NMR solution structure of DNA double helices with built-in polarity probes

DISSERTATION

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

im Fach Chemie

eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

> von Dipl.-Chem. Lars Dehmel

Präsident der der Humboldt-Universität zu Berlin: Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke

Gutachter:

- 1. Prof. N. P. Ernsting
- 2. Prof. Dr. H.-A. Wagenknecht

Tag der mündlichen Prüfung: 20.05.2015

Für meine Familie und die Zukunft.

Abstract

The solution structures of three differently modified DNA double strands were solved by NMR spectroscopy. They all incorporate polarity probes in the center of the helix that are sensitive to the immediate environment. Their melting behavior was characterized by a new method that utilizes complete absorption spectra in combination with Singular Value Decomposition (SVD). The latter allows to analyze the spectra in their entirety, which is required to follow the blue shift of the probe signal that is caused by the aforementioned sensitivity to the environment. In this way the duplex melting process is characterized in local and global terms.

The first modification, 2-hydroxy-7-carboxyfluorene (HCF), is placed opposite an abasic site to avoid steric strain. NMR spectroscopy revealed two equally distributed conformations, since rotation of the HCF chromophore is only hindered by stacking interactions inside the helix. The second double strand comprises R-glycerol linked 6-hydroxyquinolinium (6HQ) opposite cytosine. The incorporation of 6HQ as glycol nucleic acid (GNA) mononucleotide is a unique structural feature. Until now, only crystal structures of full GNA backbone duplexes are known, so the solution structure of this double strand is of general interest. The small size of R-glycerol disturbs the backbone of the 6HQ strand, which causes a stacking axis that differs from the helical long axis for the three central bases. The last modification is an artificial base pair made of 4-aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP). Instead of the desired three hydrogen bonds, two structures containing either a single or two hydrogen bonds are observed that can be explained by the linkage of 4AP to 2'-deoxyribofuranose.

Inhaltsangabe

Die Strukturen in Lösung dreier unterschiedlich modifizierter DNA Doppelstränge wurden mittels NMR Spektroskopie gelöst. Sie alle besitzen polare Sonden im Zentrum der Helix, welche sensitiv für die nähere Umgebung sind. Ihr Schmelzverhalten wurde mit Hilfe einer neuen Methode charakterisiert, welche komplette Absorptionsspektren in Kombination mit Singularwertzerlegung (SVD) nutzt. Letztere erlaubt die Analyse der Spektren als Ganzes, die notwendig ist um der Blauverschiebung des Sondensignals zu folgen, welche durch die zuvor genannte Sensitivität zur Umgebung verursacht wird. Auf diese Weise kann der Schmelzprozess des Duplex lokal und global beschrieben werden.

Die erste Modifikation, 2-Hydroxy-7-Carboxyfluoren (HCF), wurde gegenüber einer abasischen Seite platziert, um sterische Spannungen zu vermeiden. Die NMR Spektroskopie deckte zwei gleichverteilte Konformationen auf, da die Rotation des HCF Chromophors nur durch die Stapelwechselwirkung innerhalb der Helix unterbunden wird. Der zweite Doppelstrang enthält ein über R-Glycerol gebundenes 6-Hydroxychinolinium (6HQ) gegenüber Cytosin. Der Einbau von 6HQ als Mononukleotid einer Glykolnukleinsäure (GNA) ist ein strukturelles Alleinstellungsmerkmal. Bisher sind nur Kristallstrukturen von vollständiger GNA bekannt, daher ist die Struktur in Lösung dieses Doppelstranges von generellem Interesse. Die geringe Größe von R-Glycerol stört das Rückgrat des 6HQ-Stranges, welche eine von der helikalen Achse abweichende Stapelachse für die drei zentralen Basen verursacht. Die letzte Modifikation ist ein künstliches Basenpaar bestehend aus 4-Aminophthalimid (4AP) und 2,4-Diaminopyrimidin (DAP). Anstatt der gewünschten drei Wasserstoffbrücken wurden zwei Strukturen, die entweder eine oder zwei Wasserstoffbrücken beinhalten, beobachtet, welche durch die Verbindung von 4AP zur 2'-Deoxyribofuranose erklärt werden können.

Contents

1	Introduction					
	1.1	The d	evelopment of DNA structure determination	1		
	1.2	Fluore	escent base analogues extend the nucleobase alphabet $\ldots \ldots \ldots$	5		
	1.3	Aim o	f this work	14		
2	Conceptual background					
	2.1	Structural aspects of DNA				
	2.2	Nuclea	ar Overhauser Effect spectroscopy	23		
	2.3	ed Spin Pair Approximation - From NOESY to distance	27			
2.4 Residual Dipolar Couplings				29		
	2.5	ated Annealing calculations	35			
	2.6	Singul	ar Value Decomposition	38		
	2.7	Develo	opment of the double SVD assisted two-state model	41		
3	Exp	eriment	al section	47		
	3.1	13mer	HCF	47		
		3.1.1	NMR sample preparation	47		
		3.1.2	RDC sample preparation	48		
		3.1.3	Duplex melting experiments	48		
		3.1.4	Titration against pH experiments	49		
		3.1.5	NMR experiments	49		
		3.1.6	Force field parametrization for HCF	50		
		3.1.7	Distance restraints	50		

Contents

		3.1.8	Residual Dipolar Coupling restraints
		3.1.9	Structure calculation
	3.2	13mer	6HQ
		3.2.1	NMR sample preparation 57
		3.2.2	RDC sample preparation
		3.2.3	Duplex melting experiments
		3.2.4	NMR experiments
		3.2.5	Residual Dipolar Coupling restraints
		3.2.6	Structure calculation
	3.3	13mer	4AP-DAP
		3.3.1	NMR sample preparation
		3.3.2	Duplex melting experiments
		3.3.3	Titration against pH experiments
		3.3.4	NMR experiments
		3.3.5	Structure calculation
4	Resu	ults and	d discussion 63
	4.1	2-Hyd	roxy-7-carboxyfluorene - 13merHCF
		4.1.1	Chemical shift analysis
		4.1.2	NMR solution structure
		4.1.3	Duplex melting experiments
	4.2	6-Hyd	roxy-quinolinium - 13 mer6HQ $\dots \dots \dots$
		4.2.1	Chemical shift analysis
		4.2.2	NMR solution structure
		4.2.3	Duplex melting experiments
	4.3	4-Ami	nophthalimide and 2,4-Diaminopyrimidine - $13\mathrm{mer}4\mathrm{AP}\text{-}\mathrm{DAP}$ 102
		491	Chamical shift analysis 104
		4.3.1	
		4.3.1 4.3.2	NMR solution structure 104

Contents

		4.3.4	Duplex melting experiments	. 118		
5	Sum	nmary		125		
6	Zus	ammen	fassung	131		
A	openc	lix		137		
1 Chemical shift tables						
		1.1	13merHCF shift tables	138		
		1.2	13mer6HQ shift tables	. 141		
		1.3	13mer4AP-DAP shift tables	. 144		
	2	files for Molecular Dynamics calculations	. 146			
		2.1	Input file to generate extended strands	146		
		2.2	Input file to generate start-structure	149		
		2.3	Input file to finally calculate the NMR solution structure \ldots .	153		
		2.4	Parameter file used by Xplor-NIH	159		
		2.5	Topology file used by Xplor-NIH	193		
	3	Script	Code	. 221		
		3.1	Script to export distances from Cara to XPLOR-NIH $\ \ldots \ \ldots$. 221		
		3.2	Mathematica script to visualize NOESY back-calculation $\ \ldots \ \ldots$	234		
Li	List of Abbreviations 271					
List Of Figures 278						
List Of Tables 27						
Danksagung 28						

1.1 The development of DNA structure determination

The structure of nucleic acids (DNA, RNA) and proteins forms the basis for our understanding of biological processes like gene expression or protein bio-synthesis. In 1953 Watson and Crick were the first to propose the correct double helical structure of what is now known as B-form DNA^[1]. They deduced their model from X-ray fiber diffraction, which was the method of choice at the time, but it only provided an overall configuration with idealized parameters.

Although true on average it could not explain sequence specific effects, until Wing et al.^[2] published in 1980 the first single-crystal structure analysis of a B-DNA dodecamer with a full helical turn. This was followed by a series of articles in which Dickerson and Drew^[3-6] described sequence-dependent features like molecular bending^[4] or the "spine of hydration"^[5], thus making it famous as the "Dickerson-Drew dodecamer".

During the next few years more and more crystal structures were solved, showing a wide variety of B-DNA helical parameters^[7–9] and also giving structural insights into Aand Z-DNA^[10]. Different approaches were used to study A-DNA crystals. Shakked et al. (1981)^[11] and Conner et al. (1982)^[12] used short self-complementary octamers and tetramers, respectively, while Wang et al. (1982)^[13] used a DNA–RNA hybrid double helix to prove the assumed A-type structure.

The first single-crystal duplex of Z-DNA was also solved by Wang et al. in 1979^[14], and together with the aforementioned A- and B-forms a detailed molecular picture was developed steadily^[10,15–17]. However questions remained in which way crystal-packing

factors and crystallization conditions affect the conformation of DNA. It was found that all octanucleotides crystallize in the A-form^[18], due to crystal-packing effects, while their counterparts in solution favor the B-conformer^[18,19]. Single-crystals of longer duplexes tend to the A-form when having a very GC-rich sequence^[18,20], thus explaining the Bform helix of the Dickerson-Drew dodecamer d(CGCGAATTCGCG) in contrast to the A-form found in the dodecamer d(CCCCCGCGGGGG) of Verdaguer et al. (1991)^[21]. In addition, Jain et al.^[22] and Shakked et al.^[23] showed (both in 1989) that the mean values of local helix parameters depend on crystallization conditions and therefore contribute to their "unexpectedly large range of variation"^[19,24]. With this in mind, it becomes clear that structural information based on X-ray crystallography of single crystals can be contradictory or limited, since the native environment to study biological problems is a water containing solution.

Nuclear Magnetic Resonance Spectroscopy (NMR) is a well-established method to study molecules in solution, especially after the development of two-dimensional experiments in the late 1970s (Jeener et. al^[25], Freeman et al.^[26–29], Ernst et al.^[30]) which extended the field of applications to biological macromolecules. At the beginning of the 1980s, Ernst et. al. and in particular Wüthrich et al. were the driving forces in protein structure determination^[31–42], which also forms the basis for the related research on DNA structures. First efforts were targeted towards sequential resonance assignment strategies and qualitative analyses of the structure^[43–47], but rapidly rising computational power made it possible to develop structure determination software^[48,49] that uses NMR-derived inter-proton distances as restraints.

In contrast to X-ray crystallography, where a gap of 20 years separates the first protein structure (Bluhm et al. $1958^{[50]}$) from its DNA counterpart^[14], the first solution structures of proteins (Williamson et al.^[51], Kaptein et al.^[52]) and nucleic acids (Clore et al.^[53]) were all published in 1985. The former gap originated from the requirements to obtain single crystals of short oligonucleotides and therefore demanded the development of synthesis strategies for oligonucleotides with a predefined primary sequence, which were lacking in 1958. However, subsequent development led to the solid-phase phosphoramidite method^[54–57] that not only offered a payable way to produce large quantities, but it also allowed the modification and expansion of the genetic alphabet. This, in combination with automated oligonucleotide synthesis, made it feasible to investigate functionalized or completely new nucleotides at any position in the duplex. Consequently, artificial DNA duplex strands became the subject of NMR structure determination in the late 1980s^[58–62].

A large number of modified compounds has been introduced (or observed in naturally occurring DNA^[63–65]) over the last decades depending on the scope of application. They can be divided into several classes; these include backbone variations (e.g. PNA^[66,67], LNA^[68,69], TNA^[70], GNA^[71–74] etc.) or molecules covalently linked to natural bases^[75–80]. A famous example for using both strategies is the DNA sequencing method by Sanger et al.^[81] which utilizes di-deoxynucleotidetriphosphates (ddNTPs) to terminate the chain-reaction of DNA polymerase at the 3'-end and, in addition, fluorescent labeling of the nucleobases for detection in automated sequencing machines^[82]. Other strategies focus on intercalation^[83–88], full replacement of a nucleobase^[89–96] or even of a complete base pair^[97,98] by nucleobase analogues^[99].

Most of these studies introduce chromophores as base analogues or tethered label, since their fluorescent properties can be used in a number of ways to study DNA and RNA. A common field of application is the detection of single nucleotide polymorphisms (SNP) via molecular beacons^[100–103], base-discriminating fluorescent nucleosides^[104,105], detection by electron transfer-controlled emission quenching (DETEQ)^[106] or forced intercalation TO-PNA probes (FIT)^[107]. Real-time quantitative PCR (qPCR)^[108,109] is also a possible application for molecular beacons^[110] or FIT probes^[111,112] and can be used, for example, to quantify gene expression^[113]. Other methods like the well-known fluorescence resonance energy transfer (FRET)^[114–116], pulsed electron-electron double resonance (PEL-DOR^[117,118], strongly emerging field in NMR) or fluorescent silver nanoclusters^[119] can serve as distance measurement tools, working on a larger scale than the classic NOESY experiment (< 5 vs. 80 Å with PELDOR or FRET). All examples mentioned before employed steady-state fluorescence. Time-resolved measurements on the femtosecond (fs) to nanosecond (ns) time scale were first performed by Zewail et al.^[120,121] in 2000. Using

transient absorption, these authors investigated electron transfer and water solvation in duplex DNA.

The fluorophores that will be studied in this work all belong to the group of nucleobase replacing analogues. In contrast to tethered labels, these molecules are primarily designed to minimize disruption of the local structure and to maintain the biochemical or biological function, which may be affected negatively by other strategies, like tethering of a bulky group, addition of an intercalator, or a groove binding molecule. The underlying idea on one hand is to place a nucleobase at the "center of action", and on the other hand to achieve a rigid, well defined position and orientation in the duplex^[94]. These conditions are crucial for the above stated distance measurements like FRET as well as for the time-resolved studies below. As we will see later, another condition is that the spectral position of the fluorescence band depends sensitively on polarity, so that the label can be used to investigate the microenvironment^[96].

The basic idea which caused the present structural study is to observe the hydration dynamics and vibrational modes of biomolecules. This aim can be achieved, in principle, by detecting the time-dependent Stokes shift (TDSS) of fluorescence from a suitable reporter molecule, or probe. When incorporated into duplex DNA, the chromophore serves as a "local" molecular spectrometer in the THz-region. This kind of measurement, but without a polarity probe that has been optimized for spatial and energetic fits, would be disturbed by the absorption of unbound water and would also lack space-resolved information (due to structural fluctuations). The THz experiment starts when the charge distribution of the chromophore is suddenly altered by femtosecond optical excitation. By this excitation the electric field around the probe is changed instantly and is now affecting nearby water molecules and neighboring nucleobases. Their response to the reaction field R(t), induced by the chromophore, can be measured as dynamic fluorescence Stokes shift on a ps- to ns-timescale. In this way the chromophore is used not only as THz light source but also as detector. The local THz absorption spectrum is then obtained by a suitable Laplace transformation of the time-dependent Stokes shift^[122,123], a method similar to the Fourier transformation of the Free Induction Decay (FID) in NMR. The requirements

1.2 Fluorescent base analogues extend the nucleobase alphabet

of molecular THz spectroscopy, as outlined above, restrict the repertory of suitable chromophores severely. Clearly the probe must be sensitive to the microenvironment or, in other words, should show sizable fluorescence shifts between different solvents. Also the fluorescence lifetime should be long enough to measure the dynamic Stokes shift up to several nanoseconds; therefore lifetime shortening interactions in the excited state like FRET, photo-induced electron transfer or intersystem crossing should be avoided. Moreover the probe has to be free of internal vibrational modes below 300 cm⁻¹, otherwise they could mix with external modes of the environment that are the aim of the detection. But all of these photophysical properties will be useless when the probe molecule alters or perturbs the DNA helical structure. The following section will discuss the advantages and drawbacks of known base analogues. In doing so we will also see why there is still a strong need for further development of base analogues.

1.2 Fluorescent base analogues extend the nucleobase alphabet

One of the earliest and most studied^[95,120,124–127] fluorescent nucleobase substitutes is 2-aminopurine (2AP). Ward et al.^[128] reported in 1969 that 2-aminopurine riboside (together with 2,6-diaminopurine riboside and formycin), in contrast to adenine and other naturally occurring bases, is fluorescent under physiological conditions, and they explored its photophysical properties under different solvent polarities, pH values and temperatures. 2AP has a high fluorescence quantum yield as free base in solution (0.68), but when incorporated into nucleic acids a 100-fold decrease is observed. Unfortunately it is necessary to place 2AP between two adenines to avoid efficient electron transfer involving adjacent guanines or cytosines^[120,127]. Dallmann et al.^[129] demonstrated that the structural perturbations by 2AP, replacing adenine and paired with thymine in the middle of the duplex are small. The two structures differ only in the position of the amino group that was moved from the major to the minor groove in 2AP (Fig. 1.1). However, the base pair dynamics was found to be four times faster, and also the lifetime of the next three base pairs were lowered in both directions, thus explaining the lower melting point of the

duplex with 2AP in the center.

The acridine derivative 9-amino-6-chloro-2-methoxyacridine (ACMA) was also investigated by Ernsting et al.^[130]. It was incorporated opposite adenine and needed to be separated from guanine for the same reason as 2AP. The Stokes shift is small and reaches a constant value within 200 femtoseconds, which is considerably faster than in aqueous solutions, where the Stokes shift develops on the nanosecond time scale. Although this is good evidence that ACMA intercalated into DNA, a larger and longer evolving shift is favored.

A series of pteridine analogues (third row in Fig. 1.1) of adenine (6MAP, DMAP)^[131] and guanine $(3-MI, 6-MI)^{[132,133]}$ were developed by Hawkins and co-workers. These compounds, which are commercially available, are characterized by intense fluorescence around 430 nm (fl. quantum yield between 0.39 and 0.88) and a relatively long lifetime of the excited state (3.8 to 6.5 ns). They are very sensitive to the microenvironment, lowering their fluorescence quantum yield in DNA strands (< 0.01 to 0.3) depending on the neighboring bases^[134]. But melting experiments indicate, except for 6-MI, a sequence-dependent destabilization^[131] which is, in case of 3-MI, similar to that of a single base pair mismatch^[132]. Nevertheless, the well-documented quenching effects, the high fluorescence quantum yield and the already mentioned commercial availability made them useful in numerous applications^[96].

In contrast to 2AP and the pteridine analogues, Matteucci and co-workers^[135] developed a tricyclic cytosine analogue tC, 1,3-diaza-2-oxophenothiazine (Fig. 1.1), that is nearly insensitive to the environment. Although this property prevents it from being used as polarity probe, the negligible influence of surrounding bases on its fluorescence quantum yield and lifetime^[136] makes tC particularly interesting in fluorescence anisotropy and FRET measurements^[137]. It should be noted that tC , as evidenced by NMR structure determination, is the first artificial and highly fluorescent DNA base that does not perturb the DNA conformation^[138]. Also the oxo-homologue of tC named tC^O is, on average, the brightest nucleobase analogue among other commercially available base substitutes, like 2AP and the pteridine analogues^[139]. Moreover, tC^O (energy donor) was paired

Figure 1.1: Structure of a) natural nucleobases and b) fluorescent base analogues. R = 2'-deoxyribofuranose; $R^1 = alkyl-chain$.

with tC_{nitro} , 7-nitro-1,3-diaza-2-oxophenothiazine (acceptor), to be the first nucleobase analogue FRET-pair and was then used to measure distances inside DNA of more than a full helix turn^[140]. A recent work^[141] offers strategies for a series of functionalized tricyclic cytosines in order to overcome the drawback of their insensitivity to the local environment.

A fluorescent nucleobase named furano-dT was introduced by Woo et al.^[142] in 1996, but when incorporated into an oligonucleotide the final step of ammonia treatment in the solid-phase synthesis led to the C-analogue pyrrolocytosine (pyrrolo-dC, see Fig. 1.1). Fortunately, pyrrolo-dC pairs normally as a cytosine (selectively with guanine), does not disrupt the DNA helix, and is tolerated by DNA and RNA polymerases^[143]. However the fluorescence quantum yield is reduced after incorporation into a single strand and decreases even more after hybridization with a complementary strand^[143,144]. But pyrrolo-dC, since it is commercially available, has already served as a tool in several applications^[145] like characterization of the transcription bubble in T7 RNA polymerase^[146], detection of abnormal base pairing in DNA/RNA hybrid strands of the HIV-1 polypurine tract^[144] or probing the kinetics of parts of damaged DNA by a human alkyltransferase^[147]. Interestingly, pyrrolo-dC and 2AP can be used in a fashion similar to that of a molecular beacon^[148]. Actual development of pyrrolocytosine is concentrated on the enhancement of the fluorescence quantum yield^[149,150] by replacing the methyl group with an aromatic tether or the whole aromatic ring system^[145].

Coleman and Madaras^[151] introduced a coumarin 102 containing nucleoside opposite an abasic site (see Fig. 1.1). In the subsequent study, Brauns et al.^[152] were the first to show the dynamic Stokes shift of fluorescence of a specially designed base-pair analogue (inside of a DNA double helix) and concluded that the interior of DNA is "a unique dynamic environment unlike either a fluid or a molecular crystal." The coumarin nucleoside was then used (also in the group of Ernsting) to explore the environment and dynamical features of DNA oligonucleotides^[153–157] and "fraying" (5 ps timescale) at the end of the helix^[155]. When placed into the center of an oligonucleotide, sequence-independent^[158] dynamics was observed that is distributed over a time range covering six orders of magnitude (40 fs to 40 ns) and follows a power law with small exponent (0.15). However the power

1.2 Fluorescent base analogues extend the nucleobase alphabet

law dynamics, which lacks distinguishable subcomponents, indicates strong coupling of motions inside different parts of the DNA system^[154], thus limiting its use as polarity probe in our TDSS studies.

The next chromophore, Nile Red (Fig. 1.1), also contains four fused aromatic rings and was introduced as base analogue by Okamoto et al.^[159]. The nucleoside maintained high solvatochromicity comparable to the free Nile Red. The fluorescence, when incorporated opposite adenine, guanine or a missing base, was greatly shifted to shorter wavelength by the addition of β -cyclodextrin, but only slightly opposite cytosine, thymine and an abasic site. The same separation was found in the melting temperatures, where the latter group showed higher T_m values. A stabilization induced by a more tightly binding of Nile Red to the duplex was given as explanation. In case of placing Nile Red opposite the first group, Okamoto suggested the usage as probe for the microenvironment of DNA that can monitor polarity changes, caused by interactions between DNA and DNA-binding molecules. However, their results indicate that the observed effect of conformational change depending on polarity is driven by structural perturbations in the duplex.

Okamoto et al.^[105] also developed a series of base-discriminating fluorescent nucleobases (e.g., BPP and ^{MD}A in Fig. 1.1). They have been designed for SNP discrimination, so they rely on quenching of fluorescence when paired with a certain native nucleobase, which stands in contrast to our design of a non perturbing polarity probe with high fluorescence quantum yield.

In 1998 Kool et al.^[97] introduced pyrene (P, Fig. 1.1), a polycyclic aromatic hydrocarbon (PAH), that was incorporated into DNA by a Klenow fragment opposite an abasic site. The observed selectivity and efficiency were greater than those for the natural DNA triphosphates. Interestingly, the DNA synthesis stopped after incorporation of P, which makes it useful in detection of abasic mutations^[160]. A point of more general interest is the observation that the replacement of a native base opposite an abasic site by pyrene, stabilized the duplex in a range of 18 to 23 °C^[97]. This finding has been explained by restored π - π -stacking interactions in the strand with the abasic site, since P can cover a similar surface area as native base pairs. Use of hydrocarbons with less aromatic surface,

for example, 2,2'-bipyridyl deoxynucleoside (dBPy, Fig. 1.1), led to a thermal stabilization of only 3.7 - 8.4 °C in comparison with nucleobases^[161]. Although the larger porphyrin C-nucleoside (PP, Fig. 1.2) showed a stabilization of ca. 10 °C^[162], it is only half of the enhancement induced by pyrene nucleoside P. Increased thermal stability (ΔT_m from 1.0 up to 8.4 °C) was also measured for bis-substituted and alkyl-linked phenanthrene (Phen), phenanthroline (PheN) and pyrene (P_{1,8}, see Fig. 1.2), depending on linker length and, again, in comparison with adenine as counterbase to the abasic site^[163,164]. Additionally, it was demonstrated that the substitution of a native base by a pyrene (P) with flexible, acyclic linkage in the middle of the sequence destabilized the DNA duplex more ($\Delta T_m =$ -6.3 °C) than insertion close to the 3'- or 5'-ends ($\Delta T_m = -2.7$ °C)^[165].

An alternative strategy to the replacement of the nucleobase is the development of acyclic sugar analogs that are linked to an intercalator. The flexibility gained by the acyclic sugar linker allows to place large intercalating fluorophores, like the ethidium derivative Etd (see Fig. 1.2), in the center of DNA duplexes opposite native bases. These double strands showed not only similar Tm values in melting experiments, but also similar fluorescence spectra with emission maxima in a range of 622 and 625 nm under excitation at 520 nm^[166]. A possible explanation for this unexpected insensitivity to the counterbase was given by suggesting an extrahelical position for them, due to the large space demand of Etd. Ethidium itself is known to prefer binding to duplexes of RNA, DNA and DNA-RNA-hybrids rather than to triplex or G-quadruplex DNA^[167]. Upon binding into DNA/RNA a more than 10-fold increase in fluorescence signal is observed, since the exchange of amine hydrogens with the solvent is reduced^[168]. A combination of Etd and 7-deazaguanine (as charge acceptor^[169]) allows fluorescence detection of single base mismatches and abasic sites when these two pseudonucleotides are incorporated between two base pairs^[170].

The aforementioned extrahelical position of the counterbase to the intercalating Etd is supported by further work, where a considerably larger perylene-diimide (PDI2, Fig. 1.2) was placed in the middle of the duplex opposite thymidine and then opposite an abasic site. Interestingly, the melting temperatures of both duplexes were identical^[171], thus indicating same stacking interactions for PDI2 even in the presence of the thymi-

Figure 1.2: Structure of large fluorescent base analogues. R = 2'-deoxyribofuranose; $R^1 = (S)$ -aminopropanediol.

dine counterbase. Other large chromophores, like 1-(Phenylethynyl)pyrene (PEPy) and 9,10-bis(phenylethynyl)anthracene (BPEA), were incorporated into DNA by using a 1,3-butanediol backbone^[172]. Both were positioned opposite thymidine which led to a destabilization of the duplex (BPEA $\Delta T_m = -6.8$ °C, PEPy $\Delta T_m = -1.4$ °C). Compared to the initial pyrene, PEPy analogs have beneficial spectroscopic properties when used in molecular biology applications, since biomolecules will be excited at the same wavelength as pyrene^[173]. A notable application of PEPy pairs was the detection of single polymorphisms in the gene fragment of 23S rRNA Helicobacter pylori^[174].

The group of Hirao et al.^[175] introduced a fluorescent purine analogue, 7-(2,2'-bithien-5-yl)-imidazo[4,5-b]pyridine (Dss in Fig. 1.2) that can be incorporated site-specifically into DNA and RNA by polymerases. Moreover, it functions as a universal base that pairs with all four natural bases with nearly equal thermal stabilities. An important drawback for the usage as polarity probe is the long extension of the base analogue by tethering two thienyl-groups in a row that are somehow located in the major grove. As a consequence, the fluorescence of the Dss chromophore is only slightly changed upon duplex formation. Such observations are typical for a class of nucleoside analogues that are based on extension of purine and pyrimidine moieties. This strategy was frequently used by Srivatsan et al.^[176–180], but as already stated, tethering of bulky groups is not favored in the current thesis.

Recent activities by Wagenknecht et al. are centered around thiazole orange (TO) and thiazole red (TR, see Fig. 1.2) as "DNA traffic lights"^[181–183]. The wavelength-shift of fluorescence upon duplex formation, due to aptamer target binding, is quantified as altered contrast ratio. Therefore, Wagenknecht and co-workers^[181] suggested aptasensors as potential application.

The group of Diederichsen et al.^[184,185] introduced 8-vinyl-2'-deoxyguanosine (1.2) as a DNA polymerase processable base analogue that is capable to detect different types of DNA quadruplex structures.

The group of Eric T. Kool^[186,187] continued their work on multichromophoric DNA systems. This approach, where the DNA backbone offers a scaffold for an array of chro-

1.2 Fluorescent base analogues extend the nucleobase alphabet

mophores, has gained more and more interest during the last few years^[188,189]. For this purpose, sets of size-expanded nucleobases were composed^[190]. They are based on a series of earlier works by Kool et al.^[94,191] and referred to as "expanded DNA" (xDNA), "wide DNA" (yDNA) and "double-wide DNA" (yyDNA, see Fig. 1.1). These size-expanded analogs were designed to extend the genetic alphabet and are able to form base pairs different (orthogonal) from those found in native DNA^[95]. When a single expanded base pair is substituted into natural DNA, they are destabilizing the natural helix, due to their large size. Therefore, a single expanded nucleobase is not suitable as probe for the desired TDSS experiment. However, when all base pairs are expanded, xDNA and yDNA form a highly stable, sequence-selective and widened double helix^[94].

A similar multichromophoric approach was used by Leumann et al.^[192] who incorporated multiple 2-pyrenyl-C-nucleosides (each P replaced an adenine/thymine base pair) which then formed a stable excimer. In earlier studies, pyrene has been stacked by using $P_{1,8}^{[163]}$ or tethering to deoxyuridine^[193,194], so that its position is defined upon duplex formation of the parent nucleobase. In an actual work, Häner et al.^[195] switched from $P_{1,8}$ to a porphyrin nucleoside and were able to build double strands containing up to four free base porphyrins. They maintain duplex stability when placed pairwise in opposite positions, whereas a considerable destabilization is observed opposite to natural nucleobases. A model for H-aggregation of the porphyrins, which causes fluorescence quenching, is supported by UV/vis spectroscopy. Häner's group^[196] also studied the stacking of electron-rich pyrene (P) and electron-poor perylene-diimide (PDI) and found that electrostatic complementarity is important for aromatic π - π -stacking interactions. P and PDI can stabilize the DNA duplex when incorporated into opposite strands with equal ratio of the chromophores.

Yitzhak Tor and his group extended their work (see pyrrolo-dC) on tethering,fusing thiophene and furan based moieties onto 6-aza-uridine^[197,198] (Fig. 1.2) in order to build isomorphic fluorescent nucleosides; such molecules (including other nucleobases) were intensively studied by his group over the last years^[96]. A possible application for 6-aza-uridine as chromophore in single molecule detection by two photon excitation has been

suggested lately^[199]. A contribution to the multichromophoric approach was also tested by demonstrating that three identical isomorphic fluorescent nucleosides in alternating or neighboring positions display enhanced, sequence-dependent signals for either duplex formation or dissociation^[200]. Further extension of these molecules with substituted aryl rings increases the push-pull interactions yielding enhanced bathochromic shifts and solvatochromism^[201] (but the price is a large non-rigid tether). Also worth mentioning is the design of an emissive RNA alphabet with bases that were all derived from thieno[3,4d]pyrimidine^[202]. These nucleobases exhibit visible emission, high quantum yield, and responsiveness to environmental perturbations.

At the end of this general overview about fluorescent nucleobase analogues we come to the direct predecessor of the chromophores that are studied in the current thesis. After coumarin, the group of Ernsting employed a 2-hydroxy-7-nitrofluorene (HNF, Fig. 1.2) opposite an abasic site^[203]. In contrast to native DNA, the HNF chromophore is linked via an α -glycosidic-bond to the 2-deoxyribofuranose. NMR structure determination has revealed that the HNF moiety can intercalate into the duplex in two different orientations. In the "face-down" case the methylene group points towards the minor groove while in the "face-up" conformation towards the major groove. The magnitude of the time-resolved Stokes shift (2660 cm⁻¹) is large in comparison to coumarin (960 cm⁻¹), but the lifetime of the excited state is short, only 35 ps, due to intersystem crossing.

1.3 Aim of this work

Many fluorophores have been introduced into duplex DNA (or were attached) during the last few years, but most of them were designed for purposes (FRET, SNP etc.) that are not necessarily compatible with the envisioned TDSS experiments. The base analogues that Ernsting and coworkers have examined so far did not fulfill all desired requirements simultaneously. Short lifetimes of the excited state (ACMA, HNF), electron transfer with nearby bases like guanine (2AP, ACMA), or coupling with modes below 300 cm⁻¹ (coumarin) all hampered the observation of the time-dependent Stokes shift. Continued development

of suitable chromophores, backed up by femtosecond spectroscopy and NMR structure determination, is clearly required. Here we employ NMR spectroscopy to determine the structure of three modified oligonucleotides. The principle design and position of the fluorescent nucleobase analogues, including necessary modifications to their backbone, are given in Fig. 1.3. All modifications were studied in the same basic sequence (Fig. 1.3) to ensure comparability between strands.

The first modified duplex incorporates 2-hydroxy-7-carboxyfluorene (HCF, Fig. 1.3) opposite an abasic site; this construct will be abbreviated 13merHCF. It has been introduced as successor to the HNF chromophore, so structural similarities such as two chromophoric orientations are most likely^[203], but this also allows discussing the effect of changing a functional group in a known environment. Furthermore it is necessary to investigate the protonation state of the carboxyl group, since the logarithmic acid dissociation constant (pK_a) of nucleobases is normally raised when incorporated into the duplex^[19].

The second DNA duplex strand introduces 6-hydroxyquinoline (6HQ, Fig. 1.3) as base surrogate. A cytosine was chosen as counterbase and potential partner for hydrogen bonding. The resulting duplex strand will be abbreviated 13mer6HQ. The photophysical properties of the chromophore are well-known, since it was studied by Ernsting et al. as free N-methyl-6-quinoline^[122] and as covalently linked tether to trehalose^[204]. In contrast to the other duplex strands, the 6HQ base analogue has been incorporated as 2,3-dihydroxypropylnucleoside which is known as glycol nucleic acid (GNA^[71–74]). The small size of this flexible acyclic linker will possibly affect the chromophore and the adjacent nucleotides, but it was the only synthesis method with sufficient product yield. Up to now, only crystal structures of duplex strands containing a full GNA backbone were published, so the solution structure of a DNA duplex with a GNA monomer in the center will be of general interest.

In the last duplex which is studied here, the central base pair is replaced by an artificial base pair analogue; this construct will be abbreviated 13mer4AP-DAP. Here 4aminophthalimide (4AP, Fig. 1.3) is paired with 2,4-diaminopyrimidine (DAP) in the opposite strand. Both nucleobase analogues were synthesized in cooperative work^[205] be-

tween the groups of Ernsting (DAP) and Wagenknecht (4AP). The 4AP chromophore is known to be highly sensitive to the polarity of the medium and it has been stated that the fluorescence properties (e.g. intensity, lifetime) are further enhanced due to the involvement of hydrogen bonding interaction with the solvent molecules^[206]. In fact, the observed lifetime of the excited state is lowered from 14 - 15 ns in protic media to roughly 1 ns in water. In order to allow hydrogen bonding inside of the duplex, a second artificial nucleobase analogue (DAP) was necessary, since there is no native nucleobase that can provide the correct hydrogen bonding pattern. A problem that has to be addressed is the hydrolysis of the 4AP chromophore in water, especially under basic conditions. A weak acidic buffer extended the lifetime of the 4AP mononucleotide from hours to a few days, but in the duplex this could cause protonation of the DAP. Therefore, a whole series of questions about 13mer4AP-DAP has to be answered by NMR and UV/vis spectroscopy. These questions are centered around the duplex structure, hydrogen bonding pattern, protonation of DAP and finally, the chemical lifetime of the sample.

Even though the main topic of this work is the structure determination of oligonucleotides with embedded polarity probes, we will see that equal attention must be given to temperature-dependent measurements of absorption. The corresponding method will therefore be described first. Normally UV absorption measurements, as function of temperature, are used to obtain a hybridization curve and to determine the melting point T_m of a DNA duplex. For a modified strand the melting point indicates a degree of duplex stability (or destabilization) when compared to the native or unmodified reference duplex. In this work the measurement which is usually performed at a single wavelength (260 nm) will be replaced by the detection of full spectra at different temperatures, covering the UV/vis range (200-700 nm). The spectra are then analyzed in their entirety by Singular Value Decomposition (SVD). As will be shown, this procedure can uncover significantly more information about the binding properties of the chromophore/duplex system compared to a single melting point determination. Melting will be seen (by focussing on the UV absorption band around 260 nm) as a global and a local, sequence-dependent process of the duplex. This behavior can then be compared to that of the probe (monitoring the

Figure 1.3: Structure of new fluorescent base and base pair analogues. Native DNA is marked black and all modifications including backbone are either red or blue colored. Red molecules are placed at position X and the green ones at Y, respectively.

corresponding absorption band in the visible) which reflects local changes only. In this way possible perturbations of the melting process, like bubble formation, can easily be explained or definitely excluded. Also concurrently evolving processes (e.g. peak shifts, change of active species) will be revealed that would otherwise affect the melting analysis. In combination with the solution NMR structure of the duplex, a deeper understanding is achieved of binding and solvation, structural fluctuations, and the melting process.

2 Conceptual background

The following sections will provide the background for the major topics of this work. At the beginning, the nomenclature and essential structural aspects of DNA (sec. 2.1) will be outlined to provide a common basis for discussion. The middle part will describe the methods to obtain structural restraints and how they are used to determine the structure of DNA (sec. 2.2 - 2.5). Finally, the last two sections are dedicated to the field of optical spectroscopy. They will introduce Singular Value Decomposition (sec. 2.6) as method to derive more information about the melting process of DNA (sec. 2.7).

2.1 Structural aspects of DNA

The nomenclature in Fig. 2.1 follows the recommendations of Markley et al.^[207] for the presentation of NMR structures. Natural DNA is composed of four nucleobases and a phosphodiester bridged backbone of 2'-deoxy- β -D-ribose, also referred to as "sugar". The bases can be subdivided into purine and pyrimidine derivatives. Adenine (A) and guanine (G) belong to the purines, whereas thymine (T) and cytosine (C) represent the pyrimidines. They are shown in Fig. 2.1, forming the two Watson-Crick base pairs A:T and G:C.

By attaching A, G, T, C to the C1' of the sugar the nucleosides adenosine, guanosine, cytidine and thymidine are formed. Consequently, all atoms of the deoxyribose will be marked with "'" to discern them from the nucleobase atoms. Five torsion angles ν_0 to ν_4 (Fig.2.1) specify the conformation of the sugar, but due to geometrical constraints in a five-membered ring, only two parameters are necessary to describe them. These are the pseudorotation P and the maximum torsion angle ϕ_m (pucker amplitude), so the angle ν_j

2 Conceptual background

Figure 2.1: Structure and nomenclature of the Watson-Crick base pairs A:T and G:C are shown in the left panel. The upper right corner illustrates 2'-deoxy- β -D-ribose and the lower right denominates the torsion angles.

is given by

$$\nu_j = \phi_m \cos[P + 144^\circ(j-2)] \qquad (j = 0, 1, 2, 3, 4). \tag{2.1}$$

Please note that the concept of pseudorotation was originally introduced for cyclopentane^[209], but Altona and Sundaralingam^[208] extended the concept to the sugar ring of nucleosides and nucleotides, respectively. Although sugar conformations are not static, it is possible to define two regions where ribose and deoxyribose nucleotides are mainly found (black arrows in Fig. 2.2). One of these regions is centered around the C3'-endo conformation, also referred to as N-type (north), that dominates in A-DNA. As outlined in the introduction, the A-form is typically found in single crystals of short duplex strands, while in solution the B-form with C2'-endo conformation (or S-type, south) is predominant.

Figure 2.2: Pseudorotation phase angle P and related sugar conformations, picture taken from Altona and Sundaralingam^[208]. Large black arrows indicate regions where mainly ribose and deoxyribose nucleotides are found.

The glycosidic bond angle χ characterizes, together with the backbone angles $\alpha - \zeta$, the helical structure of an oligonucleotide. Two ranges can be found for χ that are designated syn and anti. The more stable anti conformation is usually found in A- and B-form DNA. For the syn conformation, where the position of the nucleobase above the sugar causes steric interference, the assistance of some external force is required^[19]. This can be either a high salt concentration to favor Z-DNA^[17] or the attachment of a bulky group to the 8 position of purines (6 in pyrimidines).

The variation of the backbone angles $\alpha - \zeta$ allows to distinguish three major helix structures (A, B and Z). The A and B forms are right-handed helices, while Z is lefthanded and occurs in alternating purine-pyrimidine sequences (mainly GC). Due to base

2 Conceptual background

	A-DNA	B-DNA	Z-DNA
Helix handedness	Right	Right	Left
base pairs / reapeating unit	1	1	2
base pairs / helix turn	11.6	10	12
Helix twist (°)	32.7	36	$-10^{\rm a}, -50^{\rm b}$
Rise / base pair (Å)	2.9	3.4	$-3.9^{\rm a}, -3.5^{\rm b}$
Helix pitch (Å)	32	34	45
P distance from helix axis (Å)	9.5	9.4	$6.2^{\rm a}, 7.7^{\rm b}$
Displacement of base pair			
to helix axis (Å)	-4.1	0.8	3.0
Glycosidic bond orientation	anti	anti	$anti^{c}$, syn^{d}
Major groove depth (Å)	13.5	8.5	Convex
${ m width} ({ m \AA})$	2.7	11.7	
Minor groove depth (Å)	2.8	7.5	9
width $(Å)$	11.0	5.7	4

Table 2.1: Average structural parameters for different helical forms $^{[19]}$

^aCpG or ^bGpC step. ^cCytosine. ^dGuanine.

displacement from the helix axis with large inclination, the A-form is thick and compressed along the helix axis. In contrast to this, the nucleobases of B are in the center of the helix and inclined nearly perpendicular to it, thus leads to a smaller diameter and nearly equal depth of the grooves. The mean twist angle in B-DNA is 36°, though they vary in a wide range between 24 to 51°, giving roughly 10 base pairs per helix turn^[19]. More helical properties that distinguish between A-, B- and Z-DNA are listed in Table 2.1, but note that averaged values are given for sequence-dependent parameters of a dynamic system.

2.2 Nuclear Overhauser Effect spectroscopy

NMR structure determination has become an important tool to study biomolecules in solution. The main reason for this success is the possibility to derive distance information from Nuclear Overhauser Effect spectroscopy (NOESY). The NOE was discovered by Overhauser in $1953^{[210]}$ and originally described the interaction between the saturation of the electron spin resonance and the polarization of their nuclei. The same effect was then observed between different nuclei in decoupling experiments. Therein, a resonance line was selectively saturated prior to recording of the 1D spectrum. In such experiments, Anet and Bourn^[211] (1965) found that the signal intensity for nuclei in close proximity to the saturated nucleus was enhanced by 17 to 45 % due to dipole-dipole cross-relaxation (see also Fig. 2.4). However, the application of this method to biological macromolecules suffered from the limited selectivity of preirradiation in crowded spectral regions and huge experimental effort^[31]. The development of two-dimensional (2D) cross-relaxation spectroscopy in 1980 by Macura and Ernst^[212] finally allowed the measurement of a complete NOE-network between all the protons in a macromolecule in only one experiment.

In Fig. 2.3 a basic NOESY pulse-sequence is shown. Transverse magnetization is created by the first non-selective 90° ($\pi/2$) pulse and allowed to precess freely for an evolution time t_1 . The latter is varied in the course of the experiment, thereby frequency-labeling the magnetization components. The second pulse transfers the magnetization back along the (negative) z-axis and longitudinal cross-relaxation takes place for the length of mixing time t_m . In contrast to t_1 , the mixing time remains constant during the measurement, but can be adjusted at the beginning to fulfill the needs of the sample. The last pulse finally generates transverse magnetization whose precession can be detected as a function of t_2 .

The formal treatment of a multi-spin system, comprising g spin groups in a twodimensional NOESY experiment, is presented in the following. Basic conditions are the presence of dipolar interactions to allow cross-relaxation and the absence of scalar spinspin-interactions. Then cross-relaxation of longitudinal magnetization components M_{ij}

2 Conceptual background

Figure 2.3: Basic NOESY pulse-sequence for two-dimensional cross-relaxation spectroscopy. Transverse magnetization created by the first 90° ($\pi/2$) pulse becomes frequency-labelled in the course of evolution period of length t_1 . After the second pulse, longitudinal cross-relaxation takes place for the length of mixing time t_m . The last pulse finally generates transverse magnetization whose precession can be detected as a function of t_2 .

can be described with the following system of equations $^{[212]}$:

$$\dot{\mathbf{m}} = \mathbf{R} \times \mathbf{m}.\tag{2.2}$$

Here the vector **m** comprises the deviations of M_{zi} from thermal equilibrium for all g spin groups and the relaxation matrix **R** contains the cross relaxation rates R_{ij} as well as the external relaxation (leakage) rates R_i . A component m_i of **m** is defined by:

$$m_i = M_{zi} - \frac{n_i}{N} M_0$$
 with $N = \sum_i n_i$ and $i = 1, 2, ..., g.$ (2.3)

where M_0 is the total equilibrium magnetization of the N nuclei. At the beginning of the mixing period the initial z-magnetization components are encoded by the precession frequencies (ω_i) that are witnessed at t_1 of the evolution period.

$$m_i(0) = M_0 \frac{n_i}{N} \left[\cos(\omega_i t_1) \exp\left(-\frac{t_1}{T_{2i}}\right) - 1 \right].$$
(2.4)

The application of the second $\pi/2$ pulse marks the beginning of the mixing period during which cross-relaxation proceeds. The recovery of the magnetization towards equilibrium

Figure 2.4: NOE effect in a two spin system. The left panel shows a system of two spins A and B, where the size of the boxes represent a simplified occupation ratio. Upon saturation of the B transitions (curly arrows) the ratio is changed to the scheme in the right panel, where solid lines mark the new ratio and dashed lines the old one. The arrows on the right now indicate the pathways for cross-relaxation and W the transition probability. The small indices denominate the type of transition (zero, single and double quantum). In small molecules with short correlation time W_2 dominates and hence enhances the intensity of A. The longer correlation time in macromolecules prefers W_0 for which a negative NOE effect is measured. The ratio between W_0 and W_2 decides whether enhancement, reduction or even no change of intensity is observed.

at time t_m can then be written as solution to eq. $(2.2)^{[212]}$

$$\mathbf{m}(t_m) = exp[-\mathbf{R} t_m] \mathbf{m}(0), \qquad (2.5)$$

where the matrix $\mathbf{m}(t_m)$ represents the magnetization components after the mixing time t_m and $\mathbf{m}(0)$ the intensities of the diagonal peaks (defined in eq. 2.4) at t = 0 of the mixing period. The diagonal (R_{ii}) and off-diagonal (R_{ij}) relaxation matrix elements are given as^[213]:

$$R_{ii} = q_{ij} \sum_{i,j} (J_{0,ij}(\omega_i - \omega_j) + 3 [J_{1,ij}(\omega_i) + J_{1,ij}(\omega_j)] + 6 J_{2,ij}(\omega_i + \omega_j) + R_{1i})$$
(2.6)

$$R_{ij} = q_{ij} [6 J_{2,ij}(\omega) - J_{0,ij}(\omega)]$$

$$with \ q_{ij} = \frac{\hbar^2 \gamma_i^2 \gamma_j^2 \mu_0^2}{160 \pi^2}.$$
(2.7)

25

The term R_{1i} in eq. 2.6 represents the leakage rate, which can usually be neglected in the absence of paramagnetic nuclei. The factor q_{ij} collects all constant values, these are \hbar as the reduced Planck constant, γ_i and γ_j as the gyromagnetic ratios for spins i and j, respectively and μ_0 as the magnetic constant or vacuum permeability. $J_{n,ij}(\omega)$ represents the spectral densities for the zero, single and double quantum transitions (n = 0,1,2). In Fig. 2.4 the pathways of these transitions are shown with a two-spin system as example and their spectral densities are defined as follows:

$$J_{n,ij}(\omega_0) = \frac{\tau_c^{ij}}{1 + (n\,\omega_0\,\tau_c^{ij})^2} \frac{1}{r_{ij}^6}.$$
(2.8)

This equation correlates the mixing time t_m in eq. 2.5 with the rotational correlation time τ_c^{ij} of the vector between spin groups i and j. The corresponding internuclear distance is r_{ij} . One can now distinguish two cases in which similar spin groups are observed. In case of a small molecule with short τ_c^{ij} a relatively long mixing time has to be applied in order to allow full cross-relaxation of the longitudinal magnetization, but when compared to large biomolecules with long τ_c (e.g. DNA) then a short mixing time in the range of 100 - 200 ms has to be chosen. In addition, an approximation has been introduced in eq. 2.8 in which ω_i and ω_j are replaced by the center frequency ω_0 , since the differences in resonance frequency for various spins are negligibly small compared to the value of the resonance frequency itself. The factor n in the denominator again marks the type of transition and can range between 0 and 2 (see Fig. 2.4). With the help of some additional assumptions the intensities of NOE cross-peaks can then directly related to distances in a molecule. This approach is called "isolated spin pair approximation" and will be introduced in the next section.

2.3 Isolated Spin Pair Approximation - From NOESY to distance

The usually employed method to derive distances from NOESY spectra is the "isolated spin pair approximation"^[214,215] (ISPA), also known as "two-spin approximation"^[216].

Several assumptions have to be made at the beginning. First, a single correlation time (τ_c) for the whole molecule is introduced in order to replace the individual τ_c^{ij} in eq. 2.8.

$$J_{n,ij}(\omega_0) = \frac{\tau_c}{1 + n^2 \,\omega_0^2 \,\tau_c^2} \,\frac{1}{r_{ij}^6}.$$
(2.9)

This assumption is valid, since Reid et al.^[216] have shown that correlation times for base and sugar protons are comparable. Moreover, it can be assumed that oligonucleotides shorter than 15 base pairs are like isotropic rotors^[217]. Sometimes one has to consider local mobility of residues or whole substructures. In such cases a modified spectral density function (eq. 2.10) has to be defined^[218,219], where τ_e is introduced as the effective correlation time of the local mobility site and S^2 as the generalized order parameter. S^2 is a measure for the flexibility of the site with values ranging from 0 (unrestricted motion) to 1 (fully restricted motion).

$$J_{n,ij}(\omega_0) = \left(\frac{S^2 \tau_c}{1 + n \,\omega_0^2 \,\tau_c^2} + \frac{S^2 \,\tau_e}{1 + n \,\omega_0^2 \,\tau_e^2}\right) \frac{1}{2 \,r_{ij}^6}.$$
(2.10)

In proteins, order parameters range from 1 to as low as 0.6 for flexible side chains^[220], while S^2 in DNA is on the order of 0.8 for all proton pairs^[221,222]. In the ISPA approach the contribution of local mobility will be canceled when the desired distances are referenced to a series of fixed and known distances. The next step in the ISPA approach is the expansion of eq. 2.5 into a Taylor series^[212]:

$$exp[-\mathbf{R} t_m] = 1 - \mathbf{R} \tau_m + \frac{1}{2} \mathbf{R}^2 \tau_m^2 + \dots,$$
 (2.11)

whereby the cross-peak intensities $a_{ij}^{[212]}$ are given by

$$a_{ij}(t_m) = (\delta_{ij} - R_{ij} t_m + \frac{1}{2} \sum_k R_{ik} R_{jk} t_m^2 + \dots) \frac{n_j}{N} M_0.$$
 (2.12)

The central assumption of the ISPA approach is that the Taylor series can be truncated after the linear term for short mixing times, thus cross-peak intensity $(i \neq j)$ becomes a linear function of r_{ij}^{-6} in equation 2.13. For longer mixing periods, effects of spin diffusion may be taken into account, which is magnetization transfer through a third atom (represented by the quadratic term).

$$a_{ij}(t_m) = R_{ij} t_m = q_{ij} \tau_c \tau_m \left(\frac{6}{1+4\omega_0^2 \tau_c^2} - 1\right) \frac{n_j}{N} M_0 \frac{1}{r_{ij}^6}$$
(2.13)

The intensity a_{ij} can now be referenced to a known, fixed distance r_{ref} with a corresponding a_{ref} , thereby eliminating all constant terms.

$$\frac{a_{ref}}{a_{ij}} = \left(\frac{r_{ij}}{r_{ref}}\right)^6 \qquad or \qquad r_{ij} = r_{ref} \sqrt[6]{\frac{a_{ref}}{a_{ij}}} \tag{2.14}$$

Commonly used reference distances in nucleic acids are the C H5-H6^[216], T C7-(H7)₃ to account for fast rotation in methyl groups or solvent exchange with amino and imino protons in C H42-H5.

2.4 Residual Dipolar Couplings

Over the last years Residual Dipolar Coupling (RDC) measurements have evolved into an important source of structure information beside NOE distances^[223–225]. They offer complementary information about biological macromolecules that compensate a major drawback of NOE data. Due to the r⁻⁶-dependence of the NOE effect, the latter is limited to distances up to 5 Å (see sec. 2.2). Although it is possible to observe long-range crosspeaks for proteins, where two residues that are far distant in primary sequence can be folded in close proximity to each other, the rod-like shape of DNA provides cross-peaks between adjacent bases only. Consequently it was impossible to describe long range effects like bending of an A-tract in DNA prior to the development of RDC measurements^[226]. RDCs, on the other hand, provide information about the orientation of the bond vector relative to the external magnetic field, which is (in case of rod-like shaped DNA) identical to the orientation of the helical long axis. Thus it is possible to compare orientations between residues along the whole strand.

The NMR spectroscopy in partially oriented media was discovered by Saupe and Englert^[227] in 1963, followed by a theoretical description a year later^[228]. One limit for the application to large biomolecules was overcome with the introduction of high resolution NMR and corresponding methods. Tolman et al.^[229] were the first to present RDC measurements of cyanometmyoglobin, which has a very highly anisotropic paramagnetic susceptibility. Only two years later, in 1997, Bax and Tjandra^[230] were able to measure the diamagnetic protein ubiquitin, which was dissolved in a very dilute solution of bicelles that adopted an ordered, liquid crystalline phase. The induced order by an external component allowed the measurement of residual dipolar couplings, while the high resolution of NMR can be retained. In the following, Tjandra and Bax^[231] showed that the degree of solute alignment with the magnetic field can be tuned by variating the concentration of the bicelles. This marked a breakthrough in biological NMR, since dipolar coupling experiments were not limited anymore to samples with highly anisotropic paramagnetic susceptibility.

Figure 2.5: Acquisition of RDCs. (a) Showing the steric interaction between Pf1 phage and the DNA, preventing isotropically tumbling and inducing residual order. B₀ indicates a static magnetic field. (b) RDCs can be determined by measuring the difference of dipolar coupling in a bond vector with and without alignment.

Over the next years more alignment media were developed. Some were also based on bicelles to align in a liquid crystalline phase^[232–235], others on filamentous phage^[236], stretched gels^[237,238], paramagnetic tagging^[239] or DNA nanotubes^[240]. In this work the bacteriophage Pf1 (see Fig. 2.5 a) was utilized to align oligonucleotides, since it is stable over a wide range of temperatures, but more important is that the interaction between DNA and Pf1 is minimized due to electrostatic repulsion of their negatively charged backbones^[241].

RDCs are determined by measuring the difference of the dipolar coupling in the presence $({}^{1}J_{ij}^{ani})$ and absence of molecular alignment $({}^{1}J_{ij}^{iso})$, as is shown in Fig. 2.5 b.

$${}^{1}J_{ij}^{ani} = {}^{1}J_{ij}^{iso} + D_{ij}, (2.15)$$

where i and j are non-equivalent spins connected via a chemical bond. The dipolar contribution D_{ij} to the observed splitting between i and j derives from the secular part of the magnetic dipole–dipole interaction between the spins. In the high field limit we can write

2.4 Residual Dipolar Couplings

the effective Hamiltonian^[225]</sup>

$$H_{ij}^{D}(t) = -\frac{\gamma_{i} \gamma_{j} \mu_{0} h}{8 \pi^{3} r_{ij}^{3}(t)} I_{iz} I_{jz} \left\langle \frac{3 \cos^{2} \alpha_{ij}(t) - 1}{2} \right\rangle.$$
(2.16)

Therein, r_{ij} is the distance between the nuclei, γ_i and γ_j are the gyromagnetic ratios, h is the Planck constant, μ_0 the permittivity of free space, I_{iz} and I_{jz} are angular momentum spin operators, and α_{ij} is the angle between the inter-nuclear vector of the two spins and the static magnetic field.

Note that the dipolar Hamiltonian $H_{ij}^D(t)$ depends on the orientation defined by the angle α_{ij} . The measurement of dipolar couplings D_{ij} represents a time and ensemble averaging of $H_{ij}^D(t)$ over all sampled orientations. This averaging is denoted by angular brackets in the following equation

$$D_{ij} = -\frac{\gamma_i \, \gamma_j \, \mu_0 \, h}{8 \, \pi^3} \left\langle \frac{3 \cos^2 \alpha_{ij}(t) - 1}{2 \, r_{ij}^3(t)} \right\rangle. \tag{2.17}$$

For isotropically tumbling molecules D_{ij} would be zero, but a non-zero value is obtained when there is an anisotropic distribution of orientations relative to the static magnetic field. The averaging in eq. 2.17 contains information about orientation of the B₀ field and the inter-nuclear vector in the molecular frame (xyz-coordinates). For macromolecules like DNA, it is desirable to describe the orientation of the inter-nuclear vector in relation to the molecular frame rather than the magnetic field, since the gathering of information to support structure determination is the motivation for the RDC experiment. The time averaged α_{ij} are therefore written as convolution of the inter-nuclear vector moving inside the macromolecular frame ($\zeta_x, \zeta_y, \zeta_z$). The convolution is illustrated graphically in Fig. 2.6 and mathematically as follows^[225]

$$\cos \alpha_{ij} = \begin{pmatrix} \cos \xi_x \\ \cos \xi_y \\ \cos \xi_y \end{pmatrix} \begin{pmatrix} \cos \zeta_x \\ \cos \zeta_y \\ \cos \zeta_y \end{pmatrix} = \sum_{k=1}^{x,y,z} \cos \xi_k \cos \zeta_k.$$
(2.18)

Figure 2.6: Orientation of the B₀ field and the inter-nuclear vector in the molecular frame. The angles ξ_x , ξ_y and ξ_z represent the orientation of the macromolecular frame (xyz-coordinates) relative to the magnetic field, while the orientation of internuclear vector is defined by the angles ζ_x , ζ_y and ζ_z relative to the frame. Picture taken from Blackledge et al.^[225]

The inter-nuclear vector between i and j is assumed to be rigid within the macromolecular frame. As consequence, the averaging of a_{ij} only acts on the orientation of the frame (ξ -angles) relative to the static magnetic field B_0 . With this in mind, the preferential orientational averaging of the molecule can be defined as alignment tensor **A** whose units are dimensionless

$$A_{kl} = \frac{3}{2} \left\langle \cos \xi_k \cos \xi_l \right\rangle - \frac{1}{2} \delta_{kl}. \tag{2.19}$$

At this point, an effective inter-nuclear distance $r_{ij,eff}$ will be introduced to account for the averaging of r_{ij} ^[225]. With eq. 2.19 and $r_{ij,eff}$ at hand eq. 2.17 can be rewritten as

$$D_{ij} = -\frac{\gamma_i \, \gamma_j \, \mu_0 \, h \, S_{axial}}{8 \, \pi^3 \, r_{ij,eff}^3} \, \sum_{k,l=}^{x,y,z} A_{kl} \cos \zeta_k \cos \zeta_l.$$
(2.20)

The scaling factor S_{axial} accounts for the local flexibility of the inter-nuclear vector. It is based on a model for axially symmetric motion that is called "diffusion in a cone" and depends on the amplitude of the motion but not on the position of the vector with respect to the alignment tensor^[225]. In this model, the order parameter S_{axial} is related to the

2.4 Residual Dipolar Couplings

Figure 2.7: Dependence of RDC values on the orientation of the inter-nuclear vector (θ , ϕ) in the eigenframe of the alignment tensor with eigenvalues A_{xx} , A_{yy} and A_{zz} (left panel). The orientational degeneracy of RDCs is shown on the right. The surface of the sphere is shaded as function of equal couplings. In other words, a solely measured RDC can cover a whole range of orientations indicated by a single color. At least 5 RDCs are necessary to calculate a distinct orientation of a vector inside the molecule. Picture taken from Blackledge et al.^[225]

generalized order parameter S, which scales down the measured RDCs linearly^[242] and is again related to an effective correlation time^[218].

In practice, the alignment tensor **A** has all elements non-zero. It would be preferable to find a specific molecular frame, the so called principal axis system (PAS), in which all offdiagonal elements of **A** are zero and only the diagonal terms A_{xx} , A_{yy} and A_{zz} remain. A three-dimensional Euler rotation of the current molecular frame with parameters α, β and $\gamma^{[225]}$ can be used to transform eq. 2.20 into the following equation, where the orientation of the inter-nuclear vector is defined by the polar angles θ and ϕ in the eigenframe of the alignment tensor:

$$D_{ij} = -\frac{\gamma_i \gamma_j \mu_0 h S_{axial}}{16 \pi^3 (r_{ij}^{eff})^3} \left[A_a \left(3 \cos^2 \theta - 1 \right) + A_r \sin^2 \theta \cos 2\phi \right]$$
(2.21)

By convention is $|A_{xx}| \leq |A_{yy}| \leq |A_{zz}|^{[225]}$. The axial A_a and rhombic component A_r of the alignment tensor **A** are defined in relation to the eigenvalues A_{xx} , A_{yy} and A_{zz}

$$A_a = \frac{1}{2} A_{zz}$$
 and $A_r = \frac{1}{3} (A_{xx} - A_{yy})$. (2.22)

It is easy to see from eq. 2.21 and eq. 2.22 that five parameters determine the orientation of any structure or sub-structure of interest, these are the eigenvalues A_{xx} , A_{yy} and A_{zz} of the alignment tensor **A** and the polar angles θ and ϕ . The necessary parameters can be determined directly via singular value decomposition^[243] after the measurement of at least five RDCs.

Unfortunately there are number of orientations for a single inter-nuclear vector that are compatible with a solely measured RDC. The right panel in Fig. 2.7 illustrates the strong angular degeneracy as shades on a spherical surface, where only extreme values give nearly unambiguous orientations. The more common intermediate values lead to a large number of potential solutions for the orientation, thus limiting the value of RDCs in structure determination. But the angular degeneracy can be lifted either by measuring more couplings in structures of known conformation, or by measuring RDCs in the presence of liquid crystals that orient the molecule differently^[225,242].

2.5 Simulated Annealing calculations

Simulated Annealing (SA) is an algorithm to overcome the problem hat the energy function in a Molecular Dynamics (MD) simulation converges to a local instead of the global minimum (see FIg. 2.8). The basic idea is to allow the molecule to leave a found local minimum by providing sufficient kinetic energy. The average kinetic energy for a given temperature can be calculated via Boltzmann statistics

$$\langle E_{kin,i} \rangle = \langle \frac{1}{2} m_i \nu_i^2 \rangle = \frac{3}{2} k_b T,$$
 (2.23)

where k_b is the Boltzmann factor, m_i the atom mass and ν_i the atom velocity. The amount of kinetic energy $E_{kin,i}$, that is necessary to overcome kinetic barriers and allows access to the global minimum, can be provided as high temperature at the beginning of the simulation. In order to achieve temperature coupling of the MD (to a target temperature T_0), a friction coefficient $b_i = \beta_i (T_0/T - 1)$ is added^[244] to the Newtonian equation of motion:

$$F_i(t) = m_i \frac{\partial^2 r_i}{\partial t^2} = -\frac{\partial V_i}{\partial r_i} + \beta_i (T_0/T - 1)\nu_i.$$
(2.24)

The acceleration $\frac{\partial^2 r_i}{\partial t^2}$ of each atom i at time t is related to the derivative of the potential energy V_i with respect to the atom position r_i . The force $F_i(t)$ at position r_i can act on the atoms for a given time-step (typically between 1-5 fs). A verlet algorithm determines then a new set of coordinates and velocities from the last and current values. This cycle is repeated until a convergence criterion (e.g. a minimum change in the gradient of the potential energy) is met. Initially, atom velocities are computed using a Gaussian or Maxwell distribution. The atom coordinates are derived from a starting structure. Since the initial coordinates and velocities determine all subsequent ones, it is important to start from a reasonable structure. In this work, where unknown structures of modified oligonucleotides are probed, a starting structure is obtained via MD hybridization of extended strands to a reasonable double strand.

The number of cartesian coordinates, that has to be calculated during each step of

Figure 2.8: Find global minimum with Simulated Annealing. The red dot marks a molecule at high temperature. It has sufficient kinetic energy to reach the next local minimum on the energy surface (red arrow). Constant cooling is applied, but as a long as the temperature is high enough, the molecule can "jump" to the next minimum (orange arrow). Finally in the cold state (at room temperature), the molecule is expected to be trapped in the global minimum.

the Molecular Dynamics simulation, is usually three times larger than the atom counted in the molecule. Especially in macromolecules like DNA or proteins, this number easily reaches the order of thousands. Nevertheless it is possible to simulate macromolecules via Molecular Dynamics by predefinition of atom types. For these predefined atoms many parameters such as bond lengths, bond angles, dihedral angles, partial charges etc. are assumed to be fixed and are comprised in the force field. In the present work the program Xplor-NIH^[245] was utilized which employs the CHARMM force field^[246,247]. The total potential energy V_{tot} consists of two components^[244]

$$V_{tot} = E_{emp} + E_{eff}, \tag{2.25}$$

where the empirical (E_{emp}) and the effective energy term (E_{eff}) are given as^[244]

$$E_{emp} = E_{bond} + E_{angle} + E_{dihe} + E_{vdW} + E_{Coulomb}, \qquad (2.26)$$

$$E_{eff} = E_{noe} + E_{rdc} + E_{plan} + E_{cdih}.$$
(2.27)

2.5 Simulated Annealing calculations

 E_{bond} , E_{angle} , E_{dihe} and all energy terms of E_{eff} are calculated as the product of a force constant and the deviation of the observed value from the equilibrium one, e.g.

$$E_{bond} = k_{bond} \left(r_{ij}^{obs} - r_{ij}^{equ} \right) \tag{2.28}$$

The equilibrium values for E_{noe} and E_{rdc} are taken from experiment while these of E_{cdih} and E_{plan} are averages from the literature^[244]. The corresponding scaling factor for each term are defined in the calculation input and thus can be used to increase the restraining power of selected energy terms. Equilibrium values and force constants of E_{bond} , E_{angle} , E_{dihe} constitute one part of the force field. E_{vdW} is given as

$$E_{vdW} = \sum_{i,j} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right)$$
(2.29)

with $A_{ij} = 2\sqrt{\varepsilon_{ii}\varepsilon_{jj}}(\sigma_{ii} - \sigma_{jj})$ and $A_{ij} = 2\sqrt{\varepsilon_{ii}\varepsilon_{jj}}(\sigma_{ii} - \sigma_{jj})$. The terms for atomic permittivity $(\varepsilon_{ii/jj})$ and van-der-Waals radii $(r_{ii/jj})$ set up another part of the force field. The partial atomic charges (q_i, q_j) in $E_{Coulomb}$ constitute the last part of the force field.

$$E_{Coulomb} = \sum_{ij} \frac{q_i q_j}{\varepsilon_0 r_{ij}}$$
(2.30)

Explicit treatment of water is not feasible due to restrictions on the calculation time, so the solvent screening effect is approximated by introducing a distance dependent permittivity of free space $\varepsilon_0(r_{ij})$.

Finally, force field parameters for the native bases and their 2'-deoxyribose backbone are derived from crystal structures, infrared spectroscopy data (force constants) and empirical testing (where no experimental source is available)^[246]. Every non-native modification to our basic DNA sequence has to be added manually to the existing force field. The necessary parameters for bond lengths, bond angles, dihedral angles and in particular partial atomic charges are calculated using ab-initio methods.

Figure 2.9: Data matrix M and Singular Value Decomposition (SVD) of DNA absorption spectra. The result is a product of three matrices named U, S and V^T .

2.6 Singular Value Decomposition

The last two sections enter the field of optical spectroscopy, whereby the hybridization of DNA will be monitored. The underlying concepts are developed here in sections 2.6 and 2.7.

The Singular Value Decomposition (SVD), also referred to as Principal Component Analysis (PCA), decomposes a two-dimensional data matrix \mathbf{M} into the product of three matrices named \mathbf{U} , \mathbf{S} and \mathbf{V}^T (see Fig. 2.9). The SVD method serves here as a tool to analyse the absorption spectra of the modified oligonucleotides. Therefore, the absorption spectra will be written as columns to build up the data matrix \mathbf{M} with dimensions $nwl \ge$ ntm. Here nwl is the number of wavelengths which are stored on an array WL, and ntmis the number of temperatures which are stored on an array TM.

After decomposition the columns in \mathbf{U} store a set of orthonormal "basic spectra" (depending on wavelength λ), while the rows of \mathbf{V}^T describe "basic thermodynamic curves" of populations or concentrations as a function of temperature. Since \mathbf{U} and \mathbf{V}^T only consist of orthonormal functions, a list of factors is needed to fully describe our data in \mathbf{M} . The last matrix \mathbf{S} stores these factors on its diagonal axis, connecting the i-th column of \mathbf{U} with the i-th row of \mathbf{V}^T , and furthermore sorts them by importance or weight, so the first one is the most important. They represent the singular values, but not all of them are necessary to describe the data in \mathbf{M} . If not mentioned otherwise, the *ns* singular values

Figure 2.10: A Reduced set of matrices can fully describe the data matrix \mathbf{M} . For example, when only two singular values (ns = 2) of \mathbf{S} are necessary to describe \mathbf{M} , one can build matrices with ns columns in \mathbf{U}_{cut} and ns rows in \mathbf{V}_{cut}^T , respectively. In addition, the product of the new matrices should produce a dataset with better signal to noise ratio than \mathbf{M} .

higher than the 100th part of the first one are used to construct a cut set of matrices with ns columns in \mathbf{U}_{cut} and ns rows in \mathbf{V}_{cut}^{T} , respectively(see Fig. 2.10). It is assumed that the omitted singular values only contribute to the noise in the spectra, so the product of the new matrices should have a better signal to noise ratio than the original dataset in \mathbf{M} .

At this point the number of independent spectra contained in the data is known. The chemical species which cause them must be ns or larger, because such independent spectrum may, accidentally, be a linear combination of two species. The matrix \mathbf{V}_{cut}^{T} is then separated into a product of linear factors \mathbf{F} and nonlinear parameters \mathbf{P} (see Fig. 2.11). This allows scaling on purpose, for example, if the last column of \mathbf{P} is scaled to be 1 in in the first row and 0 for the second one, one would know, that (for highest temperature) only the first basic spectrum is necessary to describe the last spectrum in the data matrix \mathbf{M} (in figure 2.10). In addition, the resulting \mathbf{F} can be multiplied with $\mathbf{U}_{cut}.\mathbf{S}_{cut}$ to give the product $\mathbf{U}_{cut}.\mathbf{S}_{cut}.\mathbf{F}$. In consequence of the rescaled \mathbf{P} , the first spectrum of $\mathbf{U}_{cut}.\mathbf{S}_{cut}.\mathbf{F}$ is equal to the last (high temperature) spectrum in \mathbf{M} . Also important, \mathbf{P} (in combination with $\mathbf{U}_{cut}.\mathbf{S}_{cut}.\mathbf{F}$) can be inspected to assign species and their thermodynamic behaviour when changing temperature. For example, linear line shapes can be stacking interactions or peak shifts and sigmoidal line shapes denote melting curves. The

Figure 2.11: Separating \mathbf{V}_{cut}^{T} into a product of linear factors \mathbf{F} and nonlinear parameters \mathbf{P} . This allows scaling on purpose, but more important, \mathbf{P} can be inspected to assign species and their thermodynamic behaviour when changing temperature. A possible way to present the dissection of \mathbf{M} via SVD is shown in the middle of the figure by the two pictures of $\mathbf{U}_{cut} \cdot \mathbf{S}_{cut} \cdot \mathbf{F}$ and \mathbf{P} , respectively. Please note, the product $\mathbf{U}_{cut} \cdot \mathbf{S}_{cut} \cdot \mathbf{F} \cdot \mathbf{P}$ still reproduces the data stored in \mathbf{M} .

reader should note that \mathbf{V}_{cut}^T can contain more than one melting curve, which may show different melting characteristics, and thus indicates a non-uniform melting process of the DNA double strand. The next step is to find the parameters which describe the thermodynamic functions found in \mathbf{P} and the expansion factors in \mathbf{F} . How to do this is topic of the following chapter 2.7, while the SVD, as mentioned in the beginning, has served as tool to access the thermodynamic behaviour like melting from a set of full absorption spectra.

2.7 Development of the double SVD assisted two-state model

The thermodynamics of duplex formation is usually examined by melting curves, which are measured at a single wavelength over different temperatures. However, such melting curves are directly affected by the errors of the measurement at the given wavelength^[248]. To overcome this, one could think of repeated experiments or analysis of additional wavelengths nearby. In this work a more advanced approach is used to obtain precise results, especially when the complexity of the chromophore absorption change increases.

The basic idea is to measure full absorption spectra at different temperatures. The fact that such method needs considerable more time to record the desired spectra has two side effects. One is the larger step size between temperatures to limit the acquisition time of the whole experiment, the other is the avoidance of hysteresis or temperature gradients in the sample, since the temperature remains constant during the record of each spectrum.

Our recorded spectra are then combined into the two-dimensional data matrix \mathbf{M} (see Fig. 2.9). By Singular Value Decomposition (SVD, see 2.6), the data matrix \mathbf{M} is decomposed into a product of three matrices $\mathbf{U}.\mathbf{S}.\mathbf{V}^T$ containing "basic spectra", "singular values" and "thermodynamic curves". Usually, only the first 2-4 values (columns in \mathbf{U} , rows in \mathbf{V})are necessary to describe the data, so a new product $\mathbf{U}_{cut}.\mathbf{S}_{cut}.\mathbf{V}_{cut}^T$ is made which results in a smoothed (noise reduced) \mathbf{M} . The desired melting curves of the full absorption spectra are stored in \mathbf{V}_{cut}^T . From here onwards, each row can be analyzed like curves obtained by single wavelength measurement.

In figure 2.12 a melting curve of 13mer4AP-DAP is shown (red line, obtained via SVD, see 4.3.4). A common way to check helix stability is the estimation of the melting point. It is, by definition, the temperature where one half of the strands is in duplex state and the other half in single strand state. Applied on the melting curve which is scaled to the amplitude change over temperature, one would note from the figure at half height 61 °C, but it is easy to see that such reading depends on the measured temperature range, due to the slope of the linear parts of the melting curve^[248]. Another common method^[111,138,139,249], plotted as blue line in figure 2.12, uses the first derivative of the melting curve, thus the

Figure 2.12: Melting Point Estimation from a double strand DNA melting curve is a common way to check DNA stability. The melting curve (red), its first derivative (blue) and the fitted two-state model (green) without assumed linear stacking interactions are shown and compared against each other. The estimated melting points are indicated by grey vertical lines, depending on the method and slope of the linear parts, three different melting points will be estimated.

melting point is indicated by its maximum at 58.9 °C, but this method is also affected by the linear parts of the melting curve and therefore is not reliable.

The most widely used method is a two-state model^[250,251] with linear stacking interactions^[19,252,253]. It assumes that the temperature (T) dependence of the extinction coefficients is linear ($\epsilon_{[ss]} = m_{[ss]}T + b_{[ss]}$) and, in addition, different for the single- (ss) and double-stranded (ds) forms. The two-state part defines the equilibrium constant K for hybridization of nonself-complementary DNA depending on c_T and α (molar fraction of single stranded form to the total ss strand concentration):

$$K = \frac{[ds]}{[ss_1][ss_2]} = \frac{2(1-\alpha)}{\alpha^2 c_T}.$$
(2.31)

After substituting K into $\Delta G^{\circ} = -RT ln(K) = \Delta H^{\circ} - T \Delta S^{\circ}$ and rearranging, we obtain

2.7 Development of the double SVD assisted two-state model

an equation for α depending on ΔH° and ΔS° .

$$\alpha = \frac{-1 + \sqrt{2c_T \exp\left[-\frac{\Delta H^\circ - T\Delta S^\circ}{RT}\right] + 1}}{c_T \exp\left[-\frac{\Delta H^\circ - T\Delta S^\circ}{RT}\right]}.$$
(2.32)

Equation (2.32) is then combined with the linear temperature dependence of the extinction coefficients, leading to an equation for the measured amplitude change $A(\alpha, T)$:

$$A(\alpha, T) = \alpha(m_{[ss]}T + b_{[ss]}) + (1 - \alpha)(m_{[ds]}T + b_{[ds]}).$$
(2.33)

After least-squares fitting with equation 2.33, the resulting $\alpha(T)$, which only describes the two-state model, can be plotted as green line in figure 2.12. Its melting point can be estimated to 58.9 °C. Unfortunately, this is the third melting point for only one measured melting curve, but the last one is not affected by the slopes of the assumed stacking interactions. Furthermore, if the slopes for the single strand state and the duplex state are either similar or small, then the melting points of the red and blue curves would converge towards that one of the two-state model (green line), which is so far the most reliable.

However, a two-state model, wherein only fully separated strands and the duplex exist, is an oversimplification which cannot cover all types of DNA/RNA double strands. Statistical models like the zipper model^[19,254] or the extended type with bulge formation introduced by Ernsting^[203] account for a more complex way of hybridization, but this means to assume a specific model for a given double strand, which may end in a different model for every modified oligonucleotide analyzed in this work. Also the number of parameters increases with the complexity of the model and consequently the number of possible solutions in the least-squares fit of a simple melting curve, which explains the relatively rare application of statistical models^[19]. The last method, which should be mentioned here, is the widely used nearest-neighbor method by SantaLucia^[255,256]. It focuses on the interactions between neighboring base pairs, but is based on experimental data of natural nucleobases and therefore not suitable for oligonucleotides with noncanonical modifications to the strands.

The new approach will use the basic idea of the two-state model in combination with the analysis of the spectral change via SVD. Remember, that full absorption spectra were measured covering the DNA band as well as the absorption of the built-in chromophore. The before mentioned two-state model (with linear stacking interactions) assumes temperature dependent extinction coefficients for the single strands and the duplex state at a given wavelength. The expansion to a full spectrum can then take additional effects into account like peak shifting, local melting or the rise of a new species. The way to do this is splitting the SVD into the analysis of duplex state at temperatures below the melting point and the analysis of the single strands at higher temperatures. Knowing the change of absorption with temperature for both, an extrapolation can be done from either side into the middle, i.e. in the direction where strand separation occurs. For example, the absorption spectrum of the double strand can be simulated for 70 °C where, in reality, the separation into single strands is almost complete. At any given temperature, the observed spectrum should be a linear combination of the two extrapolated spectra, i.e. of the separate strands $S_{[ss]}(T)$ and of the duplex $S_{[ds]}(T)$. The mathematical description of this linear combination is shown in equation 2.34, where α is the fraction of extrapolated single strand spectra $S_{[ss]}(T)$, which is used to build the measured spectra $M(\alpha, T)$. In other words, the linear equation terms of (2.33) are substituted with the extrapolated spectra $S_{[\dots]}(T).$

$$M(\alpha, T) = \alpha S_{[ss]}(T) + (1 - \alpha) S_{[ds]}(T).$$
(2.34)

From the corresponding fit the degree of dissociation α is obtained. As result we obtain a dissociation curve (shown in Fig. 2.13) following in any case the characteristics of a two-state model, since it was constructed from a set of two spectra (measured or extrapolated) at a given temperature. The advantage of this approach is, as long as there are spectral changes dominated by either the duplex state or the single strands (which would allow a separate analysis via SVD), one can reduce the analysis of any complex melting process to correspond to the easy pattern of the two-state model. Additionally, the SVD parts can be investigated for the type of spectral change (e.g. amplitude change, peak shift). In

Figure 2.13: SVD assisted two-state model shown as schematic diagram. SVD analysis is performed on regions dominated by either separated strands or duplex state and then extrapolated to the missing temperature region. By fitting the degree of dissociation $\alpha(T)$ to the linear combination of the extrapolated spectra, a melting curve is obtained on which the two-state model can be applied.

the end, one can gain more knowledge about a modified double strand than from a single wavelength melting curve. A detailed demonstration of the method was performed on the 6-Hydroxy-quinolinium chromophore (13mer6HQ) in chapter 4.2.3.

3 Experimental section

All methods and preparations will be outlined in detail for 13merHCF. In order to avoid redundancy, the corresponding sections of 13mer6HQ and 13mer4AP-DAP will only comprise experimental details that differ from 13merHCF.

3.1 13merHCF

3.1.1 NMR sample preparation

2-Hydroxy-7-carboxyfluorene was synthesized by Matthias Pfaffe in the same way as $HNF^{[203]}$. The 2'-deoxyriboside of HCF was prepared by reaction of 2-hydroxyfluorene-7-carboxylic acid methyl ester with 1'- α -Chloro-3',5'-di-O-toluoyl-2'-deoxy-D-ribose in the presence of activated molecular sieve. The corresponding phosphoramidite was reached in three steps by standard methods. The predominantly formed α -glycoside was then purified by column chromatography. Fixed-phase synthesis of the labeled strand was performed at BioTeZ (Berlin) with a small modification, since the coupling of HCF-2'-deoxyriboside required a fourfold increase over the normal reaction time. The reader should note that instead of the originally intended methyl ester, the free acid was incorporated into the strand, due to the preparation conditions in the last step of the fixed-phase synthesis. The HCF labeled strand and the abasic counterstrand, also from BioTeZ, were delivered already purified by reverse-phase high-pressure liquid chromatography (HPLC). After hybridization they were subjected to size exclusion chromatography (in Sephadex PD-10 column) and lyophilization with 3% NH₃-solution to remove residual, low molecular weight impurities (mainly NEt₃-buffer from HPLC). Equivalent amounts of complementary single

strands were hybridized by rapid heating to 90 °C and subsequent gradual cooling to room temperature at a rate of 0.5 °C per minute. The NMR samples were prepared in (D₂O matched) Shigemi tubes at 5 mM duplex concentration in D₂O (D₂O 99.98 %) and H₂O (H₂O:D₂O/90:10) buffer solutions at pH 7, containing 10 mM Na₂HPO₄/NaH₂PO₄ and 150 mM NaCl.

3.1.2 RDC sample preparation

The samples for the residual dipolar coupling (RDC) experiment were prepared in D_2O buffer as described before. The addition of 20 mg/ml Pf1 (obtained from Asla Biotech Ltd., Riga) requires exchange of the Pf1 buffer, since it is obtained in a non-deuterated solution. The exchange is achieved by ultracentrifuging 100 µl of Pf1 two times with 600 µl deuterated phosphate buffer at 60000 rpm for 2 hours (at 4 °C). Afterwards the Pf1 sediment is joined with the DNA sample. The high viscosity of Pf1 complicates sample handling and thus the suspension has to be stirred until a viscose, clear, gel-like sample is obtained. After transfer into the Shigemi tube, bubbles have to be removed by slow centrifugation of the NMR tube (up to 500 rpm). The degree of orientation can be checked by measuring the quadrupole splitting of deuterium^[257], which is expected to show a symmetric doublet with splitting in the range of 5 to 15 Hz. In case of degradation or non-complete suspension of Pf1, this peak doublet can be asymmetric, extremely broadened or even non-observable.

3.1.3 Duplex melting experiments

The UV/vis absorption experiments were performed on a Varian Cary 300 spectrometer in double beam mode. As stated in the introduction, full spectra (between 210 and 400 nm) were measured with 1nm step size, 0.6 s average time, 2 nm bandwidth and source changeover at 400 nm. Between each rising temperature step of 5 °C, a time delay of 10 minutes was included to heat and equilibrate the sample with the heating block. A sample of double-stranded 13merHCF was prepared in a water/phosphate buffer at pH 7 with 10 mM NaH₂PO₄ and 150 mM sodium chloride. Measurements were performed in a closed non-degassed cuvette with 2 mm optical path length. A total concentration $c_T = 45 \ \mu\text{M}$ of single strands was estimated from maximum absorption around 260 nm at 90 °C. 14 absorption spectra between 25 and 90 °C were recorded and corrected for density change.

3.1.4 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before. A sample containing 150 mM sodium chloride and 20 μ M (c_T) of double-stranded 13merHCF was prepared at pH = 1.15 (through addition of 1 M HCl). A set of 29 spectra were measured up to pH = 12.07 by adding increasing concentrations of NaOH (0.01 - 1 M) into a cuvette with 10 mm optical path length.

3.1.5 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with inverse probehead. Dallmann and the author determined in an earlier work^[129] that 298 K is the most suitable temperature for monitoring the imino proton signal intensity of duplex strands, and this temperature was therefore chosen as standard for all types of NMR experiments. For the 13merHCF duplex, dissolved in the aforementioned D_2O buffer, a DQF-COSY- (Double Quantum Filtered Correlated Spectroscopy), a TOCSY- (Total Correlation Spectroscopy) and a NOESY-spectrum were measured. For DQF-COSY and TOCSY, 2048 x 512 points (F2 x F1 dimension) were acquired with 16 and 56 transients, respectively. The more important NOESY-spectrum employs 4096 x 2048 points with 16 transients and 100 ms mixing time. The NOESY in H_2O was recorded using the same parameters in a WATERGATE pulse-sequence to suppress the HOD signal. The RDC experiment requires two HMQC-spectra (Heteronuclear Multiple Quantum Coherence) in D_2O before Pf1 is added, one ¹H decoupled spectrum for assignment and a coupled spectrum as basis to calculate the coupling. After addition of Pf1, the sample became highly viscous and the standard shim procedure failed to produce reasonable linewidths. As a workaround, 1D spectra were measured after each shimming step in order to iteratively optimize the lineshape of the HOD signal. The alternative worked well, but is much more

3 Experimental section

time-consuming than the standard method. The two ¹H coupled HMQC- spectra with and without Pf1 were acquired with 8192 x 512 points and 192 transients. The high number of points in the F2 dimension is necessary to obtain RDC-values with a precision below 1 Hz. All spectra were processed with the Bruker TopSpin software.

3.1.6 Force field parametrization for HCF

Density functional theory (DFT) calculations of the HCF moiety were performed in Gaussian03 using the b3lyp method and triple zeta valence plus polarization (TZVP) as basis set. Partial charges were derived with the of ChelpG-algorithm by Breneman et al.^[258]. Although the sugar moiety was simulated as well, only the partial charges for the HCF residue were integrated into the force field. A comparison between the neutral HCF (with COOH) and the negatively charged (with COO⁻) confirmed that the effect on the partial charges of the sugar is negligible, so the same parameter set as for the sugar of the native nucleobases could be used.

3.1.7 Distance restraints

The assigned NOE cross-peaks were converted to distance restraints by referencing their integrals to the integrals of known distances employing the Isolated Spin Pair Approximation (ISPA). The NOE cross-peaks were integrated with the program Cara^[259] using the sum-over-rectangle method. As reference distances Methyl-H6 T (3.09 Å) for all NOE cross-peaks involving methyl protons, H42-H5 C (2.4 Å) for all NOE cross-peaks involving exchangeable protons and H5-H6 C (2.48 Å) for the remaining NOE cross-peaks were used (bond lengths adapted from the force field parameters). For the purpose of exporting the integral values obtained by Cara^[259] to an Xplor-NIH^[245] restraints file, a LUA script is used that was written by Dallmann^[260] (see section 3.1). This script classifies the integrated peaks according to the overlap with other peaks and scales their volume integrals accordingly. Additionally, uncertainties for the NOE restraints are automatically calculated from the standard deviation of the reference peaks' volume integrals. The estimated uncertainty is then increased according to the classification of each peak. Furthermore,

this classification is printed into a separate file, which can be used to assess whether or not peak overlap might prevent a reliable estimation of the peak volume.

3.1.8 Residual Dipolar Coupling restraints

The RDC values of 13merHCF are listed in table 3.1. As outlined in section 2.4, the difference in the coupling constant of C-H bond vectors in the presence and absence of Pf1 phage was measured. The orientation of the corresponding inter-nuclear vector was defined in eq. 2.21 in section 2.4. All occurring constants can be joined in the factor D_a , which can be written as

$$D_a = -\frac{\gamma_i \,\gamma_j \,\mu_0 \,h \,S_{flex}}{16 \,\pi^3 \,(r_{ii}^{eff})^3}.$$
(3.1)

Only one value of D_a may be used throughout the calculation. RDC values of different vectors like C-C bonds need to be scaled to C-H values. Scaling is achieved by introducing a prefactor to the D_a -term, which is simply defined as the ratio of the two D_a involved. An example for C-C RDCs is given in the next equation

$$D_a^{pre}(CC) = \frac{D_a(CH)}{D_a(CC)} = \frac{\gamma_H}{\gamma_C} \left(\frac{r_{CC}}{r_{CH}}\right)^3 = \frac{42.576}{10.705} \left(\frac{1.496}{1.090}\right)^3 \approx 10.28.$$
(3.2)

where $\frac{\gamma_H}{\gamma_C}$ is the change in gyromagnetic ratio between C-C and C-H, while r_{CC} and r_{CH} are the lengths of the corresponding inter-nuclear vector. Although only C-H RDCs were measured in this work, it was necessary to implement the experimentally determined C-H RDCs of the T methyl groups as C-C RDCs. Due to the fast rotation of the methyl group, only a single averaged value can be measured for the three C-H bond vectors, but it can be scaled as follows to a single C-C bond vector

$$P_2(\cos\beta) = \frac{3}{2}\cos^2\beta - \frac{1}{2}$$
(3.3)

where β is the C5-C7-H7[1-3] angle. It has been revealed by Ottiger and Bax^[261] that the usually assumed ideal tetrahedral angle of 109.5° for methyl groups has to be replaced with experimentally determined 110.9°. With eq. 3.2 and eq. 3.3 the scaling of methyl

3 Experimental section

C-H to methyl C-C can be written as

$$\frac{D_{CH_Me}}{D_{CC_Me}} = P_2(\cos\beta) D_a^{pre}(CC) \quad . \tag{3.4}$$

A value of -3.17 was determined by measuring the correlation of experimentally determined C-H and C-C methyl RDCs^[261]. For the ideal tetrahedral angle one would obtain a factor of -3.42. In order to implement the methyl C-H RDCs into the structure calculations, they have to be converted into the corresponding C5-C7 RDCs. This is done in a second input file, where all experimentally determined methyl C-H RDC values were converted by hand to the corresponding C-C values with the factor 1/-3.17 = -0.3155. In that case, the prefactor $D_a^{pre}(CC)$ can be used to scale the C-C RDC input file to the C-H RDC input. However, the direct scaling of the the RDC values is not equivalent to scaling via D_a -factor, since the energy for the RDC potential term is given by^[244]

$$E_{RDC} = k_{RDC} \left(D_{calc} - D_{obs} \right)^2 \tag{3.5}$$

where k_{RDC} is the scale factor for the RDC energy term, which has to be modified for different sets of RDCs with a weighting factor ω_{ij} . When using the prefactor D_{Me}^{pre} for implementation of methyl RDCs, the energy of the C-C methyl RDCs has to be scaled by

$$\omega_{CC} = \frac{1}{(-3.17)^2} \ \omega_{CH} \approx 0.0995 \ \omega_{CH} = 0.1 \ \omega_{CH}.$$
(3.6)

The dependence of the energy on the square of the difference between calculated (D_{calc}) and observed (D_{obs}) would otherwise allow methyl RDCs to have a stronger restraining effect than the C-H RDCs.

\mathbf{Res}	Vector	$ \mathbf{J}_{(CH)} $ (Hz)	$\mathbf{J}_{(CH)}(\mathbf{aligned})$ (Hz)	RDC (Hz)
A6	C2-H2	202.8	214.8	12.0
$\mathbf{A8}$	C2-H2	200.4	209.4	9.0
A16	C2-H2	202.2	211.8	9.6
A24	C2-H2	201.0	213.6	12.6
$\mathbf{C2}$	C5-H5	166.8	171.6	4.8
C12	C5-H5	169.2	174.6	5.4
C14	C5-H5	168.0	173.4	5.4
T11	C5-C7	127.2	121.2	-2.0
T19	C5-C7	127.2	121.2	-2.0
T21	C5-C7	126.6	121.2	-1.8
HCF	C1'-H1"	171.0	171.6	0.6
C14	C1'-H1'	168.0	166.2	-1.8
C17	C1'-H1'	161.4	118.8	-42.6
G25	C1'-H1'	159.0	171.6	12.6
$\mathbf{C2}$	C6-H6	175.2	183.6	8.4
T3	C6-H6	174.6	182.4	7.8
$\mathbf{C9}$	C6-H6	174.0	182.4	8.4
T11	C6-H6	176.4	183.6	7.2
C12	C6-H6	174.0	179.4	5.4
C14	C6-H6	171.6	167.4	-4.2
C17	C6-H6	174.0	182.4	8.4
T19	C6-H6	175.2	183.6	8.4
T21	C6-H6	175.8	183.6	7.8
G1	C8-H8	214.8	223.8	9.0
$\mathbf{A8}$	C8-H8	214.8	223.2	8.4
G13	C8-H8	214.2	222.6	8.4
G15	C8-H8	214.2	223.8	9.6
A16	C8-H8	214.8	223.2	8.4
A24	C8-H8	214.2	225.0	10.8
G25	C8-H8	214.2	229.2	15.0
HCF	C1-H1	151.8	156.6	4.8
HCF	C3-H3	151.2	153.0	1.8
HCF	C4-H4	150.0	155.4	5.4
HCF	C5-H5	152.4	152.4	0.0
HCF	C6-H6	150.6	156.6	6.0
HCF	C8-H8	152.4	157.8	5.4
HCF	C9-H91	129.0	135.0	6.0
ABA	C3'-H3'	151.2	147.0	-4.2

Table 3.1: Experimentally determined RDCs used in the structure determination of
13merHCF. The RDCs were measured with a precision of ± 0.6 Hz.

3.1.9 Structure calculation

Calculation input All structure calculations were performed with Xplor-NIH v2.20^[245]. A total of 334 (330) NOE distance restraints and 38 Residual Dipolar Couplings were used in calculations for the face-up (-down) orientation. The experimental data were supplemented with 124 backbone dihedral restraints, 72 hydrogen bond distance restraints and 27 planarity restraints (see Tab. 3.2).

The initial molecular dynamics calculations of extended strands were performed with dihedral restraints allowing both A-form and B-form conformations (with error bars of $\pm 50^{\circ}$). B-form conformation was experimentally confirmed by ³J coupling constants for H1'-H2' derived from DQF-COSY and NOESY-cross-peak intensities characteristic for B-DNA. Consequently, regular dihedral values from the literature^[213] were included in the calculations.

	face-up	face-down
RDC restraints	38	38
NOE restraints		
- total	375	362
- interresidue	110	102
- intraresidue	265	260
Dihedral angle restraints	124	124
H-bond restraints	72	72
Base pair planarity restr.	27	27
NOE viol. $(> 0.5 \text{ Å})$	0	0
RDC viol. $(> 0.4 \mathrm{Hz})$	0	0
Dihedral viol. $(>5^{\circ})$	0	0
RMSD to ave. struct. in Å	0.41	0.45

Table 3.2: Overview of structural statistics for 13merHCF in face-up and face-down orientation.

The structures were calculated in two steps. First, a reasonable starting structure with well defined local conformation was computed. To ensure that no bias is introduced towards local energy minima, the calculation started from an elongated and equilibrated structure. The resulting structure, which is mainly defined by NOE restraint data, was used as input for Simulated Annealing calculations including RDC data. The need for locally well defined starting structures in order to calculate reasonable structures which satisfy NOE as well as RDC data is documented in the literature^[262,263].

Simulated Annealing protocol The complete MD protocols used for structure determination are given in the Appendix, section 2. The same protocols were used for both (orientational) forms of 13merHCF. The input scripts are based on the example files of the Xplor-NIH package (refine_full.py and sa.inp) but were substantially modified.

The first protocol is used to generate a reasonable starting structure. It starts with two extended strands which are then hybridized to form a duplex strand. This protocol only uses the NOE restraints as experimental input and starts with an initial minimization (50 steps) followed by 48 ps of high-temperature cartesian coordinate dynamics at 3000 K, subsequent gradual cooling to 25 K in 120 steps of 0.05 ps length and a final minimization (3000 steps).

The second MD protocol, which utilizes in addition the experimental RDC restraints and the starting structure, consisted of an initial cartesian coordinate minimization (1000 steps) followed by 50 ps of high-temperature torsion angle dynamics at 20000 K, subsequent gradual cooling to 25 K in 154 steps of 0.5 ps length (34 steps to cool down to 3000 K, followed by 120 steps to reach the end temperature) and a final cartesian coordinate minimization (3000 steps). The alignment tensor values were allowed to float during the calculations, as implemented in Xplor-NIH (v2.20)^[245].

For each run an ensemble of 100 structures was computed. The 10 minimum energy structures without violation of restraints were chosen to compute an averaged structure which was energy-minimized to yield the final structure. The root-mean-square deviation (RMSD) of the 10 minimum energy structures to the average structure is a measure for the precision of the calculation.

Structure validation Several methods were used to check the accuracy of the average structures. Back-calculation of NOESY-spectra along the Full Matrix Relaxation Approach^[213,264,265] were performed with Xplor-NIH (v2.20)^[245]. The back-calculated spectra were then visualized with the help of a Mathematica script to allow comparison with

Experimental section

experimental spectra. The script was written by the author on the basis of his diploma thesis^[266] (see sec. 3.2). It uses the same input files like Gifa^[267], a program that was used prior to the Mathematica script. However, the latter offers more user comfort and has the advantage of running on actual hard- and software. RDCs were predicted from the average structure using the program Pales^[268] and were also compared to the experimental data.

3.2 13mer6HQ

3.2.1 NMR sample preparation

The DNA-oligonucleotide, that incorporates 6-hydroxyquinoline (6HQ) linked to R-Glycerol, was assembled in 24 µmol scale synthesis on an ÄKTA Oligopilot at Noxxon Pharma GmbH, Berlin. The necessary phosphoramidite was synthesized by Felix Hövelmann in four steps, using 6-hydroxyquinoline and S-glycidol as precursors. It should be noted that the latter will lead to the R-glycerol phosphoramidite. The counterstrand with cytosine as complementary base to 6HQ was ordered from BioTeZ, Berlin. Purification and hybridization were carried out the same way as for13merHCF (sec. 3.1.1). Interestingly, the final product already contained the deprotonated quinolinium, which is optically indicated by the yellow color of the solution. The deprotonation was caused by the 3% NH₃-solution that was used in the lyophilization step (see sec. 3.1.1). The double strand was then diluted in pH 7 buffer solution(10 mM Na₂HPO₄/NaH₂PO₄ and 150 mM NaCl), but the quinolinium retained its deprotonated state. However, the reason for this contradiction is a very slow reaction rate, so that roundabout four weeks had passed until the reaction was complete. The concentration of the sample was 3 mM.

3.2.2 RDC sample preparation

Several months separate the first NMR experiment from the RDC measurement, so the sample was colorless, due to protonation of the quinolinium. In order to regain the deprotonated state, the sample was treated again with 3% NH₃-solution between desalting and lyophilization. All other preparation steps were performed as stated in sec. 3.1.2.

3.2.3 Duplex melting experiments

A single- and double-stranded sample of 13mer6HQ was prepared in a water/ammonia mixture with pH = 8.5 and 150 mM NaCl. Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_T = 131 \,\mu\text{M}$ of single strands was estimated for the double strand from maximum absorption around 260 nm at 90 °C, and the single strand was concentrated to give a comparable absorption signal. A set of 17 (15) spectra between 10 and 90 (80) °C were recorded for the double strand (single) and corrected for density change. The configuration of the Varian Cary 300 spectrometer was the same as in sec. 3.1.3.

3.2.4 NMR experiments

13mer6HQ utilized the same experiments as 13merHCF in sec. 3.1.5. Only experimental parameters like the number of transients were adjusted to the needs of the sample.

3.2.5 Residual Dipolar Coupling restraints

\mathbf{Res}	Vector	$\mathbf{J}_{(CH)}$ (Hz)	$J_{(CH)}(aligned)$ (Hz)	RDC (Hz)
A8	C2-H2	201.6	245.4	43.8
A16	C2-H2	201.6	238.2	36.6
A24	C2-H2	204.6	241.8	37.2
$\mathbf{C2}$	C5-H5	165.6	223.2	57.6
C14	C5-H5	167.4	184.2	16.8
$\mathbf{T3}$	C7-H7	126.6	108.6	-6.0
T11	C7-H7	126.6	108.6	-6.0
T19	C7-H7	127.2	109.8	-5.8
T21	C7-H7	126.6	108.6	-6.0
$\mathbf{G1}$	C1'-H1'	165.0	184.2	19.2
$\mathbf{C2}$	C1'-H1'	166.8	176.4	9.6
$\mathbf{G4}$	C1'-H1'	157.8	180.6	22.8
G10	C1'-H1'	165.0	184.2	19.2
T11	C1'-H1'	163.2	194.4	31.2
C12	C1'-H1'	164.4	183.6	19.2
G13	C1'-H1'	160.2	174.6	14.4
C14	C1'-H1'	165.0	177.0	12.0
C17	C1'-H1'	162.6	175.2	12.6
T19	C1'-H1'	163.2	194.4	31.2
C20	C1'-H1'	164.4	179.4	15.0
G22	C1'-H1'	161.4	190.8	29.4
A24	C1'-H1'	166.8	182.4	15.6
G25	C1'-H1'	161.4	190.8	29.4
A24	C8-H8	214.8	255.0	40.2
6 HQ	C2-H2	180.0	194.4	14.4

Table 3.3: Measured RDCs of 13mer6HQ (± 0.6 Hz). For more details see sec. 3.1.8.

3.2.6 Structure calculation

The structure calculation and validation was performed analogue to 13merHCF in sec. 3.1.9, therefore only the calculation input is given.

Calculation input Hydrogen bonding restraints for the central AT base pairs were omitted, due to a lack of evidence in the H_2O -NOESY spectrum. Consequently, 60 restraints remain for the other 10 base pairs (13merHCF 72). Moreover, the lower concentration of 13mer6HQ (3 mM) in comparison to 13merHCF (5 mM) reduces the number of determinable RDCs (25 6HQ vs. 38 HCF).

	13 mer 6 HQ
RDC restraints	25
NOE restraints	
- total	418
- interresidue	148
- intraresidue	270
Dihedral angle restraints	124
H-bond restraints	60
Base pair planarity restr.	23
NOE viol. $(> 0.5 \text{ Å})$	0
RDC viol. $(> 0.4 \mathrm{Hz})$	0
Dihedral viol. $(>5^{\circ})$	0
RMSD to ave. struct. in Å	0.36

Table 3.4: Overview of structural statistics for 13mer6HQ.

3 Experimental section

3.3 13mer4AP-DAP

Some significant changes were made for 13mer4AP-DAP. First of all a weak acidic buffer (pH 6.35) was used to avoid hydrolysis under basic conditions of the 4AP. Furthermore, only a small amount of sample was available, so that all experiments were carried out with the same sample and the optical experiments were measured before NMR.

3.3.1 NMR sample preparation

Subsequently to the optical experiments, the whole sample was desalted via size exclusion chromatography (in Sephadex PD-10 column) and lyophilization, again without 3 % NH₃solution. The NMR samples were prepared in (D₂O matched) Shigemi tubes at 1.2 mM duplex concentration in D₂O (D₂O 99.98 %) and afterwards in H₂O (H₂O:D₂O/90:10) buffer solutions at pH 6.35, containing 10 mM Na₂HPO₄/NaH₂PO₄ and 150 mM NaCl.

3.3.2 Duplex melting experiments

Michael Weinberger (Wagenknecht group) was responsible for the synthesis of 4AP and Falko Berndt (Ernsting group) correspondingly for DAP. Both synthetic routes^[205] utilized stereoselective Heck-type palladium-catalysed cross-coupling with 2'-deoxyribofuranoside glycal followed by stereoselective reduction with NaBH(OAc)₃. Both nucleosides were further processed to the corresponding phosphoramidites and subsequently incorporated via automated DNA synthesis. The 4AP single strand, provided by the Wagenknecht group, and the DAP counterstrand, obtained from BioTeZ, were delivered already purified by reverse-phase high-pressure liquid chromatography (HPLC). After hybridization they were subjected to size exclusion chromatography (in Sephadex PD-10 column) and lyophilization, but this time without 3% NH₃-solution. Equivalent amounts of complementary single strands were hybridized by rapid heating to 90 °C and subsequent gradual cooling to room temperature at a rate of 0.5 °C per minute. The whole sample of double-stranded 13mer4AP-DAP was then prepared in a water/phosphate buffer (10 mM NaH₂PO₄, pH = 6.35) with 150 mM sodium chloride. Measurements were performed in a double cuvette
(closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_T = 20.5 \ \mu\text{M}$ of single strands was estimated from maximum absorption around 260 nm at 85 °C. A set of 14 spectra between 20 and 85 °C were recorded and corrected for density change. The configuration of the Varian Cary 300 spectrometer was the same as in sec. 3.1.3.

3.3.3 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before. A solution of 1.717 mg 2,4-diaminopyrimidine in 10 g pure water (Millipore) was prepared. A set of 15 samples were measured between pH 3 and 11 by adding 0,3 g of aforementioned sample to 2.7 mg of the corresponding pH buffer solutions.

3.3.4 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with inverse probehead. In order to raise the signal-to-noise ratio, the NOESY experiments were performed with lower FID size of 4096 x 1024, but huge number of scans in a range of 160 to 240. HMQC experiments were omitted, due to the low concentration of the sample.

3.3.5 Structure calculation

The structure calculation and validation was performed analogue to 13merHCF in sec. 3.1.9. The RDC part in the Simulated Annealing algorithm was not included, due to missing RDC values. This is simply done by adding a comment tag to the line where the RDC term is added to the target function. For later discussion a second set of calculations with RDCs from 13merHCF were performed and compared to the original without RDCs.

Calculation input The data in following table were the basis for both calculation types, so that the only difference is the additional application of RDCs in the second set. The

3 Experimental section

RDC data for the second set was taken from 13merHCF (Tab. 3.1), therein the RDCs of the HCF chromophore were omitted to avoid interference with 4AP.

	1H-bond	2H-bond
NOE restraints		
- total	357	420
- interresidue	134	137
- intraresidue	223	283
Dihedral angle restraints	124	124
H-bond restraints	72	72
Base pair planarity restr.	27	27
NOE viol. $(> 0.5 \text{ Å})$	0	0
RDC viol. $(> 0.4 \text{Hz})$	0	0
Dihedral viol. $(>5^{\circ})$	0	0
RMSD to ave. struct. in Å	0.52	0.85

Table 3.5: Overview of structural statistics for 13mer4AP-DAP in 1H-bond and 2H-bond
orientation.

4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF

The HCF chromophore is the direct successor of $\text{HNF}^{[203]}$ and only differs in the carboxyl group (HNF: NO₂) at position 7 of fluorene (see Fig. 4.1). So both molecules have many common properties. First of all, both were linked via an α -glycosidic-bond to 2-deoxyribofuranose, the only form that yielded sufficient amount and purity. They also share incorporation into the center of the strand opposite an abasic site, thus making HCF also a base pair surrogate. The resulting duplex strand is named 13merHCF. As stated in the introduction (see 1.3), the HNF chromophore suffers from a short lifetime of the excited state (35 ps), due to intersystem crossing, and for this reason the HCF derivative was designed.

The introduction of the carboxyl group makes it necessary to investigate the protonation state of HCF. For this purpose, a sample of double-stranded 13merHCF was measured at different pH values (see sec. 3.1.4). The change in absorption of the HCF band around 320 nm (see Fig. 4.9) was fitted to a pH dependent two-state model. A pK_a value of 3.9 ± 0.1 has been determined which is similar to other organic compounds like benzoic acid. Therefore, 2-hydroxy-7-carboxyfluorene is present in the deprotonated form (shown in Fig. 4.1) when buffered at pH = 7. This finding is also supported by Manoharan and Dogra^[269] who measured absorption spectra at different pH values and found that 2-carboxyfluorene is deprotonated at pH = 8 and exists in neutral form at pH = 2.

A symmetric and non-palindromic sequence was chosen to minimize mispairing, loop formation and fraying effects^[155]. A length of 13 base pairs allows to use the central base

Figure 4.1: Structure of 13merHCF. Native DNA is marked black and all modifications including backbone are colored either red or green. The HCF moiety is placed inside the duplex at position X and the abasic site (in green) at Y, respectively.

pair as modification site, which also ensures that perturbations of the structure can be directly assigned to the incorporated chromophore. Furthermore, it should be noted that in contrast to native DNA, both strands incorporate a H1" hydrogen in the center, due to the α -glycosidic linkage of HCF and the omitted base in the complementary strand. This will interrupt the stepwise assignment of DNA, because under the assumption that B-DNA is the dominant form in solution, one can "walk" in alternating steps between intra- and interresidual cross-peaks from the 5'-end down to the 3'end and vice versa. The method is known as "NOE-walk" and will be described in more detail in the next section.

Figure 4.2: NOE-Walk in 13merHCF. The assignment of the H6/H8 (abscissa) and H1' (ordinate) region in the D₂O-NOESY spectrum is shown. Red lines mark the NOE-walk for the HCF containing strand and green lines for the abasic strand. The starting point (5'-end) of both walks was denoted by a square, while the endpoint (3'-end) is indicated by an arrowhead. Note that both walks are interrupted at the modification site (marked by X), due to the α -glycosidic linkage of HCF and the omitted base in the other strand. For clarity only the positions of intraresidual H6/H8-H1' cross-peaks were labeled.

4.1.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts^[213] and Bloomfield et al.^[19]. The "NOE-walks" of the H6/H8 to H1' region are in case of 13merHCF interrupted at the central strand positions 7 (HCF) and 20 (abasic site), but as stated before, this was expected and agrees well with HNF. In Figure 4.2 the NOESY spectrum measured in D₂O is shown and the corresponding walks are marked red for the HCF strand and green for the abasic strand, respectively. The starting point (5'-end) of both walks was denoted by a square, while the endpoint (3'-end) is indicated by an arrowhead. The crosses mark the positions, where the alternating walk between H1' sugar protons and H6/H8 nucleobase protons is interrupted by a H1' to H1" step. Even though the

corresponding cross-peak can be found in the spectrum, it cannot be depicted in Fig. 4.2, because it is part of a completely different spectral region. The other sugar protons (H2', H2", H3' etc.) were subsequently assigned by additional NOE-walks in combination with other spectra (COSY,TOCSY). Chemical shift tables of all assigned hydrogens and carbons are given in the Appendix (sec. 1.1).

Exchangeable hydrogens were assigned in H₂O after completion of the D₂O-NOESY spectrum. The separation of the amino hydrogen (H41, H42) signals of C and, in addition, the large low-field shift of the imino proton signals (H1 in G, H3 in T) in the range of 12 - 15 ppm^[213] clearly indicate a proper hydrogen bonding pattern for the native base pairs. Even though ppm values were not used directly in the MD simulations, the knowledge of correct hydrogen bonding allows to introduce a set of hydrogen bonding restraints (see Tab. 3.2 in 3.1.9) that were derived from high-resolution X-ray structure determination^[270].

Comparison of ¹H Chemical Shift Deviations (CSDs) were made between 13merHCF, 13merHNF and 13merRef^[260]; the results are presented in Fig. 4.3. Here the chemical shift differences of all protons belonging to a single residue but different DNA samples are summarized. Note that absolute values are given to prevent canceling of deviations. Three comparisons are made, 13merHCF to 13merRef with A-T in the center (blue), the corresponding 13merHNF to 13merRef (red) and the modified double strands against each other (green). The fluorene containing duplexes (blue,red) show a similar pattern of deviations when compared to 13merRef, so one can expect that the deviations between them would be rather small. This is true except for the fluorene residues (7), where the deviation nearly reaches 0.5 ppm. The difference can be explained readily by the incorporation of the carboxyl group, which leads to higher ppm values for the neighboring H6 and H8 hydrogens (see Fig. 4.1). Moreover it can be concluded for both duplexes, 13merHCF and 13merHNF, that the effect of the chromophore is limited roughly to the next two base pairs in both directions around the center.

Chemical Shift Deviation

Figure 4.3: CSD comparison between 13merHCF and 13merHNF with reference strand (13merRef). Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.

Figure 4.4: Averaged structures of 13merHCF. The HCF is marked red and the abasic site green, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. The HCF methylene group faces up to the reader in the left panel and down in the right panel; the orientations are named correspondingly. RMSD among all hydrogens besides methyl protons is 0.41 Å for face-up and 0.45 Å for face-down, respectively. The white arrows indicate the point of view in Fig. 4.6.

4.1.2 NMR solution structure

Two NMR solution structures of 13merHCF had to be determined using RDC and NOE distance restraints. As in case of 13merHNF^[203], a single structure was not sufficient to describe the data found in the NOESY spectra. Therefore an ensemble of 100 structures was calculated for each orientation and the ten energy-lowest, violation-free structures were chosen to obtain averaged structures for both. Further details about the Simulated Annealing simulations can be found in section 3.1.9 and 3.1.9.

Figure 4.5: Overlay of the 10 minimum-energy, violation-free structures. The left side corresponds to the face-up orientation of the average structures (left in Fig. 4.4) and the right to face-down.

In Fig. 4.4 the averaged structures for the face-up (left) and the face-down (right) orientation of 13merHCF are shown. The names were derived from the side where the HCF methylene group faces to the reader. The chromophore in both structures fits nearly parallel between the surrounding base pairs. A perturbing factor that limits a fully parallel placing of HCF is the additional oxygen atom between the chromophore and the sugar. On the other hand is the α -glycosidic-bond unproblematic to the structure, even in the presence of the added oxygen. The 2-deoxyribofuranose and HCF are able to retain a roughly perpendicular orientation to each other, in which H1' and H1" would be in a plain area with the chromophore, thereby allowing the sugar to flip from the minor to the major groove side without inducing perturbations.

Figure 4.6: Close view on the three central base pairs of 13merHCF. The face-up orientation is again at left and face-down at right. In order to fit the HCF into the center of the helix, the 2'-deoxyribose compensates the α -glycosidic bond by switching to a sugar conformation between O₁'-endo and C₄'-exo for face-up and O₁'-exo for face-down, respectively.

The structures that were combined to averaged structures are depicted as overlay in Fig. 4.5. The set of face-up structures on the left sum up to a root mean square deviation (RMSD) of 0.41 and to 0.45 for the face-down set, respectively. The biggest contribution to the RMSD value comes from the abasic site. Single structures with different placement of the abasic site in comparison to their corresponding averaged structures can be found in both orientations. Without a nucleobase attached to the 2-deoxyribofuranose the NOE-walk along the abasic strand is interrupted, which means that interresidual distance NOEs are missing and hence the flexibility of the abasic site cannot be restrained by experimental data. As a second consequence of the missing base, a preferred orientation of the chromophore through potential hydrogen bonding or sterical interactions is also missing.

The only interactions that actually limit the rotation around the C2-O2-bond are stacking interactions with the neighboring bases. In Fig. 4.6 a close view of the three central base pairs is shown. For both orientations stacking with adjacent bases was found. In face-up position the chromophore stacks mainly with adenine residue 6, while the facedown conformer favors adenine 8. Additional stacking to the corresponding thymine T21 and partly T19 of the abasic strand suggests a possible contribution to duplex stability, which will be topic of the melting experiments in the next section. Moreover, it becomes clear how the 2'-deoxyribose compensates the α -glycosidic bond in the HCF nucleotide. For example, the sugar of adenine A6 retains the usual C2'-endo conformation of B-DNA, while the 2'-deoxyribose of HCF switches to a conformation between O₁'-endo and C₄'-exo for face-up and O₁'-exo for face-down, respectively.

Up to this point 13merHCF clearly resembles 13merHNF, and due to the fact that this was already expected at the beginning of the NMR experiments, a small detail besides the functional group was changed during sample preparation. More precisely, the concentration of duplex DNA had been raised from 3 mM in 13merHNF to 5 mM in 13merHCF. The intention was to verify the RDC measurements, which may have suffered from one of two major drawbacks. The first is hidden in the name Residual Dipolar Couplings. The word *residual* points out that in RDC measurements only a small portion of the sample contributes to the measured anisotropy, which is induced by weak alignment of the sample. This adds to the demand for high precision (1 Hz) in a highly viscous sample, thus making RDC measurements a challenging task. Is in consequence only a limited number of suitable RDCs available, a second drawback has to be considered. As outlined in section 2.4, at least five RDCs are necessary to determine a single angle in the molecular frame. The general degeneracy of a single RDC value limits the usability as restraint in molecular dynamics simulations. In case of the 13merHNF sample only 19 RDC values were part of the structure refinement. The question which arose at that time was, is the compatibility of the measured RDC values to both orientations a consequence of the parallel orientation of the chromophore or caused by degeneracy of the few restraints? In the latter case, it follows that potential bending of the duplex has not been detected, due to a lack of experimental data.

In the highly concentrated 13merHCF solution, 38 RDCs were found which is twice the number for 13merHNF. The experimental values were then plotted against predicted values of the averaged structures in Fig. 4.7. The results agree well with both structures and support the previous finding, according to which the RDC values are compatible with both orientations. However, a high concentration of duplex DNA is neither always

Figure 4.7: Pales^[268] plots of experimental RDCs against predicted values of the 13mer-HCF structures (face-up left, face-down right). Both plots look nearly identical, due to degeneracy of RDCs (see sec. 2.4). In case of 13merHCF, both conformations have nearly the same orientation relative to the helical axis (roughly perpendicular), so the same set of values can describe both conformations.

available nor desirable for a unknown structure. A side effect that can be observed in such samples are unusual cross-peaks in the NOESY spectrum. At first sight they might be misidentified as spin diffusion signals, but in that case the intensity of their signal would be sensitive to the mixing time. With the help of back-calculated NOESY spectra, depicted in Fig. 4.8, those cross-peaks can be explained as well as the necessity for two orientations of the chromophore. The upper panel of Fig. 4.8 presents the region where H1 and H3 of HCF meet the H1" of their backbone. The black lines mark the experimental NOESY data with equal integrals of intensity for both peaks. The different line shape of the H3 signal is caused by coupling with the neighboring H4 proton. The back-calculated face-up spectrum (green) can only cover the H1/H1" cross-peak, while the face-down orientation (red) only covers the H3/H1" signal, so both conformers are required to complete the experimental NOESY spectrum. The reason for this is the strong distance change upon rotation. In close proximity the distance is roughly 2 Å which results in a strong signal, while after rotation the weak intensity of a 4.5 Å distance is observed.

The lower panel of Fig. 4.8 allows to compare the whole H6/H8 to H1' region between all NOESY spectra. It is not surprising that they describe most of the signals in the same fashion, but in this picture the two differences are of greater interest. The first deviating signal is the (red) HCF-H8/H1'-T21 cross-peak that is only present in the faceup orientation. In contrast to the H1/H3 pair the corresponding H6 atom is in both orientations more than 5 Å away from H1'-T21 and therefore not visible, due to the missing symmetry of HCF around the long axis. However the most interesting signal is the (black) C26-H6/G1-H1' cross-peak which is only present in the experimental NOESY spectrum. The distance corresponding to this assignment would cover 11 Å in both orientations. An explanation via spin diffusion would involve too many atoms and is not reasonable. The real reason for this very unusual peak is the high concentration of 13merHCF as mentioned before, since it is not an interresidual cross-peak between two strands of a single duplex. The effect is known as "end-to-end" stacking and was first described by Nakata et al.^[271], who observed long rods of stacked oligonucleotides. In fact, C26-H6/G1-H1' assigns atoms of two different duplexes and therefore should be named "interduplex" cross-peak. Such peaks raise the complexity of the spectrum and one should be aware of it when assignment reaches the helix ends.

Figure 4.8: NOESY back-calculations of both conformers overlaid with experimental data. The face-up spectrum is colored red, the face-down spectrum green, and the experimental spectrum black. Top: spectra of both conformers are needed to simulate the cross-peaks of the experimental spectrum. Bottom: overlay of the H6/H8 to H1' region. The cross-peak marked with the read arrow is only visible in the face-up orientation. An interduplex cross-peak that indicates "End-to-end" stacking is marked with a black arrow.

Figure 4.9: Absorption change of ds13merHCF upon melting, when raising temperature from 25 °C (blue) to 90 °C (red line; $c_T = 45 \ \mu\text{M}$). Spectra are shown for an optical path length of 2 mm. For better comparison they are also shown on an expanded ordinate scale (labeled "10x").

4.1.3 Duplex melting experiments

A sample of double-stranded 13merHCF (having the sequence composition shown in Fig. 4.1) was prepared in a water/phosphate buffer (10 mM NaH₂PO₄, pH = 7) with 150 mM sodium chloride. Measurements were performed in a cuvette with 2 mm optical path length. A total concentration $c_T = 45 \,\mu\text{M}$ of single strands was estimated from maximum absorption around 260 nm at 90 °C. 14 absorption spectra between 25 and 90 °C were recorded and corrected for density change. The resulting spectra are shown in Fig. 4.9, including a ten-times magnification of them (labeled "10x").

The thermodynamics of duplex formation is usually examined by "melting curves" measured at a single wavelength. In this work, however, full absorption spectra were measured

Figure 4.10: Weighted spectra of 13merHCF, as used in SVD. At wavelengths longer than 300 nm, absorbance values were multiplied by a factor ten. In this way the absorption change of DNA (around 260 nm) and of the HCF chromophore (around 330 nm) are given equal importance; otherwise the DNA band would dominate the analysis.

at different temperatures to allow a more detailed description of the melting process. The basic idea is to take advantage of the full spectral window shown in Fig. 4.10. Here we see the absorption change of the DNA band on the left side and the corresponding change of HCF on the right. Such weighted spectra are needed to treat the absorption change of the DNA (around 260 nm) and of the chromophore (around 320 nm) on the same level; otherwise the DNA band could dominate in the Singular Value Decomposition (SVD). This method searches for principal components in the entire spectral window (see chapter 2.6). In other words, "melting curves" for every single wavelength are analyzed in order to find temperature dependent components which describe the melting of the double strand and of the chromophore. A quick inspection by eye shows already that the HCF

Figure 4.11: Basic spectra are shown at left (\mathbf{U}_{cut} . \mathbf{S}_{cut} . \mathbf{F} in 2.6). The first component (red) was set to be the 90 °C spectrum, i.e. it represents the fully separated single strands. The right panel shows the thermodynamic curves corresponding to the basic spectra (\mathbf{P} in 2.6). Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.77 while that of the second component increases from 0 to 0.23.

probe combines a blue shift with hyperchromism upon melting. Interestingly, only two components are needed to describe the hyperchromism of the bands due to DNA and to the built-in chromophore at the same time. Fig. 4.11 shows the basic spectra on the left $(\mathbf{U}_{cut}.\mathbf{F} \text{ in 2.6})$ and the corresponding thermodynamic curves on the right (\mathbf{P} in 2.6). The first component (red) was set to be the 90 °C spectrum. Note that the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor). Upon duplex formation, the one shown in red experiences an amplitude decrease of 0.23. By design, the blue curve has the same amount as amplitude increase (Fig. 4.11).

A SVD performed only on the DNA absorption band also reveals two components. But in that picture (which is not presented here) both components describe the same melting behaviour and melting point, due to the fact that the absorbance shape around 260 nm is a mixture of absorption bands from the four natural nucleotides^[19]. Therefore the effect of hyperchromism is also a mixture: one component is related to the lineshape of the single strands at high temperature, and the other transforms it to the lineshape of the duplex state upon hybridization. But let us return to the combined analysis in figure 4.11. Red

Figure 4.12: Thermodynamic curves of 13merHCF, scaled to the measured amplitude change of 0.23. The left panel shows SVD data (points) and fits with a two-state model including stacking (lines). The effect of stacking, assumed to be linear, was combined with the sigmoidal line shape of the two-state model. The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking (i.e. the degree of dissociation). The grey vertical lines indicate the melting points (derived from the right panel). The strands as a whole (red) melt at 59.7 °C and the HCF region (blue) at 61.1 °C.

lines denote the hybridization of the whole strand, while the blue lines are connected to the chromophore and upon duplex formation affect the lineshape of the DNA absorption band. Keep in mind that the latter is a mixture of bands, and their carriers are not equally distributed over the double strand. More specifically, the HCF chromophore is surrounded by A-T base pairs. The NMR solution structure indicates additional stacking interactions with T21 and partly T19 of the opposite strand (see Fig. 4.6). Therefore an interaction between HCF and all adjacent base pairs, strong enough to have an observable effect on the DNA absorption band, seems likely.

Based on equation 2.33, a two-state model with stacking interactions was applied to the melting curves in figure 4.11. The resulting fits with stacking interactions (left) and the degree of dissociation (i.e. with the optical effects of stacking removed, right) are shown in figure 4.12. As stated before, the red lines are related to the whole strand and the blue ones to the HCF part. The melting points are marked by grey vertical lines and were derived from the right part of figure 4.12. The parameters for DNA ($c_T = 45 \,\mu\text{M}$) are T_m

= 59.7 ± 0.1 °C, ΔH° = -340 ± 30 kJ/mol, ΔS° = -920 ± 80 J/(K mol) . The parameters for HCF are $T_m = 61.1 \pm 0.1$ °C, $\Delta H^{\circ} = -360 \pm 20$ kJ/mol, $\Delta S^{\circ} = -1000 \pm 40$ J/(K mol).

The 1.4°C higher melting point of HCF suggests that the middle of the strand melts last. The slightly steeper slope of the duplex state part (blue line on the left of Fig. 4.12) indicates that DNA stacking is more cooperative, even though the overall melting point is lower compared to the 63.3 °C of 13merRef^[129] ($c_T = 23.7 \,\mu$ M) with a central A-T base pair. These findings agree with the NMR structure as well as with Kool et al., who found that large aromatic hydrocarbons like the Pyrene nucleoside^[97] or later the β -C-Porphyrinyl nucleoside^[162] help to maintain stacking in both strands of a duplex. In the case of Pyrene opposite an abasic site ($T_m = 41.6$ °C), they observed a thermal stabilization between 18 and 23 °C compared to natural nucleobases in the same position (T,C,A or G opposite abasic site), furthermore, it fits perfectly in the melting point gap between their natural control duplex with central A-T pair ($T_m = 43.2$ °C) and a shortened duplex in which the central base pair is deleted ($T_m = 39.9$ °C). The last point is not surprising, since the stabilizing effect depends on stacking with adjacent base pairs. When the ongoing melting process causes them to unstack, the additional stabilization will be lost.

4.2 6-Hydroxy-quinolinium - 13mer6HQ

13mer6HQ incorporates N-methyl-6-quinolone (MQ) as artificial nucleobase in the center (Fig. 4.13). MQ was introduced by Ernsting et al.^[122] as polarity probe for femtosecond solvation experiments. In this first study, where pure water and methanol were used as benchmark solvents, it was shown that the time-resolved Stokes shift of fluorescence reflects the infrared spectrum of the surrounding liquid. MQ is a betaine that has several advantages over other probes. Betaines are not outwardly charged, so they do not polarize the environment more than is needed for the experiment. Additionally, MQ is free of internal vibrational modes that could interfere with solute motion (see sec. 1) and the solvent polarity couples mainly through dipole moment change. More interesting for this work is the property that the molecule is small enough to replace natural bases in nucleic acids or tryptophan in proteins.

This goal was reached in several steps. The first one was the measurement of the disaccharide trehalose in a mixture with water and MQ as free probe^[272]. This was followed by the attachment of the MQ moiety to trehalose in order to allow measurement of water molecules in the vicinity of the disaccharide^[123,204]. The study uncovered problems that occur when a betaine is linked to a biomolecule. The originally intended linkage via N-carboxymethyl ester failed, due to unexpected high instability, but was successfully replaced by direct N-alkylation of the quinoline derivative with trehalose triflate. Finally, MQ was incorporated into DNA by Felix Hövelmann, who continued previous works of Lucas Bethge in the group of Oliver Seitz.

6-Hydroxyquinoline (6HQ) was chosen as precursor for the synthesis of 13mer6HQ, but two critical issues need to be considered. The first one is the linkage of the quinoline moiety to the backbone. The native linkage via 2-deoxyribose would be too labile due to the positively charged chromophore. The second issue is the limited choice of hydroxyl protective groups. It was discovered that any protecting group placed on the hydroxyl group became unstable upon alkylation on the nitrogen, prohibiting the use of acyl or silyl groups.

Figure 4.13: Structure of 13mer6HQ. For convenience , the 6HQ moiety including Rglycerol backbone is depicted in red and the complementary cytosine in green. The correspondingly colored letters X and Y mark their positions in the duplex strand.

As first alternative to 2-deoxyribose a L-Serinol linkage was tested, but proved to be too labile, so the product could not be isolated. Then the strategy was changed towards a carbacycle, which is missing the endocyclic oxygen, and could therefore overcome the stability problem. However the low yield and poor solubility of intermediate compounds demanded a second change of the strategy. In order to finally overcome the problem of labile linkers, the tethering of 6HQ via a short alkyl chain was chosen, resulting in Rglycerol-6HQ after four steps. The glycerol backbone is advantageous for the following reasons: First of all, it is known to produce intact duplex structures (GNA^[73]). Secondly, the alkyl linkage in R-glycerol-6HQ should be sufficiently stable to survive the conditions during DNA-synthesis, cleavage and purification. Finally, the allyl proctection group on the hydroxyl group will be sufficiently stable and can be cleaved on the CPG after DNA synthesis.

R-glycerol-6HQ was incorporated as central nucleotide of the sequence shown in Fig.

Figure 4.14: NOE-Walk in 13mer6HQ. The assignment of the H6/H8 (abscissa) and H1' (ordinate) region in the D₂O-NOESY spectrum is shown. The red line depicts the NOE-walk for the 6HQ containing strand and the green line for the complementary strand. The starting point (5'-end) of both walks was denoted by a square, while the endpoint (3'-end) is indicated by an arrowhead. For clarity only the positions of intraresidual H6/H8-H1' cross-peaks were labeled. The introduction of R-glycerol, depicted as Q7, made it necessary to extend the spectral region in both dimensions.

4.13 and Cytosine was chosen as potential hydrogen bonding partner to allow base pair formation. R-glycerol for the backbone was selected after simulations of both configurations using Hyperchem 7.5, which revealed a slightly better energy for R. Up to now, only crystal structures of duplex strands containing a full GNA backbone are known^[273,274], so the solution structure of a DNA duplex with a GNA monomer in the center will be of general interest.

4.2.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts^[213] and Bloomfield et al.^[19] as before. In contrast to 13merHCF, complete "NOE-walks" for both strands of 13mer6HQ could be achieved. The D₂O-NOESY spectrum of 13mer6HQ is shown in Figure 4.14. The walks are marked red for the 6HQ strand and green for the complementary strand, respectively. The H2/H1' signal of R-glyerol-6HQ (denoted as Q7) can be found in the upper left corner, which made it made it necessary to extend the spectral region in both dimensions. The strong low-field shift of the H2 hydrogen (8.82 ppm, see Tab. 4) can be explained by deshielding through the adjacent, positively charged nitrogen, which adds to the already observed ring current deshielding in aromatic systems.

The other unusual shift, that should be noted, is the heavily high-field shifted crosspeak A8, which is now in the center of the H6/H8 to H1' region. The signals of adenine H8/H1' are usually found on the left, which is true for the remaining adenines A6, A16 and A24. The explanation for the shift can be derived from Fig. 4.17 of the solution structure, where a close view on the three central base pairs is shown. Here one can see that the five-membered ring of the adenine A8 stacks very well with 6HQ, which shields the magnetic field in the vicinity of the adenine H8, causing a high-field shift of the A8 cross-peak. In contrast to this, a usual chemical shift is observed for the H8 hydrogen of adenine A6. The reason for this is that the stacking with 6HQ is centered around the six-membered ring of adenine and hence far away from the H8 hydrogen.

The chemical shift deviations were calculated the same way as for 13merHCF, but this time compared to native strands, which contain either GC or AT as central base pair. One has to consider that the complementary strand is now a native strand, which is furthermore identical to the corresponding strand in the reference DNA with GC in the center (13merRef(GC)). It is then not surprising that the CSDs between the complementary strand and 13merRef(GC) are relatively small and the only larger difference to the AT reference strand (for convenience 13merRef(AT)) occurs at residue 20, where the cytosine of 13mer6HQ is compared to a thymine in 13merRef(AT). The CSD pattern for the 6HQ strand is similar to 13merHCF (see Fig. 4.3). When taking into account that large CSD at position 7 is mainly caused by the completely different backbone (GNA, DNA) and the different nucleobases (6HQ, G and A), one can see that 13mer6HQ shows similar behaviour in the CSDs for the residues 5,6 and 8. Since the reference strands are known to comprise

Chemical Shift Deviation

Figure 4.15: CSD comparison between 13mer6HQ and different reference strands, which contain either GC or AT as central base pair. Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.

usual B-DNA helices, this may indicate structural deviation in the 6HQ strand but not in the complementary strand.

Figure 4.16: Averaged structure of 13mer6HQ. The averaged structure on the left was constructed from the 10 best-energy and violation-free structures on the right. The 6HQ is marked red, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. The vertical arrow indicates the point of view in Fig. 4.6 and the horizontal one in Fig. 4.19. RMSD among all atoms besides methyl protons is 0.36 Å.

4.2.2 NMR solution structure

The NMR solution structure was determined from experimental NOE and residual dipolar coupling data (see sec. 3.1.9). All NMR resonances could be assigned with the exception of some severely overlapped H5'/H5" signals. Integration and conversion yielded 418 distance restraints, which were used in a first step to generate a start structure. Afterwards, a total of 25 ${}^{1}J_{CH}$ RDC restraints were included into the refinement using a single floating alignment tensor. The 10 best-energy, violation-free structures out of 100 calculated were

Figure 4.17: Close view on the three central base pairs of 13mer6HQ. The 6HQ moiety stacks well with the five-membered ring of adenine A8 and the six-membered ring of A6.

used to construct the averaged structure, which is shown in Figure 4.16. The root-meansquare-deviations (RMSD) among all hydrogens besides methyl protons are 0.36 Å(see sec. 3.2.6).

The deprotonated 6-Hydroxyquinolinium fits perfectly into the helical fold (see Fig. 4.16 and 4.17), other conformations, like in 13merHCF, were not observed. The distance of 1.79 Å between the 6HQ oxygen and amino H42 of cytosine indicates the desired hydrogen bond (Fig. 4.18), thus forming an artificial base pair. Interestingly, 6HQ does not face the cytosine with its short side (along carbons C6-C7), like the purines (A,G) do, it presents instead the long side (carbons C3 to C6). Two reasons are conceivable, which may complement each other. One is the linkage to the backbone, the position of hydrogen N9 in the five-membered rings of purines is more compatible to the C2 position in 6HQ than to nitrogen N1. Moreover, glycerol is missing a bond in comparison to the size of 2-deoxyribose, which could be denoted in terms of sugar nomenclature as attachment of 6HQ to C2' and not C1'. However, the missing bond is balanced by the size and direction

Figure 4.18: Close view on the central base pair of 13mer6HQ. 6HQ forms a base pair with cytosine and a single hydrogen bond. Interestingly, 6HQ presents its long side to the cytosine and not the short one along carbons C6-C7.

of 6HQ.

Figure 4.19 is a side view of the three central base pairs as indicated by the vertical arrow in Fig. 4.16. The white arrow marks the helical long axis of the double strand, while the red arrow indicates the deviating direction of the stacking in adenine A6, 6HQ and A8 (in front). The nucleobases in the back (T19, C20, T21) are not affected and stack along the helical axis. It is known that double stranded GNA shows a strong inclination between backbone and nucleobase, which might explain the observation that neither the R- nor S-enantiomer of GNA cross-pairs with DNA^[275]. However, the 6HQ strand only comprises a single GNA monomer and it has been demonstrated that 6HQ forms a base pair with

Figure 4.19: Side view on the three central base pairs of 13mer6HQ. The face-up orientation is again at left and face-down at right. The base A6 - 6HQ - A8 are in front and the corresponding T21 - C20 - T19 in the back. The short length of glycerol in comparison to a 2-deoxyribose backbone leads to a differing stacking axis (red arrow), which is in usual B-DNA identical to the helical axis (white arrow).

cytosine, so this cannot be the explanation. Unfortunately, the glycerol backbone provides only three bonds between O3' and O2', which means that a second bond compared to 2deoxyribose is missing. This time, the distance is covered by a small inclination between the the sugar of the adjacent adenines and the helical long axis. Consequently, since the nucleobases retain their roughly perpendicular angle relative to the sugar, they form the differing stacking axis with 6HQ. A comparison between 13mer6HQ and our reference DNA 13merRef^[129], where the central base pair is A:T, shows that the distances between

Figure 4.20: Pales^[268] plots of experimental RDCs against predicted values of the 13mer6HQ structure. The predicted values, which were directly derived from the averaged structure, agree well with the experimental RDCs.

C3' of adenine A6 and C5' of adenine A8 are 10.18 Å in 13merRef and 8.98 Å in 13mer6HQ, respectively. The resulting difference of 1.2 Å and the differing stacking axis prove that the missing bond length is crucial for the B-DNA backbone.

The Pales^[268] plot in Fig. 4.20, which compares experimental RDCs with predicted RDCs derived from the average structure, confirms that the obtained structure is part of the experimental data.

Finally for this section, the validity of the 13mer6HQ average structure will be checked using the back-calculated spectrum in Fig. 4.21. The experimental NOESY spectrum (D_2O) is depicted in black and the back-calculated in red, respectively. On the left half, a series of back-calculated cross-peaks can be found that appear not to be present in the experimental spectrum. In fact, the signals are present, but suffer from a low signal-tonoise ratio. More interesting is the second C26-H6/H5 cross-peak on the right, which is shifted to higher field in both dimensions, due to unstacking from the helix. The occurrence of this cross-peak indicates fraying at the helix ends. The other cross-peaks of the back-calculated spectrum agree well with the data.

Figure 4.21: NOESY back-calculation (red) overlaid with experimental data (black). The left side shows back-calculated cross-peaks, which are apparently missing in the experimental data. In fact, weak signals are present in the data, but suffer from a low signal-to-noise ratio. The cross-peak on the right marks the unstacked H6/H5 signal of C26, which indicates fraying of the helix ends.

Figure 4.22: Absorption change of ds13mer6HQ upon melting, when raising temperature from 10 °C (violet) to 90 °C (red line; $c_T = 131 \text{ µM}$). Data from the 1 and 10 mm cuvettes are labelled "1x" and "10x", respectively. A ten-times magnification of the latter is labelled "100x".

4.2.3 Duplex melting experiments

A sample of double-stranded 13mer6HQ was prepared in a water/ammonia mixture with pH = 8.5 and salt concentration of 150 mM sodium chloride. Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_T = 131 \,\mu\text{M}$ of single strands was estimated from maximum absorption around 260 nm at 90 °C. A set of 17 spectra between 10 and 90 °C were recorded and corrected for density change. Results are shown in Fig. 4.22, where the data from the 1 and 10 mm cuvettes are labelled "1x" and "10x", respectively. A ten-times magnification of the latter is labelled "100x".

Figure 4.23: The UV part of the spectrum was used for SVD of the DNA absorption peak. The first spectrum is violet (10 °C) and the last one is red (90 °C).

Analysis of the 13mer6HQ DNA band

The changes of the DNA peak with increasing temperature $(10 - 90 \,^{\circ}\text{C})$ were quantified in a spectral window from 300 to 210 nm (see Fig. 4.23). The UV absorption spectra in this range were analyzed for principal components via Singular Value Decomposition (SVD). Two components are needed to describe the hyperchromism. Fig. 4.24 shows the basic spectra on the left and the corresponding thermodynamic curves on the right. The first component (red) was set to be the 90 °C spectrum. Note that the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor.) Upon duplex formation, the red one shows an amplitude decrease of 0.24. By design, the blue curve shows the same amount as amplitude increase (Fig. 4.24).

Figure 4.24: Basic spectra are shown left. The first component (red) was set to be the 90 °C spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.76 while that of the second component increases from 0 to 0.24.

Like before (chapter 4.1.3) a two-state model with stacking interactions $^{[19]}$ was applied to the thermodynamic data (Fig. 4.25). It assumes that the temperature (T) dependence of the extinction coefficients is linear $(\epsilon_{[ss]} = m_{[ss]}T + b_{[ss]})$ and, in addition, different for the single- (ss) and double-stranded (ds) forms. It is not necessary to fit the linear parts separately, therefore Equation 2.33 can be directly applied (as introduced in 2.7) to the data (dots) shown in Fig. 4.25. The thermodynamic parameters for the red line are ΔH° = -320 ± 20 kJ/mol, ΔS° = -900 ± 50 J/(K mol) and ΔH° = -330 ± 30 kJ/mol, $\Delta S^{\circ} = -930 \pm 70$ J/(K mol) for the blue one, respectively. The values for both lines are equal in the range of their errors. A unique melting point of 53 \pm 0.1 °C is noted at the total concentration $c_T = 131 \ \mu M$ of single strands. Remember that in case of 13merHCF a second melting point was observed, reflecting the HCF chromophore in its environment. The 53 °C of the 13mer6HQ DNA absorption band can be compared with the 63.3 °C of 13merRef^[129] ($c_T = 23.7 \mu$ M, central A-T). The observed thermal destabilization, corresponding to a melting-point decrease of 10.3 K, is in fact a minimum value. This is because the total strand concentration of 13mer6HQ (owing to the weak absorbance of the 6-Hydroxy-quinolinium chromophore) is more than 5 times higher than

Figure 4.25: Thermodynamic curves, scaled to the measured amplitude change of 0.24. The left panel shows SVD data (points) and fits with a two-state model including stacking (lines). The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking. In contrast to the initial curves on the left, a unique melting point of 53 °C for both principal components is estimated (grey vertical lines).

was used for 13merRef. A melting point of 67 °C can be estimated for 13merRef at c_T = 131 µM (of 13mer6HQ) by using the Nearest Neighbor Model^[255], the corresponding melting-point decrease is then in a range of 14 K.

Figure 4.26: Basic spectra for the duplex part are shown left. The first is arbitrarily set to the absorption spectrum at 30 °C (red). The right part shows the corresponding amplitude curves. Dots represent the experimental data and lines the fit and extrapolation up to 90 °C.

Dissection of the 6-Hydroxy-quinolinium band

The approach for this part is similar to the previous description, and the main goal is to observe the hybridization of the chromophore in the visible spectral region. For this purpose the spectral range, which was subjected to analysis, was restricted to $\lambda > 340$ nm where the absorption by the quinolinium chromophore should be dominant. The first examination via SVD revealed at least three principal components. They all show a melting curve with negative slopes for the linear parts. Inspection of the basic spectra led to the conclusion that two different species are involved in the melting process, since the change of the chromophore absorption could not be explained by simple hyperchromism with blue shift of the peak, as observed before with 13merHCF. At this point the new approach of the double SVD-assisted two-state model was developed. The theoretical background was already described in 2.7. Since melting/hybridization occurs in a small temperature range around 50 °C, one can try to understand the behaviour of the duplex separately at low temperature, and that of the fully separated single strands at high temperature. In each of these two limiting temperature intervals, a SVD analysis of the absorption spectra in Fig. 4.22 is made. Knowing the change of absorption with temperature for both, an extrapolation can be done from either side into the middle, i.e.

Figure 4.27: From the known duplex region (10-30 °C) onwards, the next twelve spectra were extrapolated (35 up to 90 °C) to simulate the behaviour of a non-melting double strand.

in the direction where strand separation occurs. For example, the absorption spectrum of the double strand can be simulated for 60 °C where, in reality, the separation into single strands is almost complete. At any given temperature, the observed spectrum should be a linear combination of the two extrapolated spectra, i.e. of the separate strands and of the duplex. From the corresponding fit the degree of dissociation α is obtained. In other words, extrapolations with the help of basic spectra (from SVD) replace the linear parts of the two-state model used above. As a result we obtain a dissociation curve which is shown in Fig. 4.31 below.

The first step on that way is the extrapolation of the duplex part. The spectra from 10 to 30 °C were used, and they could be described by two principal components in the

Figure 4.28: Basic spectra and amplitudes as in Fig. 4.26, but for the separated single strands. The first basic spectrum is taken to be the absorption spectrum at 70 °C (red).

SVD. Both thermodynamic curves can be described by straight lines, which are then used to extrapolate the thermodynamic behaviour up to 90 °C (Fig. 4.26). The second principal spectrum in Fig. 4.26 was smoothed (by a Wiener filter^[276]) to reduce noise when extrapolating to high temperature. Fig. 4.27 shows the resulting change of absorption for the duplex, as extrapolated for the whole temperature range.

The same procedure was then performed for the single strands, using the last 4 spectra, i.e. for temperature from 70 up to 90 °C. In this way Figs. 4.28 and 4.29 are obtained (analogues to Figs. 4.26 and 4.27, respectively). A look at the extrapolated spectra (Fig. 4.27 and 4.29) reveals a similar behaviour compared to the HCF chromophore, which underwent a blue shift and hyperchromism on the blue side of the spectrum upon melting. In addition, the missing absorption band around 430 nm in the duplex state spectra (Fig. 4.27) is now present in the extrapolated single strand spectra (Fig. 4.29). The band indicates the deprotonated state of 6HQ, due to the basic buffer (pH = 8.5), and disappears when the 6HQ-C base pair and hence the hydrogen bond is formed.

As last step before the two-state model can be applied, a linear combination based on equation 2.34, where α is the fraction of extrapolated single strand spectra $S_{[ss]}(T)$, is used to build the measured spectra $M(\alpha, T)$ around 400 nm. In other words, the linear equation terms of (2.33) are substituted with the extrapolated spectra $S_{[...]}(T)$.

Figure 4.29: The known region is now the high temperature part (70-90 °C), where fully separated single strands are assumed. In this case, extrapolation from 65 °C down to 10 °C simulates two strands which cannot hybridize at lower temperatures.

The α values produced, using equation (2.34), are plotted as dots in Fig. 4.31. Hence the extrapolated spectra are already scaled to the measured data; the two-state model defined in equation (2.32) can be directly applied (line in Fig. 4.31). Best fit parameters are $\Delta H^{\circ} = -365 \pm 5$ kJ/mol and $\Delta S^{\circ} = -1030 \pm 20$ J/(K mol) for the hybridization. The melting point is 0.1 °C higher (53.1 ± 0.1 °C) than the 53 °C for the complete strand, which is a negligible difference. The fact that the melting points for the whole strand and the built-in chromophore are the same and more than 10 K lower than in 13merRef gives no evidence for local melting (e.g. bubble formation) and is in good agreement with the NMR solution structure. Figure 4.19 shows the differing stacking axis in the middle of the modified strand, caused by the short glycerol linker. In combination with the limited

Figure 4.30: Overlay of linearly combined spectra (dashed black lines, eq. (2.34)) and measured data (blue 10 - 90 °C red) around 400 nm (10 mm path length). On the right, for a better pairwise comparison, each data curve and its linear combined spectrum is plotted with an offset.

Figure 4.31: The α values of the linear combined spectra are shown as points, whereas the line represents the applied two-state model for α . The resulting melting point is 53.1 °C.

flexibility of the small linker, this promotes melting of the strand as a whole at lower temperature. Nevertheless, the designated 6HQ-C base pair was formed and proven by the missing absorption band at 430 nm in duplex state, which in turn became accessible by the new analysis method.

Figure 4.32: The absorption spectrum of single-stranded 13mer6HQ, measured from 10 (blue) to 80 °C (red), is shown on the left hand side. The extrapolation on the right was performed in the same way as the separated strands form of ds 13mer6HQ. Therefore, the 70 °C spectrum (orange) was set to be the first basic spectrum and all spectra with higher temperature were used as dataset for the extrapolation to lower temperatures.

Comparison of the measured 13mer6HQ single strand with its extrapolated spectrum

A single strand of 13mer6HQ was measured prior to the double strand. The data can be used to compare our SVD-assisted extrapolation on the isolated single strand (see right part of Fig. 4.32) with its real spectra at lower temperatures. The aim is to get an idea of the robustness and possible limits of the extrapolation. The extrapolation was performed the same way as on the single strand form of ds 13mer6HQ. Therefore, the 70 °C spectrum (orange) was set to be the first basic spectrum, which is in addition the first data point where the fully single stranded form of ds 13mer6HQ can be assumed (see Fig. 4.31). In contrast to the five high temperature data points used in Fig. 4.28, only three spectra were available in this case, due to end of data acquisition at 80 °C.

Figure 4.32 shows measured (left) and extrapolated data (right) next to each other. It is easy to notice that the extrapolation increasingly differs from the measurement at lower temperatures. Due to the fact that in an eventual application the duplex form would be dominant at lower temperatures, the extrapolation only needs to be exact for spectra which are largely dominated by the single stranded form. The overlay in figure 4.33 allows a direct comparison between the measured and extrapolated data. From 80 down to 55

Figure 4.33: Overlay of the extrapolated spectra (dashed black lines) and measured data (blue 10 °C to red 80 °C). For a better pairwise comparison, each data curve and its extrapolated spectrum is plotted with an offset. From 80 down to 55 °C (6th line from top) there is a good agreement. Deviations become relevant at 50 °C (7th from top) and rise more and more when going downwards. However, the effect on the linear combined spectra (in Fig. 4.30) is small, when taking the melting point of the double strand (53.1 °C, Fig. 4.31) into account, which states that for 50 °C and below the duplex form is dominant.

[°]C (6th line from top) there is a good agreement. The deviations become visible in the 50 [°]C spectrum and rise more and more when going downwards. However, at 50 [°]C the duplex form is dominant and the upcoming deviations from the measurement cannot have a visible effect on the linear combination of extrapolated spectra (see Fig. 4.30, the same should be observed for the duplex part going to high temperature). In other words, the transition of the DNA eliminates the rising error of the extrapolations as long as they are both correct around the melting point.

4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine -13mer4AP-DAP

The 13mer4AP-DAP double strand was developed in cooperation with the group of H.-A. Wagenknecht (Karlsruhe Institute of Technology). The artificial base pair in the center comprises 4-aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP) as base surrogates. The 4AP chromophore is comparable in size to natural purines and shows remarkable solvatochromicity, red-shifted fluorescence in polar solvents, and hydrogen bonding capabilities^[205]. Therefore DAP was designed as a potential counterbase, offering three potential hydrogen bonding sites. Michael Weinberger (Wagenknecht group) was responsible for the synthetic route of 4AP and Falko Berndt (Ernsting group) correspondingly for DAP. Both synthetic routes^[205] utilized stereoselective Heck-type palladium-catalysed cross-coupling with 2'-deoxyribofuranoside glycal followed by stereoselective reduction with NaBH(OAc)₃. Both nucleosides were further processed to the corresponding phosphoramidites and subsequently incorporated via automated DNA synthesis.

The finally obtained double strand of 13mer4AP-DAP required some alterations in the process of structure determination. As stated in the introduction (sec. 1.3), the hydrolysis of the 4AP chromophore in water had to be addressed, especially under basic conditions. A weak acidic buffer was chosen (pH 6.35), which extended the lifetime of the 4AP mononucleotide from hours to a few days. As a consequence of this, it was discussed that DAP might be protonated by the acidic buffer. A subsequent measurement of 2,4-diaminopyrimidine absorption at different pH values revealed a pK_a of 7.4 ± 0.1 . Hence the picture of the 4AP-DAP base pair presented in the introduction (Fig. 1.3) was changed to that of Fig. 4.34. Furthermore it should be noted that only a small amount of the 4AP strand was available, so that the same sample had to be used in all experiments. In order minimize the time and sample preparation effort, a closed double cuvette was used that offers 1 and 10 mm optical path lengths at the same time. In addition to the customized cuvette, the order of experiments was reversed, so that the optical experiments (absorbance, fluorescence etc.) were measured first, since their overall

Figure 4.34: Structure of 13mer4AP-DAP. The 4AP moiety (red) was placed at position X and the DAP (green) at Y, respectively. Please note the additional hydrogen in DAP.

acquisition time was shorter than that of a single NOESY experiment. Moreover, it was doubted that the sample amount would be sufficient for structure determination, since the theoretically achievable maximal concentration was only 1.5 mM in a Shigemi NMR tube (250 µl). In contrast to this, all previous samples were measured with at least 3 mM concentration. The limiting factor for the sample concentration is the RDC measurement, which requires much more nuclei in the center of the magnetic field than the NOESY experiment, due to the principal concept of measuring *residual* dipolar couplings. Even though that RDCs became a standard tool in structure determination, they are not required to perform restrained Molecular Dynamics. As outlined in the introduction, this method was invented to use only NOE distance restraints which is, of course, still possible. So it was decided to omit the RDC experiment for the price of some quality, due to the fact that RDCs can offer structural information without suffering from the limited range of NOEs (< 5 Å). In the first cycle only a minimal set of NMR spectra was measured at 10 °C directly after the last optical experiment, just in case that 13mer4AP-DAP is not

Figure 4.35: NOE-Walk in 13mer4AP-DAP. The assignment of the H6/H8 (abscissa) and H1' (ordinate) region in the D₂O-NOESY spectrum is shown. Red lines mark the NOE-walk for the 4AP-DAP containing strand and green lines for the DAP strand. The starting point (5'-end) of both walks was denoted by a square, while the endpoint (3'-end) is indicated by an arrowhead. Note that the 4AP walk is interrupted at the modification site (marked by X), while DAP (D20) is high-field shifted. For clarity only the positions of intraresidual H6/H8-H1' cross-peaks were labeled.

stable in the long term. Fortunately the sample remained stable, but the finally achieved concentration was only 1.2 mM. However, the gained time window allowed for extensive optimization of the pulse sequence and a high number of transients during the NOESY experiment.

4.3.1 Chemical shift analysis

The assignment was achieved by standard methods^[19,213] that were already described for 13merHCF and 13mer6HQ. In Figure 4.35 both NOE walks are shown. The walk of the 4AP strand (red) is interrupted at the 4AP site (like the HCF strand), while the complementary strand resembles the 6HQ strand with shifted signals at the DAP

Figure 4.36: CSD comparison between 13mer4AP-DAP and different reference strands, which contain either GC or AT as central base pair. Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.

modification. The interruption may indicate deviations from B-DNA stacking at the 4AP site, although the chromophore is linked to a conventional DNA backbone and its H5 resembles the H6 of pyrimidine bases, whereas the interruptions in 13merHCF were caused by the α -glycosidic bond.

In Fig. 4.34 the artificial base pair was depicted with three hydrogen bonds. Even without knowing the structure, it is possible to analyze the hydrogen bonding pattern. Imino proton signals in DNA double strands are usually observed at 12 ppm or higher, when the proton is part of a hydrogen bond. Otherwise they are shifted high-field to values around 10 ppm^[213]. In case of 13mer4AP-DAP, a sole signal was observed in the

latter region which indicates that a base pair is not correctly hydrogen bonded. Moreover, 4AP contains the only new imino hydrogen and its principle design differs from purines in the sense that the five- and six-membered ring switched positions, so 4AP was suspected to lack a hydrogen bond. It should be noted that a missing hydrogen bond in the center of 4AP-DAP (see Fig. 4.34) also questions the existence of the other desired hydrogen bonds.

The chemical shift deviations of 13mer4AP-DAP were calculated in comparison to native strands (Fig. 4.36), which contain either GC or AT as central base pair. It must be considered that the spectra were measured at 10 °C instead of 25 °C, therefore an overall shift in all residues is observed, due to stronger stacking at lower temperature. A prominent example is cytosine at position 26 (C26), which shows the largest CSD among all residues far from modification sites. As stated in the end of section 4.2.2 of 13mer6HQ, C26 is sensitive to fraying at the helix end, which is in case of 13mer4AP-DAP reduced, due to the lower sample temperature. The deviations around DAP (20) are higher than the average inside the double strand, but among all nucleobase analogues in this work they seem rather small and this maybe related to the fact that DAP is also a pyrimidine like thymine and cytosine. In contrast to this, 4AP shows the largest CSD to which all its hydrogens contribute, especially the aforementioned H1. So it seems more and more likely that 4AP will not take the desired position inside the helix.

4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine - 13mer4AP-DAP

Figure 4.37: Assignment of two imino signal sets in 13mer4AP-DAP. Cross-peaks with the same assignment are circled either yellow or blue. Top and bottom picture represent the two conformations.

4.3.2 NMR solution structure

Two solution structures were found for 13mer4AP-DAP. In Figure 4.37 the reason for this is depicted. Two sets of imino proton signals can be assigned for the central AT base pairs. The region of the signals indicate correct hydrogen bonding pattern of these base pairs in both conformations. Furthermore, both pairs are adjacent to the 4AP-DAP pair, so that the conformational change should be found here. Two conformations with

Figure 4.38: Averaged structures of 13mer4AP-DAP. The 4AP is marked red and the DAP green, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. The conformations were named after the number of hydrogen bonds for the 4AP-DAP base pair. Therefore is on the left the "1H-bond" conformer and on the right the "2H-bond", respectively. RMSD among all hydrogens besides methyl protons is for 1H-bond 0.52 Å and 2H-bond 0.85 Å, respectively. The white arrows indicate the point of view in Fig. 4.40.

different assignment patterns raise the complexity of the structure determination, since the intensity of all NOEs around the central base pairs depends, in addition to the distance, in such a case on the relation between both conformations. All details about the Simulated Annealing simulations can be found in sections 3.1.9 and 3.3.5.

None of the conformers shown in Fig. 4.38 comprises the three desired hydrogen bonds. However, they were named in accordance to the number of observed hydrogen bonds in the 4AP-DAP base pair, therefore is on the left the "1H-bond" conformer and on the right

Figure 4.39: Overlay of the 10 minimum-energy, violation-free structures. The left side corresponds to the 1H-bond orientation of the average structures (left in Fig. 4.38) and the right to 2H-bond. The deviations alongside the backbone, especially for the 2H-bond, are larger than in comparison to the other structures (13merHCF, 13mer6HQ). The problem which arises here is that without RDCs only short distance information from base to base is available. So a weakly bent helix can be described with the same NOEs as a straight helix.

the corresponding "2H-bond" structure. Therein, the 1H-bond conformer is characterized by a straight well-defined B-DNA, while 2H-bond is wider in the center and starts to bend above the 4AP chromophore. The problem with a bent structure is that there is no evidence for it in the NOE data, since they only provide information from one residue to the next residue, thus limiting the quality of the structure. RDC measurements could validate or falsify the bending, since they provide long range information which describes

Figure 4.40: Close view on the three central base pairs of 13mer4AP-DAP. The 1H-bond orientation is again at left and 2H-bond at right. Interestingly, the 1H-bond 4AP (left) only stacks to adenine A8, while the five-membered ring faces to the minor groove instead of the center of the helix. Also worth to mention, the six-membered ring in the 2H-bond conformation is stacked to C1'-N9 bond of adenine A6.

the orientation of the bases in relation to the helical axis, but cannot be measured due to the low concentration of the sample. As a consequence, a second set of structures was calculated, which take advantage of the way restraints are used in Molecular Dynamics. The background and the results will be discussed in the next section (4.3.3).

The overlay of the 10 minimum-energy, violation-free structures in Fig. 4.39 shows more variation along the backbone than the previous structures (13merHCF, 13mer6HQ). Especially the 2H-bond overlay varies at the helical ends, which is usually compensated by the aforementioned RDCs. It should be noted that the RMSD value can also indicate high flexibility in parts of the structure or the presence of different conformers like in 13merHCF.

In Figure 4.40 the three central base pairs are shown as indicated by the white arrows in Fig. 4.38. The 1H-bond orientation is again at left and 2H-bond at right. One can see that the 4AP-DAP base pair fits into the helical structure for both conformations. Interestingly, the 1H-bond 4AP (left) only stacks to adenine A8, while the five-membered ring faces to the minor groove instead of the center of the helix. Remember, in case of 13mer6HQ the glycerol linker placed 6HQ in a position where stacking with both adjacent

Figure 4.41: Close view on the central base pair of 13mer4AP-DAP. In the 1H-bond conformation (top), the 4AP forms a base pair with DAP that clearly resembles the 6HQ-C pair in Fig. 4.18. Reason for this is that both chromophores, 4AP and 6HQ, were linked via the same atom position in their six-membered ring to the backbone. In the bottom picture the 2H-bond conformer is shown. Although at first sight the bases seem to be in the right position for triple hydrogen bonding, the distances clearly indicate the presence of only two bonds.

adenines was possible. Also worth mentioning is that the six-membered ring in the 2Hbond conformation is stacked to C1'-N9 bond of adenine A6. So both conformations are somewhat displaced inside the helix, which might affect the stacking interactions.

Figure 4.18 provides a close view to the central base pairs of both conformations. In the 1H-bond conformation (top), the 4AP forms a base pair with DAP that clearly resembles

Figure 4.42: NOESY back-calculations of both conformers overlaid with experimental data. The 1H-bond spectrum is colored red, the 2H-bond spectrum green, and the experimental spectrum black. The circles depict the same crosspeaks as in Fig. 4.37.

the 6HQ-C pair in Fig. 4.18. Reason for this is that both chromophores, 4AP and 6HQ, were linked via the same atom position in their six-membered ring to the backbone. The only difference is that the hydrogen bond faces to the minor groove, while the bond in 13mer6HQ faces the major groove, due to the changed perspective indicated in Fig 4.16. In the bottom picture the 2H-bond conformer is shown. Although at first sight the bases seem to be in the right position for triple hydrogen bonding, the distances clearly indicate the presence of only two bonds. Furthermore, the different placement of 4AP is handled by the 2'-deoxyribose by switching between 2'-endo conformation (top) and 3'-endo (bottom). The latter is typical for A-DNA, thereby explaining the wider center, the interruption of the NOE-walk and the chemical shift deviations of the backbone in the previous section. Also interesting , the backbone of DAP has also changed in the bottom picture to an intermediate state between C2'-exo and C3'-endo.

As last point of this section the back-calculation of the NOESY spectrum will illustrate the two conformations for the spectral region in Fig. 4.37. In order to cover all cross-peaks in the experimental spectrum, both back-calculated spectra are needed.

4.3.3 What if RDCs were included?

In this section it is argued that the lack of RDC information can be overcome by a single assumption. First of all, some important information will be given, how Xplor-NIH^[245] handles restrained Molecular Dynamics. The theoretical background introduced the total potential energy V_{tot} in equation 2.25, which is composed of an effective V_{eff} and an empirical energy term V_{emp} . All experimental restraints are part of the effective energy, while the empirical term contains force field components like Coulomb or Van-der-Waals interaction.

When a structure calculation has found a supposed global minimum then the total potential energy V_{tot} only contains V_{emp} , since the contributions of all restraints in V_{eff} are zero as long as the structure is free of violations. It is important to understand that the restraints do not define the structure in the minimum, instead they *limit the possible pathways* on the potential energy surface in order to find a reasonable minimum and hence a possible solution structure. The great advantage of this concept is that faulty restraints cannot affect the structure as long as a pathway to a minimum in energy is described. In this case they show up as violated restraints and one has to check the restraint and the structure for the reason of the difference. Usually one has to exclude NOE restraints which are heavily overlapped or near the limit of detection. Other reasons include errors in the assignment or that the structure, when everything else is ruled out, is only in a local minimum and therefore not correct. The latter is the reason, why so many calculations have to be performed and so much time invested to find the solution structure. Additional validity checks like back-calculation of NOESY spectra, Pales plots and RMSD values are helpful in the decision.

In the end, structure determination via restrained Molecular Dynamics means to find the best way to the potential energy minimum. At this point one could ask if the bent H2-bond conformation is stuck in a local minimum, since the 1H-bond conformer and also the other structures (13merHCF, 13mer6HQ) were rod shaped. The next question is then, how to describe a rod shape as a route on the potential energy surface, which can be scanned for a minimum. The headline of this section has already answered the last question. RDCs

Figure 4.43: Averaged structures of 13mer4AP-DAP with RDCs of 13merHCF. The 4AP is marked red and the DAP green, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. Still on the left side is the "1H-bond" conformer and on the right the "2H-bond", respectively. RMSD among all hydrogens besides methyl protons is for 1H-bond 0.26 Å and 2H-bond 0.28 Å, respectively. The white arrows indicate the point of view in Fig. 4.45.

can provide the long range information that is necessary to describe a straight double strand, but measured RDCs are not available for 13mer4AP-DAP. However, the required information can be taken from set of RDCs that have proven to describe a straight strand, in this case from 13merHCF. The only necessary modification prior to their application is that all values that belong to the HCF chromophore will be omitted, since all double strands of this work differ only in their central base pair.

Figure 4.44: Overlay of the 10 minimum-energy, violation-free structures of 13mer4AP-DAP with RDCs of 13merHCF. The left side corresponds to the 1H-bond orientation of the average structures (left in Fig. 4.38) and the right to 2H-bond.

Figure 4.43 presents the averaged structures of 13mer4AP-DAP that were obtained by simply adding RDCs from 13merHCF (Tab. 3.1) to the simulations described in section 3.3.5. Two straight double strands were obtained. It is now easy to see, how the change of the 4AP backbone to C3'-endo affects the 2H-bond structure (right panel). The enlarged distance between the adenines A6 and A8, which surround the 4AP chromophore, appears as an uplift of A6 (located above 4AP). The effect of the 4AP-DAP introduction is now limited to the next two base pairs in both directions.

A closer look on the central base pair in Figure 4.45 reveals that the relative positions

Figure 4.45: Close view on the central base pair of 13mer4AP-DAP with RDCs of 13mer-HCF. The only notable difference to the previous picture of the central base pair conformations (Fig. 4.18) is the distance of the missing hydrogen bond (red), which is raised by 0.41 Å, a value below the error margin of the involved NOE distances. Neither the number of hydrogen bonds nor the relative positions of 4AP and DAP have changed. The deviating conformations of the 2'-deoxyribose in the 2H-bond structure (bottom), for example C3'-endo for 4AP, were also retained.

of 4AP and DAP to each other did not change, which is not surprising. As outlined in the beginning of the section, the RDCs affect mainly the overall shape of the double strand. The only notable difference to the previous picture of the central base pair conformations (Fig. 4.18) is the distance of the missing hydrogen bond (red), which is raised by 0.41 Å, a value below the error margin of the involved NOE distances. The reason for the rise

Figure 4.46: Pales^[268] plots of experimental 13merHCF RDCs against predicted values of the of 13mer4AP-DAP structures (1H-bond, 2H-bond right). It is easy to see that the RDC values of 13merHCF work as well with 13mer4AP-DAP.

is the induced propeller twist between 4AP and DAP in contrast to the nearly planar arrangement of the NOE only structure. A base pair twist is not special, in fact planarity is, since it was a side effect of the first crystal structures that offered only averaged values for the helix parameters and was later revised by the first single crystal structures $^{[2,14]}$. Note that the backbone conformation of 4AP in the 2H-bond structure is still C3'-endo and that DAP also retained its intermediate state between C2'-exo and C3'-endo.

Pales plots for both RDC structures will prove that 13mer4AP-DAP is as compatible as 13merHCF to the RDC data (Fig. 4.46).

Finally for this section, it can be summarized that the solution structures, which were found under the assumption of linear double strands, exhibit better RMSD values and less perturbations. So it seems very likely that the RDC structures are closer to the real structures, even though the RDCs came from 13merHCF. At this point it should be repeated that restraints were used to find a way to the minimum in potential energy, where the structures are defined by the effective energy V_{eff} and the restraints sum to zero. This clearly shows, how important the RDC measurement for structure determination is. Moreover, it was demonstrated that it is possible to benefit from RDC data of other double strands.

4.3.4 Duplex melting experiments

Figure 4.47: Absorption change of ds13mer4AP-DAP upon melting, when raising temperature from 20 °C (blue) to 85 °C (red line; $c_T = 20.5 \mu$ M). Data from the 1 and 10 mm cuvettes are labelled "1x" and "10x", respectively. A ten-times magnification of the latter is labelled "100x".

A sample of double-stranded 13mer4AP-DAP was prepared in a water/phosphate buffer (10 mM NaH₂PO₄, pH = 6.35) with 150 mM sodium chloride (see sec. 3.3). Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_T = 20.5 \,\mu\text{M}$ of single strands was estimated from maximum absorption around 260 nm at 85 °C. A set of 14 spectra between 20 and 85 °C were recorded and corrected for density change. Results are shown in Fig. 4.47, where the data from the 1 and 10 mm cuvettes are labelled "1x" and "10x", respectively. A ten-times magnification of the latter is labelled "100x".

Analysis of the 13mer4AP-DAP DNA band

Figure 4.48: The UV part of the spectrum was used for SVD of the DNA absorption peak. The first spectrum is blue (20 °C) and the last one is orange (80 °C). The 85 °C measurement (1 mm cuvette for DNA peak) had to be omitted due to an error in the cuvette holder while heating the sample.

The strategy here starts similar to the one in 13mer6HQ by separate examination of the DNA absorption band. The changes of the DNA peak with increasing temperature (20 - 80 °C) were quantified in a spectral window from 300 to 220 nm (see Fig. 4.48). The UV absorption spectra in this range were analyzed for principal components via Singular Value Decomposition (SVD). Two components are needed to describe the hyperchromism. Fig. 4.49 shows the basic spectra on the left and the corresponding thermodynamic curves on the right. The first component (red) was set to be the 80 °C spectrum. As before, the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor.)

Figure 4.49: Basic spectra are shown left. The first component (red) was set to be the 80 °C spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.8 while that of the second component increases from 0 to 0.2.

Upon duplex formation, the red one shows an amplitude decrease of 0.2. By design, the blue curve shows the same amount as amplitude increase (Fig. 4.49).

Again, the two-state model with stacking interactions was applied to the thermodynamic data shown in figure 4.50. When comparing the basic spectra of 13mer4AP-DAP in figure 4.49 with the DNA part of 13merHCF (Fig. 4.11) or 13mer6HQ (Fig. 4.24 one can see that they all look the same. Assuming the same assignment, introduced with 13merHCF, the red line is related to the whole strand, while the blue line describes the basepairs around the two artificial nucleobases in the center. In contrast to 13merHCF, the order of the melting points in the right (two-state only) part of figure 4.50 (grey vertical lines) has changed. The blue one comes first at 59.1 ± 0.1 °C and the whole strand (red) follows at 59.5 ± 0.1 °C. In principle, this indicates a weak local melting or bubble formation in the center of the duplex, but when taking the other parameters into account (red: $\Delta H^{\circ} = -330 \pm 20 \text{ kJ/mol}, \Delta S^{\circ} = -880 \pm 50 \text{ J/(K mol)}$ and blue: $\Delta H^{\circ} = -340 \pm 20 \text{ kJ/mol}, \Delta S^{\circ} = -930 \pm 60 \text{ J/(K mol)}$, they are possibly equal within the margin of errors. In order to clarify whether or not there is evidence of local melting, the analysis of the 4AP part of the absorption spectrum is necessary. A lower estimated melting point would support this

Figure 4.50: Thermodynamic curves, scaled to the measured amplitude change of 0.2. The left panel shows SVD data (points) and fits with a two-state model including stacking (lines). The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking. The grey vertical lines indicate the melting points (derived from the right panel), therein the whole strand (red) melts at 59.5 °C and the center (blue) at 59.1 °C.

theory. A second possible cause, why the blue line has a lower melting point, would be the absorption of 2,4-diaminopyrimidine around 270 nm, but then the effect on the lineshape of the DNA peak is rather small, since there is no evidence of alteration (additional hidden peak) in the basic spectra (Fig. 4.49) and in the end, the theory of local melting would still remain.

Dissection of the 4-Aminophthalimide band

The same procedure was then performed on the spectral window of 4-Aminophthalimide $(\lambda > 480 \text{ nm})$. Two components are needed in the SVD to describe the hyperchromism in figure 4.52. The red component describes the rising amplitude of hyperchromism, but compared to the other molecules it has a rather small amplitude change of 0.1, less than a half of the usually observed value. In addition, it is the only sample with linear lineshape of the blue shift over the full temperature range (blue component). Both observations indicate weaker base-stacking for the 4AP chromophore.

While the red curve was fitted with equation 2.33, representing the two-state model with

Figure 4.51: Spectrum was used for SVD of the 4AP absorption band. The first spectrum is blue (20 °C) and the last one is red (85 °C).

linear stacking, the blue line was fitted by a simple linear least-squares fit, which describes a linear blue shift from 385 nm at 20 °C down to 379 nm at 85 °C. Best fit parameters for the melting curve are $\Delta H^{\circ} = -360 \pm 40$ kJ/mol and $\Delta S^{\circ} = -1000 \pm 100$ J/(K mol) upon hybridization. Interestingly, when looking closely on the duplex part of figure 4.53, we notice an initial decrease of absorption up to 45 °C. This observation suggests that stacking first increases, even though the hypsochromic effect is small (< 2 %). This finding can be explained when taking the NMR solution structures into account. At low temperatures the weakly stacked 1H-bond conformer dominates which changes with rising temperature. Shortly before the melting point more and more molecules are in the 2H-bond state, which shows a better stacking interaction (see Fig. 4.40) and therefore would explain the initial absorption decrease. From the right panel (Fig. 4.53) a melting point of 56.9 °C was estimated, which is as supposed lower than the 59.5 °C (red component) or 59.1 °C (blue)

Figure 4.52: Basic spectra are shown left. The first component (red) was set to be the 85 °C spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.9.

obtained for the DNA peak. In summary, the theory of local melting in the center of the duplex is supported by its lower melting point, the two melting points of the DNA peak, the linear blue shift and the weak base-stacking of the 4AP chromophore. Additional evidence comes from NMR, where the signal of the 4AP proton H1 was assigned in the region of non-hydrogen-bonded imino protons around 10 ppm (see sec. 4.3.2). Moreover, the 1H-bond conformation supports the findings of the melting experiments, due to the placing of the five-membered ring into the minor groove region. In case of 2-aminopurine, which contains an amino group facing towards the minor groove, it has been demonstrated that the base pair dynamics is much faster and thereby lowering the melting temperature^[129] in comparison to an adenine containing reference strand (13merRef). It should be noted that both double strands only differed in the position of a single amino group in the center.

Figure 4.53: Melting curve (red), scaled to the measured amplitude change of 0.1. The left panel shows SVD data (points) and fit with a two-state model including stacking (red line) for the red component and, in addition, the peak shift (blue) with a separate axis to allow a direct reading of wavenumbers. The right panel shows the red component alone and without stacking, since it is the only one with melting behaviour. The grey vertical line indicates the melting point of the 4AP at 56.9 °C. Best fit parameters are $\Delta H^{\circ} = -360 \pm 40 \text{ kJ/mol}$ and $\Delta S^{\circ} = -1000 \pm 100 \text{ J/(K mol)}$ for the hybridization.

5 Summary

The same basic sequence of 13 base pairs with chemical modifications only in the middle position was investigated by NMR structure determination. With this conservative approach it becomes possible to study perturbations which are induced by the artificial nucleobase. Especially the influence of base stacking and of the linker can be detailed. Structural differences are also associated with thermodynamic variations. The latter are observed with the help of entire UV/Vis-spectra as function of temperature. In this way the duplex melting process is characterized in local and global terms.

UV/Vis-spectra upon melting were analyzed in their entirety by Singular Value Decomposition (SVD). Thus the spectral shift of the probe absorption band is followed, being caused by the solvatochromicity of the incorporated chromophore. The band is located in the visible range of the spectrum and provides *direct* information about local melting. In contrast, the strong absorption of the native nucleobases is located in the UV region and contains two kinds of information. One refers to the usually observed global melting of the double strand, the other gives *indirect* information on local melting, as seen by the nucleobases in the immediate neighborhood of the modification. Altogether three melting points T_m are obtained as specified in Tab. 5.1. Melting can now be understood in terms of global and local processes. The latter describe effects near the modified center, like bulge formation upon temperature rise.

NMR structure determination in solution is a valuable instrument to investigate structural perturbations, base stacking, and linker effects. Three chemical modifications were studied in the center of the basic 13mer sequence, representing different types of perturbations. These are (i) the large 2-hydroxy-7-carboxyfluorene (HCF) replacing a full base

5 Summary

pair, (ii) the betaine 6-Hydroxyquinolinium (6HQ) incorporated as glycol nucleic acid (GNA), and (iii) 4-aminophthalimide (4AP) together with 2,4-diaminopyrimidine (DAP) forming an artificial base pair. The NOESY spectra of the HCF and 4AP-DAP double strands gave in each case evidence for the presence of a second conformer. Instead of three structures, two additional conformations were required to fully describe the found cross-peak patterns. As a result, altogether five structures were determined in the course of this study.

Table 5.1: Global and local melting points of the three investigated DNA double strands.

13mer denoted by central base pair	HCF	6HQ	4AP-DAP	Ref	
Global T_m of DNA (°C)	59.7	53	59.5	63.3	
Local T_m of DNA (°C)	61.1	53	59.1		
Local T_m of Chromophore (°C)	61.1	53.1	56.1		

The HCF chromophore is the largest of all fluorescent base analogues in this work and was placed opposite an abasic site, thus making it a full base pair surrogate. HCF adopts two conformations inside the double helix which are distinguished by the methylene group, in the sense that this group faces either towards the major groove or towards the minor groove. The HCF moiety fits well into the helical fold for both conformations. The unusual α -glycosidic linkage of HCF is compensated by small deformations of the 2'-deoxyribose molety. The sugar switches to conformations other than C2'-endo of B-DNA to allow optimal chromophore incorporation. Because of the sugar flexibility, an equal distribution for both conformations is observed. The abasic site has no effect on HCF, but the lack of a nucleobase raises the flexibility in the center of the counterstrand, since its position is no longer restricted by the stacking of an attached nucleobase. On the other hand, stacking interactions of HCF to the neighboring adenines are accompanied by additional interactions with thymine T21 (and partly T19) of the opposite strand (see Fig. 4.6). The local melting points of the chromophore and of the DNA ($61.1^{\circ}C$, in Tab. 5.1) agree, and they are 1.4°C higher than the global melting point of the double strand (59.7°C). Even though the local melting indicates a stabilizing effect of HCF, the global melting is lower than for the native double strand 13merRef with AT in the center $(63.3 \,^{\circ}\text{C})$. Both findings agree well with earlier results of Matray and Kool^[97], who used pyrene as base pair surrogate.

The second base analogue, 6HQ , was placed opposite cytosine with which it forms a single hydrogen bond. The unique feature of this double strand is the incorporation of 6HQ as GNA. Up to now, structures of nucleic acids with full GNA backbone are known only from X-ray diffraction of crystals^[274,275], therefore the solution structure is of general interest. Our linker R-Glycerol is small compared to 2'-deoxyribofuranose. For insertion of the chromophore into the helix one C-C bond length is missing, and another C-C bond length is missing for spacing the adjacent adenines. The first deficiency is compensated by the size of 6HQ and its linkage to R-glycerol via N1, allowing a more diagonal placement of 6HQ relative to cytosine to reach the distance needed for hydrogen bonding (Fig. 4.13). A side effect of this placement is strong π - π -stacking interaction to adenines A6 and A8 (Fig. 4.17), leading to a huge chemical shift of the H8 hydrogen in adenine A8. The need to compensate the second missing bond length causes structural perturbations. In order to minimize the distance between 3'-end of adenine A6 and the 5'-end of A8, both bases are inclined towards the major groove; thus, the backbone distance is shortened by 1.2 Å in comparison to 13merRef. As a consequence, a stacking axis of A6-6HQ-A8 is observed that leans towards the major groove, stabilized by strong stacking interactions in between. For the melting analysis of 13mer6HQ it was necessary to develop a variant of the new method for UV/vis spectral analysis, to treat adequately the complex behavior of the 6HQ chromophore. The double SVD assisted two-state model revealed that 6HQ not only undergoes a blue shift and hyperchromism upon melting like HCF, but also a change of the absorption spectrum that resembles the alteration from the protonated to the deprotonated state. A closer look on global and local melting shows that only a single melting point within error margins $(\pm 0.1 \,^{\circ}\text{C})$ is observed (Tab. 5.1), which is otherwise only found for pure native strands. However this does not prove the native melting character of 13mer6HQ, since it has the lowest melting point of all double strands. The differing stacking axis of the three central bases destabilizes the 6HQ strand, but the strong stacking interactions also prevent bulge formation. Stability of the duplex is only

5 Summary

maintained by the remaining base pairs far from the center. This competes with the fraying at the helix ends upon temperature rise. Altogether this double strand shows the melting behavior of a shorter duplex.

The last double strand introduces an artificial base pair composed of 4AP and DAP. First evidence that refuted the desired pattern of three hydrogen bonds was found in the NOESY spectrum. There the chemical shift of the H1 proton (in 4AP) was assigned in the non-hydrogen bonded region of the spectrum. In addition, the H_2O -NOESY also proved the presence of the protonated form of DAP (Fig. 4.34). Instead of a structure with three hydrogen bonds, two conformations were found that comprise either a single hydrogen bond or two hydrogen bonds. The single-bonded form is similar to the structure of 13mer6HQ, with a diagonal placement of the 4AP moiety so that its long side faces towards DAP. The reason for this is the linkage via C6 which corresponds to N1 in 6HQ and is well-known from pyrimidine bases. However, 6HQ and 4AP are in size and shape more comparable to purines which are linked via the five-membered ring, resulting in a different angle of the nucleobase to its counterpart in the opposite strand. The conformer that comprises two hydrogen bonds tries to overcome this by switching the sugar of 4AP to the C3'-endo conformation of A-DNA. Although at first sight all sites which are capable of hydrogen bonding now face each other, distance measurements revealed (in Fig. 4.18) that only two bonds are possible. Interestingly, the melting experiments show that the second form, which exhibits better π - π -stacking interactions, is favored upon rising temperature, causing an initial decrease in absorption. But finally, when comparing local and global melting in 13mer4AP-DAP (Tab. 5.1), bulge formation caused by premelting of the central 4AP-DAP pair is clearly indicated. The melting point of the adjacent base pairs is also lower than the global one, supporting the bulge formation in the center. On the other hand the difference is only 0.4 °C, so the bulge seems to be mostly limited to the 4AP-DAP base pair.

In summary, all investigated double strands suffer from structural perturbations, either caused by the linker or by the chromophore itself. Further development of base analogues and their linkage is clearly needed in future; some general lessons can be already learned from the set of structures in this work. From 13merHCF it can be concluded that a α glycosidic linkage can be balanced by the 2'-deoxyribofuranose, and that a large aromatic surface can replace a complete base pair, but at the price of increased flexibility. 13mer6HQ demonstrates that R-glycerol is too small in comparison to 2'-deoxyribofuranose. A possible solution is the addition of at least one bond length in order to connect the 3'-end of adenine A6 with the 5'-end of A8, but this would raise flexibility. The problem of high flexibility inside the double strand is faster base pair dynamics and hence a lowered duplex stability. Moreover, this effect propagates to the surrounding base pairs in both directions^[129]. From this point of view the 4AP-DAP base pair linked via the native 2'deoxyribofuranose looks more promising. However, the weak point of this design is the linkage of 4AP to the backbone. The connection to the sugar moiety should be changed from the current C6 atom of 4AP to the neighboring C5. This should enable 4AP to form a triple hydrogen bonded base pair with DAP. In such a case one can expect the triple form to be the only present conformer, since both actual conformers require the connection via C6.

The SVD analysis of UV/Vis spectra in their entirety revealed measurable local melting in the DNA absorption band. The local melting is induced by perturbations of the double strand and is only reported by native bases in close proximity to the modification. Native bases as simultaneous detector of global and local melting offer the possibility to study modifications that do not contain separate absorption bands like the chromophores which were studied here. A second possibility could be melting experiments of native double strands comprising an intercalator, for example the groove binding Hoechst 33258. In that case, perturbations of the melting process will be reported by the strand and can then be compared to the signal of the Hoechst dye. The absence of a local melting, when observed in modified double strands. Finally, it should be noted that the method can be automated experimentally and analytically. The fully automated variant would allow application as a replacement for the conventional DNA melting experiment at a single wavelength.

129

6 Zusammenfassung

Die gleiche Grundsequenz von 13 Basenpaaren mit chemischen Modifikationen nur in der mittleren Position wurde mittels NMR Strukturbestimmung untersucht. Mit diesem konservativen Ansatz ist es möglich strukturelle Störungen zu studieren, welche durch die künstliche Nukleobase verursacht wurden. Insbesondere der Einfluss der Basenstapelung sowie des Linkers kann so genau beschrieben werden. Strukturelle Unterschiede gehen auch mit thermodynamischen Änderungen einher. Letztere wurden mit Hilfe vollständiger UV/Vis-Spektren als Funktion der Temperatur erfasst. Auf diese Weise kann der Schmelzprozess des Duplex lokal und global beschrieben werden.

UV/Vis-Spektren beim Schmelzen wurden in ihrer Gesamtheit mittels Singularwertzerlegung (SVD) analysiert. Somit kann die spektrale Verschiebung der Sonden-Absorptionsbande verfolgt werden, welche durch die Solvatochromie des eingebauten Chromophors verursacht wird. Die Bande befindet sich im sichtbaren Bereich des Spektrums und liefert direkt Informationen über das lokale Schmelzen. Im Gegensatz dazu absorbieren die natürlichen Nukleobasen stark im UV-Bereich und enthalten zwei Arten von Informationen. Eine gehört zum normalerweise beobachteten globalen Schmelzen des Doppelstranges, die andere liefert *indirekte* Informationen über das lokale Schmelzen, wie es von den Nukleobasen in unmittelbarer Umgebung der Modifikation gesehen wird. Insgesamt drei Schmelzpunkte T_m wurden erhalten, so wie in Tab. 6.1 angegeben. Das Schmelzen kann nun als globaler und lokaler Prozess verstanden werden. Letzteres beschreibt Effekte in der Nähe des modifizierten Zentrums, beispielsweise Blasenbildung bei steigender Temperatur.

NMR Strukturbestimmung in Lösung ist ein wertvolles Instrument um strukturelle

6 Zusammenfassung

Störungen, Basenstapelung und Linker-Effekte zu untersuchen. Drei chemische Modifikationen, welche unterschiedliche Störungen verursachen, wurden hierfür im Zentrum der 13mer Grundsequenz studiert. Diese sind (i) das große 2-Hydroxy-7-carboxyfluoren (HCF), welches ein komplettes Basenpaar ersetzt, (ii) das Betain 6-Hydroxychinolinium (6HQ), welches als Glykolnukleinsäure (GNA) eingebaut wurde, und (iii) 4-Aminophthalimid (4AP) zusammen mit 2,4-Diaminopyrimidin (DAP), welche ein künstliches Basenpaar bilden. Die NOESY-Spektren der HCF und 4AP-DAP Doppelstränge geben in beiden Fällen Hinweise auf das Vorhandensein einer zweiten Konformation. Anstelle von drei Strukturen, waren zwei zusätzliche Konformationen notwendig, um die gefundenen Kreuzsignal-Muster vollständig zu beschreiben. Im Ergebnis wurden insgesamt fünf Strukturen während der Untersuchung bestimmt.

Table 6.1: Globale und lokale Schmelzpunkte der drei untersuchten DNA Doppelstränge									
	13mer benannt nach	HCF	6 HQ	4AP-DAP	$\mathrm{Ref}^{[129]}$				
	zentralem Basenpaar								
	Globaler T_m der DNA (°C)	59.7	53	59.5	63.3				
	Lokaler T_m der DNA (°C)	61.1	53	59.1					
	Lokaler T_m des Chromophors (°C)	61.1	53.1	56.1					

Das HCF Chromophor ist das größte von allen fluoreszierenden Basenanaloga in dieser Arbeit und wurde gegenüber einer abasischen Stelle eingebaut, was es zu einem vollen Basenpaar-Ersatz macht. HCF nimmt zwei Konformationen innerhalb des Doppelstranges ein, welche durch die Methylengruppe unterschieden werden, in dem Sinne, dass diese Gruppe entweder in Richtung der großen Furche oder der kleinen Furche zeigt. Das HCF-Gerüst passt für beide Konformere sehr gut in die helikale Faltung. Die ungewöhnliche α -glykosidische Bindung des HCFs wird kompensiert durch kleine Deformationen des 2'-Deoxyribose-Teils. Der Zucker geht dabei zu Konformationen über, die von C2'-endo für B-DNA abweichen, um einen optimalen Einbau des Chromophors zu ermöglichen. Aufgrund der Flexibilität des Zuckers wird eine Gleichverteilung beider Konformere beobachtet. Die abasische Stelle hat keinen Effekt auf das HCF, aber das Fehlen einer Nukleobase erhöht die Flexibilität im Zentrum des Gegenstranges, da dessen Position nicht durch
die Stapelung einer angehängten Nukleobase eingeschränkt wird. Auf der anderen Seite werden Stapelwechselwirkungen des HCF zu den benachbarten Adeninen begleitet von zusätzlichen Wechselwirkungen mit Thymin T21 (und teilweise T19) des Gegenstranges (siehe Fig. 4.6). Der lokale Schmelzpunkt des Chromophors und der DNA (61.1 °C, in Tab. 6.1) stimmen überein, und sie sind 1,4 °C höher als der globale Schmelzpunkt des Doppelstranges (59,7 °C). Obwohl das lokale Schmelzen einen stabilisierenden Effekt des HCFs anzeigt, ist der globale Schmelzpunkt niedriger als der des natürlichen Doppelstranges 13merRef mit AT im Zentrum (63,3 °C). Beide Ergebnisse stimmen sehr gut mit früheren Resultaten von Matray und Kool^[97] überein, welche Pyren als Basenpaar-Ersatz verwendeten.

Das zweite Basenanalog, 6HQ, wurde gegenüber Cytosin platziert, mit dem es eine einzelne Wasserstoffbrücke bildet. Die einzigartige Eigenschaft dieses Doppelstranges ist der Einbau von 6HQ als GNA. Bisher sind nur Röntgen-Kristallstrukturen^[274,275] von Nukleinsäuren mit vollem GNA-Rückgrat bekannt, daher ist die Struktur in Lösung von generellem Interesse. Unser Linker R-Glycerol ist klein im Vergleich zu 2'-Deoxyribofuranose. Eine C-C-Bindungslänge fehlt für den Einbau des Chromophors in die Helix und eine andere C-C-Bindung fehlt im Raum zwischen den Adeninen. Das erste Manko wird durch die Größe des 6HQ und dessen Bindung via N1 ausgeglichen, diese erlaubt eine mehr diagonale Positionierung von 6HQ relativ zu Cytosin, um die nötige Distanz für die Wasserstoffbrücke zu erreichen (Fig. 4.13). Ein Nebeneffekt dieser Positionierung ist eine starke π - π -Stapelwechselwirkung zu den Adeninen A6 und A8 (Fig. 4.17), welche zu einer starken chemischen Verschiebung des H8 Wasserstoffs in Adenin A8 führen. Die Notwendigkeit die zweite fehlende Bindungslänge auszugleichen verursacht strukturelle Störungen. Um die Distanz zwischen dem 3'-Ende von Adenin A6 und dem 5'-Ende von A8 zu minimieren, neigen sich beide Basen in Richtung der großen Furche, wodurch der Abstand im Vergleich zu 13merRef um 1,2 Å kürzer ist. Infolgedessen wird eine Stapelachse für A6-6HQ-A8 beobachtet, die sich zur großen Furche hin neigt, stabilisiert durch starke Stapelwechselwirkungen dazwischen. Für die Schmelzanalyse von 13mer6HQ war es notwendig eine Variation der neuen Methode zur UV/Vis-Spektralanalyse zu en-

6 Zusammenfassung

twickeln, um das komplexe Verhalten des 6HQ Chromophors angemessen zu berücksichtigen. Das doppelt SVD gestützte Zwei-Zustände-Modell offenbarte, dass 6HQ beim Schmelzen nicht nur eine Blauverschiebung und Hyperchromie erfährt, sondern auch eine Änderung des Absorptionsspektrums, welche dem Übergang von der protonierten zur deprotonierten Form ähnelt. Ein genauer Blick auf das globale und lokale Schmelzen zeigt, dass innerhalb der Fehlergrenzen $(\pm 0,1 \,^{\circ}\text{C})$ nur ein Schmelzpunkt beobachtet wird, welcher sonst nur in reinen natürlichen Strängen vorkommt. Dennoch beweist dies nicht, dass 13mer6HQ auf natürliche Weise schmilzt, da es von allen Doppelsträngen den niedrigsten Schmelzpunkt besitzt. Die abweichende Stapelachse destabilisiert den 6HQ-Strang, aber die starken Stapelwechselwirkungen verhindern auch eine Blasenbildung. Die Stabilität im Duplex wird nur durch die verbliebenen Basenpaare fern vom Zentrum gewährleistet. Dies konkurriert wiederum mit dem Ausfransen an den Helix-Enden bei steigender Temperatur. Insgesamt zeigt dieser Doppelstrang das Schmelzverhalten eines kürzeren Duplexes.

Der letzte Doppelstrang führt ein künstliches Basenpaar bestehend aus 4AP und DAP ein. Das erste Anzeichen, welches den drei gewünschten Wasserstoffbrücken widersprach, wurde im NOESY-Spektrum gefunden. Darin wurde die chemische Verschiebung des H1 Wasserstoffs (in 4AP) in der nicht über Wasserstoffbrücken gebundenen Region des NOESY-Spektrums zugeordnet. Außerdem bewies das H_2O -NOESY das Vorhandensein der protonierten Form von DAP (Fig. 4.34). Anstelle einer Struktur mit drei Wasserstoffbrücken wurden zwei Konformere gefunden, die entweder eine einzelne oder zwei Wasserstoffbrücken enthalten. Die Form mit einer Brücke ähnelt der Struktur von 13mer6HQ, bei der 4AP-Teil diagonal liegt, so dass dessen lange Seite in Richtung DAP zeigt. Der Grund dafür ist die Bindung über C6, welche dem N1 in 6HQ entspricht und wohlbekannt ist von den Pyrimidin-Basen. Jedoch sind 6HQ und 4AP in Größe und Form eher vergleichbar mit den Purinen, welche über den Fünfring angebunden sind, was wiederum zu einem anderen Winkel zwischen Nukleobase und dem Gegenstück im gegenüberliegenden Strang führt. Das Konformer, welches zwei Wasserstoffbrücken trägt, versucht dies zu umgehen indem der Zucker von 4AP zur C3'-endo Konformation von A-DNA wechselt. Obwohl sich auf den ersten Blick nun alle zu Wasserstoffbrücken fähigen Stellen gegenüberstehen, zeigen Abstandsmessungen (in Fig. 4.18), dass nur zwei Bindungen möglich sind. Interessanterweise zeigen die Schmelzexperimente, dass die zweite Form, welche bessere π - π -Stapelwechselwirkungen aufweist, mit steigender Temperatur bevorzugt wird, wodurch die Absorption zu Beginn sinkt. Letztlich aber zeigt sich, wenn man das globale und lokale Schmelzen von 13mer4AP-DAP miteinander vergleicht (Tab. 6.1), dass sich eine Blase durch vorzeitiges Schmelzen des zentralen 4AP-DAP-Paares bildet. Der Schmelzpunkt der benachbarten Basenpaare ist ebenfalls niedriger als der globale, was die Blasenbildung im Zentrum unterstützt. Andererseits beträgt der Unterschied nur 0,4 °C, somit scheint die Blase hauptsächlich auf das 4AP-DAP Basenpaar limitiert zu sein.

Zusammengefasst leiden alle untersuchten Doppelstränge unter strukturellen Störungen. welche entweder durch den Linker oder das Chromophor selbst verursacht werden. Die weitere Entwicklung von Basenanaloga und ihrer Anbindung ist daher auch in Zukunft zwingend notwendig. Jedoch lassen sich einige allgemeine Lehren aus der Auswahl an Strukturen in dieser Arbeit ziehen. Aus dem 13merHCF kann geschlussfolgert werden, dass eine α -glykosidische Bindung durch die 2'-Deoxyribofuranose ausgeglichen werden kann, und dass eine große aromatische Oberfläche ein komplettes Basenpaar ersetzen kann, aber zum Preis erhöhter Flexibilität. 13mer6HQ zeigt, dass R-Glycerol im Vergleich zu 2'-Deoxyribofuranose zu klein ist. Eine potentielle Lösung wäre der Einbau wenigstens einer zusätzlichen Bindungslänge, um das 3'-Ende von Adenin A6 mit dem 5'-Ende von A8 zu verbinden, aber das würde die Flexibilität erhöhen. Das Problem erhöhter Flexibilität innerhalb des Doppelstranges ist eine schnellere Basenpaardynamik und somit eine geringere Duplexstabilität. Außerdem pflanzt sich dieser Effekt über die umliegenden Basenpaare in beide Richtungen fort^[129]. Aus dieser Perspektive sieht das 4AP-DAP Basenpaar angebunden über die natürliche 2'-Deoxyribofuranose vielversprechender aus. Jedoch ist der Schwachpunkt dieses Designs die Anbindung von 4AP an das Rückgrat. Die Verbindung zum Zucker-Teil sollte geändert werden vom aktuellen C6-Atom in 4AP zum benachbarten C5. Das sollte es 4AP erlauben ein dreifach wasserstoffverbrücktes Basenpaar mit DAP zu bilden. In diesem Fall kann man erwarten, dass die Dreifach-Form das einzig vorhandene Konformer sein wird, da die beiden gegenwärtigen Konformere die Anbindung über C6

6 Zusammenfassung

benötigen.

Die SVD-Analyse der UV/Vis-Spektren in ihrer Gesamtheit offenbarte ein messbares lokales Schmelzen in der DNA-Absorptionsbande. Das lokale Schmelzen wird durch Störungen in den Doppelsträngen verursacht und wird nur durch die natürlichen Basen in unmittelbarer Umgebung der Modifikation wiedergegeben. Natürliche Nukleobasen als simultaner Detektor für globales und lokales Schmelzen ermöglichen es Modifikationen zu untersuchen, welche im Gegensatz zu den hier genutzten Chromophoren keine separate Absorptionsbande enthalten. Eine zweite Möglichkeit könnten Schmelzexperimente natürlicher Doppelstränge sein, denen ein Interkalator hinzugefügt wurde, wie z.B. der Furchenbinder Hoechst 33258. In jenem Fall würden Störungen des Schmelzprozesses vom Strang angezeigt werden und könnten anschließend mit dem Signal des Hoechst-Farbstoffs verglichen werden. Die Abwesenheit der lokalen Schmelzkomponente in natürlichen Strängen wie 13merRef kann wiederum als Indikator für ungestörtes Schmelzen in modifizierten Doppelsträngen dienen. Schließlich sollte noch angemerkt werden, dass die Methode sowohl experimentell als auch analytisch automatisiert werden kann. Die voll automatisierte Variante würde es erlauben das konventionelle DNA-Schmelzexperiment bei einer Wellenlänge zu ersetzen.

1 Chemical shift tables

1.1 13merHCF shift tables

Table 1: ¹H chemical shifts of the nucleobases in 13merHCF. Reference^[277] is the signal of HOD at 4.77 pm (298 K).

Res	H1	H2	H3	H4	H41	H42	H5	$\mathbf{H6}$	$\mathbf{H7}$	$\mathbf{H8}$
1	-	-	-	-	-	-	-	-	-	7.946
2	-	-	-	-	8.269	6.56	5.334	7.51	-	-
3	-	-	13.937	-	-	-	-	7.316	1.62	-
4	12.688	-	-	-	-	-	-	-	-	7.668
5	-	-	-	-	8.189	6.351	5.402	7.344	-	-
6	-	7.105	-	-	-	-	-	-	-	8.313
7	5.851	-	5.905	6.662	-	-	6.94	7.124	-	7.273
8	-	7.346	-	-	-	-	-	-	-	8.018
9	-	-	-	-	7.967	6.373	5.091	7.148	-	-
10	12.705	-	-	-	-	-	-	-	-	7.802
11	-	-	13.747	-	-	-	-	7.266	1.38	-
12	-	-	-	-	8.591	7.002	5.695	7.485	-	-
13	-	-	-	-	-	-	-	-	-	7.932
14	-	-	-	-	8.16	6.947	5.857	7.578	-	-
15	12.893	-	-	-	-	-	-	-	-	7.934
16	-	7.882	-	-	-	-	-	-	-	8.203
17	-	-	-	-	8.07	6.413	5.201	7.168	-	-
18	12.546	-	-	-	-	-	-	-	-	7.792
19	-	-	13.213	-	-	-	-	7.191	1.438	-
20	-	-	-	-	-	-	-	-	-	-
21	-	-	-	-	-	-	-	7.209	1.512	-
22	12.545	-	-	-	-	-	-	-	-	7.811
23	-	-	-	-	8.253	6.334	5.351	7.328	-	-
24	-	7.654	-	-	-	-	-	-	-	8.161
25	12.908	-	-	-	-	-	-	-	-	7.653
26	-	-	-	-	8.095	6.446	5.201	7.303	-	-

In addition to the tabulated spins HCF contains a H91 and H92 at 3.140 and 2.770 ppm, respectively. The corresponding carbon atom is C9 at 39.3 ppm.

\mathbf{Res}	H1'	H1"	H2'	H2"	H3'	H4'	H5'	H5"
1	5.971	-	2.641	2.766	4.837	4.262	-	-
2	6.074	-	2.115	2.514	4.834	4.252	-	-
3	5.727	-	2.113	2.427	4.868	4.095	-	-
4	5.813	-	2.619	2.654	4.978	4.355	-	-
5	5.429	-	1.937	2.275	4.794	4.130	-	-
6	6.317	-	2.755	2.805	5.036	4.377	4.123	4.044
7	-	5.238	2.269	2.352	4.846	4.591	-	-
8	6.092	-	2.51	2.793	4.955	4.394	4.228	4.161
9	5.487	-	2.001	2.32	4.799	4.129	-	-
10	5.94	-	2.587	2.762	4.922	4.349	-	-
11	6.031	-	2.072	2.451	4.856	4.214	-	-
12	5.695	-	2.015	2.359	4.835	4.116	-	-
13	6.152	-	2.62	2.384	4.685	4.181	-	-
14	5.695	-	1.834	2.338	4.673	4.047	3.71	3.692
15	5.435	-	2.71	2.786	4.993	4.303	-	-
16	6.25	-	2.699	2.909	5.056	4.476	-	-
17	5.559	-	1.934	2.306	4.800	4.14	-	-
18	5.918	-	2.575	2.736	4.94	4.342	-	-
19	6.104	-	2.318	2.500	4.902	4.231	-	-
20	4.133	4.109	2.212	2.231	4.761	4.127	-	-
21	5.771	-	1.967	2.406	4.855	4.289	-	-
22	5.746	-	2.586	2.76	4.948	4.316	-	-
23	5.431	-	1.947	2.288	4.798	4.130	-	-
24	5.990	-	2.722	2.876	5.026	4.370	-	-
25	5.798	-	2.454	2.634	4.948	4.339	4.178	4.215
26	6.075	-	2.129	2.196	4.443	4.023	-	-

Table 2: ¹H chemical shifts of the backbone in 13merHCF

\mathbf{Res}	C1'	C2'	C3'	C4'	C1	C2	C3	C4	$\mathbf{C5}$	$\mathbf{C6}$	C8
1	82.1	-	76.6	-	-	-	-	-	-	-	135.8
2	83.7	-	74.0	-	-	-	-	-	95.7	140.1	-
3	82.7	-	75.0	-	-	-	-	-	-	136.6	-
4	81.4	-	76.6	-	-	-	-	-	-	-	135.4
5	83.6	-	73.6	-	-	-	-	-	95.4	139.7	-
6	82.4	-	76.7	-	-	151.5	-	-	-	-	139.1
7	102.0	-	76.4	85.9	109.7	-	112.8	120.3	118.0	125.6	122.3
8	83.1	-	75.0	-	-	150.8	-	-	-	-	138.3
9	83.3	-	73.7	-	-	-	-	-	95.1	139.2	-
10	82.1	-	76.3	-	-	-	-	-	-	-	135.4
11	82.7	-	75.2	-	-	-	-	-	-	135.8	-
12	83.7	-	75.2	-	-	-	-	-	96.0	141.0	-
13	81.9	-	70.5	-	-	-	-	-	-	-	136.5
14	85.0	-	75.0	-	-	-	-	-	96.7	140.3	-
15	81.2	-	76.6	-	-	-	-	-	-	-	135.5
16	82.2	-	76.9	-	-	152.4	-	-	-	-	138.3
17	83.1	-	73.7	-	-	-	-	-	95.1	139.1	-
18	81.9	-	76.4	-	-	-	-	-	-	-	135.3
19	82.7	-	74.6	-	-	-	-	-	-	135.9	-
20	67.3	32.9	77.3	-	-	-	-	-	-	-	-
21	83.7	-	74.8	-	-	-	-	-	-	135.8	-
22	81.2	-	76.3	-	-	-	-	-	-	-	135.2
23	83.5	-	73.9	-	-	-	-	-	95.4	139.7	-
24	82.3	-	76.9	-	-	151.5	-	-	-	-	138.7
25	81.1	-	76.2	-	-	-	-	-	-	-	134.4
26	84.0	-	68.5	-	-	-	-	-	95.4	140.3	-

 Table 3: ¹³C chemical shifts of 13merHCF

1.2 13mer6HQ shift tables

\mathbf{Res}	H1	H2	H3	$\mathbf{H4}$	H41	H42	H5	H6	$\mathbf{H7}$	H8
1	-	-	-	-	-	-	-	-	-	7.94
2	-	-	-	-	8.296	6.593	5.329	7.511	-	-
3	-	-	13.93	-	-	-	-	7.323	1.626	-
4	12.683	-	-	-	-	-	-	-	-	7.87
5	-	-	-	-	8.27	6.372	5.36	7.234	-	-
6	-	6.717	-	-	-	-	-	-	-	8.327
7	-	8.82	7.623	8.242	-	-	7.009	-	6.596	7.403
8	-	7.68	-	-	-	-	-	-	-	7.64
9	-	-	-	-	8.045	6.422	5.071	7.097	-	-
10	12.722	-	-	-	-	-	-	-	-	7.803
11	-	-	13.758	-	-	-	-	7.265	1.38	-
12	-	-	-	-	8.607	7.011	5.691	7.481	-	-
13	-	-	-	-	-	-	-	-	-	7.926
14	-	-	-	-	8.149	6.979	5.845	7.57	-	-
15	12.937	-	-	-	-	-	-	-	-	7.945
16	-	7.889	-	-	-	-	-	-	-	8.216
17	-	-	-	-	8.113	6.445	5.229	7.19	-	-
18	12.684	-	-	-	-	-	-	-	-	7.832
19	-	-	-	-	-	-	-	7.246	1.442	-
20	-	-	-	-	-	-	5.663	7.559	-	-
21	-	-	-	-	-	-	-	7.419	1.619	-
22	12.5	-	-	-	-	-	-	-	-	7.868
23	-	-	-	-	8.296	6.339	5.361	7.333	-	-
24	-	7.645	-	-	-	-	-	-	-	8.151
25	12.911	-	-	-	-	-	-	-	-	7.645
26	-	-	-	-	8.108	6.527	5.166	7.282	-	-

Table 4: ¹H chemical shifts of the nucleobases in 13mer6HQ. Reference^[277] is the signal of HOD at 4.77 pm (298 K).

\mathbf{Res}	H1'	H1"	H2'	H2"	H3'	H4'	H5'	ъ Н5"
1	5.96	-	2.639	2.76	4.836	4.267	3.736	3.728
2	6.067	-	2.118	2.512	4.838	4.161	4.135	4.093
3	5.721	-	2.116	2.435	4.873	4.137	4.091	4.05
4	5.808	-	2.606	2.666	4.974	4.353	4.132	4.058
5	5.528	-	1.803	2.279	4.846	4.117	-	-
6	5.876	-	2.706	2.802	5.028	4.364	4.111	4.043
7	4.993	4.833	4.299	-	4.199	-	-	-
8	5.82	-	2.365	2.681	4.719	4.161	3.899	3.524
9	5.454	-	1.959	2.297	-	-	-	-
10	5.952	-	2.586	2.762	4.927	4.351	4.112	4.053
11	6.041	-	2.077	2.451	4.86	4.219	4.128	4.115
12	5.693	-	2.013	2.358	4.837	4.217	4.12	4.068
13	6.147	-	2.623	2.383	4.683	4.18	4.117	4.083
14	5.681	-	1.821	2.33	4.669	4.047	3.713	3.689
15	5.436	-	2.714	2.791	4.998	4.309	4.081	3.962
16	6.257	-	2.714	2.917	5.067	4.482	4.225	4.153
17	5.575	-	1.939	2.314	4.816	4.483	4.266	4.151
18	5.938	-	2.597	2.74	4.939	4.359	4.142	4.066
19	6.055	-	2.152	2.512	4.848	4.256	4.207	4.124
20	5.951	-	2.019	2.471	4.843	4.216	4.125	4.096
21	5.724	-	2.163	2.403	4.873	4.239	4.122	4.089
22	5.788	-	2.608	2.648	4.972	4.348	4.126	4.044
23	5.433	-	1.966	2.294	4.815	4.137	4.109	4.083
24	5.978	-	2.711	2.864	5.022	4.357	4.109	3.967
25	5.787	-	2.444	2.624	4.944	4.337	4.17	4.127
26	6.061	-	2.121	2.193	4.436	4.261	4.018	4.021

Table 5: ¹H chemical shifts of the backbone in 13mer6HQ

			Table	3 0: 1	U chei	mear sn	Ints of 1	omeron	Q		
\mathbf{Res}	C1'	C2'	C3'	C4'	$\mathbf{C1}$	$\mathbf{C2}$	$\mathbf{C3}$	$\mathbf{C4}$	$\mathbf{C5}$	C6	$\mathbf{C8}$
1	82.1	-	76.5	86.2	-	-	-	-	-	-	135.5
2	84.0	-	74.0	-	-	-	-	-	95.7	140.2	-
3	83.0	-	75.3	-	-	-	-	-	-	136.5	-
4	81.4	37.6	76.6	-	-	-	-	-	-	-	135.4
5	83.3	-	-	-	-	-	-	-	95.5	139.7	-
6	81.5	-	76.9	-	-	151.1	-	-	-	-	138.9
7	-	-	-	-	-	144.1	121.3	145.3	110.6	-	117.4
8	82.3	36.4	-	-	-	151.6	-	-	-	-	137.9
9	83.3	36.9	76.3	-	-	-	-	-	95.2	139.3	-
10	82.1	-	76.6	-	-	-	-	-	-	-	135.5
11	82.8	36.4	75.2	-	-	-	-	-	-	135.8	-
12	83.7	36.5	75.2	-	-	-	-	-	96.1	140.9	-
13	82.0	39.1	70.6	85.1	-	-	-	-	-	-	136.4
14	85.2	37.1	75.1	85.5	-	-	-	-	96.7	140.3	-
15	81.4	-	76.8	-	-	-	-	-	-	-	135.5
16	82.2	-	77.0	84.8	-	152.5	-	-	-	-	138.3
17	83.2	37.0	74.1	-	-	-	-	-	95.5	139.1	-
18	82.0	37.6	76.6	-	-	-	-	-	-	-	135.5
19	82.7	36.3	-	-	-	-	-	-	-	135.8	-
20	84.3	37.4	-	-	-	-	-	-	95.1	141.3	-
21	82.9	-	-	83.3	-	-	-	-	-	136.6	-
22	81.3	-	76.8	-	-	-	-	-	-	-	135.5
23	83.4	36.9	74.2	-	-	-	-	-	95.5	139.7	-
24	82.2	37.6	76.9	84.5	-	151.9	-	-	-	-	138.9
25	81.5	39.0	75.2	-	-	-	-	-	-	-	134.5

 Table 6: ¹³C chemical shifts of 13mer6HQ

1.3 13mer4AP-DAP shift tables

\mathbf{Res}	H1	H2	H3	H41	H42	H5	H6	$\mathbf{H7}$	H8
1	12.697	-	-	-	-	-	-	-	7.904
2	-	-	-	8.255	6.585	5.251	7.462	-	-
3	-	-	13.952	-	-	-	7.293	1.569	-
4	12.704	-	-	-	-	-	-	-	7.846
5	-	-	-	8.231	6.365	5.324	7.234	-	-
6	-	7.424	-	-	-	-	-	-	8.001
		7.502							
7	11.228	-	-	-	-	6.452	-	-	-
8	-	7.347	-	-	-	-	-	-	8.079
		7.760						-	
9	-	-	-	7.974	6.459	5.128	7.185	-	-
10	12.675	-	-	-	-	-	-	-	7.79
11	-	-	13.789	-	-	-	7.241	1.324	-
12	-	-	-	8.587	7.06	5.636	7.448	-	-
13	-	-	-	-	-	-	-	-	7.888
14	-	-	-	8.212	6.972	5.782	7.528	-	-
15	12.92	-	-	-	-	-	-	-	7.911
16	-	7.831	-	-	-	-	-	-	8.172
17	-	-	-	8.084	6.486	5.153	7.144	-	-
18	12.697	-	-	-	-	-	-	-	7.781
	12.682							-	
19	-	-	14.179	-	-	-	7.239	1.425	-
			13.791						
20	6.795	-	-	-	-	-	7.598	-	-
21	-	-	13.443	-	-	-	7.361	1.565	-
			13.670						
22	12.56	-	-	-	-	-	-	-	7.831
23	-	-	-	8.271	6.374	5.332	7.321	-	-
24	-	7.591	-	-	-	-	-	-	8.12
25	12.885	-	-	-	-	-	-	-	7.615
26	-	-	-	8.086	6.469	5.046	7.198	-	-

Table 7: ¹H chemical shifts of the nucleobases in 13mer4AP-DAP. Reference^[277] is the signal of HOD at 4.94 pm (283 K).

\mathbf{Res}	H1'	H2'	H2"	H3'	H4'	H5'	H5"
1	5.903	2.607	2.712	4.785	4.233	3.692	3.667
2	6.015	2.073	2.454	4.787	4.191	4.107	4.054
3	5.647	2.089	2.399	4.807	4.189	4.086	4.014
4	5.77	2.57	2.603	4.941	4.314	4.083	4.004
5	5.418	1.844	2.203	4.732	4.181	4.089	4.045
6	5.987	2.549	2.89	4.788	4.285	4.066	3.962
7	6.241	1.534	2.004	4.605	4.191	3.964	-
8	6.033	2.622	2.739	4.824	4.318	4.045	3.967
9	5.469	1.99	2.286	4.732	4.117	-	-
10	5.927	2.558	2.735	4.92	4.323	4.098	4.024
11	6.002	2.05	2.412	4.764	4.184	4.073	3.965
12	5.589	1.981	2.312	4.785	4.147	4.074	3.997
13	6.094	2.594	2.327	4.644	4.143	4.05	4.024
14	5.597	1.787	2.287	4.621	3.998	3.67	3.65
15	5.366	2.67	2.726	4.958	4.26	4.028	4.001
16	6.21	2.663	2.868	5.01	4.443	4.176	4.1
17	5.517	1.928	2.279	4.774	-	4.11	4.211
18	5.888	2.572	2.706	4.905	4.314	4.101	4.033
19	5.952	2.074	2.446	4.806	4.319	4.182	4.085
20	4.676	1.955	2.294	4.723	4.186	4.083	4.015
21	5.709	2.116	2.387	4.832	4.149	4.082	4.04
22	5.771	2.575	2.617	4.923	4.305	4.08	3.986
23	5.348	1.956	2.263	4.765	4.084	-	-
24	5.943	2.669	2.834	4.982	4.327	4.078	3.936
25	5.726	2.392	2.579	4.925	4.298	3.998	3.961
26	5.981	2.095	2.144	4.389	4.227	3.967	3.956

Table 8: ¹H chemical shifts of the backbone in 13mer4AP-DAP

2 Input files for Molecular Dynamics calculations

In this chapter the protocols of the MD simulations are given using 13merHCF as example. All samples were using the same set of protocols, so they are not shown explicitly for each one. In case of 13mer4AP-DAP, a modification was necessary for the final MD script. All parts that are necessary to implement RDC values were commented, since they were not measured for this duplex.

2.1 Input file to generate extended strands

This file is used to generate extended single strands of the duplexes that were used as input to calculate the start-structure.

```
remarks file lars_13merHC-.inp
remarks Sequence 13merHC-.lars 5/2011
topology @lars_nucleic.top {*Read topology file for chldna.*}
end
parameter
@lars_nucleic.par
hbonds
    acce=true don=5.5 doff=6.5
    dcut=7.5 aon=60.0 aoff=80.0
    acut=100.0
end
  nbonds
     atom cdie shift eps=1.0 e14fac=0.4
     cutnb=7.5 ctonnb=6.0 ctofnb=6.5
     nbxmod=5 vswitch
  end
end
                                              \{*{\tt We are generating one strand}*\}
                                           {*at a time.
                                                                       *}
 segment
  name="A "
                                         {*This name has to match the *}
                                         {*four characters in columns 73-*}
                                         {*76 in the coordinate *}
                                         {*file; in XPLOR this name is *}
  chain
LINK NUC HEAD - * TAIL + * END
LAST 3TER HEAD - * END
```

```
FIRST 5TER TAIL + * END
Sequence GUA CYT THY GUA CYT ADE HC- ADE CYT GUA THY CYT GUA end
end
end
for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main
   patch deox reference=nil=( resid $1 ) end
end loop main
                                         {*at a time.
                                                                     *}
  segment
  name="B "
                                      {*This name has to match the *}
                                        {*four characters in columns 73-*}
                                         {*76 in the coordinate *}
                                        {*file; in XPLOR this name is *}
  chain
 LINK NUC HEAD - * TAIL + * END
 LAST 3TER HEAD - * END
FIRST 5TER TAIL + * END
Sequence CYT GUA ADE CYT GUA THY ABA THY GUA CYT ADE GUA CYT end
end
end
for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main
   patch deox reference=nil=( segid b AND resid $1 ) end
end loop main
end
vector do ( resid = encode ( decode ( resid ) + 13 ) ) (segid "B \ ")
vector do (segid = " ") (segid "A " or segid "B ")
vector ident (x) ( all )
vector do (x=x/3.) ( all )
vector do (y=random(0.5) ) ( all )
vector do (z=random(0.5) ) ( all )
```

```
vector do (fbeta=50) (all)
                                        {*Friction coefficient, in 1/ps.*}
vector do (mass=100) (all)
                                               {*Heavy masses, in amus.*}
parameter
   nbonds
     cutnb=5.5 rcon=20. nbxmod=-2 repel=0.9 wmin=1. tolerance=0.5
     rexp=2 irexp=2 inhibit=0.25
  end
end
flags exclude * include bond angle vdw end
minimize powell nstep=500 nprint=10 end
flags include impr dihedral end
minimize powell nstep=500 nprint=10 end
dynamics verlet
  nstep=500 timestep=0.001 iasvel=maxwell firsttemp= 300.
  tcoupling = true tbath = 300. nprint=50 iprfrq=0
end
parameter
  nbonds
     rcon=2. nbxmod=-3 repel=0.75
  end
end
minimize powell nstep=100 nprint=25 end
dynamics verlet
   nstep=1500 timestep=0.001 iasvel=maxwell firsttemp= 300.
  tcoupling = true tbath = 300. nprint=100 iprfrq=0
end
flags exclude vdw elec end
hbuild selection=( hydrogen ) phistep=360 end
hbuild selection=( hydrogen ) phistep=4 end
flags include vdw elec end
minimize powell nstep=4000 nprint=50 end
                                                     {*Write coordinates.*}
write coordinates output=start_13merHC-.pdb end
write structure output=start_13merHC-.psf end
print threshold=0.02 bonds
print threshold=3.0 angles
print threshold=3.0 dihedrals
print threshold=3.0 impropers
stop
```

148

2.2 Input file to generate start-structure

This protocol is used to generate the start-structure and only uses NOE distance restraints.

```
remarks file nmr/sa.inp
remarks Simulated annealing protocol for NMR structure determination.
remarks The starting structure for this protocol can be any structure with
remarks a reasonable geometry, such as randomly assigned torsion angles or
remarks extended strands.
remarks Author: Michael Nilges
{====>}
evaluate ($init_t = 3000 ) {*Initial simulated annealing temperature.*}
{====>}
evaluate ($high_steps= 48000 )
                                    {*Total number of steps at high temp.*}
{====>}
evaluate ($cool_steps = 6000 ) {*Total number of steps during cooling.*}
                                                {*Read the parameter file.*}
parameter
{====>}
  @lars_nucleic.par
end
{====>}
structure @start_13merHC-.psf end
                                                    {*Read the structure file.*}
{====>}
coordinates @start_13merHC-.pdb
                                             {*Read the coordinates.*}
noe
{====>}
                 {*Estimate greater than the actual number of NOEs.*}
   nres=3000
  class all
{====>}
  @NOE_13merHCF_xplor.tbl
                                                  {*Read NOE distance ranges.*}
  @hbond_13mer_HCF.tbl
end
{====>}
restraints dihedral
  nass = 1000
  @dihedral_13mer_HCF_cut_ABDNA.tbl
                                                         {*Read dihedral angle
  restraints.*}
end
@plane_13mer_HCF.inp
\{\ast\ {\rm Reduce\ the\ scaling\ factor\ on\ the\ force\ applied\ to\ disulfide}
                                                                        *}
{* bonds and angles from 1000.0 to 100.0 in order to reduce computation instability. *}
parameter
     bonds ( name SG ) ( name SG ) 100. TOKEN
     angle ( name CB ) ( name SG ) ( name SG ) 50. TOKEN
end
```

flags exclude * include bonds angle impr vdw elec noe cdih plan end

{*Friction coefficient for MD heatbath, in 1/ps. *} vector do (fbeta=10) (all) {*Uniform heavy masses to speed molecular dynamics.*} vector do (mass=100) (all) {*Parameters for NOE effective energy term.*} noe ceiling=1000 averaging * cent potential * soft scale * 50. sqoffset * 0.0 sqconstant * 1.0 sqexponent * 2 soexponent * 1 asymptote * 0.1 {*Initial value--modified later.*} rswitch * 0.5 end {*Parameters for the repulsive energy term.*} parameter nbonds repel=1. {*Initial value for repel--modified later.*} rexp=2 irexp=2 rcon=1. nbxmod=3 wmin=0.01 cutnb=4.5 ctonnb=2.99 ctofnb=3. tolerance=0.5 end end restraints dihedral scale=5. end {====>} {*Loop through a family of 100 structures.*} evaluate (\$end_count=100) coor copy end evaluate (\$count = 0) evaluate (\$count2 = 0) while (\$count < \$end_count) loop main evaluate (\$count=\$count+1) evaluate (\$count2=\$count2+1) coor swap end coor copy end {* ===== Initial minimization.*} restraints dihedral scale=5. end noe asymptote * 0.1 end parameter nbonds repel=1. end end constraints interaction (all) (all) weights * 1 vdw 0.002 end end minimize powell nstep=50 drop=10. nprint=25 end

2 Input files for Molecular Dynamics calculations

```
{* ===== High-temperature dynamics.*}
constraints interaction (all) (all)
           weights * 1 angl 0.4 impr 0.1 vdw 0.002 end end
evaluate ($nstep1=int($high_steps * 2. / 3. ) )
evaluate ($nstep2=int($high_steps * 1. / 3. ) )
dynamics verlet
   nstep=$nstep1 timestep=0.003 iasvel=maxwell firstt=$init_t
   tcoupling=true tbath=$init_t nprint=50 iprfrq=0
 end
  {* ========== Tilt the asymptote and increase weights on geometry.*}
noe asymptote * 1.0 end
constraints interaction
          (all) (all) weights * 1 vdw 0.002 end end
\{* \mbox{ Bring scaling factor for S-S bonds back }*\}
parameter
  bonds ( name SG ) ( name SG ) 1000. TOKEN
  angle ( name CB ) ( name SG ) ( name SG ) 500. TOKEN
end
dynamics verlet
  nstep=$nstep2 timestep=0.001 iasvel=current tcoupling=true
  tbath=$init_t nprint=50 iprfrq=0
end
 {* ===== Cool the system.*}
restraints dihedral scale=200. end
evaluate ($final_t = 100) { K }
evaluate ($tempstep = 50) { K }
evaluate ($ncycle = ($init_t-$final_t)/$tempstep)
evaluate ($nstep = int($cool_steps/$ncycle))
evaluate ($ini_rad = 0.9) evaluate ($fin_rad = 0.75)
evaluate ($ini_con= 0.003) evaluate ($fin_con= 4.0)
evaluate ($bath = $init_t)
evaluate ($k_vdw = $ini_con)
evaluate ($k vdwfact = ($fin con/$ini con)^(1/$ncvcle))
evaluate ($radius= $ini_rad)
evaluate ($radfact = ($fin_rad/$ini_rad)^(1/$ncycle))
evaluate ($i_cool = 0)
while ($i_cool < $ncycle) loop cool
  evaluate ($i_cool=$i_cool+1)
   evaluate ($bath = $bath - $tempstep)
```

```
evaluate ($k_vdw=min($fin_con,$k_vdw*$k_vdwfact))
     evaluate ($radius=max($fin_rad,$radius*$radfact))
     parameter nbonds repel=$radius end end
     constraints interaction (all) (all)
                  weights * 1. vdw $k_vdw end end
     dynamics verlet
       nstep=$nstep time=0.001 iasvel=current firstt=$bath
       tcoup=true tbath=$bath nprint=$nstep iprfrq=0
     end
{====>}
                                                    {*Abort condition.*}
     evaluate ($critical=$temp/$bath)
     if (critical > 10.) then
       display ****&&&& rerun job with smaller timestep (i.e., 0.003)
       stop
     end if
  end loop cool
                                 ----- Final minimization.*}
  {* =====
  constraints interaction (all) (all) weights * 1. vdw 1. end end
                               {*Parameters for the repulsive energy term.*}
  parameter
    nbonds
    repel=0.
                             {*Initial value for repel--modified later.*}
    SWITCH
    VSWITCH
    RDIE
    cutnb=11.5
    nbxmod=5
     wmin=0.01
     ctofnb=10.5
    ctonnb=9.5
     tolerance=0.5
   end
  end
  flags exclude \ast include bonds angle impr vdw elec noe cdih plan end
  minimize powell nstep=5000 drop=10.0 nprint=25 end
  print threshold=0.5 noe
  evaluate ($rms_noe=$result)
  evaluate ($violations_noe=$violations)
  print threshold=5. cdih
  evaluate ($rms_cdih=$result)
  evaluate ($violations_cdih=$violations)
  print thres=0.05 bonds
  evaluate ($rms_bonds=$result)
  print thres=5. angles
  evaluate ($rms_angles=$result)
  print thres=5. impropers
  evaluate ($rms_impropers=$result)
```

2 Input files for Molecular Dynamics calculations

remarks ======== remarks overall, bonds, angles, improper, vdw, noe, cdih, elec remarks energies: \$ener, \$bond, \$angl, \$impr, \$vdw, \$noe, \$cdih, \$elec remarks ----remarks bonds, angles, impropers, noe, cdih remarks rms-d: \$rms_bonds,\$rms_angles,\$rms_impropers,\$rms_noe,\$rms_cdih remarks ----noe, cdih remarks remarks violations.: \$violations_noe, \$violations_cdih remarks enviol: \$ener \$\$violations_noe \$violations_cdih {====>} {*Name(s) of the family of final structures.*} evaluate (\$filename="z13merHC-"+encode(\$count)+".pdb") write coordinates output =\$filename end evaluate (\$filename2="z13merHC-"+encode(\$count2)+".noe") set display=\$filename2 end @@picktbl 13merHCF close \$filename2 end set display=OUTPUT end end loop main

stop

2.3 Input file to finally calculate the NMR solution structure

The final MD protocol uses the start-structure, NOE distance restraints and RDC values to calculate the NMR solution structure. In case of 13mer4AP-DAP all lines that implement RDC values were set as comments to omit them in the calculation.

Das ist das zur Zeit gueltige Skript mit allen Neuerungen! # Hier wird das modifizierte python-file protocol.py benutzt!

seed = 10
numberOfStructures = 100
startStructure = 1

```
# file for reading in experimental Me-RDC constraints
lsdInitCoord = "start_"+lsdSampleName+".pdb"
# file created with initial extended structure coordinates
lsdInitPSF = "start_"+lsdSampleName+".psf"  # file created with initial extended structure
lsdPlan
              = "plane_13merHCF.inp"
                                                       # file for reading in planar constraints
             = "hbond_13merHCF.tbl" # file for reading in Hbond constraints
lsdHbond
            = "dihedral_13mer_HCF_cut_ABDNA.tbl"
lsdDihe
# file for reading in ideal dihedral constraints
lsdNOEthresh = 0.5
                                                           # threshold for NOE error reports
lsdRDCthresh = 2.5
                                                           # threshold for RDC error reports
lsdRDCscale = 5.0
                                                           # scaling factor for RDCs
lsdMeRDCscale = 0.5
# scaling factor for methyl RDCs (should usually be 0.1*lsdRDCscale)
lsdFixedRDC = 1
# if lsdFixedRDC is 0, fixed values are used, else floating ones
lsdDaRDC = -22.43
                                                           # Da-value when using fixed values
lsdRhRDC
             = 0.2174
                                                           # Rhombicity when using fixed values
xplor.parseArguments() # check for typos on the command-line
simWorld.setRandomSeed(seed)
# Create the PSF and initial PDB files as an extended structure
import protocol
protocol.initParams("lsd_old_nucleic")
protocol.initTopology("lsd_old_nucleic")
protocol.initStruct(lsdInitPSF)
# starting coords
protocol.initCoords(lsdInitCoord)
# list of potential terms used in refinement
from potList import PotList
potList = PotList()
crossTerms=PotList('cross terms') # can add some pot terms which are not
                                # refined against- but included in analysis
# parameters to ramp up during the simulated annealing protocol
from simulationTools import MultRamp, StaticRamp, InitialParams
rampedParams=[]
highTempParams=[]
from varTensorTools import create_VarTensor, calcTensor
media={}
for medium in ['pf1']:
   media[medium] = create_VarTensor(medium)
    pass
```

#

#

#

from xplorPot import XplorPot

#planarity restraints
xplor.command("@%s" % lsdPlan)
potList.append(XplorPot("plan",xplor.simulation))

#NOE potentials
from noePotTools import create_NOEPot
noePots = PotList("noe")
noe = create_NOEPot("noeAll",lsdNOEexp)
noe.setPotType("hard")
noe.setThrsshold(lsdNOEthresh)
noePots.append(noe)

need to be satisfied by all structures noeHB = create_NOEPot("noeNH",lsdHbond) noeHB.setPotType("hard") noeHB.setScale(1000) noeHB.setThreshold(0.1) noePots.append(noeHB) potList.append(noePots) rampedParams.append(StaticRamp("noePots.setScale(50)"))

protocol.initDihedrals(lsdDihe)
potList.append(XplorPot("CDIH"))
highTempParams.append(StaticRamp("potList['CDIH'].setScale(200)"))
rampedParams.append(StaticRamp("potList['CDIH'].setScale(200)"))
#rampedParams.append(MultRamp(10,200, "potList['CDIH'].setScale(VALUE)"))

from rdcPotTools import Da_prefactor, create_RDCPot, scale_toCH

```
rdcPots = PotList('rdcs')
# weight is the relative weighting of expts, as determined by expt. error
```

```
for (name, medium, weight, files) in [
    ('JCH' ,'pf1',lsdRDCscale,lsdDipoInp),('methyl' ,'pf1',lsdMeRDCscale,lsdDipoInpMe)
   ]:
    term = create_RDCPot(name,oTensor=media[medium],defThreshold=lsdRDCthresh)
    if type(files)==type('string'):
       files=(files,)
        pass
    for file in files:
       term.addRestraints( open(file).read() )
        pass
    term.setShowAllRestraints(1)
    term.setScale(weight)
    #term.setAveType("average")
    term.setAveType("sum")
    print name
    scale toCH(term) #also sets useDistance
    print term.info()
    print term.gyroA()
    rdcPots.append(term)
    pass
```

```
potList.append(rdcPots)
rampedParams.append( MultRamp(0.01,1,"rdcPots.setScale( VALUE )") )
from rdcPotTools import Da_prefactor
print "factor:", Da_prefactor['CH'] / Da_prefactor["NH"]
for medium in media.values():
   calcTensor(medium)
   print "medium: ", medium.instanceName(), \
         "Da: ",medium.Da(), "Rh: ",medium.Rh()
   pass
#let's try fixing Da, Rh:
print medium
for (medium,Da,Rh) in (('pf1',lsdDaRDC,lsdRhRDC),):
   medium = media[medium]
   medium.setDa(Da)
   medium.setRh(Rh)
   pass
potList.append( XplorPot("VDW") )
potList.append( XplorPot("elec") )
rampedParams.append( StaticRamp("""xplor.command('''param nbonds
atom
repel=0
 wmin=0.01
nbxmod=5
cutnb=58.5
ctonnb=56.5
ctofnb=57.5
tolerance=0.5
rdie
vswitch
 switch
  end end''')""") )
for name in ("bond","angl","impr"):
   potList.append( XplorPot(name) )
   pass
rampedParams.append( MultRamp(0.4,1.0,"potList['ANGL'].setScale(VALUE)"))
rampedParams.append( MultRamp(0.1,1.0,"potList['IMPR'].setScale(VALUE)"))
from ivm import IVM
import varTensorTools
                        #initial alignment of orientation tensor axes
mini = IVM()
for medium in (('pf1'),): media[medium].setFreedom("fixDa, fixRh")
varTensorTools.topologySetup(mini,media.values())
protocol.initMinimize(mini,
                    numSteps=20)
mini.fix("not resname ANI")
mini.run()
                       #this initial minimization is not strictly necessary
```

2 Input files for Molecular Dynamics calculations

#uncomment to allow Da, Rh to vary if lsdFixedRDC==0: pass else: for medium in (('pf1'),): media[medium].setFreedom("varyDa, varyRh") dyn = IVM() protocol.initDynamics(dyn,potList=potList) varTensorTools.topologySetup(dyn,media.values()) protocol.torsionTopology(dyn) # Give atoms uniform weights, except for the anisotropy axis from atomAction import SetProperty AtomSel("not resname ANI").apply(SetProperty("mass",100.)) varTensorTools.massSetup(media.values(),300) AtomSel("all ").apply(SetProperty("fric",10.))

##

minc used for final cartesian minimization
##
from selectTools import IVM_groupRigidSidechain
minc = IVM()
protocol.initMinimize(minc,potList=potList)
IVM_groupRigidSidechain(minc)
protocol.cartesianTopology(minc,"not resname ANI")
varTensorTools.topologySetup(minc,media.values())

init_t1 = 200000
init_t2 = 20000
init_t3 = 3000

initialize parameters for initial minimization. InitialParams(rampedParams) # high-temp dynamics setup - only need to specify parameters which # differfrom initial values in rampedParams InitialParams(highTempParams)

```
numSteps=50)
dyn.run()
# initial minimization
protocol.initMinimize(dyn,
                     potList=potList,
                     numSteps=1000)
minc.run()
def calcOneStructure(loopInfo):
# mod by lsd: second annealing loop, actual annealing
    # initialize parameters for high temp dynamics.
   InitialParams( rampedParams )
   # high-temp dynamics setup - only need to specify parameters which
    # differfrom initial values in rampedParams
   InitialParams( highTempParams )
   protocol.initDynamics(dyn,
                         initVelocities=1,
                         bathTemp=init_t2,
                         potList=potList,
                         finalTime=50)
    dyn.setETolerance( init_t2/100 ) #used to det. stepsize. default: t/1000
   dyn.run()
    # initialize parameters for cooling loop
    InitialParams( rampedParams )
   # perform simulated annealing
    #
    protocol.initDynamics(dyn,
                         finalTime=0.5, #time to integrate at a given temp.
                                       # take as many steps as necessary
                         numSteps=0,
                         #eTol_minimum=0.001 # cutoff for auto-TS det.
                         )
    anneal2.run()
    anneal3.run()
    #
    # torsion angle minimization
    protocol.initMinimize(dyn,numSteps=5000)
   dyn.run()
    ##
    ##all atom minimization
    ##
    protocol.initMinimize(minc,potList=potList,numSteps=3000)
   minc.run()
    #
   # perform analysis and write structure
   loopInfo.writeStructure(potList,crossTerms)
```

from simulationTools import StructureLoop
StructureLoop(numStructures=numberOfStructures,
 startStructure=startStructure,
 pdbTemplate=outFilename,
 genViolationStats=1,
 averageFilename="average_min.pdb",
 averageFitSel="not resname ANI and not (name H71 or name H72 or name H73)",
 averageRefineSteps=15,
 averageTopFraction=0.1,
 averagePotList=potList).run()

2.4 Parameter file used by Xplor-NIH

!RNA PARAMETER FILE 'FRAMEOWRK' FROM PARALLHDG.DNA AND ATOM NAMES ! AND HEAVY ATOM PARAMETERS FROM DNA-RNA.PARAM !INCLUDES ALL NONEXCHANGEABLE HYDROGEN TERMS FOR BOND, ANGLE, AND !IMPROPERS WITH ENERGY CONSTANT VARIABLES: \$kchbond, \$kchangle, AND \$kchimpr. !BOND, ANGLE, AND IMPROPERS WERE ESTIMATED FROM VALUES FROM THE STANDARD !NUCLEOTIDES OF INSIGHTII 95.0 (BIOSYM/MOLECULAR SIMULATIONS). !CREATED 2/24/96-- JASON P. RIFE AND PETER B. MOORE ! DNA-RNA-ALLATOM.PARAM

set echo=off message=off end

! checkversion 1.0

evaluate (\$kchangle = 1000) evaluate (\$kchangle = 1000) evaluate (\$kchimpr = 1000)

{ Not	ce: ec	lit if	necessary	7}				
BOND	0Y1	CY2	1000.0	1.426	ļ	Nobs =		1
BOND	0Y1	HY29	1000.0	0.963	ļ	Nobs =		1
BOND	CY2	НҮЗ	1000.0	1.096	ļ	Nobs =		1
BOND	CY2	HY4	1000.0	1.097	ļ	Nobs =		1
BOND	CY2	CY5	1000.0	1.517	ļ	Nobs =		1
BOND	CY5	HY6	1000.0	1.094	ļ	Nobs =		1
BOND	CY5	0Y7	1000.0	1.450	ļ	Nobs =		1
BOND	CY5	CY18	1000.0	1.543	ļ	Nobs =		1
BOND	0Y7	CY8	1000.0	1.441	ļ	Nobs =		1
BOND	CY8	НҮ9	1000.0	1.098	ļ	Nobs =		1
BOND	CY8	CY20	1000.0	1.527	ļ	Nobs =		1
BOND	C1D	CY25	1000.0	1.509	ļ	modded	by	lsd
BOND	CY10	HY11	1000.0	1.079	ļ	Nobs =		1
BOND	CY10	NY24	1000.0	1.374	ļ	Nobs =		1

BOND CY10 CY25	1000.0	1.351	!	Nobs =	1		
BOND CY12 NY13	1000.0	1.339	ļ	Nobs =	1		
BOND CY12 NY16	1000.0	1.314	ļ	Nobs =	1		
BOND CY12 NY24	1000.0	1.366	ļ	Nobs =	1		
BOND NY13 HY14	1000.0	1.008	ļ	Nobs =	1		
BOND NY13 HY15	1000.0	1.006	ļ	Nobs =	1		
BOND NY16 CY17	1000.0	1.342	ļ	Nobs =	1		
BOND CY17 CY25	1000.0	1.450	ļ	Nobs =	1		
BOND CY17 NY26	1000.0	1.326		Nobs =	1		
BOND CY18 HY19	1000.0	1 092		Nobs =	1		
BOND CV18 CV20	1000 0	1 527		Nobs =	1		
BOND CV18 OV23	1000.0	1 425	i	Nobs =	1		
BOND CY20 HY21	1000.0	1 089	Ì	Nobs =	1		
BOND CY20 HY22	1000.0	1 089	Ì	Nobs =	1		
BOND CI20 HI22	1000.0	0.062		Nobs -	1		
BOND 0123 HISO	1000.0	1 010		Nobs -	1		
BUND NI24 HISI	1000.0	1.010	į	NODS =	1		
BUND NY26 HY27	1000.0	1.014	!	Nobs =	1		
BOND NY26 HY28	1000.0	1.008	!	Nobs =	1		
{ Note: edit if	necessar	ry}					
ANGLe CY2 OY1	HY29	500.0		108.93 !	Nobs =		1
ANGLe OY1 CY2	НҮЗ	500.0		111.24 !	Nobs =		1
ANGLe OY1 CY2	HY4	500.0		111.10 !	Nobs =		1
ANGLe OY1 CY2	CY5	500.0		109.30 !	Nobs =		1
ANGLe HY3 CY2	HY4	500.0		108.20 !	Nobs =		1
ANGLe HY3 CY2	CY5	500.0		108.77 !	Nobs =		1
ANGLe HY4 CY2	CY5	500.0		108.14 !	Nobs =		1
ANGLe CY2 CY5	HY6	500.0		108.20 !	Nobs =		1
ANGLe CY2 CY5	0Y7	500.0		110.08 !	Nobs =		1
ANGLe CY2 CY5	CY18	500.0		115.10 !	Nobs =		1
ANGLe HY6 CY5	0Y7	500.0		107.82 !	Nobs =		1
ANGLe HY6 CY5	CY18	500.0		109.84 !	Nobs =		1
ANGLe OY7 CY5	CY18	500.0		105.57 !	Nobs =		1
ANGLe CY5 OY7	CY8	500.0		110.21 !	Nobs =		1
ANGLe OY7 CY8	НҮ9	500.0		108.09 !	Nobs =		1
ANGLe OY7 CY8	CY20	500.0		105.09 !	Nobs =		1
ANGLe 04D C1D	CY25	500.0		109.05 !	modded	by	lsd
ANGLe HY9 CY8	CY20	500.0		109.22 !	Nobs =		1
ANGLe H C1D	CY25	500.0		107.80 !	modded	by	lsd
ANGLe C2D C1D	CY25	500.0		117.27 !	modded	by	lsd
ANGLe HY11 CY10	NY24	500.0		115.49 !	Nobs =		1
ANGLe HY11 CY10	CY25	500.0		123.38 !	Nobs =		1
ANGLe NY24 CY10	CY25	500.0		121.13 !	Nobs =		1
ANGLe NY13 CY12	NY16	500.0		119.62 !	Nobs =		1
ANGLe NY13 CY12	NY24	500.0		119.02	Nobs =		1
ANGLA NV16 CV12	NY24	500.0		121 36 1	Nobs =		1
ANGLe CY12 NY13	HY14	500.0		117.80	Nobs =		1
ANGLO CV12 NV13	HV15	500.0		123 50 1	Nobe =		1
ANGLO HV14 NV12	UV1C	500.0		110 50 1	Noba =		1
ANGLE CY10 NY12	0V17	500.0		110 65 1	Nobs =		1
ANGLE CI12 NILD	CV05	500.0		101 00 .	NODS =		1
ANGLE NILD CI1/	UI 20	500.0		112 00 .	NODS =		1
ANGLE NY16 CY17	NI26	500.0		111.38 !	NODS =		1
ANGLE CY25 CY17	NY26	500.0		120.65 !	Nobs =		1
ANGLe CY5 CY18	HY19	500.0		111.68 !	Nobs =		1
ANGLe CY5 CY18	CY20	500.0		102.81 !	Nobs =		1
ANGLe CY5 CY18	0Y23	500.0		111.93 !	Nobs =		1

ANGLe HY19 CY18 CY20	500.0	111.73 ! Nobs =	1				
ANGLe HY19 CY18 OY23	500.0	111.35 ! Nobs =	1				
ANGLe CY20 CY18 OY23	500.0	106.94 ! Nobs =	1				
ANGLe CY8 CY20 CY18	500.0	101.56 ! Nobs =	1				
ANGLe CY8 CY20 HY21	500.0	110.76 ! Nobs =	1				
ANGLe CY8 CY20 HY22	500.0	113.50 ! Nobs =	1				
ANGLe CY18 CY20 HY21	500.0	108.80 ! Nobs =	1				
ANGLe CY18 CY20 HY22	500.0	110.87 ! Nobs =	1				
ANGLe HY21 CY20 HY22	500.0	110.92 ! Nobs =	1				
ANGLe CY18 OY23 HY30	500.0	109.89 ! Nobs =	1				
ANGLe CY10 NY24 CY12	500.0	120.27 ! Nobs =	1				
ANGLe CY10 NY24 HY31	500.0	119.01 ! Nobs =	1				
ANGLe CY12 NY24 HY31	500.0	120.70 ! Nobs =	1				
ANGLe C1D CY25 CY10	500.0	122.92 ! modded b	by la	sd			
ANGLe C1D CY25 CY17	500.0	121.43 ! modded h	by la	sd			
ANGLe CY10 CY25 CY17	500.0	115.50 ! Nobs =	1				
ANGLe CY17 NY26 HY27	500.0	119.25 ! Nobs =	1				
ANGLe CY17 NY26 HY28	500.0	118.79 ! Nobs =	1				
ANGLe HY27 NY26 HY28	500.0	120.67 ! Nobs =	1				
{ Note: edit if necessar	ry }						
DIHEdral HY29 OY1 CY2	НҮЗ	750.0 0 60.00	! No	obs =	1	Value =	60.14
DIHEdral HY29 OY1 CY2	HY4	750.0 0 -60.00	! No	obs =	1	Value =	-60.46
DIHEdral HY29 OY1 CY2	CY5	750.0 0 180.00	! No	obs =	1	Value =	-179.72
DIHEdral OY1 CY2 CY5	HY6	750.0 0 180.00	! No	obs =	1	Value =	172.91
DIHEdral OY1 CY2 CY5	0Y7	750.0 0 -60.00	! No	obs =	1	Value =	-69.50
DIHEdral HY3 CY2 CY5	HY6	750.0 0 -60.00	! No	obs =	1	Value =	-65.45
DIHEdral HY3 CY2 CY5	0Y7	750.0 0 60.00	! No	obs =	1	Value =	52.14
DIHEdral HY3 CY2 CY5	CY18	750.0 0 180.00	! No	obs =	1	Value =	171.28
DIHEdral HY4 CY2 CY5	HY6	750.0 0 60.00	! No	obs =	1	Value =	51.84
DIHEdral CY2 CY5 OY7	CY8	750.0 0 120.00	! No	obs =	1	Value =	122.24
DIHEdral HY6 CY5 OY7	CY8	750.0 0 -120.00	! No	obs =	1	Value =	-119.94
DIHEdral CY18 CY5 OY7	CY8	750.0 0 0.00	! No	obs =	1	Value =	-2.57
DIHEdral CY2 CY5 CY18	CY20	750.0 0 -90.00	! No	obs =	1	Value =	-96.57
DIHEdral HY6 CY5 CY18	HY19	750.0 0 -90.00	! No	obs =	1	Value =	-99.03
DIHEdral OY7 CY5 CY18	OY23	750.0 0 -90.00	! No	obs =	1	Value =	-89.40
DIHEdral CY5 OY7 CY8	НҮ9	750.0 0 90.00	! No	obs =	1	Value =	95.37
DIHEdral CY25 CY8 CY20	HY22	750.0 0 -90.00	! No	obs =	1	Value =	-83.70
DIHEdral HY11 CY10 NY24	CY12	750.0 0 180.00	! No	obs =	1	Value =	177.39
DIHEdral HY11 CY10 NY24	HY31	750.0 0 0.00	! No	obs =	1	Value =	-1.13
DIHEdral CY25 CY10 NY24	CY12	750.0 0 0.00	! No	obs =	1	Value =	-1.67
DIHEdral CY25 CY10 NY24	HY31	750.0 0 180.00	! No	obs =	1	Value =	179.81
DIHEdral HY11 CY10 CY25	CY8	750.0 0 0.00	! No	obs =	1	Value =	-4.80
DIHEdral HY11 CY10 CY25	CY17	750.0 0 180.00	! No	obs =	1	Value =	179.53
DIHEdral NY24 CY10 CY25	CY8	750.0 0 180.00	! No	obs =	1	Value =	174.19
DIHEdral NY24 CY10 CY25	CY17	750.0 0 0.00	! No	obs =	1	Value =	-1.49
DIHEdral NY16 CY12 NY13	HY14	750.0 0 0.00	! No	obs =	1	Value =	-0.22
DIHEdral NY16 CY12 NY13	HY15	750.0 0 180.00	! No	obs =	1	Value =	-178.44
DIHEdral NY24 CY12 NY13	HY14	750.0 0 180.00	! No	obs =	1	Value =	-179.63
DIHEdral NY24 CY12 NY13	HY15	750.0 0 0.00	! No	obs =	1	Value =	2.16
DIHEdral NY13 CY12 NY16	CY17	750.0 0 180.00	! No	obs =	1	Value =	179.93
DIHEdral NY24 CY12 NY16	CY17	750.0 0 0.00	! No	obs =	1	Value =	-0.68
DIHEdral NY13 CY12 NY24	CY10	750.0 0 180.00	! No	obs =	1	Value =	-177.69
DIHEdral NY13 CY12 NY24	HY31	750.0 0 0.00	! No	obs =	1	Value =	0.81
DIHEdral NY16 CY12 NY24	CY10	750.0 0 0.00	! No	obs =	1	Value =	2.91
DIHEdral NY16 CY12 NY24	HY31	750.0 0 180.00	! No	obs =	1	Value =	-178.58

DIHEdral	CY12	NY16	CY17	CY25	750.0	0	0.00	ļ	Nobs =	1 .	. Val	ue =	-2.69	
DIHEdral	CY12	NY16	CY17	NY26	750.0	0	180.00	ļ	Nobs =	1 .	. Val	ue =	178.27	
DIHEdral	NY16	CY17	CY25	CY8	750.0	0	180.00	ļ	Nobs =	1 .	. Val	ue =	-172.01	
DIHEdral	NY16	CY17	CY25	CY10	750.0	0	0.00	ļ	Nobs =	1 .	. Val	ue =	3.74	
DIHEdral	NY26	CY17	CY25	CA8	750.0	0	0.00	ļ	Nobs =	1 .	. Val	ue =	7.00	
DIHEdral	NY26	CY17	CY25	CY10	750.0	0	180.00	ļ	Nobs =	1 .	. Val	ue =	-177.26	
DIHEdral	NY16	CY17	NY26	HY28	750.0	0	0.00	ļ	Nobs =	1 .	. Val	ue =	-1.69	
DIHEdral	CY25	CY17	NY26	HY28	750.0	0	180.00	ļ	Nobs =	1 .	Val	ue =	179.27	
DIHEdral	CY5	CY18	CY20	HY21	750.0	0	90.00	ļ	Nobs =	1 .	Val	ue =	80.22	
DIHEdral	HY19	CY18	CY20	HY22	750.0	0	90.00	ļ	Nobs =	1 .	. Val	ue =	82.56	
DIHEdral	0Y23	CY18	CY20	CY8	750.0	0	90.00	ļ	Nobs =	1 .	Val	ue =	81.38	
DIHEdral	CY20	CY18	0Y23	НҮЗО	750.0	0	180.00	ļ	Nobs =	1 .	. Val	ue =	170.64	
{ Note: e	edit :	if ne	cessai	ry }										
IMPRoper	CY2	0Y1	НҮЗ	HY4	750.0	0	35.000	ļ	Nobs =	1 .	Val	ue =	33.228	
IMPRoper	CY5	CY2	HY6	0Y7	750.0	0	-35.000	ļ	Nobs =	1 .	Val	ue =	-38.195	
! >>> NOTI	E - u	nusual	l valı	ue for	followin	ıg	improper	:	41.37	7 reset	to +	35.0)	
IMPRoper	CY8	0Y7	НҮ9	CY20	750.0	0	35.000	ļ	Nobs =	1 .	Val	ue =	41.369	
IMPRoper	CY10	HY11	NY24	CY25	750.0	0	0.000	ļ	Nobs =	1 .	Val	ue =	-0.545	
IMPRoper	CY12	NY13	NY16	NY24	750.0	0	0.000	ļ	Nobs =	1 .	. Val	ue =	0.351	
IMPRoper	NY13	CY12	HY14	HY15	750.0	0	0.000	ļ	Nobs =	1 .	Val	ue =	0.940	
IMPRoper	CY17	NY16	CY25	NY26	750.0	0	0.000	ļ	Nobs =	1 .	Val	ue =	0.570	
! >>> NOTI	E – ui	nusual	l valı	ue for	followin	ıg	improper	:	40.17	7 reset	to +	35.0)	
IMPRoper	CY18	CY5	HY19	CY20	750.0	0	35.000	ļ	Nobs =	1 .	Val	ue =	40.170	
IMPRoper	CY20	CY8	CY18	HY21	750.0	0	35.000	ļ	Nobs =	1 .	Val	ue =	30.715	
IMPRoper	NY24	CY10	CY12	HY31	750.0	0	0.000	ļ	Nobs =	1 .	Val	ue =	0.769	
IMPRoper	CY25	C1D	CY10	CY17	750.0	0	0.000	ļ	Nobs =	1 .	Val	ue =	-2.663 mod	by lsd
i >>> NUTI	c – u	nusua	l valı	ue for	followin	ıg	improper	:	-7.15	5 reset	to 0	.0		
IMPRoper	NY26	CY17	l valı HY27	ue for HY28	followin 750.0	ug 0	improper 0.000	: !	-7.18 Nobs =	5 reset	t to 0	.0 ue =	-7.146	
IMPRoper	NY26 NY26	nusual CY17 for cl	l valı HY27 hiral:	ue for HY28 ity arc	followin 750.0 pund C1'	0	improper 0.000	:	-7.15 Nobs =	5 reset 1	to 0	.0 ue =	-7.146	
! >>> NUTI IMPRoper !add IMPRo IMPRoper	NY26 NY26 pper : H	nusual CY17 for cl C2D	l valu HY27 hiral: O4D	ue for HY28 ity arc CY25	followin 750.0 pund C1' \$kchim	o 0	improper 0.000	: ! 28	-7.18 Nobs = 0	5 reset 1	to 0	.0 ue =	-7.146	
! >>> NUTI IMPRoper !add IMPRo IMPRoper	NY26 oper : H	nusua: CY17 for cl C2D	l valı HY27 hiral: O4D	ue for HY28 ity arc CY25	followin 750.0 ound C1' \$kchim	0 o	improper 0.000 0 -65.2	: ! 28	-7.18 Nobs = 0	5 reset	to 0	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: 6</pre>	NY26 oper : H edit :	nusua CY17 for cl C2D if ne	l valu HY27 hiral: O4D cessar	ue for HY28 ity arc CY25 ry }	followin 750.0 pund C1' \$kchim	o o	improper 0.000	: ! 28	-7.15 Nobs =	5 reset	t to 0	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: 4 NONBonded</pre>	NY26 oper : H edit : d OY1	CY17 CY17 for cl C2D if ne 0.1	l valu HY27 hiral: 04D cessar 591 2	ue for HY28 ity arc CY25 ry } 2.8509	followin 750.0 pund C1' \$kchim 0.159	ng 0 npr	improper 0.000 0 -65.2 2.8509	: ! 28	-7.15 Nobs = 0	5 reset 1 Oxyger	: to 0 Val	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: { NONBonded NONBonded</pre>	NY26 oper : H edit : d OY1 d CY2	CY17 CY17 for cl C2D if new 0.1	l valı HY27 hiral: 04D cessar 591 2 200 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100	9 0 1 1 1 00	improper 0.000 0 -65.2 2.8509 ! 3.3854 !	: ! 289	-7.1 Nobs = 0 assuming	5 reset 1 Oxyger Carbor	to 0 Val	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: { NONBonded NONBonded NONBonded</pre>	NY26 oper : H edit : d OY1 d CY2 d HY3	CY17 for cl C2D if new 0.11 0.12	l valı HY27 hiral: 04D cessar 591 2 200 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049	9 0 1 1 1 1 00 18	<pre>improper 0.000 0 -65.2 2.8509 ! 3.3854 ! 1.4254 !</pre>	: ! 28 ! :	-7.15 Nobs = 0 assuming assuming	5 reset 1 Oxyger Carbor Hydrog	to 0 Val	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: NONBondee NONBondee NONBondee NONBondee</pre>	NY26 pper : H edit : d OY1 d CY2 d HY3 d HY4	CY17 for cl C2D if new 0.11 0.12 0.04	l valı HY27 hiral: 04D cessar 591 2 200 3 498 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.049	ug 0 1pr 91 98 98	<pre>improper 0.000 0 -65.2 2.8509 3.3854 1.4254 1.4254 </pre>	: ! 28 ! : ! :	-7.15 Nobs = 0 assuming assuming assuming	5 reset 1 Oxygen Carbon Hydrog Hydrog	to O Val u gen gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: NONBondee NONBondee NONBondee NONBondee NONBondee</pre>	NY26 oper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5	CY17 for cl C2D if ne 0.1 0.1 0.0 0.0 0.0	l valu HY27 hiral: 04D cessar 591 2 200 3 498 3 498 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254 3.7418	followin 750.0 ound C1' \$kchin 0.159 0.100 0.049 0.049 0.100	ug 0 1pr 91 98 98	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 3.3854 1	: 28 ! !	-7.15 Nobs = 0 assuming assuming assuming assuming	5 reset 1 Oxygen Carbon Hydrog Carbon	to 0 Val 1 gen gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRo IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 oper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5 d HY6	CY17 for cl C2D if new 0.11 0.04 0.04 0.12 0.04	l valu HY27 hiral: 04D cessar 591 2 200 3 498 3 498 3 200 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 3.7418 1.4254 1.4254	followin 750.0 pund C1' \$kchim 0.159 0.100 0.049 0.049 0.100 0.049	ug 0 100 100 100 100 100 100 100 100 100	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 1.4254 1	: 28 ! ! !	-7.1! Nobs = 0 assuming assuming assuming assuming assuming	5 reset 1 Oxygen Carbon Hydrog Carbon Hydrog Hydrog	to O Val gen gen gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPR IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 oper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5 d HY6 d OY7	CY17 for cl C2D if new 0.11 0.04 0.04 0.04 0.04	l valu HY27 hiral: 04D cessar 591 2 200 3 498 3 200 3 498 3 200 3 498 3 591 2	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 2.8509	followin 750.0 pund C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.159	ug 0 1pr 91 90 98 90 98 91	improper 0.000 0 -65.2 3.3854 1 1.4254 1 3.3854 1 1.4254 1 1.4254 1 2.8509 1	: 28 ! ! !	-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming	5 reset 1 Oxyger Carbor Hydrog Carbor Hydrog Oxyger	to O Val gen gen i gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 pper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5 d HY6 d OY7 d CY8	CY17 for cl C2D if ne 0.11 0.00 0.01 0.00 0.11 0.00 0.11 0.01	l valu HY27 04D cessau 591 2 200 3 498 2 498 2 498 2 498 2 498 2 591 2 200 3	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 2.8509 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.159 0.100	ug 0 100 100 100 100 100 100	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 3.3854 1 3.3854 1	: ! 28 ! ! ! !	-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming	5 reset 1 Oxyger Carbor Hydrog Carbor Hydrog Oxyger Carbor	to O Val gen gen 1 gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 opper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5 d HY4 d CY5 d HY6 d OY7 d CY8 d HY9	CY17 for cl C2D if ne 0.11 0.04 0.04 0.04 0.04 0.04 0.04 0.04	l valu HY27 04D cessai 591 2 200 3 498 3 200 3 498 3 591 2 591 2 200 3 498 3	ue for HY28 ity arc CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 2.8509 3.7418 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.159 0.100 0.049	ug 0 100 100 100 100 100 100 100 100 100	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 2.8509 1 3.3854 1 1.4254 1 2.8509 1 3.3854 1 1.4254 1 1.4254 1 1.4254 1	: 28 ! ! ! !	-7.1! Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming	5 reset 1 0xyger Carbor Hydrog 0xyger Carbor Hydrog 0xyger Carbor Hydrog	to O Val gen gen i gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 pper : H edit : d OY1 d CY2 d HY3 d HY4 d CY5 d HY4 d CY5 d HY6 d OY7 d CY8 d HY9 d CY10	CY17 for cl C2D if ne(0.1! 0.00 0.01 0.00 0.1! 0.00 0.1! 0.00 0.1! 0.00 0.1!	l valu HY27 04D cessai 591 2 200 2 498 2 498 2 591 2 200 2 498 2 498 2 200 2 498 2 200 2 498 2 200 2 200 2	ue for HY28 ity arc CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 2.8509 3.7418 1.4254 3.7418 1.4254 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.159 0.100 0.049 0.100	ug 0 100 100 100 100 100 100 100 100 100	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 3.3854 1	: 28 : : : : : : :	-7.1! Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming	5 reset 1 0xyger Carbor Hydrog 0xyger Carbor Hydrog 0xyger Carbor Hydrog Carbor Hydrog Carbor	; to 0 val: . Val: 1 gen 1 gen 1 gen 1	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 pper:: H edit:: d OY1 d CY2 d HY3 d HY4 d CY5 d HY6 d CY5 d HY6 d OY7 d CY8 d HY9 d CY1(d HY1:	CY17 for cl C2D if new 0.11 0.00 0.01 0.00 0.11 0.00 0.11 0.01 0.01 1.000	I valu HY27 hiral: 04D cessain 591 200 4498 200 4498 200 4498 200 4498 200 4498 200 4498 200 4498 200 4498 200 4498	ue for HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 3.7418 1.4254 2.8509 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254	followin 750.0 pund C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.159 0.100 0.049 0.100 0.049 0.100	ug 0 100 100 100 100 100 100 100 100 100	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 1.4254 1		-7.1! Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming	1 Oxyger Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog	; to 0 Val: 1 1 gen 1 gen 1 1 gen 1 1 gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	E = 00000000000000000000000000000000000	CY17 for cl C2D if ne 0.11 0.00 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.11 1.000 2.0.11	I valu HY27 O4D ccessar 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 498 200 200 200 200 200	HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254 2.8509 3.7418 1.4254 2.8509 3.7418 1.4254 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	19 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1 1.4254 1 3.3854 1		-7.1! Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	1 Oxyger Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Car	; to 0 Val: 1 1 gen 1 gen 1 gen 1 gen 1	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded NONBonded</pre>	NY26 pper: H edit: d OY1 d OY1 d OY1 d OY1 d d OY1 d	CY17 for cl C2D if ne(0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 1 0.00 2 0.11 3 0.22	I valu HY27 04D cessal 591 200 498 591 200 498 591 200 498 200 498 200 498 200 498 200 498 200 498 200 3498 200 3498 200 3498 200 384	HY28 ity arc CY25 ry } 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	9 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1	improper 0.000 0 -65.2 2.8509 1 3.3854 1 1.4254		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	1 Oxyger Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog	; to 0 Val: 1 1 gen 1 gen 1 gen 1 gen 1 gen	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee</pre>	E = 0 m NY26 opper : H edit : d 0Y1 d CY2 d HY3 d CY2 d HY3 d HY4 d CY5 d HY6 d CY1 d CY1 d CY1 d CY1 d CY1 d HY1 i NY1; d HY1	CY17 for cl C2D if ne 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 2.0.11 1.0.00 2.0.11 3.0.22 2.4.0.00	I valu HY27 04D 5591 2 200 3 498 3 200 3 498 3 5591 2 200 3 498 3 200 3 498 4 498 4 49 49 49 49 49 49 49 49 49 49 49 49 49	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	19 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	improper 0.000 2.8509 3.3854 1.4254 1.4254 3.3854 1.42544 1.425444 1.425444 1.425444 1.425444 1.4		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	1 Oxygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Hydrog	; to 0 Val:	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee</pre>	NY26 opper: H edit: CY2 d HY3 d CY2 d HY4 d CY2 d HY4 d CY5 d HY6 d OY7 d CY8 d HY9 d CY10 d CY10 d CY11 d CY2 d HY3 d HY4 d CY11 d CY11 d CY2 d HY3 d HY4 d CY11 d CY2 d HY3 d HY4 d CY11 d CY11 d CY11 d CY12 d HY3 d CY11 d CY12 d HY3 d HY4 d CY12 d HY3 d HY4 d CY12 d HY3 d HY4 d CY12 d HY3 d HY4 d CY12 d HY3 d HY12 d CY12 d HY3 d HY12 d CY12 d HY3 d HY14 d CY12 d HY13 d HY14 d CY11 d HY14 d CY11 d HY14 d CY11 d HY14 d HY1	CY17 for cl C2D 0.11 0.04 0.12 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.11 0.04 0.04	l valu HY27 04D cessar 591 : 200 : 498 : 200 : 498 : 591 : 200 : 498 : 200 : 498 : 200 : 384 : 200 : 384 : 200 :	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	19 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	improper 0.000 065.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 1.4254 3.3854 1.42		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	1 Oxygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Nitrog Hydrog Hydrog Carbon Hydrog Hydrog Carbon Hydrog Carbon Hydrog Hyd	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee NONBondee</pre>	NY26 opper: H edit: CY2 d HY3 d CY2 d HY3 d HY4 d CY2 d HY3 d HY4 d CY5 d HY6 d CY1 d CY2 d HY3 d CY2 d HY3 d HY4 d CY5 d HY6 d CY1 d CY5 d HY6 d CY5 d HY7 d CY1 d CY1 d CY1 d CY1 d CY1 d CY1 d CY1 d CY1 d NY1 d CY1 d CY1	CY17 for cl C2D if new 0.11 0.00 0.01 0.00 0.01 0.00 0.01 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.11 10.00 20.01 20.00 20	l valu HY27 04D cessal 591 2 200 3 498 3 591 2 200 3 498 3 200 3 498 3 499 4 499 4 4	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 2.8509	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	10 00 00 00 00 00 00 00 00 00 00 00 00 0	improper 0.000 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 2.8509 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 1.4254 2.8509 1.4254 2.8509		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Nitrog Nitrog Nitrog	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
<pre>! >>> NUTI IMPRoper !add IMPRoper { Note: 0 NONBondee</pre>	NY26 opper: H edit: CY2 d HY3 d CY2 d HY3 d CY2 d HY3 d CY2 d HY3 d CY2 d HY3 d CY2 d HY3 d CY2 d CY2 d CY2 d HY3 d CY2 d CY2 d HY3 d CY2 d CY2 d HY3 d CY2 d CY2	CY17 for cl C2D if new 0.11 0.00 0.00 0.01 0.00 0.01 1.000 2.011 3.002 2.011 3.002 2.001 3.002 2.001 3.002 2.001 5.000 5.000 5.002 5.000 5.002 5.000 5.002 5.000 5.002 5.0000 5.002 5.0000 5.002 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.00000 5.00000 5.000000 5.00000000	l valu HY27 04D cessal 591 2 200 3 498 3 200 3 384 2 200 3	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 2.8509 1.4254 1.4254 2.8509 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.0000 0.049 0.0000000000	19 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	improper 0.000 065.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 3.3854 1.4254 3.38		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Nitrog Nitrog Nitrog Carbon Carbon Nitrog Carbon Carbon Carbon Carbon Carbon Hydrog Carbon Nitrog Carbon Ca	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
INVIII IMPROPER IMPROPER IMPROPER { Note: 0 NONBondee	P W126 NY26 Opper: H H edit: G d OY1 d CY2 d H d CY2 d HY3 d HY4 d CY2 d HY4 d CY3 d HY4 d CY14 d HY9 d CY14 d HY11 d HY14 d HY14 d HY14 d HY14 d CY17	nusuai CY17 for cl C2D if ne 0.11 0.12 0.00 0.11 0.00 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 1 0.05 0.02 7 0.12	l valt HY27 04D cesssar 551 : 200 : 498 : 200 : 498 : 551 : 200 : 498 : 200 :	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 1.4254 2.8509 1.4254 2.8509 3.7418 3.7418	followin 750.0 Jound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.049 0.049 0.049 0.100 0.238 0.049 0.049 0.100 0.238 0.049 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.000 0.000 0.000 0.000 0.0000 0.000000	eg 0 npr 11 10 00 88 80 00 88 90 08 91 00 08 93 93 93 93 94 93 93 94 93 94 93 94 93 94 93 94 93 94 93 94 93 94 93 94 94 94 94 94 94 94 94 94 94 94 94 94	improper 0.000 0 -65.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.38		-7.1! Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Nitrog Carbon Nitrog Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Hydrog Carbon Ca	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
INVIII IMPROPER IMPROPER IMPROPER { Note: 0 NONBondee	L WY26 NY26 Opper: H H edit: G d OY1 d CY2 d H d CY2 d HY3 d HY4 d CY2 d HY4 d CY5 d HY4 d CY5 d HY4 d CY14 d HY11 d HY14 d CY14 d CY14 d CY14 d CY14 d CY14 d CY14	nusual CY17 for cl C2D if ne 0.11 0.12 0.00 0.11 0.00 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 1 0.05 0.02 7 0.12 0.012	l valt HY27 04D cesssar 551 : 200 : 498 : 200 : 498 : 551 : 200 : 498 : 4988 : 498 : 498 : 498 : 498 : 498 :	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 1.4254 1.4254 1.4254 1.4254 1.4254 1.4254 1.4254	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.100 0.238 0.049 0.238 0.049 0.238 0.049	eg 0 10 10 10 10 10 10 10 10 10 1	improper 0.000 0 -65.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.42		-7.15 Nobs = 0 assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Nitrog Carbon Nitrog Hydrog Carbon Carbon Ca	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
INVIII IMPROPER IMPROPER IMPROPER { Note: 0 NONBondee	Provide NY26 opper: H edit: H edit: d	nusual CY17 for cl C2D if ne 0.11 0.12 0.13 0.04 0.11 0.05 0.07 1 0.07 2 1 0.07 2 3 0.02 4 0.02 7 3 0.02 7 0.012	l valt HY27 04D cessau 591 : 200 : 498 : 200 : 498 : 591 : 498 : 200 : 498 : 4988 : 498 : 498 : 498 : 498 : 498 :	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 2.8509 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 1.4254 2.8509 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418	followin 750.0 ound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.004 0.049 0.238 0.049 0.238 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.000	lg 0 11 11 10 11 10 10 10 10 10 1	improper 0.000 065.2 2.8509 3.3854 1.4254 1.4254 3.3854 3.38		-7.1! Nobs = 0 assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Carbon Nitrog Carbon Nitrog Carbon Hydrog Carbon Ca	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	-7.146	
I >>> NUII IMPROPER IMPROPER IMPROPER { Note: 0 NONBondee	P W126 NY26 Opper: H H edit: Galary H Galary edit: Galary d OY1 d CY2 d HY3 d CY2 d HY4 d CY5 d HY4 d CY5 d HY4 d CY5 d HY4 d CY14 d HY14 d HY14 d CY14 d HY14 d CY14	nusuai CY17 for cl C2D if ne 0.11 0.12 0.13 0.04 0.15 0.07 0.11 0.07 0.11 0.07 0.11 0.07 0.11 0.07 0.11 0.07 0.11 0.07 1 0.07 1 0.07	l valu HY27 04D Cesssau 5591 : 200 : 498 : 200 : 498 : 5591 : 200 : 498 : 5591 : 200 : 498 : 498 : 200 : 498	HY28 HY28 CY25 CY25 2.8509 3.7418 1.4254 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 3.7418 1.4254 2.8509 1.4254 3.7418 1.4254 3.7418 1.4254	followin 750.0 Jound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.100 0.238 0.100 0.238 0.049 0.238 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.000 0.000 0.000 0.000 0.000 0.0000 0.000000	eg 0 11 11 10 10 10 10 10 10 10 1	improper 0.000 0 -65.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.42		-7.15 Nobs = 0 assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Carbon Nitrog Carbon Nitrog Carbon Hydrog Carbon Carbon Hydrog Hydrog Carbon Hydrog Hy	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	· -7.146	
INVESTIGATION IMPROPERTING ANDEONDERTING NONBONDERTING	P W126 NY26 Opper: H H edit: Galary H Galary edit: Galary d OY1 d CY2 d HY3 d CY2 d HY3 d HY4 d CY5 d HY4 d CY5 d HY4 d CY14 d HY11 d HY14 d CY14 d HY14 d CY14 d HY14 d CY14 d CY14 <td>nusuai CY17 for cl C2D if ne 0.11 0.12 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.011 0.021 1 0.011 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1</td> <td>l valu HY27 04D Cessau 5591 : 5591 : 5691 :</td> <td>Hi for HY28 ity arc CY25 2,8509 3,7418 1,4254 1,4254 1,4254 3,7418 1,4254 3,7418 1,4254 3,7418 1,4254 3,7418 1,4254 1,4254 1,4254 1,4254 1,4254</td> <td>followin 750.0 Jound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100</td> <td>eg 0 11 10 11 10 10 10 10 10 10 1</td> <td>improper 0.000 065.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 1.4254 3.3854 1.42</td> <td></td> <td>-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming</td> <td>0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Carbon Nitrog Carbon Hydrog Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Carbon Hydrog Carbon Ca</td> <td>; to 0 Val: Val: Val: Val: Val: Val: Val: Val:</td> <td>.0 ue =</td> <td>· -7.146</td> <td></td>	nusuai CY17 for cl C2D if ne 0.11 0.12 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.011 0.021 1 0.011 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1	l valu HY27 04D Cessau 5591 : 5591 : 5691 :	Hi for HY28 ity arc CY25 2,8509 3,7418 1,4254 1,4254 1,4254 3,7418 1,4254 3,7418 1,4254 3,7418 1,4254 3,7418 1,4254 1,4254 1,4254 1,4254 1,4254	followin 750.0 Jound C1' \$kchim 0.159 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.238 0.100 0.049 0.100 0.049 0.100 0.049 0.100 0.049 0.100	eg 0 11 10 11 10 10 10 10 10 10 1	improper 0.000 065.2 2.8509 3.3854 1.4254 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 3.3854 1.4254 1.4254 3.3854 1.42		-7.15 Nobs = 0 assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming assuming	0xygen Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Nitrog Hydrog Carbon Nitrog Carbon Hydrog Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Hydrog Carbon Carbon Hydrog Carbon Ca	; to 0 Val: Val: Val: Val: Val: Val: Val: Val:	.0 ue =	· -7.146	

 NONBonded NY24 0.2384
 2.8509
 0.2384
 2.8509 ! assuming Nitrogen

 NONBonded CY25 0.1200
 3.7418
 0.1000
 3.3854 ! assuming Carbon

 NONBonded NY26 0.2384
 2.8509
 0.2384
 2.8509 ! assuming Nitrogen

 NONBonded HY27 0.0498
 1.4254
 0.2384
 2.8509 ! assuming Nitrogen

 NONBonded HY27 0.0498
 1.4254
 0.0498
 1.4254 ! assuming Hydrogen

 NONBonded HY28 0.0498
 1.4254
 0.0498
 1.4254 ! assuming Hydrogen

 NONBonded HY29 0.0498
 1.4254
 0.0498
 1.4254 ! assuming Hydrogen

 NONBonded HY30 0.0498
 1.4254
 0.0498
 1.4254 ! assuming Hydrogen

 NONBonded HY31 0.0498
 1.4254
 0.0498
 1.4254 ! assuming Hydrogen

{ Not	ce: ed	lit if r	necessary	}			
BOND	0X1	CX2	1000.0	1.428	ļ	Nobs =	1
BOND	0X1	HX21	1000.0	0.962	ļ	Nobs =	1
BOND	CX2	НХЗ	1000.0	1.096	ļ	Nobs =	1
BOND	CX2	HX4	1000.0	1.099	ļ	Nobs =	1
BOND	CX2	CX5	1000.0	1.518	ļ	Nobs =	1
BOND	CX5	HX6	1000.0	1.098	ļ	Nobs =	1
BOND	CX5	0X7	1000.0	1.430	ļ	Nobs =	1
BOND	CX5	CX14	1000.0	1.551	ļ	Nobs =	1
BOND	0X7	CX8	1000.0	1.435	ļ	Nobs =	1
BOND	CX8	HX9	1000.0	1.094	ļ	Nobs =	1
BOND	CX8	CX16	1000.0	1.536	ļ	Nobs =	1
BOND	C1D	CX20	1000.0	1.509	ļ	modded by	lsd
BOND	CX10	HX11	1000.0	1.082	ļ	Nobs =	1
BOND	CX10	CX20	1000.0	1.391	ļ	Nobs =	1
BOND	CX10	CX23	1000.0	1.406	ļ	Nobs =	1
BOND	CX12	CX23	1000.0	1.407	ļ	Nobs =	1
BOND	CX12	CX24	1000.0	1.374	ļ	Nobs =	1
BOND	CX12	HX34	1000.0	1.083	ļ	Nobs =	1
BOND	CX13	CX20	1000.0	1.398	ļ	Nobs =	1
BOND	CX13	CX24	1000.0	1.396	ļ	Nobs =	1
BOND	CX13	CX30	1000.0	1.482	ļ	Nobs =	1
BOND	CX14	HX15	1000.0	1.093	ļ	Nobs =	1
BOND	CX14	CX16	1000.0	1.524	ļ	Nobs =	1
BOND	CX14	OX19	1000.0	1.430	ļ	Nobs =	1
BOND	CX16	HX17	1000.0	1.090	ļ	Nobs =	1
BOND	CX16	HX18	1000.0	1.088	ļ	Nobs =	1
BOND	OX19	HX22	1000.0	0.963	ļ	Nobs =	1
BOND	CX23	NX25	1000.0	1.381	ļ	Nobs =	1
BOND	CX24	CX29	1000.0	1.497	ļ	Nobs =	1
BOND	NX25	HX26	1000.0	1.007	ļ	Nobs =	1
BOND	NX25	HX27	1000.0	1.006	ļ	Nobs =	1
BOND	NX28	CX29	1000.0	1.393	ļ	Nobs =	1
BOND	NX28	CX30	1000.0	1.408	ļ	Nobs =	1
BOND	NX28	НХЗЗ	1000.0	1.009	ļ	Nobs =	1
BOND	CX29	OX32	1000.0	1.208	ļ	Nobs =	1
BOND	CX30	OX31	1000.0	1.210	!	Nobs =	1

{ Note: edit if necessary } ANGLE CX2 0X1 HX21 500.0 108.71 ! Nobs = 1 ANGLE 0X1 CX2 HX3 500.0 111.02 ! Nobs = 1 ANGLE 0X1 CX2 HX4 500.0 110.85 ! Nobs = 1

ANGLe	OX1	CX2	CX5	500.0	109.55	!	Nobs =		1
ANGLe	НХЗ	CX2	HX4	500.0	108.36	ļ	Nobs =		1
ANGLe	НХЗ	CX2	CX5	500.0	108.57	ļ	Nobs =		1
ANGLe	HX4	CX2	CX5	500.0	108.42	ļ	Nobs =		1
ANGLe	CX2	CX5	HX6	500.0	107.54	ļ	Nobs =		1
ANGLe	CX2	CX5	OX7	500.0	109.63	ļ	Nobs =		1
ANGLe	CX2	CX5	CX14	500.0	114.88	!	Nobs =		1
ANGLe	HX6	CX5	OX7	500.0	108.82	!	Nobs =		1
ANGLe	HX6	CX5	CX14	500.0	108.72	!	Nobs =		1
ANGLe	OX7	CX5	CX14	500.0	107.12	ļ	Nobs =		1
ANGLe	CX5	0X7	CX8	500.0	109.83	ļ	Nobs =		1
ANGLe	OX7	CX8	НХЭ	500.0	109.62	ļ	Nobs =		1
ANGLe	OX7	CX8	CX16	500.0	104.20	!	Nobs =		1
ANGLe	04D	C1D	CX20	500.0	109.88	!	modded	bv	lsd
ANGLe	НХЭ	CX8	CX16	500.0	109.16	!	Nobs =	5	1
ANGLe	Н	C1D	CX20	500.0	109.27	!	modded	bv	lsd
ANGLe	C2D	C1D	CX20	500.0	114.55	1	modded 1	bv	lsd
ANGLe	HX11	CX10	CX20	500.0	118.07		Nobs =	-)	1
ANGLe	HX 1 1	CX10	CX23	500.0	119.45	i	Nobs =		1
ANGLe	CX20	CX10	CX23	500.0	122.48	i	Nobs =		1
ANGLe	CX23	CX12	CX24	500.0	117.51	i	Nobs =		1
ANGLe	CX23	CX12	HX34	500.0	121.57	i	Nobs =		1
ANGLO	C¥24	C¥12	H¥ 34	500.0	120 92		Nobs =		1
ANGLe	CX20	CX13	CX24	500.0	120.33	i	Nobs =		1
ANGLO	CX20	CX13	C¥ 30	500.0	131 38		Nobs =		1
ANGLe	CX24	CX13	CX30	500.0	108.28	i	Nobs =		1
ANGLe	CX5	CX14	HX15	500.0	111.38	i	Nobs =		1
ANGLe	CX5	CX14	CX16	500.0	103.02		Nobs =		1
ANGLe	CX5	CX14	OX19	500.0	112.03	!	Nobs =		1
ANGLe	HX15	CX14	CX16	500.0	111.74	!	Nobs =		1
ANGLe	HX15	CX14	OX19	500.0	110.45	!	Nobs =		1
ANGLe	CX16	CX14	OX19	500.0	107.98	!	Nobs =		1
ANGLe	CX8	CX16	CX14	500.0	102.58	!	Nobs =		1
ANGLe	CX8	CX16	HX17	500.0	109.82	!	Nobs =		1
ANGLe	CX8	CX16	HX18	500.0	112.71	!	Nobs =		1
ANGLe	CX14	CX16	HX17	500.0	109.59	1	Nobs =		1
ANGLe	CX14	CX16	HX18	500.0	111.72		Nobs =		1
ANGLe	HX17	CX16	HX18	500.0	110.18	1	Nobs =		1
ANGLe	CX14	0X19	HX22	500.0	108.93	1	Nobs =		1
ANGLe	C1D	CX20	CX10	500.0	120.99	1	modded 1	bv	lsd
ANGLe	C1D	CX20	CX13	500.0	121.86	!	modded	bv	lsd
ANGLe	CX10	CX20	CX13	500.0	117.13	!	Nobs =	5	1
ANGLe	CX10	CX23	CX12	500.0	119.62		Nobs =		1
ANGLe	CX10	CX23	NX25	500.0	120.09		Nobs =		1
ANGLe	CX12	CX23	NX25	500.0	120.24	i	Nobs =		1
ANGLO	CX12	C¥24	C¥13	500.0	122 92		Nobs =		1
ANGLe	CX12	CX24	CX29	500.0	128.41		Nobs =		1
ANGLe	CX13	CX24	CX29	500.0	108.67	i	Nobs =		1
ANGLe	CX23	NX25	HX26	500.0	117.56		Nobs =		1
ANGL.e	CX23	NX25	HX27	500.0	117.77	į	Nobs =		-
ANGL.e	HX26	NX25	HX27	500.0	114.53	į	Nobs =		1
ANGLe	CX29	NX28	CX30	500.0	113.29	į	Nobs =		-
ANGL.e	CX29	NX28	НХЗЗ	500.0	123.64	į	Nobs =		-
ANGL.e	CX30	NX28	НХЗЗ	500.0	123.04	į	Nobs =		-
ANGL.e	CX24	CX29	NX28	500.0	104.62	į	Nobs =		-
ANGLe	CX24	CX29	0X32	500.0	129.17	!	Nobs =		1

ANGL - NYOR GYOD OY20	F00 0	106 01 1	N-h-	4	
ANGLE NA26 CA29 UA32	500.0	120.21 !	NODS =	1	
ANGLe CX13 CX30 NX28	500.0	105.13 !	Nobs =	1	
ANGLe CX13 CX30 DX31	500.0	130.41 !	Nobs =	1	
ANGLe NX28 CX30 OX31	500.0	124.46 !	Nobs =	1	
{ Note: edit if necessa	ary }				
DIHEdral HX21 OX1 CX2	НХЗ	750.0 0	60.00 !	Nobs =	1 Value = 59.00
DIHEdral HX21 OX1 CX2	HX4	750.0 0	-60.00 !	Nobs =	1 Value = -61.50
DIHEdral HX21 OX1 CX2	CX5	750.0 0	180.00 !	Nobs =	1 Value = 178.90
DIHEdral OX1 CX2 CX5	HX6	750.0 0	180.00 !	Nobs =	1 Value = 171.53
DIHEdral OV1 CV2 CV5	CY14	750 0 0	60 00 1	Nobs =	1 Value = 50.36
DIHEdral UX2 CX2 CX5	UNC	750.0 0	60.00	Noba -	1 Value - 50.50
DIRECTAL HAS CAZ CAS	0110	750.0 0	-00.00 :	NODS -	1 Value07.09
DIHEdral HX3 CX2 CX5	UX7	750.0 0	60.00 !	NODS =	1 Value = 51.08
DIHEdral HX3 CX2 CX5	CX14	750.0 0	180.00 !	Nobs =	1 Value = 171.74
DIHEdral HX4 CX2 CX5	HX6	750.0 0	60.00 !	Nobs =	1 Value = 50.44
DIHEdral CX14 CX5 OX7	CX8	750.0 0	0.00 !	Nobs =	1 Value = 9.07
DIHEdral CX5 OX7 CX8	HX9	750.0 0	90.00 !	Nobs =	1 Value = 87.96
DIHEdral HX9 CX8 CX1	6 CX14	750.0 0	-90.00 !	Nobs =	1 Value = -80.38
DIHEdral CX20 CX8 CX10	5 HX18	750.0 0	-90.00 !	Nobs =	1 Value = -82.97
DIHEdral CX16 CX8 CX2	CX10	750.0 0	-90.00 !	Nobs =	1 Value = -96.73
DIHEdral CX16 CX8 CX20	CX13	750.0 0	90.00 !	Nobs =	1 Value = 81.66
DIHEdral HX11 CX10 CX20	CX8	750.0 0	0.00 !	Nobs =	1 Value = -2.07
DIHEdral HX11 CX10 CX20) CX13	750.0 0	180.00 !	Nobs =	1 Value = 179.46
DIHEdral CY23 CX10 CY2	0.018	750 0 0	180 00 1	Nobs =	1 Value = 178.46
DIHEdral CV23 CV10 CV2	0.0113	750 0 0	0 00 1	Nobe =	1 Value = 0.00
DIHEdral UX11 CX10 CX20	0 0110	750.0 0	190.00 1	Noba =	1 Value = -170.04
DINEMAL NAIL CALO CAR	NNOF	750.0 0	0.00.1	Noba -	1 Value - 173.04
DIHEDIAI AXII CXIO CX2	0 0840	750.0 0	0.00 :	NODS -	1 Value1.73
DIHEdral CX20 CX10 CX2	3 CA12	750.0 0	0.00 !	NODS =	1 Value = 0.42
DIHEdral CX20 CX10 CX2	3 NX25	750.0 0	180.00 !	Nobs =	1 Value = 1//./3
DIHEdral CX24 CX12 CX23	3 CX10	750.0 0	0.00 !	Nobs =	1 Value = -0.40
DIHEdral CX24 CX12 CX23	3 NX25	750.0 0	180.00 !	Nobs =	1 Value = -177.71
DIHEdral HX34 CX12 CX23	3 CX10	750.0 0	180.00 !	Nobs =	1 Value = 179.18
DIHEdral HX34 CX12 CX23	3 NX25	750.0 0	0.00 !	Nobs =	1 Value = 1.86
DIHEdral CX23 CX12 CX24	1 CX13	750.0 0	0.00 !	Nobs =	1 Value = -0.02
DIHEdral CX23 CX12 CX24	1 CX29	750.0 0	180.00 !	Nobs =	1 Value = 179.67
DIHEdral HX34 CX12 CX24	1 CX13	750.0 0	180.00 !	Nobs =	1 Value = -179.59
DIHEdral HX34 CX12 CX24	1 CX29	750.0 0	0.00 !	Nobs =	1 Value = 0.10
DIHEdral CX24 CX13 CX20	CX8	750.0 0	180.00 !	Nobs =	1 Value = -178.86
DIHEdral CX24 CX13 CX20	CX10	750.0 0	0.00 !	Nobs =	1 Value = -0.41
DIHEdral CX30 CX13 CX20	CX8	750.0 0	0.00 !	Nobs =	1 Value = 2.05
DIHEdral CX30 CX13 CX20	CX10	750.0 0	180.00 !	Nobs =	1 Value = -179.49
DIHEdral CX20 CX13 CX24	1 CX12	750.0 0	0.00 !	Nobs =	1 Value = 0.43
DIHEdral CX20 CX13 CX24	1 CX29	750.0 0	180.00 !	Nobs =	1 Value = -179.31
DIHEdral CX30 CX13 CX24	1 CX12	750 0 0	180.00	Nobs =	1 Value = 179.71
DIHEdral CX30 CX13 CX2	1 (1229	750 0 0	0 00 1	Nobs =	1 Value = -0.03
DIHEdral CX20 CX13 CX3	NY28	750 0 0	180 00 1	Nobs =	1 Value = 178 75
DIHEdral CX20 CX13 CX30	0 0 0 2 1	750.0 0	100.00 :	Nobs -	1 Value - 176.75
DIHEDIAI CK20 CK15 CK50	NNOO	750.0 0	0.00 :	NODS -	1 Value1.40
DIHEdral CX24 CX13 CX3) NX28	750.0 0	0.00 !	NODS =	1 Value = -0.42
DIHEdral CX24 CX13 CX3	UX31	/50.0 0	180.00 !	Nobs =	1 Value = 179.37
DIHEdral CX5 CX14 CX10	5 HX17	750.0 0	90.00 !	Nobs =	1 Value = 86.21
DIHEdral HX15 CX14 CX10	5 HX18	750.0 0	90.00 !	Nobs =	1 Value = 88.94
DIHEdral OX19 CX14 CX16	5 CX8	750.0 0	90.00 !	Nobs =	1 Value = 88.25
DIHEdral CX5 CX14 OX19	9 HX22	750.0 0	-60.00 !	Nobs =	1 Value = -67.94
DIHEdral HX15 CX14 OX19	9 HX22	750.0 0	60.00 !	Nobs =	1 Value = 56.85
DIHEdral CX16 CX14 OX19	9 HX22	750.0 0	180.00 !	Nobs =	1 Value = 179.31
DIHEdral CX12 CX24 CX2	9 NX28	750.0 0	180.00 !	Nobs =	1 Value = -179.25

DIHEdral CX12	CX24 CX29	0X32	750.0	0	0.00	!	Nobs =	=	1	• • •	Value	=	0.74
DIHEdral CX13	CX24 CX29	NX28	750.0	0	0.00	!	Nobs =	-	1	• • •	Value	=	0.48
DIHEdral CX13	CX24 CX29	0X32	750.0	0 1	80.00	!	Nobs =	-	1		Value	=	-179.54
DIHEdral CX30	NX28 CX29	CX24	750.0	0	0.00	ļ	Nobs =	-	1		Value	=	-0.78
DIHEdral CX30	NX28 CX29	0X32	750.0	0 1	80.00	ļ	Nobs =	-	1		Value	=	179.24
DIHEdral HX33	NX28 CX29	CX24	750.0	0 1	80.00	!	Nobs =	-	1		Value	=	-179.19
DIHEdral HX33	NX28 CX29	0X32	750.0	0	0.00	ļ	Nobs =	-	1		Value	=	0.82
DIHEdral CX29	NX28 CX30	CX13	750.0	0	0.00	ļ	Nobs =	-	1		Value	=	0.77
DIHEdral CX29	NX28 CX30	OX31	750.0	0 1	80.00	ļ	Nobs =	-	1		Value	=	-179.04
DIHEdral HX33	NX28 CX30	CX13	750.0	0 1	80.00	ļ	Nobs =	-	1		Value	=	179.19
DIHEdral HX33	NX28 CX30	0X31	750.0	0	0.00	į	Nobs =	-	1		Value	=	-0.62
{ Note: edit i	f necessa	rv }											
IMPRoper CX2	011 813	HX4	750.0	0 3	85.000		Nobs =	-	1		Value	=	33, 335
IMPRoper CX5	CX2 HX6	0.17	750.0	0 -3	35.000	ì	Nobs =	-	1		Value	=	-37 677
IN NOTE - UN	ucual val	un for fo	llouin	o imr	ropor		/11	94	roe	••••	- +35	0	01.011
IMPROVE CV0	ONZ UNO		750 0	о с	proper	÷	41. N-h-	. 94	162	eui	V-1	.0	41 020
IMPRoper CA8	UX7 HX9	CXID	750.0	03	\$5.000		NODS =	-	1	• • •	value	=	41.939
IMPRoper CX10	HX11 CX20	CX23	750.0	0	0.000	!	Nobs =	-	1	• • •	Value	=	-0.313
IMPRoper CX12	CX23 CX24	HX34	750.0	0	0.000	!	Nobs =	=	1	• • •	Value	=	-0.218
IMPRoper CX13	CX20 CX24	CX30	750.0	0	0.000	!	Nobs =	-	1	• • •	Value	=	0.475
! >>> NOTE - un	usual val	ue for fo	llowin	g imp	proper	:	40.	.01	res	et t	o +35	.0	
IMPRoper CX14	CX5 HX15	CX16	750.0	0 3	85.000	ļ	Nobs =	-	1		Value	=	40.005
IMPRoper CX16	CX8 CX14	HX17	750.0	0 3	85.000	ļ	Nobs =	-	1		Value	=	30.720
IMPRoper CX20	CX8 CX10	CX13	750.0	0	0.000	ļ	Nobs =	-	1		Value	=	-0.905
IMPRoper CX23	CX10 CX12	NX25	750.0	0	0.000	ļ	Nobs =	=	1		Value	=	-1.535
IMPRoper CX24	CX12 CX13	CX29	750.0	0	0.000	ļ	Nobs =	=	1		Value	=	-0.171
! >>> NOTE - un	usual val	ue for fo	llowin	g imp	roper	:	-20.	.06	res	et t	o -35	.0	
IMPRoper NX25	СХ23 НХ26	HX27	750.0	0	0.000	į	Nobs =	-	1		Value	=	-20.059
- IMPRoper NX28	CX29 CX30	НХЗЗ	750.0	0	0.000	į	Nobs =	-	1		Value	=	0.749
IMPRoper CX29	CX24 NX28	0X32	750.0	0	0.000	į	Nobs =	-	1		Value	=	-0.008
IMPRoper CX30	C¥13 N¥28	0131	750 0	° 0	0.000	ì	Nobs =		1		Value	_	-0.091
Improper to ke	on both m	inga noro	11.01	•	0.000	Ċ	1000		-		Varac		0.001
IMPROPER NV00	avoa avaa	awio	750.0	~	0 000								
IMPROPER NA26	CA24 CA15	CXIU	750.0	0	0.000								
IMPRoper NX28	CX24 CX13	CX23	750.0	0	0.000								
IMPRoper CX29	CX24 CX13	CX20	750.0	0	0.000								
IMPRoper CX12	CX24 CX13	CX30	750.0	0	0.000								
!secure chirali	ty												
IMPRoper H	C2D 04D	CX20	\$kchim	pr O	-65.2	28	0						
IMPRoper CX10	NX25 CX23	HX26	750.0	0	0.000								
{ Note: edit i	f necessa	ry }											
NONBonded OX1	0.1591	2.8509	0.159	12.	8509		assumin	ng C)xyg	en			
NONBonded CX2	0.1200	3.7418	0.100	оз.	3854 !		assumin	ng (larb	on			
NONBonded HX3	0.0498	1.4254	0.049	81.	4254		assumin	ng H	Iydr	oger	1		
NONBonded HX4	0.0498	1.4254	0.049	8 1.	4254		assumin	ng H	Iydr	oger	1		
NONBonded CX5	0.1200	3.7418	0.100	оз.	3854 !		assumin	ng (larb	on			
NONBonded HX6	0.0498	1.4254	0.049	81.	4254		assumin	ig F	Iydr	oger	1		
NONBonded OX7	0.1591	2.8509	0.159	12.	8509		assumin	ng C	·)xyg	en			
NONBonded CX8	0.1200	3.7418	0.100	0 3.	3854		assumir	1g (larb	on			
NONBonded HY9	0.0498	1.4254	0.049	8 1	4254		assumir	lo F	lvdr	OPPT	1		
NONBondod CV10	0 1200	3 7419	0 100	 0 3	3854		2003001	-6 ¹	'arh	-9-1	-		
NONDonded CATO	0.0400	1 4054	0.100	v ∂. o 4	1054			-8 (1	о <u>л</u> -			
	0.0490	1.4204	0.049	0 I. 0 0	2054		assumin	ng t	iyar Isa Y	oger	1		
NUNBORIded CX12	0.1200	0.7410	0.100	υ 3. 	3054		assumin	ıg (arp	л			
NUNBORDed CX13	0.1200	3.7418	0.100	v 3. ∘ -	3854		assumin	1g (arb	on			
NUNBonded CX14	0.1200	3.7418	0.100	υ 3.	3854		assumin	ıg (arb	on			
NONBonded HX15	0.0498	1.4254	0.049	81.	4254		assumin	ng H	Iydr	oger	1		

1	NONBonded	CX16	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
1	NONBonded	HX17	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	HX18	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	OX19	0.1591	2.8509	0.1591	2.8509	ļ	assuming	Oxygen
1	NONBonded	CX20	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
1	NONBonded	HX21	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	HX22	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	CX23	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
1	NONBonded	CX24	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
1	NONBonded	NX25	0.2384	2.8509	0.2384	2.8509	ļ	assuming	Nitrogen
1	NONBonded	HX26	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	HX27	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
1	NONBonded	NX28	0.2384	2.8509	0.2384	2.8509	ļ	assuming	Nitrogen
1	NONBonded	CX29	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
]	NONBonded	CX30	0.1200	3.7418	0.1000	3.3854	ļ	assuming	Carbon
]	NONBonded	OX31	0.1591	2.8509	0.1591	2.8509	ļ	assuming	Oxygen
]	NONBonded	OX32	0.1591	2.8509	0.1591	2.8509	ļ	assuming	Oxygen
1	NONBonded	НХЗЗ	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen
]	NONBonded	HX34	0.0498	1.4254	0.0498	1.4254	ļ	assuming	Hydrogen

set echo=true end

!*********************** end of change by lsd - 4AP *****************************

{ Note	e: ed	lit if r	necessar	y }				
BOND F	þ	0Q21	3350.	720	1	. 593		! added bond by 1sd
BOND F	þ	OQ19	2326.8	389	1	.607		! added bond by 1sd
BOND C	CQ1	NQ2	1000.0	1.495	ļ	Nobs	=	1
BOND C	CQ1	CQ20	1000.0	1.522	ļ	Nobs	=	1
BOND C	CQ1	HQ26	1000.0	1.086	ļ	Nobs	=	1
BOND C	CQ1	HQ27	1000.0	1.091	ļ	Nobs	=	1
BOND N	1Q2	сдз	1000.0	1.389	ļ	Nobs	=	1
BOND N	1Q2	CQ7	1000.0	1.337	ļ	Nobs	=	1
BOND C	CQ3	CQ4	1000.0	1.428	ļ	Nobs	=	1
BOND C	CQ3	CQ9	1000.0	1.411	ļ	Nobs	=	1
BOND C	CQ4	CQ5	1000.0	1.410	ļ	Nobs	=	1
BOND C	CQ4	CQ12	1000.0	1.411	ļ	Nobs	=	1
BOND C	CQ5	CQ6	1000.0	1.371	ļ	Nobs	=	1
BOND C	CQ5	HQ14	1000.0	1.083	ļ	Nobs	=	1
BOND C	CQ6	CQ7	1000.0	1.393	ļ	Nobs	=	1
BOND C	CQ6	HQ15	1000.0	1.081	ļ	Nobs	=	1
BOND C	CQ7	HQ8	1000.0	1.080	ļ	Nobs	=	1
BOND C	CQ9	CQ10	1000.0	1.370	ļ	Nobs	=	1
BOND C	CQ9	HQ16	1000.0	1.077	ļ	Nobs	=	1
BOND C	CQ10	CQ11	1000.0	1.416	ļ	Nobs	=	1
BOND C	CQ10	HQ17	1000.0	1.082	ļ	Nobs	=	1
BOND C	CQ11	CQ12	1000.0	1.376	ļ	Nobs	=	1
BOND C	CQ11	OQ13	1000.0	1.346	ļ	Nobs	=	1
BOND C	CQ12	HQ18	1000.0	1.083	ļ	Nobs	=	1
BOND C	Q13	HQ30	1000.0	0.966	ļ	Nobs	=	1
BOND C	Q19	CQ20	1000.0	1.424	ļ	Nobs	=	1

BUND U	1019 1	1029	1000.0	0.966	NODS =	1										
BOND (JQ20 (JQ22	1000.0	1.532	Nobs =	1										
BOND C	CQ20 1	1Q25	1000.0	1.097	! Nobs =	1										
BOND ()Q21 (CQ22	1000.0	1.420	! Nobs =	1										
BOND C)Q21 I	1Q28	1000.0	0.964	Nobs =	1										
BOND C	CQ22 1	1Q23	1000.0	1.096	Nobs =	1										
BOND C	CQ22 1	HQ24	1000.0	1.096	Nobs =	1										
{ Note	e: ed:	it if	necessar	ry }												
ANGLe	CQ22	0Q21	Р	1175.163	3 120.90)0 ! da	ata	a taken	fro	om normal	dna	by	lsd			
ANGLe	01P	Р	0Q21	357.719	108.100) !aga:	in	modded	by	lsd						
ANGLe	02P	Р	0Q21	412.677	108.300) !agai	in	modded	by	lsd						
ANGLe	03R	Р	0Q21	833.356	104.000) !agai	in	modded	by	lsd						
ANGLe	01P	Р	0Q19	357.719	108.100) !aga:	in	modded	by	lsd						
ANGLe	02P	Р	0Q19	412.677	108.300) !agai	in	modded	by	lsd						
ANGLe	05R	Р	0019	833.356	104.000) !aga:	in	modded	by	lsd						
						0			5							
ANGLe	NO2	C01	C020	500.0	116.04	Nobs	=	1								
ANGLO	NO2	CD1	H026	500.0	107 23	Nobs	_	1								
ANGLE	NOO	001	11020	500.0	107.76	Noba	_	1								
ANGLE	0000	CQ1	1027	500.0	106.40	Nobs	_	1								
ANGLE	0020	CUI	пų20 11007	500.0	100.40	NODS	-	1								
ANGLE	CQ20	CUI	HQ27	500.0	109.68	NODS	-	1								
ANGLe	HQ26	CQ1	HQ27	500.0	109.59	Nobs	=	1								
ANGLe	CQ1	NQ2	CQ3	500.0	118.99	Nobs	=	1								
ANGLe	CQ1	NQ2	CQ7	500.0	119.88	Nobs	=	1								
ANGLe	CQ3	NQ2	CQ7	500.0	121.11	Nobs	=	1								
ANGLe	NQ2	CQ3	CQ4	500.0	118.64	Nobs	=	1								
ANGLe	NQ2	СQЗ	CQ9	500.0	122.50	Nobs	=	1								
ANGLe	CQ4	сqз	CQ9	500.0	118.86	Nobs	=	1								
ANGLe	CQ3	CQ4	CQ5	500.0	118.72	Nobs	=	1								
ANGLe	СQЗ	CQ4	CQ12	500.0	119.66	Nobs	=	1								
ANGLe	CQ5	CQ4	CQ12	500.0	121.62	Nobs	=	1								
ANGLe	CQ4	CQ5	CQ6	500.0	120.23	Nobs	=	1								
ANGLe	CQ4	CQ5	HQ14	500.0	119.26	Nobs	=	1								
ANGLe	CQ6	CQ5	HQ14	500.0	120.50	Nobs	=	1								
ANGLe	CQ5	CQ6	CQ7	500.0	119.49	Nobs	=	1								
ANGLe	CQ5	CQ6	HQ15	500.0	121.80	Nobs	=	1								
ANGLe	CQ7	CQ6	HQ15	500.0	118.71	Nobs	=	1								
ANGLe	NQ2	CQ7	CQ6	500.0	121.77	Nobs	=	1								
ANGLe	NQ2	CQ7	HQ8	500.0	116.11	Nobs	=	1								
ANGLe	CQ6	CQ7	HQ8	500.0	122.11	Nobs	=	1								
ANGLe	CQ3	CQ9	CQ10	500.0	120.12	Nobs	=	1								
ANGLe	CQ3	CQ9	HQ16	500.0	121.44	Nobs	=	1								
ANGLe	CQ10	CQ9	HQ16	500.0	118.43	Nobs	=	1								
ANGLe	CD9	CD10	C011	500.0	121.41	Nobs	=	1								
ANGLe	C09	CD10	HQ17	500.0	120.46	Nobs	=	1								
ANGLO	C011	CD10	H017	500.0	118 14	Nobs	_	1								
ANGLO	C010	C011	C012	500.0	110 52	Nobe	_	1								
ANCLE	C010	0411	0012	500.0	115 70	Nobe	_	1								
ANGLE	0410	COLL	0012	500.0	104 70	Nobs	-	1								
ANGLE	0412	CUII		500.0	124.78	NODS	-	1								
ANGLE	CU/4	CW12	UQ11	500.0	120.42	Nobs	=	1								
ANGLe	cQ4	CQ12	нц18	500.0	118.69	Nobs	=	1								
ANGLe	CQ11	CQ12	HQ18	500.0	120.90	Nobs	=	1								
ANGLe	CQ11	0Q13	НQЗО	500.0	111.90	Nobs	=	1								
ANGLe	CQ20	0Q19	HQ29	500.0	109.90	Nobs	=	1								
	ANGLE CUI	L CU:	20 UQ.	19	500.0	108.40	5 !	NODS =		1						
---	------------	--------	--------	-------	-------------	--------	-----	--------	---	------	---	---	-------	-------	---	---------
	ANGLe CQ1	L CQ:	20 CQ2	22	500.0	108.93	3!	Nobs =		1						
	ANGLe CQ1	L CQ:	20 HQ2	25	500.0	109.43	1 !	Nobs =		1						
	ANGLe OQ1	L9 CQ:	20 CQ2	22	500.0	110.93	3!	Nobs =		1						
	ANGLe OQ1	L9 CQ	20 HQ2	25	500.0	111.10	3!	Nobs =		1						
	ANGLe CQ2	22 CQ:	20 HQ2	25	500.0	107.93	1 !	Nobs =		1						
	ANGLe CQ2	22 OQ	21 HQ2	28	500.0	109.93	3!	Nobs =		1						
	ANGLe CQ2	20 CQ:	22 OQ2	21	500.0	107.2	5!	Nobs =		1						
	ANGLe CQ2	20 CQ:	22 HQ2	23	500.0	109.58	3!	Nobs =		1						
	ANGLe CQ2	20 CQ:	22 HQ2	24	500.0	108.1	5!	Nobs =		1						
	ANGLe OQ2	21 CQ:	22 HQ2	23	500.0	112.04	1 !	Nobs =		1						
	ANGLe OQ2	21 CQ:	22 HQ2	24	500.0	111.52	2 !	Nobs =		1						
	ANGLe HQ2	23 CQ:	22 HQ2	24	500.0	108.22	2 !	Nobs =		1						
{	[Note: ed	lit i:	fnece	essar	v }											
	DIHEdral	HQ27	CQ1	NQ2	C07	750.0	0	90.00	1	Nobs	=	1		Value	=	99.41
	DIHEdral	H027	C01	C020	H025	750.0	0	180.00	i	Nobs	=	1		Value	=	-170.45
	DIHEdral	CO1	NO2	CU3	C04	750.0	0	180.00	÷	Nobe	_	1		Value	_	-170.20
	DIHEdual	001	NOO	040	000	750.0	0	100.00		Nobs	_	-		Value	_	1 00
	DIREGRAL	CUI	NQZ	CUS	CQ9	750.0	0	0.00		NODS	-	1	• • •	value	-	1.29
	DIHEdral	CUI	NQ2	сцз	CQ4	750.0	0	0.00	!	Nobs	=	1	• • •	Value	=	2.40
	DIHEdral	CQ7	NQ2	сqз	CQ9	750.0	0	180.00	!	Nobs	=	1	• • •	Value	=	-177.02
	DIHEdral	CQ1	NQ2	CQ7	CQ6	750.0	0	180.00	!	Nobs	=	1	• • •	Value	=	179.55
	DIHEdral	CQ1	NQ2	CQ7	HQ8	750.0	0	0.00	!	Nobs	=	1	• • •	Value	=	-1.94
	DIHEdral	СQЗ	NQ2	CQ7	CQ6	750.0	0	0.00	ļ	Nobs	=	1	• • •	Value	=	-2.15
	DIHEdral	CQ3	NQ2	CQ7	HQ8	750.0	0	180.00	ļ	Nobs	=	1	• • •	Value	=	176.35
	DIHEdral	NQ2	CQ3	CQ4	CQ5	750.0	0	0.00	ļ	Nobs	=	1	• • •	Value	=	-1.07
	DIHEdral	NQ2	СQЗ	CQ4	CQ12	750.0	0	180.00	ļ	Nobs	=	1		Value	=	179.45
	DIHEdral	CQ9	CQ3	CQ4	CQ5	750.0	0	180.00	ļ	Nobs	=	1		Value	=	178.37
	DIHEdral	CQ9	сqз	CQ4	CQ12	750.0	0	0.00	ļ	Nobs	=	1		Value	=	-1.11
	DIHEdral	NQ2	сдз	CQ9	CQ10	750.0	0	180.00	ļ	Nobs	=	1		Value	=	-179.89
	DIHEdral	NQ2	сдз	CQ9	HQ16	750.0	0	0.00	ļ	Nobs	=	1		Value	=	1.05
	DIHEdral	CQ4	сдз	CQ9	CQ10	750.0	0	0.00	ļ	Nobs	=	1		Value	=	0.70
	DIHEdral	CQ4	сдз	CQ9	HQ16	750.0	0	180.00	į	Nobs	=	1		Value	=	-178.36
	DIHEdral	CQ3	CQ4	CQ5	CQ6	750.0	0	0.00	į	Nobs	=	1		Value	=	-0.51
	DIHEdral	CQ3	CQ4	CQ5	HQ14	750.0	0	180.00	ŗ	Nobs	=	1		Value	=	-179.88
	DIHEdral	C012	C04	C05	C06	750 0	0	180.00		Nobs	=	1		Value	=	178 97
	DIHEdral	C012	C04	C05	H014	750.0	0	0.00	ì	Nobs	=	1		Value	=	-0.41
	DIHEdral	CU3	C04	CD12	C011	750.0	0	0.00		Nobs	=	1		Value	_	0.57
	DIHEdral	000	C04	C012	UQ11	750.0	0	180.00	÷	Nobs	_	1		Value	_	-179 72
	DIUEdwal	COE	004	0012	0011	750.0	0	190.00	Ì	Nobs	_	1		Value	_	_179 00
	DINEGRAL	CQS	CQ4	0010	1010	750.0	0	180.00		Nobs	_	1	• • •	Value	_	-1/0.90
	DIREGRAL	CUS	CQ4	CUIZ	пц10 со7	750.0	0	0.00		NODS	-	1	• • •	value	-	0.01
	DIHEdral	CQ4	CQ5	CUB		750.0	0	0.00	:	NODS	=	1	• • •	Value	-	0.82
	DIHEdral	CQ4	CUS	CH6	HQ15	750.0	0	180.00	!	Nobs	=	1	• • •	Value	=	-178.93
	DIHEdral	HQ14	CQ5	CQ6	CQ7	750.0	0	180.00	!	Nobs	=	1	• • •	Value	=	-179.81
	DIHEdral	HQ14	CQ5	CQ6	HQ15	750.0	0	0.00	i	Nobs	=	1	• • •	Value	=	0.44
	DIHEdral	CQ5	CQ6	CQ7	NQ2	750.0	0	0.00	ļ	Nobs	=	1	• • •	Value	=	0.50
	DIHEdral	CQ5	CQ6	CQ7	HQ8	750.0	0	180.00	ļ	Nobs	=	1	• • •	Value	=	-177.91
	DIHEdral	HQ15	CQ6	CQ7	NQ2	750.0	0	180.00	ļ	Nobs	=	1	• • •	Value	=	-179.74
	DIHEdral	HQ15	CQ6	CQ7	HQ8	750.0	0	0.00	ļ	Nobs	=	1		Value	=	1.84
	DIHEdral	СQЗ	CQ9	CQ10	CQ11	750.0	0	0.00	ļ	Nobs	=	1		Value	=	0.26
	DIHEdral	СQЗ	CQ9	CQ10	HQ17	750.0	0	180.00	ļ	Nobs	=	1		Value	=	-179.76
	DIHEdral	HQ16	CQ9	CQ10	CQ11	750.0	0	180.00	ļ	Nobs	=	1		Value	=	179.35
	DIHEdral	HQ16	CQ9	CQ10	HQ17	750.0	0	0.00	ļ	Nobs	=	1		Value	=	-0.67
	DIHEdral	CQ9	CQ10	CQ11	CQ12	750.0	0	0.00	ļ	Nobs	=	1		Value	=	-0.82
	DIHEdral	CQ9	CQ10	CQ11	0Q13	750.0	0	180.00	ļ	Nobs	=	1		Value	=	179.56
	DIHEdral	HQ17	CQ10	CQ11	CQ12	750.0	0	180.00	ļ	Nobs	=	1		Value	=	179.20

DIHEdral HQ17	CUID CUII	0010 7		0 00		Mala a	_	4 1	7-7	_	0 40
DIDEAMONT CONTO		0013 /	50.0 0	0.00	:	NODS	-	1 1	varue		0.42
DINEGIAL CQIO	CUII CUI2	CQ4 /	50.0 0	0.00	!	NODS	-	1 1	vaiue	=	0.38
DIHEdral CQ10	CQ11 CQ12	HQ18 7	50.0 0	180.00	!	Nobs	=	1 \	Value	= -17	9.31
DIHEdral OQ13	CQ11 CQ12	CQ4 7	50.0 0	180.00	!	Nobs	=	1 \	Value	= 17	9.97
DIHEdral OQ13	CQ11 CQ12	HQ18 7	50.0 0	0.00	!	Nobs	=	1 \	Value	=	0.27
DIHEdral CQ10	CQ11 0Q13	HQ30 7	50.0 0	180.00	!	Nobs	=	1 \	Value	= 17	9.93
DIHEdral CQ12	CQ11 OQ13	HQ30 7	50.0 0	0.00	ļ	Nobs	=	1 \	Value	=	0.33
DIHEdral HQ29	OQ19 CQ20	CQ1 7	50.0 0	180.00	!	Nobs	=	1 \	Value	= 17	5.20
DIHEdral HQ29	0Q19 CQ20	CQ22 7	50.0 0	60.00	!	Nobs	=	1 \	Value	= 5	5.60
DIHEdral HQ29	0Q19 CQ20	HQ25 7	50.0 0	-60.00	ļ	Nobs	=	1 1	Value	= -6	4.48
DIHEdral CQ1	CQ20 CQ22	0Q21 7	50.0 0	60.00	ļ	Nobs	=	1 1	Value	= 6	0.68
DIHEdral CQ1	CQ20 CQ22	HQ23 7	50.0 (-60.00	!	Nobs	=	1	Value	= -6	1.16
DIHEdral CO1	CQ20 CQ22	HQ24 7	50.0 0	180.00	!	Nobs	=	1 1	Value	= -17	8.92
DIHEdral 0019	CD20 CD22	0021 7	50.0 0	180.00		Nobs	=	1	Value	= 18	0.00
DIHEdral 0019	CD20 CD22	H023 7	50.0 0	60.00	i	Nobs	=	1	Value	= 5	8.16
DIHEdral 0010	c020 c022	H024 7	50.0 0	-60.00		Nobe	_	1 1	Valuo	5	9 60
DIHEdral HO25		0001 7	50.0 0	-60.00		Noba	_	1	Value		0 01
DIHEdral HQ25		UQ21 7	50.0 0	-00.00		NODS	-	1 1	Value	0	0.01
DIHEdral HQ25		HQ23 /	50.0 0	180.00		NODS	=	1 1	Value	= -17	9.85
DIHEdral HQ25	CQ20 CQ22	HQ24 /	50.0 (60.00	!	Nobs	=	1	Value	= 6	2.39
DIHEdral HQ28	0Q21 CQ22	CQ20 7	50.0 0	180.00	!	Nobs	=	1 \	Value	= 17	2.83
DIHEdral HQ28	0Q21 CQ22	HQ23 7	50.0 (-60.00	!	Nobs	=	1 \	Value	= -6	6.89
DIHEdral HQ28	0Q21 CQ22	HQ24 7	50.0 0	60.00	!	Nobs	=	1 \	Value	= 5	4.59
{ Note: edit i	f necessa	ry }									
IMPRoper CQ1	NQ2 CQ20	HQ26 7	50.0 0	35.000	!	Nobs	=	1 \	Value	= 33	.167
IMPRoper NQ2	CQ1 CQ3	CQ7 7	50.0 0	0.000	ļ	Nobs	=	1 \	Value	= -0	.935
IMPRoper CQ3	NQ2 CQ4	CQ9 7	50.0 0	0.000	ļ	Nobs	=	1 \	Value	= 0	.328
IMPRoper CQ4	CQ3 CQ5	CQ12 7	50.0 0	0.000	ļ	Nobs	=	1 \	Value	= 0	.298
IMPRoper CQ5	CQ4 CQ6	HQ14 7	50.0 0	0.000	ļ	Nobs	=	1 \	Value	= 0	.330
IMPRoper CQ6	CQ5 CQ7	HQ15 7	50.0 0	0.000	ļ	Nobs	=	1 1	Value	= 0	.130
IMPRoper CQ7	NQ2 CQ6	HQ8 7	50.0 (0.000	!	Nobs	=	1 \	Value	= -0	.832
IMPRoper CQ7 IMPRoper CQ9	NQ2 CQ6 CQ3 CQ10	HQ8 7 HQ16 7	50.0 (50.0 (0.000 0.000	!	Nobs Nobs	=	1 1	Value Value	= -0 = 0	.832 .489
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11	HQ8 7 HQ16 7 HQ17 7	50.0 (50.0 (50.0 (0.000 0.000 0.000	!	Nobs Nobs Nobs	=	1 V 1 V 1 V	Value Value Value	= -0 = 0 = -0	.832 .489 .011
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12	HQ8 7 HQ16 7 HQ17 7 OQ13 7	50.0 (50.0 (50.0 (50.0 (0 0.000 0 0.000 0 0.000 0 0.000	! ! !	Nobs Nobs Nobs Nobs	=	1 V 1 V 1 V	Value Value Value Value	= -0 = 0 = -0 = 0	.832 .489 .011 .224
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ12	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7	50.0 (50.0 (50.0 (50.0 (50.0 (0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000	! ! !	Nobs Nobs Nobs Nobs Nobs	=	1 V 1 V 1 V 1 V	Value Value Value Value Value	= -0 = 0 = -0 = 0 = -0	.832 .489 .011 .224 .158
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 0Q19	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 	! ! !	Nobs Nobs Nobs Nobs Nobs Nobs	=	1 V 1 V 1 V 1 V 1 V	Value Value Value Value Value Value	= -0 = 0 = -0 = 0 = -0 = -0	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wins)	 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -35.000 improper 	! ! ! !	Nobs Nobs Nobs Nobs Nobs Nobs 29	= = = = =	1 1 1 1 1 1 1 1 1 1 1 1 reset to	Value Value Value Value Value Value o +35.	= -0 = 0 = -0 = 0 = -0 = -35	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val CQ20 0Q21	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing	 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -35.000 g improper 35.000 	! ! ! ! !	Nobs Nobs Nobs Nobs Nobs 29 Nobs	= = = = 0.83	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val CQ20 OQ21	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.000 0.000 0.000 0.000 0.000 0.000 0.000 -35.000 g improper 35.000 	! ! ! !	Nobs Nobs Nobs Nobs Nobs 29 Nobs	= = = = 0.83	1 1 1 1 1 1 1 1 1 1 reset to 1 1	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 = 29	.832 .489 .011 .224 .158 .348 .826
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val CQ20 OQ21	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.000 35.000 		Nobs Nobs Nobs Nobs Nobs 29 Nobs	= = = = 0.83	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348 .826
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NUNErpded CQ1	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val CQ20 OQ21 f necessa	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry }	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -35.000 g improper 35.000 3.3854 		Nobs Nobs Nobs Nobs Nobs 29 Nobs	= = = = 0.83	1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon	Value Value Value Value value o +35. Value	= -0 = 0 = -0 = -0 = -35 = 29	.832 .489 .011 .224 .158 .348 .826
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 OQ19 usual val CQ20 OQ21 f necessa 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.2509	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.100(0.238/	 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 35.000 35.000 3.3854 2.8509 		Nobs Nobs Nobs Nobs Nobs 29 Nobs assumi	= = = = 0.83 =	1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ2	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 0Q19 usual val CQ20 0Q21 f necessa 0.1200 0.2384	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 2.749	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.100(0.2384	 0.000 		Nobs Nobs Nobs Nobs Nobs 29 Nobs assumi	= = = = 0.83 = ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = 0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348 .826
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 0Q19 usual val CQ20 0Q21 f necessa 0.1200 0.2384 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.100(0.2384 0.100(0.100(0.100(0.100(0.000 		Nobs Nobs Nobs Nobs Nobs 29 Nobs assumi assumi	= = = = 0.83 = ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = 0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ3	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 0Q19 usual val CQ20 0Q21 f necessa 0.1200 0.2384 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 y S.7418 2.8509 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.100(0.2384 0.100(0.100(0.100(0.100(0.100(0.100(0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi	= = = = 0.83 = ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ4	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ1 0Q19 usual val CQ20 0Q21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.100(0.100(0.100(0.100(0.100(0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 1 1 Carbon Nitrogen Carbon Carbon	Value Value Value Value Value value value	= -0 = 0 = -0 = -0 = -35 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 Usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.1000 0.2384 0.1000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon Carbon Carbon Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ11 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ7	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.1000 0.2384 0.1000 0.1000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon Carbon Carbon Carbon Carbon Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = 0 = -0 = -35 0 = -35	.832 .489 .011 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ7 NONBonded CQ7	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.20498	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.1000 0.2384 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = 0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ? >>> NONBonded CQ1 NONBonded CQ3 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded RQ8 NONBonded CQ9	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.1200 0.1200 0.0498 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.1000 0.2384 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi	= = = = 0.833 = ng ng ng ng ng ng ng ng ng ng	1 1 1 1 1 1 1 1 1 1 1 1 reset to 1 1 Carbon Nitrogen Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = 0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 (NONBonded CQ1 NONBonded CQ1 NONBonded CQ3 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded CQ9 NONBonded CQ9 NONBonded CQ1	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.1200 0.0498 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 ue for fol HQ23 7 ry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (10wing 50.0 (0.1000 0.2384 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi	= = = = 0.833 = ng ng ng ng ng ng ng ng ng ng ng ng	1 V 1 V 1 V 1 V 1 V reset to 1 V Carbon	Value Value Value Value Value o +35.	= -0 = 0 = -0 = 0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ? NONBonded CQ1 NONBonded CQ1 NONBonded CQ3 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded CQ9 NONBonded CQ100 NONBonded CQ100	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.0498 0.1200 0.1200 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 UP for fol HQ23 7 Yry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (1000) 0.1000 0.1000 0.1000 0.1000 0.1000 0.000 0.000 0.1000 0.1000 0.1000	 0.000 		Nobs Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi assumi	= = = = 0.833 = ng ng ng ng ng ng ng ng ng ng ng ng ng	1 V 1 V 1 V 1 V 1 V reset to 1 V Carbon	Value Value Value Value Value o +35.	= -0 = 0 = -0 = 0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ? { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded CQ9 NONBonded CQ10 NONBonded CQ11 NONBonded CQ11	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.1200 0.0498 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 UP for fol HQ23 7 Yry } 3.7418 2.8509 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (1000) 0.10000 0.100000000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng ng ng ng ng ng ng ng	1 Y 1 Y 1 Y 1 Y 1 Y reset to 1 Y Carbon	Value Value Value Value Value O +35. Value	= -0 = 0 = -0 = -0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ22 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded CQ9 NONBonded CQ10 NONBonded CQ11 NONBonded CQ12 NONBonded CQ12	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.1200 0.1200 0.1200 0.0498 0.1200	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 UP for fol HQ23 7 Yry } 3.7418 2.8509 3.7418	50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (50.0 (1000) 0.10000 0.100000000	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi assumi assumi	= = = = 0.83 = ng ng ng ng ng ng ng ng ng ng ng ng ng	1 V 1 V 1 V 1 V 1 V reset to 1 V Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -0 = -35 0 = -35 0 = 29	.832 .489 .011 .224 .158 .348
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ5 NONBonded CQ7 NONBonded CQ1 NONBonded CQ1	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200	HQ8 7 HQ16 7 HQ17 7 OQ13 7 HQ18 7 CQ22 7 Lue for fol HQ23 7 LQ23	50.0 (50.0 ()))))))))))))))))))))))))))))))))))	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi assumi assumi assumi assumi	= = = = 0.833 = ng ng ng ng ng ng ng ng ng ng ng ng ng	1 V 1 V 1 V 1 V 1 V reset to 1 V Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348 .826
IMPRoper CQ7 IMPRoper CQ9 IMPRoper CQ10 IMPRoper CQ12 IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ! >>> NOTE - un IMPRoper CQ20 ? { Note: edit i NONBonded CQ1 NONBonded CQ3 NONBonded CQ4 NONBonded CQ5 NONBonded CQ5 NONBonded CQ5 NONBonded CQ1 NONBonded CQ1	NQ2 CQ6 CQ3 CQ10 CQ9 CQ11 CQ10 CQ12 CQ4 CQ11 CQ10 QQ19 usual val CQ20 QQ21 f necessa 0.1200 0.2384 0.1200 0.0498 0.1200 0.0498 0.0498	HQ8 7 HQ16 7 HQ17 7 QQ13 7 HQ18 7 CQ22 7 Lue for fol HQ23 7 LQ23	50.0 (50.0 ()))))))))))))))))))))))))))))))))))	 0.000 		Nobs Nobs Nobs Nobs 29 Nobs assumi assumi assumi assumi assumi assumi assumi assumi assumi assumi	= = = = 0.833 = ng ng ng ng ng ng ng ng ng ng ng ng ng	1 V 1 V 1 V 1 V 1 V reset to 1 V Carbon	Value Value Value Value Value o +35. Value	= -0 = 0 = -0 = -0 = -35 0 = 29	.832 .489 .011 .224 .158 .348 .826

NONBonded	HQ17 0	.0498 1	.4254		0.0498	1.42	254 !	assı	uming	Hydro	gen		
NONBonded	HQ18 0	.0498 1	.4254		0.0498	1.42	254 !	assi	uming	Hydro	gen		
NONBonded	OQ19 0	.1591 2	.8509		0.1591	2.85	509 !	assı	ming	Oxyge	en		
NONBonded	CQ20 0	.1200 3	.7418		0.1000	3.38	354 !	assı	ming	Carbo	n		
NONBonded	0Q21 0	.1591 2	.8509		0.1591	2.85	509 !	assi	ming	Oxyge	en		
NONBonded	CQ22 0	1200 3	.7418		0.1000	3.38	354 !	assi	ming	Carbo	m		
NONBonded	H023 0	0498 1	4254		0 0498	1 40	054 I	200	ming	Hydro	aren		
NONBondod	H024 0	0/08 1	1251		0.0400	1 1	254 1	2001	ming	Hudro	gon		
NONPonded	11Q24 0	0400 1	4054		0.0400	1 10			ming	Undar	gen		
NONPonded	11Q20 0	0400 1	4054		0.0400	1 10			ming	Undar	gen		
NOND	1007 0	0490 1	4254		0.0490	1.42	204 :	assi		Hydro Handard	gen		
NUNBonded	HQ27 0	.0498 1	.4254		0.0498	1.42	254 !	assi	uming	Hyard	ogen		
NUNBonded	HQ28 0	.0498 1	.4254		0.0498	1.42	254 !	assi	uming	Hyard	ogen		
NUNBonded	HQ29 0	.0498 1	.4254		0.0498	1.42	254 !	assı	iming	Hydro	gen		
NUNBonded	HQ30 0	.0498 1	.4254		0.0498	1.42	254 !	assı	uming	Hydro	ogen		
set echo=true end ************************************													
!******	******	*** chan	ge by l	so	a - HCF	****	*****	***	*****	****			
{ Note: ed	lit if 1	necessar	y }										
BOND C1D	HZ29	1000.0	1.092	ļ	Nobs =	1	!adde	d bo	ond Ci	L'-H1	, pA	lsc	1
BOND C1D	0Z14	1000.0	1.435	!	Nobs =	1	!adde	d bo	ond Ci	L'-02	bv 1	Lsd	
											- 5		
BOND CZ1	C72	1500.0	1.402	ï	Nobs =	: 1	Imod	to	1500	from	1000	hv	lsd
BOND CZ1	022	1500.0	1 402	ì	Nobs =	- 1	Imod.	+0	1500	from	1000	by	led
DOND CZ1	0714	1000.0	1 260		Noba =		:mou.		1000	110m	1000	by	IBU
BUND CZI	0214	1000.0	1.302	:	NODS =	· 1			4500		1000	,	
BUND CZ2	UZ3	1500.0	1.393	:	NODS =	1	!moa.	το	1500	irom	1000	ру	Isa
BUND CZ2	HZ25	1000.0	1.080	!	Nobs =	1							
BOND CZ3	CZ4	1500.0	1.388	!	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ3	HZ18	1000.0	1.084	!	Nobs =	1							
BOND CZ4	CZ5	1500.0	1.410	!	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ4	CZ7	1500.0	1.462	!	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ5	CZ6	1500.0	1.379	!	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ5	CZ9	1500.0	1.512	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ6	HZ19	1000.0	1.083	ļ	Nobs =	1							
BOND CZ7	CZ8	1500.0	1.409	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ7	CZ10	1500.0	1.394	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ8	CZ9	1500.0	1.513	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ8	CZ13	1500.0	1.380	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ9	HZ21	1000.0	1.095	ļ	Nobs =	1							
BOND CZ9	HZ22	1000.0	1.095	!	Nobs =	1							
BOND CZ10	CZ11	1500.0	1.389	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ10	HZ23	1000.0	1.083	ļ	Nobs =	1							
BOND CZ11	CZ12	1500.0	1.401	ļ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ11	HZ24	1000.0	1.081	!	Nobs =	1							
BOND CZ12	CZ13	1500.0	1.403	ŗ	Nobs =	1	!mod.	to	1500	from	1000	by	lsd
BOND CZ12	CZ15	1000.0	1.480	ļ	Nobs =	1							
BOND CZ13	HZ20	1000.0	1.083	ļ	Nobs =	1							
BOND CZ15	0Z16	1000.0	1.211	ļ	Nobs =	1							
BOND CZ15	0Z17	1000.0	1.361	ļ	Nobs =	1							
BOND OZ17	HZ43	1000.0	0.969	ļ	Nobs =	1							
BOND CZ26	0Z27	1000.0	1.396	ļ	Nobs =	: 1							
BOND CZ26	CZ28	1000.0	1.543	!	Nobs =	1							
BOND 07.27	- CZ30	1000.0	1.436	!	Nobs =	- 1							
						-							

BOND CZ28 CZ31	1000.0	1.535	! Nobs =	1			
BOND CZ28 HZ32	1000.0	1.090	! Nobs =	1			
BOND CZ28 HZ33	1000.0	1.090	! Nobs =	1			
BOND CZ30 CZ31	1000.0	1.539	! Nobs =	1			
BOND CZ30 HZ34	1000.0	1.096	! Nobs =	1			
BOND CZ30 CZ36	1000.0	1.509	! Nobs =	1			
BOND CZ31 HZ35	1000.0	1.098	! Nobs =	1			
BOND CZ31 OZ39	1000.0	1.422	! Nobs =	1			
BOND CZ36 HZ37	1000.0	1.101	! Nobs =	1			
BOND CZ36 HZ38	1000.0	1.097	! Nobs =	1			
BOND CZ36 OZ41	1000.0	1.421	! Nobs =	1			
{ Note: edit if	necessar	ry }					
ANGLe CZ2 CZ1	CZ6	500.0	120.21 !	Nobs	= 1		
ANGLe CZ2 CZ1	0Z14	500.0	124.48 !	Nobs	= 1		
ANGLe CZ6 CZ1	0Z14	500.0	115.30 !	Nobs	= 1		
ANGLe CZ1 CZ2	CZ3	500.0	120.19 !	Nobs	= 1		
ANGLe CZ1 CZ2	HZ25	500.0	120.77 !	Nobs	= 1		
ANGLe CZ3 CZ2	HZ25	500.0	119.04	Nobs	= 1		
ANGLe CZ2 CZ3	C74	500.0	119 74 1	Nobs	= 1		
ANGLe C72 C73	H718	500.0	119 21 1	Nobs	= 1		
ANGLe C74 C73	H718	500.0	121 04 1	Nobs	= 1		
ANGLe CZ3 CZ4	075	500.0	119 77 1	Nobs	= 1		
ANGLO CZ3 CZ4	023	500.0	131 57 1	Nobs	- 1		
ANGLO CZ5 CZ4	027	500.0	108 67 1	Nobs	- 1		
ANGLE CZS CZ4	027	500.0	120 03 1	Nobs	- 1		
ANGLO CZ4 CZ5	020	500.0	109 97 1	Nobs	- 1		
ANGLO CZ4 CZ5	023	500.0	129 10 1	Nobs	- 1		
ANGLO CZ1 CZ5	025	500.0	110 15 1	Nobs	- 1		
ANGLO CZ1 CZO	8710	500.0	118 53 1	Nobs	- 1		
ANGLO CZE CZO	11213	500.0	100.00 :	Nobs	- 1		
ANGLO CZA CZZ	078	500.0	108 63 1	Nobs	- 1		
ANGLO CZ4 CZ7	020	500.0	131 15 1	Nobs	- 1		
ANGLE CZ4 CZ7	0210	500.0	100 00 1	Nobs	- 1		
ANGLE CZ8 CZ7	0210	500.0	120.22 :	Nobs	- 1		
ANGLE CZ7 CZ8	0212	500.0	109.96 !	Nobs	- 1		
ANGLE CZ7 CZ8	0712	500.0	120.04 !	Nobs	- 1		
ANGLE CZ9 CZ8	0213	500.0	129.30 !	Nobs	- 1		
ANGLE CZ5 CZ9	020	500.0	102.76 !	NODS	= 1		
ANGLE CZ5 CZ9	HZ21	500.0	111.76 !	NODS	= 1		
ANGLE CZ5 CZ9	HZ22	500.0	111.84 !	NODS	= 1		
ANGLE CZ8 CZ9	HZ21	500.0	111.92 !	NODS	= 1		
ANGLE CZ8 CZ9	HZ22	500.0	111.91 !	NODS	= 1		
ANGLE HZ21 CZ9	HZ22	500.0	106.76 !	NODS	= 1		
ANGLE CZ7 CZ10	CZ11	500.0	119.12 !	Nobs	= 1		
ANGLE CZ/ CZ10	HZ23	500.0	120.97 !	Nobs	= 1		
ANGLE CZ11 CZ10	HZ23	500.0	119.91 !	Nobs	= 1		
ANGLE CZ10 CZ11	CZ12	500.0	120.68 !	Nobs	= 1		
ANGLE CZ10 CZ11	nZ24	500.0	110.04	Nobs	= 1		
ANGLE CZ12 CZ11	HZ24	500.0	119.24 !	Nobs	= 1		
ANGLE CZ11 CZ12	CZ13	500.0	120.14 !	Nobs	= 1		
ANGLE CZ11 CZ12	CZ15	500.0	122.01 !	Nobs	= 1		
ANGLE CZ13 CZ12	CZ15	500.0	117.85 !	Nobs	= 1		
ANGLE CZ8 CZ13	CZ12	500.0	119.19 !	Nobs	= 1		
ANGLE CZ8 CZ13	HZ20	500.0	121.95 !	Nobs	= 1		
ANGLE CZ12 CZ13	HZ20	500.0	118.86 !	Nobs	= 1		
ANGLE CZ1 UZ14	CID	500.0	T50.08 j	Nobs	= 1	modded	oy ⊥sd

ANGLe CZ12 CZ15 OZ16	500.0	125.17 !	Nobs =	1			
ANGLe CZ12 CZ15 OZ17	500.0	113.31 !	Nobs =	1			
ANGLe OZ16 CZ15 OZ17	500.0	121.52 !	Nobs =	1			
ANGLe CZ15 OZ17 HZ43	500.0	106.35 !	Nobs =	1			
ANGLe OZ14 C1D 04D	500.0	107.07 !	Nobs =	1 !modded	by lsd		
ANGLe OZ14 C1D C2D	500.0	111.77 !	Nobs =	1 !modded	by lsd		
ANGLe 0Z14 C1D HZ29	500.0	108.68 !	Nobs =	1 !modded	by lsd		
ANGL 0727 0726 0728	500.0	106 71 1	Nobs =	1	-,		
ANGLO DAD CID H729	500.0	107 /9 /	Nobe =	- 1 Imoddod	by led		
ANGLE COD CID HZ20	500.0	114 72 1	Noba =	1 Imoddod	by isu		
ANGLE CZD CID 11223	500.0	109 01 1	Noba =	1 :	by ibu		
ANGLE CZ20 UZ27 CZ30	500.0	100.21 :	Nobs -	1			
ANGLE CZ26 CZ26 CZ51	500.0	104.34 !	NODS =	1			
ANGLE CZ26 CZ28 HZ32	500.0	111.89 !	NODS =	1			
ANGLE CZ26 CZ28 HZ33	500.0	110.79 !	Nobs =	1			
ANGLE CZ31 CZ28 HZ32	500.0	112.22 !	NODS =	1			
ANGLE CZ31 CZ28 HZ33	500.0	109.17 !	Nobs =	1			
ANGLe HZ32 CZ28 HZ33	500.0	108.39 !	Nobs =	1			
ANGLe OZ27 CZ30 CZ31	500.0	103.43 !	Nobs =	1			
ANGLe OZ27 CZ30 HZ34	500.0	110.34 !	Nobs =	1			
ANGLe OZ27 CZ30 CZ36	500.0	109.80 !	Nobs =	1			
ANGLe CZ31 CZ30 HZ34	500.0	109.13 !	Nobs =	1			
ANGLe CZ31 CZ30 CZ36	500.0	114.51 !	Nobs =	1			
ANGLe HZ34 CZ30 CZ36	500.0	109.47 !	Nobs =	1			
ANGLe CZ28 CZ31 CZ30	500.0	102.79 !	Nobs =	1			
ANGLe CZ28 CZ31 HZ35	500.0	110.28 !	Nobs =	1			
ANGLe CZ28 CZ31 OZ39	500.0	109.69 !	Nobs =	1			
ANGLe CZ30 CZ31 HZ35	500.0	109.23 !	Nobs =	1			
ANGLe CZ30 CZ31 DZ39	500.0	114.42 !	Nobs =	1			
ANGLe HZ35 CZ31 OZ39	500.0	110.18 !	Nobs =	1			
ANGLe CZ30 CZ36 HZ37	500.0	108.31 !	Nobs =	1			
ANGLe CZ30 CZ36 HZ38	500.0	108.62 !	Nobs =	1			
ANGLe CZ30 CZ36 OZ41	500.0	109.34 !	Nobs =	1			
ANGLe HZ37 CZ36 HZ38	500.0	108.31 !	Nobs =	1			
ANGLe HZ37 CZ36 OZ41	500.0	110.48 !	Nobs =	1			
ANGLe HZ38 CZ36 OZ41	500.0	111.71 !	Nobs =	1			
· · · · ·							
{ Note: edit if necessa	ry }						
IMPRoper CZ1 CZ2 CZ6	0Z14	750.0 0	0.000	Nobs =	1 Value =	-0.175	
IMPRoper CZ2 CZ1 CZ3	HZ25	750.0 0	0.000	Nobs =	1 Value =	0.334	
IMPRoper CZ3 CZ2 CZ4	HZ18	750.0 0	0.000	Nobs =	1 Value =	0.234	
IMPRoper CZ4 CZ3 CZ5	CZ7	750.0 0	0.000	Nobs =	1 Value =	0.070	
IMPRoper CZ5 CZ4 CZ6	CZ9	750.0 0	0.000	Nobs =	1 Value =	-0.069	
IMPRoper CZ6 CZ1 CZ5	HZ19	750.0 0	0.000	Nobs =	1 Value =	0.230	
IMPRoper CZ7 CZ4 CZ8	CZ10	750.0 0	0.000	Nobs =	1 Value =	-0.008	
IMPRoper CZ8 CZ7 CZ9	CZ13	750.0 0	0.000	Nobs =	1 Value =	-0.011	
! >>> NOTE - unusual val	ue for f	ollowing i	improper	-28.83	reset to -35.0		
IMPRoper CZ9 CZ5 CZ8	HZ21	750.0 0 2	28.835 ! !	lobs = 1	Value = -	28.835 !dei	ault par-file value
! IMPRoper CZ9 CZ5 CZ8	HZ21	94.5 0	28.808	! mod by 1	sd, copied from	HNF	
IMPRoper CZ10 CZ7 CZ11	HZ23	750.0 0	0.000	Nobs =	1 Value =	0.013	
IMPRoper CZ11 CZ10 CZ12	HZ24	/50.0 0	0.000	Nobs =	1 Value =	-0.040	
IMPRoper CZ12 CZ11 CZ13	CZ15	750.0 0	0.000	Nobs =	1 Value =	-0.027	
IMPROPER CZ13 CZ8 CZ12	nZ20	750.0 0	0.000	NODS =	1 Value =	-0.016	
IMPROPER CZ15 CZ12 OZ16	0217	750.0 0	0.000	NODS =	1 Value =	-0.002	
IMPROPER GZ26 UZ14 UZ27	0228	150.0 0	-35.000	NODS =	1 Value =	-31.104	
IMPRoper (700 (706 (701	ue 10r 1	JEO O O	ar ooo	28.14	1 V-3	00 107	
Improper UZ28 UZ26 UZ31	riz32	150.0 0	35.000	NODS =	1 Value =	28.137	

IMPRoper CZ30 OZ27 CZ31 HZ34	750.0 0 35.000 ! Nobs = 1 Value = 3:	1.191
IMPRoper CZ31 CZ28 CZ30 HZ35	750.0 0 35.000 ! Nobs = 1 Value = 30	0.698
IMPRoper CZ36 CZ30 HZ37 HZ38	750.0 0 -35.000 ! Nobs = 1 Value = -34	4.749
IMPRoper OZ14 C2D O4D HZ29	\$kchimpr 0 -65.280 !modded by lsd	
{ Note: edit if necessary }		
NONBonded CZ1 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ2 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ3 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ4 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ5 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ6 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ7 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ8 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ9 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ10 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ11 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ12 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ13 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded 0Z14 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded CZ15 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded 0Z16 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded 0Z17 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded HZ18 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ19 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ20 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ21 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ22 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ23 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ24 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ25 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded CZ26 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded 0Z27 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded CZ28 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded HZ29 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded CZ30 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded CZ31 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded HZ32 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ33 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ34 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ35 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded CZ36 0.1200 3.7418	0.1000 3.3854 ! assuming Carbon	
NONBonded HZ37 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded HZ38 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	
NONBonded 0Z39 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded 0Z41 0.1591 2.8509	0.1591 2.8509 ! assuming Oxygen	
NONBonded HZ43 0.0498 1.4254	0.0498 1.4254 ! assuming Hydrogen	

!the	gener	ic bonds	were	taken	from	parami	1.0	lna	with	3*kq
BOND	C5R	OH	876	.000	1.4	300	!	5'	end	
BOND	C5D	OH	876	.000	1.4	300	!	5'	end	
BOND	C3R	OH	876	.000	1.4	300	!	3'	end	
BOND	C3D	OH	876	.000	1.4	300	!	3'	end	
BOND	02R	HO	1350	.000	0.9	572				

$2\,$ Input files for Molecular Dynamics calculations

!Phos		combined	RNA/DNA s	tatistics	used	
!			kq	x_eq	sigma	
BOND	Р	01P	1489.209	1.485	! 0.015	Phos
BOND	Р	02P	1489.209	1.485	! 0.015	Р
BOND	Р	05R	3350.720	1.593	! 0.010	Р
BOND	Р	OH	3350.720	1.593	! 0.010	P ! For 5pho patch
BOND	Р	O3R	2326.889	1.607	! 0.012	Р
BOND	Р	OX17	2326.889	1.607	! 0.012	P ! mod by anda
BOND	PX1	O3R	2326.889	1.607	! 0.012	P ! mod by anda
!Suga	rs					
!RNA	stati	stics				
BOND	05R	C5R	1709.551	1.425	! 0.014	Sugar
BOND	C5R	C4R	1982.674	1.510	! 0.013	S
BOND	C4R	C3R	2769.190	1.524	! 0.011	S
BOND	C3R	C2R	2769.190	1.525	! 0.011	S
BOND	C2R	C1R	3350.720	1.528	! 0.010	S
BOND	04R	C1R	2326.888	1.414	! 0.012	S
BOND	04R	C4R	2326.888	1.453	! 0.012	S
BOND	03R	C3R	1982.674	1.423	! 0.013	S
BOND	C2R	02R	1982.674	1.413	! 0.013	S
!DNA	stati	stics				
BOND	05R	C5D	1709.551	1,427	! 0.014	Sugar
BOND	C5D	C4D	5235.500	1.511	! 0.008	S
BOND	C4D	C3D	3350.720	1.528	! 0.010	S
BOND	C3D	C2D	3350.720	1.518	! 0.010	S
BOND	C2D	C1D	1709.551	1.521	! 0.014	S
BOND	04D	C1D	1982.674	1.420	1.0.013	s
BOND	04D	C4D	2769, 190	1.446	1.0.011	s
BOND	0.38	C3D	1982 674	1 431	1 0 013	s
DOND	0011	000	1002.014	1.401	. 0.010	5
Ihvdr	ogen/	carbon				
BOND	C4R	н	\$kchbond	1 09		
BOND	C3R	н	\$kchbond	1.09		
BOND	C2R	н	\$kchbond	1.09		
BOND	C1R	н	\$kchbond	1 09		
BOND	C5R	н	\$kchbond	1 09		
DOND	0011		without	1.00		
BUND	CAD	ч	\$kchbond	1 09		
BOND	C3D	и и	\$kchbond	1 09		
BOND	COD	и и	\$kchbond	1 09		
BOND	C1D	и и	\$kchbond	1 09		
BOND	CED	и и	\$kchbond	1 09		
DUND	000	п	φκοπροπα	1.09		
IBago	-					
Ibase		ific hon	da tokon f		11 dag 24 lag	
RUND	Uou	HO HO	1350 000	0 057	una , 3≁kq I ™	
BUND	020 ⊔™	NNA	1416 000	1 010		
BUND	пN HM	NINA N1T	1416 000	1 010	: URA	
	пN uv	N1C	1416.000	1.010	: inter.	
BOND	HN	NIC	1416.000	1.010		
ROND	HŃ	N9G	1416.000	1.010		
ROND	HŃ	N9A	1416.000	1.010		
BUND	HN	N9P	1416.000	1.010		

BOND	HN	NSU	1416.000	1.010		
BOND	HN	N3T	1416.000	1.010		
BOND	H2	N2	1416.000	1.010		
BOND	H2	N4C	1416.000	1.010		
BOND	H2	N2G	1416.000	1.010		
BOND	н2	NGA	1416 000	1 010		
DOND	112	NOA	1110.000	1.010		
BOND	HO	ОН	1350.000	0.960	! PARAM7 (IR stretch 3400
!Base	suga	r joint	bonds (scal	e from sugar)	
1			kq	x_eq	sigma	
BOND	C1R	N1T	1709.551	1.473	! 0.014 B	ase
BOND	C1R	N1U	4136.691	1,469	! 0.009 B	
BOND	C1R	N1C	2326,889	1.470	! 0.012 B	
BOND	C1R	N9G	4136.691	1.459	! 0.009 B	
BOND	C1B	NGA	3350.720	1.462	1 0.010 B	
ROND	CIR	NOD	3350 720	1 462	I 0 010 B	
DOIND	0110	NOI	3330.720	1.402	: 0.010 b	
DUND	C1D	NIT	1700 EE1	1 472	L 0 014 R	IDNA
DOND	CID	NII	1109.001	1.475	: 0.014 B	DNA
BOND	CID	NIO	4130.091	1.409	: 0.009 B	
BOND	CID	NIC	2326.889	1.470	! 0.012 B	
BOND	CID	N9G	4136.691	1.459	i 0.009 B	
BOND	C1D	N9A	3350.720	1.462	! 0.010 B	
BOND	C1D	N9P	3350.720	1.462	! 0.010 B	
!cyto:	sine			kq	x_eq sig	ma
BOND		C2C	ON	1370.370	1.240 !0.0	09 B
BOND		C4C	N4C	1370.370	1.335 !0.0	09 B
BOND		N1C	C2C	1110.000	1.397 !0.0	10 B
BOND		N1C	C6C	3083.333	1.367 !0.0	06 B
BOND		C2C	NC	1734.375	1.353 !0.0	08 B
BOND		NC	C4C	2265.306	1.335 !0.0	07 B
BOND		C4C	C5C	1734.375	1.425 !0.0	08 B
BOND		C5C	C6C	1734.375	1.339 !0.0	08 B
BOND		C5C	Н	\$kchbond	1.09	
BOND		C6C	Н	\$kchbond	1.09	
!thym	ine					
BOND		N1T	C2T	1734.375	1.376 !0.0	08 B
BOND		C2T	N3T	1734.375	1.373 !0.0	08 B
BOND		N3T	C4T	1734.375	1.382 !0.0	08 B
BOND		C4T	C5T	1370.370	1.445 !0.0	09 B
BOND		C5T	C6T	2265.306	1.339 !0.0	07 B
BOND		C6T	N1T	2265.306	1.378 !0.0	07 B
BOND		C2T	ON	1734 375	1.220 10.0	08 B
BOND		C4T	ON	1370.370	1.228 10.0	09 B
BOND		CST	CC3F	3083 333	1 496 10 0	06 B
ROND		CET	ч	\$kchbond	1 00	00 5
DOND		CC2E	11 U	Ølrahhand	1.00	
DUND		COSE	п	φκοπροπα	1.09	
- امرا	inc					
: aden:	тпе	NC	C04	1270 270	1 220 10 0	00 P
		NC ON	UZA	1070.070	1.339 10.0	00 B
ROND		UZA	NJA	13/0.3/0	1.331 !0.0	OB B
ROND		NJA	C4A	3083.333	1.344 !0.0	UD B
BUND		C4A	C5A	2265.306	1.383 !0.0	U/ B
BOND		C5A	C6A	1370.370	1.406 !0.0	09 B

cm-1)

BOND	C6A	NC	2265.306	1.351	!0.007	В			
BOND	C5A	N7A	3083.333	1.388	!0.006	В			
BOND	N7A	C8A	2265.306	1.311	!0.007	В			
BOND	C8A	N9A	1734.375	1.373	!0.008	В			
BOND	N9A	C4A	3083.333	1.374	!0.006	В			
BOND	C6A	N6A	1734.375	1.335	!0.008	В			
BOND	C8A	Н	\$kchbond	1.08					
BOND	C2A	Н	\$kchbond	1.09					
!purine									
BOND	NC	C2P	1370.370	1.339	10.009	в			
BOND	C2P	N3P	1370.370	1.331	10.009	в			
BOND	N3P	C4P	3083.333	1.344	10.006	B			
BOND	C4P	C5P	2265.306	1.383	10.007	B			
BOND	C5P	C6P	1370.370	1.406	10.009	B			
BOND	C6P	NC	2265.306	1.351	10.007	B			
BOND	CSP	N7P	3083 333	1 388	10 006	B			
BOND	N7D	CSD	2265 306	1 311	10 007	B			
BOND	CSD	NOD	1734 375	1 373	10.008	B			
	NOD	CAD	2002 222	1 274	10.000	D			
	CED	u U	¢lrahhand	1 00	10.000	D			
DOND	COP	п	φkcnbond	1.09	10.008	Б			
DOND	COP	п	φkcnbond	1.00					
BOND	C2P	H	\$KCNDONG	1.09					
guanine	NINTA	000	1704 075	1 070	10 000	P			
DOND	NNA	02G	1704.075	1.202	10.000	D			
BOND	C2G	N3G	1/34.3/5	1.323	10.008	в			
BOND	N3G	046	2265.306	1.350	10.007	в			
BOND	C4G	C5G	2265.306	1.379	10.007	В			
BOND	C5G	C6G	1110.000	1.419	10.010	В			
BOND	C6G	NNA	2265.306	1.391	10.007	В			
BOND	C5G	N7G	3083.333	1.388	10.006	В			
BOND	N7G	C8G	3083.333	1.305	10.006	В			
BOND	C8G	N9G	2265.306	1.374	10.007	В			
BOND	N9G	C4G	1734.375	1.375	10.008	В			
BOND	C2G	N2G	1110.000	1.341	!0.010	В			
BOND	C6G	06G	1370.370	1.237	!0.009	В			
BOND	C8G	Н	\$kchbond	1.08					
!uracil									
BOND	C2U	ON	1370.370	1.219	!0.009	В			
BOND	C4U	ON	1734.375	1.232	10.008	В			
BOND	N1U	C2U	1370.370	1.381	!0.009	В			
BOND	N1U	CGU	1370.370	1.375	!0.009	В			
BOND	C2U	NJU	2265.306	1.373	!0.007	В			
BOND	N3U	C4U	1370.370	1.380	!0.009	В			
BOND	C4U	C5U	1370.370	1.431	!0.009	В			
BOND	C5U	CGU	1370.370	1.337	!0.009	В			
BOND	C5U	H	\$kchbond	1.09					
BOND	C6U	Н	\$kchbond	1.09					
BOND	C2D	NX29	2265.306	1.479	!check	param,	added	for	pyr

!Phos.
!the ANGLe s were taken from param11.dna with 3*kq
ANGLe H0 OH C5R 139.500 107.300

ANGLe	HO	05R	C5R	139.500	107.300			
ANGLe	HO	OH	C5D	139.500	107.300			
ANGLe	HO	05R	C5D	139.500	107.300			
ANGLe	HO	03R	Р	139.500	107.300			
ANGLe	HO	OH P		139.500 1	07.300 !	For 5pl	no pato	ch
ANGLe	HO	02R	C2R	139.500	107.300			
ANGLe	OH	Р	O3R	144.300	102.600	1		
ANGLe	OH	Р	05R	144.300	102,600	i.		
ANGLO	ОН	P	01P	296 700	108 230			
ANGLO	011	D	000	200.100	100.200			
ANGLE		r CED	02F	290.700	110.230			
ANGLE	ON	COR	C4R	210.000	112.000			
ANGLe	UH	C5D	C4D	210.000	112.000	!		
ANGLe	C4D	C3D	OH	139.500	111.000	!		
ANGLe	C4R	C3R	OH	139.500	111.000	i		
ANGLe	C2D	C3D	OH	139.500	111.000	!		
ANGLe	C2R	C3R	OH	139.500	111.000	!		
ANGLe	C3R	OH	HO	139.500	107.300	!		
ANGLe	C3D	OH	HO	139.500	107.300	!		
!Phos c	ombined	RNA/DN	A statist:	ics used				
!				kq	x_eq :	sigma		
ANGLe	01P	Р	02P	1337.074	119.600	!1.5 P		
ANGLe	05R	Р	01P	357.719	108.100	!2.9 P		
ANGLe	05R	Р	02P	412,677	108.300	12.7 P		
ANGLO	038	P	05B	833 356	104 000	11 9 P		
ANGLO	0117	Þ	05R	833 356	104.000	11 9 P	Imod k	w anda
ANGLO	038	DY1	084	833 356	104.000	11 Q P	Imod k	y anda
ANGLE	USK	FAI	UA4	033.330	104.000	:1.9 F	:mou i	by anua
		_						
ANGLe	02P	Р	O3R	293.791	108.300	!3.2 P		
ANGLe	01P	Р	03R	293.791	107.400	!3.2 P		
ANGLe	OX3	PX1	03R	293.791	108.300	!3.2 P	!mod b	oy anda
ANGLe	0X2	PX1	03R	293.791	107.400	!3.2 P	!mod b	oy anda
ANGLe	02P	Р	OX17	293.791	108.300	!3.2 P	!mod b	oy anda
ANGLe	01P	Р	OX17	293.791	107.400	!3.2 P	!mod b	oy anda
ANGLe	05R	C5R	C4R	1534.906	110.200	!1.4 P		
ANGLe	Р	05R	C5R	1175.163	120.900	!1.6 P		
ANGLe	Р	O3R	C3R	2089.178	119.700	!1.2 P		
ANGLe	05R	C5D	C4D	1534.906	110.200	!1.4 P	!DNA	
ANGLe	Р	05R	C5D	1175.163	120.900	!1.6 P		
ANGLe	Р	03R	C3D	2089.178	119.700	!1.2 P		
ANGLO	P¥1	03R	C3D	2089 178	119 700	11 2 P	Imod k	w anda
ANGLE	D	0817	0310	2003.170	110 700	:1.2 I	: mou t	y anua
ANGLE	Р	UXI7	CAIZ	2009.170	119.700	!1.2 P	imod r	by anda
!Sugars								
!RNA statis	tics							
!				kq	x_eq :	sigma		
ANGLe	04R	C4R	C3R	561.212	105.500	!1.4 S		
ANGLe	C5R	C4R	C3R	488.878	115.500	!1.5 S		
ANGLe	C5R	C4R	04R	561.212	109.200	!1.4 S		
ANGLe	C1R	04R	C4R	1357.996	109.600	!0.9 S		
ANGLe	C4R	C3R	C2R	1099.976	102.700	!1.0 S		
ANGLe	C3R	C2R	C1R	1357.996	101.500	!0.9 S		
ANGLe	04R	C1R	C2R	561.212	106.400	!1.4 S		

ANGLe	N1T	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	N1C	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	N1U	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	N9G	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	N9A	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	N9P	C1R	C2R	429.678	113.400 !1.6 S
ANGLe	04R	C1R	N1T	1099.976	108.200 !1.0 S
ANGLe	04R	C1R	N1C	1099.976	108.200 !1.0 S
ANGLe	04R	C1R	N1U	1099.976	108.200 !1.0 S
ANGLe	04R	C1R	N9A	1099.976	108.200 !1.0 S
ANGLe	04R	C1R	N9P	1099.976	108.200 !1.0 S
ANGLe	04R	C1R	N9G	1099.976	108.200 !1.0 S
ANGLe	C1R	C2R	02R	357.719	110.600 !2.9 S scale from phos.
ANGLe	C3R	C2R	02R	357.719	113.300 !2.9 S scale from phos.
ANGLe	C4R	C3R	O3R	445.032	110.500 !2.6 S scale from phos.
ANGLe	C2R	C3R	O3R	383.726	111.000 !2.8 S scale from phos.
!DNA statis	tics				
ANGLe	04D	C4D	C3D	1099.976	105.600 !1.0 S
ANGLe	C5D	C4D	C3D	488.878	114.700 !1.5 S
ANGLe	C5D	C4D	04D	429.678	109.400 !1.6 S
ANGLe	C1D	04D	C4D	650.874	109.700 !1.3 S
ANGLe	C4D	C3D	C2D	1099.976	103.200 !1.0 S
ANGLe	C3D	C2D	C1D	650.874	102.700 !1.3 S
ANGLe	04D	C1D	C2D	909.071	106.100 !1.1 S
ANGLe	N1T	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	N1C	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	N1U	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	N9G	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	N9A	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	N9P	C1D	C2D	488.878	114.200 !1.5 S
ANGLe	04D	C1D	N1T	1357.996	107.800 10.9 5
ANGLe	04D	C1D	N1C	1357,996	107 800 10 9 5
ANGLe	04D	C1D	N1U	1357,996	107 800 10 9 5
ANGLO	04D	C1D	NGA	1357 996	107 800 10 9 5
ANGLO	040	CID	NOD	1357 006	107 800 10 9 5
ANGLO	040	CID	NOC	1357 006	107.800 10.9 5
ANGLO	CAD	C3D	035	621 574	110 300 12 2 S scale from phos
ANGLO	COD	C3D	038	410 677	110.600 12.7 S scale from phos.
ANGLE	020	000	0.010	412.077	110.000 iz./ 5 scare from phos.
IRiboso tor	me invo	luing n	on=ovchago	ablog	
ANGLO	0H	C5R	н	\$kchangle	109 83
ANGLO	05R	C5R	н	\$kchangle	109.83
ANGLO	u	CER	и и	¢kchanglo	109.03
ANGLO	CAR	CER	и и	¢kchangle	109.11
ANGLO	CED	CAR	и и	¢kchangle	107.02
ANGLO	u	CAR	C3B	¢kchanglo	107.13
ANGLO	11 11	CAR	0412	¢kchanglo	113 74
ANGLO	11 11	COD	CAR	¢kchangle	111 25
ANGLE	п	CSP	03P	¢kchangle	105 87
ANGLE	п	CSP	OU	¢kchangle	105.87
ANGLE	n u	COR	UII	økcnangle	110.07
ANGLE	n u	COR	02R	økcnangle	112.21
ANGLE	н	C2R	UJK	<pre>skcnangle</pre>	111.41
ANGLE	н	C2R	U2R	<pre>skcnangle</pre>	113.07
ANGLE	н	C2R	CIR	<pre>skcnangle</pre>	112.38
ANGLE	п	CIK	02R	φκchangle	111.30

ANGLe	Н	C1R	N1C	<pre>\$kchangle</pre>	107.70
ANGLe	Н	C1R	N1U	\$kchangle	107.70
ANGLe	Н	C1R	N1T	\$kchangle	107.70
ANGLe	Н	C1R	N9A	\$kchangle	107.70
ANGLe	Н	C1R	N9P	\$kchangle	107.70
ANGLe	Н	C1R	N9G	\$kchangle	107.70
ANGLe	Н	C1R	04R	\$kchangle	106.86
				0	
!Deoxvribos	e terms	involv	ing non-ex	chageables	
1	o oormo	1111011		ondgoubrob	
ANGLO	OH	C5D	н	\$kchangle	109 70
ANGLO	052	CED	и и	¢kchanglo	109.70
ANGLO	u	CED	и и	¢kchanglo	109.17
ANGLO	CAD	CED		¢kchangle	100.17
ANGLE	CED.	CAD	n u	<pre></pre>	107.78
ANGLE	050	C4D	п (2)р	φkchangie	107.78
ANGLE	п	C4D	040	\$kchangie	106.91
ANGLE	п	C4D	040	\$kchangie	112.90
ANGLE	н	C3D	C4D	\$kcnangle	111.16
ANGLe	н	C3D	U3R	\$kchangle	109.34
ANGLe	Н	C3D	OH	\$kchangle	109.34
ANGLe	Н	C3D	C2D	\$kchangle	111.98
ANGLe	Н	C2D	C3D	\$kchangle	111.36
ANGLe	Н	C2D	Н	<pre>\$kchangle</pre>	107.52
ANGLe	Н	C1D	H	\$kchangle	107.52 !mod by anda
ANGLe	Н	C2D	C1D	\$kchangle	112.29
ANGLe	Н	C1D	C2D	\$kchangle	110.94
ANGLe	Н	C1D	N1C	\$kchangle	108.25
ANGLe	Н	C1D	N1U	<pre>\$kchangle</pre>	108.25
ANGLe	Н	C1D	N1T	<pre>\$kchangle</pre>	108.25
ANGLe	Н	C1D	N9A	<pre>\$kchangle</pre>	108.25
ANGLe	Н	C1D	N9P	<pre>\$kchangle</pre>	108.25
ANGLe	Н	C1D	N9G	\$kchangle	108.25
ANGLe	Н	C1D	04D	<pre>\$kchangle</pre>	107.95
!Bases					
!cytosine				kq	x_eq sigma
ANGLe	C6C	N1C	C2C	2277.447	120.300 !0.40 B
ANGLe	N1C	C2C	NC	743.656	119.200 !0.70 B
ANGLe	C2C	NC	C4C	1457.566	119.900 !0.50 B
ANGLe	NC	C4C	C5C	2277.447	121.900 !0.40 B
ANGLe	C4C	C5C	C6C	1457.566	117.400 !0.50 B
ANGLe	C5C	C6C	N1C	1457.566	121.000 !0.50 B
ANGLe	N1C	C2C	ON	1012.199	118.900 !0.60 B
ANGLe	NC	C2C	ON	743.656	121.900 !0.70 B
ANGLe	NC	C4C	N4C	743.656	118.000 !0.70 B
ANGLe	C5C	C4C	N4C	743.656	120.200 !0.70 B
ANGLe	C6C	N1C	C1R	763.873	120.800 !1.20 B scale from sugar
ANGLe	C2C	N1C	C1R	909.071	118.800 !1.10 B scale from sugar
ANGLe	C6C	N1C	C1D	763.873	120.800 !1.20 B !DNA
ANGLe	C2C	N1C	C1D	909.071	118.800 !1.10 B
ANGLe	C4C	N4C	H2	105 000	120.000 !from param11 dna 3*keg
ANGLe	H2	N4C	H2	105 000	120 000
ANGLO	NIC	060	н.	\$kchangle	119 63
ANGLO	C5C	CEC	н	\$kchangle	119.36
ANGLO	CAC	CEC	н	\$kchangle	121 54
ANGLO	CEC	CEC	 u	¢kchongle	121.01
VIATE	000	000	11	www.uangle	121.04

$2\,$ Input files for Molecular Dynamics calculations

!thymine				kq	x_eq	sigma
ANGLe	C6T	N1T	C2T	1457.566	121.300	!0.50 B
ANGLe	N1T	C2T	N3T	1012.199	114.600	10.60 B
ANGLe	C2T	N3T	C4T	1012.199	127.200	10.60 B
ANGLe	N3T	C4T	C5T	1012.199	115.200	10.60 B
ANGLe	C4T	C5T	C6T	1012.199	118.000	10.60 B
ANGLe	C5T	C6T	N1T	1012.199	123.700	!0.60 B
ANGLe	N1T	C2T	ON	569.362	123.100	!0.80 B
ANGLe	N3T	C2T	ON	1012.199	122.300	!0.60 B
ANGLe	N3T	C4T	ON	1012.199	119.900	!0.60 B
ANGLe	C5T	C4T	ON	743.656	124,900	!0.70 B
ANGLe	C4T	C5T	CC3E	1012,199	119.000	10.60 B
ANGLe	C6T	C5T	CC3E	1012,199	122,900	10.60 B
ANGLe	СбТ	N1T	C1R	488.878	120.400	!1.50 B scale from sugar
ANGLe	C2T	N1T	C1R	429.678	118.200	!1.60 B scale from sugar
ANGLe	C6T	N1T	C1D	488,878	120,400	11.50 B IDNA
ANGLO	СЭТ	N1T	C1D	429 678	118 200	11.60 B
ANGLO	COT	NST	HN	105 000	116 500	Ifrom paramii dna Sekoa
ANGLE	CAT	NOT		105.000	116 500	iiiom paramii.una, 3*keq
ANGLe	041	NSI	TIN TI	105.000	100 50	
ANGLE	051	CUSE	n 	\$kchangie	109.50	
ANGLE	H	CC3E	H	\$kchangle	109.44	
ANGLe	NIT	C61	н	\$kchangle	119.52	
ANGLe	C5T	C6T	Н	\$kchangle	119.52	
				,		
!adenine				kq	x_eq	sigma
ANGLe	C6A	NC	C2A	1012.199	118.600	10.60 B
ANGLe	NC	C2A	N3A	1457.566	129.300	10.50 B
ANGLe	C2A	NSA	C4A	1457.566	110.600	!0.50 B
ANGLe	NSA	C4A	C5A	743.656	126.800	!0.70 B
ANGLe	C4A	C5A	C6A	1457.566	117.000	!0.50 B
ANGLe	C5A	C6A	NC	1457.566	117.700	!0.50 B
ANGLe	C4A	C5A	N7A	1457.566	110.700	!0.50 B
ANGLe	C5A	N7A	C8A	1457.566	103.900	!0.50 B
ANGLe	N7A	CSA	N9A	1457.566	113.800	!0.50 B
ANGLe	C8A	N9A	C4A	2277.447	105.800	!0.40 B
ANGLe	N9A	C4A	C5A	2277.447	105.800	!0.40 B
ANGLe	NSA	C4A	N9A	569.362	127.400	!0.80 B
ANGLe	C6A	C5A	N7A	743.656	132.300	!0.70 B
ANGLe	NC	C6A	N6A	1012.199	118.600	!0.60 B
ANGLe	C5A	C6A	N6A	569.362	123.700	!0.80 B
ANGLe	C8A	N9A	C1R	339.499	127.700	!1.80 B scale from sugar
ANGLe	C4A	N9A	C1R	339.499	126.300	!1.80 B scale from sugar
ANGLe	C8A	N9A	C1D	339.499	127.700	!1.80 B !DNA
ANGLe	C4A	N9A	C1D	339.499	126.300	!1.80 B
ANGLe	C6A	N6A	H2	105.000	120.000	!from param11.dna, 3*keq
ANGLe	H2	N6A	H2	105.000	120.000	
ANGLe	N7A	C8A	Н	\$kchangle	123.16	
ANGLe	N9A	C8A	Н	\$kchangle	123.16	
ANGLe	NC	C2A	Н	\$kchangle	115.54	
ANGLe	N3A	C2A	Н	\$kchangle	115.54	
!purine				kq	x_eq	sigma
ANGLe	C6P	NC	C2P	1012.199	118.600	!0.60 B
ANGLe	NC	C2P	N3P	1457.566	129.300	!0.50 B
ANGLe	C2P	N3P	C4P	1457.566	110.600	!0.50 B

ANGLe	N3P	C4P	C5P	743.656	126.800	!0.70 B
ANGLe	C4P	C5P	C6P	1457.566	117.000	!0.50 B
ANGLe	C5P	C6P	NC	1457.566	117.700	!0.50 B
ANGLe	C4P	C5P	N7P	1457.566	110.700	!0.50 B
ANGLe	C5P	N7P	C8P	1457.566	103.900	!0.50 B
ANGLe	N7P	C8P	N9P	1457.566	113.800	!0.50 B
ANGLe	C8P	N9P	C4P	2277.447	105.800	!0.40 B
ANGLe	N9P	C4P	C5P	2277.447	105.800	!0.40 B
ANGLe	N3P	C4P	N9P	569.362	127.400	!0.80 B
ANGLe	C6P	C5P	N7P	743.656	132.300	!0.70 B
ANGLe	NC	C6P	Н	\$kchangle	120.164	!0.60 B !modified by anda
ANGLe	C5P	C6P	Н	\$kchangle	120.164	!0.80 B !modified by anda
ANGLe	C8P	N9P	C1R	339.499	127.700	!1.80 B scale from sugar
ANGLe	C4P	N9P	C1R	339.499	126.300	!1.80 B scale from sugar
ANGLe	C8P	N9P	C1D	339.499	127.700	!1.80 B !DNA
ANGLe	C4P	N9P	C1D	339.499	126.300	!1.80 B
ANGLe	N7P	C8P	Н	\$kchangle	123.16	
ANGLe	N9P	C8P	Н	\$kchangle	123.16	
ANGLe	NC	C2P	Н	\$kchangle	115.54	
ANGLe	N3P	C2P	Н	\$kchangle	115.54	
guanine!				kq	x_eq	sigma
ANGLe	C6G	NNA	C2G	1012.199	125.100	!0.60 B
ANGLe	NNA	C2G	N3G	1012.199	123.900	!0.60 B
ANGLe	C2G	N3G	C4G	1457.566	111.900	!0.50 B
ANGLe	N3G	C4G	C5G	1457.566	128.600	!0.50 B
ANGLe	C4G	C5G	C6G	1012.199	118.800	!0.60 B
ANGLe	C5G	C6G	NNA	1457.566	111.500	!0.50 B
ANGLe	C4G	C5G	N7G	2277.447	110.800	!0.40 B
ANGLe	C5G	N7G	C8G	1457.566	104.300	!0.50 B
ANGLe	N7G	C8G	N9G	1457.566	113.100	!0.50 B
ANGLe	C8G	N9G	C4G	2277.447	106.400	!0.40 B
ANGLe	N9G	C4G	C5G	2277.447	105.400	!0.40 B
ANGLe	N3G	C4G	N9G	1012.199	126.000	!0.60 B
ANGLe	C6G	C5G	N7G	1012.199	130.400	!0.60 B
ANGLe	NNA	C2G	N2G	449.866	116.20	!0.90 B
ANGLe	N3G	C2G	N2G	743.656	119.900	!0.70 B
ANGLe	NNA	C6G	06G	1012.199	119.900	!0.60 B
ANGLe	C5G	C6G	06G	1012.199	128.600	!0.60 B
ANGLe	C8G	N9G	C1R	650.874	127.000	!1.30 B scale from sugar
ANGLe	C4G	N9G	C1R	650.874	126.500	!1.30 B scale from sugar
ANGLe	C8G	N9G	C1D	650.874	127.000	!1.30 B !DNA
ANGLe	C4G	N9G	C1D	650.874	126.500	!1.30 B
ANGLe	C2G	N2G	H2	105.000	120.000	!from param11.dna, 3*keq
ANGLe	H2	N2G	H2	105.000	120.000	
ANGLe	C2G	NNA	HN	105.000	119.300	
ANGLe	C6G	NNA	HN	105.000	119.300	
ANGLe	N7G	C8G	Н	<pre>\$kchangle</pre>	122.91	
ANGLe	N9G	C8G	Н	\$kchangle	122.91	
!uracile				kq	x_eq	sigma
ANGLe	C6U	N1U	C2U	1012.199	121.000	!0.60 B
ANGLe	N1U	C2U	N3U	1012.199	114.900	!0.60 B
ANGLe	C2U	N3U	C4U	1012.199	127.000	!0.60 B
ANGLe	N3U	C4U	C5U	1012.199	114.600	!0.60 B
ANGLe	C4U	C5U	CGU	1012.199	119.700	!0.60 B

ANGLe	C5U	C6U	N1U	1457.566	122.700	!0.50	В			
ANGLe	N1U	C2U	ON	743.656	122.800	!0.70	В			
ANGLe	N3U	C2U	ON	743.656	122.200	!0.70	В			
ANGLe	N3U	C4U	ON	743.656	119.400	!0.70	В			
ANGLe	C5U	C4U	ON	1012.199	125.900	!0.60	В			
ANGLe	C6U	N1U	C1R	561.212	121.200	!1.40	В			
ANGLe	C2U	N1U	C1R	763.872	117.700	!1.20	В			
ANGLe	C6U	N1U	C1D	561.212	121.200	!1.40	B !DNA			
ANGLe	C2U	N1U	C1D	763.872	117.700	!1.20	В			
ANGLe	C4U	ON	HO	105.000	120.000	!from	param11	.dna, 3	3*ke	1
ANGLe	C2U	N3U	HN	105.000	116.500					
ANGLe	C4U	N3U	HN	105.000	116.500					
ANGLe	N1U	C6U	Н	<pre>\$kchangle</pre>	119.38					
ANGLe	C5U	C6U	Н	<pre>\$kchangle</pre>	119.38					
ANGLe	C4U	C5U	Н	<pre>\$kchangle</pre>	119.56					
ANGLe	C6U	C5U	Н	<pre>\$kchangle</pre>	119.56					
ANGLe	C3D	C2D	NX29	1457.566	110.00	!check	k param,	added	fpr	pyr
ANGLe	Н	C2D	NX29	500.00	109.51	!check	k param,	added	fpr	pyr

{

!Dihedrals from param11.dna (included for terminal residues)

!DIHEdral	Х	C2R	C3R	Х	4.50 3	0.000	
!DIHEdral	Х	C4R	C3R	х	4.50 3	0.000	
!DIHEdral	Х	C2R	C1R	х	4.50 3	0.000	
!DIHEdral	Х	C5R	05R	х	1.50 3	0.000	
!DIHEdral	Х	C3R	03R	х	1.50 3	0.000	
DIHEdral	Х	C3R	OH	Х	1.50 3	0.000	
DIHEdral	Х	C5R	OH	Х	1.50 3	0.000	
!DIHEdral	Х	C2R	02R	х	1.50 3	0.000	
!DIHEdral	Х	05R	Р	х	2.25 3	0.000	
DIHEdral	Х	OH	Р	Х	2.25 3	0.000	
!DIHEdral	OH	C5R	C4R	04R	4.50 3	0.000	
!DIHEdral	OH	C5R	C4R	C3R	4.50 3	0.000	! gamma
!DIHEdral	C3R	03R	Р	OH	2.25 3	0.000	! added by infer
!DIHEdral	C3R	03R	Р	OH	2.25 2	0.000	! ATB, 7-SEP-84
DIHEdral	C5R	05R	Р	OH	2.25 3	0.000 !	added by infer
!DIHEdral	C5R	05R	Р	OH	2.25 2	0.000	! ATB, 7-SEP-84
!DIHEdral	X	C2D	C3D	Х	4.50 3	0.000	
!DIHEdral	X	C4D	C3D	Х	4.50 3	0.000	! DNA
!DIHEdral	X	C2D	C1D	Х	4.50 3	0.000	
!DIHEdral	X	C5D	05R	Х	1.50 3	0.000	
!DIHEdral	Х	C3D	03R	х	1.50 3	0.000	
DIHEdral	Х	C3D	OH	X	1.50 3	0.000	
DIHEdral	Х	C5D	OH	X	1.50 3	0.000	
!DIHEdral	OH	C5D	C4D	04D	4.50 3	0.000	
!DIHEdral	OH	C5D	C4D	C3D	4.50 3	0.000	
!DIHEdral	C3D	03R	Р	OH	2.25 3	0.000	
!DIHEdral	C3D	03R	Р	OH	2.25 2	0.000	
DIHEdral	C5D	05R	Ρ	OH	2.25 3	0.000	
!DIHEdral	C5D	05R	Р	OH	2.25 2	0.000	

^{}{}

!Base hydrogen DIHEdrals taken from param11.dna

DIHEdral	Х	C2G	N2G	Х	18.0	2	180.000
DIHEdral	Х	C6A	NGA	Х	18.0	2	180.000
!DIHEdral	Х	C6A	N4C	Х	18.0	02	180.000
DIHEdral	Х	C4C	N4C	Х	18.00	2	180.000
}							
!IMPRopers	to ke	ep th	e two	purin	e ring	s p	arallel:
!guanine							

0							
IMPRoper	C8G	C4G	C5G	NNA	250.0	2	180.000
IMPRoper	C8G	C5G	C4G	C2G	250.0	2	180.000
IMPRoper	N3G	C4G	C5G	N7G	250.0	2	180.000
IMPRoper	C6G	C5G	C4G	N9G	250.0	2	180.000
!adenine							
IMPRoper	C8A	C4A	C5A	N9A	250.0	2	180.000 ! WYE AND PATCHED RESIDUES
IMPRoper	C8A	C5A	C4A	C2A	250.0	2	180.000
IMPRoper	C8A	C4A	C5A	NC	250.0	2	180.000
IMPRoper	N3A	C4A	C5A	N7A	250.0	2	180.000
IMPRoper	C6A	C5A	C4A	N9A	250.0	2	180.000
!purine							
IMPRoper	C8P	C4P	C5P	N9P	250.0	2	180.000 ! WYE AND PATCHED RESIDUES
IMPRoper	C8P	C5P	C4P	C2P	250.0	2	180.000
IMPRoper	C8P	C4P	C5P	NC	250.0	2	180.000
IMPRoper	N3P	C4P	C5P	N7P	250.0	2	180.000
IMPRoper	C6P	C5P	C4P	N9P	250.0	2	180.000

!other base specific non-exch hydrogen IMPRopers

IMPRoper	Н	C4C	C6C	C5C	\$kchimpr	0	0.000
IMPRoper	Н	N1C	C5C	C6C	\$kchimpr	0	0.000
IMPRoper	Н	C4U	CGU	C5U	\$kchimpr	0	0.000
IMPRoper	Н	N1U	C5U	C6U	\$kchimpr	0	0.000
IMPRoper	Н	N1T	C5T	C6T	\$kchimpr	0	0.000
IMPRoper	Н	N7A	N9A	C8A	\$kchimpr	0	0.000
IMPRoper	Н	NC	N3A	C2A	\$kchimpr	0	0.000
IMPRoper	Н	N7P	N9P	C8P	\$kchimpr	0	0.000
IMPRoper	Н	NC	N3P	C2P	\$kchimpr	0	0.000
IMPRoper	Н	NC	C5P	C6P	\$kchimpr	0	0.000
IMPRoper	Н	N7G	N9G	C8G	\$kchimpr	0	0.000

!Impropers	for	ribose	chir	ality			
IMPRoper	Н	C2R	04R	N9A	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C2R	04R	N9P	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C2R	04R	N9G	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C2R	04R	N1C	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C2R	04R	N1U	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C2R	04R	N1T	\$kchimpr	0	-65.000!C1R
IMPRoper	Н	C3R	C1R	02R	\$kchimpr	0	65.000!C2R
IMPRoper	Н	C4R	C2R	03R	\$kchimpr	0	60.300!C3R
IMPRoper	Н	C4R	C2R	OH	\$kchimpr	0	60.300!C3R; TERMINAL RES
IMPRoper	Н	C5R	C3R	04R	\$kchimpr	0	70.300!C4R
IMPRoper	Н	05R	Н	C4R	\$kchimpr	0	72.000!C5R;
IMPRoper	Н	OH	Н	C4R	\$kchimpr	0	72.000!C5R; TERMINAL RES
!Impropers	for	deoxyr	ibose	chiral	ity		
IMPRoper	Н	C2D	04D	N9A	\$kchimpr	0	-65.280!C1D

IMPRoper H C2D 04D N9P -65.280!C1D \$kchimpr 0 H C2D O4D N9G IMPRoper \$kchimpr 0 -65.280!C1D IMPRoper H C2D 04D N1C \$kchimpr 0 -65.280!C1D
 \$kchimpr
 0
 -65.280!C1D

 \$kchimpr
 0
 -65.280!C1D

 \$kchimpr
 0
 -65.280!C1D !mod by anda (ABA)
 H C2D O4D N1T IMPRoper C2D 04D N1U IMPRoper Н IMPRoper H C2D O4D H IMPRoper H C3D H C1D \$kchimpr 0 -73.500!C2D IMPRoper H C4D C2D O3R \$kchimpr 0 62.660!C3D IMPRoper H C4D C2D OH \$kchimpr 0 62.660!C3D; TERMINAL RES IMPRoper H C5D C3D O4D \$kchimpr 0 70.220!C4D \$kchimpr 0 71.430!C5D; \$kchimpr 0 71.430!C5D; TERMINAL RES IMPRoper Н O5R H C4D IMPRoper H OH H C4D ł Phos. - periodical potentials from combined RNA/DNA statistics kq x_eq (sigma in parenthesis) DIHEdral 03R P 05R C5R 1.41 3 24 ! alpha !P (20.3) DIHEdral P 05R C5R C4R 3.45 0 178 ! beta !P (13.0) 05R C5R C4R C3R 12.24 3 18 DIHEdral ! gamma !S (6.9) DIHEdral O5R C5R C4R 04R 24.28 3 14.1 ! !S (4.9) DIHEdral C4R C3R O3R P 7.88 0 -153 ! eps !P (8.6) DIHEdral C3R 03R P 05R 1.75 3 33 ! zeta !P (18.3) DIHEdral O3R P O5R C5D 1.41 3 6.0 !DNA DIHEdral P O5R C5D C4D 3.45 0 183.5 DIHEdral O5R C5D C4D C3D 12.42 3 18.3 DIHEdral 05R C5D C4D 04D 24,28 3 14.1 DIHEdral C4D C3D O3R P 7.88.0 214.0 DIHEdral C3D 03R P 05R 1.75 3 0.3 !Phos. - discrete values from combined RNA/DNA statistics 1 kq x_eq (sigma in parenthesis) !DIHEdral O3R P O5R C5R 6.07 0 285.3 ! (9.8) alpha1 !P !DIHEdral O3R P 05R C5R 3.98 0 81.1 ! (12.1) alpha2;alpha3=180. !DIHEdral P O5R C5R C4R 3.44 0 183.5 ! (13.0) beta !P !DIHEdral 05R C5R C4R C3R 17.94 0 52.5 ! (5.7) gamma1 !S !DIHEdral O5R C5R C4R C3R 14.23 0 179.4 ! (6.4) gamma2 !S !DIHEdral 05R C5R C4R C3R 3.85 0 292.9 ! (12.3) gamma3 !S DIHEdral C4R C3R O3R P 7.88 0 214.0 ! (8.6) eps !P !DIHEdral C3R 03R P 05R 25.30 0 289.2 ! (4.8) zeta1 !P !DIHEdral C3R O3R P 05R 2.85 0 80.7 ! (14.3) zeta2;zeta3=180. }{ !Sugars ! c3'-endo conformation as the default for for RNA, c2'-endo for DNA, !RNA statistics, C3'-endo DIHEdral C5R C4R C3R O3R 30.12 0 81.1 ! delta ! c3'-endo S (4.4) 04R C4R C3R 03R 33.10 0 201.8 ! 4.2 ! c3'-endo S DIHEdral DIHEdral O4R C1R C2R C3R 24.28 0 335.4 ! 4.9 ! c3'-endo S DIHEdral C1R C2R C3R C4R 74.36 0 35.9 ! 2.8 ! c3'-endo S DIHEdral C2R C3R C4R 04R 60.67 0 324.7 ! 3.1 ! c3'-endo S DIHEdral C3R C4R 04R C1R 22.42 0 20.5 ! 5.1 ! c3'-endo S DIHEdral C4R 04R C1R C2R 15.67 0 2.8 ! 6.1 ! c3'-endo S DIHEdral C5R C4R C3R C2R 60.67 0 204.0 ! 3.1 ! c3'-endo S DIHEdral O3R C3R C2R O2R 28.79 0 44.3 ! 4.5 ! c3'-endo S DIHEdral C4R 04R C1R N1T 13.80 0 241.4 ! 6.5 ! c3'-endo S

DIHEdral C4R D4R C1R N1C 13.80 0 241.4 ! 6.5 ! c3'-endo S DIHEdral C4R 04R C1R N1U 13.80 0 241.4 ! 6.5 ! c3'-endo S DIHEdral C4R 04R C1R N9G 13.80 0 241.4 ! 6.5 ! c3'-endo S DIHEdral C4R D4R C1R N9A 13.80 0 241.4 ! 6.5 ! c3'-endo S C4R 04R C1R N9P 13.80 0 241.4 ! 6.5 ! c3'-endo S DIHEdral !RNA c3'-endo sugar base joint torsions (combined RNA/DNA statistics used) DIHEdral 04R C1R N1T C2T 13.38 0 195.7 ! 6.6 ! c3'-endo S DIHEdral 04R C1R N1C C2C 13.38 0 195.7 ! 6.6 ! c3'-endo S DIHEdral 04R C1R N1U C2U 13.38 0 195.7 ! 6.6 ! c3'-endo S D4R C1R N9A C4A 2.97 0 193.3 ! 14.0 ! c3'-endo S DIHEdral DIHEdral D4R C1R N9P C4P 2.97 0 193.3 ! 14.0 ! c3'-endo S DIHEdral 04R C1R N9G C4G 2.97 0 193.3 ! 14.0 ! c3'-endo S !DNA statistics (c2'-endo) DIHEdral C5D C4D C3D O3R 36.44 0 145.2 ! delta ! c2'-endo S (4.0) DIHEdral 04D C1D C2D C3D 24.28 0 32.8 ! 4.9 ! c2'-endo S DIHEdral 04D C4D C3D 03R 31.53 0 265.8 ! 4.3 ! c2'-endo S C1D C2D C3D C4D DIHEdral 44.99 0 326.9 ! 3.6 ! c2'-endo S DIHEdral C2D C3D C4D 04D 28.79 0 22.6 ! 4.5 ! c2'-endo S DIHEdral C3D C4D 04D C1D 15.67 0 357.7 ! 6.1 ! c2'-endo S DIHEdral C4D 04D C1D C2D 14.69 0 340.7 ! 6.3 ! c2'-endo S DIHEdral C5D C4D C3D C2D 34.68 0 262.0 ! 4.1 ! c2'-endo S DIHEdral C4D 04D C1D N1T 12.99 0 217.7 ! 6.7 ! c2'-endo S DIHEdral C4D 04D C1D N1C 12.99 0 217.7 ! 6.7 ! c2'-endo S C4D O4D C1D N1U DIHEdral 12.99 0 217.7 ! 6.7 ! c2'-endo S DIHEdral C4D 04D C1D N9G 12.99 0 217.7 ! 6.7 ! c2'-endo S DIHEdral C4D 04D C1D N9A 12.99 0 217.7 ! 6.7 ! c2'-endo S DIHEdral C4D 04D C1D N9P 12.99 0 217.7 ! 6.7 ! c2'-endo S !DNA c2'-endo sugar base joint torsions (combined RNA/DNA statistics used) DIHEdral 04D C1D N1T C2T 1.72 0 229.8 ! 18.4 ! c2'-endo S O4D C1D N1C C2C DIHEdral 1.72 0 229.8 ! 18.4 ! c2'-endo S DIHEdral 04D C1D N1U C2U 1.72 0 229.8 ! 18.4 ! c2'-endo S O4D C1D N9A C4A 1.00 0 237.0 ! 24.3 ! c2'-endo S DIHEdral DIHEdral 04D C1D N9P C4P 1.00 0 237.0 ! 24.3 ! c2'-endo S DIHEdral 04D C1D N9G C4G 1.00 0 237.0 ! 24.3 ! c2'-endo S 1-----!In the case of c3'-endo conformation, the following DIHEdrals are provided to overwrite the c2'-endo DIHEdrals !RNA statistics (c2'-endo) !DIHEdral C5R C4R C3R 03R 24.28 0 147.3 ! delta ! c2'-endo S (4.9) !DIHEdral 04R C1R C2R C3R 50.43 0 35.2 ! 3.4 ! c2'-endo S !DIHEdral 04R C4R C3R 03R 20.75 0 268.1 ! 5.3 ! c2'-endo S !DIHEdral C1R C2R C3R C4R 74.36 0 324.6 ! 2.8 ! c2'-endo S !DIHEdral C2R C3R C4R 04R 31.53 0 24.2 ! 4.3 ! c2'-endo S !DIHEdral C3R C4R O4R C1R 17.94 0 357.7 ! 5.7 ! c2'-endo S !DIHEdral C4R 04R C1R C2R 21.56 0 339.2 ! 5.2 ! c2'-endo S !DIHEdral C5R C4R C3R C2R 34.68 0 263.4 ! 4.1 ! c2'-endo S !DIHEdral O3R C3R C2R O2R 33.05 0 319.7 ! 4.2 ! c2'-endo S !DIHEdral C4R 04R C1R N1T 19.27 0 216.6 ! 5.5 ! c2'-endo S !DIHEdral C4R 04R C1R N1C 19.27 0 216.6 ! 5.5 ! c2'-endo S !DIHEdral C4R 04R C1R N1U 19.27 0 216.6 ! 5.5 ! c2'-endo S !DIHEdral C4R 04R C1R N9G 19.27 0 216.6 ! 5.5 ! c2'-endo S

2 Input files for Molecular Dynamics calculations

!DIHEdral C4R 04R C1R N9A 19.27 0 216.6 ! 5.5 ! c2'-endo S !RNA c2'-endo sugar base joint torsions (combined RNA/DNA statistics used) 04R C1R N1T C2T 1.72 0 229.8 ! 18.4 ! c2'-endo S !DIHEdral O4R C1R N1C C2C 1.72 0 229.8 !DIHEdral ! 18.4 ! c2'-endo S DIHEdral 04R C1R N1U C2U 1.72 0 229.8 ! 18.4 ! c2'-endo S !DIHEdral 04R C1R N9A C4A 1.00 0 237.0 ! 24.3 ! c2'-endo S !DIHEdral 04R C1R N9G C4G 1.00 0 237.0 ! 24.3 ! c2'-endo S !DNA statistics, c3'-endo (insuficient data, RNA values used) !DIHEdral C5D C4D C3D O3R 30.12 0 81.1 ! delta ! c3'-endo S (4.4) !DIHEdral 04D C4D C3D 03R 33.10 0 201.8 ! 4.2 ! c3'-endo S !DIHEdral 04D C1D C2D C3D 24.28 0 335.4 ! 4.9 ! c3'-endo S C1D C2D C3D C4D 74.36 0 35.9 ! 2.8 ! c3'-endo S !DIHEdral !DIHEdral C2D C3D C4D 04D 60.67 0 324.7 ! 3.1 ! c3'-endo S !DIHEdral C3D C4D 04D C1D 22.42 0 20.5 ! 5.1 ! c3'-endo S !DIHEdral C4D 04D C1D C2D 15.67 0 2.8 ! 6.1 ! c3'-endo S !DIHEdral C5D C4D C3D C2D 60.67 0 204.0 ! 3.1 ! c3'-endo S !DIHEdral C4D 04D C1D N1T 13.80 0 241.4 ! 6.5 ! c3'-endo S C4D 04D C1D N1C 13.80 0 241.4 ! 6.5 ! c3'-endo S !DIHEdral C4D 04D C1D N1U 13.80 0 241.4 ! 6.5 ! c3'-endo S !DIHEdral !DIHEdral C4D 04D C1D N9G 13.80 0 241.4 ! 6.5 ! c3'-endo S !DIHEdral C4D 04D C1D N9A 13.80 0 241.4 ! 6.5 ! c3'-endo S !DNA c3'-endo sugar base joint torsions (combined RNA/DNA statistics used) !DIHEdral 04D C1D N1T C2T 13.38 0 195.7 ! 6.6 ! c3'-endo S !DIHEdral 04D C1D N1C C2C 13.38 0 195.7 ! 6.6 ! c3'-endo S !DIHEdral 04D C1D N1U C2U 13.38 0 195.7 ! 6.6 ! c3'-endo S !DIHEdral 04D C1D N9A C4A 2.97 0 193.3 ! 14.0 ! c3'-endo S !DIHEdral 04D C1D N9G C4G 2.97 0 193.3 ! 14.0 ! c3'-endo S |-----1-----} !Impropers taken from param11.dna , 3*kq IMPRoper C5R X X C2R 94.5 0 35.260

IMPRoper C5R X X C1R 94.5 0 35.260 IMPRoper OH X X C3R 94.5 0 35.260 OH X X C4R 94.5 0 IMPRoper 35.260 OH X IMPRoper X C1R 94.5 0 35.260 IMPRoper O3R X X C3R 94.5 0 35.260 05R X X C1R 94.5 0 IMPRoper 35,260 IMPRoper O2R X X C2R 94.5 0 35.260 C4R 05R C1R N1T 94.5 0 IMPRoper 35.260 IMPRoper C4R 05R C1R N1C 94.5 0 35.260 IMPRoper C4R 05R C1R N9G 94.5 0 35.260 IMPRoper C4R O5R C1R N9A 94.5 0 35.260 IMPRoper C4R 05R C1R N9P 94.5 0 35.260 IMPRoper C5R 04R C3R C4R 94.5 0 35.260 IMPRoper N1T C2R 04R C1R 94.5 0 35.260 IMPRoper N1C C2R 04R C1R 94.5 0 35.260 IMPRoper N9A C2R 04R C1R 94.5 0 35.260 N9P C2R 04R C1R 94.5 0 35.260 IMPRoper IMPRoper N9G C2R 04R C1R 94.5 0 35.260

IMPRoper	C4R	05R	C1R	N1U	94.5	0	35.260			
IMPRoper	N1U	C2R	04R	C1R	94.5	0	35.260			
IMPRoper	C5D	Х	х	C2D	94.5	0	35.260	!DNA		
IMPRoper	C5D	Х	х	C1D	94.5	0	35.260			
IMPRoper	OH	х	Х	C3D	94.5	0	35.260			
IMPRoper	OH	х	Х	C4D	94.5	0	35.260			
IMPRoper	OH	Х	Х	C1D	94.5	0	35.260			
IMPRoper	03R	х	х	C3D	94.5	0	35.260			
IMPRoper	05R	х	х	C1D	94.5	0	35.260			
IMPRoper	C4D	05R	C1D	N1T	94.5	0	35.260			
IMPRoper	C4D	05R	C1D	N1C	94.5	0	35.260			
- IMPRoper	C4D	05R	C1D	N9G	94.5	0	35.260			
- IMPRoper	C4D	05R	C1D	N9A	94.5	0	35.260			
IMPRoper	C4D	05R	C1D	N9P	94.5	0	35.260			
- IMPRoper	C5D	04D	C3D	C4D	94.5	0	35.260			
IMPRoper	N1T	C2D	04D	C1D	94.5	0	35.260			
IMPRoper	N1C	C2D	04D	C1D	94.5	0	35,260			
IMPRoper	N9A	C2D	04D	C1D	94.5	0	35.260			
IMPRoper	N9P	C2D	04D	C1D	94.5	0	35,260			
IMPRoper	NGG	C2D	040	CID	94 5	0	35 260			
IMPRoper	C4D	02D	C1D	N1II	94.5	0	35 260			
IMPRoper	N1II	COD	04D	C1D	94.5	0	35 260			
ингкорет	NIO	620	040	CID	94.5	0	35.200			
Ithe fellow					olton fre		momiter d	100		
the higher	111g 11	mprop	ers we	ere (aken in	m pa	n nlonomi	111a		
the higher	rd w	as us	eu to	enro	ice the	ттия	g pranari	LUY		
TMDRoport	CAC	v	v	ON	2400 0	0	0.000			
INFROPEI	040	л	A	UIV	2400.0	0	0.000			
TMDDonom	CAC	v	v	M1C	250.0	0	0.000			
IMPRoper	C4C	X	X	N1C	250.0	0	0.000			
IMPRoper IMPRoper	C4C C6C	X X	X X	N1C NC	250.0 250.0	0	0.000			
IMPRoper IMPRoper IMPRoper	C4C C6C C4C	X X X	X X X	N1C NC N2	250.0 250.0 2400.0	0 0 0	0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C	X X X X	X X X X	N1C NC N2 ON	250.0 250.0 2400.0 2400.0	0 0 0 0	0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper IMPRoper !infer	C4C C6C C4C C2C	X X X X	X X X X	N1C NC N2 ON	250.0 250.0 2400.0 2400.0	0 0 0	0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper	C4C C6C C4C C2C C1R	X X X X C2C	X X X X C6C	N1C NC N2 ON N1C	250.0 250.0 2400.0 2400.0 2400.0	0 0 0 0	0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D	X X X C2C C2C	X X X C6C C6C	N1C NC N2 ON N1C N1C	250.0 250.0 2400.0 2400.0 2400.0 2400.0		0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C	X X X X C2C C2C NC	X X X X C6C C6C C5C	N1C NC N2 ON N1C N1C C4C	250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0		0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1R C1D N4C C2C	X X X C2C C2C NC NC	X X X C6C C6C C5C C4C	N1C NC N2 ON N1C N1C C4C C5C	250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C	X X X C2C C2C NC NC C6C	X X X C6C C6C C5C C4C N1C	N1C N2 ON N1C C4C C5C C2C	250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2	X X X C2C C2C NC NC NC C6C C4C	X X X C6C C6C C5C C4C N1C H2	N1C N2 ON N1C C4C C5C C2C N4C	250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C	X X X C2C C2C NC NC NC C6C C4C	X X X C6C C6C C5C C4C N1C H2 N4C	N1C N2 ON N1C C4C C2C C2C N4C H2	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C	X X X C2C C2C NC NC NC C6C C4C C4C	X X X C6C C6C C5C C4C N1C H2 N4C	N1C N2 0N N1C C4C C5C C2C N4C H2	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C	X X X X C2C C2C NC C4C C4C C4C	X X X X C6C C6C C5C C4C N1C H2 N4C	N1C N2 ON N1C C4C C5C C2C N4C H2	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper !uracil IMPRoper	C4C C6C C4C C2C C1R C1R C1D N4C C2C C5C C5C C4U	X X X X C2C C2C NC NC C4C C4C C4C	X X X X C6C C5C C4C N1C H2 N4C	N1C N2 ON N1C C4C C5C C2C N4C H2	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 2000.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper !uracil IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C C5C C4U C4U	X X X X C2C C2C NC NC C4C C4C C4C X X X	X X X X C6C C5C C4C N1C H2 N4C	N1C N2 ON N1C C4C C5C C2C N4C H2	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 2000.0 2400.0 2250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper !uracil IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C H2 C5C C4U C4U C4U	X X X X C2C C2C C2C C4C C4C C4C C4C	X X X X CGCC CGC CGC CGC CGC CGC CGC CGC	N1C NC N1C N1C C4C C5C C2C N4C H2 ON N1U N3U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 2000.0 2400.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C C4C C5C C4U C4U C4U C4U	X X X X C2C C2C NC C4C C4C C4C C4C C4C	X X X X CGCC CGCC CGCC C4CC N1CC H2 N4CC X X X X X X X X	N1C N2 ON N1C C4C C5C C2C N4C H2 ON N1U N3U N32	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C C4U C4U C4U C4U C4U C4U C4U C2U	X X X X C2C C2C NC NC C4C C4C C4C C4C X X X X X X X X X X	X X X C6C C5C C4C N1C H2 N4C X X X X X X X X X X X	N1C NC N1C N1C C4C C5C C2C H2 N1C H2 N1U N3U N2 ON	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 2400.0 250.0 250.0 2400.0 250.0 2400.0 2400.0 2400.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPRoper IMPRoper !infer IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper !uracil IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper IMPRoper	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C C4U C4U C4U C4U C4U C2U C1R	X X X C2C C2C NC C4C C4C C4C C4C C4C X X X X X X X X X	X X X C6CC C5CC C4CC N1CC H2 N4CC X X X X X X X X X X X X C6U	N1C NC N1C N1C C4C C5C C2C N4C H2 N1U N3U N2 ON N1U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPROPER	C4C C6C C4C C2C C1R C1D N4C C2C C5C H2 C5C C4U C4U C4U C4U C4U C2U C1R C1D	X X X C2C C2C NC C4C C4C C4C C4C C4C X X X X X X X X X	X X X CGCC CGC CGC CGC C4C N1C H2 N4C X X X X X X X X X X CGU CGU	N1C NC N1C N1C C5C C2C N4C H2 N1U N3U N1U N1U N1U N1U N1U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0 250.0 250.0 250.0 250.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 2400.0 250.0 2400.0 250.0 2400.0 2		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPROPEN	C4C C4C C4C C2C C1R C1D N4C C5C C5C C4U C4U C4U C4U C4U C4U C4U C1R C1D C1R C1D	X X X X C2C C2C C2C C2C C4C C4C C4C C4C C4C C4C	X X X X CGC CGC CGC CGC CGC N1C H2 N4C X X X X X X X X X X CGU CGU CSU	N1C N2 N1C N1C C4C C5C C2C N4C H2 N4C N4C N4C N4C N1U N3U N1U N1U C4U	250.0 250.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPROPEN	C4C C4C C4C C1C C1C C1D N4C C5C C5C C4U C4U C4U C4U C4U C4U C1R C1D C1R C1D C1R C1D C1R C1D C12	X X X X C2CC C2CC C2CC C4CC C4CC C4CC C4	X X X CGC CGC CGC CGC CGC CGC N1C H2 N4C X X X X X X X X CGU CGU CSU C4U	N1C N2 N1C N1C C4C C5C C2C N4C H2 N4C N4C N4C N4C N4C N1U N1U N1U C4U C5U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
IMPRoper IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN IMPROPEN	C4C C4C C4C C1C C1C C1D C4U C5C C4U C4U C4U C4U C4U C4U C1R C1D C1R C1D C1D C1C C1C C1C C1C C1C	X X X C2CC C2CC C2CC NC C4CC C4CC C4CC C4CC C	X X X CGC CGC CGC CGC CGC N1C H2 N4C X X X X X X X X X CGU CGU CGU CQU N1U	N1C N2 0N N1C C4C C5C C2C N4C H2 0N N1U N3U N1U N1U C4U C5U C2U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0		0.000 0.000			
IMPRoper IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET	C4C C4C C4C C2C C1R C1D N4C C5C C5C C4U C4U C4U C4U C4U C4U C4U C1R C1D C1R C1D C1D C12U C5U H2	X X X C2CC C2CC C2CC NC C4CC C4CC C4CC C4CC C	X X X X CGC CGC CGC CGC CGC N1C H2 N4C X X X X X X X X CGU CGU CGU CGU CQU H2	N1C N2 ON N1C C4C C5C C2C N4C H2 N1C N1U N3U N1U N1U C4U C5U C2U ON	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0		0.000 0.000			
IMPRoper IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET IMPROPET	C4C C4C C4C C4C C1C C1C C4C C5C C4U C4U C4U C4U C4U C4U C4U C4U C1R C1D C1R C1D C1C C1C C1C C1C C4U C1C C4U C4U C4U C4U C4U C4U C4U C4C C4C C4	X X X C2CC C2CC C2CC NC C4CC C4CC C4CC C4CC C	X X X CGC CGC CGC CGC CGC CGC N1C H2 N4C X X X X X X X X CGU CGU CGU CGU CGU C4U N1U H2 C4U	N1C N2 ON N1C C4C C5C C2C N4C H2 N1C N1U N2 ON N1U N1U C4U C5U C2U ON N3U	250.0 250.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 2400.0 250.0 250.0 250.0 250.0 250.0 250.0		0.000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000			

```
!thymidine
IMPRoper C4T X X DN 2400.0 0
                                  0.000
IMPRoper C4T X X N1T 250.0 0
                                  0.000
        C6T X X N3T 250.0 0
IMPRoper
                                  0.000
        C4T X
                Х
                    N2 2400.0 0
IMPRoper
                                  0.000
        C2T X X ON 2400.0 0
IMPRoper
                                  0.000
IMPRoper C1R C2T C6T N1T 2400.0 0
                                  0.000
IMPRoper C1D C2T C6T N1T 2400.0 0
                                  0.000
IMPRoper ON N3T C5T C4T 250.0 0
                                  0.000
IMPRoper C2T N3T C4T C5T 250.0 0
                                  0.000
        C5T C6T N1T C2T 250.0 0
IMPRoper
                                  0.000
IMPRoper
        H2 C4T H2 ON 250.0 0
                                  0.000
IMPRoper
        CC3E C4T C6T C5T 2400.0 0
                                  0.000
!infer
IMPRoper
       HN C2T C4T N3T 250.0 0 0.000
! The ring-spanning impropers have been left out.
!adenine
         N2A N3A NC C2A 250.0 0
IMPRoper
                                  0.000
IMPRoper
         H2 C2A H2 N2A 250.0 0
                                  0.000
        C4A C5A N7A C8A 250.0 0
IMPRoper
                                  0.000
IMPRoper C5A C4A N9A C8A 250.0 0
                                  0.000
       C4A X X NC 250.0 0
IMPRoper
                                  0.000
IMPRoper C2A X X N9A 250.0 0
                                  0.000
        C2A X X C5A 250.0 0
IMPRoper
                                  0.000
IMPRoper
        C6A C5A C4A N3A 250.0 0
                                   0.000
        C5A X X N9A 250.0 0
IMPRoper
                                   0.000
IMPRoper C6A X X N6A 2400.0 0
                                  0.000
IMPRoper H2 X X N6A 250.0 0
                                  0.000
!infer
        C1R C4A C8A N9A 2400.0 0
IMPRoper
                                  0.000
IMPRoper
        C1D C4A C8A N9A 2400.0 0
                                  0.000
IMPRoper
         N9A C4A C5A N7A 250.0 0
                                   0.000
IMPRoper N7A C8A N9A C4A 250.0 0
                                   0.000
IMPRoper N3A C2A NC C6A 250.0 0
                                  0.000
       C5A C6A N6A H2 2000.0 0
IMPRoper
                                  0.000
! The ring-spanning impropers have been left out.
!purine
IMPRoper
         N2P N3P NC C2P 250.0 0
                                   0.000
                                   0.000
IMPRoper
        C4P C5P N7P C8P 250.0 0
        C5P C4P N9P C8P 250.0 0
IMPRoper
                                   0.000
IMPRoper C4P X X NC 250.0 0
                                   0.000
IMPRoper C2P X X N9P 250.0 0
                                   0.000
        C2P X X C5P 250.0 0
IMPRoper
                                   0.000
        C6P C5P C4P N3P 250.0 0
IMPRoper
                                  0.000
        C5P X X N9P 250.0 0
IMPRoper
                                   0.000
linfer
IMPRoper C1R C4P C8P N9P 2400.0 0
                                  0.000
IMPRoper C1D C4P C8P N9P 2400.0 0
                                  0.000
IMPRoper N9P C4P C5P N7P 250.0 0
                                  0.000
IMPRoper N7P C8P N9P C4P 250.0 0
                                  0.000
        N3P C2P NC C6P 250.0 0
IMPRoper
                                  0.000
```

guanine!

IMPRoper IMPRoper

!infer

! The ring-spanning impropers have been left out.

C5G C4G N9G C8G 250.0 0

IMPRoper C2G X X N9G 250.0 0 0.000 IMPRoper C2G X X C5G 250.0 0 0.000 IMPRoper C6G C5G C4G N3G 250.0 0 0.000 IMPRoper C5G X X N9G 250.0 0 0.000
 IMPRoper
 C6G
 X
 X
 D6G
 2400.0
 0
 0.000

 IMPRoper
 C2G
 X
 X
 N2G
 2400.0
 0
 0.000

IMPRoper C4G X X NNA 250.0 0

IMPRoper C1R C4G C8G N9G 2400.0 0

IMPRoper C1D C4G C8G N9G 2400.0 0

IMPRoper N9G C4G C5G N7G 250.0 0

IMPRoper N7G C8G N9G C4G 250.0 0

 IMPRoper
 N3G
 C2G
 NNA
 C6G
 250.0
 0

 IMPRoper
 H2
 H2
 C2G
 N2G
 250.0
 0

 IMPRoper
 H2
 H2
 C2G
 N2G
 250.0
 0

 IMPRoper
 H2
 C2G
 C2G
 N2G
 250.0
 0

 IMPRoper
 HN
 C2G
 C6G
 NNA
 2000.0
 0

C4G C5G N7G C8G 250.0 0 0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000 0.000 0.000

IMPRoper	N3G C	2G N2G I	ł2 2000.0	0 0.00	0
ļ		Lennard	-Jones param	eters	
1				1	4
!		epsilon	sigma	epsilon	sigma
1		(Kcal/mol)	(A)	(Kcal/mo	1) (A)
! Taken fro	om Rossky	y Karplus	and Rahman	BIOPOLY (1979)
! 0.05 ADD	ED TO RAI	DII TO IM	PRoperOVE ON	NUCL.ACI	D STACKING/LN
1					
1		eps :	sigma	eps(1:4)	sigma(1:4)
NONBonded	C5R	0.0900	3.2970	0.0900	3.2970
NONBonded	C1R	0.0900	3.2970	0.0900	3.2970
NONBonded	C2R	0.0900	3.2970	0.0900	3.2970
NONBonded	C3R	0.0900	3.2970	0.0900	3.2970
NONBonded	C4R	0.0900	3.2970	0.0900	3.2970
NONBonded	C5D	0.0900	3.2970	0.0900	3.2970 !DNA
NONBonded	C1D	0.0900	3.2970	0.0900	3.2970
NONBonded	C2D	0.0900	3.2970	0.0900	3.2970
NONBonded	C3D	0.0900	3.2970	0.0900	3.2970
NONBonded	C4D	0.0900	3.2970	0.0900	3.2970
NONBonded	HN	0.0045	2.6160	0.0045	2.6160
NONBonded	H2	0.0045	1.6040	0.0045	1.6040
NONBonded	Н	0.0045	2.6160	0.0045	2.6160
1					
! give it t	the same	as th Hn	from RKR		
NONBonded	HO	0.0045	1.6040	0.0045	1.6040
!					
! THIS STI	LL IS AN	EXTENDED	ATOM		
NONBonded	03R	0.2304	2.7290	0.2304	2.7290
NONBonded	04R	0.2304	2.7290	0.2304	2.7290

NONBonded	04D	0.2304	2.7290	0.2304	2.7290
NONBonded	05R	0.2304	2.7290	0.2304	2.7290
NONBonded	01P	0.2304	2.7290	0.2304	2.7290
NONBonded	02P	0.2304	2.7290	0.2304	2.7290
NONBonded	Р	0.5849	3.3854	0.5849	3.3854
!bases					
NONBonded	C2	0.0900	3.2970	0.0900	3.2970
NONBonded	C3	0.0900	3.2970	0.0900	3.2970
NONBonded	CB	0.0900	3.2970	0.0900	3.2970
NONBonded	CE	0.0900	3.2970	0.0900	3.2970
NONBonded	СН	0.0900	3,2970	0.0900	3.2970
NONBonded	N2	0.1600	2.8591	0.1600	2.8591
NONBonded	NJU	0.1600	2.8591	0.1600	2.8591
NONBonded	NST	0.1600	2.8591	0.1600	2.8591
NONBonded	NNA	0 1600	2 8591	0 1600	2 8591
NONBondod	NR	0.1600	2.0001	0.1600	2.8501
NONDonded	NC	0.1600	2.0001	0.1600	2.0591
NUNPOIlded	NC	0.1000	2.0391	0.1000	2.0391
NONBondod	NHOF	0 1600	3 0201	0 1600	3 0201
NONBondod	MG	0.1600	2 8501	0.1600	2 8501
NONDonded	N1T	0.1600	2.0001	0.1600	2.0591
NOND	NIC	0.1600	2.0091	0.1000	2.6591
NUNBonded	NIC	0.1600	2.8591	0.1600	2.8591
NUNBonded	N9A	0.1600	2.8591	0.1600	2.8591
NUNBonded	N9P	0.1600	2.8591	0.1600	2.8591
NUNBonded	N9G	0.1600	2.8591	0.1600	2.8591
NUNBonded	N1U	0.1600	2.8591	0.1600	2.8591
NONBonded	ON	0.2304	2.7290	0.2304	2.7290
NONBonded	02R	0.2304	2.7290	0.2304	2.7290
NONBonded	OH	0.2304	2.5508	0.2304	2.5508
NONBonded	SD	0.3515	2.6727	0.3515	2.6727 ! G U E S S
NONBonded	02	0.2304	2.7290	0.2304	2.7290
! NEW					
NONBonded	C6C	0.0900	3.2970	0.0900	3.2970
NONBonded	C5C	0.0900	3.2970	0.0900	3.2970
NONBonded	C4C	0.0900	3.2970	0.0900	3.2970
NONBonded	C2C	0.0900	3.2970	0.0900	3.2970
NONBonded	CGU	0.0900	3.2970	0.0900	3.2970
NONBonded	C5U	0.0900	3.2970	0.0900	3.2970
NONBonded	C4U	0.0900	3.2970	0.0900	3.2970
NONBonded	C2U	0.0900	3.2970	0.0900	3.2970
NONBonded	C8A	0.0900	3.2970	0.0900	3.2970
NONBonded	C6A	0.0900	3.2970	0.0900	3.2970
NONBonded	C5A	0.0900	3.2970	0.0900	3.2970
NONBonded	C4A	0.0900	3.2970	0.0900	3.2970
NONBonded	C2A	0.0900	3.2970	0.0900	3.2970
NONBonded	C8P	0.0900	3.2970	0.0900	3.2970
NONBonded	C6P	0.0900	3.2970	0.0900	3.2970
NONBonded	C5P	0.0900	3.2970	0.0900	3.2970
NONBonded	C4P	0.0900	3.2970	0.0900	3.2970
NONBonded	C2P	0.0900	3.2970	0.0900	3.2970
NONBonded	CSG	0.0000	2 2070	0.0900	0.0070
	000	0.0900	3.2910	0.0300	3.2970
NONBonded	C6G	0.0900	3.2970	0.0900	3.2970

NONBonded	C4G	0.0900	3.2970	0.0900	3.2970
NONBonded	C2G	0.0900	3.2970	0.0900	3.2970
NONBonded	C6T	0.0900	3.2970	0.0900	3.2970
NONBonded	C5T	0.0900	3.2970	0.0900	3.2970
NONBonded	C4T	0.0900	3.2970	0.0900	3.2970
NONBonded	C2T	0.0900	3.2970	0.0900	3.2970
NONBonded	N4C	0.1600	2.8591	0.1600	2.8591
NONBonded	04U	0.2304	2.7290	0.2304	2.7290
NONBonded	N7G	0.1600	2.8591	0.1600	2.8591
NONBonded	N3G	0.1600	2.8591	0.1600	2.8591
NONBonded	N2G	0.1600	2.8591	0.1600	2.8591
NONBonded	N3A	0.1600	2.8591	0.1600	2.8591
NONBonded	N7A	0.1600	2.8591	0.1600	2.8591
NONBonded	N6A	0.1600	2.8591	0.1600	2.8591
NONBonded	06G	0.2304	2.7290	0.2304	2.7290
NONBonded	CC3E	0.0900	3.2970	0.0900	3.2970
NONBonded	N2A	0.1600	2.8591	0.1600	2.8591
NONBonded	N2P	0.1600	2.8591	0.1600	2.8591
NONBonded	N3P	0.1600	2.8591	0.1600	2.8591
NONBonded	N7P	0.1600	2.8591	0.1600	2.8591

! special solute-solute hydrogen bonding potential parameters !AEXP 4 $\ensuremath{\mathsf{A}}$

!REXP 6

!HAEX 4

!AAEX 2

ļ	"all"	pos	sible	combinations	of HB-pai	irs in nu	ucleic act	ids:	
!	WELL	DEP	THS DE	EEPENED BY 0.5	5 KCAL TO	IMPROVE	BASEPAIR	ENERGIES	/LN
!	AND	DIST	ANCES	INCREASED BY	0.05				
!				Emin	Rmin				
!				(Kcal/mol)	(A)				
!h	bond	N*	0*	-14.0	2.95				
!h	bond	N*	N*	-14.5	3.05				
!h	bond	0*	0*	-15.75	2.80				
!h	bond	0*	N*	-15.50	2.90				

! the following NBFIXes are for DNA-DNA hydrogen bonding

! term	s					
!					1-	4
!			A	В	A	В
!		[Kcal/(mol A^12)]	[Kcal/(mo	1 A^6)]	
!						
nbfix	HO	ON	0.05	0.1	0.05	0.1
nbfix	HO	O3R	0.05	0.1	0.05	0.1
nbfix	HO	05R	0.05	0.1	0.05	0.1
nbfix	HO	OH	0.05	0.1	0.05	0.1
nbfix	HO	02R	0.05	0.1	0.05	0.1
nbfix	HO	NC	0.05	0.1	0.05	0.1
nbfix	Н	ON	0.05	0.1	0.05	0.1
nbfix	Н	02	0.05	0.1	0.05	0.1
nbfix	Н	05R	0.05	0.1	0.05	0.1

nbfix	Н	04R	0.05	0.1	0.05	0.1
nbfix	Н	04D	0.05	0.1	0.05	0.1
nbfix	Н	O3R	0.05	0.1	0.05	0.1
nbfix	Н	02R	0.05	0.1	0.05	0.1
nbfix	Н	OH	0.05	0.1	0.05	0.1
nbfix	Н	N7A	0.05	0.1	0.05	0.1
nbfix	Н	N7P	0.05	0.1	0.05	0.1
nbfix	Н	N7G	0.05	0.1	0.05	0.1
nbfix	Н	N3A	0.05	0.1	0.05	0.1
nbfix	Н	N3P	0.05	0.1	0.05	0.1
nbfix	Н	N3G	0.05	0.1	0.05	0.1
nbfix	HN	ON	0.05	0.1	0.05	0.1
nbfix	HN	02R	0.05	0.1	0.05	0.1
nbfix	HN	OH	0.05	0.1	0.05	0.1
nbfix	HN	NC	0.05	0.1	0.05	0.1
nbfix	H2	ON	0.05	0.1	0.05	0.1
nbfix	H2	02R	0.05	0.1	0.05	0.1
nbfix	H2	OH	0.05	0.1	0.05	0.1
nbfix	H2	NC	0.05	0.1	0.05	0.1

set echo=on message=on end

2.5 Topology file used by Xplor-NIH

 MASS 0Y1
 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs)

 MASS CY2
 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

 MASS HY3
 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS	HY4	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	CY5	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	HY6	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	0Y7	15.99900	ļ	assuming O -	->	15.99900 + 1.008 * 0 (Hs)
MASS	CY8	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	НҮ9	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	CY10	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	HY11	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	CY12	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	NY13	14.00700	ļ	assuming N -	->	14.00700 + 1.008 * 0 (Hs)
MASS	HY14	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	HY15	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	NY16	15.01500	ļ	assuming N -	->	14.00700 + 1.008 * 1 (Hs)
MASS	CY17	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	CY18	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	HY19	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	CY20	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	HY21	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	HY22	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	OY23	15.99900	ļ	assuming O -	->	15.99900 + 1.008 * 0 (Hs)
MASS	NY24	15.01500	ļ	assuming N -	->	14.00700 + 1.008 * 1 (Hs)
MASS	CY25	12.01100	ļ	assuming C -	->	12.01100 + 1.008 * 0 (Hs)
MASS	NY26	14.00700	ļ	assuming N -	->	14.00700 + 1.008 * 0 (Hs)
MASS	HY27	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	HY28	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	HY29	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	НҮЗО	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)
MASS	HY31	1.00800	ļ	assuming H -	->	1.00800 + 1.008 * 0 (Hs)

{ Note: edit masses if necessary } MASS OX1 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs) MASS CX2 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX3 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS HX4 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CX5 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX6 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS OX7 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs) MASS CX8 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX9 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CX10 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX11 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CX12 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS CX13 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS CX14 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX15 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CX16 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX17 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS HX18 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS DX19 15.99900 ! assuming D -> 15.99900 + 1.008 * 0 (Hs) MASS CX20 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HX21 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX22 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS C	2X23	12.01100	ļ	assuming C ->	12.01100 + 1.008 * 0 (Hs)
MASS C	2X24	12.01100	ļ	assuming C ->	12.01100 + 1.008 * 0 (Hs)
MASS N	1X25	14.00700	ļ	assuming N ->	14.00700 + 1.008 * 0 (Hs)
MASS H	1X26	1.00800	ļ	assuming H ->	1.00800 + 1.008 * 0 (Hs)
MASS H	1X27	1.00800	ļ	assuming H ->	1.00800 + 1.008 * 0 (Hs)
MASS N	1X28	14.00700	ļ	assuming N ->	14.00700 + 1.008 * 0 (Hs)
MASS C	CX29	12.01100	ļ	assuming C ->	12.01100 + 1.008 * 0 (Hs)
MASS C	CX30	12.01100	ļ	assuming C ->	12.01100 + 1.008 * 0 (Hs)
MASS C	0X31	15.99900	ļ	assuming 0 ->	15.99900 + 1.008 * 0 (Hs)
MASS C	0X32	15.99900	ļ	assuming 0 ->	15.99900 + 1.008 * 0 (Hs)
MASS H	1X33	1.00800	ļ	assuming H ->	1.00800 + 1.008 * 0 (Hs)
MASS H	1X34	1.00800	ļ	assuming H ->	1.00800 + 1.008 * 0 (Hs)

autogenerate angles=true end

!*********************** end of change by lsd - 4AP *****************************

{ Note: edit	masses if	necessary	}	
MASS CQ1	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS NQ2	14.00700	! assuming	N ->	14.00700 + 1.008 * 0 (Hs)
MASS CQ3	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ4	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ5	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ6	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ7	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS HQ8	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS CQ9	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ10	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ11	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS CQ12	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS OQ13	15.99900	! assuming	0 ->	15.99900 + 1.008 * 0 (Hs)
MASS HQ14	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ15	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ16	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ17	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ18	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS OQ19	15.99900	! assuming	0 ->	15.99900 + 1.008 * 0 (Hs)
MASS CQ20	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS 0Q21	15.99900	! assuming	0 ->	15.99900 + 1.008 * 0 (Hs)
MASS CQ22	12.01100	! assuming	C ->	12.01100 + 1.008 * 0 (Hs)
MASS HQ23	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ24	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ25	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ26	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ27	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ28	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ29	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
MASS HQ30	1.00800	! assuming	H ->	1.00800 + 1.008 * 0 (Hs)
!*******	*******	end of char	ige by	/ lsd - 6HQ ***********************************

{ Not	ce: edit	t masses i	f	necessary	}							
MASS	PZ1	30.97400	ļ	assuming	Ρ	->	30.97400	+	1.008	*	0	(Hs)
MASS	0Z2	15.99900	ļ	assuming	0	->	15.99900	+	1.008	*	0	(Hs)
MASS	0Z3	15.99900	ļ	assuming	0	->	15.99900	+	1.008	*	0	(Hs)
MASS	CZ1	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ2	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ3	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ4	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ5	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ6	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ7	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ8	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ9	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ10	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ11	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ12	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	CZ13	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	0Z14	15.99900	ļ	assuming	0	->	15.99900	+	1.008	*	0	(Hs)
MASS	CZ15	12.01100	ļ	assuming	С	->	12.01100	+	1.008	*	0	(Hs)
MASS	0Z16	15.99900	ļ	assuming	0	->	15.99900	+	1.008	*	0	(Hs)
MASS	0Z17	15.99900	ļ	assuming	0	->	15.99900	+	1.008	*	0	(Hs)
MASS	HZ18	1.00800	ļ	assuming 1	H	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ19	1.00800	ļ	assuming 1	Н	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ20	1.00800	ļ	assuming 1	H	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ21	1.00800	ļ	assuming 1	H	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ22	1.00800	ļ	assuming 1	H	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ23	1.00800	ļ	assuming 1	H	->	1.00800 +	+ 1	.008 ×	* () ((Hs)
MASS	HZ24	1.00800	į	assuming 1	Н	->	1.00800 +	F 1	.008 *	* (ы	(Hs)

MASS HZ25 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CZ26 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS 0Z27 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs) MASS CZ28 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HZ29 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CZ30 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS CZ31 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) MASS HZ32 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS HZ33 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS HZ34 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS HZ35 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs) MASS CZ36 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs) 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS 0Z39 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs) MASS 0Z41 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs) MASS HZ43 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ37 MASS HZ38

MASS P

{* DNA/RNA default masses *}

30,97400! phosphorus MASS 01P 15.99940! O in phosphate MASS 02P 15.99940! O in phosphate MASS 05R 15.99940! ester -P-O-C-MASS C5R 12.011! corresp. to CH2E MASS C4R 12.011! corresp. to CH1E MASS C3R 12.011! corresp. to CH1E MASS C2R 12.011! corresp. to CH1E MASS C1R 12.011! corresp. to CH1E MASS 04R 15.99940! ester -P-O-C-MASS 03R 15.99940! ester -P-0-C-MASS 02R 15,99940! ester -P-0-C-MASS OH 15.99940! corresp. to OH1 IDEOXY SUGAR MASS C5D 14.02700! corresp. to CH2E MASS C4D 13.01900! corresp. to CH1E MASS C3D 13.01900! corresp. to CH1E MASS C2D 13.01900! corresp. to CH1E MASS C1D 13.01900! corresp. to CH1E MASS 04D 15.99940! ester -P-O-C-MASS 05D 15.99940! MASS 03D 15.99940! ! Insert Bases ! Generic MASS N2 14.00670! nitrogen in -NH2 MASS NNA 14.00670! corresp. to NH1 MASS ON 15.99940! corresp. to O MASS NC 14.00670! corresp. to NR MASS NS 14.00670! nitrogen in ring >N-! Insert 4 Bases ! GUA MASS N9G 14.00670! nitrogen in ring >N-MASS C2G 12.011! (prev CE) MASS N3G 14.00670! (prev NC) MASS C4G 12.01100! (prev CB) MASS C5G 12.01100! (prev CB) 12.01100! (prev CN) MASS C6G MASS N7G 14.00670! (prev NB) MASS C8G 12.011! (prev CE) MASS 06G 15.99940! (prev CE) MASS N2G 14.00670! nitrogen in -NH2 ! ADE MASS N9A 14.00670! nitrogen in ring >N-MASS C2A 12.011! (prev CE) MASS N3A 14.00670! (prev NC) MASS C4A 12.01100! (prev CB) MASS C5A 12.01100! (prev CB) MASS C6A 12.01100! (prev CA) MASS N7A 14.00670! (prev NB) MASS C8A 12.011! (prev CE) MASS N6A 14.00670! nitrogen in -NH2 ! PUR MASS N9P 14.00670! nitrogen in ring >N-MASS C2P 12.011! (prev CE) MASS N3P 14.00670! (prev NC) MASS C4P 12.01100! (prev CB)

MASS	C5P 1	12.01100! (prev CE	3)
MASS	C6P 1	12.01100! (prev CA	.)
MASS	N7P 1	14.00670! (prev NE	3)
MASS	C8P 1	12.011! (prev CE)	
! CYT			
MASS	N1C 1	14.00670! nitroger	in ring >N-
MASS	C2C 1	12.01100! (prev CN	1)
MASS	C4C 1	12.01100! (prev C#	.)
MASS	C5C 1	12.011! (prev CF)	
MASS	C6C 1	12.011! (prev CF)	
MASS	N4C 1	14.00670! nitroger	in -NH2
! THY			
MASS	N1T 1	14.00670! nitroger	in ring >N-
MASS	N3T 1	14.00670! nitroger	in ring >N-
MASS	C2T 1	12.01100! (prev CN)
MASS	C4T 1	12.01100! (prev CN)
MASS	C5T 1	12.011! (prev CS)	
MASS	C6T 1	12.011! (prev CF)	
MASS	CC3E 1	12.01100! (prev CF	`)
		-	
! END			
MASS	Н 1	L.00800! non-excha	ngeable Hydrogens
MASS	HN 1	L.00800! corresp.	to H
MASS	H2 1	L.00800! hydrogen	in -NH2
MASS	HO 1	L.00800! hydroxy h	lydrogen
! URI			
MASS	N1U 1	14.00670! nitroger	in ring >N-
MASS	C2U 1	12.01100! (prev CN	1)
MASS	C4U 1	12.01100! (prev CA	.)
MASS	C5U 1	12.011! (prev CF)	
MASS	C6U 1	12.011! (prev CF)	
MASS	N3U 1	14.00670!	
!			
!			
	_		
RESIdue DA	Р		
∫ Noto, o	lostrosta	tica abould norm	lly not be used in l
(note: e	lograph-	rofinoment di	it can produce b
(crystar	tographic	, ferinement since	t can produce y
l arteiac	dofoult	Edit them if	marges are set to f
GROUP	dergnit.	. Lait them if het	Cobury J
ATOM D	TVDF-D	CHARGE-1 00	END
ATOM OTD	TYDE-Off	CHARGE=1.20	
ATOM COD	TYPE OCT	- UNARGE=-U.40	
ATUM U2P	ITPE=U2F	CHARGE=-0.40	
ATUM 05'	TYPE=05R	CHARGE=-0.36	END
!Charge of	the grou	ıp: 0.04	
GRUUp			
ATUM C5'	TYPE=C5R	CHARGE=-0.070	END
ATOM HE I	TYPE=H	CHARGE=0.035	END

```
ATOM H5'' TYPE=H
                CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM C4' TYPE=C4R CHARGE=0.065 END
ATOM H4' TYPE=H
                  CHARGE=0.035
                               END
ATOM 04' TYPE=04R CHARGE=-0.30 END
ATOM C1' TYPE=C1R CHARGE=0.412 END !increased from 0.386 by lsd
ATOM H1' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.247 sums up to +1 with DAP
GROUP
ATOM C2' TYPE=C2R CHARGE=0.115 END
ATOM H2' TYPE=H
                  CHARGE=0.035
                               END
ATOM 02' TYPE=02R CHARGE=-0.40 END
ATOM HO2' TYPE=HO CHARGE=0.25 END
!Charge of the group: 0.00
GROUp
ATOM C3' TYPE=C3R CHARGE=-0.035 END
ATOM H3' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM 03' TYPE=03R CHARGE=-0.36 END
!Charge of the group: -0.36
!DAP-base
GROUp
ATOM C6 TYPE CY10 CHARge 0.215 END ! Nr of Hs = 0
ATOM H6 TYPE HY11 CHARge 0.123 END ! Nr of Hs = 0
ATOM C2 TYPE CY12 CHARge 1.034 END ! Nr of Hs = 0
ATOM N2 TYPE NY13 CHARge -1.028 END ! Nr of Hs = 0
ATOM H22 TYPE HY14 CHARge 0.478 END ! Nr of Hs = 0
ATOM H21 TYPE HY15 CHARge 0.457 END ! Nr of Hs = 0
ATOM N3 TYPE NY16 CHARge -0.799 END ! Nr of Hs = 1
ATOM C4 TYPE CY17 CHARge 0.907 END ! Nr of Hs = 0
ATOM N1
         TYPE NY24 CHARge -0.610 END ! Nr of Hs = 1
ATOM C5 TYPE CY25 CHARge -0.403 END ! Nr of Hs = 0
ATOM N4 TYPE NY26 CHARge -0.863 END ! Nr of Hs = 0
ATOM H41 TYPE HY27 CHARge 0.403 END ! Nr of Hs = 0
ATOM H42 TYPE HY28 CHARge 0.440 END ! Nr of Hs = 0
ATOM H1 TYPE HY31 CHARge 0.399 END ! Nr of Hs = 0
!Charge of the group: 0.753
BOND C6 H6 BOND C6 N1
                                  BOND C6 C5
                                                    BOND C2 N2
BOND C2 N3
                 BOND C2 N1
                                  BOND N2 H22
                                                    BOND N2 H21
                BOND C4 C5
                                  BOND C4 N4
BOND N3 C4
                                                    BOND N1 H1
BOND N4 H41 BOND C1' C5
                               BOND N4 H42
!Ribose
                         BOND P 02P
                                                   BOND P 05'
    BOND P 01P
    BOND 05' C5'
                           BOND C5' C4'
                                                    BOND C4' 04'
    BOND C4' C3'
                           BOND 04' C1'
    BOND C1' C2'
                         BOND C2' C3'
                                              BOND C3' D3'
    BOND C2' 02' BOND 02' H02' BOND C5' H5'
    BOND C5' H5'' BOND C3' H3' BOND C2' H2'
    BOND C1' H1' BOND C4' H4'
```

{ Note: edit these DIHEdrals if necessary }

```
DIHEdral N3 C2 N2 H22 ! flat ? (0 degrees = cis) -0.22
 DIHEdral N3 C2 N2 H21 ! flat ? (180 degrees = trans) 181.56
 DIHEdral N1 C2 N2 H22 ! flat ? (180 degrees = trans) 180.37
 DIHEdral N1 C2 N2 H21 ! flat ? (0 degrees = cis) 2.16
 DIHEdral N3 C4 N4 H42 ! flat ? (0 degrees = cis) -1.69
 DIHEdral C5 C4 N4 H42 ! flat ? (180 degrees = trans) 179.27
{ Note: edit these IMPRopers if necessary }
IMPRoper C6 H6 N1 C5 ! chirality or flatness improper
                                                        -0.54
IMPRoper C2 N2 N3 N1 ! chirality or flatness improper 0.35
IMPRoper N2 C2 H22 H21 ! chirality or flatness improper
                                                          0.94
IMPRoper C4 N3 C5 N4 ! chirality or flatness improper
                                                          0.57
IMPRoper N1 C6 C2 H1 ! chirality or flatness improper
                                                          0.77
IMPRoper C5 C1' C6 C4 ! chirality or flatness improper
                                                          -2.66
IMPRoper N4 C4 H41 H42 ! chirality or flatness improper -7.15
!Ribose
IMPRoper
           H1' C2' O4' C5 !C1'
IMPRoper H2' C3' C1' O2' !C2'
IMPRoper
           H3' C4' C2' O3' !C3'
IMPRoper
           H4' C5' C3' O4' !C4'
IMPRoper H5' 05' H5'' C4' !C5'
END { RESIdue DAP }
RESIdue 4AP
{ Note: electrostatics should normally not be used in }
{ crystallographic refinement since it can produce }
{ artefacts. For this reason, all charges are set to }
{ zero by default. Edit them if necessary }
GROUp
ATOM P TYPE=P
                 CHARGE=1.20 END
ATOM 01P TYPE=01P CHARGE=-0.40 END
ATOM 02P TYPE=02P CHARGE=-0.40
                                END
ATOM 05' TYPE=05R CHARGE=-0.36 END
!Charge of the group: 0.04
GROUp
ATOM C5' TYPE=C5R CHARGE=-0.070 END
ATOM H5' TYPE=H CHARGE=0.035 END
ATOM H5'' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM C4' TYPE=C4R CHARGE=0.065 END
ATOM H4' TYPE=H CHARGE=0.035 END
ATOM 04' TYPE=04R CHARGE=-0.30 END
ATOM C1' TYPE=C1R CHARGE=0.238 END !increased from 0.165 by lsd
ATOM H1' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.073 is complmentary to -0.073 of 4AP
GROUP
ATOM C2' TYPE=C2R CHARGE=0.115 END
ATOM H2' TYPE=H CHARGE=0.035 END
ATOM 02' TYPE=02R CHARGE=-0.40 END
ATOM HO2' TYPE=HO CHARGE=0.25 END
!Charge of the group: 0.00
GROUp
ATOM C3' TYPE=C3R CHARGE=-0.035 END
```

```
ATOM H3' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM 03' TYPE=O3R CHARGE=-0.36 END
!Charge of the group: -0.36
!4AP-base
GROUp
ATOM C5 TYPE CX10 CHARge -0.267 END ! Nr of Hs = 0
ATOM H5 TYPE HX11 CHARge 0.161 END ! Nr of Hs = 0
ATOM C3 TYPE CX12 CHARge -0.269 END ! Nr of Hs = 0
ATOM C6a TYPE CX13 CHARge -0.239 END ! Nr of Hs = 0
ATOM C6 TYPE CX20 CHARge 0.095 END ! Nr of Hs = 0
ATOM C4 TYPE CX23 CHARge 0.434 END ! Nr of Hs = 0
ATOM C2a TYPE CX24 CHARge -0.038 END ! Nr of Hs = 0
ATOM N4 TYPE NX25 CHARge -0.824 END ! Nr of Hs = 0
ATOM H41 TYPE HX26 CHARge 0.348 END ! Nr of Hs = 0
ATOM H42 TYPE HX27 CHARge 0.362 END ! Nr of Hs = 0
ATOM N1 TYPE NX28 CHARge -0.642 END ! Nr of Hs = 0
ATOM C2 TYPE CX29 CHARge 0.702 END ! Nr of Hs = 0
ATOM C7 TYPE CX30 CHARge 0.663 END ! Nr of Hs = 0
ATOM 07 TYPE 0X31 CHARge -0.523 END ! Nr of Hs = 0
ATOM 02 TYPE 0X32 CHARge -0.551 END ! Nr of Hs = 0
ATOM H1 TYPE HX33 CHARge 0.367 END ! Nr of Hs = 0
ATOM H3 TYPE HX34 CHARge 0.148 END ! Nr of Hs = 0
BOND C1' C6
BOND C5 H5
               BOND C5 C6
                               BOND C5 C4
                                                BOND C3 C4
BOND C3 C2a BOND C3 H3 BOND C6a C6 BOND C6a C2a
BOND C6a C7 BOND C4 N4 BOND C2a C2 BOND N4 H41
              BOND N1 C2 BOND N1 C7 BOND N1 H1
BOND N4 H42
BOND C2 O2 BOND C7 O7
!Ribose
                          BOND P 02P
   BOND P 01P
                                                 BOND P 05'
                          BOND C5' C4'
   BOND 05' C5'
                                                  BOND C4' 04'
   BOND C4' C3'
                          BOND 04' C1'
   BOND C1' C2'
                         BOND C2' C3'
                                             BOND C3' O3'
   BOND C2' 02' BOND 02' H02' BOND C5' H5'
   BOND C5' H5'' BOND C3' H3' BOND C2' H2'
   BOND C1' H1' BOND C4' H4'
{ Note: edit these IMPRopers if necessary }
IMPRoper C5 H5 C6 C4 ! chirality or flatness improper
                                                      -0.31
IMPRoper C3 C4 C2a H3 ! chirality or flatness improper
                                                       -0.22
IMPRoper C6a C6 C2a C7 ! chirality or flatness improper
                                                       0.47
IMPRoper C4 C5 C3 N4 ! chirality or flatness improper
                                                       -1.53
IMPRoper C2a C3 C6a C2 ! chirality or flatness improper
                                                       -0.17
IMPRoper N4 C4 H41 H42 ! chirality or flatness improper -20.06
IMPRoper C5 N4 C4 H41
IMPRoper N1 C2 C7 H1 ! chirality or flatness improper
                                                      0.75
IMPRoper C2 C2a N1 O2 ! chirality or flatness improper -0.01
IMPRoper C7 C6a N1 O7 ! chirality or flatness improper -0.09
!Improper to keep both rings parallel
```

! IMPRoper N1 C2a C6a C5

! IMPRoper N1 C2a C6a C4

! IMPRoper C2 C2a C6a C6 ! IMPRoper C3 C2a C6a C7 !Ribose H1' C2' O4' C6 !C1' IMPRoper H2' C3' C1' O2' !C2' IMPRoper IMPRoper H3' C4' C2' O3' !C3' IMPRoper H4' C5' C3' O4' !C4' IMPRoper H5' 05' H5'' C4' !C5' END { RESIdue 4AP } RESIdue 6HQ { Note: electrostatics should normally not be used in } { crystallographic refinement since it can produce } { artefacts. For this reason, all charges are set to } { zero by default. Edit them if necessary } GROUD ATOM P TYPE=P CHARGE=1.20 END ATOM 01P TYPE=01P CHARGE=-0.40 END ATOM 02P TYPE=02P CHARGE=-0.40 END ATOM 03g TYPE 0Q21 CHARGE=0.40 END GROUp ATOM C1g TYPE CQ1 CHARGE= 0.365 END ! inc. from 0.095 by lsd ATOM N1 TYPE NQ2 CHARGE=-0.05 END ! inc. from -0.102 by lsd ATOM C8a TYPE CQ3 CHARGE= 0.167 END ATOM C4a TYPE CQ4 CHARGE= 0.162 END ATOM C4 TYPE CQ5 CHARGE=-0.015 END ATOM C3 TYPE CQ6 CHARGE=-0.207 END ATOM C2 TYPE CQ7 CHARGE= 0.151 END ATOM H2 TYPE HQ8 CHARGE= 0.134 END ATOM C8 TYPE CQ9 CHARGE=-0.195 END ATOM C7 TYPE CQ10 CHARGE=-0.120 END ATOM C6 TYPE CQ11 CHARGE= 0.472 END ATOM C5 TYPE CQ12 CHARGE=-0.421 END ATOM 06 TYPE 0Q13 CHARGE=-0.586 END ATOM H4 TYPE HQ14 CHARGE= 0.142 END ATOM H3 TYPE HQ15 CHARGE= 0.161 END ATOM H8 TYPE HQ16 CHARGE= 0.139 END ATOM H7 TYPE HQ17 CHARGE= 0.176 END ATOM H5 TYPE HQ18 CHARGE= 0.175 END ATOM C2g TYPE CQ20 CHARGE= 0.271 END ATOM C3g TYPE CQ22 CHARGE= 0.213 END ATOM H3'' TYPE HQ23 CHARGE= 0.008 END ATOM H3' TYPE HQ24 CHARGE= 0.028 END ATOM H2' TYPE HQ25 CHARGE= 0.010 END ATOM H1'' TYPE HQ26 CHARGE= 0.077 END ATOM H1' TYPE HQ27 CHARGE= 0.085 END ATOM H6 TYPE HQ30 CHARGE= 0.457 END ATOM 02g TYPE 0Q19 CHARGE=-0.400 END ! inc. from -0.674 by lsd

	BOND	C1g	N1	1	BOND	C1g	C:	2g	BOND	C1g	H1''	BOND	C1g	Η1'
	BOND	N1	C8a		BOND	N1	(32	BOND	C8a	C4a	BOND	C8a	C8
	BOND	C4a	C4	1	BOND	C4a	C	5	BOND	C4	C3	BOND	C4	H4
	BOND	C3	C2	1	BOND	C3	н	3	BOND	C2	H2	BOND	C8	C7
	BOND	CS	H8	1	BOND	C7	C	5	BOND	C7	Н7	BOND	C6	C5
	RUND	CE		1	BUND	C5	ц.	-	BUND	06	н6	BUND	02~	C2~
	DUND	00-	00		מאטם	00-	п; тт	- - ,	מאטם	00-	 (2a	עווטט	ozg	∪∠g
	DOND	∪2g	U3g		DOWD	∪2g	н:	2	עמיטם	usg	Cog			
	ROND	C3g	нз,,	1	ROND	C3g	н;	5´		_				
	ROND	Р	U1P]	ROND	Р	021	2	BOND	ΡI	J3g			
	{ Note	e: ed	lit the	ese Di	IHEdra	als i	fı	necessar	су }					
ļ	DIHEd	lral	H1'	C1g	N1	C2	!	flexib	Le dih	edral	??? 99	9.41		
ļ	DIHEd	iral	H1'	C1g	C2g	H2'	!	flat ?	(180 0	degre	es = trans	s) 18	89.55	
ļ	DIHEd	iral	C1g	N1	C8a	C4a	ι!	flat ?	(180 0	legre	es = trans	s) 18	80.71	
ļ	DIHEd	lral	C1g	N1	C8a	C8	!	flat ?	(0 deį	grees	= cis)	1.2	9	
	DIHEd	iral	C2	N1	C8a	C4a	. !	flat ?	(0 de)	grees	= cis)	2.4	0	
	DIHEd	iral	C2	N1	C8a	C8	1	flat ?	(180 (degre	es = trans	s) 18	82.98	
ļ	DIHEd	lral	C1ø	N 1	C2	C3	Ţ	flat ?	(180	legre	es = trans	s) 1'	79.55	
í	DIHE	Iral	5 C1 o	N 1	C2	но	÷	flat ?	(0 de	-0-0'	= cie)	_1 0	4	
•	DINE	udi	018	1V 1	02	.112		+1at ?	(o ue)	51662	= ai-)	-0 44	-	
	DIHEC	urai	uda	IN L	02	U3 UC		iiat ?	(U dej	grees	- cis)	-2.1		
	DIHEC	iral	Uda	Nl	C2	H2	!	ilat ?	(180 (legre	es = trans	s) 1'	10.35 -	
	DIHEC	iral	N1	C8a	C4a	C4	!	flat ?	(0 deį	grees	= cis)	-1.0	7	
	DIHEC	lral	N1	C8a	C4a	C5	ļ	flat ?	(180 (degre	es = trans	s) 1'	79.45	
	DIHEC	iral	C8	C8a	C4a	C4	ļ	flat ?	(180 0	degre	es = trans	s) 1'	78.37	
	DIHEd	iral	C8	C8a	C4a	C5	!	flat ?	(0 deį	grees	= cis)	-1.1	1	
	DIHEd	iral	N1	C8a	C8	C7	! :	flat ? ((180 d	egree	s = trans)) 18	0.11	
	DIHEd	iral	N1	C8a	C8	H8	!	flat ?	(0 deį	grees	= cis)	1.0	5	
	DIHEd	iral	C4a	C8a	C8	C7	! :	flat ? ((0 degi	rees	= cis)	0.70		
	DIHEd	iral	C4a	C8a	C8	H8	ļ	flat ?	(180 0	legre	es = trans	s) 18	81.64	
	DIHEd	iral	C8a	C4a	C4	C3	ļ	flat ?	(0 de	grees	= cis)	-0.5	1	
	DIHE	lral	C8a	C42	C4	Н4		flat ?	(180 /	legre	es = trans	s) 11	80.12	
	DTHE	iral	CE	C/10	C4	(13 .1-1	÷		(180 -	lagra	= = +rance	z) 1.	78 07	
	DINE	urdi	CD CE	04a	04	U3 [74		11at ((100 (regree	= oi-)	-0 4	10.9/	
	DIHEC	iral	05	C4a	C4	H4	!	riat ?	(U de	grees	= c1s)	-0.4	1	
	DIHEd	iral	C8a	C4a	C5	C6	!	flat ?	(0 deį	grees	= cis)	0.5	(
	DIHEC	iral	C8a	C4a	C5	H5	!	flat ?	(180 (legre	es = trans	s) 18	80.28	
	DIHEC	lral	C4	C4a	C5	C6	!	flat ?	(180 (legre	es = trans	s) 18	81.10	
	DIHEC	iral	C4	C4a	C5	H5	!	flat ?	(0 deį	grees	= cis)	0.8	1	
	DIHEC	lral	C4a	C4	C3	C2	!	flat ?	(0 de	grees	= cis)	0.8	2	
	DIHEd	iral	C4a	C4	C3	HЗ	!	flat ?	(180 0	degre	es = trans	s) 18	81.07	
	DIHEd	lral	H4	C4	C3	C2	!	flat ?	(180 0	degre	es = trans	s) 18	80.19	
	DIHEd	iral	H4	C4	C3	HЗ	!	flat ?	(0 deį	grees	= cis)	0.4	4	
	DIHEd	iral	C4	C3	C2	N1	!	flat ?	(0 de)	grees	= cis)	0.5	0	
	DIHEd	iral	C4	C3	C2	H2	1	flat ?	(180 (degre	es = trans	s) 18	82.09	
	DIHEd	lra]	H3	C3	C2	N1	1	flat ?	(180 (legre	es = trans	s) 11	80.26	
	DIHE	iral	НЗ	C3	C2	но	÷	flat ?	(0 do	-0-0'	= cie)	1.8	4	
	DINE	udi	 	00	02	112		+1at ?	(o ue)	51662		1.0	-	
	DIHEC	iral	Uda	08	07	06	!	ilat ?	(U de	grees	= c1s)	0.2		
	DIHEd	iral	C8a	C8	C7	H7	!	ILat ?	(180 (iegre	es = trans	s) 18	80.24	
	DIHEC	iral	H8	C8	C7	C6	!	flat ?	(180 (iegre	es = trans	s) 1'	79.35	
	DIHEd	iral	H8	C8	C7	H7	ļ	flat ?	(0 deį	grees	= cis)	-0.6	7	
	DIHEd	iral	C8	C7	C6	C5	!	flat ?	(0 deį	grees	= cis)	-0.8	2	
	DIHEd	iral	C8	C7	C6	06	!	flat ?	(180 0	degre	es = trans	s) 1'	79.56	
	DIHEd	iral	H7	C7	C6	C5	!	flat ?	(180 0	legre	es = trans	s) 1'	79.20	
	DIHEd	iral	H7	C7	C6	06	!	flat ?	(0 de;	grees	= cis)	-0.4	2	
	DIHEd	iral	C7	C6	C5	C4a	. !	flat ?	(0 dei	grees	= cis)	0.3	8	
	DIHEd	iral	C7	C6	C5	H5	!	flat ?	(180 0	legre	es = trans	s) 18	80.69	
										-0-0'	or alle	· · · ·		

DIHEdral	06	C6	C5	C4a ! flat ? (180 degrees = trans) 179.97
DIHEdral	06	C6	C5	H5 ! flat ? (0 degrees = cis) 0.27
DIHEdral	C7	C6	06	H6 ! flat ? (180 degrees = trans) 179.93
DIHEdral	C5	C6	06	H6 ! flat ? (0 degrees = cis) 0.33
! DIHEdral	C1g	C2g	C3g	O3g ! flexible dihedral ??? 60.68
! DIHEdral	C1g	C2g	C3g	H3'' ! flexible dihedral ??? -61.16
DIHEdral	C1g	C2g	C3g	H3' ! flat ? (180 degrees = trans) 181.08
DIHEdral	02g	C2g	C3g	O3g ! flat ? (180 degrees = trans) 180.00
! DIHEdral	02g	C2g	C3g	H3'' ! flexible dihedral ??? 58.16
! DIHEdral	02g	C2g	C3g	H3' ! flexible dihedral ??? -59.60
! DIHEdral	Н2'	C2g	C3g	O3g ! flexible dihedral ??? -58.01
DIHEdral	Н2'	C2g	C3g	H3'' ! flat ? (180 degrees = trans) 180.15
! DIHEdral	Н2'	C2g	C3g	H3' ! flexible dihedral ??? 62.39

{ Note: edit these IMPRopers if necessary }

	1 Note: ed	11t ti	nese .	гыькој	pers 11 necessary }	
ļ	IMPRoper	C1g	N1	C2g	H1'' ! chirality or flatness improper	33.17
ļ	IMPRoper	N1	C1g	C8a	C2 ! chirality or flatness improper	-0.94
	IMPRoper	C8a	N1	C4a	C8 ! chirality or flatness improper	0.33
	IMPRoper	C4a	C8a	C4	C5 ! chirality or flatness improper	0.30
	IMPRoper	C4	C4a	C3	H4 ! chirality or flatness improper	0.33
	IMPRoper	C3	C4	C2	H3 ! chirality or flatness improper	0.13
	IMPRoper	C2	N1	C3	H2 ! chirality or flatness improper	-0.83
	IMPRoper	C8	C8a	C7	H8 ! chirality or flatness improper	0.49
	IMPRoper	C7	C8	C6	H7 ! chirality or flatness improper	-0.01
	IMPRoper	C6	C7	C5	O6 ! chirality or flatness improper	0.22
	IMPRoper	C5	C4a	C6	H5 ! chirality or flatness improper	-0.16
	IMPRoper	C2g	C1g	02g	C3g ! chirality or flatness improper	-35.35
	IMPRoper	C3g	C2g	03g	H3'' ! chirality or flatness improper	29.83

END { RESIdue 6HQ }

RESIdue HCF

{ Note: electrostatics should normally not be used in } { crystallographic refinement since it can produce } { artefacts. For this reason, all charges are set to } { zero by default. Edit them if necessary } GROUp ATOM P TYPE=P CHARGE=1.20 END ATOM 01P TYPE=01P CHARGE=-0.40 END ATOM 02P TYPE=02P CHARGE=-0.40 END ATOM 05' TYPE=05R CHARGE=-0.36 END GROUp ATOM C5' TYPE=C5R CHARGE=-0.070 END ATOM H5' TYPE=H CHARGE=0.035 END ATOM H5'' TYPE=H CHARGE=0.035 END GROUp ATOM C4' TYPE=C4R CHARGE=0.065 END ATOM H4' TYPE=H CHARGE=0.035 END ATOM 04' TYPE=04R CHARGE=-0.30 END ATOM C1' TYPE=C1R CHARGE=0.390 END !increased from 0.165 by lsd
```
ATOM H1'' TYPE=HZ29 CHARGE=0.022 END !changed from 0.035 by lsd
!Charge of the group: 0.212
GROUP
ATOM C2' TYPE=C2R CHARGE=0.115 END
ATOM H2' TYPE=H
                  CHARGE=0.035
                               END
ATOM 02' TYPE=02R CHARGE=-0.40 END
ATOM HO2' TYPE=HO CHARGE=0.25 END
!Charge of the group: 0.00
GROUp
ATOM C3' TYPE=C3R CHARGE=-0.035 END
ATOM H3' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM 03' TYPE=03R CHARGE=-0.36 END
!Charge of the group: -0.36
!HCF-Base
GROUp
ATOM C2 TYPE=CZ1 CHARge= 0.390 END ! Nr of Hs = 0
ATOM C3 TYPE=CZ2 CHARge= -0.262 END ! Nr of Hs = 0
ATOM C4 TYPE=CZ3 CHARge= -0.101 END ! Nr of Hs = 0
ATOM C10 TYPE=CZ4 CHARge= -0.065 END ! Nr of Hs = 0
ATOM C11 TYPE=CZ5 CHARge= 0.066 END ! Nr of Hs = 0
ATOM C1 TYPE=CZ6 CHARge= -0.308 END ! Nr of Hs = 0
ATOM C13 TYPE=CZ7 CHARge= 0.096 END ! Nr of Hs = 0
ATOM C12 TYPE=CZ8 CHARge= -0.025 END ! Nr of Hs = 0
ATOM C9 TYPE=CZ9 CHARge= 0.122 END ! Nr of Hs = 0
ATOM C5
         TYPE=CZ10 CHARge= -0.154 END ! Nr of Hs = 0
ATOM C6 TYPE=CZ11 CHARge= -0.108 END ! Nr of Hs = 0
ATOM C7 TYPE=CZ12 CHARge= -0.032 END ! Nr of Hs = 0
ATOM C8 TYPE=CZ13 CHARge= -0.157 END ! Nr of Hs = 0
ATOM 02 TYPE=0Z14 CHARge= -0.343 END ! reduced charge from -0.361 to zero charge of HCF-base + C1'-C4'-group
ATOM C14 TYPE=CZ15 CHARge= 0.707 END ! Nr of Hs = 0
ATOM 0142 TYPE=0Z16 CHARge= -0.575 END ! Nr of Hs = 0
ATOM 0141 TYPE=0Z17 CHARge= -0.625 END ! Nr of Hs = 0
ATOM H4 TYPE=HZ18 CHARge= 0.117 END ! Nr of Hs = 0
ATOM H1 TYPE=HZ19 CHARge= 0.141 END ! Nr of Hs = 0
ATOM H8 TYPE=HZ20 CHARge= 0.124 END ! Nr of Hs = 0
ATOM H91 TYPE=HZ21 CHARge= 0.009 END ! Nr of Hs = 0
ATOM H92 TYPE=HZ22 CHARge= 0.010 END ! Nr of Hs = 0
ATOM H5 TYPE=HZ23 CHARge= 0.103 END ! Nr of Hs = 0
ATOM H6 TYPE=HZ24 CHARge= 0.119 END ! Nr of Hs = 0
ATOM H3 TYPE=HZ25 CHARge= 0.110 END ! Nr of Hs = 0
ATOM H141 TYPE=HZ43 CHARge= 0.429 END ! Nr of Hs = 0
!HCF-Base
BOND C2 C3
              BOND C2 C1
                                BOND C2 02
                                                BOND C3 C4
BOND C3 H3
                BOND C4 C10
                                BOND C4 H4
                                                 BOND C10 C11
                BOND C11 C1
                                BOND C11 C9
BOND C10 C13
                                                 BOND C1 H1
BOND C13 C12 BOND C13 C5
                                BOND C12 C9
                                                 BOND C12 C8
BOND C9 H91 BOND C9 H92 BOND C5 C6
                                                BOND C5 H5
BOND C6 C7 BOND C6 H6 BOND C7 C8 BOND C7 C14
BOND C8 H8 BOND C14 0142 BOND C14 0141 BOND 0141 H141
!Ribose
                         BOND P 02P
   BOND P 01P
                                                   BOND P 05'
    BOND 05' C5'
                           BOND C5' C4'
                                                   BOND C4' O4'
```

```
BOND 04' C1'
   BOND C4' C3'
                                                    BOND C1' 02
   BOND C1' C2'
                          BOND C2' C3'
                                              BOND C3' O3'
   BOND C2' 02' BOND 02' H02' BOND C5' H5'
   BOND C5' H5'' BOND C3' H3'
                                BOND C2' H2'
    BOND C1' H1'' BOND C4' H4'
{ Note: edit these IMPRopers if necessary }
!HCF-Base
IMPRoper C2 C3 C1 O2 ! chirality or flatness improper
                                                         -0.17
IMPRoper C3 C2 C4 H3 ! chirality or flatness improper 0.33
IMPRoper C4 C3 C10 H4 ! chirality or flatness improper
                                                           0.23
IMPRoper C10 C4 C11 C13 ! chirality or flatness improper
                                                           0.07
IMPRoper C11 C10 C1 C9 ! chirality or flatness improper
                                                          -0.07
IMPRoper C1 C2 C11 H1 ! chirality or flatness improper
                                                          0.23
IMPRoper C13 C10 C12 C5 ! chirality or flatness improper -0.01
IMPRoper C12 C13 C9 C8 ! chirality or flatness improper
                                                        -0.01
IMPRoper C9 C11 C12 H91 ! chirality or flatness improper -28.83
IMPRoper C5 C13 C6 H5 ! chirality or flatness improper
                                                         0.01
IMPRoper C6 C5 C7 H6 ! chirality or flatness improper
                                                          -0.04
IMPRoper C7 C6 C8 C14 ! chirality or flatness improper
                                                          -0.03
IMPRoper C8 C12 C7 H8 ! chirality or flatness improper
                                                          -0.02
IMPRoper C14 C7 0142 0141 ! chirality or flatness improper
                                                          0.00
!Ribose
IMPRoper 02 C2' 04' H1''!C1'
IMPRoper H2' C3' C1' O2' !C2'
IMPRoper
          H3' C4' C2' O3' !C3'
IMPRoper
           H4' C5' C3' O4' !C4'
IMPRoper
          H5' 05' H5'' C4' !C5'
END { RESIdue HCF }
!*********************** end of change by lsd - HCF ******************************
   RESIdue GUA
    GROUp
    ATOM P TYPE=P
                     CHARGE=1.20 END
    ATOM 01P TYPE=01P CHARGE=-0.40 END
    ATOM 02P TYPE=02P CHARGE=-0.40 END
    ATOM 05' TYPE=05R CHARGE=-0.36 END
    GROUp
    ATOM C5' TYPE=C5R CHARGE=-0.070 END
    ATOM H5' TYPE=H CHARGE=0.035 END ! JPR
    ATOM H5'' TYPE=H CHARGE=0.035 END !JPR
    GROUp
    ATOM C4' TYPE=C4R CHARGE=0.065 END
    ATOM H4' TYPE=H CHARGE=0.035 END !JPR
    ATOM 04' TYPE=04R CHARGE=-0.30 END
    ATOM C1' TYPE=C1R CHARGE=0.165 END !JPR
    ATOM H1' TYPE=H CHARGE=0.035 END ! JPR
   ! Insert Base
   GROUp
    ATOM N9 TYPE=N9G CHARGE=-0.19 END
    ATOM C4 TYPE=C4G CHARGE=0.19 EXCLusion=( N1 ) END
```

206

GROUp ATOM N3 TYPE=N3G CHARGE=-0.35 EXCLusion=(C6) END ATOM C2 TYPE=C2G CHARGE=0.35 EXCLusion=(C5) END GROUp ATOM N2 TYPE=N2G CHARGE=-0.42 END ATOM H21 TYPE=H2 CHARGE=0.21 END ATOM H22 TYPE=H2 CHARGE=0.21 END GROUp ATOM N1 TYPE=NNA CHARGE=-0.26 END ATOM H1 TYPE=HN CHARGE=0.26 END GROUp ATOM C6 TYPE=C6G CHARGE=0.30 END ATOM 06 TYPE=06G CHARGE=-0.30 END GROUp ATOM C5 TYPE=C5G CHARGE=0.02 END ATOM N7 TYPE=N7G CHARGE=-0.25 END ATOM C8 TYPE=C8G CHARGE=0.145 END ATOM H8 TYPE=H CHARGE=0.035 END ÷ GROUP ATOM C2' TYPE=C2R CHARGE=0.115 END ATOM H2' TYPE=H CHARGE=0.035 END ATOM 02' TYPE=02R CHARGE=-0.40 END ATOM HO2' TYPE=HO CHARGE=0.25 END GROUP ATOM C3' TYPE=C3R CHARGE=-0.035 END ATOM H3' TYPE=H CHARGE=0.035 END GROUP ATOM 03' TYPE=O3R CHARGE=-0.36 END BOND P 05' BOND P 01P BOND P 02P BOND 05' C5' BOND C5' C4' BOND C4' 04' BOND C4' C3' BOND 04' C1' BOND C1' N9 BOND C1' C2' BOND N9 C4 BOND N9 C8 BOND C4 N3 BOND C4 C5 BOND N3 C2 BOND C2 N2 BOND C2 N1 BOND N2 H21 BOND N1 H1 BOND N1 C6 BOND N2 H22 BOND C6 06 BOND C6 C5 BOND C5 N7 BOND C2' C3' BOND C3' O3' BOND N7 C8 BOND C8 H8 BOND C2' 02' BOND 02' HO2' BOND C5' H5'' BOND C4' H4' BOND C5' H5' BOND C3' H3' BOND C2' H2' BOND C1' H1' { DIHEdral P 05' C5' C4' DIHEdral 05' C5' C4' 04' DIHEdral 05' C5' C4' C3' }{ DIHEdral C3' C4' O4' C1' DIHEdral C4' O4' C1' C2' DIHEdral 04' C1' C2' C3' DIHEdral C1' C2' C3' C4' DIHEdral 04' C4' C3' 03'

DIHEdral C5' C4' C3' C2' DIHEdral 03' C3' C2' 02' DIHEdral O4' C1' N9 C4 DIHEdral C3' C2' O2' H2' } T. IMPRoper N3 C2 N2 H21 IMPRoper C1' C4 C8 N9 IMPRoper N9 C4 C5 N7 IMPRoper C4 C5 N7 C8 IMPRoper N7 C8 N9 C4 IMPRoper C5 N7 C8 N9 IMPRoper C8 N9 C4 C5 IMPRoper N2 N3 N1 C2 IMPRoper H1 C2 C6 N1 IMPRoper 06 N1 C5 C6 IMPRoper C4 N3 C2 N1 IMPRoper N3 C2 N1 C6 IMPRoper N1 C6 C5 C4 IMPRoper C2 N1 C6 C5 IMPRoper C6 C5 C4 N3 IMPRoper C5 C4 N3 C2 IMPRoper H22 H21 C2 N2 IMPRoper H8 N7 N9 C8 !IMPRoper to keep the two purine rings parallel:
 IMPRoper C8
 C4
 C5
 N1
 IMPRoper C8
 C5
 C4
 C2

 IMPRoper N3
 C4
 C5
 N7
 IMPRoper C6
 C5
 C4
 N9
 !RIBOSE IMPROPERS IMPRoper H1' C2' O4' N9 !C1' IMPRoper H2' C3' C1' O2' !C2' IMPRoper H3' C4' C2' O3' !C3' IMPRoper H4' C5' C3' O4' !C4' IMPRoper H5' 05' H5'' C4' !C5' END {GUA} ! ------RESIdue ADE GROUp ATOM P TYPE=P CHARGE=1.20 END ATOM 01P TYPE=01P CHARGE=-0.40 END ATOM 02P TYPE=02P CHARGE=-0.40 END ATOM 05' TYPE=05R CHARGE=-0.36 END GROUp ATOM C5' TYPE=C5R CHARGE=-0.070 END ATOM H5' TYPE=H CHARGE=0.035 END ATOM H5'' TYPE=H CHARGE=0.035 END GROUp ATOM C4' TYPE=C4R CHARGE=0.065 END ATOM H4' TYPE=H CHARGE=0.035 END ATOM 04' TYPE=04R CHARGE=-0.30 END ATOM C1' TYPE=C1R CHARGE=0.165 END ATOM H1' TYPE=H CHARGE=0.035 END ! Insert Base GROUp ATOM N9 TYPE=N9A CHARGE=-0.19 END

ATOM C4	1 1	CYPE=C	4A	CHAF	IGE=0	.19	EX	CLusion=((N1)	ENI)	
GROUp													
ATOM N	3	TYPE=N	I3A	CHAF	GE=-0	0.26	EX	CLusion=	(C6)	ENI)	
ATOM C:	2 1	ГҮРЕ=С	2A	CHAF	tGE=0	. 225	ЕX	CLusion=	(C5)	ENI)	
ATOM H	2	ГҮРЕ=Н	[CHAF	GE=0	.035	EN	ID					
GROUp													
ATOM N	1.	TYPE=N	C	CHAR	GE=-0	0.28	EN	ID					
ATOM C	- -		61	CHAR	CE=0	28	EN	 ID					
ATOM C		L I I L-0	,OA	CIIAI	1917-0	.20	LIN	LD					
GRUUP													
ATOM NO	5	TYPE=N	6A	CHAF	GE=-0	0.42	EN	ID					
ATOM H	61 1	TYPE=H	12	CHAF	GE=0	.21	EN	ID					
ATOM H	62	TYPE=H	12	CHAF	GE=0	.21	EN	ID					
GROUp													
ATOM C	5	TYPE=C	5A	CHAF	GE=0	.02	EN	ID					
ATOM N	7	TYPE=N	17A	CHAF	GE=-0	0.25	EN	ID					
ATOM C	3 1	TYPE=C	8A	CHAF	GE=0	. 195	EN	ID					
ATOM H	3 '	ГҮРЕ=Н	r	CHAR	GE=0	.035	EN	ID					
I END	-							-					
: LND													
GROUP													
ATOM C:	2' T	/PE=C2	2R	CHARC	E=0.3	115	END)					
ATOM H:	2' T	PE=H		CHARC	E=0.0	035	END)					
ATOM O	2' T	/PE=02	2R	CHARG	E=-0	.40	END)					
ATOM H)2' T	PE=HO)	CHARG	E=0.2	25	END)					
GROUP													
ATOM C	3' T	/PE=C3	R	CHARG	E=-0	.035	END)					
ATOM H	3, T	PE=H		CHARG	E=0 0	035	END)					
	-			0111110			2.112						
CROTID													
GROUP		/DE 00		autor									
GROUP ATOM O	3' T	/PE=03	R	CHARG	E=-0	.36	END)					
GROUP ATOM O	3' T	/PE=03	R	CHARG	E=-0	.36	END)					
GROUP ATOM OS BOND P	3' T' 011	/PE=03	R	CHARG	E=-0	.36 P	END 02P)		В	OND	Р	05'
GROUP ATOM OS BOND P BOND O5	3' T 011 ' C5	/PE=03	R	CHARG	E=-0 BOND BOND	.36 P C5'	END 02P C4')		B	ond ond	P C4'	05' 04'
GROUP ATOM O: BOND P BOND O5 BOND C4	3' T 011 ' C5 ' C3	/PE=03	R	CHARG	E=-0 BOND BOND BOND	.36 P C5' 04'	END 02P C4' C1') ,		B B B	OND OND OND	P C4' C1'	05' 04' N9
GROUP ATOM 03 BOND P BOND 05 BOND C4 BOND C1	3' T 011 ' C5 ' C3 ' C2	(PE=03	IR.	CHARG	E=-0 BOND BOND BOND BOND	.36 P C5' 04' N9	END 02P C4, C1, C4)		B B B	OND OND OND OND	P C4' C1' N9	05' 04' N9 C8
GROUP ATOM O: BOND P BOND O5 BOND C4 BOND C1 BOND C4	3' T 01) ' C5 ' C3 ' C2 N3	YPE=03	IR.	CHARG	E=-0 BOND BOND BOND BOND BOND	.36 P C5' 04' N9 C4	END 02P C4' C1' C4 C5)		B B B B	OND OND OND OND OND	P C4' C1' N9 N3	05' 04' N9 C8 C2
GROUP ATOM 03 BOND P BOND 05 BOND C4 BOND C1 BOND C4 BOND C2	3' T 011 ' C5 ' C3 ' C2 N3 N1	YPE=03	IR	CHARG	E=-0 BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1	END 02P C4' C1' C4 C5 C5 C6)		B B B B B	OND OND OND OND OND	P C4' C1' N9 N3 C6	05' 04' N9 C8 C2 N6
GROUP ATOM 03 BOND P BOND 05 BOND C4 BOND C1 BOND C4 BOND C2	3' T 011 , C5 , C3 , C2 N3 N1	YPE=03	SR	CHARG	E=-0 BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1	END 02P C4, C1, C4 C5 C6)		B B B B B	OND OND OND OND OND OND	P C4' C1' N9 N3 C6	05' 04' N9 C8 C2 N6
GROUP ATOM 03 BOND P BOND 05 BOND 04 BOND C1 BOND C4 BOND C2 BOND C2	3' T 011 ' C5 ' C3 ' C2 N3 N1	YPE=03	8R.	CHARG	E=-O BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1	END 02P C4, C1, C4 C5 C6			B B B B B	OND OND OND OND OND	P C4' C1' N9 N3 C6	05, 04, N9 C8 C2 N6
GROUP ATOM 03 BOND P BOND 05 BOND C4 BOND C1 BOND C4 BOND C2 BOND N6	3' T 011 ' C5 ' C3 ' C2 N3 N1 H6	YPE=03	SR.	CHARG	E=-0 BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6	END 02P C4, C1, C4 C5 C6 H62	2		B B B B B B	OND OND OND OND OND OND	P C4, C1, N9 N3 C6 C6	05' 04' N9 C8 C2 N6 C5
GROUP ATOM 03 BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C2 BOND N6	3' T 011) ' C5 ' C3 ' C2 N3 N1 H6	YPE=03	R	CHARG	E=-0 BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6	END 02P C4' C1' C4 C5 C6 H62	2		B B B B B	OND OND OND OND OND OND	P C4, C1, N9 N3 C6 C6	05' 04' N9 C8 C2 N6 C5
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C2 BOND N6 BOND C5	3' T 011 ' C5 ' C3 ' C2 N3 N1 H6	YPE=03	R	CHARG	E=-O BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7	END 02P C4' C1' C4 C5 C6 H62 C8	2		B B B B B B B	OND OND OND OND OND OND	P C4, C1, N9 N3 C6 C6 C2,	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND P BOND 05 BOND C1 BOND C1 BOND C2 BOND C5 BOND C2	3' T 011) ' C5 ' C3 N3 N1 H6: N7	YPE=03	R	CHARG	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3,	END 02F C4' C1' C4 C5 C6 H62 C8 03'	2		B B B B B B B	OND OND OND OND OND OND	P C4', C1', N9 N3 C6 C6 C2',	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND 0:	3, T 011 , C5 , C3 , C2 N3 N1 H6 N7 , 02 H8	YPE=03	R	CHARG	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2	END 02P C4, C1, C4 C5 C6 H62 C8 03, H2	2		B B B B B B B	OND OND OND OND OND OND	P C4', C1', N9 N3 C6 C6 C2',	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C2 BOND C2 BOND C5 BOND C2 BOND C2 BOND C2	3, T 011 , C5 , C3 , C2 N3 N1 H6: N7 , 02 H8 , H0:	YPE=03	R	CHARG	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2	END 02F C4, C1, C4 C5 C6 H62 C8 03, H2	2		B B B B B B	OND OND OND OND OND OND	P C4, C1, N9 N3 C6 C6 C2,	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C4 BOND C5 BOND C5 BOND C2 BOND C3 BOND C3 BOND C3	3, T 011 , C5 , C3 , C2 N3 N1 H6: N7 , 02 H8 , H0: , H5	YPE=03	R	CHARC	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,,	END 02P C4, C1, C4 C5 C6 H62 C8 03, H2) ; 801	ים כי	B B B B B B	OND OND OND OND OND OND OND	P C4, C1, N9 N3 C6 C6 C2,	05', 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND 05 BOND 05 BOND 04 BOND 04 BOND 04 BOND 04 BOND 04 BOND 02 BOND 05 BOND 02 BOND 02 BOND 02 BOND 02	3, T 011 , C5 , C3 , C2 N3 N1 H6: N7 , 02 H8 , H0: , H5 , H3	YPE=03	R	CHARC BOND BOND	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5; 04; N9 C4 N1 N6 N7 C3; C2 H5;, H2;	END 02P C4' C1' C4 C5 C6 H62 C8 03' H2) ; B01 B01	ID C4 ID C	B B B B B B B	OND OND OND OND OND OND OND OND H44 H11	P C4' C1' N9 N3 C6 C6 C2'	05', 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND 05 BOND 04 BOND 04 BOND 04 BOND 04 BOND 02 BOND 02 BOND 02 BOND 02 BOND 02 BOND 02 BOND 02 BOND 03 BOND 03	3, T 011) , C5 , C3 , C2 N3 N1 H6 , N7 , 02 H8 , H0: , H5 , H3	YPE=03	R	CHARC BOND BOND	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C5 C6 H62 C8 03' H2	9) 2 801 801	ID C:	B B B B B B B 4,	OND OND OND OND OND OND OND OND H44 H1	P C4' N9 N3 C6 C6 C2'	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND 05 BOND 05 BOND 04 BOND 04 BOND 04 BOND 02 BOND 02 BOND 02 BOND 02 BOND 02 BOND 02 BOND 03 GOND 03 GOND 03 BOND 03 BOND 03 BOND 03 BOND 03 C	3, T 011) , C5 , C3 , C2 N3 N1 H6; , N7 , 02 H8 , H0; , H5 , H3	YPE=03	R.	BOND BOND C4,	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C5 C6 H62 C8 03' H2	BOI BOI DTHEdral	1D C4 1D C3	B B B B B B B B B B B B B B B B B B B	OND OND OND OND OND OND OND H44: H11:	P C4' C1' N9 N3 C6 C6 C2'	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C2 BOND C2 BOND C5 BOND C2 BOND C3 BOND C3 { DIHEdra:	3, T 011 , C5 , C3 , C2 N3 N1 H6: N7 , 02 H8 , H0: , H5 , H3	(PE=03	R C5,	BOND BOND C4,	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02F C4' C1' C4 C5 C6 H62 C8 03' H2) , , BOI DIHEdral	1D C4 1D C3	B B B B B B B B B B B B B B B B B B B	OND OND OND OND OND OND OND H44: H1: 5,	P C4, C1, N9 N3 C6 C2, C2,	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C2 BOND C2 BOND C5 BOND C2 BOND C3 BOND C3 { DIHEdrai	3, T 011 , C5 , C3 , C2 N3 N1 H6; N7 , 02 H8 , H0; , H5 , H3 L P L 05,	(PE=03	C5, C4,	CHARC BOND BOND C4, C3,	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02F C4' C1' C4 C5 C6 H62 C8 03' H2) , BOI DIHEdral	1D C4 1D C3	B B B B B B B C	OND OND OND OND OND OND OND H44 H1	P C4, C1, N9 N3 C6 C2, C2,	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C2 BOND C2 BOND C2 BOND C5 BOND C2 BOND C3 C3 BOND C3 C1 DIHEdra: C1	3, T 011 , C5 , C3 , C2 N3 N1 H6 , N7 , 02 H8 , H0 , H5 , H3 1 P 1 05,	(PE=03) , , , , , , , , , , , , , , , , , ,	GR C5, C4,	CHARC BOND BOND C4, C3,	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C4 C5 C6 H62 C8 03' H2) , BON DIHEdral	1D C4 1D C3	B B B B B 1, C	OND OND OND OND OND OND OND H4: H1: 5;	P C4' C1' N9 N3 C6 C6 C2' C2'	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM O: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C5 BOND C5 BOND C2 BOND C2 BOND C2 BOND C3 C1 BOND C3 C1 DIHEdra: C1 C1 DIHEdra:	3' T 011 C5 C3 C2 N3 N1 H6 N7 02 H8 H0 H5 H3 L P L O5' L C3'	(PE=03) , , , , , , , , , , , , , , , , , ,	R C5; C4; 04;	BOND BOND C4' C3' C1'	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C4 C5 C6 H62 C8 03' H2) , BON BON DIHEdral	1D C4 1D C3	B B B B B B B B B B B B B B B B B B B	OND OND OND OND OND OND H44 H1	P C4', C1', N9 N3 C6 C6 C2', C4',	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM 0: BOND 05 BOND 05 BOND 04 BOND 04 BOND 04 BOND 02 BOND	3, T 011 , C5 , C3 , C2 N3 N1 H6 N7 , 02 H8 , H0 , H5 , H3 1 P 1 05, 1 C3, 1 C4,	<pre>YPE=03 , , , , , , , , , , , , , , , , , , ,</pre>	C5, C4, 04, C1,	BOND BOND C4', C3', C1', C2'	E=-0 BOND BOND BOND BOND BOND BOND BOND C5; C2;	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C4 C5 C6 H62 C8 03' H2) , , BON BON DIHEdral DIHEdral	ID C4 ID C: 05,	C C	OND OND OND OND OND OND H4: H1: 5;	P C4' C1' N9 N3 C6 C2' C4'	05, 04, N9 C8 C2 N6 C5 C3, 04,
GROUP ATOM 0: EOND P EOND 05 EOND C4 EOND C4 EOND C4 EOND C4 EOND C2 EOND C5 EOND C5 EOND C2 EOND C3 EOND C3 [DIHEdra:]{ DIHEdra: [DIHEdra:]	3, T 011 , C5 , C3 , C2 N3 N1 H6 N7 , 02 H8 , H0 , H5 , H3 1 P 1 05, 1 C3, 1 C4,	<pre>(PE=03) , , , , , , , , , , , , , , , , , ,</pre>	C5, C4, 04, C1,	BOND BOND C4, C3, C1, C2,	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02F C4, C1, C5 C6 H62 C8 03, H2) , , BON BON DIHEdral DIHEdral	ID C4 ID C: 05,	C C C	OND OND OND OND OND OND H44 H11 5,	P C4' C1' N9 N3 C6 C6 C2' C4'	05' 04' N9 C8 C2 N6 C5 C3'
GROUP ATOM O: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C2 BOND C5 BOND C5 BOND C2 BOND C5 BOND C3 C3 BOND C3 C1 DIHEdra: DIHEdra: DIHEdra:	3, T 011 , C5 , C3 , C2 N3 N1 H6 N7 , 02 H8 , H0 , H5 , H3 1 P 1 O5, 1 C3, 1 C4, 1 C1,	<pre>(PE=03) (PE=03) (</pre>	C5, C4, C1, C3,	BOND BOND C4', C3' C1' C2' C4'	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02P C4' C1' C5 C6 H62 C8 03' H2) , , BON BON DIHEdral DIHEdral DIHEdral	ID C4 ID C3 05, 04,	C C	OND OND OND OND OND OND H44 H11 5, 1, 4,	P C4, C1, N9 N3 C6 C2, C4, C4, C2, C2, C2, C3,	05, 04, N9 C8 C2 N6 C5 C3, 04, C3,
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C2 BOND C5 BOND C5 BOND C2 BOND C3 BOND C3 BOND C3 C1 DIHEdra: DIHEdra: DIHEdra: DIHEdra:	3, T 011 , C5 , C3 , C2 N3 N1 H6: N7 , 02 H8 , H0: , H3 1 P 1 05, 1 C3, 1 C4, 1 C1, 1 C5,	(PE=03)) , , , , , , , , , , , , , , , , ,	C5, C4, C1, C3, C3,	BOND BOND C4', C3', C1', C2', C4', C2',	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02F C4' C1' C4 C5 C6 H62 C8 03' H2) , , DIHEdral DIHEdral DIHEdral DIHEdral	ID C4 ID C2 05, 04, 04, 02,	C C C C C C	0ND 0ND 0ND 0ND 0ND 0ND 0ND 141 5, 1, 1, 2,	P C4, C1, N9 N3 C6 C2, C4, C4, C2, C4, C2, C3, C3,	05' 04' N9 C2 N6 C5 C3' 04' C3'
GROUP ATOM 0: BOND P BOND 05 BOND C4 BOND C4 BOND C4 BOND C4 BOND C2 BOND C5 BOND C5 BOND C5 BOND C2 BOND C3 BOND C3 C1 DIHEdra: DIHEdra: DIHEdra: DIHEdra: DIHEdra:	3, T 011 , C5 , C3 , C2 N3 N1 H6 N7 , 02 H8 , H0 , H5 , H3 1 P 1 05, 1 C3, 1 C4, 1 C5, 1 04, 1 04,	(PE=03)) , , , , , , , , , , , , , , , , ,	R C5, C4, C1, C3, C3, N9	BOND BOND C4', C2', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C2', C4', C4', C4', C4', C4', C4', C4', C4	E=-0 BOND BOND BOND BOND BOND BOND BOND BOND	.36 P C5, 04, N9 C4 N1 N6 N7 C3, C2 H5,, H2,	END 02F C4' C1' C4 C5 C6 H62 C8 03' H2) , , DIHEdral DIHEdral DIHEdral DIHEdral	1D C4 1D C3 05, 04, 04, 02,	B B B B B B B C C C C	0ND 0ND 0ND 0ND 0ND 0ND 0ND 11 ¹ 5 ¹	P C4, C1, N9 N3 C6 C2, C2, C4, C2, C2, C2, C3, C3,	05' 04' N9 C2 N6 C5 C3' 04' C3'

}

!										
IMPRoper C5	C6	N6	H61	L		IMPRoper	C1'	C4	C8	N9
IMPRoper N9	C4	C5	N7			IMPRoper	C4	C5	N7	C8
IMPRoper C5	N7	C8	N9			IMPRoper	N7	C8	N9	C4
IMPRoper C8	N9	C4	C5			IMPRoper	N6	N1	C5	C6
IMPRoper H62	C6	H61	N6			IMPRoper	C4	N3	C2	N1
IMPRoper N3	C2	N1	C6			IMPRoper	C2	N1	C6	C5
IMPRoper N1	C6	C5	C4			IMPRoper	C6	C5	C4	NЗ
IMPRoper C5	C4	NЗ	C2							
IMPRoper H2	N1	NЗ	C2			IMPRoper	H8	N7	N9	C8
! IMPRoper to	keep	the	two	purine	rings	parallel	:			
IMPRoper C8	C4	C5	N1			IMPRoper	C8	C5	C4	C2
IMPRoper N3	C4	C5	N7			IMPRoper	C6	C5	C4	N9

!RIBOSE IMPROPERS

IMPRoper	H1'	C2'	04'	N9	!C1'
IMPRoper	Н2'	СЗ'	C1'	02'	!C2'
IMPRoper	НЗ'	C4'	C2'	03,	!C3'
IMPRoper	Н4'	C5'	СЗ'	04'	!C4'
IMPRoper	Η5'	05'	Η5''	C4'	!C5'

END {ADE}

```
! -----
RESIdue PUR
GROUp
 ATOM P TYPE=P CHARGE=1.20 END
 ATOM 01P TYPE=01P CHARGE=-0.40 END
 ATOM 02P TYPE=02P CHARGE=-0.40 END
 ATOM 05' TYPE=05R CHARGE=-0.36 END
GROUp
 ATOM C5' TYPE=C5R CHARGE=-0.070 END
 ATOM H5' TYPE=H CHARGE=0.035 END
 ATOM H5'' TYPE=H CHARGE=0.035 END
GROUp
 ATOM C4' TYPE=C4R CHARGE=0.065 END
 ATOM H4' TYPE=H CHARGE=0.035 END
 ATOM 04' TYPE=04R CHARGE=-0.30 END
 ATOM C1' TYPE=C1R CHARGE=0.165 END
 ATOM H1' TYPE=H CHARGE=0.035 END
! Insert Base
GROUp
 ATOM N9 TYPE=N9P CHARGE=-0.19 END
ATOM C4 TYPE=C4P CHARGE=0.19 EXCLusion=( N1 ) END
GROUp
ATOM N3 TYPE=N3P CHARGE=-0.26 EXCLusion=( C6 ) END
 ATOM C2 TYPE=C2P CHARGE=0.225 EXCLusion=( C5 ) END
 ATOM H2 TYPE=H CHARGE=0.035 END
GROUp
```

```
ATOM N1 TYPE=NC CHARGE=-0.28 END
 ATOM C6 TYPE=C6P CHARGE=0.28 END
 ATOM H6 TYPE=H CHARge= 0.035 END
GROUp
 ATOM C5
          TYPE=C5P CHARGE=0.02
                                  END
 ATOM N7 TYPE=N7P CHARGE=-0.25 END
 ATOM C8 TYPE=C8P CHARGE=0.195 END
 ATOM H8 TYPE=H CHARGE=0.035 END
! END
GROUP
 ATOM C2' TYPE=C2R CHARGE=0.115 END
 ATOM H2' TYPE=H
                   CHARGE=0.035
                                END
 ATOM 02' TYPE=02R CHARGE=-0.40 END
 ATOM HO2' TYPE=HO CHARGE=0.25 END
GROUP
 ATOM C3' TYPE=C3R CHARGE=-0.035 END
 ATOM H3' TYPE=H CHARGE=0.035 END
GROUP
 ATOM 03' TYPE=03R CHARGE=-0.36 END
                    BOND P 02P
BOND C5' C4'
BOND P 01P
                                               BOND P 05'
BOND 05' C5'
                                              BOND C4' 04'
BOND C4' C3'
                      BOND 04' C1'
                                             BOND C1' N9
                    BOND N9 C4
BOND C4 C5
BOND C1' C2'
                                              BOND N9 C8
BOND C4 N3
                                                BOND N3 C2
BOND C2 N1
                       BOND N1 C6
                                                BOND C6 H6
BOND C6 C5
BOND C5 N7
                      BOND N7 C8
                                               BOND C2' C3'
                       BOND C3' O3'
BOND C2' O2'
                       BOND C2 H2
BOND C8 H8
BOND 02' H02'

        BOND C5'
        H5'
        BOND C5'
        H5''

        BOND C3'
        H3'
        BOND C2'
        H2'

                                       BOND C4' H4'
                                       BOND C1' H1'
ſ
DIHEdral P 05' C5' C4'
                                   DIHEdral 05' C5' C4' 04'
DIHEdral 05' C5' C4' C3'
}{
DIHEdral C3' C4' O4' C1'
DIHEdral C4' O4' C1' C2'
                                    DIHEdral 04' C1' C2' C3'
DIHEdral C1' C2' C3' C4'
                                    DIHEdral 04' C4' C3' 03'
DIHEdral C5' C4' C3' C2'
                                    DIHEdral 02' C2' C3' 03'
DIHEdral O4' C1' N9 C4
DIHEdral C3' C2' O2' H2'
}
IMPRoper H6 N1 C5 C6
                                   IMPRoper C1' C4 C8 N9
IMPRoper N9 C4 C5 N7
                                   IMPRoper C4 C5 N7 C8
IMPRoper C5 N7 C8 N9
                                   IMPRoper N7 C8 N9 C4
IMPRoper C8 N9 C4 C5
                                    IMPRoper N6 N1 C5 C6
IMPRoper C4 N3 C2 N1
                                    IMPRoper C2 N1 C6 C5
IMPRoper N3 C2 N1 C6
```

IMPRoper N1	L C6 C5	C4	IMPRope	r C6	C5 (C4 N3
IMPRoper CS	5 C4 N3	C2				
IMPRoper H2	2 N1 N3	C2	IMPRoper	r H8	N7 1	N9 C8
! IMPRoper	to keep th	e two purine r	ings paralle	1:		
IMPRoper C8	3 C4 C5	N1	IMPRoper	r C8	C5 (C4 C2
IMPRoper N3	3 C4 C5	N7	IMPRoper	r C6	C5 (C4 N9
!RIBOSE IMPR	ROPERS					
IMPRoper	C2' C3'	C1' 02'				
IMPRoper	H1' C2'	04' N9 !C1'				
IMPRoper	H2' C3'	C1' 02' !C2'				
IMPRoper	H3' C4'	C2' 03' !C3'				
IMPRoper	H4' C5'	C3' 04' !C4'				
IMPRoper	H5' 05'	H5'' C4' !C5'				
END {PUR}						
!						
DEGI de la ADA						
CDOUL-						
GRUUP			END			
ATOM OID	TYPE=P	CHARGE=1.20	END			
ATOM OOD	TYPE-00D	CHARGE=-0.40	END			
ATOM U2P	TYPE=U2P	CHARGE=-0.40	END			
CROUP	IYPE=U5K	CHARGE=-0.36	END			
GRUUP		autors 0.070	END			
ATUM C5'	TYPE=C5R	CHARGE=-0.070	END			
ATUM H5'	TYPE=H	CHARGE=0.035	END			
ATUM H5''	TYPE=H	CHARGE=0.035	END			
GRUUp		auto an a a a a	-			
ATUM C4'	TYPE=C4R	CHARGE=0.065	END			
ATOM H4'	TYPE=H	CHARGE=0.035	END			
ATOM 04'	TYPE=04R	CHARGE=-0.30	END			
ATOM C1'	TYPE=C1R	CHARGE=0.165	END			
ATOM H1'	TYPE=H	CHARGE=0.018	END			
ATOM H1''	TYPE=H	CHARGE=0.017	END			
CDOUD						
ATOM CO2	TYDE-COP	CHARGE-0 11E	END			
ATOM UO	TIPE=02R	CHARGE=0.115	END			
ATOM OOV	TYPE-00D	CHARGE=0.035	END			
ATOM U2'	TYPE=U2R	CHARGE=-0.40	END			
AIUM HUZ'	IYPE=HU	CHARGE=0.25	END			
GRUUP	WDD GOD	auto a 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	END			
ATUM C3'	TYPE=C3R	CHARGE=-0.035	END			
AIUM H3'	IIPE=H	CHARGE=0.035	END			
GRUUP	TYDE-02D	CHARGE- 0.00	END			
ATUM 03'	IYPE=03R	CHARGE=-0.36	END			
BUND P	קור	ם תווחם	02P	DU	ם תוא	05'
	75)	ד מאסק המקרי	CA ?	Ud og	ND CA	, 00,
		יעם מווספי סאוספי.	01 /	DU	U4	υT
BOND C42			C3,			
BUND C32 C	13,	BUND C2	02,			
רכי האוחה		DOND 02.	02			

212

2 Input files for Molecular Dynamics calculations

```
        BOND
        02'
        H02'
        BOND
        C1'
        H1''

        BOND
        C5'
        H5'
        BOND
        C5'
        H5''

        BOND
        C3'
        H3'
        BOND
        C2'
        H2'

                                              BOND C4' H4'
                                              BOND C1' H1'
   ſ
    DIHEdral P 05' C5' C4'
                                        DIHEdral 05' C5' C4' 04'
    DIHEdral 05' C5' C4' C3'
   }{
    DIHEdral C3' C4' O4' C1'
    DIHEdral C4' O4' C1' C2'
                                         DIHEdral O4' C1' C2' C3'
    DIHEdral C1' C2' C3' C4'
                                          DIHEdral 04' C4' C3' 03'
    DIHEdral C5' C4' C3' C2'
                                          DIHEdral 02' C2' C3' 03'
    DIHEdral 04' C1' H1'' C2
    DIHEdral C3' C2' O2' H2'
    ! New dihedrals
    DIHEdral C5' C4' C3' O3'
                                        DIHEdral C4' O4' C1' H1''
   }
       !RIBOSE IMPROPERS
   !IMPRoper H1' C2' O4' H1'' !C1' !mod by anda
   IMPRoper H2' C3' C1' O2' !C2'
   IMPRoper H3' C4' C2' O3' !C3'
   IMPRoper H4' C5' C3' O4' !C4'
   IMPRoper H5' 05' H5'' C4' !C5'
    END {ABA}
! -----
   RESIdue CYT
     GROUp
     ATOM P TYPE=P CHARGE=1.20 END
     ATOM 01P TYPE=01P CHARGE=-0.40 END
     ATOM 02P TYPE=02P CHARGE=-0.40 END
     ATOM 05' TYPE=05R CHARGE=-0.36 END
    GROUp
     ATOM C5' TYPE=C5R CHARGE=-0.070 END
     ATOM H5' TYPE=H CHARGE=0.035 END
     ATOM H5'' TYPE=H CHARGE=0.035 END
    GROUp
     ATOM C4' TYPE=C4R CHARGE=0.065 END
     ATOM H4' TYPE=H CHARGE=0.035 END
     ATOM 04' TYPE=04R CHARGE=-0.30 END
     ATOM C1' TYPE=C1R CHARGE=0.165 END
     ATOM H1' TYPE=H CHARGE=0.035 END
   ! Insert Base
    GROUp
     ATOM N1 TYPE=N1C CHARGE=-0.19 EXCLUSION=( C4 ) END
     ATOM C6 TYPE=C6C CHARGE=0.155 EXCLUSION=( N3 ) END
```

ATOM H6 TYPE=H CHARGE=0.035 END GROUp ATOM C2 TYPE=C2C CHARGE=0.30 EXCLUSION=(C5) END ATOM 02 TYPE=ON CHARGE=-0.30 END GROUp ATOM N3 TYPE=NC CHARGE=-0.28 END ATOM C4 TYPE=C4C CHARGE=0.28 END GROUp ATOM N4 TYPE=N4C CHARGE=-0.42 END ATOM H41 TYPE=H2 CHARGE=0.21 END ATOM H42 TYPE=H2 CHARGE=0.21 END GROUp ATOM C5 TYPE=C5C CHARGE=-0.035 END !CHRG ATOM H5 TYPE=H CHARGE=0.035 END GROUp ! END GROUP ATOM C2' TYPE=C2R CHARGE=0.115 END ATOM H2' TYPE=H CHARGE=0.035 END ATOM 02' TYPE=02R CHARGE=-0.40 END ATOM HO2' TYPE=HO CHARGE=0.25 END GROUP ATOM C3' TYPE=C3R CHARGE=-0.035 END ATOM H3' TYPE=H CHARGE=0.035 END GROUP ATOM 03' TYPE=03R CHARGE=-0.36 END BOND P 01P BOND P 02P BOND P 05' BOND C5' C4' BOND 05' C5' BOND C4' O4' BOND 04' C1' BOND C4' C3' BOND C1' N1 BOND N1 C2 BOND N1 C6 BOND C1' C2' BOND C2 N3 BOND N3 C4 BOND C4 N4 BOND N4 H41 BOND N4 H42 BOND C2 02 BOND C4 C5 BOND C5 C6 BOND C2' C3' BOND C3' O3' BOND C2' O2' BOND C5 H5 BOND C6 H6 BOND 02' H02' BOND C5' H5' BOND C5' H5'' BOND C4' H4' BOND C3' H3' BOND C2' H2' BOND C1' H1' ł DIHEdral P 05' C5' C4' DIHEdral 05' C5' C4' 04' DIHEdral 05' C5' C4' C3' Н DIHEdral C3' C4' O4' C1' DIHEdral C4' O4' C1' C2' DIHEdral 04' C1' C2' C3' DIHEdral C1' C2' C3' C4' DIHEdral 04' C4' C3' 03' DIHEdral C5' C4' C3' C2' DIHEdral 02' C2' C3' 03' DIHEdral O4' C1' N1 C2 DIHEdral C3' C2' O2' H2'

2 Input files for Molecular Dynamics calculations

```
! New dihedrals
DIHEdral C5' C4' C3' O3'
                              DIHEdral C4' O4' C1' N1
3
IMPRoper C5 C4 N4 H41
                                IMPRoper C1' C2 C6 N1
IMPRoper 02 N1 N3 C2
                               IMPRoper N4 N3 C5 C4
                               IMPRoper C2 N3 C4 C5
IMPRoper N1 C2 N3 C4
IMPRoper N3 C4 C5 C6
                               IMPRoper C4 C5 C6 N1
IMPRoper C5 C6 N1 C2
                               IMPRoper C6 N1 C2 N3
IMPRoper H42 C4 H41 N4
IMPRoper H5 C4 C6 C5
                                IMPRoper H6 N1 C5 C6
INIBOSE IMPROPERS
IMPRoper H1' C2' O4' N1 !C1'
IMPRoper H2' C3' C1' D2' !C2'
IMPRoper H3' C4' C2' D3' !C3'
IMPRoper H4' C5' C3' O4' !C4'
IMPRoper H5' 05' H5'' C4' !C5'
END {CYT}
! ------
RESIdue THY
GROUp
 ATOM P TYPE=P CHARGE=1.20 END
 ATOM 01P TYPE=01P CHARGE=-0.40 END
 ATOM 02P TYPE=02P CHARGE=-0.40 END
 ATOM 05' TYPE=05R CHARGE=-0.36 END
GROUp
 ATOM C5' TYPE=C5R CHARGE=-0.070 END
 ATOM H5' TYPE=H CHARGE=0.035 END
 ATOM H5'' TYPE=H
                 CHARGE=0.035 END
GROUp
 ATOM C4' TYPE=C4R CHARGE=0.065 END
 ATOM H4' TYPE=H CHARGE=0.035 END
 ATOM 04' TYPE=04R CHARGE=-0.30 END
 ATOM C1' TYPE=C1R CHARGE=0.20 END
 ATOM H1' TYPE=H CHARGE=0.165 END
! Insert Base
GROUp
 ATOM N1 TYPE=N1T CHARGE=-0.19 EXCLUSION=( C4 ) END
 ATOM C6 TYPE=C6T CHARGE=0.155 EXCLUSION=( N3 ) END
 ATOM H6 TYPE=H CHARGE=0.035 END
GROUp
 ATOM C2 TYPE=C2T CHARGE=0.35 EXCLUSION=( C5 ) END
 ATOM 02 TYPE=ON CHARGE=-0.35 END
GROUp
 ATOM N3 TYPE=N3T CHARGE=-0.26 END
 ATOM H3 TYPE=HN CHARGE=0.26 END
GROUp
 ATOM C4 TYPE=C4T CHARGE=0.30 END
 ATOM 04 TYPE=ON CHARGE=-0.30 END
```

```
Appendix
```

GROUp ATOM C5 TYPE=C5T CHARGE=-0.035 END ATOM C7 TYPE=CC3E CHARGE=-0.070 END ! name per IUPAC-IUB recomm. ATOM H71 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm. ATOM H72 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm. ATOM H73 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm. GROUp ! END GROUP ATOM C2' TYPE=C2R CHARGE=0.115 END ATOM H2' TYPE=H CHARGE=0.035 END ATOM 02' TYPE=02R CHARGE=-0.40 END ATOM HO2' TYPE=HO CHARGE=0.25 END GROUP ATOM C3' TYPE=C3R CHARGE=-0.035 END ATOM H3' TYPE=H CHARGE=0.035 END GROUP ATOM 03' TYPE=O3R CHARGE=-0.36 END BOND P 02P BOND P 05' BOND P 01P BOND 05' C5' BOND C5' C4' BOND C4' O4' BOND C1' N1 BOND C4' C3' BOND 04' C1' BOND C1' C2' BOND N1 C2 BOND N1 C6 BOND C2 N3 BOND N3 H3 BOND C2 02 BOND N3 C4 BOND C4 04 BOND C4 C5 BOND C5 C7 BOND C5 C6 BOND C2' C3' BOND C3' O3' BOND C2' O2' BOND 02' H02' BOND C5' H5' BOND C5' H5'' BOND C3' H3' BOND C2' H2' BOND C1' H1' BOND C4' H4' BOND C7 H71 BOND C7 H72 BOND C7 H73 BOND C6 H6 { DIHEdral P 05' C5' C4' DIHEdral 05' C5' C4' 04' DIHEdral 05' C5' C4' C3' }{ DIHEdral C3' C4' O4' C1' DIHEdral C4' O4' C1' C2' DIHEdral 04' C1' C2' C3' DIHEdral C1' C2' C3' C4' DIHEdral 04' C4' C3' 03' DIHEdral C5' C4' C3' C2' DIHEdral 02' C2' C3' 03' DIHEdral 04' C1' N1 C2 DIHEdral C3' C2' O2' H2' ! New dihedrals DIHEdral C5' C4' C3' O3' DIHEdral C4' O4' C1' N1 }

IMPRoper C1' C2 C6 N1

IMPRoper 04 N3 C5 C4

```
IMPRoper 02 N1 N3 C2
                                    IMPRoper C4 C5 C6 N1
IMPRoper N1 C2 N3 C4
                                   IMPRoper C2 N3 C4 C5
                                   IMPRoper N3 C4 C5 C6
IMPRoper C5 C6 N1 C2
                                    IMPRoper C6 N1 C2 N3
IMPRoper H3 C2 C4 N3
IMPRoper C7 C4 C6 C5
                            IMPRoper H6 N1 C5 C6
INTROSE IMPROPERS
IMPRoper H1' C2' O4' N1 ! C1'
IMPRoper H2' C3' C1' O2' !C2'
IMPRoper H3, C4, C2, O3, 1C3,

        IMPRoper
        H4'
        C5'
        C3'
        O4'
        !C4'

        IMPRoper
        H5'
        05'
        H5''
        C4''
        !C5'

END {THY}
!-----
RESIdue URI
GROUp
 ATOM P TYPE=P CHARGE=1.20 END
 ATOM 01P TYPE=01P CHARGE=-0.40 END
 ATOM 02P TYPE=02P CHARGE=-0.40 END
 ATOM 05' TYPE=05R CHARGE=-0.36 END
GROUp
 ATOM C5' TYPE=C5R CHARGE=-0.070 END
 ATOM H5' TYPE=H CHARGE=0.035 END
 ATOM H5'' TYPE=H CHARGE=0.035 END
GROUp
 ATOM C4' TYPE=C4R CHARGE=0.065 END
 ATOM H4' TYPE=H
                   CHARGE=0.035
                                 END
 ATOM 04' TYPE=04R CHARGE=-0.30
                                 END
 ATOM C1' TYPE=C1R CHARGE=0.165 END
 ATOM H1' TYPE=H CHARGE=0.035 END
GROUp
 ATOM N1 TYPE=N1U CHARGE=-0.19 EXCLUSION=( C4 ) END
 ATOM C6
           TYPE=C6U CHARGE=0.155 EXCLUSION=( N3 ) END
 ATOM H6
          TYPE=H CHARGE=0.035 END
GROUp
 ATOM C2 TYPE=C2U CHARGE=0.30 EXCLUSION=( C5 ) END
 ATOM 02 TYPE=ON CHARGE=-0.30 END
GROUp
 ATOM N3 TYPE=N3U CHARGE=-0.28 END
 ATOM H3
          TYPE=HN CHARGE=0.26 END
GROUp
 ATOM C4 TYPE=C4U CHARGE=0.28 END
 ATOM 04 TYPE=ON CHARGE=-0.30 END
 GROUp
 ATOM C5 TYPE=C5U CHARGE=-0.035 END !JPR
 ATOM H5 TYPE=H CHARGE=0.035 END ! JPR
```

GROUP	
ATOM C2' TYPE=C2R CHARGE=0.115 E	ND
ATOM H2' TYPE=H CHARGE=0.035 E	ND !
ATOM 02' TYPE=02R CHARGE=-0.40 E	ND
ATOM HO2' TYPE=HO CHARGE=0.25 E	ND
GROUP	
ATOM C3' TYPE=C3R CHARGE=-0.035 E	ND
ATOM H3' TYPE=H CHARGE=0.035 E	ND
GBOILD	
ATOM 03' TYPE-03P CHAPCE-0 36 F	ND
ATOM DO THE DOL DIMINE 0.00 E	
ס מוויס מיוויס מ	
BUND US: CS: BUND CS:	C4' BUND C4' U4'
BUND C4' C3' BUND U4'	C1, BUND C1, N1
BUND C1, C2, BUND N1	C2 BUND N1 C6
BOND C2 02 BOND C2	N3 BOND N3 H3
BOND N3 C4 BOND C4	04 BOND C4 C5
BOND C5 C6 BOND C2'	C3' BOND C3' 03'
BOND C2' 02'	
BOND C5 H5 BOND C6	H6
BOND 02' H02'	
BOND C5' H5' BOND C5' H5''	BOND C4' H4'
BOND C3' H3' BOND C2' H2'	BOND C1' H1'
{	
DIHEdral P 05' C5' C4'	DIHEdral 05' C5' C4' 04'
DIHEdral 05' C5' C4' C3'	
н	
DIHEdral C3' C4' O4' C1'	
DIHEdral C4' 04' C1' C2'	DIHEdral 04' C1' C2' C3'
DIHEdral C1' C2' C3' C4'	DIHEdral 04' C4' C3' 03'
DIHEdral (5, C4, C3, C2,	DIHEdral 02' C2' C3' 03'
DIHEdral 04, C1, N1 C2	
Dineural CS C2 02 n2	
	DIUEdral D 022 C22 C42
	DIRECTAL F US CS C4
! New dinedrals	
DIHEdral C5, C4, C3, U3,	DIHEdrai C4, 04, C1, NI
}	
	IMPRoper Cl' C2 C6 N1
IMPRoper O2 N1 N3 C2	IMPRoper H3 C2 C4 N3
IMPRoper 04 N3 C5 C4	IMPRoper N1 C2 N3 C4
IMPRoper C2 N3 C4 C5	IMPRoper N3 C4 C5 C6
IMPRoper C4 C5 C6 N1	IMPRoper C5 C6 N1 C2
IMPRoper C6 N1 C2 N3	
IMPRoper H5 C4 C6 C5	IMPRoper H6 N1 C5 C6
GENERAL RIBOSE IMPROPERS	
IMPRoper H1' C2' O4' N1 !C1'	
IMPRoper H2' C3' C1' O2' !C2'	
IMPRoper H3' C4' C2' O3' !C3'	
IMPRoper H4' C5' C3' O4' !C4'	
IMPRoper H5' 05' H5'' C4' !C5'	

2 Input files for Molecular Dynamics calculations

END {URI}

```
1-----
                   _____
DELETE ATOM 02' END
DELETE ATOM HO2' END
GROUP
MODIFY ATOM C2' TYPE=C2D CHARGE=-0.07 END
MODIFY ATOM C5' TYPE=C5D CHARGE=-0.07
                                  END
MODIFY ATOM C4' TYPE=C4D CHARGE=0.065 END
MODIFY ATOM 04' TYPE=04D CHARGE=-0.30 END
MODIFY ATOM C1' TYPE=C1D CHARGE=0.165 END
MODIFY ATOM C3' TYPE=C3D CHARGE=-0.035 END
ADD ATOM H2'' TYPE=H CHARGE=0.035 END
ADD BOND C2' H2''
ADD ANGLE C1' C2' H2'
ADD ANGLE C3' C2' H2''
ADD ANGLE H2' C2' H2''
ADD IMPRoper H2' C3' H2'' C1'! C2' chirality term
END {DEOX}
1-----
PRESidue HCFDEOX ! Patch to make DEOXYribose of the ribose
MODIFY ATOM C1' TYPE=C1D CHARGE=0.390 END
END {DEOX}
!-----
PRESidue 3TER ! 3-terminus (without phosphate)
                    ! should be used as "LAST 3TER HEAD - * END"
                   ! i.e. to be patched to the last RNA residue
GROUp
MODIFY ATOM -C3' TYPE=C3R CHARGE=0.15 END
 MODIFY ATOM -03' TYPE=OH CHARGE=-0.40 END
 ADD ATOM -H3T TYPE=H0 CHARGE=0.25
                                   END
Į.
ADD BOND -03' -H3T
ADD ANGLe -C3' -O3' -H3T
! ADD DIHEdral -C4' -C3' -O3' -H3T
END {3TER}
1 -----
PRESidue 5TER ! 5-terminus (without phosphate)
1
              ! should be used as "FIRST 5TER TAIL + * END"
              ! i.e. to be patched to the first RNA residue
GROUp
ADD ATOM +H5T TYPE=H0 CHARGE=0.25 END
 MODIFY ATOM +05' TYPE=OH CHARGE=-0.40 END
```

MODIFY ATOM +C5' TYPE=C5R CHARGE=0.15 END

```
DELETE ATOM +P END
 DELETE ATOM +01P END
 DELETE ATOM +02P END
 1
 ADD BOND +H5T +05'
 ADD ANGLe +H5T +O5' +C5'
! ADD DIHEdral +H5T +05' +C5' +C4'
END {5TER}
|-----
PRESidue NUC
                 ! patch for nucleic acid backbone
                 ! should be used as "LINK NUC HEAD - * TAIL + * END"
                 ! i.e. it links the previous RNA residue (-) with
                 ! the current one (+)
 GROUp
  MODIFY ATOM -03' END !
  MODIFY ATOM +P END !
  MODIFY ATOM +01P END  ! this should correctly define the electrostatic
 MODIFY ATOM +02P END ! group boundary
 MODIFY ATOM +05' END !
 ADD BOND -03' +P
 ADD ANGLE -C3' -O3' +P
 ADD ANGLE -03' +P +01P
 ADD ANGLE -03' +P +02P
 ADD ANGLE -03' +P +05'
!ADD DIHEdral -03' +P +05' +C5'
! ADD DIHEdral -C4' -C3' -O3' +P
! ADD DIHEdral -C3' -O3' +P +O5'
END {NUC}
!-----
!-----6HQ mod by lsd-----
PRESidue N6HQ
                 ! patch for nucleic acid backbone of Glycerol-6HQ
                 ! should be used as "LINK NUC HEAD - * TAIL + * END"
                  ! i.e. it links the previous RNA residue (-) with
                 ! the current one (+)
 GROUp
 MODIFY ATOM -03' END !
 MODIFY ATOM +P END !
  MODIFY ATOM +01P END ! this should correctly define the electrostatic
 MODIFY ATOM +02P END ! group boundary
 MODIFY ATOM +03g END !
 ADD BOND -03' +P
 ADD ANGLE -C3' -O3' +P
```

220

ADD ANGLE -03' +P +01P

```
ADD ANGLE -03' +P +02P
ADD ANGLE -03' +P +03g
END {N6HQ}
PRESidue S6HQ
                   ! patch for nucleic acid backbone of Glycerol-6HQ
                    ! should be used as "LINK NUC HEAD - * TAIL + * END"
                   ! i.e. it links the previous RNA residue (-) with
                   ! the current one (+)
GROUp
MODIFY ATOM -02g END !
 MODIFY ATOM +P END !
 MODIFY ATOM +01P END  ! this should correctly define the electrostatic
 MODIFY ATOM +02P END ! group boundary
 MODIFY ATOM +05' END !
ADD BOND -02g +P
ADD ANGLE -C2g -O3' +P
ADD ANGLE -02g +P +01P
ADD ANGLE -02g +P +02P
ADD ANGLE -02g +P +05'
END {S6HQ}
          -----end of mod by lsd-----end of mod by lsd-----
1-----
set echo=true end
```

3 Script Code

3.1 Script to export distances from Cara to XPLOR-NIH

```
First part: Script to output all chosen and integrated peaks from one project
and combine them in one peaklist.
Second part: Choose the best integrated peak among same ones or average over
equivalently rated peaks
Third part: Convert peak volumes to distances. Tricky is here the
differentiation of d2o and h2o and methyl peaks (all have different
reference peaks)!
Fourth part: An XPLOR-inputfile is generated where the distance information
and some predefined upper and lower limits (deduced from the maximum
deviation of the standard peaks) are used
```

```
-- written by Andre Dallmann April-05-2007
```

--FIRST PART --

_____ ----- PREPARATIONS ----t = {} -- table for all the variables used in the script -- choosing one project local ProjectNames = {} i = 0 for a,b in pairs(cara:getProjects()) do i = i + 1 ProjectNames[i] = b:getName() end t.ProjectName=dlg.getSymbol("Select Project","", unpack(ProjectNames)) t.project = cara:getProject(t.ProjectName) -- Get Output Filename t.Filename = dlg.getText("Enter the output filename", "", t.ProjectName) -- open outfile outfile = io.output(t.Filename.."_all.peaks") -- Write header to peaklist label = string.format ("%25.25s", "Peaklabel") id = string.format ("%9.9s", "PeakID") assx = string.format ("%9.9s", "ID(X)") assy = string.format ("%9.9s", "ID(Y)") posx = string.format ("%9.9s", "PPM(X)") posy = string.format ("%9.9s", "PPM(Y)") ampl = string.format ("%7.7s", "Ampl") grade = string.format ("%9.9s", "Grade") vol = string.format ("%15.15s", "VolumeInt") outfile:write("IDnew"..id..label..assx..assy..posx..posy..ampl..vol..grade.."\n") -- generate tables for information count = 0i = 0 t.label = {} t.id_old = {} t.assx = {} t.assy = {} t.posx = {} t.posy = {} $t.ampl = \{\}$ t.grade = {} t.vol = {} ----- Main Body -----_____ _____

-- generate list of all peaks graded abc of all peaklists in specified project for peaklistid, peaklist in pairs(t.project:getPeakLists()) do --cycle through all peaklists t.peaklist = t.project:getPeakList(peaklistid) for peakid,peak in pairs(t.peaklist:getPeaks()) do --cycle through all peaks t.peak = t.peaklist:getPeak(peakid) if ((t.peak:getAttr("grade")== "a") or (t.peak:getAttr("grade")== "b") or (t.peak:getAttr("grade")== "c")) then -- choose only peaks with grade abc i = i + 1 -- this is the index for all the tables, corresponds to new peakid t.label[i] = string.format ("%25.25s", t.peak:getLabel()) t.id_old[i] = string.format ("%9.0f", t.peak:getId()) t.ass = {t.peak:getAssig()} t.assx[i] = string.format ("%9.0f", t.ass[1]) t.assy[i] = string.format ("%9.0f", t.ass[2]) t.pos = {t.peak:getPos()} t.posx[i] = string.format ("%9.3f", t.pos[1]) t.posy[i] = string.format ("%9.3f", t.pos[2]) t.ampl[i] = string.format ("%7.0f", t.peak:getAmp()) t.grade[i] = string.format ("%7.7s", t.peak:getAttr("grade")) t.vol[i] = string.format ("%15.3f", t.peak:getVol()) outfile:write(i.." "..t.id_old[i]..t.label[i]..t.assx[i]..t.assy[i]..t.posx[i] ..t.posy[i]..t.ampl[i]..t.vol[i]..t.grade[i].."\n") end --of if loop end -- of second for loop end -- of first for loop

----- End of Main Body ------

-- close outfile outfile:close()

----- End of FIRST PART -----

--- SECOND PART --

----- PREPARATIONS -----

-- open outfile outfile = io.output(t.Filename.."_combo.peaks")

-- initialize variables
x = 0
counter = 1
a = string.format ("¼7.7s","a")
b = string.format ("¼7.7s","b")
c = string.format ("¼7.7s","c")

```
----- Main Body -----
_____
----- Preparing combination -----
for i,assx in pairs (t.assx) do
for j,assy in pairs (t.assy) do
if ((((t.assx[i] == t.assx[j]) and (t.assy[i] == t.assy[j])) or ((t.assx[i] == t.assy[j]) and
(t.assy[i] == t.assx[j])) and (j = i) then
-- select all peaks that have the same assignment (including cross-diagonal peaks)
counter = counter + 1
if (t.grade[i]==t.grade[j]) then
t.vol[i] = string.format ("%15.3f",(t.vol[i] + t.vol[j])) -- average volumes, rest stays
t.label[j] = nil -- set jth peak to nil
t.assx[j] = nil
t.assy[j] = nil
t.posx[j] = nil
t.posy[j] = nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
if (((a==t.grade[i]) and ((t.grade[j]==b) or (t.grade[j]==b))) or ((b==t.grade[i]) and
(t.grade[j]==c))) then
counter = 1
t.label[j] = nil -- set jth peak to nil
t.assx[j] = nil
t.assy[j] = nil
t.posx[j] = nil
t.posy[j] = nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
if (((a==t.grade[j]) and ((t.grade[i]==b) or (t.grade[i]==b))) or ((b==t.grade[j]) and
(t.grade[i]==c))) then
counter = 1
t.vol[i] = t.vol[j] --transfer volume and grade of better integrated peak (j)
t.grade[i] = t.grade[j]
t.label[j] = nil -- set jth peak to nil
t.assx[j] = nil
t.assy[j] = nil
t.posx[j] = nil
t.posy[j] = nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
end -- if loop
```

```
end -- second for loop
if (counter > 1) then -- only valid if grades are the same and averaging is needed
t.vol[i] = string.format ("%15.3f",(t.vol[i]/counter))
end
counter = 1
end -- first for loop
_____
----- Generating new combined peaklist -----
-- initiliaize new tables for the combined peaklist
t.labelnew = {}
t.assxnew = {}
t.assynew = {}
t.assxlabel = {}
t.assylabel = {}
t.assxresid = {}
t.assyresid = {}
t.gradenew= {}
t.volnew = {}
for i,assx in pairs (t.assx) do -- generate new table with combined peaks
x = x + 1
t.labelnew[x] = t.label[i]
t.assxnew[x] = t.assx[i]
t.assynew[x] = t.assy[i]
t.assxlabel[x] = string.format ("%7.7s", t.project:getSpin(t.assx[i]):getLabel())
-- get Peaklabel
t.assylabel[x] = string.format ("%7.7s", t.project:getSpin(t.assy[i]):getLabel())
-- get Peaklabel
t.assxresid[x] = string.format ("%5.5s", t.project:getSpin(t.assx[i]):getSystem():getId())
-- get residue id, works only if SpinsystemId equal to residue number !!
t.assyresid[x] = string.format ("%5.5s", t.project:getSpin(t.assy[i]):getSystem():getId())
-- get residue id, works only if SpinsystemId equal to residue number !!
t.gradenew[x] = t.grade[i]
t.volnew[x] = t.vol[i]
outfile:write (x.." "..t.labelnew[x]..t.assxlabel[x]..t.assylabel[x]..t.gradenew[x]..t.volnew[x].."\n")
end
-- loop to correct for base rectangle sum method error
-- for peaks with grade c or b divide volume by 2 or 1.5 respectively
-- this is a very rough approximation !!!
for i,vol in pairs (t.volnew) do
if (t.gradenew[i]==c) then
t.volnew[i]=string.format("%15.3f",vol/2)
elseif (t.gradenew[i]==b) then
t.volnew[i]=string.format("%15.3f",vol/1.5)
end
end
----- End of Main Body -----
```

-- close outfile outfile:close()

i = 0 ----- End of SECOND PART -----_____ _____ _____ -- THIRD PART --_____ _____ ----- PREPARATIONS ------- open outfile outfile = io.output(t.Filename.."_dist.peaks") -- initialize variables sumcyt = 0summet = 0 sumcytamino = 0 sumcyth42h5 = 0countcvt = 0countmet = 0 countcytamino = 0 countcvth42h5 = 0_____ ----- Main Body -----_____ ----- Setting up Reference Volumes and Distances -------- sum up reference peaks for j,assx in pairs (t.assxnew) do for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do -- establish reference for d2o peaks countcyt = countcyt + 1sumcyt = sumcyt + t.volnew[j] end for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do -- establish reference for methyl peaks countmet = countmet + 1summet = summet + t.volnew[i] end for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do -- establish reference for h2o exchangeable peaks countcytamino = countcytamino + 1 sumcytamino = sumcytamino + t.volnew[j] end for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do -- establish reference for h2o exchangeable-non-exchangeable peaks

```
countcyth42h5 = countcyth42h5 + 1
sumcyth42h5 = sumcyth42h5 + t.volnew[j]
end
for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable-non-exchangeable peaks
countcyth42h5 = countcyth42h5 + 1
sumcyth42h5 = sumcyth42h5 + t.volnew[j]
end
end
refvolcyt = string.format ("%13.3f", sumcyt / countcyt)
-- average volume of CYT H5-H6
refdistcyt = 2.48 -- distance of CYT H5-H6
refvolmet = string.format ("%13.3f", summet / countmet)
-- average volume of THY H6-H7
refdistmet = 3.09 -- distance of THY H6-H7
refvolcytamino = string.format ("%13.3f", sumcytamino / countcytamino)
-- average volume of CYT H41-H42
refdistcytamino = 1.70 -- distance of CYT H41-H42
refvolcyth42h5 = string.format ("%13.3f", sumcyth42h5 / countcyth42h5)
-- average volume of CYT H42-H5
refdistcyth42h5 = 2.40 -- distance of CYT H42-H5
----- Prepare standard deviations for references ------
```

```
stddevsumcyt = 0
stddevsumcytamino = 0
stddevsumcyth42h5 = 0
maxdev1 = 0
maxdev2 = 0
maxdev3 = 0
maxdev4 = 0
```

-- initialize variables

```
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do
stddevsumcyt = stddevsumcyt + (t.volnew[j]-refvolcyt)^2 -- standard deviation
dummy1 = math.abs(t.volnew[j]-refvolcyt) -- dummy for maximum deviation
if (dummy1 > maxdev1)then
maxdev1 = dummy1
end
end
for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do
-- establish reference for methyl peaks
stddevsummet = stddevsummet + (t.volnew[j]-refvolmet)^2 -- standard deviation
dummy2 = math.abs(t.volnew[j]-refvolmet) -- dummy for maximum deviation
if (dummy2 > maxdev2) then
maxdev2 = dummy2
end
end
for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable peaks
```

```
stddevsumcytamino = stddevsumcytamino + (t.volnew[j]-refvolcytamino)^2
-- standard deviation
```

dummy3 = math.abs(t.volnew[j]-refvolcytamino) -- dummy for maximum deviation if (dummy3 > maxdev3) then maxdev3 = dummy3 end end for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do -- establish reference for h2o exchangeable-non-exchangeable peaks --(appears twice because of selection reasons) stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5)^2 -- standard deviation dummy4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation if (dummy4 > maxdev4) then maxdev4 = dummy4 end end for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do -- establish reference for h2o exchangeable-non-exchangeable peaks stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5)^2 -- standard deviation dummy4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation if (dummy4 > maxdev4) then maxdev4 = dummy4 end end end ----- Calculate standard deviations for references -----stddevcyt = string.format ("%13.3f", (stddevsumcyt / countcyt)^(1/2)) stddevmet = string.format ("%13.3f", (stddevsummet / countmet)^(1/2)) stddevcytamino = string.format ("%13.3f", (stddevsumcytamino / countcytamino)^(1/2)) stddevcyth42h5 = string.format ("%13.3f", (stddevsumcyth42h5 / countcyth42h5)^(1/2)) ----- Prepare maximum deviations in percent for references -----if (maxdev1==nil) then maxdevcyt = string.format ("%13.3f", dummy1/refvolcyt) else maxdevcyt = string.format ("%13.3f", maxdev1/refvolcyt) end if (maxdev2==nil) then maxdevmet = string.format ("%13.3f", dummy2/refvolmet) else maxdevmet = string.format ("%13.3f", maxdev2/refvolmet) end if (maxdev3==nil) then maxdevcytamino = string.format ("%13.3f", dummy3/refvolcytamino) else maxdevcytamino = string.format ("%13.3f", maxdev3/refvolcytamino) end if (maxdev4==nil) then maxdevcyth42h5 = string.format ("%13.3f", dummy4/refvolcyth42h5) else maxdevcyth42h5 = string.format ("%13.3f", maxdev4/refvolcyth42h5) end

```
----- Prepare for distance calculation -----
function f ( String ) -- function to format the atomlabels
FormattedString = string.format( "%7.7s", String )
return FormattedString
end
function f2 ( String ) -- function to format the atomlabels
FormattedString = string.format( "%9.9s", String )
return FormattedString
end
-- initialize new tables for distance and the lower and upper limit (same)
t.distance = {}
t.limit = {}
i = nil
assx = nil
------ Distance and Limit calculation ------
-- select atom pairs corresponding to references and calculate distances and
-- limits and write out new peaklist to file
-- limits are calculated by taking the maximum deviation of the corresponding
--reference peak times the distance
for i,assx in pairs (t.assxlabel) do
print(t.label[i])
if (((assx==f("H5")) or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1'")) or
(assx==f("H2")) or (assx==f("H2'")) or
(assx==f("H2'')) or (assx==f("H3'")) or (assx==f("H4'")) or (assx==f("H5'")) or
(assx==f("H5''"))) and
((t.assylabel[i]==f("H5")) or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))
or (t.assylabel[i]==f("H1'")) or
(\texttt{t.assylabel[i]==f("H2")}) \text{ or } (\texttt{t.assylabel[i]==f("H2")}) \text{ or } (\texttt{t.assylabel[i]==f("H2")})
or (t.assylabel[i]==f("H3'")) or
(t.assylabel[i]==f("H4'")) or (t.assylabel[i]==f("H5'")) or (t.assylabel[i]==f("H5''"))))
then
t.distance[i] = string.format ("%7.2f", refdistcyt*(refvolcyt/t.volnew[i])^(1/6))
print(t.label[i])
print(t.distance[i])
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyt)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyt*1.2)
else
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcvt*1.4)
end
end
outfile:write (f2("d2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].."\n")
end
if ((assx==f("H7")) or (t.assylabel[i]==f("H7"))) then
t.distance[i] = string.format ("%7.2f", refdistmet*(refvolmet/t.volnew[i])^(1/6))
```

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

```
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet*1.2)
else
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet*1.4)
end
end
outfile:write (f2("methyl: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].."\n")
end
if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))
and ((t.assylabel[i]==f("H1")) or
(t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42"))))
then
t.distance[i] = string.format ("%7.2f", refdistcytamino*(refvolcytamino/t.volnew[i])^(1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino*1.2)
else
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino*1.4)
end
end
outfile:write (f2("h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].."\n")
end
if ((((assx==f("H5")) or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1'")) or
(assx==f("H2")) or (assx==f("H2'")) or (assx==f("H2''")) or (assx==f("H3'")) or
(assx==f("H4'")) or (assx==f("H5'")) or (assx==f("H5''"))) and ((t.assylabel[i]==f("H1"))
or (t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42")))) then
t.distance[i] = string.format ("%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i])^(1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.2)
else
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.4)
end
end
outfile:write (f2("d2o_h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]
..t.gradenew[i]..t.volnew[i]..t.distance[i]..t.limit[i].."\n")
end
if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))
and ((t.assylabel[i]==f("H5")) or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))
or (t.assylabel[i]==f("H1'")) or (t.assylabel[i]==f("H2")) or (t.assylabel[i]==f("H2'"))
or (t.assylabel[i]==f("H2''")) or (t.assylabel[i]==f("H3'")) or (t.assylabel[i]==f("H4'")) or
(t.assylabel[i]==f("H5'")) or (t.assylabel[i]==f("H5''")))) then
t.distance[i] = string.format ("%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i])^(1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.2)
```

else
<pre>t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcvth42h5*1.4)</pre>
end
end
outfile:write (f2("d2o h2o: ")f(i)t.labelnew[i]assxt.assvlabel[i]
t.gradenew[i]t.volnew[i]t.distance[i]t.limit[i]"\n")
end
end
End of Main Body
close outfile
outfile:close()
i = 0
End of THIRD PART
FOURTH PART
PREPARATIONS
open outfile
outfile = io.output(t.Filename" reference.peaks")
function f (String) function to format the atomlabels
FormattedString = string format ("17 2f" String)
return FormattedString
end
Main Body
nam body
ontfile.urite ("\n\n\nDefer
for non-exchangeable proton cross-neaks: (YT H5-H6\n\nreference vel ref dist standard dev
rer non exerence preven cross peaks. Orr no nevn/nrererence_ver rel_urst stanuaru_uev
maximum_uev(A)untervorcytt(rerurstcyt)stduevtytmaxuevCyt~\n\n Posklabol Volumo Dist Dov\n")
for i con in points (+ control) do
tor J.assa III parts (t.assanew) do
<pre>ior y in string.giind (t.labelnew[j],"H[b6]/H[b6] [0-9]:C[0-9]+") do reference for d2o peaks</pre>
outrile:write (t.labelnew[j]t.volnew[j]t.distance[j]f(t.distance[j]-refdistcyt)"\n")
ena
end
outfile:write ("\n\n\nRefere
for methyl proton cross-peaks: MET H6-H7\n\nreference_vol ref_dist standard_dev

maximum_dev(%)\n"..refvolmet..f(refdistmet)..stddevmet..maxdevmet.."\n\n Peaklabel Volume Dist Dev\n") for j,assx in pairs (t.assxnew) do for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do -- reference for methyl peaks outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistmet).."\n") end end outfile:write ("\n-----\n\nReference for exchangeable proton cross-peaks: CYT H41-H42\n\nreference_vol ref_dist standard_dev maximum_dev(%)\n"..refvolcytamino..f(refdistcytamino)..stddevcytamino..maxdevcytamino.."\n\n Peaklabel Volume Dist Dev\n") for j,assx in pairs (t.assxnew) do for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do -- reference for h2o exchangeable peaks outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcytamino).."\n") end end outfile:write ("\n------\n\nReference for non-exchangeable/exchangeable proton cross-peaks: CYT H42-H5\n\nreference_vol ref_dist standard_dev Peaklabel Volume Dist Dev\n") for j,assx in pairs (t.assxnew) do for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do -- reference for h2o exchangeable-non-exchangeable peaks -- (appears twice because of selection reasons) outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5).."\n") end end for j,assx in pairs (t.assxnew) do for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do -- reference for h2o exchangeable-non-exchangeable peaks $\texttt{outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5).."\n")}$ end end ----- End of Main Body -----_____ -- close outfile outfile:close() i = 0 _____ ----- End of FOURTH PART -----_____ _____ -- FIFTH PART --_____ ----- PREPARATIONS -----

```
outfile = io.output( t.Filename.."_xplor.list" )
outfile2 = io.output( t.Filename.."_xplor_all.list" )
outfile3 = io.output( "picktbl_"..t.Filename)
outfile4 = io.output( t.Filename.." xplor.noe" )
outfile5 = io.output( t.Filename.."_xplor_all.noe" )
function find (index) -- function to format the atomlabels
local Boolean = false
local Booleanx = false
local Booleany = false
for x in string.gfind(t.assxlabel[index],"H[2345]'[']*") do
Booleanx=true
end
for y in string.gfind(t.assylabel[index],"H[2345]'[']*") do
Booleany=true
end
if (Booleanx==true) and (Booleany==true) then
Boolean=true
else
Boolean=false
end
return Boolean
end
function find_h1 (index) -- function to format the atomlabels
local Boolean2 = false
local Boolean2x = false
local Boolean2y = false
for x in string.gfind(t.assxlabel[index],"H[12345]'[']*") do
Boolean2x=true
end
for y in string.gfind(t.assylabel[index],"H[12345]',']*") do
Boolean2y=true
end
if (Boolean2x==true) and (Boolean2y==true) then
Boolean2=false
else
return Boolean2
end
end
for i,assx in pairs (t.assxnew) do -- iterate over all peaks
if (t.distance[i]) and (find(i)==false) then -- filter out negative volume peaks
if (find h1(i)==false) and ((t.distance[i]/1) < 4.5) then
outfile:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
(resid"..t.assyresid[i].." \ and \ name"..t.assylabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")
\texttt{outfile2:write ("assign (resid"..t.assxresid[i].." and \texttt{name"..t.assxlabel[i].."})}
(resid"..t.assvresid[i].." and name"..t.assvlabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")
outfile3:write ("pick bond (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..." geometry\ndisplay \$result".."\n")
outfile4:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")
outfile5:write (t.assxresid[i]..t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")
else
```

outfile2:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")

```
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]
..t.limit[i]..t.limit[i].." !added!\n")
outfile5:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")
end
end
end
----- End of Main Body -----
_____
-- close outfile
outfile:close()
outfile2:close()
outfile3:close()
outfile4:close()
outfile5:close()
i = 0
t = nil
_____
----- End of FIFTH PART -----
_____
print ( "\ngenerateinput_byanda is done." )
print ( "Have a nice day!" )
```

----- End generateinput -----

NOESY - spectra back-calculation

3.2 Mathematica script to visualize NOESY back-calculation

```
Read data
SetDirectory["D:\\Lars\\Promotion\\13merHCF\\Fertige Strukturen\\HC-_diss\\198_face-down\\gifa"]
ppm - file containing chemical shifts
ppmfile=Import["13merHCF_gifa.ppm","Table"];
Dimensions[ppmfile]
TableForm[Sort[ppmfile,#1[[3]]<#2[[3]]&]]; (* Can be used for inspection of data *)
ppmscanlist=Table[ToString[ppmfile[[m,3]]+ppmfile[[m,4]]],ppmfile[[m,5]]},{m,1,Length[ppmfile]}];
Dimensions[ppmscanlist]
Read xplor-intensities calculated from Full Matrix Relaxation Approach
Choose between GIFA or XPLOR file, the latter is recommended.
GIFA
(*Intfile=Import["13merHCF_gifa.spect","Table"];*)
(*Intfile=Table[ToString[Intfile[[m,3]]+Intfile[[m,4]]],ToString[Intfile[[m,6]]+Intfile[[m,7]]],</pre>
```

Intfile[[m,8]]},{m,1,Length[Intfile]}];*)

XPLOR

rawIntfile=Import["13merHCF.spect","Table"]; Intfile=Table[rawIntfile[[2*n]],{n,2,Length[rawIntfile]/2}]; Intlist=Table[{ToString[Intfile[[m,1]]+Intfile[[m,3]]],ToString[Intfile[[m,4]]+Intfile[[m,6]]], Intfile[[m,7]]},{m,1,Length[Intfile]}; Dimensions[Intlist] TableForm[Sort[Intlist,#1[[1]]<#2[[1]]&]; (* Can be used for inspection of data *)</pre>

Build a peaklist that uses the data of both input files

peaklist={}; (* Enthält dann (x,y,Int) *) Do [xvar=false; yvar=false; DоГ If[Intlist[[mInt,1]]==ppmscanlist[[mppm,1]], xcoord=ppmscanlist[[mppm,2]];xvar=true]; If[Intlist[[mInt,2]]==ppmscanlist[[mppm,1]],ycoord=ppmscanlist[[mppm,2]];yvar=true];, {mppm,1,Length[ppmscanlist]}]; tmp={xcoord,ycoord,Intlist[[mInt,3]]}; If[xvar==true&&yvar==true,peaklist=Append[peaklist,tmp]]; (*Second round to add missing symmetry around diagonal axis to peaklist $\ast)$ xvar=false: yvar=false; DоГ If[Intlist[[mInt,1]]==ppmscanlist[[mppm,1]],ycoord=ppmscanlist[[mppm,2]];yvar=true]; If[Intlist[[mInt,2]]==ppmscanlist[[mppm,1]],xcoord=ppmscanlist[[mppm,2]];xvar=true]; If[Intlist[[mInt,2]]==Intlist[[mInt,1]],xvar=false;yvar=false;],{mppm,1,Length[ppmscanlist]}]; tmp={xcoord,ycoord,Intlist[[mInt,3]]}; If[xvar==true&&yvar==true,peaklist=Append[peaklist,tmp]]; ,{mInt,1,Length[Intlist]}] Dimensions[peaklist] TableForm[Sort[peaklist,#1[[1]]<#2[[1]]&]]; (* Can be used for inspection of data *)

Use peaklist to build NOESY spectrum Define peaks with different lineshapes. First is Lorenz-type, second Gaussian lineshape.

scale=1; (* Parameters that effect lineshape *)
w=0.015;
alpha=0.9;
peakL[peaknummer_,x_,y_]:=
1/(1+((x-peaklist[[peaknummer,1]])/(0.5w))^2)*1/(1+((y-peaklist[[peaknummer,2]])/(0.5w))^2);

peakG[peaknummer_,x_,y_]:=
Exp[-Log[2]((x-peaklist[[peaknummer,1]])/(0.5w))^2]*Exp[-Log[2]((y-peaklist[[peaknummer,2]])/(0.5w))^2];
peakfun[peaknummer_,x_,y_]:=
10^6*peaklist[[peaknummer,3]]*scale*(alpha*peakG[peaknummer,x,y]+(1-alpha)peakL[peaknummer,x,y])
Define intensity for a single set of coordinates in the spectrum
Intensity[x_,y_]:=Sum[peakfun[peaknummer,x,y],{peaknummer,1,Length[peaklist]}]
Intensity[5,6]
Plot[peakfun[5,x,6],{x,6,10},PlotRange->All]
Build a selected region of the spectrum using a targetfunction that is automatically composed
Choose spectral region

xrange={6.925,8.14}; (* This is H6/H8 region *)
yrange={5.1,6.2}; (* This is H1' region *)
Targetfunction=0;
Do[
xvar=false;
yvar=false;
If[peaklist[[mInt,1]]>=xrange[[1]]-0.1&&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true];
If[peaklist[[mInt,2]]>=yrange[[1]]-0.1&&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true];
If[xvar==true&xyvar==true,Targetfunction=Targetfunction+peakfun[mInt,x,y]];
,{mInt,1,Length[peaklist]}]</pre>

Build spectrum

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},
PlotPoints->20,Contours->Table[10^k,{k,4,8,0.5}],PlotRange->All,
FrameLabel->{ppm,ppm},ImageSize->600,ColorFunction->"Aquamarine",
AspectRatio->1/2]

Build for export

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},
PlotPoints->20,Contours->Table[10^k,{k,4,8,0.5}],PlotRange->All,
FrameLabel->{ppm,ppm},ImageSize->900,ContourShading->None,
ContourStyle->Hue[0],AspectRatio->1/2,Frame->False]

HCF H1'' - H1/H3 region Choose spectral region for H1/H3 to H1'' of HCF

xrange={5.5,5.8}; yrange={4.9,5.1}; Targetfunction=0; Do[xvar=false; yvar=false; If[peaklist[[mInt,1]]>=xrange[[1]]-0.1&&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true]; If[peaklist[[mInt,2]]>=yrange[[1]]-0.1&&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true]; If[xvar==true&&yvar==true,Targetfunction=Targetfunction+peakfun[mInt,x,y]]; ,{mInt,1,Length[peaklist]}]

Build spectrum

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},PlotPoints->20, Contours->Table[10^k,{k,5,9,0.5}],PlotRange->All,FrameLabel->{ppm,ppm},ImageSize->600, ColorFunction->"Aquamarine",AspectRatio->1/2]

Bibliography

- J. Watson and F. Crick. Molecular structure of nucleic acids. Nature, 177:737 738, 1953.
- [2] Richard Wing, Horace Drew, Tsunehiro Takano, Chris Broka, Shoji Tanaka, Keiichi Itakura, and Richard E. Dickerson. Crystal structure analysis of a complete turn of b-dna. *Nature*, 287(5784):755–758, 1980.
- [3] H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson. Structure of a b-dna dodecamer: conformation and dynamics. *Proceedings of the National Academy of Sciences*, 78(4):2179–2183, 1981.
- [4] Richard E. Dickerson and Horace R. Drew. Structure of a b-dna dodecamer: Ii. influence of base sequence on helix structure. *Journal of Molecular Biology*, 149(4):761 786, 1981.
- [5] Horace R. Drew and Richard E. Dickerson. Structure of a b-dna dodecamer: Iii. geometry of hydration. Journal of Molecular Biology, 151(3):535 – 556, 1981.
- [6] H. R. Drew, S. Samson, and R. E. Dickerson. Structure of a b-dna dodecamer at 16 k. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 79(13):4040–4044, 1982.
- [7] A. V. Fratini, M. L. Kopka, H. R. Drew, and R. E. Dickerson. Reversible bending and helix geometry in a b-dna dodecamer - cgcgaattbrcgcg. *Journal of Biological Chemistry*, 257(24):4686–4707, 1982.

- [8] R. E. Dickerson, M. L. Kopka, and P. Pjura. A random-walk model for helix bending in b-dna. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 80(23):7099–7103, 1983.
- U. Heinemann and C. Alings. Crystallographic study of one turn of g-c-rich b-dna. Journal of Molecular Biology, 210(2):369–381, November 1989.
- [10] R. E. Dickerson, H. R. Drew, B. N. Conner, R. M. Wing, A. V. Fratini, and M. L. Kopka. The anatomy of a-dna, b-dna, and z-dna. Science, 216(4545):475–485, 1982.
- [11] Z. Shakked, D. Rabinovich, W. B. T. Cruse, E. Egert, O. Kennard, G. Sala, S. A. Salisbury, and M. A. Viswamitra. Crystalline a-dna the x-ray-analysis of the fragment d(g-g-t-a-t-a-c-c). *Proceedings of the Royal Society Series B-biological Sciences*, 213(1193):479–487, 1981.
- [12] Benjamin N. Conner, Tsunehiro Takano, Shoji Tanaka, Keiichi Itakura, and Richard E. Dickerson. The molecular structure of d(icpcpgpg), a fragment of righthanded double helical a-dna. *Nature*, 295(5847):294 – 299, January 1982.
- [13] A. H. J. Wang, S. Fujii, J. H. Vanboom, G. A. Vandermarel, S. A. A. Vanboeckel, and A. Rich. Molecular-structure of r(gcg)d(tatacgc) - a dna rna hybrid helix joined to double helical dna. *Nature*, 299(5884):601–604, 1982.
- [14] A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Vandermarel, and A. Rich. Molecular-structure of a left-handed double helical dna fragment at atomic resolution. *Nature*, 282(5740):680–686, 1979.
- [15] H. Drew, T. Takano, S. Tanaka, K. Itakura, and R. E. Dickerson. High-salt d(cpgpcpg), a left-handed z' dna double helix. *Nature*, 286(5773):567–573, 1980.
- [16] A. H. J. Wang, G. J. Quigley, F. J. Kolpak, G. Vandermarel, J. H. Vanboom, and A. Rich. Left-handed double helical dna - variations in the backbone conformation. *Science*, 211(4478):171–176, 1981.

- [17] A. Rich, A. Nordheim, and A. H. J. Wang. The chemistry and biology of left-handed z-dna. Annual Review of Biochemistry, 53:791–846, 1984.
- [18] Stephen Neidle. Principles of Nucleic Acid Structure. Academic Press Inc., 2007.
- [19] Victor A. Bloomfield, Donald M. Crothers, and Jr. Ignacio Tinoco. Nucleic Acids: structures, properties and functions. University Science Books, 2000.
- [20] G. R. Clark, D. G. Brown, M. R. Sanderson, T. Chwalinski, S. Neidle, J. M. Veal, R. L. Jones, W. D. Wilson, G. Zon, E. Garman, and D. I. Stuart. Crystal and solution structures of the oligonucleotide d(atgcgcat)2 - a combined x-ray and nmrstudy. *Nucleic Acids Research*, 18(18):5521–5528, September 1990.
- [21] N. Verdaguer, J. Aymami, D. Fernandezforner, I. Fita, M. Coll, T. Huynhdinh, J. Igolen, and J. A. Subirana. Molecular-structure of a complete turn of a-dna. *Journal of Molecular Biology*, 221(2):623–635, September 1991.
- [22] S. Jain and M. Sundaralingam. Effect of crystal packing environment on conformation of the dna duplex - molecular-structure of the a-dna octamer d(g-t-g-t-a-c-a-c) in 2 crystal forms. *Journal of Biological Chemistry*, 264(22):12780–12784, August 1989.
- [23] Z. Shakked, G. Guersteinguzikevich, M. Eisenstein, F. Frolow, and D. Rabinovich. The conformation of the dna double helix in the crystal is dependent on its environment. *Nature*, 342(6248):456–460, November 1989.
- [24] R. E. Dickerson. Definitions and nomenclature of nucleic-acid structure parameters. Journal of Biomolecular Structure & Dynamics, 6(4):627–634, February 1989.
- [25] J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst. Investigation of exchange processes by 2-dimensional nmr-spectroscopy. *Journal of Chemical Physics*, 71(11):4546–4553, 1979.
- [26] G. Bodenhausen, R. Freeman, and D. L. Turner. 2-dimensional j-spectroscopy proton-coupled c-13 nmr. Journal of Chemical Physics, 65(2):839–840, 1976.

- [27] G. Bodenhausen and R. Freeman. Correlation of proton and c-13 nmr-spectra by heteronuclear 2-dimensional spectroscopy. *Journal of Magnetic Resonance*, 28(3):471– 476, 1977.
- [28] A. Bax, R. Freeman, and G. Morris. Correlation of proton chemical-shifts by twodimensional fourier-transform nmr. *Journal of Magnetic Resonance*, 42(1):164–168, 1981.
- [29] A. Bax and R. Freeman. Investigation of complex networks of spin-spin coupling by two-dimensional nmr. Journal of Magnetic Resonance, 44(3):542–561, 1981.
- [30] L. Müller, A. Kumar, and R. R. Ernst. Two-dimensional carbon-13 nmrspectroscopy. *Journal of Chemical Physics*, 63(12):5490–5491, 1975.
- [31] Anil Kumar, R. R. Ernst, and K. Wüthrich. A two-dimensional nuclear overhauser enhancement (2d noe) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. *Biochemical and Biophysical Research Communications*, 95(1):1 – 6, 1980.
- [32] Anil Kumar, G. Wagner, R. R. Ernst, and K. Wüthrich. Studies of j-connectivities and selective 1h-1h overhauser effects in h₂o solutions of biological macromolecules by two-dimensional nmr experiments. *Biochemical and Biophysical Research Communications*, 96(3):1156 – 1163, 1980.
- [33] A. Kumar, G. Wagner, R. R. Ernst, and K. Wüthrich. Buildup rates of the nuclear overhauser effect measured by two-dimensional proton magnetic-resonance spectroscopy - implications for studies of protein conformation. *Journal of the American Chemical Society*, 103(13):3654–3658, 1981.
- [34] G. Wagner, A. Kumar, and K. Wüthrich. Systematic application of two-dimensional h-1-nmr techniques for studies of proteins .2. combined use of correlated spectroscopy and nuclear overhauser spectroscopy for sequential assignments of backbone resonances and elucidation of polypeptide secondary structures. *European Journal of Biochemistry*, 114(2):375–384, 1981.
- [35] G. Wagner and K. Wüthrich. Sequential resonance assignments in protein h-1 nuclear magnetic-resonance spectra - basic pancreatic trypsin-inhibitor. Journal of Molecular Biology, 155(3):347–366, 1982.
- [36] G. Wagner and K. Wüthrich. Amide proton-exchange and surface conformation of the basic pancreatic trypsin-inhibitor in solution - studies with two-dimensional nuclear magnetic-resonance. *Journal of Molecular Biology*, 160(2):343–361, 1982.
- [37] E. R. P. Zuiderweg, R. Kaptein, and K. Wüthrich. Secondary structure of the lac repressor dna-binding domain by two-dimensional h-1 nuclear magnetic-resonance in solution. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 80(19):5837–5841, 1983.
- [38] M. Rance, O. W. Sorensen, G. Bodenhausen, G. Wagner, R. R. Ernst, and K. Wüthrich. Improved spectral resolution in cosy h-1-nmr spectra of proteins via double quantum filtering. *Biochemical and Biophysical Research Communications*, 117(2):479–485, 1983.
- [39] A. Pardi, G. Wagner, and K. Wüthrich. Protein conformation and proton nmr chemical-shifts. *European Journal of Biochemistry*, 137(3):445–454, 1983.
- [40] K. Wüthrich, M. Billeter, and W. Braun. Pseudo-structures for the 20 common amino-acids for use in studies of protein conformations by measurements of intramolecular proton proton distance constraints with nuclear magnetic-resonance. *Journal of Molecular Biology*, 169(4):949–961, 1983.
- [41] D. Marion and K. Wüthrich. Application of phase sensitive two-dimensional correlated spectroscopy (cosy) for measurements of h-1-h-1 spin-spin coupling-constants in proteins. *Biochemical and Biophysical Research Communications*, 113(3):967–974, 1983.
- [42] A. Pardi, M. Billeter, and K. Wüthrich. Calibration of the angular-dependence of the amide proton-c-alpha proton coupling-constants, 3jhn-alpha, in a globular

protein - use of 3jhn-alpha for identification of helical secondary structure. *Journal* of Molecular Biology, 180(3):741–751, 1984.

- [43] G. M. Clore and A. M. Gronenborn. Sequence-dependent structural variations in 2 right-handed alternating pyrimidine-purine dna oligomers in solution determined by nuclear overhauser enhancement measurements. *Embo Journal*, 2(12):2109–2115, 1983.
- [44] Dennis R. Hare, David E. Wemmer, Shan-Ho Chou, Gary Drobny, and Brian R. Reid. Assignment of the non-exchangeable proton resonances of d(c-g-c-g-a-a-tt-c-g-c-g) using two-dimensional nuclear magnetic resonance methods. *Journal of Molecular Biology*, 171(3):319 – 336, 1983.
- [45] J. Feigon, W. Leupin, W. A. Denny, and D. R. Kearns. Two-dimensional proton nuclear magnetic-resonance investigation of the synthetic deoxyribonucleic-acid decamer d(atatcgatat)2. *Biochemistry*, 22(25):5943–5951, 1983.
- [46] D. G. Reid, S. A. Salisbury, S. Bellard, Z. Shakked, and D. H. Williams. Proton nuclear overhauser effect study of the structure of a deoxyoligonucleotide duplex in aqueous-solution. *Biochemistry*, 22(8):2019–2025, 1983.
- [47] R. M. Scheek, N. Russo, R. Boelens, and R. Kaptein. Sequential resonance assignments in dna h-1-nmr spectra by two-dimensional noe spectroscopy. *Journal of the American Chemical Society*, 105(9):2914–2916, 1983.
- [48] Timothy Havel and Kurt Wüthrich. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular ¹h-¹h proximities in solution. Bulletin of Mathematical Biology, 46(4):673–698, 1984.
- [49] A. T. Brünger, G. M. Clore, A. M. Gronenborn, and M. Karplus. 3-dimensional structure of proteins determined by molecular-dynamics with interproton distance restraints - application to crambin. *Proceedings of the National Academy of Sciences* of the United States of America, 83(11):3801–3805, June 1986.

- [50] M. M. Bluhm, G. Bodo, H. M. Dintzis, and J. C. Kendrew. The crystal structure of myoglobin .4. a fourier projection of sperm-whale myoglobin by the method of isomorphous replacement. Proceedings of the Royal Society of London Series Amathematical and Physical Sciences, 246(1246):369–389, 1958.
- [51] M. P. Williamson, T. F. Havel, and K. Wuthrich. Solution conformation of proteinase inhibitor-iia from bull seminal plasma by h-1 nuclear magnetic-resonance and distance geometry. *Journal of Molecular Biology*, 182(2):295–315, 1985.
- [52] R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, and W. F. Vangunsteren. A protein-structure from nuclear magnetic-resonance data - lac repressor headpiece. *Journal of Molecular Biology*, 182(1):179–182, 1985.
- [53] G.Marius Clore and Angela M. Gronenborn. Probing the three-dimensional structures of dna and rna oligonucleotides in solution by nuclear overhauser enhancement measurements. *FEBS Letters*, 179(2):187 – 198, 1985.
- [54] S. L. Beaucage and M. H. Caruthers. Deoxynucleoside phosphoramidites a new class of key intermediates for deoxypolynucleotide synthesis. *Tetrahedron Letters*, 22(20):1859 – 1862, 1981.
- [55] N. D. Sinha, J. Biernat, J. Mcmanus, and H. Koster. Polymer support oligonucleotide synthesis .18. use of beta-cyanoethyl-n,n-dialkylamino-/n-morpholino phosphoramidite of deoxynucleosides for the synthesis of dna fragments simplifying deprotection and isolation of the final product. *Nucleic Acids Research*, 12(11):4539–4557, 1984.
- [56] J. C. Schulhof, D. Molko, and R. Teoule. The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups. *Nucleic Acids Research*, 15(2):397–416, January 1987.
- [57] M. H. Caruthers, A. D. Barone, S. L. Beaucage, D. R. Dodds, E. F. Fisher, L. J. Mcbride, M. Matteucci, Z. Stabinsky, and J. Y. Tang. Chemical synthesis of deoxy-

oligonucleotides by the phosphoramidite method. *Methods In Enzymology*, 154:287–313, 1987.

- [58] B. F. Li, P. F. Swann, M. Kalnik, and D. J. Patel. Synthesis and structural studies by nuclear magnetic resonance of dodecadeoxynucleotides containing o6-methylguanine, o6-ethylguanine and o4-methylthymine. *IARC scientific publications*, (84):44–8, 1987.
- [59] M. W. Kalnik, M. Kouchakdjian, B. F. L. Li, P. F. Swann, and D. J. Patel. Base pair mismatches and carcinogen-modified bases in dna - an nmr-study of a.c and a.o4met pairing in dodecanucleotide duplexes. *Biochemistry*, 27(1):100–108, January 1988.
- [60] Frederick E. Evans and Robert A. Levine. Nmr study of stacking interactions and conformational adjustments in the dinucleotide-carcinogen adduct 2'deoxycytidylyl-(3 .fwdarw. 5)-2'-deoxy-8-(n-fluoren-2-ylacetamido)guanosine. *Biochemistry*, 27(8):3046–3055, 1988.
- [61] J. G. Pelton and D. E. Wemmer. Structural modeling of the distamycin-ad(cgcgaattcgcg)₂ complex using 2d nmr and molecular mechanics. *Biochemistry*, 27(21):8088–8096, October 1988.
- [62] J. M. L. Pieters, E. Devroom, G. A. Vandermarel, J. H. Vanboom, and C. Altona. Conformational consequences of the incorporation of arabinofuranosylcytidine in dna - an nmr-study of the dna fragments d(cgctagcg) and d(cgactagcg) in solution. *European Journal of Biochemistry*, 184(2):415–425, September 1989.
- [63] Peter M. M. Rae and Robert E. Steele. Modified bases in the dnas of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. *Biosystems*, 10(1-2):37 – 53, 1978.
- [64] R. A. J. Warren. Modified bases in bacteriophage dnas. Annual Review of Microbiology, 34:137–158, 1980.

- [65] Mark Lukin and Carlos de los Santos. Nmr structures of damaged dna. Chemical Reviews, 106(2):607–686, 2006. PMID: 16464019.
- [66] P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt. Sequence-selective recognition of dna by strand displacement with a thymine-substituted polyamide. *Science*, 254(5037):1497–1500, December 1991.
- [67] J. C. Hanvey, N. J. Peffer, J. E. Bisi, S. A. Thomson, R. Cadilla, J. A. Josey, D. J. Ricca, C. F. Hassman, M. A. Bonham, K. G. Au, S. G. Carter, D. A. Bruckenstein, A. L. Boyd, S. A. Noble, and L. E. Babiss. Antisense and antigene properties of peptide nucleic-acids. *Science*, 258(5087):1481–1485, November 1992.
- [68] A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi, R. Kumar, M. Meldgaard, C. E. Olsen, and J. Wengel. Lna (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. *Tetrahedron*, 54(14):3607–3630, April 1998.
- [69] Jakob T. Nielsen, Khalil Arar, and Michael Petersen. Solution structure of a locked nucleic acid modified quadruplex: Introducing the v4 folding topology. Angewandte Chemie, 121(17):3145–3149, 2009.
- [70] K.-U. Schöning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, and A. Eschenmoser. Chemical etiology of nucleic acid structure: The alpha-threofuranosyl-(3'->2') oligonucleotide system. *Science*, 290(5495):1347–1351, 2000.
- [71] N. Ueda, T. Kawabata, and K. Takemoto. Synthesis of n-(2,3-dihydroxypropyl) derivatives of nucleic bases. *Journal of Heterocyclic Chemistry*, 8(5):827–&, 1971.
- [72] O. L. Acevedo and R. S. Andrews. Synthesis of propane-2,3-diol combinatorial monomers. *Tetrahedron Letters*, 37(23):3931–3934, June 1996.
- [73] L. L. Zhang, A. Peritz, and E. Meggers. A simple glycol nucleic acid. Journal of the American Chemical Society, 127(12):4174–4175, March 2005.

- [74] Allen T. Horhota, Jack W. Szostak, and Larry W. McLaughlin. Glycerol nucleoside triphosphates: Synthesis and polymerase substrate activities. Organic Letters, 8(23):5345–5347, 2006. PMID: 17078714.
- [75] D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. *Proceedings of the National Academy of Sciences of the United States of America*, 83(9):2934–2938, May 1986.
- [76] T. R. Krugh, D. E. Graves, and M. P. Stone. 2-dimensional nmr-studies on the anthramycin-d(atgcat)2 adduct. *Biochemistry*, 28(26):9988–9994, December 1989.
- [77] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. A. Fodor. Light-generated oligonucleotide arrays for rapid dna-sequence analysis. *Proceedings* of the National Academy of Sciences of the United States of America, 91(11):5022– 5026, May 1994.
- [78] J. L. Schwartz, J. S. Rice, B. A. Luxon, J. M. Sayer, G. Xie, H. J. C. Yeh, X. Liu, D. M. Jerina, and D. G. Gorenstein. Solution structure of the minor conformer of a dna duplex containing a dg mismatch opposite a benzo[a]pyrene diol epoxide/da adduct: Glycosidic rotation from syn to anti at the modified deoxyadenosine. *Biochemistry*, 36(37):11069–11076, 1997. PMID: 9333324.
- [79] R. T. Ranasinghe and T. Brown. Fluorescence based strategies for genetic analysis. *Chemical Communications*, (44):5487–5502, November 2005.
- [80] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Ko-

rlach, and S. Turner. Real-time dna sequencing from single polymerase molecules. Science, 323(5910):133–138, January 2009.

- [81] F. Sanger, S. Nicklen, and A. R. Coulson. Dna sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences*, 74(12):5463–5467, 1977.
- [82] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. B. H. Kent, and L. E. Hood. Fluorescence detection in automated dna-sequence analysis. *Nature*, 321(6071):674–679, June 1986.
- [83] L. S. Lerman. Structural considerations in interaction of dna and acridines. Journal of Molecular Biology, 3(1):18–30, 1961.
- [84] A. Fede, M. Billeter, W. Leupin, and K. Wüthrich. Determination of the nmr solution structure of the hoechst 33258-d(gtggaattccac)₂ complex and comparison with the x-ray crystal-structure. *Structure*, 1(3):177–186, November 1993.
- [85] H. P. Spielmann, D. E. Wemmer, and J. P. Jacobsen. Solution structure of a dna complex with the fluorescent bis-intercalator toto determined by nmr-spectroscopy. *Biochemistry*, 34(27):8542–8553, July 1995.
- [86] A. N. Glazer and R. A. Mathies. Energy-transfer fluorescent reagents for dna analyses. *Current Opinion In Biotechnology*, 8(1):94–102, February 1997.
- [87] K. E. Erkkila, D. T. Odom, and J. K. Barton. Recognition and reaction of metallointercalators with dna. *Chemical Reviews*, 99(9):2777–2795, September 1999.
- [88] G. Subramaniam, M. M. Paz, G. S. Kumar, A. Das, Y. Palom, C. C. Clement, D. J. Patel, and M. Tomasz. Solution structure of a guanine-n7-linked complex of the mitomycin c metabolite 2,7-diaminomitosene and dna. basis of sequence selectivity. *Biochemistry*, 40(35):10473–10484, September 2001.
- [89] Adolf Wacker, Sigrid Kirschfeld, and Lothar Träger. Über den einbau purin-analoger verbindungen in die bakterien-nukleinsäure. Journal of Molecular Biology, 2(4):241 – 242, 1960.

- [90] Adolf Wacker, Sigrid Kirschfeld, Dieter Hartmann, and Dieter Weinblum. Über den einbau von 5-nitrouracil, 5-aminouracil und 2-thiothymin in die bakteriendesoxyribonukleinsäure. Journal of Molecular Biology, 2(1):69 – 71, 1960.
- [91] Jorge R. Barrio, John A. Secrist III, and Nelson J. Leonard. Fluorescent adenosine and cytidine derivatives. *Biochemical and Biophysical Research Communications*, 46(2):597 – 604, 1972.
- [92] T. M. Nordlund, S. Andersson, L. Nilsson, R. Rigler, A. Graeslund, and L. W. McLaughlin. Structure and dynamics of a fluorescent dna oligomer containing the ecori recognition sequence: fluorescence, molecular dynamics, and nmr studies. *Biochemistry*, 28(23):9095–9103, 1989. PMID: 2605243.
- [93] K. M. Guckian, T. R. Krugh, and E. T. Kool. Solution structure of a dna duplex containing a replicable diffuorotoluene-adenine pair. *Nature Structural Biology*, 5(11):954–959, November 1998.
- [94] James N. Wilson and Eric T. Kool. Fluorescent dna base replacements: reporters and sensors for biological systems. Organic & Biomolecular Chemistry, 4:4265–4274, 2006.
- [95] Vyacheslav V. Filichev and Erik B. Pedersen. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions. John Wiley & Sons, Inc., 2008.
- [96] R. W. Sinkeldam, N. J. Greco, and Y. Tor. Fluorescent analogs of biomolecular building blocks: Design, properties, and applications. *Chemical Reviews*, 110(5):2579– 2619, May 2010.
- [97] Tracy J. Matray and Eric T. Kool. Selective and stable dna base pairing without hydrogen bonds. *Journal of the American Chemical Society*, 120(24):6191–6192, 1998.
- [98] K. M. Guckian, T. R. Krugh, and E. T. Kool. Solution structure of a nonpolar, non-

hydrogen-bonded base pair surrogate in dna. Journal of the American Chemical Society, 122(29):6841–6847, July 2000.

- [99] D. Loakes. The applications of universal dna base analogues. Nucleic Acids Research, 29(12):2437–2447, June 2001.
- [100] S. Tyagi and F. R. Kramer. Molecular beacons: Probes that fluoresce upon hybridization. *Nature Biotechnology*, 14(3):303–308, March 1996.
- [101] S. Tyagi, D. P. Bratu, and F. R. Kramer. Multicolor molecular beacons for allele discrimination. *Nature Biotechnology*, 16(1):49–53, January 1998.
- [102] B. Dubertret, M. Calame, and A. J. Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. *Nature Biotechnology*, 19(4):365–370, April 2001.
- [103] K. M. Wang, Z. W. Tang, C. Y. J. Yang, Y. M. Kim, X. H. Fang, W. Li, Y. R. Wu, C. D. Medley, Z. H. Cao, J. Li, P. Colon, H. Lin, and W. H. Tan. Molecular engineering of dna: Molecular beacons. *Angewandte Chemie-international Edition*, 48(5):856–870, 2009.
- [104] Frédéric Godde, Jean-Jacques Toulmé, and Serge Moreau. Benzoquinazoline derivatives as substitutes for thymine in nucleic acid complexes. use of fluorescence emission of benzo[g]quinazoline-2,4-(1h,3h)-dione in probing duplex and triplex formation. *Biochemistry*, 37(39):13765–13775, 1998.
- [105] Akimitsu Okamoto, Yoshio Saito, and Isao Saito. Design of base-discriminating fluorescent nucleosides. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3):108 – 122, 2005.
- [106] H.-A. Wagenknecht. Fluorescent dna base modifications and substitutes: Multiple fluorophore labeling and the deteq concept. *Fluorescence Methods and Applications:* Spectroscopy, Imaging, and Probes, 1130:122–130, 2008.

- [107] Olaf Köhler, Dilip Venkatrao Jarikote, and Oliver Seitz. Forced intercalation probes (fit probes): Thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. *ChemBioChem*, 6(1):69–77, 2005.
- [108] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams. Real time quantitative pcr. Genome Research, 6(10):986–994, October 1996.
- [109] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer. The miqe guidelines: Minimum information for publication of quantitative real-time pcr experiments. *Clinical Chemistry*, 55(4):611–622, April 2009.
- [110] K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting pcr product and nucleic-acid hybridization. *Pcr-methods and Applications*, 4(6):357–362, June 1995.
- [111] Elke Socher, Dilip V. Jarikote, Andrea Knoll, Lars Röglin, Jens Burmeister, and Oliver Seitz. Fit probes: Peptide nucleic acid probes with a fluorescent base surrogate enable real-time dna quantification and single nucleotide polymorphism discovery. *Analytical Biochemistry*, 375(2):318 – 330, 2008.
- [112] Felix Hövelmann, Lucas Bethge, and Oliver Seitz. Single labeled dna fit probes for avoiding false-positive signaling in the detection of dna/rna in qpcr or cell media. *ChemBioChem*, 13(14):2072–2081, 2012.
- [113] S. Dhanasekaran, T. M. Doherty, and J. Kenneth. Comparison of different standards for real-time pcr-based absolute quantification. *Journal of Immunological Methods*, 354(1-2):34–39, March 2010.
- [114] L. Stryer. Fluorescence energy-transfer as a spectroscopic ruler. Annual Review of Biochemistry, 47:819–846, 1978.

- [115] J.Y. Ju, I. Kheterpal, J.R. Scherer, C.C. Ruan, C.W. Fuller, A.N. Glazer, and R.A. Mathies. Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for dna sequencing and analysis. *Analytical Biochemistry*, 231(1):131 – 140, 1995.
- [116] D. M. J. Lilley and T. J. Wilson. Fluorescence resonance energy transfer as a structural tool for nucleic acids. *Current Opinion In Chemical Biology*, 4(5):507– 517, October 2000.
- [117] O. Schiemann, N. Piton, Y. G. Mu, G. Stock, J. W. Engels, and T. F. Prisner. A peldor-based nanometer distance ruler for oligonucleotides. *Journal of the American Chemical Society*, 126(18):5722–5729, May 2004.
- [118] O. Schiemann and T. F. Prisner. Long-range distance determinations in biomacromolecules by epr spectroscopy. *Quarterly Reviews of Biophysics*, 40(1):1–53, February 2007.
- [119] J. M. Obliosca, C. Liu, and H. C. Yeh. Fluorescent silver nanoclusters as dna probes. Nanoscale, 5(18):8443–8461, 2013.
- [120] C. Z. Wan, T. Fiebig, O. Schiemann, J. K. Barton, and A. H. Zewail. Femtosecond direct observation of charge transfer between bases in dna. *Proceedings of the National Academy of Sciences of the United States of America*, 97(26):14052–14055, December 2000.
- [121] A. H. Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond. Journal of Physical Chemistry A, 104(24):5660–5694, June 2000.
- [122] J. L. N. Lustres, S. A. Kovalenko, M. Mosquera, T. Senyushkina, W. Flasche, and N. P. Ernsting. Ultrafast solvation of n-methyl-6-quinolone probes local ir spectrum. *Angewandte Chemie-international Edition*, 44(35):5635–5639, 2005.
- [123] Mohsen Sajadi, Falko Berndt, Celin Richter, Mario Gerecke, Rainer Mahrwald, and Nikolaus P. Ernsting. Observing the hydration layer of trehalose with a linked

molecular terahertz probe. The Journal of Physical Chemistry Letters, 5(11):1845–1849, 2014.

- [124] Anders Holmén, Bengt Nordén, and Bo Albinsson. Electronic transition moments of 2-aminopurine. J. Am. Chem. Soc., 119:3114–3121, 1997.
- [125] Lawrence C. Sowers, Yves Boulard, and G. Victor Fazakerley. Multiple structures for the 2-aminopurine-cytosine mispair. *Biochemistry*, 39:7613–7620, 2000.
- [126] Edward L. Rachofsky, Roman Osman, and J. B. Alexander Ross. Probing structure and dynamics of dna with 2-aminopurine: Effects of local environment on fluorescence. *Biochemistry*, 40:946–956, 2001.
- [127] S. K. Pal, L. Zhao, T. B. Xia, and A. H. Zewail. Site- and sequence-selective ultrafast hydration of dna. *Proceedings of the National Academy of Sciences of the United States of America*, 100(24):13746–13751, November 2003.
- [128] D. C. Ward, E. Reich, and L. Stryer. Fluorescence studies of nucleotides and polynucleotides: I. formycin, 2,6-diaminopurine riboside, and 2-aminopurine riboside, polynucleotides: I. formycin,. J. Biol. Chem., 244:1228–1237, 1969.
- [129] André Dallmann, Lars Dehmel, Torben Peters, Clemens Mügge, Christian Griesinger, Jennifer Tuma, and Nikolaus P. Ernsting. 2-aminopurine incorporation perturbs the dynamics and structure of dna. Angewandte Chemie International Edition, 49(34):5989–5992, 2010.
- [130] S. Hess, W. B. Davis, A. A. Voityuk, N. Rosch, M. E. Michel-Beyerle, N. P. Ernsting, S. A. Kovalenko, and J. L. P. Lustres. Excited-state photophysics of an acridine derivative selectively intercalated in duplex dna. *Chemphyschem*, 3(5):452, May 2002.
- [131] Mary E. Hawkins, Wolfgang Pfleiderer, Oliver Jungmann, and Frank M. Balis. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for dna incorporation. *Analytical Biochemistry*, 298(2):231 – 240, 2001.

- [132] Mary E. Hawkins, Wolfgang Pfleiderer, Frank M. Balis, Denise Porter, and Jay R. Knutson. Fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into oligonucleotides. *Analytical Biochemistry*, 244(1):86 95, 1997.
- [133] Mary E. Hawkins, Wolfgang Pfleiderer, Abhijit Mazumder, Yves G. Pommier, and Frank M. Balis. Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the hiv-1 integrase 3'-processing reaction. *Nucleic Acids Research*, 23(15):2872–2880, 1995.
- [134] MaryE. Hawkins. Fluorescent pteridine nucleoside analogs. Cell Biochemistry and Biophysics, 34(2):257–281, 2001.
- [135] K. Y. Lin, R. J. Jones, and M. Matteucci. Tricyclic 2'-deoxycytidine analogs syntheses and incorporation into oligodeoxynucleotides which have enhanced binding to complementary rna. *Journal of the American Chemical Society*, 117(13):3873– 3874, April 1995.
- [136] Peter Sandin, L. Marcus Wilhelmsson, Per Lincoln, Vicki E. C. Powers, Tom Brown, and Bo Albinsson. Fluorescent properties of dna base analogue tc upon incorporation into dna — negligible influence of neighbouring bases on fluorescence quantum yield. *Nucleic Acids Research*, 33(16):5019–5025, 2005.
- [137] P. Sandin, P. Lincoln, T. Brown, and L. M. Wilhelmsson. Synthesis and oligonucleotide incorporation of fluorescent cytosine analogue tc: a promising nucleic acid probe. *Nature Protocols*, 2(3):615–623, 2007.
- [138] K. Cecilia Engman, Peter Sandin, Sadie Osborne, Tom Brown, Martin Billeter, Per Lincoln, Bengt Nordén, Bo Albinsson, and L. Marcus Wilhelmsson. Dna adopts normal b-form upon incorporation of highly fluorescent dna base analogue tc: Nmr structure and uv-vis spectroscopy characterization. Nucleic Acids Research, 32(17):5087–5095, 2004.
- [139] Peter Sandin, Karl Börjesson, Hong Li, Jerker Mårtensson, Tom Brown, L. Marcus Wilhelmsson, and Bo Albinsson. Characterization and use of an unprecedentedly

bright and structurally non-perturbing fluorescent dna base analogue. *Nucleic Acids Research*, 36(1):157–167, 2008.

- [140] K. Borjesson, S. Preus, A. H. El-Sagheer, T. Brown, B. Albinsson, and L. M. Wilhelmsson. Nucleic acid base analog fret-pair facilitating detailed structural measurements in nucleic acid containing systems. *Journal of the American Chemical Society*, 131(12):4288–4293, April 2009.
- [141] B. J. Rodgers, N. A. Elsharif, N. Vashisht, M. M. Mingus, M. A. Mulvahill, G. Stengel, R. D. Kuchta, and B. W. Purse. Functionalized tricyclic cytosine analogues provide nucleoside fluorophores with improved photophysical properties and a range of solvent sensitivities. *Chemistry-a European Journal*, 20(7):2010–2015, February 2014.
- [142] J. S. Woo, R. B. Meyer, and H. B. Gamper. G/c-modified oligodeoxynucleotides with selective complementarity: Synthesis and hybridization properties. *Nucleic Acids Research*, 24(13):2470–2475, July 1996.
- [143] D. A. Berry, K. Y. Jung, D. S. Wise, A. D. Sercel, W. H. Pearson, H. Mackie, J. B. Randolph, and R. L. Somers. Pyrrolo-dc and pyrrolo-c: fluorescent analogs of cytidine and 2 '-deoxycytidine for the study of oligonucleotides. *Tetrahedron Letters*, 45(11):2457–2461, March 2004.
- [144] C. Dash, J. W. Rausch, and S. F. J. Le Grice. Using pyrrolo-deoxycytosine to probe rna/dna hybrids containing the human immunodeficiency virus type-1 3 ' polypurine tract. Nucleic Acids Research, 32(4):1539–1547, February 2004.
- [145] L. M. Wilhelmsson. Fluorescent nucleic acid base analogues. Quarterly Reviews of Biophysics, 43(2):159–183, May 2010.
- [146] C. H. Liu and C. T. Martin. Fluorescence characterization of the transcription bubble in elongation complexes of t7 rna polymerase. *Journal of Molecular Biology*, 308(3):465–475, May 2001.

- [147] Hong Zang, Qingming Fang, Anthony E. Pegg, and F. Peter Guengerich. Kinetic analysis of steps in the repair of damaged dna by human o6-alkylguanine-dna alkyltransferase. The Journal of biological chemistry, 280(35):30873-81, September 2005.
- [148] A. A. Marti, S. Jockusch, Z. M. Li, J. Y. Ju, and N. J. Turro. Molecular beacons with intrinsically fluorescent nucleotides. *Nucleic Acids Research*, 34(6):e50, 2006.
- [149] X. Ming and F. Seela. A nucleobase-discriminating pyrrolo-dc click adduct designed for dna fluorescence mismatch sensing. *Chemistry-a European Journal*, 18(31):9590– 9600, July 2012.
- [150] M. S. Noe, A. C. Rios, and Y. Tor. Design, synthesis, and spectroscopic properties of extended and fused pyrrolo-dc and pyrrolo-c analogs. *Organic Letters*, 14(12):3150– 3153, June 2012.
- [151] R. S. Coleman and M. L. Madaras. Synthesis of a novel coumarin c-riboside as a photophysical probe of oligonucleotide dynamics. J. Org. Chem., 63(2):5700–5703, 1998.
- [152] E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg. Measurement of local dna reorganization on the picosecond and nanosecond time scales. *Journal of the American Chemical Society*, 121(50):11644–11649, December 1999.
- [153] M. M. Somoza, D. Andreatta, C. J. Murphy, R. S. Coleman, and M. A. Berg. Effect of lesions on the dynamics of dna on the picosecond and nanosecond timescales using a polarity sensitive probe. *Nucleic Acids Research*, 32(8):2494–2507, April 2004.
- [154] D. Andreatta, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy, R. S. Coleman, and M. A. Berg. Power-law solvation dynamics in dna over six decades in time. *Journal of the American Chemical Society*, 127(20):7270–7271, May 2005.
- [155] D. Andreatta, S. Sen, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy,

R. S. Coleman, and M. A. Berg. Ultrafast dynamics in dna: "fraying" at the end of the helix. *Journal of the American Chemical Society*, 128(21):6885–6892, May 2006.

- [156] R. S. Coleman, M. A. Berg, and C. J. Murphy. Coumarin base-pair replacement as a fluorescent probe of ultrafast dna dynamics. *Tetrahedron*, 63(17):3450–3456, April 2007.
- [157] M. A. Berg, R. S. Coleman, and C. J. Murphy. Nanoscale structure and dynamics of dna. *Physical Chemistry Chemical Physics*, 10(9):1229–1242, 2008.
- [158] E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg. Complex local dynamics in dna on the picosecond and nanosecond time scales. *Physical Review Letters*, 88(15):158101, April 2002.
- [159] Akimitsu Okamoto, Kazuki Tainaka, and Yoshimasa Fujiwara. Nile red nucleoside: Design of a solvatofluorochromic nucleoside as an indicator of micropolarity around dna. *The Journal of Organic Chemistry*, 71(9):3592–3598, 2006. PMID: 16626146.
- [160] Tracy J. Matray and Eric T. Kool. A specific partner for abasic damage in dna. Nature, 399:704–708, 1999.
- [161] Christine Brotschi, Adrian Häberli, and Christian J. Leumann. A stable dna duplex containing a non-hydrogen-bonding and non-shape-complementary base couple: Interstrand stacking as the stability determining factor. Angewandte Chemie International Edition, 40(16):3012–3014, 2001.
- [162] Hugo Morales-Rojas and Eric T. Kool. A porphyrin c-nucleoside incorporated into dna. Organic Letters, 4(25):4377–4380, 2002.
- [163] Simon M. Langenegger and Robert Häner. A simple, non-nucleosidic base surrogate increases the duplex stability of dna containing an abasic site. *Chemistry & Biodiversity*, 1(2):259–264, 2004.

- [164] Simon M. Langenegger and Robert Häner. Remarkable stabilization of duplex dna containing an abasic site by non-nucleosidic phenanthroline and pyrene building blocks. *ChemBioChem*, 6(5):848–851, 2005.
- [165] Natalia N. Dioubankova, Andrey D. Malakhov, Dmitry A. Stetsenko, Vladimir A. Korshun, and Michael J. Gait. (r)-2,4-dihydroxybutyramide seco-pseudonucleosides: New versatile homochiral synthons for synthesis of modified oligonucleotides. Organic Letters, 4(26):4607–4610, 2002. PMID: 12489941.
- [166] Robert Huber, Nicole Amann, and Hans-Achim Wagenknecht. Synthesis of dna with phenanthridinium as an artificial dna base. J. Org. Chem., 69:744–751, 2004.
- [167] Jinsong Ren and Jonathan B. Chaires. Sequence and structural selectivity of nucleic acid binding ligands. *Biochemistry*, 38(49):16067–16075, 1999.
- [168] John Olmsted and David R. Kearns. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. *Biochemistry*, 16(16):3647–3654, 1977.
- [169] Shana O. Kelley and Jacqueline K. Barton. Dna-mediated electron transfer from a modified base to ethidium: Pi-stacking as a modulator of reactivity. *Chemistry & Biology*, 5(8):413 – 425, 1998.
- [170] Linda Valis, Nicole Amann, and Hans-Achim Wagenknecht. Detection of single base mismatches and abasic sites using phenanthridinium as an artificial dna base and charge donor. Org. Biomol. Chem., 3:36–38, 2005.
- [171] Clemens Wagner and Hans-Achim Wagenknecht. Perylene-3,4:9,10-tetracarboxylic acid bisimide dye as an artificial dna base surrogate. Organic Letters, 8(19):4191– 4194, 2006.
- [172] Andrei D. Malakhov, Mikhail V. Skorobogatyi, Igor A. Prokhorenko, Sergei V. Gontarev, Dmitry T. Kozhich, Dmitry A. Stetsenko, Irina A. Stepanova, Zakhar O. Shenkarev, Yuri A. Berlin, and Vladimir A. Korshun. 1-(phenylethynyl)pyrene and

9,10-bis(phenylethynyl)anthracene, useful fluorescent dyes for dna labeling: Excimer formation and energy transfer. *European Journal of Organic Chemistry*, 2004(6):1298–1307, 2004.

- [173] Hajime Maeda, Tomohiro Maeda, Kazuhiko Mizuno, Kazuhisa Fujimoto, Hisao Shimizu, and Masahiko Inouye. Alkynylpyrenes as improved pyrene-based biomolecular probes with the advantages of high fluorescence quantum yields and long absorption/emission wavelengths. *Chemistry A European Journal*, 12(3):824–831, 2006.
- [174] Igor A. Prokhorenko, Andrei D. Malakhov, Anna A. Kozlova, Kuvat Momynaliev, Vadim M. Govorun, and Vladimir A. Korshun. Phenylethynylpyrene-labeled oligonucleotide probes for excimer fluorescence snp analysis of 23s rrna gene in clarithromycin-resistant helicobacter pylori strains. *Mutation Research/Fundamental* and Molecular Mechanisms of Mutagenesis, 599(1–2):144 – 151, 2006.
- [175] M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao. A unique fluorescent base analogue for the expansion of the genetic alphabet. *Journal of the American Chemical Society*, 132(14):4988–+, April 2010.
- [176] A. A. Tanpure and S. G. Srivatsan. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in rna. *Chembiochem*, 13(16):2392–2399, November 2012.
- [177] M. G. Pawar and S. G. Srivatsan. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment. Journal of Physical Chemistry B, 117(46):14273–14282, November 2013.
- [178] P. M. Sabale, A. Nuthanakanti, and S. G. Srivatsan. Synthesis and fluorescence properties of a full set of extended rna base analogues. *Indian Journal of Chemistry Section A-inorganic Bio-inorganic Physical Theoretical & Analytical Chemistry*, 52(8-9):1004–1013, August 2013.
- [179] P. M. Sabale, J. T. George, and S. G. Srivatsan. A base-modified pna-graphene

oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. *Nanoscale*, 6(18):10460–10469, 2014.

- [180] A. A. Tanpure and S. G. Srivatsan. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the lucifer chromophore. *Chembiochem*, 15(9):1309–1316, June 2014.
- [181] Carolin Holzhauser and Hans-Achim Wagenknecht. "dna traffic lights": Concept of wavelength-shifting dna probes and application in an aptasensor. *ChemBioChem*, 13(8):1136–1138, 2012.
- [182] C. Holzhauser and H.-A. Wagenknecht. Dna and rna "traffic lights": Synthetic wavelength-shifting fluorescent probes based on nucleic acid base substitutes for molecular imaging. *Journal of Organic Chemistry*, 78(15):7373–7379, August 2013.
- [183] S. Barrois, S. Worner, and H.-A. Wagenknecht. The role of duplex stability for wavelength-shifting fluorescent dna probes: energy transfer vs. exciton interactions in dna "traffic lights". *Photochemical & Photobiological Sciences*, 13(8):1126–1129, 2014.
- [184] André Nadler, Julian Strohmeier, and Ulf Diederichsen. 8-vinyl-2'-deoxyguanosine as a fluorescent 2'-deoxyguanosine mimic for investigating dna hybridization and topology. Angewandte Chemie International Edition, 50(23):5392–5396, 2011.
- [185] Bastian Holzberger, Julian Strohmeier, Vanessa Siegmund, Ulf Diederichsen, and Andreas Marx. Enzymatic synthesis of 8-vinyl- and 8-styryl-2'-deoxyguanosine modified dna - novel fluorescent molecular probes. *Bioorganic & Medicinal Chemistry Letters*, 22(9):3136 – 3139, 2012.
- [186] V. Singh, S. L. Wang, and E. T. Kool. Genetically encoded multispectral labeling of proteins with polyfluorophores on a dna backbone. *Journal of the American Chemical Society*, 135(16):6184–6191, April 2013.

- [187] L. H. Yuen, R. M. Franzini, S. L. Wang, P. Crisalli, V. Singh, W. Jiang, and E. T. Kool. Pattern-based detection of toxic metals in surface water with dna polyfluo-rophores. Angewandte Chemie-international Edition, 53(21):5361–5365, May 2014.
- [188] Hiroyuki Asanuma, Taiga Fujii, Tomohiro Kato, and Hiromu Kashida. Coherent interactions of dyes assembled on dna. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(2):124 – 135, 2012. Photochemical Methodology Utilized in Chemical Biology.
- [189] Y. N. Teo and E. T. Kool. Dna-multichromophore systems. Chemical Reviews, 112(7):4221–4245, July 2012.
- [190] M. Winnacker and E. T. Kool. Artificial genetic sets composed of size-expanded base pairs. Angewandte Chemie-international Edition, 52(48):12498–12508, November 2013.
- [191] Andrew T. Krueger, Haige Lu, Alex H. F. Lee, and Eric T. Kool. Synthesis and properties of size-expanded dnas: Toward designed, functional genetic systems. Acc Chem Res., 40(2):141–150, 2007.
- [192] F. Wojciechowski, J. Lietard, and C. J. Leumann. 2-pyrenyl-dna: Synthesis, pairing, and fluorescence properties. Organic Letters, 14(20):5176–5179, October 2012.
- [193] Peter Kaden, Elke Mayer-Enthart, Anton Trifonov, Torsten Fiebig, and Hans-Achim Wagenknecht. Real-time spectroscopic and chemical probing of reductive electron transfer in dna. Angewandte Chemie International Edition, 44(11):1636–1639, 2005.
- [194] Elke Mayer-Enthart and Hans-Achim Wagenknecht. Structure-sensitive and selfassembled helical pyrene array based on dna architecture. Angewandte Chemie International Edition, 45(20):3372–3375, 2006.
- [195] Mykhailo Vybornyi, Alina L. Nussbaumer, Simon M. Langenegger, and Robert Häner. Assembling multiporphyrin stacks inside the dna double helix. *Bioconju*gate Chemistry, 25(10):1785–1793, 2014. PMID: 25186936.

- [196] C. B. Winiger, S. M. Langenegger, O. Khorev, and R. Häner. Influence of perylenediimide-pyrene supramolecular interactions on the stability of dna-based hybrids: Importance of electrostatic complementarity. *Beilstein Journal of Organic Chemistry*, 10:1589–1595, July 2014.
- [197] R. W. Sinkeldam, A. J. Wheat, H. Boyaci, and Y. Tor. Emissive nucleosides as molecular rotors. *Chemphyschem*, 12(3):567–570, February 2011.
- [198] R. W. Sinkeldam, P. A. Hopkins, and Y. Tor. Modified 6-aza uridines: Highly emissive ph-sensitive fluorescent nucleosides. *Chemphyschem*, 13(14):3350–3356, October 2012.
- [199] R. S. K. Lane, R. Jones, R. W. Sinkeldam, Y. Tor, and S. W. Magennis. Two-photoninduced fluorescence of isomorphic nucleobase analogs. *Chemphyschem*, 15(5):867– 871, April 2014.
- [200] M. S. Noe, R. W. Sinkeldam, and Y. Tor. Oligodeoxynucleotides containing multiple thiophene-modified isomorphic fluorescent nucleosides. *Journal of Organic Chemistry*, 78(16):8123–8128, August 2013.
- [201] Patrycja A. Hopkins, Renatus W. Sinkeldam, and Yitzhak Tor. Visibly emissive and responsive extended 6-aza-uridines. Organic letters, 16(20):5290–3, October 2014.
- [202] D. Shin, R. W. Sinkeldam, and Y. Tor. Emissive rna alphabet. Journal of the American Chemical Society, 133(38):14912–14915, September 2011.
- [203] André Dallmann, Matthias Pfaffe, Clemens Mügge, Rainer Mahrwald, Sergey A. Kovalenko, and Nikolaus P. Ernsting. Local thz time domain spectroscopy of duplex dna via fluorescence of an embedded probe. *The Journal of Physical Chemistry B*, 113(47):15619–15628, 2009.
- [204] F. Berndt, M. Sajadi, N. P. Ernsting, and R. Mahrwald. Covalent linkage of n-methyl-6-oxyquinolinium betaine to trehalose. *Carbohydrate Research*, 346(18):2960–2964, December 2011.

- [205] M. Weinberger, F. Berndt, R. Mahrwald, N. P. Ernsting, and H. A. Wagenknecht. Synthesis of 4-aminophthalimide and 2,4-diaminopyrimidine c-nucleosides as isosteric fluorescent dna base substitutes. *Journal of Organic Chemistry*, 78(6):2589– 2599, March 2013.
- [206] G. Saroja, T. Soujanya, B. Ramachandram, and A. Samanta. 4-aminophthalimide derivatives as environment-sensitive probes. *Journal of Fluorescence*, 8(4):405–410, December 1998.
- [207] John L Markley, Ad Bax, Yoji Arata, C.W Hilbers, Robert Kaptein, Brian D Sykes, Peter E Wright, and Kurt Wüthrich. Recommendations for the presentation of nmr structures of proteins and nucleic acids. *Journal of Molecular Biology*, 280(5):933 – 952, 1998.
- [208] C. Altona and Sundaralingam M. Conformational-analysis of sugar ring in nucleosides and nucleotides - new description using concept of pseudorotation. *Journal of* the American Chemical Society, 94(23):8205–&, 1972.
- [209] J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer. The thermodynamics and molecular structure of cyclopentane. *Journal of the American Chemical Society*, 69(10):2483– 2488, 1947.
- [210] Albert W. Overhauser. Polarization of nuclei in metals. Phys. Rev., 92:411–415, Oct 1953.
- [211] F. A. L. Anet and A. J. R. Bourn. Nuclear magnetic resonance spectral assignments from nuclear overhauser effects. *Journal of the American Chemical Society*, 87(22):5250–&, 1965.
- [212] S. Macura and R. R. Ernst. Elucidation of cross relaxation in liquids by twodimensional nmr-spectroscopy. *Molecular Physics*, 41(1):95–117, 1980.
- [213] G. C. K. Roberts, editor. NMR of Macromolecules: A Practical Approach. Oxford University Press, New York, USA, 1993.

- [214] Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, 1987.
- [215] Angela M. Gronenborn and G. Marius Clore. Investigation of the solution structures of short nucleic acid fragments by means of nuclear overhauser enhancement measurements. Progress in Nuclear Magnetic Resonance Spectroscopy, 17:1–32, 1985.
- [216] Brian R. Reid, Kevin Banks, Peter Flynn, and Willy Nerdal. Nmr distance measurements in dna duplexes: sugars and bases have the same correlation times. *Biochemistry*, 28(26):10001–10007, December 1989.
- [217] A. J. Birchall and A. N. Lane. Anisotropic rotation in nucleic acid fragments: significance for determination of structures from nmr data. *European Biophysics Journal*, 19(2):73–78, 1990.
- [218] Giovanni Lipari and Attila Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. Journal of the American Chemical Society, 104(17):4546-4559, 1982.
- [219] Giovanni Lipari and Attila Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. analysis of experimental results. Journal of the American Chemical Society, 104(17):4559–4570, 1982.
- [220] Peter F. Flynn, Ramona J. Bieber Urbauer, Hui Zhang, Andrew L. Lee, and A. Joshua Wand. Main chain and side chain dynamics of a heme protein: 15n and 2h nmr relaxation studies of r. capsulatus ferrocytochrome c2. *Biochemistry*, 40(22):6559–6569, 2001. PMID: 11380250.
- [221] Andrew N. Lane. Nmr studies of dynamics in nucleic acids. Progress in Nuclear Magnetic Resonance Spectroscopy, 25(5):481 – 505, 1993.
- [222] A. N. Lane. Influence of conformational averaging on ¹h-h noes and structure determination in dna. *Magnetic Resonance In Chemistry*, 34:S3–S10, December 1996.

- [223] Eike Brunner. Residual dipolar couplings in protein nmr. Concepts in Magnetic Resonance, 13(4):238–259, 2001.
- [224] J. H. Prestegard, C. M. Bougault, and A. I. Kishore. Residual dipolar couplings in structure determination of biomolecules. *Chemical Reviews*, 104(8):3519–3540, 2004. PMID: 15303825.
- [225] Martin Blackledge. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy, 46(1):23 – 61, 2005.
- [226] D. MacDonald, K. Herbert, X. L. Zhang, T. Polgruto, and P. Lu. Solution structure of an a-tract dna bend. *Journal of Molecular Biology*, 306(5):1081–1098, March 2001.
- [227] A. Saupe and G. Englert. High-resolution nuclear magnetic resonance spectra of orientated molecules. *Phys. Rev. Lett.*, 11(10):462, November 1963.
- [228] A. Saupe. Kernresonanzen in kristallinen flussigkeiten + in kristallinflussigen losungen .i. Zeitschrift Fur Naturforschung Part A-astrophysik Physik Und Physikalische Chemie, A 19(2):161-+, 1964.
- [229] J. R. Tolman, J. M. Flanagan, M. A. Kennedy, and J. H. Prestegard. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. *Proceedings of the National Academy of Sciences*, 92(20):9279– 9283, 1995.
- [230] Ad Bax and Nico Tjandra. High-resolution heteronuclear nmr of human ubiquitin in an aqueous liquid crystalline medium. *Journal of Biomolecular NMR*, 10(3):289–292, 1997.
- [231] Nico Tjandra and Ad Bax. Direct measurement of distances and angles in biomolecules by nmr in a dilute liquid crystalline medium. *Science*, 278(5340):1111– 1114, 1997.

- [232] Marcel Ottiger and Ad Bax. Bicelle-based liquid crystals for nmr-measurement of dipolar couplings at acidic and basic ph values. *Journal of biomolecular NMR*, 13(2):187–91, February 1999.
- [233] H. M. Al-Hashimi, H. Valafar, M. Terrell, E. R. Zartler, M. K. Eidsness, and J. H. Prestegard. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. *Journal of Magnetic Res*onance, 143(2):402–406, April 2000.
- [234] L. G. Barrientos, C. Dolan, and A. M. Gronenborn. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings. *Journal of biomolecular NMR*, 16(4):329–37, April 2000.
- [235] Markus Ruckert and Gottfried Otting. Alignment of biological macromolecules in novel nonionic liquid crystalline media for nmr experiments. Journal of the American Chemical Society, 122(32):7793–7797, August 2000.
- [236] M R Hansen, L Mueller, and a Pardi. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. *Nature structural biology*, 5(12):1065–74, December 1998.
- [237] James Chou, Sander Gaemers, Bernard Howder, John Louis, and Ad Bax. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. *Journal of Biomolecular NMR*, 21(4):377–382, December 2001.
- [238] Junhe Ma, Gregory I. Goldberg, and Nico Tjandra. Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for nmr measurements. Journal of the American Chemical Society, 130(48):16148–9, December 2008.
- [239] Jens Wohnert, Katherine J Franz, Mark Nitz, Barbara Imperiali, and Harald Schwalbe. Protein alignment by a coexpressed lanthanide-binding tag for the mea-

surement of residual dipolar couplings. *Journal of the American Chemical Society*, 125(44):13338–13339, November 2003.

- [240] Shawn M. Douglas, James J. Chou, and William M. Shih. Dna-nanotube-induced alignment of membrane proteins for nmr structure determination. *Proceedings of the National Academy of Sciences*, 104(16):6644–6648, 2007.
- [241] J. H. Prestegard, H. M. Al-Hashimi, and J. R. Tolman. Nmr structures of biomolecules using field oriented media and residual dipolar couplings. *Quarterly reviews of biophysics*, 33(4):371–424, November 2000.
- [242] Eva de Alba and Nico Tjandra. Nmr dipolar couplings for the structure determination of biopolymers in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 40(2):175–197, 2002.
- [243] J. A. Losonczi, M. Andrec, M. W. Fischer, and J. H. Prestegard. Order matrix analysis of residual dipolar couplings using singular value decomposition. *Journal* of magnetic resonance (San Diego, Calif. : 1997), 138(2):334–42, June 1999.
- [244] Axel T. Brünger. X-PLOR (Version 4.0) A System for X-Ray Crystallography and NMR. Yale University, 1996.
- [245] Charles D. Schwieters, John J. Kuszewski, Nico Tjandra, and G. Marius Clore. The xplor-nih nmr molecular structure determination package. J. Magn. Reson., 160:65–73, 2003.
- [246] Scott J. Weiner, Peter A. Kollman, David A. Case, U. Chandra Singh, Caterina Ghio, Guliano Alagona, Salvatore Profeta, and Paul Weiner. A new force field for molecular mechanical simulation of nucleic acids and proteins. *Journal of the American Chemical Society*, 106(3):765–784, 1984.
- [247] Alexander D. MacKerell, Nilesh Banavali, and Nicolas Foloppe. Development and current status of the charmm force field for nucleic acids. *Biopolymers*, 56(4):257– 265, 2000.

- [248] J. L. Mergny and L. Lacroix. Analysis of thermal melting curves. Oligonucleotides, 13(6):515–537, 2003.
- [249] Vyacheslav V. Filichev and Erik B. Pedersen. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (tina) prepared via postsynthetic sonogashira solid-phase coupling reactions. Journal of the American Chemical Society, 127(42):14849–14858, 2005.
- [250] Francis H. Martin, Olke C. Uhlenbeck, and Paul Doty. Self-complementary oligoribonucleotides: Adenylic acid-uridylic acid block copolymers. *Journal of Molecular Biology*, 57(2):201 – 215, 1971.
- [251] Philip N. Borer, Barbara Dengler, Ignacio Tinoco Jr., and Olke C. Uhlenbeck. Stability of ribonucleic acid double-stranded helices. *Journal of Molecular Biology*, 86(4):843 – 853, 1974.
- [252] Matthew Petersheim and Douglas H. Turner. Base-stacking and base-pairing contributions to helix stability: Thermodynamics of double-helix formation with ccgg, ccggp, ccggap, accggp, ccggup and accggupt. *Biochemistry*, 22:256–263, 1983.
- [253] D. H. Turner, N. Sugimoto, and S. M. Freier. Rna structure prediction. Annual Review of Biophysics and Biophysical Chemistry, 17(1):167–192, 1988.
- [254] Vassili Ivanov, Yan Zeng, and Giovanni Zocchi. Statistical mechanics of base stacking and pairing in dna melting. *Phys. Rev. E*, 70:051907, Nov 2004.
- [255] John SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide dna nearest-neighbor thermodynamics. Proc Natl Acad Sci, 95(4):1460–1465, 1998.
- [256] John SantaLucia. The thermodynamics of dna structural motifs. Annual Review of Biophysics and Biomolecular Structure, 33:415–440, 2004.
- [257] R. S. Lipsitz and N. Tjandra. Residual dipolar couplings in nmr structure analysis. Annual Review of Biophysics and Biomolecular Structure, 33:387–413, 2004.

- [258] Curt M. Breneman and Kenneth B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. *Journal of Computational Chemistry*, 11(3):361– 373, 1990.
- [259] R. L. J. Keller. Optimizing the process of Nuclear Magnetic Resonance spectrum analysis and Computer Aided Resonance Assignment (Cara). PhD thesis, Swiss Federal Institute Of Technology Zurich, 2004.
- [260] André Dallmann. Structure and dynamics of fluorophore-labelled DNA helices probed by NMR-spectroscopy. PhD thesis, Humboldt-Universität zu Berlin, 2010.
- [261] Marcel Ottiger and Ad Bax. How tetrahedral are methyl groups in proteins? a liquid crystal nmr study. Journal of the American Chemical Society, 121(19):4690-4695, May 1999.
- [262] Annaleen Vermeulen, Hongjun Zhou, and Arthur Pardi. Determining dna global structure and dna bending by application of nmr residual dipolar couplings. *Journal* of the American Chemical Society, 122(40):9638–9647, 2000.
- [263] Olivier Mauffret, Georges Tevanian, and Serge Fermandjian. Residual dipolar coupling constants and structure determination of large dna duplexes. *Journal of biomolecular NMR*, 24(4):317–28, December 2002.
- [264] R. Boelens, T. M. G. Koning, and R. Kaptein. Determination of biomolecular structures from proton-proton noe's using a relaxation matrix approach. *Journal of Molecular Structure*, 173:299–311, 1988.
- [265] B. A. Borgias and T. L. James. Mardigras a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. J. Magn. Res., 87:475– 487, 1990.
- [266] Lars Dehmel. Die entwicklung eines lua-skripts zur automatischen integration von noesy-spektren. Master's thesis, Humboldt-Universität zu Berlin, 2009.

- [267] Jean-Luc Pons, T. E. Malliavin, and Marc A. Delsuc. Gifa v. 4: A complete package for nmr data set processing. *Journal of Biomolecular NMR*, 8(4):445–452, December 1996.
- [268] Markus Zweckstetter. Nmr: prediction of molecular alignment from structure using the pales software. Nat. Protocols, 3(4):679–690, 2008.
- [269] R. Manoharan and Sneh K. Dogra. The absorption and fluorescence spectra of 2- and 4-fluorenecarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 43(2):119 – 137, 1988.
- [270] K. Huang, J. M. Louis, L. Donaldson, F. L. Lim, A. D. Sharrocks, and G. M. Clore. Solution structure of the mef2a-dna complex: structural basis for the modulation of dna bending and specificity by mads-box transcription factors. *Embo Journal*, 19(11):2615–2628, June 2000.
- [271] M. Nakata, G. Zanchetta, B. D. Chapman, C. D. Jones, J. O. Cross, R. Pindak, T. Bellini, and N. A. Clark. End-to-end stacking and liquid crystal condensation of 6-to 20-base pair dna duplexes. *Science*, 318(5854):1276–1279, November 2007.
- [272] Mohsen Sajadi, Yathrib Ajaj, Ilya Ioffe, Hermann Weingärtner, and Nikolaus P. Ernsting. Terahertz absorption spectroscopy of a liquid using a polarity probe: A case study of trehalose/water mixtures. Angewandte Chemie International Edition, 49(2):454–457, 2010.
- [273] Mark K. Schlegel, Lars-Oliver Essen, and Eric Meggers. Atomic resolution duplex structure of the simplified nucleic acid gna. *Chem. Commun.*, 46:1094–1096, 2010.
- [274] Andrew T. Johnson, Mark K. Schlegel, Eric Meggers, Lars-Oliver Essen, and Olaf Wiest. On the structure and dynamics of duplex gna. *The Journal of Organic Chemistry*, 76(19):7964–7974, 2011. PMID: 21838272.
- [275] Eric Meggers and Lilu Zhang. Synthesis and properties of the simplified nucleic acid

glycol nucleic acid. Accounts of Chemical Research, 43(8):1092–1102, 2010. PMID: 20405911.

- [276] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 2nd Edition: The Art of Scientific Computing. Cambridge University Press, 1992.
- [277] H. E. Gottlieb, V. Kotlyar, and A. Nudelman. Nmr chemical shifts of common laboratory solvents as trace impurities. *Journal of Organic Chemistry*, 62(21):7512– 7515, October 1997.

List of Abbreviations

2AP	2-Aminopurine
4AP	4-Amino p hthalimide
6HQ	6-Hydroxy- q uinolinium
13mer4AP-DAP	13mer DNA double strand incorporating 4AP and DAP
$13 \mathrm{mer} 6 \mathrm{HQ}$	13mer DNA double strand incorporating $6HQ$
13merHCF	13mer DNA double strand incorporating \mathbf{HCF}
13merHNF	13mer DNA double strand incorporating \mathbf{HNF}
13merRef	${\bf 13mer}$ DNA double strand as ${\bf ref} {\bf e} {\bf rence}$ with central AT pair
$13 \mathrm{merRef}(\mathrm{GC})$	${\bf 13mer}$ DNA double strand as ${\bf ref}{\bf e}{\bf rence}$ with central GC pair
ACMA	9-Amino-6-chloro-2-methoxyacridine
Α	Adenine
B3LYP	Becke, 3 -parameter, Lee-Yang-Parr, a DFT method
CARA	Computer Aided Resonance Assignment
С	Cytosine
CPG	Controlled Pore Glass
CSD	Chemical Shift Deviation
DQF-COSY	Double Quantum Filtered Correlated Spectroscopy
DAP	2,4-Diaminopyrimidine
DETEQ	${\bf D} {\rm etection}$ by Electron Transfer-controlled Emission Quenching
DFT	Density Functional Theory
DNA	\mathbf{D} eoxyribose \mathbf{N} ucleic \mathbf{A} cid
ddNTPs	${\bf di-d}eoxy {\bf N}ucleotide {\bf T}ri{\bf p}hosphates$
FID	$\mathbf{F}\mathrm{ree}\;\mathbf{I}\mathrm{nduction}\;\mathbf{D}\mathrm{ecay}$

$List \ of \ Abbreviations$

\mathbf{FIT}	Forced Intercalation TO -PNA probes
FRET	Fluorescence Resonance Energy Transfer
GNA	Glycol Nucleic Acid
G	Guanine
HCF	$2-\mathbf{H} y droxy-7-\mathbf{C} arboxy \mathbf{f} luorene$
HMQC	Heteronuclear Multiple Quantum Coherence
HNF	2-Hydroxy-7-Nitrofluorene
HOD	\mathbf{H} ydrogen \mathbf{O} xygen $\mathbf{Deuterium}$, half deuterated water
ISPA	Isolated Spin Pair Approximation
LNA	\mathbf{L} ocked \mathbf{N} ucleic \mathbf{A} cid
MD	\mathbf{M} olecular \mathbf{D} ynamics
\mathbf{MQ}	N-methyl-6-quinolone
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Enhancement (Effect) ${\bf S} {\rm pectroscopy}$
qPCR	Real-time quantitative Polymerase Chain Reaction
PAS	\mathbf{P} rincipal \mathbf{A} xis \mathbf{S} ystem
PCA	Principal Component Analysis
PCR	Polymerase Chain Reaction
PELDOR	$\mathbf{P}\text{ulsed} \ \mathbf{E}\text{lectron-electron} \ \mathbf{D}\mathbf{o}\text{uble} \ \mathbf{R}\text{esonance}$
Pf1	\mathbf{P} hage f1 , a filamentous bacteriophage
PNA	Peptide Nucleic Acid
RDC	\mathbf{R} esidual \mathbf{D} ipolar \mathbf{C} oupling
RNA	\mathbf{R} ibose \mathbf{N} ucleic \mathbf{A} cid
RMSD	\mathbf{R} oot- \mathbf{M} ean- \mathbf{S} quare \mathbf{D} eviation
SBW	\mathbf{S} pectral \mathbf{B} and \mathbf{w} idth
\mathbf{SA}	Simulated Annealing
SNP	Single Nucleotide Polymorphism
SVD	Singular Value Decomposition

TDSS	$\mathbf{Time-D} \mathbf{p} \mathbf{e} \mathbf{n} \mathbf{d} \mathbf{e} \mathbf{t} \mathbf{S} \mathbf{t} \mathbf{o} \mathbf{k} \mathbf{e} \mathbf{s} \mathbf{S} \mathbf{h} \mathbf{i} \mathbf{f} \mathbf{t}$
Т	Thymine
\mathbf{TNA}	Threose Nucleic \mathbf{A} cid
то	Thiazole Orange
\mathbf{TR}	Thiazole Red
TOCSY	${\bf Total} \ {\bf C} orrelation \ {\bf S} pectroscopy$
TZVP	Triple Zeta Valence plus Polarisation
UV/Vis	Ultraviolet and vis ible range

List of Figures

1.1	Structure of natural nucleobases and fluorescent base analogues	7
1.2	Structure of large fluorescent base analogues	11
1.3	Structure of new fluorescent base and base pair analogues $\ . \ . \ . \ .$	17
2.1	Structure and nomenclature of the Watson-Crick base pairs A:T and G:C	20
2.2	Pseudorotation phase angle P	21
2.3	Basic NOESY pulse-sequence	24
2.4	NOE effect in a two spin system $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill $	25
2.5	Acquisition of RDCs	30
2.6	Orientation of the B_0 field and the inter-nuclear vector in the molecular	
	frame	32
2.7	Dependence of RDC values on the orientation of the inter-nuclear vector in	
	the eigenframe of the alignment tensor \ldots	33
2.8	Find global minimum with Simulated Annealing	36
2.9	Data matrix ${\bf M}$ and SVD of DNA absorption spectra	38
2.10	A Reduced set of matrices can fully describe the data matrix ${\bf M}$ $\ .$	39
2.11	Separating \mathbf{V}_{cut}^T into a product of linear factors \mathbf{F} and nonlinear parameters	
	P	40
2.12	Melting Point Estimation from dsDNA melting curve	42
2.13	SVD assisted two-state model	45
4.1	Structure of 13merHCF	64
4.2	NOE-Walk in 13merHCF	65

4.3	CSD comparison between 13merHCF and 13merHNF with reference strand	67
4.4	Averaged structures of 13merHCF	68
4.5	Overlay of the 10 minimum-energy, violation-free structures \ldots	69
4.6	Close view on the three central base pairs of 13merHCF \hdots	70
4.7	Pales plots of experimental RDCs against predicted values of the 13merHCF	
	structures	72
4.8	NOESY back-calculations of both conformers overlaid with experimental	
	data	74
4.9	Absorption change of ds13merHCF upon melting $\ldots \ldots \ldots \ldots \ldots \ldots$	75
4.10	Weighted spectra of 13merHCF in SVD	76
4.11	Basic spectra and thermodynamic curves of 13merHCF $\hfill \ldots \ldots \ldots$.	77
4.12	Thermodynamic curves of 13merHCF, scaled to the measured amplitude	
	change	78
4.13	Structure of 13mer6HQ	81
4.14	NOE-Walk in 13mer6HQ	82
4.15	CSD comparison between 13mer6HQ and different reference strands $\ . \ . \ .$	84
4.16	Averaged structures of 13mer6HQ	85
4.17	Close view on the three central base pairs of 13mer6HQ $\hfill .$	86
4.18	Close view on the central base pair of 13mer6HQ \hdots	87
4.19	Side view on the three central base pairs of 13mer6HQ	88
4.20	Pales plot of the experimental RDCs against predicted values of the 13mer-	
	6HQ structure	89
4.21	NOESY back-calculation overlaid with experimental data	90
4.22	Absorption change of ds13mer6HQ upon melting	91
4.23	UV part of the spectrum used for SVD of the DNA absorption peak $\ . \ . \ .$	92
4.24	Basic spectra and thermodynamic curves of the DNA band	93
4.25	Thermodynamic curves, scaled to the measured amplitude change $\ \ . \ . \ .$	94
4.26	Basic spectra and thermodynamic curves for the duplex part extrapolation	95
4.27	From the known duplex region (10-30 $^{\circ}\mathrm{C})$ onwards, the next twelve spectra	
------	---	-------
	were extrapolated	. 96
4.28	Basic spectra and amplitudes as in Fig. 4.26, but for the separated single	
	strands.	. 97
4.29	The known region is now the high temperature part (70-90 $^{\circ}\mathrm{C}),$ where fully	
	separated single strands are assumed.	. 98
4.30	Overlay of linearly combined spectra and measured data around 400nm	. 99
4.31	The α values of the linear combined spectra	. 99
4.32	The absorption spectrum of single-stranded $13\mathrm{mer6HQ},$ measured from 10	
	(blue) to 80 $^{\circ}C(red)$	100
4.33	Overlay of the extrapolated spectra and measured data of $ss13mer6HQ.$.	. 101
4.34	Structure of 13mer4AP-DAP	103
4.35	NOE-Walk in 13mer4AP-DAP	. 104
4.36	CSD comparison between 13mer4AP-DAP and different reference strands	105
4.37	Assignment of two imino signal sets in 13mer4AP-DAP	107
4.38	Averaged structures of 13mer4AP-DAP	108
4.39	Overlay of the 10 minimum-energy, violation-free structures \ldots \ldots	109
4.40	Close view on the three central base pairs of 13mer4AP-DAP $\ . \ . \ . \ .$	110
4.41	Close view on the central base pair of 13mer4AP-DAP	. 111
4.42	NOESY back-calculations of both conformers overlaid with experimental	
	data	. 112
4.43	Averaged structures of 13mer4AP-DAP with RDCs of 13merHCF	. 114
4.44	Overlay of the 10 minimum-energy, violation-free structures of $13mer4AP$ -	
	DAP with RDCs of 13merHCF	115
4.45	Close view on the central base pair of 13mer4AP-DAP with RDCs $\ . \ . \ .$	116
4.46	Pales plots of experimental 13merHCF RDCs against predicted values of	
	the of 13mer4AP-DAP structures	. 117
4.47	Absorption change of ds13mer6HQ upon melting	. 118
4.48	UV part of the spectrum used for SVD of the DNA absorption peak \ldots	. 119

List of Figures

4.49	Basic spectra and thermodynamic curves of the DNA band
4.50	Thermodynamic curves, scaled to the measured amplitude change \ldots 121
4.51	Spectrum used for SVD of the 4AP absorption band
4.52	Basic spectra and thermodynamic curves of the 4AP band
4.53	Melting curve, scaled to the measured amplitude change

List of Tables

2.1	Average structural parameters for different helical forms ^[19] $\dots \dots \dots \dots 22$
3.1	Experimentally determined RDCs used in the structure determination for
	13merHCF
3.2	Overview of structural statistics for 13merHCF in face-up and face-down
	orientation
3.3	Measured RDCs of 13mer6HQ
3.4	Overview of structural statistics for 13mer6HQ
3.5	Overview of structural statistics for 13mer4AP-DAP in 1H-bond and 2H-
	bond orientation
5.1	Global and local melting points of the three investigated DNA double strands.126
6.1	Globale und lokale Schmelzpunkte der drei untersuchten DNA Doppelstränge. 132
1	¹ H chemical shifts of the nucleobases in 13merHCF
2	¹ H chemical shifts of the backbone in 13merHCF $\dots \dots \dots$
3	$^{13}\mathrm{C}$ chemical shifts of 13merHCF
4	$^{1}\mathrm{H}$ chemical shifts of the nucleobases in 13 mer6HQ $~.~.~.~.~.~.~.~.~.~141$
5	¹ H chemical shifts of the backbone in 13mer6HQ $\dots \dots \dots$
6	13 C chemical shifts of 13mer6HQ
7	$^{1}\mathrm{H}$ chemical shifts of the nucleobases in 13mer4AP-DAP
8	¹ H chemical shifts of the backbone in 13mer4AP-DAP $\dots \dots \dots \dots \dots \dots \dots \dots 145$

Danksagung

Als Erstes möchte ich *Prof. Nikolaus P. Ernsting* für das Thema und die Betreuung meiner Doktorarbeit danken. Dazu zähle ich nicht nur die Unterstützung bei wissenschaftlichen Fragestellungen oder die Gelegenheit in Eigenregie experimentell zu arbeiten und neue Ideen zu verwirklichen, sondern auch das Vertrauen und die Möglichkeit mich neben den Herausforderungen eines Wissenschaftlers auch denen eines zweifachen Vaters zu stellen und diese unter einen Hut zu bekommen.

Besonders danken möchte ich *Dr. André Dallmann* für die Einführung in das Gebiet der Strukturaufklärung mittels NMR-Spektroskopie. Er stand mir immer mit Rat und Tat zur Seite, denn der Weg zur ersten Struktur ist mit vielen Stolpersteinen gepflastert.

Ebenso möchte ich *Prof. Dr. Clemens Mügge* für das Vertrauen und die Unterstützung am NMR-Spektrometer danken. Ohne die Freiheit lange und auch vielfältige Experimente am Spektrometer durchzuführen, wäre die Strukturbestimmung von 13mer4AP-DAP nicht möglich gewesen. An dieser Stelle möchte ich auch *Angela Thiesies* und *Katharina Pfaff* für die Kooperation und Unterstützung am Spektrometer danken.

Heiderose Steingräber und Sabrina Penn möchte ich für Hilfe bei den vielen kleinen Dingen im Alltag eines Wissenschaftlers danken sowie die angenehme Arbeitsatmosphäre.

Mein Dank gilt auch den anderen Mitgliedern des Arbeitskreises. Dr. Horst Hennig danke ich für die vielen anregenden Diskussionen, Dr. Sergey Kovalenko und Dr. Alexander Dobryakov für die Ratschläge zur wissenschaftlichen Arbeit. Martin Quick und Mario Gerecke für die gute Zusammenarbeit und stete Hilfsbereitschaft. Auch bei den ehemaligen Mitgliedern der Arbeitsgruppe möchte ich mich dafür bedanken. Im Einzelnen sind dies Iris Suter, Dr. Luis Perez-Lustres, Dr. Mohsen Sajadi Hezaveh und Xinxing Zhang.

Danksagung

Weiterhin möchte ich mich bei Prof. Dr. Rainer Mahrwald und Dr. Matthias Pfaffe für die Synthese des HCF-Bausteins bedanken. Ebenso bei Felix Hövelmann und Prof. Dr. Oliver Seitz für die Bereitstellung des 6HQ Stranges. Der 13mer4AP-DAP Doppelstrang ist in Kooperation mit der Arbeitsgruppe von Prof. Dr. Hans-Achim Wagenknecht entstanden. Ihm und Dr. Michael Weinberger danke ich für die Synthese des 4AP Stranges. Aus unserer Gruppe danke ich Dr. Falko Berndt für die Herstellung des DAP-Gegenstücks.

Schließlich möchte ich bei meiner Frau und unseren Eltern für die fortwährende Unterstützung bedanken, ohne die ich diese Arbeit nicht hätte fertigstellen können.

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Berlin, den 15.12.2014

Lars Dehmel