, composed

of companies from the EU, in contrast, are negligible. With financial support from

Turkey some sections appear viable but our results cast doubts on the prospects

of raising the necessary funds within the EU. Somewhat surprisingly, South Stream

has little effect on Nabucco’s attractiveness. The European Commission’s concern

(or Russian hopes) that South Steam might preempt the investment in the southern

corridor through Turkey appears unfounded.

Our results for the Shapley value nicely explain real investment patterns. Nord

Stream was swiftly build by those players for whom we predict large gains. South

Stream, in contrast, has been faltering and is struggling to move on from the plan-

14For the long term perspectives for the Russian gas production see Stern (2005).
15It is misleading to relate the projects to import needs projected for 2030 or later. While a pipeline

might last more than 40 years, the decision to invest at a given time should be based on a much

shorter forecasting range. Once the ‘go ahead’ is given, it will take 3-7 years before the pipeline is

ready to deliver gas. Hence, if demand forecasted for a decade ahead is too low or too uncertain to

justify the project, the investment should be delayed though not necessarily scrapped. For the option

like nature of sunk investment under uncertainty see Dixit (1994).
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ning stage. After several postponements, it is still unclear whether the offshore

section will be built. Finally, in spite of substantial support from the EU, no lasting

European consortium could be established to launch Nabucco. Recently Turkey,

the only player for which the Shapley value predicts large gains, took the initiative

with respect to particular sections of the projects.

When using the nucleolus as a power index instead, we receive results which are

difficult to match with the empirical evidence. None of the projects has any strategic

value at all. Nord Stream’s and South Stream’s impacts on the power structure are

so tiny that no one would be interested in the pipelines, even if investment cost were

negligible. Nabucco has some minor effects but these are smaller than project cost

by order of magnitude. Essentially, all these pipeline are completely irrelevant for

the power structure if it is measured with the nucleolus.

Given that all projects attracted a great deal of interest, both from governments and

the private sector, that resources have been spend on project consortia, feasibility

studies, etc., and that Nord Stream has been build, we conclude that the Shapley

value gives a better prediction how major players in the industry assess the strategic

impact of pipelines than the nucleolus.

16



Fi
gu

re
1.

1:
Th

e
N

et
w

or
k

an
d

th
e

P
ro

je
ct

s

N
S

O
S

N
W

S
W

W
S

C
S

E
S

E
S

TC

N
ab

uc
co

No
rd

S
tre

am

S
ou

th
S
tre
am

A
lg
er
ia

B
al
ka
n

B
el
ar
us

B
el
gi
um

Fr
an

ce

Ita
ly

Li
by
aP
ol
an

d

Tu
rk
ey

U
K

U
kr
ai
ne

A
lg
er
ia

Ira
n

Ira
q

Li
by
a

R
us
si
a

C
en

te
r

E
as
t

C
en

te
r

N
or
w
ay

S
pa

in
P
or
tu
ga

l

N
et
he

r
la
nd

s

A
ze
r

ba
ija
n

K
az
ak
h

st
an

R
us
si
a

Tu
rk
m
e

ni
st
an

U
zb
e

ki
st
an

S
ol

id
gr

ay
ar

ro
w

s
re

pr
es

en
tt

he
pi

pe
lin

e
ne

tw
or

k
as

ex
is

tin
g

in
20

10
.

P
ip

el
in

e
pr

oj
ec

ts
w

hi
ch

w
e

co
ns

id
er

in
de

ta
il

ar
e

da
sh

ed
:

N
or

d
S

tre
am

in
re

d
(N

S
),

S
ou

th
S

tre
am

in
bl

ue
(w

ith
se

ct
io

ns
:

O
S

,N
W

,S
W

),
an

d
N

ab
uc

co
in

M
ag

en
ta

(w
ith

se
ct

io
ns

:
TC

,E
S

,C
S

,W
S

).
Th

e
ar

ro
w

s
po

in
ti

n
th

e
di

re
ct

io
n

of
th

e
ty

pi
ca

lfl
ow

an
d

lin
e

th
ic

kn
es

s

in
di

ca
te

s
ca

pa
ci

ty
.

Li
gh

tr
ed

no
de

s
re

pr
es

en
tm

aj
or

ex
po

rt
er

s,
an

d
ye

llo
w

no
de

s
ar

e
im

po
rt

er
s.

17



1.2 The Framework

1.2.1 The Network Game

Network.

The analysis is based on a calibrated model of the Eurasian gas network consisting

of a set of nodes R, which may be production sites RP , customers RC, or pipeline

hubs RT , and a set of directed links L. Each link l = {i, j}, i , j ∈ R connects two

nodes. Let fi j denote gas flows, with negative values indicating a flow from j to

i. For those links, which connect a producer to the network or the network to a

customer, flows have to be positive ( fi j ≥ 0, ∀ i ∈ RP or j ∈ RC). Links between hubs

can be used in both directions. For each link {i, j} we have a capacity limit ki j and

link specific transportation cost Ti j( fi j), which includes production cost in case of

i ∈ RP. For existing capacities, transportation costs consist only of operation costs

because investment costs are sunk. Each customer is connected through a single

dedicated link to the network. So consumption at node j ∈ RC is equal to fi j. The

inverse demand is p j( fi j).

Game.

For a given network, gas trade is represented by a game in value function form

(N, v), where N is the set of players. Let 2N denote the set of all subsets of N.

The value (or characteristic) function v : 2N → R+ gives the maximal payoff, which a

subset of players S ⊆ N, also called coalition, can achieve. The legal and regulatory

framework determines the access rights of the various players. So for any coalition

S ⊆ N we have to determine to which links L(S ) ⊆ L the coalition S has access.

Access to the link {i, j}, i ∈ RP is equivalent of having access to production at i.

Access to {i, j}, j ∈ RC yields access to customer j. The value function is obtained

by maximizing the joint surplus of the players in S using the gas-flows in the links

which are accessible for S :

v(S ) := max
{ fi j |{i, j}∈L(S )}

 
{i, j}∈L(S ), j∈RC

 fi j

0
p j(z)dz −


{i, j}∈L(S )

Ti j( fi j)

 (1.1)
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subject to 
i fit =


j ft j, ∀ t ∈ RT (S ) (node-balancing)

| fi j| ≤ ki j, ∀ {i, j} ∈ L(S ) (capacity constraints)

fi j ≥ 0, ∀ i ∈ RP or j ∈ RC (non-negativity)

The value function captures the essential economic features, such as the geogra-

phy of the network, different cost of alternative pipelines, demand for gas in the

different regions, production cost, etc. It also reflects the institutional framework,

such as ownership titles and access rights through its dependence on L(S ). By

adding a pipeline to the system we obtain a new network, which in turn defines a

new value function.

Solutions.

Cooperative game theory has developed a number of solutions for games in value

function form. In the following we emphasize the Shapley value (Shapley (1953)),

which assigns a unique payoff to each player i ∈ N. It is based on the contribution

v(S ∪ i) − v(S ) which a player i can make to the various subgroups of other players

S . The Shapley Value nicely captures the intuition, that a player’s payoff from coop-

eration, interpreted as his power in the game, should increase with his importance

for other players, as measured by the value of his contributions.16 Formally, it is

calculated as player i’s weighted contribution:

φi =


S :i<S

P(S ) [v(S ∪ i) − v(S )] (1.2)

where P(S ) = |S |! (|N| − |S | − 1)!/|N|! is the weight given to S . For convenience φ

denotes the vector of Shapley Values and φS =


i∈S φi the sum of Shapley Values

of a coalition S .

16The Shapley value has several axiomatic foundations. Surprisingly, it is the only rule of dividing

the gains from cooperation featuring monotonicity : a player’s share never decreases when his con-

tributions weakly increase (Young (1985b), Young (1985a)). It is also the unique rule with so called

balanced contributions: For any two players i and j it is true that i loses as much if j withdrew from

the game, as j loses if i withdrew. Hence, if a player objects the Shapley allocation by pointing out

the damage he can impose on another player through a boycott of cooperation, his opponent can

always counter the argument (Myerson (1980)). In this sense it is often considered as a ‘fair’ division.

Finally, the Shapley value can be considered as the expected utility of a player from participating in

the game (Roth (1977)). The Shapley value can be supported as the subgame-perfect equilibrium of

several non–cooperative models of structured bargaining processes, i.e. Gul (1989), Evans (1996),

Stole and Zwiebel (1996a), Stole and Zwiebel (1996b), and Inderst and Wey (2003).

19



The other major solution concept for the cooperative games is the core. Let x

be a payoff vector and xS :=


i∈S xi be the total payment to the members of S .

We consider only payoff vectors x which are efficient


i∈N xi = v(N) and individually

rational xi ≥ v(i), so called imputations. The excess e is the difference between what

a coalition can achieve alone and what it receives e(S , x) := v(S ) − xS . The larger

the excess is, the ‘worse’ is the coalition doing under x. If the excess is positive,

the coalition should reject (block/veto) a proposed x because it can do better on its

own. The core is the set of imputations for which no coalition has positive excess:

c(ϵ) := {x : e(S , x) ≤ 0, ∀S ⊂ N}.

If not empty, the core is typically not unique and its characterization through 2|N| −

2 inequalities is cumbersome if the number of players is large. Instead, we use

the nucleolus, which always exists, is unique and in the core if this is not empty.

Originally, the nucleolus has been proposed as the imputation which minimizes

‘inequity’ among coalitions (Schmeidler (1969)). Let θ(x) be the vector of excesses

arranged in decreasing order for a payoff vector x and let ≼ stand for lexicographical

smaller. The nucleolus, denoted µ, is defined as the imputation which minimizes

the excess in lexicographic ordering: µ := {x ∈ I : θ(x) ≼ θ(y) for all y ∈ I}, where I

denotes the set of imputations. It can be computed by solving a nested sequence of

linear optimization problems (Maschler et al. (1979)). First excess is made minimal

for the coalitions, which are doing worst. Then excess is reduced for the coalitions,

which come second, and so on. In this sense, the nucleolus can be interpreted as

the lexicographic center of the game.17

1.2.2 Specification & Calibration

Regional scope and players.

To obtain a detailed representation of the various customers, owners of pipelines,

gas producers, etc. we would like to consider a large set of players. Unfortunately,

computational complexity increases fast in the number of players as we have to

solve 2|N| − 1 optimization problems to calculate the value function. It is for compu-

tational reasons that we restrict the geographical scope by aggregating customers

into large markets and leaving out producers which appear to be of minor strategic

17In the terminology of operation research the computation of the nucleolus is a ‘hard’ problem for

which we use an algorithm proposed by Potters et al. (1996), who also provided us with the code for

the calculation.
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relevance.

As to producers, we focus on Russia, the supplier for Nord Stream and South

Stream, its main competitor Norway, and those countries in the Middle East and

Central Asia which have a potential to serve Nabucco: Iraq, Iran, Azerbaijan, and

Turkmenistan. The player “Turkmenistan” embraces all production and transport in

Central Asia (Uzbekistan, Kazakhstan, Turkmenistan).18 Main transit countries are

Belarus and Ukraine. Turkey is a major consumer and a potential transit country for

Middle Eastern and Caspian gas. We aggregate customers and producers within

the EU into eight regional players. France, Italy, Poland, Netherlands, and Belgium

correspond their respective countries. In each of these countries a national cham-

pion dominates imports and local supply (GDF, ENI, PNGiG, Gasunie and Fluxys,

respectively). We collect Austria, Czech Republic, Slovakia and Hungary in one

region called “Center-East”. South Stream and Nabucco will end in Center-East,

from where gas will be distributed to other regions in Europe. The countries in the

region exhibit similar consumption and import dependency patterns. With very little

alternative supplies the region depends with almost 90 % of its consumption on im-

ports from Russia. The pipeline networks are largely privatized. The Austrian OMV

can be seen as the dominant private supplier in the region. Germany, Switzerland,

Denmark, and Luxembourg are bundled to “Center”. In terms of consumption the

region is clearly dominated by Germany, which is also home of large gas suppli-

ers, E.ON-Ruhrgas and Wintershall. The region covers more than three quarters

of gas consumption by imports, but its imports are well diversified between Russia

(40.2%), Norway (38.1%), and Netherlands (29.3%).19 Finally, we collect Romania,

Bulgaria, and Greece in a region called “Balkan”. The region has only weak links

to the other European regions and its imports depend largely on Russian gas.

We aggregate all pipelines and interconnection points between any two players into

one link. The arrows in figure 1.1 indicate the direction of net flows between the re-

gions according to IEA (2010a). The new projects, i.e., Nord Stream, South Stream,

and Nabucco, are shown as dashed arrows. Their arrows display the direction of

flow as expected by their initiators, namely from the East to the West.

As to access rights, we assume that outside the EU every country has unrestricted

control over its pipelines and gas fields. For the regions within the EU, in contrast,

18Preliminary calculations have shown that Algeria, Libya, and Spain would hardly be affected by

the pipelines we consider in this paper.
19Calculated from BP (2010), and IEA (2011a).
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we assume that common market rules ensure open third party access to the in-

ternational high pressure transport pipelines. Hence, regions within the EU cannot

derive bargaining power from blocking gas transit.

Temporal scope / network flexibility.

We assume a stationary environment with constant demand, technology, produc-

tion cost, etc. The value of a coalition, nevertheless, depends on the temporal

scope of the model. In the short run, the pipeline network is essentially static. The

longer one projects into the future, however, the more options to invest in pipelines,

compressors, etc. can be exploited, hence the more flexible the transport system

becomes. Here, we adopt a rather short horizon assuming that all pipelines can be

made bi-directional, but capacities cannot be increased.20

Cost and demand.

The details of the numerical calibration are given in appendix A. Here we outline

only the main idea. We calibrate the model using data for 2009 from IEA (2010a)

and IEA (2011a) on consumption and production in the regions and flows between

the regions from November 2009 to October 2010 taken from IEA (2010a). We

assume piecewise constant transportation and production cost and linear demand

functions with the same intercept for all regions. The slope parameters are then

estimated as to replicate the consumption in 2009, given our assumption on pro-

duction and transportation cost.21 The most important implication of our calibration

of demand in relation to cost is that the pipeline system as existing in 2009 is effi-

cient. Given the willingness to pay and the cost of producing gas, it is able to deliver

the efficient amount of gas into the different consumption nodes. Thus, none of the

expensive pipeline projects considered in this paper can be justified in narrow eco-

nomic terms. The grand coalition of all players, or a benevolent central planner

maximizing welfare, would not invest in any of the projects. Only a subgroup of

the players might find investment beneficial because it increases their bargaining

20See Hubert and Ikonnikova (2011a) for a more detailed analysis of the static/shortsighted versus

the flexible/farsighted approch.
21As a result of our assumptions on functional forms, we obtain a quadratic programming problem

with linear constraints. Details of the programming code are available in appendix C.
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power at the cost of the others.

This approach also ensures that the main difference between the regions is con-

sumption and how it relates to own production on which we have solid information

and not our assumption on demand intercepts on which information is poor. The

main difference between producers is production capacity and pipeline connections

to the markets, for which data are reasonably good, and not differences in wellhead

production cost, which are difficult to estimate.

A critical part of the calibration is the relation of the common demand intercept and

production cost, which largely determines the overall surplus from gas trade. The

relative shares of different players, measured in percent of the total surplus, tend

to be rather robust with respect to a change of the demand intercept in relation to

the production cost. However, an increase of demand, keeping the production and

transportation cost constant, will increase the total surplus and as a result more

pipeline projects will become strategically viable for given investment cost. In our

baseline scenario we assume a difference of 1500 e/tcm between the demand

intercept and supply cost, yielding a total surplus of approximately 167 bn e/a.22

As previous research has revealed strong incentives to invest for strategic reasons

(Hubert and Ikonnikova (2011a)), we use a rather high discount rate of 15% to

account for depreciation and real option nature of the investment when annualizing

investment cost or discounting cash flows. In our baseline scenario the resulting

present value of total surplus is approximately 1112 billion e.

1.3 Evaluating Network Power with the Shapley Value

Since a player’s Shapley value is the weighted sum of his contributions to the values

of possible coalitions of other players, any change in the bargaining power can be

traced back to changes of these contributions. The value of a coalition depends on

its access to pipelines, markets, and gas fields. Hence, a player can increase the

coalition value by providing additional markets, additional supply, or by improving

connections through transit. In any case, the value of his contribution will depend

on how well his resources complement what is already at the coalition’s disposal.

22As usual in cooperative game theory surplus is measured by the difference between economic

rent derived from jointly using the resources of the system minus the sum of the economic rents of

the individual players acting in autarky (zero-normalized game). Economic rent is given by the sum

of the customer rents minus the cost of producing and transporting gas (equation C.1).

23



Adding a market to other markets with no access to production helps little compared

to making the same market available to several producers, which are short of cus-

tomers. Generally speaking, a pipeline benefits a player by improving his access to

inputs complementary to his own. It hurts him by improving others players’ access

to resources, which are substitutable to his own. The effects are complicated by the

fact that most countries play multiple roles. While Norway is a pure producer in our

model, Russia and the Netherlands are producers as well as a customers. Belarus

and Ukraine are main transit regions, but they are also customers, and Ukraine has

own production. Moreover, the role of a player depends on the coalition against

which he is evaluated. For example, Turkey is a net-importer when all players are

in the coalition. However, it becomes a transit country for Russian gas in a smaller

coalition, for which neither transit through Belarus nor Ukraine is available. Multiple

and changing roles make it sometimes difficult to predict what the overall impact of

a new pipeline on a player will be.

Given our calibration of demand, the new pipeline projects do not create value.

They can only change the power structure. First, we measure the impact of a

pipeline on the power structure by the change of the players’ percentage shares in

the total surplus. Extensive checks have shown that these figures are quite robust

with respect to different calibrations of demand, hence surplus, and production cost.

Second, we convert the differences to absolute values and compare them to our

information on investment cost.

1.3.1 Nord Stream

Nord Stream bypasses the transit countries in the Northern corridor and connects

Russia via a twin offshore pipeline through the Baltic Sea to Germany. The project

was initiated by Russian Gazprom and the German companies EON-Ruhrgas and

Wintershall in 2005 and completed in late 2012 providing a pipeline capacity of 55

bcm/a. We estimate the total cost including complementary pipelines in Russia and

Germany at approximately 15 billion e.23

23Published figures on investment cost have been revised several times. Nord Stream’s consortium

put the cost at 7.4 billion e (Nord Stream (2013)). However, this figure does not include complemen-

tary infrastructure onshore. We assume 5.3 billion e for the Gryazovets-Vyborg line on the Russian

side and 1 billion e for OPAL and NEL, the two links on the western shore (EEGA (2010)). These

numbers would add to a total cost of 14.7 billion e.
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Table 1.1: Nord Stream’s Impact on Bargaining Power

Shapleyvalue [%]
Playersa without with

Nord Stream Nord Stream difference
Russia 12.8 15.9 3.0

Ukraine 9.4 6.9 −2.5
Belarus 6.7 5.9 −0.8
Norway 13. 10.5 −2.5

Netherlands 6. 5. −0.9
UK 1.9 1.9 0.

Center 16.7 18.2 1.5
Center-East 8.9 9.7 0.8

Italy 3.1 3.4 0.4
Poland 1.7 1.8 0.2
France 6.6 7.3 0.7

Belgium 3.1 3.4 0.3
Balkan 0.8 0.8 0.
Turkey 7.6 7.6 0.

aTurkmenistan, Iraq, Iran, and Azerbaijan are omitted because they
are not affected by the project. For full results see the technical appendix.

Table 1.1 exhibits Nord Stream’s effect on the players’ relative power. For each

player we report the Shapley value in percent of the total surplus without and with

the pipeline as well as the difference between the two measuring the project’s im-

pact. The shares of suppliers reflect their production capacities as well as their

dependency on the transit countries to access to consumer markets. Although

Russia exports more gas than Norway to the European markets, Norway’s surplus

without Nord Stream (13.0%) is slightly larger than Russia’s (12.8%). Norway has

direct access to the European pipeline network while Russia depends on the transit

countries, Ukraine and Belarus, to ship gas to the European markets. The shares

of Ukraine and Belarus, 9.4% and 6.7%, respectively, reflect their differences in

own consumption and production as well as the different transport capacities. The

largest European producer, Netherlands obtains 6.0%. The other European re-

gions are net importers, hence their benefits tend to increase with the size of their

markets and their dependence on pipeline gas. The figures reflect the gains from

trading gas, not the gains from consuming gas. A country whose own production or

LNG imports are large enough to cover its demand will gain little from participating

in the gas trade even if its gas market is large. The EU as a whole obtains 48.8%,

with Center, Center-East, and France having the largest shares. Turkey benefits

from its consumption of pipeline gas as well as its potential transit position between
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Balkan and suppliers such as Russia, Iran, and Azerbaijan.

The last column in Table 1.1 presents Nord Stream’s impact on the players’ surplus

in terms of the differences. Russia gains 3.0 percentage points, an increase of

approximately one fourth of its share in the benchmark case. Increased transport

competition mitigates the power of Ukraine and Belarus, which loose 2.5 and 0.8,

respectively. The transit countries together lose one fifth of their relative power in

the benchmark case. Due to intensified supply competition in the European mar-

kets, Norway and Netherlands suffer losses of 2.5 and 0.9 points, respectively. The

European players together benefit from increased transport and supply competi-

tion, gaining 3.0 points. With 1.5 points Center has the largest increase in the EU.

Nord Stream’s total strategic value for the initiators of the consortium, in our model

Center and Russia, is huge. With our baseline assumptions on demand and interest

rate, a gain of 4.5 percentage points translates into a gain of 50 billion e, which

clearly exceeds the project’s cost of 15 billion e and yields a cost benefit ratio

of more than 1:3.24 It is worth stressing that the project is beneficial because it

increases the bargaining power of the consortium vis-a-vis other players. Given

our calibration of demand, the pipeline is not needed to transport additional gas.25

1.3.2 South Stream

South Stream can be seen as the Black Sea twin of Nord Stream. Russia pushes

the project to bypass Ukraine when supplying gas to Central and Southwestern

Europe. According to the initial planning, the project consisted of three sections:

offshore, northwestern and southwestern.

OS: The offshore section crosses the Black Sea and connects Russia directly to

Bulgaria with a capacity of 63 bcm/a. The consortium for the offshore section

24For similar results see Hubert and Ikonnikova (2011a), Hubert and Ikonnikova (2011b), and Hu-

bert and Suleymanova (2008)).
25After Russia and Germany kicked off the project, the consortium was joined by Gasunie of Nether-

lands and GDF Suez of France, each with a share of 9%. In view of our results, the participation of

Gasunie is surprising since Netherlands supplies 15% of the EU’s consumption and is set to loose

from intensified supply competition. Our interpretation is the following. Not being able to prevent Nord

Stream, Gasunie joined in anticipation of its changing role in the system. Due to declining reserves,

Netherlands will become a net importer around 2025. The country also intends to become a gas

hub in Northwestern Europe transiting Russian gas from Germany to UK (Netherlands Ministry of

Economic Affairs, Agriculture and Innovation (2010)).
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includes Gazprom of Russia, Eni of Italy, and EDF of France. Onshore the

pipeline splits in two sections.

NW: The northwestern section runs from Bulgaria to Baumgarten in Austria via

Serbia and Hungary with a capacity of 30 bcm/a.

SW: The southwestern section connects Bulgaria to Italy via Greece and a short

offshore pipeline through the Adriatic Sea. It has a capacity of 10 bcm/a.

The different national sections of the northwestern and southwestern tracks were

to be undertaken by a joint-venture between Gazprom and the national gas com-

panies of the respective countries. In November 2012, Gazprom scaled down the

project and abandoned the southwestern section.26 Apparently, Gazprom started

to order pipes for South Stream’s offshore section in January 2014 although major

issues such as the financing, the northwestern section’s final route, etc. have not

been cleared yet. First delivery through the offshore pipeline are now planned for

late 2015 while full service is scheduled for the end of 2018.

There is substantial uncertainty about the expected cost of the project. Here we

take 30 billion e, double the cost of Nord Stream, as a reasonable estimate.27

Russia enjoys a very strong bargaining position in Southeastern Europe. Com-

peting producers such as Norway or Netherlands cannot reach this region since

the transport capacities between Balkan and Central Europe are very small (1.7

bcm/a). The northwestern section improves the connection between Center and

Balkan; thus, it has a potential to increase competition for Russian gas in Balkan

26However, a similar pipeline may still be build. The Trans Adriatic pipeline (TAP) was selected

as a left-over from ambitious plans for the new Southern Corridor. It is scheduled to carry Caspian

supplies through a slightly different route, but with the same capacity from the Turkish-Greek border

to Southern Italy. UK’s BP, Azerbaijan’s SOCAR, Norway’s Statoil, and Belgium’s Fluxys are the major

members of the project’s consortium while France’s Total, Germany’s E.ON, and Switzerland’s Axpo

have smaller shares (TAP (2013)).
27So far, South Stream’s consortium did not release transparent estimates of the project’s cost. In

2009, Gazprom CEO Alexei Miller mentioned a cost of 8.6 billion e (Rianovosti (2009)), apparently

referring to the offshore section only. Since then, figures have increased steadily. In 2010, the

aggregate cost of the three sections was supposed to amount to 15.5 billion e (South Stream (2010)).

Later, the offshore southwestern section was cancelled, but the project’s expected cost remained the

same. Referring to the need of upgrading the Russian domestic onshore pipelines, Gazprom raised

cost estimates first to 29 billion e, and then to 33.6 billion e (Reuters (2013b), Reuters (2013c)).

However, some sources expect that the project’s total cost might exceed 56 billion e (Natural Gas

Europe (2013)).
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Table 1.2: South Stream’s Impact on Bargaining Power

without Nord Stream with Nord Stream
Shapley Impacta Shapley Impact of pipeline sectionsb

value OS, NW, value OS OS, NW OS, NW,
[%] SW [%] SW

Russia 15.8 2.9 16.7 0.3 0.8 0.8
Ukraine 7. −2.4 6. −0.3 −0.8 −0.9
Belarus 6.1 −0.7 5.7 0. −0.2 −0.2
Norway 10.9 −2.1 9.8 0. −0.5 −0.6

Netherlands 5.2 −0.8 4.8 0. −0.2 −0.2
UK 1.9 0. 2. 0. 0. 0.

Center 17.9 1.2 18.7 0. 0.4 0.5
Center-East 9.6 0.7 9.9 0. 0.2 0.2

Italy 3.4 0.3 3.5 0. 0.1 0.1
Poland 1.8 0.1 1.9 0. 0. 0.
France 7.2 0.5 7.5 0. 0.1 0.2

Belgium 3.4 0.2 3.5 0. 0.1 0.1
Balkan 1. 0.2 1. 0.2 0.2 0.2
Turkey 7.6 0. 7.6 0.1 0.1 0.1

Iran 0.9 −0.1 0.9 −0.1 −0.1 −0.1
Azerbaijan 0.5 −0.1 0.5 −0.1 −0.1 −0.1

Turkmenistan 0.1 0. 0.1 0. 0. 0.

adifference to column 1 table 1.1
bdifference to column 2 table 1.1

and Turkey. However, we assume that the consortium will seek exemption from the

European third party access (TPA) rules, so that Gazprom can prevent its competi-

tors from using the pipeline.28

Since Nord Stream became operational, before the construction of South Stream

even started, the impact of South Stream has to be assessed for a network which

already includes Nord Stream (the right panel of Table 1.2). Nevertheless, it is

instructive to study the counterfactual case first (the left panel of Table 1.2). The

comparison of the left panel’s last column in Table 1.2 and the last column in Table

1.1 shows that South Stream and Nord Stream alter the power structure in a similar

way. It does not matter much whether Russian gas is injected at the German border

28To incentivize new investment in infrastructure projects, the European Commission can grant for

so called ‘regulatory holidays’ (for details see EU (2009a)). We also analyzed what would happen

if South Stream’s northwestern section were not exempted from the rules on free TPA. In this case,

Russia’s strategic gains from bypassing Ukraine would be largely offset by losses due to increased

competition from Dutch and Norwegian gas.
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or in the Balkans if third party access to the existing European network is assured

while Russia’s dominance in Southeastern Europe remains protected. However,

the gains in the bargaining power by Russia and its major customers in Europe are

somewhat smaller than in the case of Nord Stream while the cost of South Stream

would be larger, which explains why Nord Stream was given precedence.

What are the effects of South Stream once Nord Stream is already in place (the

right panel of Table 1.2)? We start with the impact of the offshore section alone

(the column headed ‘OS’). The leverage gained is very small, since the gas could

only be transported to Balkan, a small market, and Turkey, which is already acces-

sible through Blue Stream. Without substantial onshore investments the offshore

section is of little strategic use. If both complementary sections are added the pic-

ture, we obtain a scaled down version of the counterfactual case. Russia gains

0.8 points. While Ukraine and Belarus suffer from transit competition, Netherlands

and Norway lose from intensified supply competition in Western and Central Eu-

rope. Surprisingly, Center, which does not participate in the consortium obtains

the largest gains in the EU. It is also worth noting that the southwestern section

has very little impact on the power structure. With Nord Stream and the northwest-

ern section in place, there is already a large amount of spare capacity to transport

Russian gas to Central Europe and Italy.29 Adding a 10 bcm/a link through the

Adriatic Sea makes hardly a difference. In view of this finding Gazprom’s decision

to abandon the southwestern section of South Stream appears rational.

Finally, we again ask whether the project is worth the cost. As an alternative to

Nord Stream, South Stream would be viable for the broad consortium (Russia, Italy,

France, Center-East and Balkan). The gains of 4.6 percentage points translates to

51.1 billion e, which is well above our cost estimate of 30 billion e. At the same

time the cost benefit ratio is clearly worse than for Nord Stream. With Nord Stream

in place, however, South Stream’s impact on bargaining power is much diminished

which casts doubts on its strategic viability. In the baseline scenario the consortium

gains 1.5 percentage points, amounting to 16.7 billion e, which is only about half of

the expected cost.

In summary, considered as an alternative, both South Stream and Nord Stream

have similar effects on the power structure, since both projects bypass the transit

29The northwestern and offshore sections of South Stream and Nord Stream together increase

pipeline capacities between Russia and Europe (except Balkan) from 140 bcm/a to 225 bcm/a while

in 2008 the demand for Russian gas in the area was 108.3 bcm (BP (2009)).
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countries and allow Russia to compete more effectively with Norway and Nether-

lands, without loosing its strong position in the Southeast. However, in the presence

of Nord Stream’s large capacities, South Stream provides much less additional

leverage. The gains for the consortium appear too small to compensate for the

project’s high cost.

1.3.3 Nabucco

Plans for a new ‘Southern Corridor’ have been discussed for almost two decades.

In the 1990s the U.S. government pushed for a ‘Trans-Caspian pipeline’ from Cen-

tral Asia through the Caspian Sea, Azerbaijan, and Georgia into Turkey and fur-

ther on to Southern Europe. The strategic aim was twofold: to reduce the depen-

dency of Turkey and Europe on Russian gas and to decrease Russia’s leverage in

the newly independent former Soviet republics. However, U.S. energy companies

dragged their feet over uncertain economic prospects. These worsened when Rus-

sia started to contract large volumes of gas from Turkmenistan in 2002 at much

higher prices than before. With the U.S.’ support withering the Europeans took

over the initiative. A consortium lead by OMV of Austria and Botas of Turkey (later

joined RWE of Germany) coined the new name ‘Nabucco’ in 2002.30 The focus of

the new project has shifted, in the East from Central Asia towards suppliers in the

Middle East and in the West towards extending the pipeline into the heart of Europe.

The EU made Nabucco a major strategic project under its Trans-European Energy

Networks (TEN-E). The European Bank for Reconstruction and Development, the

European Investment Bank, and IFC (a member of the World Bank Group) tenta-

tively earmarked 4 billion e for funding.31 However, Nabucco had been postponed

several times due to lack of supply commitments as well as its high investment

cost. Nabucco’s consortium downsized its project’s range and capacity in May

2012. Called Nabucco-West, the new project would cover only the European sec-

tion of the initial project and have one third of its capacity. In June 2013, the project

was abandoned after Trans Adriatic was selected to carry Caspian supplies from

Turkey to the Continental European markets.32

Here we consider the initial proposal for Nabucco, right after the last Russia-Ukraine

30The consortium also included companies from transit countries: Bulgargaz of Bulgaria, Transgaz

of Romania, and MOL of Hungary. In 2013, GDF Suez of France replaced RWE of Germany.
31For the position of the EU see EU (2006), EC (2007), and EurActiv (2011).
32For details on the competition between Nabucco-West and Trans Adriatic see Cobanli (2014).
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gas dispute in January 2009. For the assessment of the pipeline’s impact it is

useful to divide it into four sections: Trans-Caspian, the eastern section, the central

section, and the western section.

TC: Trans-Caspian, for the purpose of this paper, is narrowly defined as the off-

shore pipeline between Turkmenistan and Azerbaijan with a capacity of 30

bcm/a. For a while RWE of Germany and OMV of Austria, both also members

of Nabucco’s overall consortium, had the initiative, but at the time of writing

European companies have lost their interest in the project. We estimate the

cost at approximately 5 billion e.33

ES: The Eastern section consists of several pipelines connecting Turkey with po-

tential suppliers, i.e., Azerbaijan, Iran, and Iraq. We include Iran even though

at present this appears to be very unlikely for political reasons. The country

has the second largest gas reserves in the world, and Turkey already imports

gas from Iran. Even though none of the parties involved in the project will

openly admit, Iran is an important potential supplier for Nabucco. For the

calculation we assume that the existing pipelines from Iran and Azerbaijan

are enlarged by 15 and 45 bcm/a, respectively while a new feeder pipeline

of 10 bcm/a connects Iraq to Eastern Turkey. The section from Turkey’s East

to the West is extended by 30 bcm/a. We estimate the total cost of these

investments at approximately 16 billion e.34

CS: The central section connects western Turkey with Balkan. It is important to

note that existing pipelines with a capacity of approximately 16 bcm/a are

currently used to pump Russian gas into the opposite direction, from Balkan

into Turkey. Nabucco plans to reverse the direction of the flow through the

central section and expand its capacity by 30 bcm/a to an estimated total of

46 bcm/a. Based on distance and comparable projects we estimate the cost

of the central section at 2 billion e.

33There are also older estimates putting the figure slightly lower at 3.7 billion e (Jamestown Foun-

dation (2006)).
34Again there is little solid information on the different sections. The Trans Anatolian pipeline, which

connects Turkey’s eastern and western borders with half of Nabucco’s capacity, is expected to cost

5.9-7.4 billion e (Reuters (2013a)). Accounting for some economies of scale, we estimate the cost of

the pipeline running through Turkey at 10 billion e. The expansion of the South Caucasus pipeline,

which connects Azerbaijan to Turkey, by 16 bcm/a is expected to cost 2.2 billion e (Jamestown Foun-

dation (2014)). We assume that a capacity expansion of 45 bcm/a will cost 4 billion e. Based on

distance, we estimate the cost of the interconnectors to Iran and Iraq at another 2 billion e.
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WS: The western section connects Balkan to Center with a planned capacity of

30 bcm/a. The current connection with 1.7 bcm/a is used to pump gas into

the opposite direction. The section is analogous to South Stream’s NW sec-

tion. The Nabucco consortium rallied political support in the EU arguing that

it would help to integrate the region to other European markets by eliminat-

ing the bottleneck. The pipeline is designed for bidirectional use and shall

be open for gas transport for all interested parties. So, we assume that every

player has access to Nabucco’s western section, whereas we assumed exclu-

sive access for South Stream’s NW section. Based on distance we estimated

the cost at 3.5 billion e.

Taken together we obtain a total cost for the project of 26.5 billion e, or 21.5 billion

e if TC excluded.35 These figures are in the upper range of estimates, but on the

other hand we do not account for the cost of developing the fields to produce the

gas in Azerbaijan, Iraq, and Iran.

It is worth emphasizing that Nabucco’s commercial prospects are built on reversing

flows in the present network. Currently, gas flows in small quantities from Center to

Balkan and in substantial quantities from Balkan to Turkey. Considering the pipeline

in isolation, it is easy to underestimate how much additional gas in Turkey is needed

to justify its capacity. Let’s consider the central section of Nabucco. First, some 10

bcm/a are needed to substitute for the current flow from Balkan to Turkey. Second,

existing capacities can be made bidirectional at modest cost to pump some 16

bcm/a from Turkey to Balkan without new pipelines. Third, 30 bcm/a are needed

to fill the additional pipeline capacities. In total it would require approximately 55

bcm/a additional gas in Turkey to make fully use of the new pipeline. As with Nord

Stream and South Stream, many observers raised serious doubts as to whether

such quantities can be provided anytime soon. We, rather optimistically, assume

that Iraq, Azerbaijan, and Central Asia could supply an additional 56 bcm/a and

Iran another 15 bcm/a compared to the output in 2009.

In Table 1.3 we report selected results for the strategic impact of Nabucco. We

focus on a scenario where Nord Stream is already completed and then Nabucco is

added to the system (left panel). The first column shows the Shapley values for the

completion of all sections in percent of the total surplus. It should be compared to

35As usual, initial cost estimates have been much lower, as low as 7.9 billion e and then kept on

rising to 14 billion e (New York Times (2011)) and 24-26 billion e (BP in Natural Gas Europe (2011)).
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Table 1.3: Nabucco’s Impact on Bargaining Power

without South Stream with South Stream
Shapley Impact of pipeline sectionsa Shapley Impactb

value TC, ES WS TC, ES, value TC, ES,
[%] CS, WS [%] CS, WS

Russia 12.8 −2.3 −0.1 −3.1 13.4 −3.3
Ukraine 6.2 0. −0.5 −0.7 5.7 −0.4
Belarus 5.9 0. 0. 0. 5.7 0.
Norway 9.7 −0.4 0.3 −0.8 9.1 −0.7

Netherlands 4.7 −0.2 0.1 −0.3 4.5 −0.3
UK 1.9 0. 0. −0.1 1.9 −0.1

Center 18.5 0.1 −0.1 0.3 19. 0.3
Center-East 9.9 0. 0. 0.2 10.1 0.2

Italy 3.5 0. 0. 0. 3.6 0.
Poland 1.9 0. 0. 0. 1.9 0.
France 7.4 0. 0. 0.1 7.6 0.1

Belgium 3.5 0. 0. 0.1 3.5 0.1
Balkan 1.1 0.1 0.2 0.2 1.1 0.1
Turkey 10.4 1.7 0.6 2.8 10.2 2.6

Iraq 0.4 0.4 0. 0.4 0.4 0.4
Iran 1. −0.1 −0.2 0. 0.9 0.1

Azerbaijan 1.2 0.4 −0.1 0.7 1.1 0.7
Turkmenistan 0.3 0. 0. 0.1 0.3 0.1

adifference to column 2 table 1.1
bdifference to column 3 table 1.2

column 2 in Table 1.1. The difference between the two, i.e., the impact of the whole

project, is shown in column 4 under the header ‘TC, ES, CS, WS’.

By bringing in new suppliers in the East and connecting them with the center of

the European network Nabucco weakens the bargaining power of all established

suppliers. With a loss of 3.1 points Russia is particularly hard hit. The lion’s share

of the benefits, however, accrues to Turkey (2.8 points) and Azerbaijan (0.7 points)

while the impact on the regions within the EU is surprisingly small. Balkan and

Center benefit 0.2 and 0.3 points, respectively. Nabucco and the Trans Caspian

pipeline also do little to improve the position of the Central Asian producers, here

represented by Turkmenistan. We attribute this to the fact, that the new supply route

has several transit countries of which Azerbaijan is also a competing producer.

In our baseline scenario, these percentage points amount to a gain of 7.8 billion

e for the European members of the Nabucco consortium, 31.1 billion e for Turkey,

and another 7.8 billion e for Azerbaijan. Comparing these figures to the cost of
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approximately 21.5 billion e (including TC 26.5 billion e), it is not surprising that

European consortium failed to fly while Turkey and Azerbaijan took the initiative

with some sections of Nabucco.

It is also instructive to consider the effect of the different sections separately. Sup-

pose only the sections in the East are built (TC and ES), which connect Turkey to

the producers in the Middle East and Central Asia (second column). As increased

supply competition harms other producers, in particular Russia, it benefits Turkey

and to a much lesser extend Balkan. The effects on other EU regions are negligi-

ble, which is not surprising in view of the bottleneck between Balkan and the rest

of Europe. Taken altogether, the pipelines in the East appear to have little effect on

the power of the various potential suppliers in the region, such as Iran, Iraq, and

Turkmensitan because they can be played off against each other.

Next, we consider only the western section (WS) connecting Balkan and Central

Europe (column three). This pipeline with a capacity of 30 bcm/a will hardly be

used. Nevertheless, the option to move gas from the Northwest to the Southeast

intensifies competition for customers in the Southeast which benefits Turkey and

Balkan as well as producers in the Northwest at the cost of Russia and the pro-

ducers in the Middle East and Caspian region. Some regions in the EU, such as

Center and Center-East, are slightly harmed from increased demand competition

since Norway and Netherlands will gain better access to other markets. Again the

effect on the EU as a group is negligible. With a total gain of 13.3 billion e and cost

of 3.5 billion e the section would be a viable option for producers in the Northwest

together with Turkey and Balkan, but it is difficult to envisage how such diverse play-

ers can implement a project, which has little potential to generate direct revenues.

The ‘returns of the investment’ come only indirectly with Turkey paying less for gas

from Russia and Iran, and Central Europe paying more for gas from Norway and

Netherlands.

Finally, we return to the perception that South Stream and Nabucco are competing

projects and the concern that the former might preempt investment into the latter. In

the right panel of Table 1.3 we show the strategic impact of Nabucco in a situation

where South Stream and Nord Stream will be fully operational. Comparing the

fourth column of the left and the second column of the right panel, we find very little

difference. Even if fully implemented, South Stream has almost no impact on the

strategic viability of Nabucco.
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1.3.4 Evaluating Network Power with the Core & Nucleolus

In the previous sections we considered a number of cooperative games, one for

each configuration of the gas network. All these games had a non-empty core,

but the Shapley value was never in the core of the respective game. The same is

also true for the games we analyzed for our robustness checks. This observation

raises the question, whether we obtain very different results for the strategic value

of pipelines if we solve the network game with the core or related concepts.

Adding a pipeline to the system will increase the value of some coalitions. Other

coalitions will remain unaffected, but for no coalition the value will be decreased.

As a result, the core will be compressed. But will the pipelines change the core

systematically to the favor of the same players as they do for the Shapley value?

As the core is a set, the answer will depend on which element in the core we select.

Here, we consider the nucleolus which is in the core and can be considered as the

lexicographical center of the game.

We computed the equivalent of tables 1.1-1.3 for the nucleolus to find results, which

differ drastically from the previous ones. If power is measured with the nucleolus,

none of the three projects has any strategic value at all — essentially because

they have no significant impact on bargaining power. We abstain from printing the

equivalent of tables 1.1-1.3 here, as all, but the few instances we discuss in the text

below, are equal to zero when rounded to the first decimal. The tables are available

in appendix A.

We start again with Nord Stream. There is only one country, which is slightly af-

fected by this huge project: Russia. Surprisingly its power is reduced by 0.1 per-

centage points even though the project will (weakly) increase the value of coalitions

which include this country.36 For all other players the impact of Nord Stream is

minute and lost when rounding to the first decimal. For South Stream we find no ef-

fect whatsoever, even if the project is considered as an alternative to Nord Stream.

Nabucco has some minor effects. For the non-European players the effects go in

the same direction as under the Shapley value, but are smaller by order of mag-

nitude. Russia and Ukraine lose 0.2 and 0.1 percentage points, respectively while

Turkey gains 0.3 percentage points. Balkan, Azerbaijan, and Iran benefit 0.1 per-

36It is well known that the nucleolus is not monotone, i.e., a player’s payoff can decrease even if

its contributions to coalitions weakly increase. Our result for Nord Stream prove that this is not a

theoretical oddity.
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centage points each from the project. However, the European players, such as

Center, Center-East, and France, suffer by 0.1 percentage points each although

coalitions containing them will gain from diversity of supplies. The remaining coun-

tries are not affected. Overall, the impacts of the pipelines on the power structure

are smaller by orders of magnitude than the cost of these projects. As a result, no

project had any strategic value if the players would assess the network power with

the nucleolus.

We also computed the minimum and the maximum a player can obtain in the core.

For most players these two values define a narrow range around the nucleolus. In

this sense, the nucleolus gives a reasonably precise estimate of the possible effects

of a pipeline to a players payoff in the core. We take Russia and Nord Stream as an

example. The pipeline decreases both, Russia’s minimal and maximal payoff in the

core by a small amount — as it does for nucleolus. If we go to the extreme and pick

the smallest possible value in the core without Nord Stream and the largest possible

value with Nord Stream, the small loss would turn into a small gain. However this

gain would still be only a tenth of what Russia gains under the Shapley value —

not enough to make Nord Stream viable. Since similar claims can be made for all

other important players, our results for the pipelines’ impacts under nucleolus yield

a good picture for any other possible solution in the core.

1.4 Concluding Remarks

We analyzed the strategic impact of three large pipeline projects, i.e., Nord Stream,

South Stream, and Nabucco. Starting with a disaggregated quantitative model of

the Eurasian network for natural gas, consisting of its major producers, customers,

and trunk-pipelines, we calculate the value function to characterize the interdepen-

dencies among the main actors in the current system. We solve the game with the

Shapley Value, and the nucleolus as alternative indexes for the power of the differ-

ent players. Adding a new pipeline changes the network, hence the value function

and as a result the power index. We identified those players who are set to gain

in bargaining power from a specific pipeline link and those who will be harmed.

Moreover, we obtain quantitative estimates of the size of these effects, which can

be compared to the cost of the link.

For the Shapley value we obtain intuitive results, which help to make sense of ma-

jor developments in the industry since 2005. If considered as an alternative, both
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South Stream and Nord Stream have very similar effects on the power structure

in the Eurasian network for natural gas. The pipelines bypass the transit countries

Belarus and Ukraine and allow Russia to compete more effectively with Norway

and Netherlands. Nord Stream’s strategic impact can hardly be overstated. For the

initiators of Nord Stream, i.e., Russia and Germany, the gains in bargaining power

clearly justify the cost of the investment. Russia had a very rocky relationship with

the transit countries, i.e., Belarus and Ukraine, throughout the 1990s and several

attempts for a long-term solution covering transit fees, prices for gas imports, and

control of trunk-pipes have failed. In view of our results, it is not surprising that more

cost efficient pipeline projects such as Yamal II through Belarus or the moderniza-

tion of the Ukrainian system, have been abandoned in favor of the expensive direct

offshore link.

The main beneficiaries of South Stream are Russia, Germany, and some Central

European countries. However, once Nord Stream’s large capacities become oper-

ational, South Stream’s additional leverage is much reduced, and the gain in power

hardly compensates for the high cost. Not surprisingly, the project has been repeat-

edly delayed and if realized at all, we expect that it will be a scaled down version of

the original plan.

Nabucco opens a southern corridor through Turkey connecting Europe to new sup-

pliers in the Middle East and the Caspian region. It also offers a new option to

the producers in Central Asia, which currently ship gas through Russia. Initiated in

2009 the EU made Nabucco a major strategic project under its Trans-European En-

ergy Networks (TEN-E) and substantial public funds have been earmarked for the

project. In view of our results, this policy is difficult to rationalize. The project has

large potential to decrease Russia’s power, but the benefits would accrue mainly to

Turkey, which could diversify its gas imports and become a major potential transit

hub. The gains for the players in the EU, in contrast, are negligible. Again, the

empirical evidence supports this assessment. The original consortium has disinte-

grated because it failed to command enough support from private investors such as

Austrian OMV and German RWE. Meanwhile, Turkey, the player who has to gain

most according to our analysis, took the initiative. It agreed with Azerbaijan on the

Trans Anatolian pipeline from Shah Deniz gas field to Turkey’s West, which corre-

sponds to the eastern sections of Nabucco but has half of its capacity, 16 bcm/a

(Businessweek (2011)).

If we assess network power with the nucleolus, however, we obtain results which
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appear strikingly counterintuitive and are difficult to reconcile with observed invest-

ments in Nord Stream. Under the nucleolus, none of these pipelines has any strate-

gic value at all. The reward in terms of increased bargaining power is by order of

magnitude smaller than the investment cost.
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Appendix A

Pipeline Power: A Case Study of
Strategic Network Investments

A.1 Calibration

This appendix describes the functions and parameters used for the calculation of

the value function (equation (1.1) in the main text). Let f ∗i j, {i, j} ∈ L(N) denote

the solution to the program in (1.1) when solved for the grand coalition, which has

access to all resources. To calibrate the model, marginal willingness to pay for gas,

pi and costs of transportation and production, Ti j have to be determined such that

f ∗i j are reasonably close to observed consumption and flows. As it is assumed that

the players cooperate effectively, they will make efficient use of the existing network.

Hence, for each player pi(q) will be equal to the local marginal cost of supplying

gas, i.e., the nodal cost ci(q), which takes into account the physical constraints of

the system. This feature is used to calibrate first inverse demand and then supply

cost using data on consumption and flows.

A.1.1 Demand

Transport costs within Europe are small compared to the cost of producing gas

and transporting it to the European borders. As a first approximation, the small

differences among local costs are neglected, and a common constant supply cost

c is assumed. When the program is solved for the grand coalition, none of the links

within Europe are capacity constrained. So, nodal costs differ only by the variable
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transportation cost between connected nodes which are small.

Each consumption node’s willingness to pay for gas is represented with a lin-

ear inverse demand function. To reduce the number of the parameters, for all

consumption nodes the same intercept a + c is assumed. Efficiency requires

pi(q) = a + c − biq = c for each consumption node i. The slope parameters bi

are then calibrated as to replicate the consumption in 2009: bi = a/qi, where qi

is the consumption of gas in the consumption node i. As illustrated in Figure A.1,

the surplus, which a player obtains from participating in the trade of pipeline gas,

depends on three parameters: the difference between the demand intercept and

the common supply cost a, its consumption in the base year qi, and its indigenous

production qo
i . The common supply cost c acts as a shift parameter, which does not

affect the surplus.

Figure A.1: Surplus (S i)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A change of a, with bi being adjusted, affects all players proportionally. Such a

change has little impact on the relative Shapley value (measured in percent of the

total), hence, will have little effect on the relative index for the bargaining power.

However, a determines the absolute size of the surplus and thus, the absolute

Shapley value, which is of relevance if the changes in the bargaining power are

compared to the cost of a pipeline project. It is difficult to support any assumption

for a by hard data. Obviously, it will depend a lot on how much time customers

are given to substitute to other sources of energy. Making a bold assumption, in

the baseline variant a is set equal to 1500 mn e/bcm yielding a total surplus from

consuming gas of 949.9 bn e/a. To check the robustness of the results, a ‘low-
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Table A.1: Network: Consumption

Consumption Consumptiona Slope Needed
nodes [bcm/a] Baseline Low for

surplus access
a = 1500 a = 500

qi bi bi

AzerbaijanC 10, 150 50 Azerbaijan
BelarusC 17.9 83.9 28. Belarus

IranC 136.5 11. 3.7 Iran
KazakhstanC 22.9 65.6 21.9 Turkmenistanb

RussiaC 426.4 3.5 1.2 Russia
TurkeyC 36.4 41.2 13.7 Turkey

TurkmenistanC 18.6 80.6 26.9 Turkmenistan
UkraineC 53.3 28.1 9.4 Ukraine

UzbekistanC 51.8 29. 9.7 Turkmenistan
BalkanC 20.2 74.3 24.8 Balkan

BelgiumC 16.9 88.9 29.6 Belgium
CenterC 104.6 14.3 4.8 Center

Center-EastC 41.4 36.2 12.1 Center-East
FranceC 44.1 34. 11.3 France

ItalyC 75.6 19.8 6.6 Italy
NetherlandsC 48.3 31.1 10.4 Netherlands

PolandC 16. 93.8 31.3 Poland
UKC 90.5 16.6 5.5 UK

aData for consumption in 2009 is compiled from IEA (2010a) and IEA (2011a).
bTo reduce the number of the players, Turkmenistan stands for Kazakhstan, Uzbek-

istan, and itself.

surplus’ scenario with a = 500 mn e/bcm is considered as well. In this case, the total

surplus decreases to 334.3 bn e/a. Table A.1 presents the resulting values of the

slope parameter bi depending on a. All quantities are quoted in bcm/a. All prices or

costs are quoted in mn e/bcm, giving the same figure as the more common e/tcm.

The parameter c acts as a shift parameter for the demand system and supposed to

reflect cost of production and typical transportation. Accordingly, it is decomposed

as c = cP + c̄T , where cP stands for the common production cost parameter and c̄T

for an adjustment made for the typical transportation cost. These values determine

the patterns of production and transport, which are presented next.

A.1.2 Production

Table A.2 presents the players’ production capacities, production volumes, as well

as production costs. Production volumes in 2009 are collected from IEA (2010a)
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and IEA (2011a). For the players except Russia and Turkmenistan the production

capacities are assumed equal to their production volumes in 2009.

Differences in the production cost of existing fields are small compared to differ-

ences in the cost of developing new fields. Since meaningful information on well-

head production cost is difficult to obtain, a common supply cost parameter cP is in-

troduced. In accordance with Table 13.6 in IEA (2009), Δi accounts for regional dif-

ferences in wellhead production cost and adjusts cP for each player. For the players,

who are net importers, cost of using their indigenous production is ignored. Since it

is more difficult to produce at maximal capacity ki j, the production cost is assumed

Table A.2: Network: Production

Links Capacity Flow Costa needed
ki j cp + Δi for access

from to [bcm/a] [bcm/a] [e/tcm]
Net Exporters

AzerbaijanP Azerbaijan 14.9b 14.9 cp − 5 Azerbaijan
IranP Iran 137.4c 137.4 cp − 16 Iran
IraqP Iraq 1.1d 1.1 cp − 8 Iraq

KazakhstanP Kazakhstan 27.2 27.2 cp + 1 Turkmenistane

NorwayP Norway 99.4 99.4 cp − 7 Norway
RussiaP Russia 650.8 550.5 cp Russia

TurkmenistanP Turkmenistan 70.9 38.3 cp + 3.4 Turkmenistan
UzbekistanP Uzbekistan 65.6 65.6 cp + 1 Turkmenistan

NetherlandsP Netherlands 78.7 78.7 cp − 4.4 Netherlands
Net Importers

BalkanP Balkan 10.8 10.8 0. Balkan
BelarusP Belarus 0.2 0.2 0. Belarus
BelgiumP Belgium 0. 0. 0. Belgium

CenterP Center 23.7 23.7 0. Center
Center-EastP Center-East 4.8 4.8 0. Center-East

FranceP France 0.9 0.9 0. France
ItalyP Italy 8.1 8.1 0. Italy

PolandP Poland 5.8 5.8 0. Poland
TurkeyP Turkey 0.7 0.7 0. Turkey

UKP UK 62.1 62.1 0. UK
UkraineP Ukraine 21.9 21.9 0. Ukraine

aThe global parameter cp is set equal to 20 mn e/bcm. The production cost of the players,
who are net importers, is set equal to zero. The unit cost is given for flows up to 75% of the
capacity. For the remaining 25% of capacity the numbers are increased by 20%.

bThe Shah Deniz II field will increase Azerbaijan’s current production capacity by 16 bcm/a
and serve Nabucco.

cInvestment in Iran’s South Pars field will supply an additional 15 bcm/a to Nabucco.
dNorthern Iraqi fields will produce an other 10 bcm/a to fill Nabucco’s large capacities.
eTo reduce the number of the players, Turkmenistan stands for Kazakhstan, Uzbekistan,

and itself.
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to be piecewise constant : Ti j( f ) = (cP+Δi)(min[ f , 0.75∗ki j]+1.2 max[ f −0.75∗ki j, 0]).

These adjustments help to get more realistic flows for the network, but have only

a negligible impact on the estimate of the bargaining power. Since the demand

system is adjusted to any choice of cP, its absolute value is rather irrelevant and

arbitrarily set as cP = 20 mn e/bcm.

A.1.3 Transport

The total cost of transporting gas consists of, in principle, operating cost and ca-

pacity cost. Since capacity costs of existing pipelines are sunk, they are not taken

into account. This simplification is based on the assumption that bargaining among

rational players should not be influenced by sunk cost. The operating cost is com-

posed by management & maintenance cost and energy cost, which are proportional

to the length of the pipeline as well as to the quantity of gas transported. The oper-

Table A.3: Network: Transmission pipelines A

Links Capacity Flow Operationa Needed
Cost: cT

i j for access
from to [bcm/a] [bcm/a] [mn e/bcm]

Transit outside the EU
Azerbaijan RussiaS 13. 0. 3.8 Azerbaijan, Russia
Azerbaijan TurkeyE 7. 4.5 2.4 Azerbaijan, Turkey

Iran TurkeyE 13.7 7.2 1.2 Iran, Turkey
Iraq TurkeyE 0. 0. 1.7 Iran, Turkey

Kazakhstan Russia 49. 0. 5.1 Russia, Turkmenistanb

Kazakhstan RussiaS 49. 32.3 3.6 Russia, Turkmenistan
Russia Belarus 100. 49.2 2.1 Russia, Belarus
Russia RussiaN 165. 0. 2.3 Russia
Russia RussiaS 240. 8.9 2.1 Russia
Russia UkraineE 415. 109.1 2. Russia, Ukraine

RussiaN Center 0. 0. 6.9 Russia
RussiaS Turkey 16. 8.9 4.8 Russia, Turkey
RussiaS UkraineE 200. 24.6 1.2 Russia, Ukraine
TurkeyE Turkey 20. 11.8 2.4 Turkey

Turkmenistan Iran 20. 5.8 2.3 Turkmenistan, Iran
Turkmenistan Kazakhstan 5. 0. 2.7 Turkmenistan
Turkmenistan Uzbekistan 44. 10.7 1.7 Turkmenistan

UkraineE Ukraine 122. 95.1 2.5 Ukraine
Uzbekistan Kazakhstan 44. 22.5 1.8 Turkmenistan

a The unit cost is given for flows up to 75% of the capacity. For the remaining 25% of capacity the
numbers are increased by 20%.

bTo reduce the number of the players, Turkmenistan stands for Kazakhstan, Uzbekistan, and itself.
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ating cost is represented as a piecewise constant function: Ti j( f ) = cT
i j∗(min[ f , 0.75∗

ki j]+1.2∗max[ f−0.75∗ki j, 0]), where ki j denotes the maximal capacity. Per unit trans-

portation costs are constant, but only up to three quarters of the pipeline capacity

and increased by 20% for the remaining quarter.

Capacities of the pipelines linking the players’ transit nodes are collected from

ENTSOG (2010) and public sources. Capacities of the pipelines which are con-

nected to areas outside of the regional scope are limited to flows through them in

2009. The pipeline capacities and the flows through them are presented in the first

two columns of Tables A.3 and A.4. Flows in 2009 are compiled from IEA (2010a)

and IEA (2011a).

Table A.4: Network: Transmission pipelines B

Links Capacity Flow Operationa Needed
Cost: cT

i j for access
from to [bcm/a] [bcm/a] [mn e/bcm]

Transit into (out of) EU
Balkan Turkey 16.3 8.9 1.8 Turkey

Belarus Poland 33. 31.3 1.4 Belarus
Norway Belgium 15. 12.2 5.2 Norway
Norway France 18.2 15. 5.9 Norway
Norway Center 46. 29.2 5.2 Norway
Norway UK 46.4 24. 4.9 Norway

UkraineE Balkan 31.3 16.5 3.4 Ukraine
Ukraine Center-East 105.8 77. 1.9 Ukraine
Ukraine Poland 3.2 3.2 1.2 Ukraine

Transit within EU
Belgium France 30. 14.9 0.8

Free third party
access to transit
pipelines within the
EU

Belgium Center 26. 1. 0.6
Center-East Balkan 1.7 1. 3.3
Center-East Center 77.8 18.4 2.4
Center-East Italy 37. 21.3 2.7

Center France 28. 4.3 1.4
Center Italy 20.2 9.1 3.5

Netherlands Belgium 53. 10.7 0.5
Netherlands Center 80. 11.7 0.6
Netherlands UK 15.3 7. 1.

Poland Center 31.4 24.4 3.2
UK Belgium 25.5 7.5 1.5

Out of Regional Scope
Algeria Italy 25.4 25.4 6.2 Italy
France Iberia 1.1 1.1 3.2 France

Libya Italy 9. 9. 4.7 Italy

a The unit cost is given for flows up to 75% of the capacity. For the remaining 25% of capacity the
numbers are increased by 20%.
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To calculate the link specific cost parameter cT
i j, for onshore pipelines universal

operating cost of 0.3 mn e/bcm/100km is assumed. For offshore pipelines operat-

ing cost is 50% higher to account for higher pressure and increased difficulties of

maintenance. These coefficients are then multiplied with the distance between the

nodes to obtain the link specific operating cost as shown in column 3 of Table A.3

and A.4.

After we have specified the production cost by cP and Δi, and the link specific trans-

portation cost by cT
i j, the only free parameter is the ‘typical’ transport cost c̄T . The

optimization program (1.1) is run for the grand coalition to find that c̄T = 19 mn

e/bcm yields a solution f ∗i j which closely replicates the empirical data on consump-

tion and flows in the system.

A.1.4 LNG

In the model liquefied natural gas (LNG) is considered as nonstrategic since the

market share of a single LNG exporter in the Eurasian gas trade is small relative

to the market power of the suppliers of pipeline gas. Incorporation of the global

LNG market into a cooperative game would be challenging. Since the LNG gas is a

common source, actions of players outside of the considered coalition would have

to be taken into account. They will form alternative coalitions which may tap the

LNG supply and change the availability of LNG. Since the focus of the paper is on

pipeline gas, the LNG market is not modeled explicitly.

Table A.5: Network: LNG regasification plants

Links Capacity Flow Costa needed
cp + Δi for access

from to [bcm/a] [bcm/a] [mn e/bcm]
BalkanLNG Balkan 0.8 0.8 2cp Balkan

BelgiumLNG Belgium 3. 3. 2cp Belgium
FranceLNG France 10.1 10.1 2cp France
CenterLNG Center 0. 0. 2cp Center

ItalyLNG Italy 2.9 2.9 2cp Italy
NetherlandsLNG Netherlands 0. 0. 2cp Netherlands

PolandLNG Poland 0. 0. 2cp Poland
TurkeyLNG Turkey 6.1 6.1 2cp Turkey

UKLNG UK 10.1 10.1 2cp UK

aThe global parameter cp is set equal to 20 mn e/bcm. The unit cost is given for flows up to
75% of the capacity. For the remaining 25% of capacity the numbers are increased by 20%.
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The LNG regasification plants, also called terminals, are represented as LNG links

with capacities limited to imports through them in 2009. LNG regasification ca-

pacities and imports through them are compiled from GIE (2010), IEA (2010a),

and IEA (2011a). According to Tables 13.5 and 13.6 in IEA (2009), the total cost

of the LNG chain (i.e., the sum of production, liquefaction, transportation, and re-

gasification costs) is assumed as 2cP. Similar to the cost of production and trans-

portation, the total cost of the LNG chain is assumed to be piecewise constant :

Ti j( f ) = 2cP(min[ f , 0.75 ∗ ki j]+ 1.2 max[ f − 0.75 ∗ ki j, 0]). Figures for the LNG links are

given in Table A.5.

A.1.5 New Projects

Information about the pipeline projects is obtained from various public sources. We

supplement cost estimates of the project consortia by own estimates if figures are

unavailable, outdated or subject to review. A rather high discount rate of 15% is

used to translate capital expenditures into annualized capacity cost. This rate is a

Table A.6: Network: New pipelines

Links Capacitya Flowb Operation Capacity required for
old + new Cost Cost for access

from to [bcm/a] [bcm/a] [e/tcm] [bn e]
Nord Stream

RussiaN Center 0 + 55 0 6.9 12 Russia
South Stream

RussiaS Balkan 0 + 63 0 5.6 8.6 Russia
Center-EastSS BalkanSSc 1.7 + 30 0. 3.3 3.5 Russia

Balkan Italy 0 + 10 0 3.9 3.4 Russia
Nabucco

Turkmenistan Azerbaijand 0 + 30 0 0.9 2.3
Azerbaijan,

Turkmenistan

Azerbaijan TurkeyE 8.8 + 45 4.5 2.4 7.5
Azerbaijan,

Turkey
Iran TurkeyE 13.7 + 15 7.2 1.2 5.4 Iran, Turkey
Iraq TurkeyE 0 + 10 0 1.7 1.2 Iraq, Turkey

TurkeyE Turkey 20 + 30 11.8 2.4 2.5 Turkey
Balkan Turkeye 16.3 + 30 8.9 1.8 1.9 Turkey

Center-East Balkanc 1.7 + 30 1 3.3 3.5 -

a Existing capacity as compiled from ENTSOG (2010) and public sources + planned capacity.
b Data is compiled from IEA (2010a) and IEA (2011a).
c Currently gas flows from Center-East to Balkan. The projects plan to revert the flow.
d This part of the project is referred to as Trans Caspian.
e Currently gas flows from Balkan to Turkey. The project plans to revert the flow.
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common hurdle rate in the gas industry and reflects the real option nature of invest-

ment and depreciation. Table A.6 collects the parameters for the new pipelines.

A.2 Tables for the Nucleolus

The following tables (A.7 to A.9) give the results for the nucleolus. They correspond

to tables 1.1 to 1.3 in the main text. The results are discussed in section 1.3.4.

Table A.7: Nord Stream, Nucleolus

Nucleolus [%]
Players without with

Nord Stream Nord Stream difference
Russia 0.8 0.8 −0.1

Ukraine 8.5 8.4 0.
Belarus 7.9 7.9 0.
Norway 1.2 1.2 0.

Netherlands 0.4 0.4 0.
UK 1.7 1.7 0.

Center 28.1 28.2 0.
Center-East 14.5 14.5 0.

Italy 5.4 5.4 0.
Poland 2.9 2.9 0.
France 11.2 11.2 0.

Belgium 5.1 5.1 0.
Balkan 1.5 1.5 0.
Turkey 10.8 10.8 0.

Iraq 0. 0. 0.
Iran 0. 0. 0.

Azerbaijan 0. 0. 0.
Turkmenistan 0. 0. 0.
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Table A.8: South Stream, Nucleolus

without Nord Stream with Nord Stream
Nucleolus Impacta Nucleolus Impact of pipeline sectionsb

[%] OS, NW, [%] OS OS, NW OS, NW,
SW SW

Russia 0.8 0. 0.8 0. 0. 0.
Ukraine 8.4 0. 8.4 0. 0. 0.
Belarus 7.9 0. 7.9 0. 0. 0.
Norway 1.2 0. 1.2 0. 0. 0.

Netherlands 0.4 0. 0.4 0. 0. 0.
UK 1.7 0. 1.7 0. 0. 0.

Center 28.1 0. 28.2 0. 0. 0.
Center-East 14.5 0. 14.5 0. 0. 0.

Italy 5.4 0. 5.4 0. 0. 0.
Poland 2.9 0. 2.9 0. 0. 0.
France 11.2 0. 11.2 0. 0. 0.

Belgium 5.1 0. 5.1 0. 0. 0.
Balkan 1.5 0. 1.6 0. 0. 0.
Turkey 10.8 0. 10.8 0. 0. 0.

Iran 0. 0. 0. 0. 0. 0.
Azerbaijan 0. 0. 0. 0. 0. 0.

Turkmenistan 0. 0. 0. 0. 0. 0.

adifference to column 1 table A.7
bdifference to column 2 table A.7
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Table A.9: Nabucco, Nucleolus

without South Stream with South Stream
Nucleolus Impact of pipeline sectionsa Nucleolus Impactb

[%] TC, ES WS TC, ES, [%] TC, ES,
CS, WS CS, WS

Russia 0.6 −0.2 −0.1 −0.2 0.6 −0.2
Ukraine 8.3 −0.1 0. −0.1 8.3 −0.1
Belarus 7.9 0. 0. 0. 7.9 0.
Norway 1.2 0. 0. 0. 1.2 0.

Netherlands 0.4 0. 0. 0. 0.4 0.
UK 1.7 0. 0. 0. 1.7 0.

Center 28. −0.1 0. −0.1 28. −0.1
Center-East 14.5 −0.1 0. −0.1 14.4 −0.1

Italy 5.4 0. 0. 0. 5.4 0.
Poland 2.9 0. 0. 0. 2.9 0.
France 11.1 0. 0. −0.1 11.1 −0.1

Belgium 5.1 0. 0. 0. 5.1 0.
Balkan 1.6 0.1 0.1 0.1 1.6 0.1
Turkey 11.1 0.3 0.1 0.3 11.1 0.3

Iraq 0. 0. 0. 0. 0. 0.
Iran 0.1 0.1 0. 0.1 0.1 0.1

Azerbaijan 0.1 0.1 0. 0.1 0.1 0.1
Turkmenistan 0. 0. 0. 0. 0. 0.

adifference to column 2 table A.7
bdifference to column 3 table A.8
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A.3 Robustness

The results reported in the main text depend on a number of parameter assump-

tions and we will briefly discuss, how robust they are. All tables are given in ap-

pendix A.4.

A.3.1 Demand Intercept and Surplus

The power index, as measured by the relative Shapley Value, depends largely on

the architecture of the current network and access rights. It is quite robust with

respect to a proportional change of surplus in all regions or a uniform modification

of production cost of all suppliers. Our conclusions about the strategic viability of

additional pipelines, however, compare absolute cost to absolute gains. To check

the robustness of our conclusions, we reduced the surplus by uniformly decreas-

ing the demand intercept for the customers to its one third (500 mn e/bcm) while

adjusting the slope to replicate consumption in the reference year (see tables A.10-

A.12.). More pipelines and pipeline sections become strategically unviable, but the

relative merits of the different projects do not change much. The benefit to cost

ratio remains by far highest for Nord Stream. For the EU Nabucco has the lowest

benefit to cost ratio, and South Stream remains the least attractive proposition for

its consortium.

Our conclusions derived by the absolute as well as relative nucleolus are robust

with respect to the reduction in surplus. Nord Stream and South Stream alter the

power structure barely, and gains accruing from Nabucco to its consortium falls

short to cover the project’s large cost (see tables A.13-A.15.).

A.3.2 Access Right Regime

Next, we reconsider our assumption of free third party access within the EU. When

the EC started its policies to ensure a common market for natural gas in the late

1990s, the situation was indeed very different. Most countries had a ‘national cham-

pion’ who monopolized the high pressure transportation grid, hence long distance

transport. One might argue that it is still a long way to overcome this fragmentation

of the market. In a fragmented market, a region in the EU enjoys exclusive ac-

cess to its trunk-pipelines and can derive power by blocking gas shipments through

50



its network. As a rule, in a fragmented market compared to an integrated one

the European regions, which neighbor a producer or a transit country, gain transit

power while importers without non-European borders suffer (see Hubert and Orlova

(2014) for a detailed analysis).

A change in the access right regime alters the power structure quite substantially.

When assessed with the Shapley value, Nord Stream has still the highest bene-

fit to cost ratio for its consortium, but the pipeline’s impact on the European re-

gions is heterogeneous. It benefits Center, but harms the regions in Eastern Eu-

rope. Hence, we cannot conclude that the project is a common European interest.

Benefits accruing from South Stream to its consortium doubles, barely covering

the project’s cost, but Center, the largest European consumer, encounters losses.

Nabucco is still the least attractive project for the EU. Turkey shares its large gains

with the European members of its consortium, but Center loses power although it

was one of the initiators of the project (see tables A.16-A.18.).

The nucleolus is still in stark contrast with the Shapley value. In a fragmented

European market Nord Stream and Nabucco have some strategic value while South

Stream has again minute impact on the power structure. Nord Stream alters the

power structure significantly. The project is strategically viable for the EU, but not

for its respective consortium since large losses accrue to Russia, the initiator of the

project. Nabucco brings larger benefits to the members of its consortium, but in

total their gains are still lower than the project’s cost (see tables A.19-A.21.).
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A.4 Tables for Robustness

A.4.1 Decreased Demand (Surplus) : Shapley Value

Table A.10: Nord Stream, Shapley Value, Decreased Demand

Shapleyvalue [%]
Players without with

Nord Stream Nord Stream difference
Russia 13. 16. 3.

Ukraine 9.3 6.9 −2.4
Belarus 6.6 5.8 −0.8
Norway 14. 11.6 −2.4

Netherlands 6.2 5.3 −0.9
UK 2. 2. 0.

Center 16.2 17.6 1.4
Center-East 8.6 9.3 0.7

Italy 3. 3.3 0.3
Poland 1.6 1.8 0.2
France 6.5 7.1 0.6

Belgium 3. 3.3 0.3
Balkan 0.8 0.8 0.
Turkey 7.4 7.3 0.

Iraq 0. 0. 0.
Iran 1. 1. 0.

Azerbaijan 0.6 0.5 0.
Turkmenistan 0.2 0.2 0.
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Table A.11: South Stream, Shapley Value, Decreased Demand

without Nord Stream with Nord Stream
Shapley Impacta Shapley Impact of pipeline sectionsb

value OS, NW, value OS OS, NW OS, NW,
[%] SW [%] SW

Russia 15.9 2.8 16.8 0.3 0.8 0.8
Ukraine 6.9 −2.4 6. −0.3 −0.8 −0.9
Belarus 5.9 −0.7 5.6 0. −0.2 −0.2
Norway 12.1 −2. 11.1 0. −0.5 −0.6

Netherlands 5.5 −0.7 5.1 0. −0.2 −0.2
UK 1.9 0. 2. 0. 0. 0.

Center 17.3 1.1 18.1 0. 0.4 0.5
Center-East 9.2 0.6 9.5 0. 0.2 0.2

Italy 3.3 0.3 3.4 0. 0.1 0.1
Poland 1.8 0.1 1.8 0. 0. 0.
France 7. 0.5 7.3 0. 0.1 0.2

Belgium 3.3 0.2 3.4 0. 0.1 0.1
Balkan 1. 0.2 1. 0.2 0.2 0.2
Turkey 7.4 0. 7.4 0.1 0.1 0.1

Iran 0.9 −0.1 0.9 −0.1 −0.1 −0.1
Azerbaijan 0.5 −0.1 0.5 −0.1 −0.1 −0.1

Turkmenistan 0.2 0. 0.2 0. 0. 0.

adifference to column 1 table A.10
bdifference to column 2 table A.10
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Table A.12: Nabucco, Shapley Value, Decreased Demand

without South Stream with South Stream
Shapley Impact of pipeline sectionsa Shapley Impactb

value TC, ES WS TC, ES, value TC, ES,
[%] CS, WS [%] CS, WS

Russia 13. −2.3 −0.1 −3.1 13.5 −3.3
Ukraine 6.2 −0.1 −0.5 −0.7 5.6 −0.4
Belarus 5.7 0. 0. −0.1 5.5 0.
Norway 10.8 −0.5 0.3 −0.8 10.3 −0.7

Netherlands 5. −0.2 0.1 −0.3 4.8 −0.3
UK 1.9 0. 0. −0.1 1.9 −0.1

Center 17.8 0. −0.1 0.2 18.3 0.2
Center-East 9.4 0. 0. 0.1 9.6 0.1

Italy 3.3 0. 0. 0. 3.5 0.
Poland 1.8 0. 0. 0. 1.9 0.
France 7.2 0. 0. 0.1 7.3 0.1

Belgium 3.4 0. 0. 0. 3.4 0.
Balkan 1.1 0.1 0.2 0.2 1.1 0.1
Turkey 10.3 1.9 0.6 2.9 10.1 2.7

Iraq 0.4 0.5 0. 0.4 0.4 0.4
Iran 1.1 0. −0.2 0.1 1. 0.2

Azerbaijan 1.3 0.6 −0.1 0.8 1.3 0.8
Turkmenistan 0.4 0. 0. 0.1 0.4 0.1

adifference to column 2 table A.10
bdifference to column 3 table A.11
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A.4.2 Decreased Demand (Surplus) : Nucleolus

Table A.13: Nord Stream, Nucleolus, Decreased Demand

Nucleolus [%]
Players without with

Nord Stream Nord Stream difference
Russia 2.2 2.1 −0.1

Ukraine 8.3 8.2 −0.1
Belarus 7.6 7.6 0.
Norway 3.5 3.4 −0.1

Netherlands 1.1 1. 0.
UK 1.6 1.6 0.

Center 26.8 26.9 0.1
Center-East 13.8 13.9 0.

Italy 5. 5.1 0.
Poland 2.8 2.8 0.
France 10.6 10.7 0.

Belgium 4.9 4.9 0.
Balkan 1.2 1.3 0.1
Turkey 10.2 10.2 0.

Iraq 0. 0. 0.
Iran 0.1 0.1 0.

Azerbaijan 0.1 0.1 0.
Turkmenistan 0.1 0.1 0.
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Table A.14: South Stream, Nucleolus, Decreased Demand

without Nord Stream with Nord Stream
Nucleolus Impacta Nucleolus Impact of pipeline sectionsb

[%] OS, NW, [%] OS OS, NW OS, NW,
SW SW

Russia 2.2 0. 2.1 0. 0. 0.
Ukraine 8.2 −0.1 8.1 −0.1 −0.1 −0.1
Belarus 7.6 0. 7.6 0. 0. 0.
Norway 3.5 0. 3.4 0. 0. 0.

Netherlands 1.1 0. 1. 0. 0. 0.
UK 1.6 0. 1.6 0. 0. 0.

Center 26.8 0. 26.9 0. 0. 0.
Center-East 13.8 0. 13.9 0. 0. 0.

Italy 5.1 0. 5.1 0. 0. 0.
Poland 2.8 0. 2.8 0. 0. 0.
France 10.6 0. 10.7 0. 0. 0.

Belgium 4.9 0. 4.9 0. 0. 0.
Balkan 1.3 0.1 1.3 0. 0. 0.
Turkey 10.2 0. 10.3 0. 0. 0.

Iran 0.1 0. 0.1 0. 0. 0.
Azerbaijan 0.1 0. 0.1 0. 0. 0.

Turkmenistan 0.1 0. 0.1 0. 0. 0.

adifference to column 1 table A.13
bdifference to column 2 table A.13
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Table A.15: Nabucco, Nucleolus, Decreased Demand

without South Stream with South Stream
Nucleolus Impact of pipeline sectionsa Nucleolus Impactb

[%] TC, ES WS TC, ES, [%] TC, ES,
CS, WS CS, WS

Russia 1.5 −0.6 −0.4 −0.6 1.5 −0.6
Ukraine 8. −0.2 −0.1 −0.2 8. −0.1
Belarus 7.5 −0.1 0. −0.1 7.5 −0.1
Norway 3.4 0. 0. 0. 3.4 0.

Netherlands 1. 0. 0. 0. 1. 0.
UK 1.6 0. 0. 0. 1.6 0.

Center 26.6 −0.3 0. −0.3 26.6 −0.3
Center-East 13.7 −0.2 0. −0.1 13.7 −0.2

Italy 5. −0.1 0. −0.1 5. 0.
Poland 2.8 0. 0. 0. 2.8 0.
France 10.5 −0.1 0. −0.1 10.5 −0.1

Belgium 4.8 −0.1 0. −0.1 4.8 −0.1
Balkan 1.6 0.3 0.3 0.3 1.6 0.3
Turkey 11. 0.8 0.2 0.8 11. 0.8

Iraq 0.1 0.1 0. 0.1 0.1 0.1
Iran 0.3 0.2 0. 0.2 0.3 0.2

Azerbaijan 0.3 0.3 0. 0.3 0.4 0.3
Turkmenistan 0.1 0. 0. 0. 0.1 0.

adifference to column 2 table A.13
bdifference to column 3 table A.14
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A.4.3 Fragmented Market: Shapley Value

Table A.16: Nord Stream, Shapley Value, Fragmented Market

Shapleyvalue [%]
Players without with

Nord Stream Nord Stream difference
Russia 15.1 18.3 3.1

Ukraine 8.7 6.9 −1.8
Belarus 5.2 4.7 −0.5
Norway 10.5 8. −2.6

Netherlands 5.4 4.3 −1.1
UK 2. 1.8 −0.2

Center 20.3 23.4 3.1
Center-East 8.2 7.8 −0.4

Italy 2. 2.3 0.3
Poland 2.2 1.8 −0.3
France 5.8 6.2 0.4

Belgium 4.4 4.4 0.
Balkan 0.9 0.9 0.
Turkey 7.2 7.2 0.

Iraq 0. 0. 0.
Iran 1.2 1.2 0.

Azerbaijan 0.7 0.6 0.
Turkmenistan 0.1 0.1 0.
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Table A.17: South Stream, Shapley Value, Fragmented Market

without Nord Stream with Nord Stream
Shapley Impacta Shapley Impact of pipeline sectionsb

value OS, NW, value OS OS, NW OS, NW,
[%] SW [%] SW

Russia 16.6 1.5 19.3 0.3 0.8 1.1
Ukraine 6.7 −2.1 5.6 −0.3 −1.2 −1.3
Belarus 5.1 −0.2 4.6 0. −0.1 −0.1
Norway 9.6 −0.9 7.6 0. −0.3 −0.3

Netherlands 5.1 −0.3 4.2 0. −0.1 −0.1
UK 2. 0. 1.8 0. 0. 0.

Center 20.1 −0.2 22.8 0. −0.5 −0.6
Center-East 8.8 0.6 8.1 0. 0.6 0.3

Italy 2.4 0.4 2.5 0. 0. 0.2
Poland 2. −0.1 1.8 0. 0. 0.
France 5.9 0.1 6.3 0. 0. 0.1

Belgium 4.4 0. 4.4 0. 0. 0.
Balkan 2.4 1.5 1.9 0.3 0.8 1.1
Turkey 7.2 0. 7.2 0. 0. 0.

Iraq 0. 0. 0. 0. 0. 0.
Iran 1.1 −0.1 1.1 −0.1 −0.1 −0.1

Azerbaijan 0.6 −0.1 0.6 −0.1 −0.1 −0.1
Turkmenistan 0.1 0. 0.1 0. 0. 0.

adifference to column 1 table A.16
bdifference to column 2 table A.16
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Table A.18: Nabucco, Shapley Value, Fragmented Market

without South Stream with South Stream
Shapley Impact of pipeline sectionsa Shapley Impactb

value TC, ES WS TC, ES, value TC, ES,
[%] CS, WS [%] CS, WS

Russia 15.3 −2.4 0. −3. 16.1 −3.2
Ukraine 6.3 0.1 −0.2 −0.6 5.5 −0.1
Belarus 4.7 0. 0. 0. 4.6 0.
Norway 7.6 −0.1 0. −0.4 7.3 −0.3

Netherlands 4.1 −0.1 0. −0.2 4. −0.2
UK 1.8 0. 0. 0. 1.8 0.

Center 22.9 −0.2 −0.1 −0.5 22.5 −0.3
Center-East 8.2 0. 0.1 0.4 8.4 0.3

Italy 2.2 0. 0. 0. 2.5 0.
Poland 1.8 0. 0. 0. 1.8 0.
France 6.3 0. 0. 0. 6.3 0.

Belgium 4.4 0. 0. 0. 4.4 0.
Balkan 1.8 0.4 0.1 0.9 2.6 0.7
Turkey 9.5 1.9 0.1 2.3 9.2 2.1

Iraq 0.5 0.5 0. 0.5 0.5 0.5
Iran 1.1 −0.2 0. −0.1 1.1 −0.1

Azerbaijan 1.3 0.4 0. 0.6 1.2 0.6
Turkmenistan 0.2 0. 0. 0.1 0.2 0.1

adifference to column 2 table A.16
bdifference to column 3 table A.17
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A.4.4 Fragmented Market: Nucleolus

Table A.19: Nord Stream, Nucleolus, Fragmented Market

Nucleolus [%]
Players without with

Nord Stream Nord Stream difference
Russia 4.9 4.3 −0.7

Ukraine 7. 6.8 −0.2
Belarus 7.6 7.8 0.2
Norway 1.7 1. −0.6

Netherlands 0.3 0.3 0.
UK 1.8 1.8 0.

Center 28.2 28.3 0.1
Center-East 14.3 14.4 0.1

Italy 4.6 5. 0.4
Poland 2.7 2.9 0.2
France 10.5 11.1 0.6

Belgium 5.1 5.1 0.
Balkan 0.8 0.8 0.
Turkey 10.3 10.3 0.

Iraq 0. 0. 0.
Iran 0. 0. 0.

Azerbaijan 0. 0. 0.
Turkmenistan 0. 0. 0.
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Table A.20: South Stream, Nucleolus, Fragmented Market

without Nord Stream with Nord Stream
Nucleolus Impacta Nucleolus Impact of pipeline sectionsb

[%] OS, NW, [%] OS OS, NW OS, NW,
SW SW

Russia 4.5 −0.4 4.4 0. 0.1 0.1
Ukraine 6.9 −0.2 6.8 0. −0.1 0.
Belarus 7.7 0.1 7.8 0. 0. 0.
Norway 1.1 −0.5 1. 0. 0. 0.

Netherlands 0.3 0. 0.3 0. 0. 0.
UK 1.8 0. 1.8 0. 0. 0.

Center 28.3 0. 28.3 0. 0. 0.
Center-East 14.2 −0.1 14.2 0. 0. −0.2

Italy 5. 0.3 5. 0. 0. 0.
Poland 2.9 0.2 2.9 0. 0. 0.
France 11. 0.5 11.1 0. 0. 0.

Belgium 5.1 0. 5.1 0. 0. 0.
Balkan 0.8 0. 0.9 0. 0. 0.
Turkey 10.3 0. 10.3 0. 0. 0.

Iraq 0. 0. 0. 0. 0. 0.
Iran 0. 0. 0. 0. 0. 0.

Azerbaijan 0. 0. 0. 0. 0. 0.
Turkmenistan 0. 0. 0. 0. 0. 0.

adifference to column 1 table A.19
bdifference to column 2 table A.19
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Table A.21: Nabucco, Nucleolus, Fragmented Market

without South Stream with South Stream
Nucleolus Impact of pipeline sectionsa Nucleolus Impactb

[%] TC, ES WS TC, ES, [%] TC, ES,
CS, WS CS, WS

Russia 1.7 −2. −0.2 −2.6 1.9 −2.5
Ukraine 7.7 0.4 0. 0.8 7.6 0.8
Belarus 7.7 0. 0. 0. 7.7 0.
Norway 1. 0. 0. 0. 1. 0.

Netherlands 0.3 0. 0. 0. 0.3 0.
UK 1.8 0. 0. 0. 1.8 0.

Center 28.2 −0.1 0. −0.1 28.2 −0.1
Center-East 14.5 0. 0. 0.2 14.4 0.2

Italy 5. 0. 0. 0. 5. 0.
Poland 2.9 0. 0. 0. 2.9 0.
France 11.1 0. 0. 0. 11.1 −0.1

Belgium 5.1 0. 0. 0. 5.1 0.
Balkan 1.7 0.8 0.2 0.8 1.7 0.8
Turkey 11. 0.8 0. 0.8 11. 0.8

Iraq 0. 0. 0. 0. 0. 0.
Iran 0.1 0.1 0. 0.1 0.1 0.1

Azerbaijan 0.1 0.1 0. 0.1 0.1 0.1
Turkmenistan 0. 0. 0. 0. 0. 0.

adifference to column 2 table A.19
bdifference to column 3 table A.20
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Chapter 2

Central Asian Gas in the Eurasian
Power Game
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Chapter 3

LNG: a Game Changer in Europe?

Abstract

Liquefied natural gas (LNG) promises to alter the power structure in the global

gas trade considerably. To study the interplay between the global LNG market

and the Eurasian natural gas trade through pipelines, I extend the disaggregated

quantitative model of Hubert and Cobanli (2014) and consider LNG as a strategic

instrument. Following their approach, I design the global gas trade as a cooperative

game and use the Shapley value to analyze the power structure in the network.

Given the expansion of the European LNG import capacities, I investigate how a

demand growth in Asia Pacific and LNG exports from the United States impact the

interaction among the players and hence the power structure. Significant benefits

accrue to the European consumers and the overseas exporters of LNG, at the cost

of the suppliers in the European near geography. However, Russia maintains its

dominance in the Eurasian gas trade.

Keywords: Bargaining Power, Network, Natural Gas, LNG

JEL class.: C71, L5, L95, O22
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3.1 Introduction

As the second largest gas consumer in the world, Europe relies on imports to serve

two thirds of its natural gas demand. Since the European indigenous production in

permanent decline, the continent’s dependency on non-European suppliers is ex-

pected to increase further. Pipelines stand for 80% of the European imports, but

they link only a few major suppliers such as Russia, Norway, and North Africa to

the continent’s markets. Russia alone serves one third of the European imports and

hence one fifth of the continent’s consumption while half of Russian shipments to

Europe has to be carried through Ukrainian transmission pipelines. Liquefied nat-

ural gas (LNG) from overseas suppliers constitutes only one fifth of the European

imports and plays a minor role in the continent’s supply portfolio.

Concerned about the European dependency on a few suppliers and transit coun-

tries, European policymakers take strong interest in major infrastructure projects

such as pipelines and LNG terminals to diversify the continent’s supplier base and

transit routes. As matter of fact, the diversification achieved by pipelines would be

limited. The both ends of a pipeline, i.e., a supplier and an importer, are mutually

dependent on each other since a pipeline cannot be moved or used for other pur-

poses. Carrying gas from remote regions, a pipeline may have to cross through

transit countries. A large number of parties involved in the gas trade complicates a

long-lasting agreement and threatens perpetuity of gas deliveries to consumers. If

the transit country cannot commit to stick to the agreement after the inauguration

of the pipeline, its ex-post opportunism may lead to the hold-up problem, i.e., an

inefficient investment in pipelines.37

LNG promises to be an attractive alternative to pipeline gas. The LNG chain is

composed of three steps: liquefaction, transport, and regasification. Liquefaction

terminals liquefy gas and load it to special ships which transport LNG to overseas

markets. At the final destination, regasification terminals process LNG and serve

gas to the onshore pipeline network. In contrast to pipelines, the LNG chain is free

of transit countries. Special ships can carry gas to distances as far as 7000 km

37As an example, in the 1990s Russia invested in the Yamal pipeline through Belarus and Poland

instead of in the modernization of the Ukrainian transmission pipeline network although the latter

was considerably cheaper than the former. The Russia-Ukraine disputes compelled Russia to look

for an alternative route to avoid an ex-post renegotiation of the rent sharing with Ukraine. For the

Russia-Ukraine disputes see Pirani et al. (2009).
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and enlarge the supplier base of consumers. Since several suppliers may serve

a regasification terminal, the chain’s both ends are less dependent on each other.

Hence, consumers may respond easily to supply disruptions as well as price differ-

ences within suppliers.

To exploit LNG’s favorable qualities, Europe expands its regasification capacities.

Gas Infrastructure Europe (GIE) reports that over the period 2009-2017 regasifi-

cation terminals under construction are going to increase the European LNG im-

port capacities by one third to 230.7 bcm/a (billion cubic meters per annum) (GIE

(2013a)). An increase in LNG’s share will diversify the continent’s suppliers as well

as transit routes and hence strengthen the European supply security.

However, demand competition in the global LNG market may dampen the European

ambitions. The global LNG market is supply constrained. Almost fully utilized,

liquefaction capacities amount to only 40% of regasification capacities. A strong

increase in demand, e.g., in Asia Pacific, can congest liquefaction terminals and

lead to an increase in LNG prices. Demand competition within LNG importers

might intensify, and less LNG might be available to European consumers.

The shale gas revolution in the United States can address the concerns over a tight

LNG market.38 In the last decade, shale gas has flooded the United States’ mar-

kets and driven down the spot price in the country’s Henry Hub to as low as 2.8

$/MMBtu (U.S. dollars per million Btu) in 2012 while the prices in Europe and Asia

Pacific were considerably higher, 9.5 $/MMBtu in UK’s Heren NBP, 11 $/MMBtu for

German imports via pipelines, and 16.8 $/MMBtu for Japanese LNG imports (BP

(2013b)). These large price differences between the overseas markets create large

arbitrage opportunities and thus an incentive to export gas. Following the recent

Crimea crisis between Russia and Ukraine, the United States has overcame its re-

luctance to export the country’s abundant supplies and initiated a new era of energy

diplomacy. The country’s Department of Energy (DoE) has sped up its approval of

liquefaction terminals and export permits. Exporting gas to the European markets,

the United States aims to mitigate its European allies’ dependence on Russian gas

and hence to weaken the Russian position in the Eurasian gas trade.

In this paper I investigate the interplay between the global LNG market and the

38Shale gas is one of the many unconventional sources of natural gas. The gas trapped in shale gas

formations is extracted with a mix of innovative technologies such as horizontal drilling and hydraulic

fracturing. See EIA (2014) for an introduction to shale gas and the industry in the United States.
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Eurasian gas trade through pipelines and question LNG’s role as a game changer

in Europe. It is worth to emphasize that the investment decisions in the European

regasification terminals have been made. I consider only those which are already

under construction and are going to be operational in 2017. Given the European

regasification capacities in 2017, I analyze the major demand and supply develop-

ments and their impact on the power structure in the mid term: the growth in Asia

Pacific’s LNG imports, and the United States’ LNG exports, respectively. These two

developments are likely to materialize in 2017, but they are not certain.

The paper uses the disaggregated quantitative model of the Eurasian gas trade

presented in Hubert and Cobanli (2014), and Hubert and Orlova (2014).39 They

consider only the Eurasian gas trade through pipelines and do not account for the

global LNG market. They regard LNG as non–strategic although it is a major fac-

tor in the gas–to–gas competition. Adding the global LNG market to the model, I

extend the geographical scope from Eurasia to the globe. Thereby, LNG becomes

strategic, and the interaction between LNG and imports through pipelines is taken

into account.

Following Hubert and Cobanli (2014) and Hubert and Orlova (2014), the paper uses

cooperative game theory to analyze the power structure in the global gas trade.

The value function takes into account essential characteristics of the global gas

trade and captures the interdependencies among the players. The Shapley value,

which I interpret as (bargaining) power here, assigns a share of the surplus to the

players. A change in the architecture of the network, demand or supply will alter the

interdependencies among the players. Thereby, it yields a new value function and

hence a new Shapley value. The change in a player’s Shapley value gives then the

impact on the player’s power.

For the analysis of the global gas trade, cooperative game theory is well suited.40

39Their geographical scope comprises the European countries including Turkey and the suppliers

in the European near geography such as Russia, Norway, North Africa, the Caspian Sea region, and

the Middle East. Cobanli (2014) extends the pipeline network eastwards and includes China to the

model’s geographical scope to investigate the competition within Europe, China, and other regional

powers for Central Asian gas.
40The paper stands out from other studies in the area which apply non-cooperative game the-

ory to the Eurasian gas trade via pipelines, e.g., Grais and Zheng (1996), Boots et al. (2004),

Von Hirschhausen et al. (2005), Egging and Gabriel (2006), and Holz et al. (2008), and to the global

gas trade, e.g., Egging et al. (2010), and Hartley and Medlock (2006). Hubert and Ikonnikova (2011b)

explains strengths of the cooperative approach over its non-cooperative counterpart in the analysis
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Firstly, with its distinct stages of production, transmission, and distribution the global

gas trade resembles a vertical structure. The large differences in regional gas

prices, which cannot be explained by transport cost within markets, hint to market

power and strategic behavior at different stages of the vertical structure, such as

Russia in production and Ukraine in transit. To avoid double marginalization and

inefficiencies in the network, long term contracts are widely used in the trade of

pipeline gas as well as LNG. These comprehensive contracts impose price and

quantity of gas shipped from a supplier to a consumer as well as tariffs to transit

countries. In conformity with long term contracts, the cooperative approach as-

sumes that players use the network efficiently. Secondly, in the global gas trade

the bargaining process within parties is recondite and does not follow a transparent

procedure. The cooperative approach avoids any assumption about the bargaining

process and considers a player’s contribution to coalitions of other players. Thereby,

it derives the player’s power endogenously from its role in the global gas trade.

The expansion of the European regasification capacities facilitates European con-

sumers’ access to the global LNG market and hence supply competition in the

European markets. The United States’ LNG exports increases LNG supply and

complements the expansion of European regasification capacities, benefiting Eu-

ropean consumers. However, the growth in Asia Pacific’s LNG imports drains LNG

supplies and countervails the previous developments. When the developments are

considered together, the diversification of supplies brings significant gains to the

European consumers at the cost of the established suppliers in the continent’s

near geography. However, Russia suffers only marginal losses and maintains its

dominance in the Eurasian gas trade.

The rest of the paper is organized as follows. Section 3.2 describes the develop-

ments in the global LNG market. Section 3.3 presents the model while Section 3.4

discusses the results. Section 3.5 delivers a short summary and concludes. While

Appendix B.1 describes the model and the calibration of the parameters in detail,

Appendix B.2 provides the robustness of the conclusions.

of the gas trade.
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3.2 The Major Developments in the Global LNG Market

The section presents the major developments in the global LNG market. It opens

with the expansion of the European regasification capacities. Then, the section

turns to the demand and supply developments in the global LNG market, i.e., the

growth in Asia Pacific’s LNG imports, and the United States’ LNG exports, respec-

tively.

3.2.1 Europe: the Expansion of the Regasification Capacities

Although the European demand is expected to increase only modestly in the near

future, several major infrastructure projects to carry additional supplies to the Euro-

pean markets are under construction or development. Over the period 2009-2017

alone the regasification terminals under construction are going to add 56.2 bcm/a

to the European import capacities and increase the total European regasification

Table 3.1: European LNG imports and regasification capacities

Country Capacitya Importsa Util.b Capacityc

2009 2009 rate 2017
[bcm/a] [bcm] [%] [bcm/a]

Belgium 9.5 6.6 69.5 12.
Denmark − − − −

Germany − − − −

Greece 5.3 0.8 15.1 7.3
France 25.1 10.9 43.4 36.8

Italy 11.9 2.9 24.4 14.7
Netherlands − − − 16.

Spain 63.3 27.2 43. 71.9
Poland − − − 5.

Portugal 5.5 2.7 49.1 7.9
UK 53.9 10.1 18.7 59.1

Turkey 12.9 6.2 48.1 12.9
EU 174.5 61.2 35.1 230.7

EU+Turkey 187.4 67.4 36. 243.6

aData for 2009 is compiled from IEA (2011a).
bUtilization rate = Imports/Capacity in 2009.
cThe figures show the capacities of the regasificafication terminals,

which already exist or are going to be operational in 2017. Data is taken
from GIE (2013a).
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Figure 3.1: Utilization Rates of the European Regasification Terminals (Monthly)
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Source: Data is taken from IEA (2014). Maximum regasification capacities are supplemented with GIE (2013b).

capacities from 174.5 bcm/a to 230.7 bcm/a (GIE (2013a)).41 Table 3.1 presents

the investments in the European regasification terminals in detail.

The expansion of the European regasification capacities cannot be explained in

narrow economic terms because the current capacities are underutilized. At first

glance, the seasonality of gas demand promises to explain the low utilization rates

of the European regasification terminals. Similar to pipelines, regasification termi-

nals are used at high capacity in winter because of increased heating demand, and

they are relatively idle in the rest of the year. In winter regasification terminals might

become congested and limit annual LNG imports. Figure 3.1 presents the monthly

utilization rates of the European regasification terminals from July 2010 to June

2011. In the winter of 2010–2011 the European LNG imports reached their highest

41If planned investments in the LNG regasification terminals are considered as well, the European

regasification capacities will increase by an additional 19.6 bcm/a.
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Figure 3.2: Utilization Rates of the European Regasification Terminals (Yearly)
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Source: Data for 2009 is compiled from IEA (2011a). Data for 2010–2013 is taken from IEA (2014).

level in the last decade. However, the European regasification terminals were not

fully utilized and did not constrain the European LNG imports. Over the period the

European average utilization rate was under 60%. In Europe, France and Italy had

the highest utilization rates, but one quarter of their regasification capacities were

still idle.

Relative prices of LNG and imports through pipelines may elucidate the under-

utilization. Figure 3.2 displays the annual utilization rates of the European LNG

terminals over the period 2009-2013. The utilization rates of the European regasi-

fication terminals vary considerably within the countries as well as over time. The

European average utilization rate increased from 35% in 2009 to 45% in 2010, as

a result of LNG’s price advantage over imports via pipelines. After a short plateau,

the European average utilization rate decreased gradually to 22% in 2013. High

LNG prices in the Asia Pacific region strengthened demand competition for spot

LNG shipments and decreased the availability of LNG for Europe.42

42Over the period the European gas demand decreased due to the Eurozone crisis and the con-
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These observations suggest that there would be enough spare regasification ca-

pacities to serve a modest increase in the European demand as well as to compen-

sate short disruptions of imports via pipelines, such as during the Russia-Ukraine

gas dispute in 2009. Hence, the expansion of the regasification capacities is not

needed to transport additional volumes of LNG. However, in strategic terms the

expansion of the regasification capacities will strengthen the European bargaining

position vis–a–vis the established suppliers, especially Russia. They will not be

used at full capacity, but the option to import large volumes of LNG from overseas

suppliers will soften the Russian dominance in Europe.

In Section 3.4.2 I expand the European regasification capacities and the global

LNG shipping capacities by 56.2 bcm/a and 16.9 bcm/a, respectively. The increase

in the latter corresponds to 30% of the former’s expansion since the global average

utilization rate of regasification terminals is around 30%.

3.2.2 Asia Pacific: the Growth in LNG Imports

As the world’s largest importer of LNG, the Asia Pacific region (i.e., China, India,

Japan, South Korea, and Taiwan) accounts for 70% of the global LNG trade while

LNG serves 95% of the region’s imports and 60% of its consumption. To reduce

their dependence on LNG, the countries in the region invest in their indigenous

production as well as international pipeline projects to import gas from their near

geography, such as Russia and Central Asia.43 However, these investments cannot

keep pace with the Asia Pacific region’s rapidly growing demand, and the region’s

LNG imports are expected to increase further.

Over the period 2007–2012 the region’s aggregate gas consumption expanded

tremendously by 54.4% from 248.9 bcm to 384.3 bcm (BP (2013b)). In the re-

gion China and Japan were the fastest growing markets. As an emerging economy,

sequential slowdown of the economy. However, the decline in the European LNG demand was in

excess of the decrease in the continent’s gas demand.
43In the Asia Pacific region China is the only country, which is connected through a pipeline to a

major supplier. The Turkmenistan-China pipeline links China to rich fields in Central Asia. At present

the A and B lines of the pipeline have a capacity of 30 bcm/a. The C line, which is expected to

be inaugurated in October 2014, will increase the pipeline’s capacity to 55 bcm/a. China seeks to

enlarge the pipeline’s capacity further to 80 bcm/a in 2020 (Platts (2014)). In March 2014 Russia and

China signed a major gas deal. According to the deal, Russia will deliver gas to China as of 2018

and expand its shipments gradually to 38 bcm/a (Reuters (2014a)).
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China is expected to lead the growth in the region’s gas consumption. According

to its 12th Five-Year Plan, China aims to increase the share of gas in its primary

energy consumption to serve the country’s rapidly growing energy demand as well

as to address pollution caused by dirty fuels such as coal. The International Energy

Agency (IEA) forecasts that the country’s LNG imports will reach to around 50 bcm

in 2015 (IEA (2012a)), a sixfold increase from 2009.

In Japan the Tohoku earthquake and the consequent Fukushima Daiichi nuclear

disaster in March 2011 boosted gas demand. Following the disaster, Japan shut

down all of its nuclear power plants and has relied on LNG imports and power

savings to serve the country’s energy demand. The rush to LNG raised Japanese

LNG imports from 88.8 bcm to 116.7 bcm over the period 2007–2012 (BP (2008),

BP (2013b)), and the IEA forecasts that Japanese LNG imports will reach to 129

bcm in 2017 (IEA (2012a)). However, a possible restart of nuclear power plants

may ease the country’s demand for LNG , indicating a drop to levels before the

Fukushima Daiichi nuclear disaster (Reuters (2014b)).

In Section 3.4.3, the growth in Asia Pacific’s LNG imports represents the demand

development in the global LNG market. I amplify the Asia Pacific region’s demand

and hence LNG imports by 61.6 bcm/a to 180.6 bcm/a. I expand the global LNG

shipping capacities by 72.5 bcm/a to prevent a possible congestion in the transport

of LNG within regional markets.

3.2.3 The United States: LNG Exports

As the largest gas consumer in the world, the United States has been traditionally

a net importer gas, but the shale gas revolution in the last decade has altered

the country’s role in the global gas trade. Over the period 2007–2012 the United

States’ gas production increased remarkably from 545.6 bcm to 681.4 bcm, and

the country became the largest gas producer in the world, surpassing Russia. The

U.S. Energy Information Administration (EIA) forecasts that the United States will

turn into a net LNG exporter in 2016 and a net gas exporter in 2018 (EIA (2013)).

However, at present the United States’ poor liquefaction capacities (1.9 bcm/a) pre-

clude export of the country’s abundant supplies to overseas markets. The export

of gas has became a major political controversy in the United States. On the one

hand, opponents argue that LNG exports will increase gas prices in the country and

eliminate a crucial subsidy for domestic industries in form of cheap energy. Ameri-

76



can companies will lose their competitive advantage in international markets, which

will cost jobs at home. On the other hand, proponents claim that LNG exports will

benefit the United States and its allies such as Europe in several forms. At home

LNG exports will generate an income stream. The increase in gas demand will

boost domestic production and create new jobs in the upstream gas sector. In the

global LNG market, American supplies will provide liquidity, interlink regional mar-

kets, and decrease LNG prices. In Europe, LNG exports from the United States

will intensify supply competition and hence soften the European dependence on

established suppliers of pipeline gas, such as Russia (Ebinger et al. (2012)).

Currently, several prospective exporters wait for the DoE’s approval to build lique-

faction terminals and hence to ship gas to overseas markets. In February 2014, the

DoE’s latest approval for Cameron LNG terminal has increased the United States’

prospective LNG export capacities up to 82.5 bcm/a (Reuters (2014c)).44 It is ex-

pected that the country’s prospective LNG export capacities will be capped at 120

bcm/a, which is mentioned as the upper threshold in DoE-commissioned studies

(Ebinger and Avasarala (2013)).

In Section 3.4.4, the United States’ LNG exports stands for the supply development

in the global LNG market. Taking into account the commissioning dates of the

liquefaction terminals under construction, I expand the United States’ liquefaction

capacities by 60 bcm/a. I raise the global LNG shipment capacities by 43.4 bcm/a

since the average utilization rate of liquefaction terminals is around 85%.

3.3 The Model

3.3.1 The Network Game

I extend the disaggregated quantitative model of the Eurasian gas trade presented

in Hubert and Cobanli (2014), and Hubert and Orlova (2014). The extended model

illustrates the global LNG market explicitly and regards LNG as a strategic instru-

ment. Here, I restate the model as well as the cooperative approach for complete-

ness.

44The other approved liquefaction terminals are Sabine Pass (22.5 bcm/a), Freeport (14.3 bcm/a),

Lake Charles (20.4 bcm/a), and Dominion Cove Point (7.9 bcm/a).
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Network

The network is composed of sets of links L and nodes R. A link l = {i, j}, i , j ∈ R

connects node i with j. fi j signifies a flow from node i to j while a negative value

infers a flow in the reverse direction. Gas flow fi j through a link is constrained by

its capacity ki j and has link specific transportation cost Ti j( fi j). A typical region

consists of a production field RP, a consumer market RC, and a transit hub RT .

Nodes RP and RC are connected with a dedicated link to RT , and flows through

these links have to be positive ( fi j ≥ 0, ∀ i ∈ RP or ∀ j ∈ RC). If i ∈ RP, Ti j( fi j)

contains production cost as well. p j( fi j) is the inverse demand in consumption

node j ∈ RC while fi j, j ∈ RC is the flow to the consumption node.

The players are linked with each other onshore through the Eurasian transmission

network and/or offshore through the global LNG market. The Eurasian transmis-

sion network is represented by bidirectional links connecting transit hubs RT . The

global LNG market is composed of two nodes, RLNGliq and RLNGgas, and a set of

links. While links l = {i, j}, i ∈ RT , j ∈ RLNGliq represent liquefaction terminals, links

l = {i, j}, i ∈ RLNGgas, j ∈ RT stand for regasification terminals. The link connecting

RLNGliq to RLNGgas illustrates LNG ships carrying gas from liquefaction to regasifica-

tion terminals. Since gas can flow only from liquefaction to regasification terminals,

all links composing the global LNG market are unidirectional and flows through

these links have to be positive ( fi j ≥ 0, ∀ i ∈ RT ,∀ j ∈ RLNGliq or ∀ i ∈ RLNGgas,∀ j ∈

RT ).

Game

The value function v : 2|N | → R+ maximizes the surplus which a subset of the play-

ers, i.e., a coalition, S ⊆ N generates by participating in the global gas trade. The

access right regime determines to which links L(S ) ⊆ L the coalition has access.

Access to {i, j}, i ∈ RP means that the coalition can produce gas at node i. If the

coalition has access to {i, j}, j ∈ RC, it can serve gas to consumer node j. Similarly,

access to links composing the transmission network {i, j}, i, j ∈ RT and the global

LNG market {i, j}, i ∈ RLNGgas or j ∈ RLNGliq determines gas flows within the coali-

tion’s members. Hence, the value function takes the most important characteristics

of the global gas trade into account, such as demand for gas, production capaci-

ties, regulatory framework, transportation cost via different routes, etc. The value
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function is calculated as:

v(S ) := max
{ fi j |{i, j}∈L(S )}

 
{i, j}∈L(S ), j∈RC

 fi j

0
p j(z)dz −


{i, j}∈L(S )

Ti j( fi j)

 (3.1)

subject to


i fit =


j ft j, ∀ t ∈ RT (S ) (node-balancing)

| fi j| ≤ ki j, ∀ {i, j} ∈ L(S ) (capacity constraints)

fi j ≥ 0, ∀ i ∈ RP or j ∈ RC or i ∈ RLNGgas or j ∈ RLNGliq (non-negativity)

Solution

Among various solution concepts I choose the Shapley value to solve the game.45

Hubert and Cobanli (2014) analyze strategic investments in the Eurasian gas net-

work and compare the explanatory power of established solution concepts such as

the Shapley value, nucleolus, and core. They conclude that the Shapley value can

explain real investment patterns in pipeline projects while the nucleolus and core

fail to replicate empirical evidence.

The Shapley value’s definition is intuitive. A player’s Shapley value, interpreted as

(bargaining) power here, is the player’s weighted contribution to all possible coali-

tions. Hence, it increases with the player’s importance for other players. Moreover,

the Shapley value is a fair division since the players contributions are balanced, i.e.,

the loss player i can impose on j by leaving a coalition is the same as its loss when

j leaves the coalition.

3.3.2 Specification

Players & Geographical Scope

The number of optimization problems and hence the computation time increase

exponentially with the number of the players. Therefore, countries showing simi-

lar characteristics are merged to regions, and consumers and suppliers which are

45For a detailed presentation of solution concepts in cooperative game theory see Myerson (2004),

and Peleg and Sudhölter (2007).
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strategically irrelevant for the considered developments are left out.

The model covers around 80% of the global LNG trade. Qatar, Nigeria, and Aus-

tralia (including Indonesia and Malaysia) are the suppliers of LNG. Thanks to its

shale gas revolution, the United States is a major prospective supplier. Asia Pacific

(composed of Japan, China, South Korea, India, and Taiwan) consumes 70% of

LNG supplies and dominates the global LNG market. These regions may trade gas

only via the global LNG market.

In the Eurasian gas trade through pipelines Russia, Norway, and North Africa (Al-

geria and Libya) are the major suppliers. They are minor actors in the global LNG

market since they have relatively small liquefaction capacities. UkrBel formed by

Ukraine and Belarus is the transit region for Europe-bound Russian gas. In Europe,

each region is illustrated by two players, i.e., a national champion and consumers.

As an idealized- representation of a dominant midstream gas firm, a champion

owns local production as well as transmission and distribution networks in a Eu-

ropean region.46 Central & Eastern Europe stands for Central Europe (Germany,

Netherlands, Switzerland, Denmark, and Luxembourg) and Eastern Europe (Aus-

tria, Czech Republic, Hungary, Slovakia, and Poland). The region is the largest

consumer and producer of gas in Europe and does not possess any LNG terminals.

While Central Europe’s consumption is well diversified with imports from the non-

European suppliers and its own production, Eastern Europe relies highly on Russia,

but also transits westbound Russian gas. Iberia, composed of Spain and Portugal,

has the largest European regasification capacities, but the region is poorly linked

to other European markets. UK has the second largest consumption, production,

as well as regasificiation capacities in Europe. The region is well connected to the

global LNG market as well as the Eurasian gas market. Italy is the third largest Eu-

ropean consumer and has historically the highest wholesale prices in Continental

Europe. Western Europe represents France and Belgium. South-Eastern Europe

is composed of the Balkans and Turkey. Isolated from other European markets, the

region relies mostly on Russian gas, but has access to the suppliers in the Caspian

region and the Middle East.

46GdF in France, OMV in Austria, and Eni in Italy are examples for dominant midstream gas firms.

In Germany there are two champions. E.ON and Wintershall share ownership of distribution and

transmission networks.
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Access Rights

The access right regime defines the players needed to access consumer markets,

production fields, LNG facilities, as well as transmission pipelines. Hence, it decides

the relative importance of a player vis–a–vis others in the global gas trade.

The European regulatory framework promotes open third party access to the conti-

nent’s bottleneck facilities. It obliges the operators of pipelines, i.e., the champions,

to open their transmission and distribution networks, as well as regasification termi-

nals to third parties (EU (2009a), EU (2009b)). So, I assume that the European mar-

kets are ”liberalized”. The national champions are reduced to local producers. Gas

flows freely within national markets, and all suppliers, European or non-European,

of pipeline gas or LNG, compete for consumers under non-discriminatory condi-

tions. In other words, consumers can freely choose their suppliers.

Table 3.2: European Access Rights

Players needed
The European market is

Access to integrated liberalized
Markets champion, consumers consumers

Production champion champion
Transm. network - -

LNG terminals - -

However, the European regulatory reforms are still in progress. Some national

champions and their respective governments resist the liberalization of the Euro-

pean markets. One might argue that the European gas market is at best ”inte-

grated”. In this case, gas can flow within the European national markets under

non-discriminatory conditions, but the champions control access to distribution net-

works and hence to their respective consumer markets. Section B.2.1 checks the

robustness of the results for this alternative set-up. Table 3.2 shows players needed

to access the European network under different regimes.

Outside Europe, every player controls access to its consumer market, production

fields, LNG facilities, as well as transmission network, i.e., gas shipments through

its territory. A player may gain bargaining power by blocking access of other players

to these. Access to LNG vessels is open to all players.
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Time Scope

Hubert and Ikonnikova (2011b) distinguish between the short–sighted and far–

sighted views. In the short–sighted view the time window is long enough to ignore

the seasonality of demand and to undertake minor investments to make the current

transmission network bidirectional. However, it is too short for major investments in

pipeline projects, LNG facilities, and production fields or an enlargement of existing

ones. Thereby, the short–sighted view regards the network as static and waives

benefits from options to invest. It ignores reactions of the players to the develop-

ments and determines each development’s impact in isolation.

In the far–sighted view the pipeline and LNG networks become flexible, and the

players may respond to the developments in the global LNG market by altering the

network architecture and hence the power structure to their favor. Here I consider

the short–sighted view. In Section B.2.2 I employ the far–sighted view and discuss

the robustness of the results when investment options are taken into account.

Data

I consulted several sources to collect data for 2009. Production and consumption

data is compiled from IEA (2010a) and IEA (2011a). Capacities of transmission

pipelines are taken from ENTSOG (2010) and supplemented by public sources.

Liquefaction and regasification capacities are collected from IEA (2011a). Gas

trade flows through European terminal points (IEA (2010a)), LNG trade flows within

the players (BP (2010)), and wholesale prices in major markets (EC (2013b)) serve

as benchmark for the calibration.

Calibration

I represent demand in a consumption node by a linear function and adjust its in-

tercept to replicate the wholesale gas price in the respective consumer market.

Hence, each consumption node has a customized demand intercept which reflects

differences in consumers’ willingness to pay for gas.47 I assume a piecewise con-

stant common supply cost which I adjust for each production node to have a more

47Hubert and Cobanli (2014), Hubert and Orlova (2014), and Cobanli (2014) assume a uniform

demand intercept for all consumption nodes.
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realistic picture of regional differences (see Table 13.5 and 13.6 in IEA (2009)).

Given the customized demand intercept and the common supply cost, I calculate

the slope parameter to replicate the consumption in 2009. Appendix B.1 presents

the calibration in detail.

3.4 Results

Table 3.3 shows the impact of the developments (i.e, the expansion of the European

regasification capacities, the growth in Asia Pacific’s LNG imports, and the United

States’ LNG exports) on the power structure. Column 1 displays the benchmark,

i.e., the power structure in 2009. Column 5 presents the net change in the power

structure if the three developments occur jointly, a highly probable case in 2017. To

identify the causalities in detail, columns 2–4 show the impact of the each mid term

development separately as a counterfactual scenario. Figures in columns 2-5 are

in differences with respect to the benchmark. All figures are given in bn e/a.

The Shapley value takes into account the players’ interdependencies in the global

gas trade and assigns each player a share of the total surplus. Since I want to

analyze the power structure in the global gas trade, I subtract a player’s standalone

value, i.e., what the player can achieve alone without any participation in the global

gas trade, from its share in the total surplus. Thereby, the benchmark in column

1 shows the players’ shares in the trade surplus, i.e., their gains from cooperation

with the other players. I interpret a player’s share in the trade surplus as its power

in the global gas trade.

However, a player’s standalone value depends on how the actors in the global gas

trade are aggregated to the players. Therefore, the figures in column 1 tell little

about the power structure in the global gas trade. As an example, in the bench-

mark the Russian share in the trade surplus amounts only to 20.1 bn e/a although

the country is the second largest producer and the third largest consumer in the

world. Represented by one player, Russia’s share results from its contribution to

the global gas trade as the dominant supplier to Europe, but not from its consump-

tion. Central & Eastern Europe, which has the largest indigenous production and

consumer market as well as imports in Europe, is represented by two players: the

consumers and the local producer.48 The region’s share of 91.3 bn e/a reflects its

48From here on I refer to a European region’s national monopolist a.k.a. champion as (local) pro-
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contribution to the global gas trade through its imports as well as its consumption

and production. If only one player would stand for Central & Eastern Europe, the

region’s share would be far smaller since its power would arise only from the re-

gion’s imports. The consideration of the players’ standalone values would change

the figures in the benchmark, but not the figures in columns 2–5 since they are

given in differences with respect to the benchmark. Hence, figures in columns 2-5

have a sensible interpretation.

The European players’ power (including Turkey) sums up to 220.7 bn e/a, which

amounts to around half of the surplus generated by the global gas trade. The Euro-

pean producers account only for 16.5% of the continent’s aggregate power. While

a producer’s power increases with its production capacities, consumers’ power

grounds on the size of their market and their willingness to pay for gas. Central

& Eastern Europe alone stands for around 40% of the European aggregate power.

South-East Europe, Italy, and UK are the other major regions.

The net exporters of gas may be arranged in two groups: the pipeline suppliers

(Russia, Norway, and North Africa), and the LNG suppliers (Australia, Nigeria, and

Qatar). The pipeline suppliers and Europe are well linked via pipelines and hence

are strongly dependent on each other. The pipeline suppliers serve 80% of the

European imports and around 55% of the continent’s consumption. Europe con-

sumes around 70% of the Russian and North African, and almost all Norwegian

exports. The pipeline suppliers’ joint power amounts to 47.3 bn e/a, and the largest

gain accrues to Russia (20.1 bn e/a). Ukraine and Belarus, the transit countries

for Europe-bound Russian shipments, receive a larger share than Russia, 24.6 bn

e/a. They benefit from the transit as well as consumption of Russian gas while

Russia derives benefits only from gas exports. Although North African deliveries to

Europe amounts to half of Norwegian shipments, the former’s gains are larger than

the latter’s since North Africa is active in the global LNG market as well.49

The LNG suppliers account only for 20% of European imports, but they are more

flexible than the pipeline suppliers and may ship their gas to overseas markets

ducer. In the ”liberalized” European market a champion controls only the local production and has to

open its distribution and transmission networks to third parties.
49The pipeline suppliers export LNG through their liquefaction terminals as well. However, their

liquefaction capacities sum up to 46.3 bcm/a, which is only one fifth of the LNG suppliers’ joint lique-

faction capacities. Among the pipeline suppliers Algeria has the largest liquefaction capacities, 27.5

bcm/a.
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Table 3.3: Impact of Developments on Power Structure

Shapley Value [bn e/a]
Impact of developments

Players Bench- (difference to column 1)
mark European LNG demand LNG exports All

LNG regas. in Asia Pacific from the U.S. developments
Europe 220.7 0.7 −1.9 2.8 1.8

producers 36.5 −0.9 2.2 −2.1 −1.3
customers 184.2 1.6 −4. 4.9 3.1

Continental Eur.a 91.3 0.2 −0.1 0.6 0.8
producer 14.2 −0.8 1.3 −1.2 −0.9

customers 77.2 1. −1.3 1.8 1.7
West Eur.b 19.9 0.3 −0.4 0.5 0.4

producer 0.1 0. 0. 0. 0.
customers 19.7 0.3 −0.4 0.5 0.4

Iberiac 9.2 −0.2 −0.8 0.7 −0.2
producer 0. 0. 0. 0. 0.

customers 9.2 −0.2 −0.8 0.7 −0.2
UK 30.7 0. 0.2 −0.1 0.1

producer 6.7 0.1 0.8 −0.8 0.
customers 24. −0.1 −0.6 0.8 0.1

Italy 34. 0.3 −0.5 0.7 0.6
producer 1.4 −0.1 0.1 −0.1 −0.1

customers 32.6 0.4 −0.6 0.8 0.6
South-East Eur.d 35.6 0.1 −0.4 0.4 0.1

producer 14.1 −0.3 0. 0. −0.2
customers 21.4 0.3 −0.4 0.3 0.3

Pipeline supp. 47.3 −1.4 10.7 −6.9 −0.4
Russia 20.1 −0.9 4.7 −2.9 −0.5

Norway 13.5 −0.5 1.8 −1.5 −0.5
North Africae 13.7 0. 4.2 −2.5 0.6

Ukraine & Belarus 24.6 −0.3 0.8 −0.2 0.
LNG supp. 55.8 1.8 32.6 −15.9 9.5

Australiaf 23.2 0.8 14.5 −6.8 4.3
Nigeria 9. 0.3 3.8 −2.2 0.9

Qatar 23.7 0.8 14.4 −6.8 4.3
USA 0.6 0. 0.2 11.8 18.3

Asia Pacificg 136.9 −0.8 55.8 8.5 69.

aGermany, Netherlands, Denmark, Switzerland, Austria, Hungary, Check Republic, Slovakia, and Poland.
bFrance, and Belgium.
cSpain, and Portugal.
dBulgaria, Romania, Greece, and Turkey.
eAlgeria, and Libya.
fAustralia, Indonesia, and Malaysia.

gJapan, China, South Korea, India, and Taiwan.
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with high prices, e.g., Asia Pacific. Therefore, their gains aggregate to 55.8 bn

e/a and surpass the pipeline suppliers’ joint share in the trade surplus. An LNG

supplier’s power increases with its liquefaction capacities. Qatar, the largest LNG

supplier, gains 17.9 bn e/a while Nigeria, a smaller LNG exporter, receives 6.7 bn

e/a. The United States is a prospective major LNG supplier. Although the country

is the largest consumer and producer of gas in the world, it has only a share of

0.6 bn e/a. The United States serves its demand by its indigenous production, and

the country’s small liquefaction capacities hinder its participation in the global gas

trade.50 Asia Pacific’s large LNG imports (70% of the global LNG supply) as well

as high willingness to pay for gas are reflected on its power of 136.9 bn e/a.

3.4.1 All Developments

In column 5 of Table 3.3 the expansion of the European regasification capacities as

well as the demand and supply developments materialize jointly, a highly probable

case in 2017. The figures in column 5 differ from the sum of the figures presented

in columns 2-4 since the expansion of the European regasification capacities and

the United States’ LNG exports are complementary, and they reallocate the power

in the opposite direction of the growth in Asia Pacific’s LNG imports.

Large gains accrue to Asia Pacific and the United States, 69 and 18.3 bn e/a,

respectively. While the LNG suppliers benefit by 9.5 bn e/a, the aggregate losses of

the pipeline suppliers are minute, -0.4 bn e/a. The United States’ energy diplomacy

is rendered abortive. The country’s LNG exports fail to mitigate the power of Russia

in the Eurasian gas trade notably (only by -0.5 bn e/a) since the growth in Asia

Pacific’s LNG imports absorbs the liquidity created by the United States in the global

LNG market. Although North Africa is a pipeline supplier, positive benefits accrue

to the region since its gains from LNG exports compensate its losses from supply

competition in Europe.

The supply and demand developments in the global LNG market benefits Europe

(1.8 bn e/a), especially the continent’s consumers (3.1 bn e/a) at the cost of the

champions (-1.3 bn e/a). However, Iberia is an exception. The region is poorly

connected to the other European markets and relies largely on LNG imports to

50Remember that the model considers only the United States’ gas trade through the global LNG

market from a given set of players and ignores its gas trade with Canada and Mexico through

pipelines.

86



meet its demand. Thus, Iberia suffers from demand competition in the global LNG

market and cannot enjoy any benefit from supply competition within pipeline gas

and LNG in Continental Europe.

3.4.2 Europe: the Expansion of the Regasification Capacities

The expansion of the European regasification capacities (by 56.2 bcm/a) improves

access of the continent’s consumers to the LNG suppliers, and vice versa. Thereby,

in the global LNG market demand competition within the LNG importers intensifies,

and in Europe supply competition within the suppliers of LNG and pipeline gas

stiffens. As presented in column 2 of Table 3.3, demand competition in the global

LNG market benefits the LNG suppliers (1.8 bn e/a in total) while harming LNG

importers, such as Asia Pacific (-0.8 bn e/a). Supply competition in the European

markets harms the pipeline suppliers, such as Russia (-0.9 bn e/a), and the tran-

sit countries for westbound Russian supplies, Ukraine and Belarus (-0.3 bn e/a).

However, North Africa’s power does not change since the region’s export options

are well diversified between the Europe-bound pipelines and the liquefaction ter-

minals. Therefore, North Africa’s gains in the global LNG market cancels out its

losses in the European markets.

In Europe, the impact on the consumers depends on the share of LNG in their sup-

ply portfolio. The consumers of Iberia and UK, i.e., the two largest LNG importers

in Europe, lose power due to demand competition for LNG (-0.2 and -0.1 bn e/a,

respectively). The other consumers gain from supply competition in the continent.

The largest gain (1 bn e/a) accrues to the consumers of Central & Eastern Eu-

rope although the region does not have any regasification terminals. The location

of a regasification terminal, i.e., the injection point of LNG, matters little for the Eu-

ropean consumers and the LNG suppliers. Thanks to the European liberalization

reforms, the regasification terminals and the transmission pipelines are open to

third party access. Hence, gas flows freely within the European markets.51 The

local producers suffer from supply competition. However, a positive gain of 0.1 bn

e/a accrues to UK’s producer, the second largest in Europe (62.1 bcm in 2009).

Demand competition in the global LNG market decreases the availability of LNG

51In Europe the pipeline connections between France and Iberia (4.7 bcm/a) as well as between

Balkan and Central Europe (1.7 bcm/a) are the major bottlenecks. Therefore, gas in these regions

cannot be shipped to the other European markets as well as gas from the other European markets to

these regions.
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and hence supply competition faced by UK’s producer.

Although the existing European regasification capacities are underutilized, their ex-

pansion brings positive gains to Europe. The option to import larger LNG volumes

benefits the European consumers by 1.6 bn e/a while it harms the continent’s pro-

ducers by -0.9 bn e/a, resulting in a net European gain of 0.7 bn e/a. Considering

the size of the capacity expansion (56.2 bcm/a), the net European gain of 0.7 bn

e/a is translated into an average unit investment benefit of 153 $/ton. An average

unit investment cost less than 153 $/ton would make the expansion of the regasi-

fication capacities feasible, and vice versa. However, the International Gas Union

(IGU) reports a three year moving average unit investment cost with an upward

trend, less than 90 $/ton in 2004, 145 $/ton in 2011, and 187 $/ton in 2013 (IGU

(2013)).

3.4.3 Asia Pacific: the Growth in LNG Imports

The growth in Asia Pacific’s demand and hence LNG imports adds value to the

global gas trade and enhances the surplus of the grand coalition from 789.6 to 888

bn e/a, but also reallocates the power among the players. As shown in column 3

of Table 3.3, the growth in Asia Pacific’s LNG imports boosts the region’s power

by 55.8 bn e/a, an increase of 40.8% compared to the benchmark. The LNG sup-

pliers benefit from demand competition in the global LNG market (32.6 bn e/a).

Their gains increase with their LNG liquefaction capacities. The tight global LNG

market abates the supply competition between LNG and pipeline gas in the Euro-

pean markets. Thereby, the pipeline suppliers enjoy an increase of 10.7 bn e/a in

their power. While Russia benefits by 4.7 bn e/a, 0.8 bn e/a accrues to the transit

countries.

In Europe, weak supply competition harms the consumers, but benefits the pro-

ducers. The larger production a producer has, the more it gains. The producers

of Central & Eastern Europe and UK, the two largest in Europe, gain 1.3 and 0.8

bn e/a, respectively.52 The interpretation of the consumers’ power is less straight-

forward. As an example, the consumers of UK and Italy suffer 0.6 bn e/a each,

but their consumption and regasification capacities differ considerably.53 Demand

52Central & Eastern Europe includes the Netherlands, the largest producer in Europe. In 2009,

Central & Eastern Europe and UK produced 113 bcm and 62.1 bcm, respectively.
53In 2009, UK and Italy consumed 90.5 and 75.6 bcm, respectively. UK’s regasification capacities
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competition in the global LNG market is the major reason for the decrease in the

power of UK’s consumers. However, Italy’s consumers lose due to weak supply

competition in the continent. The European consumers’ losses aggregate to 4 bn

e/a while a joint benefit of 2.2 bn e/a accrues to the producers, netting down in a

European loss of 1.9 bn e/a.

3.4.4 The United States: LNG exports

The expansion of the United States’ liquefaction capacities will link the country to

the global LNG market. Thereby, the United States can ship its abundant and cheap

supplies to overseas markets. Intuitively, the expansion of LNG supply impacts

the power structure diametrically opposite to the growth in LNG demand, which is

discussed in section 3.4.3. In contrast to the growth in LNG demand, the expansion

of LNG supply does not add any value to the global gas trade. As a result of the

model’s calibration, given the willingness to pay for gas and costs of production

and transmission, there is already sufficient gas to serve the consumers’ demand

efficiently. Therefore, the expansion of LNG supply redistributes only the power

among the players.

As presented in column 4 of Table 3.3, the expansion of its liquefaction capacities

benefits the United States by 11.8 bn e/a. An additional LNG supplier sharpens

supply competition in the global LNG market and hence in Europe. Supply compe-

tition curtails Russia’s power by 2.9 bn e/a while Ukraine and Belarus lose only 0.2

bn e/a. The aggregate losses of the LNG suppliers (-15.9 bn e/a) is considerably

larger than the pipeline suppliers’ losses (-6.9 bn e/a). While the LNG suppliers

confront the United States in Europe as well as Asia Pacific, the pipeline suppliers

compete with the country only in the former.

In Europe, the consumers enjoy the diversification of their suppliers while the pro-

ducers suffer from supply competition. Among the European consumers the largest

benefit accrues to Central & Eastern Europe (1.8 bn e/a), which is the largest im-

porter of gas, instead of Iberia (0.7 bn e/a) and UK (0.8 bn e/a), which hold the

largest regasification capacities. While consumers’ gains total to 4.9 bcm/a, the

producers’ aggregate losses amount to -2.1 bn e/a, resulting in a net European

gain of 2.8 bn e/a.

were around fivefold of Italy’s, 53.9 bcm/a compared to 11.9 bcm/a.
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3.5 Conclusions

LNG promises to diversify European supplies and hence to mitigate the continent’s

dependence on the non-European suppliers of pipeline gas, especially on Rus-

sia. To investigate dynamics of the global LNG market and its interaction with the

Eurasian gas trade, I apply cooperative game theory to a disaggregated quanti-

tative model of the global gas trade. I consider three major developments in the

global LNG market, i.e., the expansion of the European regasification capacities,

the growth in Asia Pacific’s LNG imports, and the United States’ LNG exports, in

isolation as well as altogether. The discussion may be useful for policymakers in-

terested in the diversification of European gas supplies as well as in the impact of

the global LNG market on the regional trade of pipeline gas.

The expansion of the European regasification capacities facilitates access of the

European consumers to the global LNG market. Consequently, demand competi-

tion in the global LNG market as well as supply competition in the European mar-

kets intensify. The United States’ LNG exports inundate the global LNG market

with supplies and complements the expansion of the European regasification ca-

pacities. However, the growth in Asia Pacific’s LNG imports drains supplies in the

global LNG market and counters the previous developments. Thereby, it mitigates

supply competition in the European markets.

The developments altogether bring significant benefits to the European consumers

at the cost of the continent’s producers, netting down a positive European gain.

While large benefits accrue to the overseas suppliers of LNG, supply competition

in Europe curtails the power of the established suppliers. However, the decrease

in the power of Russia is minute. The United States’ new energy diplomacy, i.e.,

the export of LNG to Europe, fails to abate the Russian dominance in the Eurasian

gas trade considerably since the growth in Asia Pacific’s LNG imports take up LNG

supplies from the United States.
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Appendix B

LNG: a Game Changer in Europe?

B.1 Calibration

The appendix presents the parameters used for calculation of the value function

(equation (3.1) in the main text) and their calibration. The calibration of the param-

eters follows the approach described in Hubert and Cobanli (2014) and Hubert and

Orlova (2014) closely since the model used here is an extension of theirs. There are

two important differences: (i) the replication of the wholesale market prices through

an individual demand intercept in each consumer node, and (ii) the consideration

of LNG as a strategic instrument.

The calibration of the parameters aims that f ∗i j, i.e., the result of the equation (3.1)

when maximized for the grand coalition, converges the empirical data on consump-

tion, production and flows reasonably. The calibration exploits a basic feature of the

cooperative approach that the players use the network efficiently. Therefore, at a

consumption node marginal willingness to pay for gas pi(q) is equal to marginal cost

of supplying gas ci(q), i.e., nodal cost. Based on this assumption, first the inverse

demand and then cost of supply and transport are calibrated.
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B.1.1 Demand

As a first approximation, I ignore any difference within nodal costs and introduce

a common cost parameter c which is composed of common supply cost cP and

typical transporting cost c̄T . Demand in each consumption node i is illustrated

by a linear inverse demand function. As discussed in the main text, wholesale

gas prices in regional markets differ considerably, and the disparity in wholesale

gas prices cannot be explained with transportation cost within regional markets.

Therefore, in contrast to Hubert and Cobanli (2014) and Hubert and Orlova (2014),

I customize the demand intercept ai of each consumption node i to replicate the

average wholesale price pi in the respective consumer market. To calibrate ai, I

follow a simple iterative approach of four steps:

Figure B.1: Surplus (S i)
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Si

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) Assuming initial values for ai, the value function v0 is calculated. Then, the

Shapley value φi(v0) solves the game and assigns to each player a share of the

total surplus generated by the grand coalition.

(ii) As illustrated by the gray triangle in Figure B.1, the surplus S i generated in a

consumption node depends on the demand intercept ai and the consumption qi,

but not on c. The level of c is irrelevant for the solution to the program in (3.1) since

the linear inverse demand curve is shifted by c. Thus, S i remains unchanged. The

area of the gray triangle (ai + c − c) ∗ qi/2 gives S i.

(iii) The Shapley value φi(v0) of the consumer i is smaller than its S i. The difference

between S i and φi(v0) is interpreted as the rent transferred to other players since
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the consumer i has to share its S i with producers and transit countries to access

supplies. The payment to other players per unit volume of gas, i.e., the average

wholesale price, is given by pi = (CS i − φi(v0))/qi.

(iv) pi is compared with the actual average wholesale price in the consumption node

i. As seen in Figure B.1, when c and qi are kept constant, S i and φi, as well as their

difference increase with ai. Therefore, ai is increased if pi is smaller than the actual

average wholesale price, and vice versa.

Then, returning to the first step, for new values of ai the value function v1 is calcu-

lated. The same steps are repeated till pi converges to actual average wholesale

price in the consumption node i reasonably. Table B.1 displays pi for the regions

considered in the model.

Table B.1: Wholesale prices

Consumers Wholesale
price

pi

[e/MWh] [$/MMBtu]
Continental Eur.a 24. 9.4
Iberiab 18.5 7.3
UK 16.9 6.6
Italy 28.7 11.3
South-East Eur.c 34.3 13.5
Asia Pacific 38.8 15.2

aGermany, Netherlands, France, Belgium, Den-
mark, Switzerland, Austria, Hungary, Check Repub-
lic, Slovakia, and Poland.

bSpain, and Portugal.
cBulgaria, Romania, Greece, and Turkey.

For the calibration of the wholesale prices I assume that the European markets are

”integrated”, which represents the state of the European regulatory framework in

2009. Section B.2.1 portrays the ”integrated” European market and discusses how

the access right regime alters the power structure in the global gas trade.

Given ai and qi, the calibration of the slope parameter bi is straightforward. Since

the players use the network efficiently, pi(q) = ai+c−biqi equals to c. So, ai/qi gives

bi. Table B.2 presents the parameters ai and bi, which ensure qi.

After the calibration of demand, the appendix turns to production and transport (via

pipelines and LNG) of gas. I abandon the common cost parameter c and introduce

differences within nodal costs.
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Table B.2: Consumption nodes

Consumption Consumption Intercept Slope Needed
nodes qi ai bi for

[bcm] [e/tcm] accessa

Center-C 104.6 950. 9.1 Continental Eur-C
Netherlands-C 48.3 700. 14.5 Continental Eur-C
CenterEast-C 41.4 1380. 33.3 Continental Eur-C

Poland-C 16. 1380. 86.3 Continental Eur-C
France-C 44.1 950. 21.5 West Eur-C

Belgium-C 16.9 700. 41.5 West Eur-C
Iberia-C 38.8 700. 18. Iberia-C

UK-C 90.5 700. 7.7 UK-C
Italy-C 75.6 1150. 15.2 Italy-C

Balkan-C 20.2 1380. 68.4 SouthEast Eur-C
Turkey-C 36.4 1380. 37.9 SouthEast Eur-C
Russia-C 426.4 500. 1.2 Russia

Ukraine-C 53.3 1500. 28.1 UkrBel
Belarus-C 17.9 1500. 83.9 UkrBel

USA-C 584.7 500. 0.9 USA
Japan-C 65.5 3200. 48.8 Asia Pacific

Asia-C 53.5 3200. 59.8 Asia Pacific

aIn Europe, the consumers control access to markets. C stands for a European
region’s consumers.

B.1.2 Production

IEA (2010a) and IEA (2011a) provide production data for 2009. I assume that the

LNG suppliers, i.e., Australia, Nigeria, and Qatar, may produce as much as their

liquefaction capacities since their liquefaction terminals are almost fully utilized. In

the Eurasian gas trade Russia has slack production capacities while I cap produc-

tion of other regions at their actual production in 2009. During the Eurozone crisis

in 2009, the European consumers passed the decrease in their demand on their

imports from Russia while their imports from other suppliers changed only slightly.

Since data on wellhead production cost of the suppliers is publicly unavailable, I

introduce a common supply cost parameter cP and customize it for each production

node i by a specific adjustment parameter δi (see Tables 13.5 and 13.6 in IEA

(2009)). I set cP arbitrarily as 20 e/tcm. It is worth to emphasize that the level of

cP does not alter the results presented in the main text since consumers’ demand

curves are shifted with respect to any level of cP. Table B.3 displays the parameters

related to production in detail.
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Table B.3: Production links

Links Capacity Flow Costa Needed
ki j δi · cp for accessb

from to [bcm/a] [bcm/a] [e/tcm]
Net Exporters

Russia-P Russia 650.8 556.7 cp Russia
Norway-P Norway 100.3 100.3 0.65cp Norway
Algeria-P Algeria 51.8 51.8 0.4cp NorthAfrica

Libya-P Libya 15.9 15.9 0.56cp NorthAfrica
Australia-P Australia 94.6 79.5 cp/2 Australia

Nigeria-P Nigeria 29.5 13.2 0.15cp Nigeria
Qatar-P Qatar 94.1 49.1 0.07cp Qatar
USA-P USA 583.1 583.1 cp/2 USA

Net Importers
Center-P Center 23.7 23.7 cp/2 Continental Eur-M

Netherlands-P Netherlands 78.7 78.7 0.78cp Continental Eur-M
CenterEast-P CenterEast 4.8 4.8 cp/2 Continental Eur-M

Poland-P Poland 5.8 5.8 cp/2 Continental Eur-M
France-P France 0.9 0.9 cp/2 West Eur-M

Belgium-P Belgium 0. 0. cp/2 West Eur-M
Iberia-P Iberia 0. 0. cp/2 Iberia-M

UK-P UK 62.1 62.1 0.65cp UK-M
Italy-P Italy 8.1 8.1 cp/2 Italy-M

Balkan-P Balkan 10.8 10.8 cp/2 SouthEast Eur-M
Turkey-P Turkey 0.7 0.7 cp/2 SouthEast Eur-M

Ukraine-P Ukraine 21.9 21.9 cp/2 UkrBel
Belarus-P Belarus 0.2 0.2 cp/2 UkrBel

aGlobal parameter cp is set equal to 20 e/tcm. Unit cost is given for flows up to 75% of capacity.
For remaining 25% of capacity numbers are increased by 20%.

bIn Europe, national champions control access to production fields. M stands for a region’s
national champion, i.e., monopolist.

B.1.3 Pipeline network

Tables B.4 and B.5 display the links representing the Eurasian pipeline network

and the related parameters in four groups: (i) transit into (out of) the EU, (ii) transit

in the EU, (iii) transit outside of the EU, and (iv) transit out of the regional scope.

For simplicity, all pipelines connecting two nodes are combined into a link, and the

link’s capacity equals to the aggregate capacities of the pipelines. I compile the

flows in the links from IEA (2010a) and IEA (2011a) and take their capacities from

ENTSOG (2010) and public sources. All data is for 2009. I assume that capacities

of the links, which are connected to nodes outside of the geographical scope, are

equal to actual flows in them in the benchmark year.

The total cost of transporting gas through a pipeline consists solely of operating cost
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Table B.4: Transmission network A

Links Capacity Flow Operation Needed
cost:a cT

i j for access
from to [bcm/a] [bcm/a] [e/tcm]

Transit into (out of) the EU
Algeria Italy 30.2 25.4 6.1 North Africa
Algeria Iberia 12. 9.2 4.5 North Africa
Balkan Turkey 16.3 8.9 1.8 BalkanTR-Mb

Belarus Poland 33. 31.3 1.4 UkrBel
Libya Italy 11. 9. 4.6 North Africa

Norway Belgium 15. 12.2 5.2 Norway
Norway France 18.2 15. 5.9 Norway
Norway Center 46. 29.2 5.2 Norway
Norway UK 46.4 24. 4.9 Norway

RussiaN Center 55. 0. 6.9 Russia
UkraineE Balkan 31.3 16.5 3.4 UkrBel

Ukraine CenterEast 105.8 77. 1.9 UkrBel
Transit in the EU

Belgium France 30. 14.9 0.8 -
Belgium Center 26. 1. 0.6 -

CenterEast Balkan 1.7 1. 3.3 -
CenterEast Center 77.8 18.4 2.4 -
CenterEast Italy 37. 21.3 2.7 -

Center France 28. 4.3 1.4 -
Center Italy 20.2 9.1 3.4 -
France Iberia 4.7 1.1 3.1 -

Netherlands Belgium 53. 10.7 0.5 -
Netherlands Center 80. 11.7 0.6 -
Netherlands UK 15.3 7. 1. -

Poland Center 31.4 24.4 3.2 -
UK Belgium 25.5 7.5 1.5 -

aUnit cost is given for flows up to 75% of capacity. For remaining 25% of capacity numbers
are increased by 20%.

bM stands for a European region’s national champion, i.e., monopolist.

and disregards the pipeline’s capital cost since rational players do not account for

sunk cost in their bargaining. Operating cost is composed of costs of management

& maintenance as well as energy. Therefore, operating cost increases with the

length of the pipeline and the volume of gas transported. I assume that onshore

pipelines have the universal operating cost of 0.3 e/tcm/100km. Transport through

offshore pipelines (here only Nord Stream, represented as a link from RussiaN

to Center) costs 0.45 e/tcm/100km, which accounts for additional costs of higher

pressure and maintenance under water. The product of the universal operating

cost with the length of a link gives the link’s operation cost, i.e., the link specific cost

parameter cT
i j. In order to replicate real flows in the network, I assume that operation
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Table B.5: Transmission network B

Links Capacity Flow Operation Needed
cost:a cT

i j for access
from to [bcm/a] [bcm/a] [e/tcm]

Transit outside the EU
Russia Belarus 100. 49.2 2.1 Russia, UkrBel
Russia RussiaN 165. 0. 2.2 Russia
Russia RussiaS 240. 8.9 2.1 Russia
Russia UkraineE 415. 109.1 2. Russia, UkrBel

RussiaS Turkey 16. 8.9 4.8 Russia, BalkanTR-Mb

RussiaS UkraineE 200. 24.6 1.2 Russia, UkrBel
TurkeyE Turkey 20. 11.8 2.4 BalkanTR-M

UkraineE Ukraine 122. 95.1 2.5 UkrBel
Transit out of regional scope

Azerbaijan RussiaS 0. 0. 3.8 Russia
Azerbaijan TurkeyE 4.5 4.5 17.4 BalkanTR-M

Iran TurkeyE 7.2 7.2 5.2 BalkanTR-M
Kazakhstan Russia 0. 0. 28.5 Russia
Kazakhstan RussiaS 32.3 32.3 27. Russia

aUnit cost is given for flows up to 75% of capacity. For remaining 25% of capacity numbers are
increased by 20%.

bM stands for a European region’s national champion, i.e., monopolist.

cost is piecewise linear : Ti j( f ) = cT
i j(min[ fi j, 0.75 ∗ ki j] + 1.2 max[ fi j − 0.75 ∗ ki j, 0]).

In case of a production link, δi · cP substitutes cT
i j. It is worth to emphasize that a

change in the level of the universal operating cost or the shape of the cost curve

will alter the results and the conclusions presented in the main text only marginally

since the architecture of the network and the access rights are decisive for the

power structure, rather than the assumptions about cost.

B.1.4 LNG network

Table B.6 presents the links composing the LNG network in three groups: lique-

faction terminals, regasification terminals, and LNG vessels. IEA (2011a) provides

capacities of liquefaction and regasification terminals, and BP (2010) delivers data

on flows through terminals. All figures are for 2009. Since the average global uti-

lization rate of regasification terminals is around 30%, I set the total capacity of

LNG ships equal to 30% of the aggregate regasification capacities.

According to Tables 13.5 and 13.6 in IEA (2009), the total cost of the LNG chain

(i.e., liquefaction, shipping and regasification) equals to 1.5cp. Liquefaction corre-

sponds to half of the LNG chain’s total cost (0.75cp). Shipping and regasification
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Table B.6: LNG network

Links Capacity Flow Operation Needed
cost:a cT

i j for access
from to [bcm/a] [bcm/a] [e/tcm]

Liquefaction terminals (Export)
Australia LNGliq 94.6 79.5 0.75cp Australia

Nigeria LNGliq 29.5 13.2 0.75cp Nigeria
Qatar LNGliq 94.1 49.1 0.75cp Qatar
USA LNGliq 1.9 0. 0.75cp USA

Russia LNGliq 13. 6.2 0.75cp Russia
Norway LNGliq 5.8 3.1 0.75cp Norway
Algeria LNGliq 27.5 20.9 0.75cp North Africa

Regasification terminals (Import)
LNGgas Center 0. 0. 0.375cp -
LNGgas Netherlands 0. 0. 0.375cp -
LNGgas Poland 0. 0. 0.375cp -
LNGgas France 25.1 10.6 0.375cp -
LNGgas Belgium 9.5 6.3 0.375cp -
LNGgas Iberia 68.8 19.5 0.375cp -
LNGgas UK 53.9 7.8 0.375cp -
LNGgas Italy 11.9 2.8 0.375cp -
LNGgas Balkan 5.3 0.5 0.375cp -
LNGgas Turkey 12.9 5.5 0.375cp South-East Eur.Mb

LNGgas USA 157.9 1.6 0.375cp USA
LNGgas Asia 140.2 53.5 0.375cp Asia Pacific
LNGgas Japan 264.2 65.5 0.375cp Asia Pacific

LNG vessels
LNGliq LNGgas 224.9 173.9 0.375cp -

aUnit cost is given for flows up to 75% of capacity. For remaining 25% of capacity numbers
are increased by 20%.

bM stands for a region’s national champion, i.e., monopolist.

cost 0.375cp each (Kavalov et al. (2009)). In contrast to operation cost of pipelines,

I assume that shipping cost is independent of the distance between liquefaction

and regasification terminals because the share of shipment cost in the total cost of

the LNG chain is small compared to the aggregate cost of liquefaction and regasi-

fication.

After the common supply cost parameter cP, the supplier specific adjustment pa-

rameter δi, and the link specific transportation cost cT
i j are defined, the last step is

to determine the typical transporting cost c̄T . When c̄T equals to 16.5 e/tcm, the

solution of the program in (3.1) for the grand coalition reproduces the empirical data

on consumption, production and flows closely.
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B.2 Robustness

B.2.1 Access Right Regime

The access right regime is decisive for the power structure since it defines the

players’ interdependences in the global gas trade. In the main text, I assume that

the European gas market is ”liberalized”. In this section I reexamine the European

access right regime and check the robustness of the conclusions for an ”integrated”

European market.54

Table B.7 has the same structure as Table 3.3 in the main text. In the former the

European market is ”integrated” while in the latter it is ”liberalized”. The comparison

of the both tables shows that the power structure and hence the conclusions under

”liberalized” and ”integrated” access right regimes differ considerably.

In column 1 of Table B.7 the power structure is shifted in favor of the European

champions at the cost of the continent’s consumers and the non-European sup-

pliers. In Europe, the expansion in the champions’ power is more than enough to

compensate the decline in the consumers’ power, leading to an increase in the con-

tinent’s aggregate power. When considered jointly (column 5), the developments

alter the European aggregate power barely, and the power of the pipeline suppli-

ers, such as Russia, increases. When considered in isolation (columns 2-4), the

developments’ impact on Europe is robust, but the figures for the champions and

consumers are aligned.

B.2.2 Investment Options

Following Hubert and Ikonnikova (2011b), the main text uses the short–sighted

view. In this section I extend the time scope to the far–sighted view and consider

investment options in the network. Thereby, the players might react to the develop-

ments and alter the network and hence the power distribution.55 The setting allows

investment in the European transmission pipelines, pipeline projects carrying Rus-

sian gas to the European markets (i.e., Yamal, Nord Stream, South Stream, and

the modernisation of the Ukrainian pipeline network), as well as LNG terminals and

54For a description of the access rights in the ”liberalized” as well as ”integrated” European markets

see Section 3.3.
55See Section 3.3 for a detailed description of the short–sighted and far–sighted views.
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It is worth to emphasize that the grand coalition composed of all players will not

invest in any pipeline and LNG terminal since the current capacities are sufficient

to carry gas from production fields to consumer markets efficiently, thanks to the

calibration of the model presented in Section B.1. Thus, the values generated by

the grand coalition in the short–sighted as well as far–sighted views are the same.

However, a smaller coalition may want to alter the network architecture since its

members may lack in supplies, transit routes, and/or consumer markets.

Table B.8 shows the power structure and the impact of the developments in the

far–sighted view. I compare it to Table 3.3 in the main text, which uses the short–

sighted view to assess the power structure. In the far–sighted view, consumers are

less captured by the established suppliers of gas and the transit countries since

they can invest in pipelines and LNG facilities to gain access to alternative sup-

pliers and transit routes. Similarly, Russia can invest in alternative transit routes

to bypass Ukraine. Therefore, the European consumers and Russia have higher

shares in column 1 of Table B.8 than of Table 3.3. In Table B.8 The expansion of

the European regasification capacities (column 2) alters the power structure neg-

ligibly since these investment options have already been taken into account in the

benchmark (column 1). The joint impact of the developments on the power struc-

ture (column 5) is robust in direction, but differs in magnitude. In absolute terms, the

net impact on Europe and the pipeline suppliers is larger while the LNG suppliers

undergo a smaller change.

56The capacities of the liquefaction terminals in Australia, Nigeria and Qatar cannot be expanded

since they equal to the production capacities of the respective country. There is no investment in

production capacities.
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Table B.7: Robustness: Access Right Regime

Shapley Value [bn e/a]
Impact of developments

Players Bench- (difference to column 1)
mark European LNG demand LNG exports All

LNG regas. in Asia Pacific from the U.S. developments
Europe 255.5 0.5 −3. 2. 0.1

producers 129.5 0.3 −1.2 0.7 0.1
customers 125.9 0.2 −1.8 1.3 0.1

Continental Eur.a 130.9 0.4 −1. 0.8 0.3
producer 66.1 0.2 −0.4 0.3 0.1

customers 64.9 0.2 −0.6 0.5 0.2
Iberiab 11.8 −0.1 −1. 0.5 −0.3

producer 5.9 0. −0.5 0.2 −0.1
customers 5.9 0. −0.5 0.2 −0.1

UK 33.3 0. −0.1 0.1 −0.1
producer 17.3 0. 0.1 −0.1 0.

customers 16. −0.1 −0.2 0.1 −0.1
Italy 41.3 0.2 −0.5 0.4 0.2

producer 20.8 0.1 −0.2 0.2 0.1
customers 20.5 0.1 −0.3 0.2 0.1

South-East Eur.c 38.1 0.1 −0.4 0.3 0.
producer 19.4 0. −0.2 0.1 0.

customers 18.7 0.1 −0.2 0.2 0.
Pipeline supp. 22.3 −0.6 9.5 −4.8 1.3

Russia 9. −0.4 3.9 −2. 0.3
Norway 5. −0.2 1.4 −0.9 0.

North Africad 8.3 0. 4.2 −2. 1.
Ukraine & Belarus 23.2 0. 0.4 0.1 0.3
LNG supp. 43.4 0.3 33.8 −14.2 10.3

Australiae 18. 0.1 14.9 −6.2 4.6
Nigeria 6.9 0.1 4. −1.9 1.1

Qatar 18.5 0.1 14.8 −6.2 4.6
USA 0.5 0. 0.2 8.8 15.

Asia Pacificf 141.3 −0.2 57.5 8.1 71.3

aGermany, Netherlands, France, Belgium, Denmark, Switzerland, Austria, Hungary, Check Republic, Slovakia,
and Poland.

bSpain, and Portugal.
cBulgaria, Romania, Greece, and Turkey.
dAlgeria, and Libya.
eAustralia, Indonesia, and Malaysia.
fJapan, China, South Korea, India, and Taiwan.
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Table B.8: Robustness: Investment Options

Shapley Value [bn e/a]
Impact of developments

Players Bench- (difference to column 1)
mark European LNG demand LNG exports All

LNG regas. in Asia Pacific from the U.S. developments
Europe 227.2 0. −1.7 4.5 2.9

producers 35.1 −0.1 2.7 −4.6 −2.6
customers 192.2 0.1 −4.4 9.1 5.5

Continental Eur.a 92.9 0. −0.2 1.3 0.9
producer 12.2 0. 1.6 −2.6 −1.5

customers 80.7 0.1 −1.8 3.9 2.4
West Eur.b 20.8 0. −0.5 1. 0.6

producer 0.1 0. 0. 0. 0.
customers 20.6 0. −0.5 1. 0.6

Iberiac 10.1 0. −0.3 0.6 0.3
producer 0. 0. 0. 0. 0.

customers 10.1 0. −0.3 0.6 0.3
UK 31.3 0. 0.2 −0.2 −0.1

producer 7.5 0. 0.9 −1.5 −0.9
customers 23.8 0. −0.7 1.3 0.8

Italy 35.2 0. −0.6 1.3 0.8
producer 1.2 0. 0.1 −0.2 −0.1

customers 34. 0. −0.7 1.5 0.9
South-East Eur.d 37. 0. −0.3 0.5 0.3

producer 14. 0. 0.1 −0.2 −0.1
customers 22.9 0. −0.4 0.7 0.4

Pipeline supp. 49.6 −0.1 16.5 −13.2 −3.
Russia 23.1 −0.1 7.8 −6.8 −2.1

Norway 12.7 0. 2.5 −2.9 −1.2
NorthAfrica 13.7 0. 6.2 −3.4 0.3

Ukraine & Belarus 21.5 0. 0.1 0.6 0.6
LNG supp. 40.3 0.1 19.4 −10.8 1.2

Australiae 16.6 0. 8.5 −4.6 0.7
Nigeria 6.7 0. 2.5 −1.7 −0.2

Qatar 17.1 0. 8.4 −4.6 0.7
USA 1.2 0. 0.4 11.8 19.1

Asia Pacificf 146. 0. 63.7 7.1 77.6

aGermany, Netherlands, Denmark, Switzerland, Austria, Hungary, Check Republic, Slovakia, and Poland.
bFrance, and Belgium.
cSpain, and Portugal.
dBulgaria, Romania, Greece, and Turkey.
eAustralia, Indonesia, and Malaysia.
fJapan, China, South Korea, India, and Taiwan.
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Appendix C

Technical Documentation

We give a documentation of the gas sector model and related calcula-

tions. Together with the data-files and codes, available from ”http://www.ms-

hns.de/research gas”, it should help the reader to check and replicate the results

of the following papers:

• Franz Hubert & Onur Cobanli: Pipeline Power (chapter 1) [pipe1]

• Onur Cobanli: Central Asian Gas in Eurasian Power Game (chapter 2) [pipe2]

• Franz Hubert & Ekaterina Orlova: Competition or Countervailing Power for

the European Gas Market [reg1]

• Franz Hubert & Ekaterina Orlova: Network Access and Market Power [reg2]

While the papers differ in their economic focus and in many technical details, they

all use variants of a model of the European gas-network and notions from cooper-

ative game theory to analyze the power structure in the Eurasian gas trade. Each

paper starts from a broad description of the network: its geographical scope, major

players, etc. In this respect, we have four basic variants (pipe1, pipe2, reg1, reg2);

one for each paper.

All four papers analyze how the bargaining power of the players is affected by var-

ious changes such as a new pipeline, liberalization of pipeline access, a merger,

increase of demand, etc. Each of these scenarios correspond to a distinct cooper-
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Files containing results

name content

description of network optimization model

VN-parameters-Mathematica the parameters for the optimization problem in the for-

mat required for calculateValueOneCoalition[] .

VN-parameters-General same as above in a simplified format for use with other

optimization software.

value function

VN-value-Full explicit list of coalitions and values, as well as any er-

rors reported from the calculation (very large).

VN-value-Mathematica values in a compressed format, suitable for Mathemat-

ica’s Subsets[] function.

VN-value.nuc values in a compressed format, suitable for calculat-

ing the Nucleolus using Matlab code of Johannes Rei-

jnierse.

cooperative solutions

VN-Shapley the Shapley Value

VN-Nucleolus the Nucleolus

VN-MinCore the minimal values players receive in the core

VN-MaxCore the maximal values players receive in the core

technical files

VN-nucl.dat log and results from calculating the nucleolus

VN-MinCore.dat log and results from calculating the minimal core

VN-MaxCore.dat log and results from calculating the maximal core

ative game, for which we have a unique identifier, the variant-name or VN.57 These

games are formulated and solved using software written in Mathematica and Mat-

lab, which are described in the following.

A cooperative game is characterized by a set of players N and a value function v.

For each possible subset of players S ∈ N (also called coalition), v(S ) gives the

maximal joint payoff which the coalition S can achieve on its own. In other words, v

is the result of a number of related optimization problems. These optimization prob-

57Typically the variant name consists of several parts referring to specific settings such as geo-

graphic scope, set of players etc. These variant names are used as identifiers to build file names for

the results, e.g. the Shapley values are saved in a file VN-Shapley).
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Directories

name content

\EAGas-model Mathematica notebooks and corresponding packages

for setting up the network optimization problem, calcu-

lating the value function, solving for the Shapley value.

\games+tools Mathematica and Matlab code to convert files, to cal-

culate minimal and maximal values in the core.

\nucleolus HR Matlab code provided by Hans Reijnierse for calculat-

ing the nuleolus.

\pipe1 special code and results related to Hubert & Cobanli:

Pipeline Power.

\pipe2 special code and results related to Cobanli: Central

Asian Gas.

\reg1 special code and results related to Hubert & Orlova:

Competition or Countervailing Power.

\reg2 special code and results related to Hubert & Orlova:

Network Access and Market Power.

lems share a common structure because they are derived from the same broad

network model, but they differ in the sense that smaller coalitions have only access

to parts of the whole network.

So the analysis proceeds in four steps.

1. We characterize the general network optimization problem of the cooperative

game. For each variant we specify the instruments and parameters of the

network optimization problem. These parameters include the specification of

access rights, so that we can derive the embedded sub-network optimization

problems of smaller coalitions. We refer to this representation of the game

VN-parameters.

2. We calculate the numerical values of the value function by solving all sub-

network optimization problems for a particular variant/game. We call this rep-

resentation VN-values. Since we look at a large set of coalitions, this step is

computationally the most demanding one.

3. Using the numerical value function, we calculate for each variant various so-

lutions for cooperative games, such as Shapley value, nucleolus, core. We

refer to the solutions as VN-Shapley, VN-nucleolus, etc.
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4. Finally, we compare the solutions of different variants to assess the impact

of pipeline investment, regulatory changes etc. and build the tables in the

papers.

The code, which defines the parameters of the network optimization problem, cal-

culates the value function and then the Shapley value is written in Mathematica

(step 1-3). The code which calculates the Nucleolus and the minimum and maxi-

mum values of the core is written Matlab (step 3). Further evaluations of the results

are again written in Mathematica (step 4). In the next sections, we give a brief

overview on the main programming tools for each of these steps.

We save results to a number of files in plain text format. The following files contain

results. VN stands for variant-name.

C.1 General Network Optimization Problem

All papers share a common data base from which the calibrations and definitions

of their network optimization problems are obtained using two Mathematica note-

books, a common one Gas Parameters and an additional one which is individual for

each paper. There are also packages to visualize the data base and the parameter

settings.

All code of this section is written in Mathematica. The general network optimization

problem is saved in files named VN-parameters-* where the * stands for different

formats.

C.1.1 Data & Calibration

C.1.1.1 Definition of Data

The data is defined in Gas Data Base using a similar format as the data provided

by Mathematica. All data, which are needed for the model specification and dis-

plays (tables and maps) are assigned to global variables by loading the Mathemat-

ica package Gas Data Base .

requires: nothing
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Data Overview

package function needs

Gas Data Base assignes data to global variables. nothing

Gas Data Visu defines functions for display of data. Gas Data Base

FH Tools

file output: none

C.1.1.2 Visualization of Data

Gas Data Visu defines functions for the display of the data.

requires: Gas Data Base , FH Tools

C.1.2 Set-up for Network Optimization

The topology of the network is defined by a set of nodes R and a set of directed links

L (the geographical scope). Each link {i, j} ∈ L connects two nodes, which might be

RP production nodes, RC consumption nodes, or RT transit nodes.58 For each link

we have (piecewise linear) cost reflecting transportation and/or production cost.

The game is defined by a set of players N and a value function v, mapping the

set of subsets of N into real numbers. A coalition S ⊆ N has access to L(S ) ⊆ L

(the access regime). The value of a coalition S is obtained by maximizing the joint

surplus (gross surplus from consumption s minus cost of transport and production

T ) using the gas-flows xi j in the pipelines which are accessible:

v(S ) = max
{xi j |{i, j}∈L(S )}

 
{i, j}∈L(S ), j∈RC

s j(xi j) −


{i, j}∈L(S )

Ti j(xi j)

 (C.1)

subject to

xi j ≥ 0, ∀ i ∈ RP or j ∈ RC (non-negativity)
i xit =


j xt j, ∀ t ∈ RT (S ) (balancing)

|xi j| ≤ ki j, ∀ {i, j} ∈ L(S ) (capacity constraints)

The capacity constraint is dropped when we allow for investment. In this case T

also accounts for investment cost.

58Production and consumption nodes are always linked to a transit node.
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Parameters Overview

package function needs

Gas Parameters defines functions for the assignment,

saving and recovering of parameters,

as well as parameters for some basic

variants.

→ reSetParTo[]

→ parameterToFile[]

→ fileToParameters[]

Gas Data Base

Gas Parameters *.m defines additional functions and all the

variant names for the individual papers.

(*: pipe1, pipe2, reg1, reg2)

Gas Data Base

Gas Parameters

Gas Parameters min collects functions needed for recover-

ing the parameters-settings from the

file and starting the optimization.

nothing

Gas Parameters Visu defines functions for display of parame-

ters after they have been assigned us-

ing reSetParTo[] .

→ showMainParCurrent

→ showAllParCurrent

Gas Data Base

Gas Data Visu

FH Tools

Gas Parameters

file output: VN-parameters-Mathematica

VN-parameters-General

for illustration: workspace parameters.nb

→ : main functions defined in the package; VN : variant name

To keep the network optimization problem simple, we assume a linear demand

(quadratic surplus function) and piece-wise linear cost functions.

C.1.2.1 Definition of Functions and some Variants

By loading Gas Parameters we define routines, which specify the functions and

parameters of the optimization problem using data provided by Gas Data Base .

The complete specification of the general network optimization problem (all the

technical and demand parameters as well as the access rights) are assigned

to global variables by calling: reSetParTo[parameter-list], which in turn

calls: setGeoScope[], setPlayers[], setPipeAccess[], setLinkParameter[],

setDemandParameter[]. These routines define the geographical scope of the net-
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work, players, access regime, parameters for the individual links and for demand.

Different (but not all) versions of these settings can be combined. selectVarList

allows for an interactive selection of predefined arguments for the subroutines.

feasiblePipes[coalition] returns the links to which a coalition has access.

In Gas Parameters we provide only the base variants, used in the different papers.

To obtain the specific definitions for a paper, an additional file has to be loaded;

e.g. Gas Parameters pipe1.m or Gas Parameters reg2.m. These define a unique

variant-name (VN) for each network optimization (game) which will be part of the

names of files for storing results etc. We also define setVar[VN] to return the

arguments for reSetParTo[] .

parametersToFile[VN, "Mathematica"] saves the parameter settings of a game

to a file with a name VN-parameters-Mathematica from which the settings can be

recovered using fileToParameters[VN, "Mathematica"]. When writing ”Mathe-

matica” can be replaced by ”General” to obtain a more compact format.

Gas Parameters and Gas Parameters *.m require Gas Data Base .

C.1.2.2 Visualization of Parameter Settings

Gas Parameters Visu defines functions for the display of the parameter setting,

once they have been assigned by calling reSetParTo[]. There are tables and

maps, some of them interactive. Various functions are collected in the commands:

showMainParCurrent, showAllParCurrent, which display most of the settings.

requires: Gas Data Base , Gas Data Visu , FH Tools , Gas Parameters .

C.1.2.3 Starting from defined Games

Gas Parameters min collects those routines which are needed if the parameter

settings are already saved to files VN-parameters-Mathematica. If loaded there is

no need to load other notebooks.

C.1.2.4 Example

The Mathematica notebook workspace parameters.nb illustrates these steps.
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Network Optimization Overview

package function needs

Gas Prog finds accessible network for a given coali-

tion of players and calls LinProg[] from

Gas ProgLP to calculate the payoff (value).

→ calculateValueOneCoalition[]

Gas Parameters min

Gas ProgLP

Gas ProgLP creates a linear programming problem to cal-

culate the optimal network usage for a given

network configuration.

→ LinProg[]

Gas Parameters min

Gas Prog Visu display of the optimal network usage using

output created by

calculateValueOneCoalition[] .

needs parameters from reSetParTo[] .

→ displayResChartLP[]

→ displayResTableLP[]

Gas Data Base

Gas Data Visu

FH Tools

Gas Parameters

Gas Prog Gas ProgLP

file output: none

for illustration: workspace program.nb

→ : main functions defined in the package

C.2 Value Function

Given our assumption on functional forms, we obtain the value function by maxi-

mizing surplus (quadratic) minus cost (piece-wise linear) subject to balancing con-

straints for transit nodes and non-negativity constraints for production and con-

sumption links.

C.2.1 Network Optimization

By loading Gas Prog and Gas ProgLP we define the functions used for solving the

network optimization problem. calculateValueOneCoalition[] establishes the

sub-network, which is accessible for a given coalition of players and calls LinProg[]

from Gas ProgLP to calculate the payoff (value).

The general optimization routines coming with Mathematica turned out to be too
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slow. To speed up the process LinProg[] approximates the quadratic surplus

functions by piece-wise linear functions and uses ”LinearProgramming” to solve

the resulting linear optimization problem.

C.2.2 Visualization of Results

Gas Prog Visu defines displayResChartLP[], and displayResTableLP[] for

the display of the optimal network usage using the output created by

calculateValueOneCoalition[] . It needs the full parameter definitions from

reSetParTo[] and requires Gas Data Base , Gas Data Visu , FH Tools ,

Gas Parameters , Gas Prog , and Gas ProgLP .

C.2.3 Calculating Value Function (and Shapley Value)

Gas ValFuncShap defines functions for the calculation of the value function. Us-

ing the unique variant-name VN we recover the parameters from the associated

file VN-parameters-Mathematica. Then we calculate the value of all coalitions

(repeatedly calling calculateValueOneCoalition[] ). Depending on the num-

ber of players, this step may take a long time. The results are saved in two

formats. VN-values-Full has the value, coalition, and possible error-messages

and is very large. VN-values-Mathematica has only the numerical values or-

dered as the coalitions are ordered by Mathematica’s Subsets[] command, i.e.,

{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

As we have the value function already, it is convenient to invoke FH Shapley and

write the Shapley value into VN-Shapley.

For some changes, i.e., if two players merge, it is not necessary to run all optimiza-

tion problems again. The new value function can be obtained from the old one by

re-matching values with coalitions. Suppose we start with a game {N, v} and let

players a and b merge. We define the new game as {N,w} by making a a ’proxy’

player and b a dummy player. The new value function w is obtained from v as

w(S ) =


v(S ∪ b) if a ∈ S , b < S

v(S \ b) if a < S , b ∈ S

v(S ) else.

In these cases we save only the original value function.
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Calculating Value Function & Shapley Value

package does loads

Gas ValFuncShap provides operations for the calculation

of the value function (which may take a

long time) and all Shapley values.

→ calcValFuncShap[]

→ calcShapleyValue[]

→ assignValueFunction[]

Gas Parameters min

Gas Prog

Gas ProgLP

FH Shapley

file output: VN-value-Full

VN-value-Mathematica

VN-Shapley

for illustration: workspace ValFuncShap.nb

→ : main functions defined in the package ; VN : variant name

C.3 Solving the Game

We consider several solutions for the games defined by the different variants: the

Shapley value, nucleolus, and core, which we characterize by the minimal and

maximal values a player can achieve. The starting point is always the set of players

and the value function as specified in VN-value-Mathematica.

We express the solutions as absolute values and as relative values (in per cent of

the value of the grand coalition). In addition, we report the player’s value when it

is alone, and we give the solutions (absolute and relative) for the zero normalized

game.

For the calculation of the nucleolus, as well as minimal and maximal values in the

core, we use Matlab code.
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C.3.1 Shapley Value

We calculate the Shapley value intermediately after calculating the value function

(see section C.2.3). The function is defined in FH Shapley . In addition, we have

some tools to rearrange and aggregate the players once the Shapley values are

calculated.

Calculating Shapley Value

package does loads

FH Shapley functions to calculate the Shapley

value for a set of players and a value

function.

→ shapleyValue[]

→ allShapleyValues[]

nothing

FH Shapley tools functions to rearrange and aggregate

players in the output of FH Shapley (or

other solutions).

nothing

for illustration: workspace ValFuncShap.nb

→ : main functions defined in the package
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C.3.2 Nucleolus

To calculate the nucleolus, we use Matlab code provided by Hans Reijnierse. It

implements an algorithm described in Potters et al. (1996). The algorithm in turn is

based on the characterization of the nucleolus as the lexicographical center of the

game developed in Maschler et al. (1979).

We first convert VN-value-Full into VN-value.nuc. This file is used by Matlab

program calcNucleolus, which invokes Reijnierse’s command ”nucleolus”. The

log and results are written into VN-nucl.dat. We switch back to Mathematica code

to further process VN-nucl.dat, extracting the nucleolus, as well as those coalitions

and their excesses which determine the solution.

Calculating the Nucleolus

package does loads

convert-nucleolus prepares input for Matlab, reads Matlab out-

put, and writes it to files:

converts VN-value-Full into VN-value.nuc,

extracts results from VN-nucl.dat (Matlab

output) into Mathematica, and prepares the

input for the tables.

→ writeMatlabInputFunc[]

→ vectorNucleolusList[]

→ vectorPlayersNucleolus[]

→ writeToFileAllValues[]

nothing

calcNucleolus

(Matlab)

reads VN-value.nuc, calculates the nucleo-

lus, and writes VN-nucl.dat.

nucleolus

nucleolus

(Matlab)

package to calculate the nucleolus written by

Potters et al. (1996).

file output: VN-value.nuc

VN-nucl.dat (from Matlab)

VN-Nucleolus

for illustration: workspace nucleolus.nb

workStepsNucleolus.nb

→ : main functions defined in the package ; VN : variant name
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C.3.3 Core

As the core is characterized by a large number of inequalities, we restrict our atten-

tion to the extreme values, which a player can obtain in the core. For each player

we find the minimal and the maximal value in the core.

As with the nucleolus we use Matlab to compute the values.

Characterizing the Core

package does loads

convert-core creates matrices and writes ”*.csv” files

for the optimization in Matlab.

extracts the values from Matlab output

files, compares these values with the

nucleolus and the Shapley value, pre-

pares the input for the table.

→ writeMatricesVariantsMatlab[]

→ readMatlabCore[]

→ ShapleyMinNuclMax[]

→ writeConceptsToFile[]

convert-nucleolus

calcMaxMinCore

(Matlab)

reads variants.csv, matrices.csv

and VN matrixname.csv, calculates

the minimum and the maximum for

each player, writes VN-MinCore.dat

and VN-MaxCore.dat.

nothing

file output: VN matrixname.csv

variants.csv

matrices.csv

VN-MinCore.dat (from Matlab)

VN-MaxCore.dat (from Matlab)

VN-MinCore

VN-MaxCore

VN-Concepts

for illustration: workspace core.nb

workStepsCore.nb
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