NMR solution structure of DNA double helices with built-in polarity probes

DISSERTATION
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Chemie
eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

von
Dipl.-Chem. Lars Dehmel

Präsident der der Humboldt-Universität zu Berlin:
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke

Gutachter:

1. Prof. N. P. Ernsting
2. Prof. Dr. H.-A. Wagenknecht

Tag der mündlichen Prüfung: 20.05.2015

Für meine Familie und die Zukunft.

Abstract

The solution structures of three differently modified DNA double strands were solved by NMR spectroscopy. They all incorporate polarity probes in the center of the helix that are sensitive to the immediate environment. Their melting behavior was characterized by a new method that utilizes complete absorption spectra in combination with Singular Value Decomposition (SVD). The latter allows to analyze the spectra in their entirety, which is required to follow the blue shift of the probe signal that is caused by the aforementioned sensitivity to the environment. In this way the duplex melting process is characterized in local and global terms. The first modification, 2-hydroxy-7-carboxyfluorene (HCF), is placed opposite an abasic site to avoid steric strain. NMR spectroscopy revealed two equally distributed conformations, since rotation of the HCF chromophore is only hindered by stacking interactions inside the helix. The second double strand comprises R-glycerol linked 6 -hydroxyquinolinium (6 HQ) opposite cytosine. The incorporation of 6 HQ as glycol nucleic acid (GNA) mononucleotide is a unique structural feature. Until now, only crystal structures of full GNA backbone duplexes are known, so the solution structure of this double strand is of general interest. The small size of R-glycerol disturbs the backbone of the 6 HQ strand, which causes a stacking axis that differs from the helical long axis for the three central bases. The last modification is an artificial base pair made of 4-aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP). Instead of the desired three hydrogen bonds, two structures containing either a single or two hydrogen bonds are observed that can be explained by the linkage of 4 AP to 2 'deoxyribofuranose.

Inhaltsangabe

Die Strukturen in Lösung dreier unterschiedlich modifizierter DNA Doppelstränge wurden mittels NMR Spektroskopie gelöst. Sie alle besitzen polare Sonden im Zentrum der Helix, welche sensitiv für die nähere Umgebung sind. Ihr Schmelzverhalten wurde mit Hilfe einer neuen Methode charakterisiert, welche komplette Absorptionsspektren in Kombination mit Singularwertzerlegung (SVD) nutzt. Letztere erlaubt die Analyse der Spektren als Ganzes, die notwendig ist um der Blauverschiebung des Sondensignals zu folgen, welche durch die zuvor genannte Sensitivität zur Umgebung verursacht wird. Auf diese Weise kann der Schmelzprozess des Duplex lokal und global beschrieben werden.

Die erste Modifikation, 2-Hydroxy-7-Carboxyfluoren (HCF), wurde gegenüber einer abasischen Seite platziert, um sterische Spannungen zu vermeiden. Die NMR Spektroskopie deckte zwei gleichverteilte Konformationen auf, da die Rotation des HCF Chromophors nur durch die Stapelwechselwirkung innerhalb der Helix unterbunden wird. Der zweite Doppelstrang enthält ein über R-Glycerol gebundenes 6Hydroxychinolinium (6HQ) gegenüber Cytosin. Der Einbau von 6HQ als Mononukleotid einer Glykolnukleinsäure (GNA) ist ein strukturelles Alleinstellungsmerkmal. Bisher sind nur Kristallstrukturen von vollständiger GNA bekannt, daher ist die Struktur in Lösung dieses Doppelstranges von generellem Interesse. Die geringe Größe von R-Glycerol stört das Rückgrat des 6 HQ -Stranges, welche eine von der helikalen Achse abweichende Stapelachse für die drei zentralen Basen verursacht. Die letzte Modifikation ist ein künstliches Basenpaar bestehend aus 4-Aminophthalimid (4AP) und 2,4-Diaminopyrimidin (DAP). Anstatt der gewünschten drei Wasserstoffbrücken wurden zwei Strukturen, die entweder eine oder zwei Wasserstoffbrücken beinhalten, beobachtet, welche durch die Verbindung von 4AP zur 2'-Deoxyribofuranose erklärt werden können.

Contents

1 Introduction 1
1.1 The development of DNA structure determination 1
1.2 Fluorescent base analogues extend the nucleobase alphabet 5
1.3 Aim of this work 14
2 Conceptual background 19
2.1 Structural aspects of DNA 19
2.2 Nuclear Overhauser Effect spectroscopy 23
2.3 Isolated Spin Pair Approximation - From NOESY to distance 27
2.4 Residual Dipolar Couplings 29
2.5 Simulated Annealing calculations 35
2.6 Singular Value Decomposition 38
2.7 Development of the double SVD assisted two-state model 41
3 Experimental section 47
3.1 13merHCF 47
3.1.1 NMR sample preparation 47
3.1.2 RDC sample preparation 48
3.1.3 Duplex melting experiments 48
3.1.4 Titration against pH experiments 49
3.1.5 NMR experiments 49
3.1.6 Force field parametrization for HCF 50
3.1.7 Distance restraints 50

Contents

3.1.8 Residual Dipolar Coupling restraints 51
3.1.9 Structure calculation 54
3.2 13mer6HQ 57
3.2.1 NMR sample preparation 57
3.2.2 RDC sample preparation 57
3.2.3 Duplex melting experiments 57
3.2.4 NMR experiments 58
3.2.5 Residual Dipolar Coupling restraints 58
3.2.6 Structure calculation 59
3.3 13mer4AP-DAP 60
3.3.1 NMR sample preparation 60
3.3.2 Duplex melting experiments 60
3.3.3 Titration against pH experiments 61
3.3.4 NMR experiments 61
3.3.5 Structure calculation 61
4 Results and discussion 63
4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF 63
4.1.1 Chemical shift analysis 65
4.1.2 NMR solution structure 68
4.1.3 Duplex melting experiments 75
4.2 6-Hydroxy-quinolinium - 13mer6HQ 80
4.2.1 Chemical shift analysis 82
4.2.2 NMR solution structure 85
4.2.3 Duplex melting experiments 91
4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine - 13mer4AP-DAP 102
4.3.1 Chemical shift analysis 104
4.3.2 NMR solution structure 107
4.3.3 What if RDCs were included? 113
4.3.4 Duplex melting experiments 118
5 Summary 125
6 Zusammenfassung 131
Appendix 137
1 Chemical shift tables 138
1.1 13merHCF shift tables 138
$1.2 \quad 13 \mathrm{mer} 6 \mathrm{HQ}$ shift tables 141
$1.3 \quad 13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ shift tables 144
2 Input files for Molecular Dynamics calculations 146
2.1 Input file to generate extended strands 146
2.2 Input file to generate start-structure 149
2.3 Input file to finally calculate the NMR solution structure 153
2.4 Parameter file used by Xplor-NIH 159
2.5 Topology file used by Xplor-NIH 193
3 Script Code 221
3.1 Script to export distances from Cara to XPLOR-NIH 221
3.2 Mathematica script to visualize NOESY back-calculation 234
List of Abbreviations 271
List Of Figures 278
List Of Tables 279
Danksagung 281

1 Introduction

1.1 The development of DNA structure determination

The structure of nucleic acids (DNA, RNA) and proteins forms the basis for our understanding of biological processes like gene expression or protein bio-synthesis. In 1953 Watson and Crick were the first to propose the correct double helical structure of what is now known as B-form DNA ${ }^{[1]}$. They deduced their model from X-ray fiber diffraction, which was the method of choice at the time, but it only provided an overall configuration with idealized parameters.

Although true on average it could not explain sequence specific effects, until Wing et al. ${ }^{[2]}$ published in 1980 the first single-crystal structure analysis of a B-DNA dodecamer with a full helical turn. This was followed by a series of articles in which Dickerson and Drew ${ }^{[3-6]}$ described sequence-dependent features like molecular bending ${ }^{[4]}$ or the "spine of hydration" ${ }^{[5]}$, thus making it famous as the "Dickerson-Drew dodecamer".

During the next few years more and more crystal structures were solved, showing a wide variety of B-DNA helical parameters ${ }^{[7-9]}$ and also giving structural insights into Aand Z-DNA ${ }^{[10]}$. Different approaches were used to study A-DNA crystals. Shakked et al. (1981) ${ }^{[11]}$ and Conner et al. (1982) ${ }^{[12]}$ used short self-complementary octamers and tetramers, respectively, while Wang et al. (1982) ${ }^{[13]}$ used a DNA-RNA hybrid double helix to prove the assumed A-type structure.
The first single-crystal duplex of Z-DNA was also solved by Wang et al. in $1979{ }^{[14]}$, and together with the aforementioned A- and B-forms a detailed molecular picture was developed steadily ${ }^{[10,15-17]}$. However questions remained in which way crystal-packing

1 Introduction

factors and crystallization conditions affect the conformation of DNA. It was found that all octanucleotides crystallize in the A-form ${ }^{[18]}$, due to crystal-packing effects, while their counterparts in solution favor the B-conformer ${ }^{[18,19]}$. Single-crystals of longer duplexes tend to the A-form when having a very GC-rich sequence ${ }^{[18,20]}$, thus explaining the Bform helix of the Dickerson-Drew dodecamer d(CGCGAATTCGCG) in contrast to the A-form found in the dodecamer d(CCCCCGCGGGGG) of Verdaguer et al. (1991) ${ }^{[21]}$. In addition, Jain et al. ${ }^{[22]}$ and Shakked et al. ${ }^{[23]}$ showed (both in 1989) that the mean values of local helix parameters depend on crystallization conditions and therefore contribute to their "unexpectedly large range of variation" ${ }^{[19,24]}$. With this in mind, it becomes clear that structural information based on X-ray crystallography of single crystals can be contradictory or limited, since the native environment to study biological problems is a water containing solution.

Nuclear Magnetic Resonance Spectroscopy (NMR) is a well-established method to study molecules in solution, especially after the development of two-dimensional experiments in the late 1970s (Jeener et. al ${ }^{[25]}$, Freeman et al. ${ }^{[26-29]}$, Ernst et al. ${ }^{[30]}$) which extended the field of applications to biological macromolecules. At the beginning of the 1980s, Ernst et. al. and in particular Wüthrich et al. were the driving forces in protein structure determination ${ }^{[31-42]}$, which also forms the basis for the related research on DNA structures. First efforts were targeted towards sequential resonance assignment strategies and qualitative analyses of the structure ${ }^{[43-47]}$, but rapidly rising computational power made it possible to develop structure determination software ${ }^{[48,49]}$ that uses NMR-derived inter-proton distances as restraints.

In contrast to X-ray crystallography, where a gap of 20 years separates the first protein structure (Bluhm et al. $1958^{[50]}$) from its DNA counterpart ${ }^{[14]}$, the first solution structures of proteins (Williamson et al. ${ }^{[51]}$, Kaptein et al. ${ }^{[52]}$) and nucleic acids (Clore et al. ${ }^{[53]}$) were all published in 1985. The former gap originated from the requirements to obtain single crystals of short oligonucleotides and therefore demanded the development of synthesis strategies for oligonucleotides with a predefined primary sequence, which were lacking in 1958. However, subsequent development led to the solid-phase phosphoramidite
method ${ }^{[54-57]}$ that not only offered a payable way to produce large quantities, but it also allowed the modification and expansion of the genetic alphabet. This, in combination with automated oligonucleotide synthesis, made it feasible to investigate functionalized or completely new nucleotides at any position in the duplex. Consequently, artificial DNA duplex strands became the subject of NMR structure determination in the late 1980s ${ }^{[58-62]}$.

A large number of modified compounds has been introduced (or observed in naturally occurring DNA ${ }^{[63-65]}$) over the last decades depending on the scope of application. They can be divided into several classes; these include backbone variations (e.g. PNA ${ }^{[66,67]}$, LNA ${ }^{[68,69]}$, TNA ${ }^{[70]}$, GNA ${ }^{[71-74]}$ etc.) or molecules covalently linked to natural bases ${ }^{[75-80]}$. A famous example for using both strategies is the DNA sequencing method by Sanger et al. ${ }^{[81]}$ which utilizes di-deoxynucleotidetriphosphates (ddNTPs) to terminate the chainreaction of DNA polymerase at the 3 '-end and, in addition, fluorescent labeling of the nucleobases for detection in automated sequencing machines ${ }^{[82]}$. Other strategies focus on intercalation ${ }^{[83-88]}$, full replacement of a nucleobase ${ }^{[89-96]}$ or even of a complete base pair ${ }^{[97,98]}$ by nucleobase analogues ${ }^{[99]}$.

Most of these studies introduce chromophores as base analogues or tethered label, since their fluorescent properties can be used in a number of ways to study DNA and RNA. A common field of application is the detection of single nucleotide polymorphisms (SNP) via molecular beacons ${ }^{[100-103]}$, base-discriminating fluorescent nucleosides ${ }^{[104,105]}$, detection by electron transfer-controlled emission quenching (DETEQ) ${ }^{[106]}$ or forced intercalation TO-PNA probes (FIT) ${ }^{[107]}$. Real-time quantitative PCR (qPCR) ${ }^{[108,109]}$ is also a possible application for molecular beacons ${ }^{[110]}$ or FIT probes ${ }^{[111,112]}$ and can be used, for example, to quantify gene expression ${ }^{[113]}$. Other methods like the well-known fluorescence resonance energy transfer (FRET) ${ }^{[114-116]}$, pulsed electron-electron double resonance (PELDOR ${ }^{[117,118]}$, strongly emerging field in NMR) or fluorescent silver nanoclusters ${ }^{[119]}$ can serve as distance measurement tools, working on a larger scale than the classic NOESY experiment (<5 vs. $80 \AA$ with PELDOR or FRET). All examples mentioned before employed steady-state fluorescence. Time-resolved measurements on the femtosecond (fs) to nanosecond (ns) time scale were first performed by Zewail et al. ${ }^{[120,121]}$ in 2000. Using

1 Introduction

transient absorption, these authors investigated electron transfer and water solvation in duplex DNA.

The fluorophores that will be studied in this work all belong to the group of nucleobase replacing analogues. In contrast to tethered labels, these molecules are primarily designed to minimize disruption of the local structure and to maintain the biochemical or biological function, which may be affected negatively by other strategies, like tethering of a bulky group, addition of an intercalator, or a groove binding molecule. The underlying idea on one hand is to place a nucleobase at the "center of action", and on the other hand to achieve a rigid, well defined position and orientation in the duplex ${ }^{[94]}$. These conditions are crucial for the above stated distance measurements like FRET as well as for the timeresolved studies below. As we will see later, another condition is that the spectral position of the fluorescence band depends sensitively on polarity, so that the label can be used to investigate the microenvironment ${ }^{[96]}$.

The basic idea which caused the present structural study is to observe the hydration dynamics and vibrational modes of biomolecules. This aim can be achieved, in principle, by detecting the time-dependent Stokes shift (TDSS) of fluorescence from a suitable reporter molecule, or probe. When incorporated into duplex DNA, the chromophore serves as a "local" molecular spectrometer in the THz-region. This kind of measurement, but without a polarity probe that has been optimized for spatial and energetic fits, would be disturbed by the absorption of unbound water and would also lack space-resolved information (due to structural fluctuations). The THz experiment starts when the charge distribution of the chromophore is suddenly altered by femtosecond optical excitation. By this excitation the electric field around the probe is changed instantly and is now affecting nearby water molecules and neighboring nucleobases. Their response to the reaction field $R(t)$, induced by the chromophore, can be measured as dynamic fluorescence Stokes shift on a ps- to ns-timescale. In this way the chromophore is used not only as THz light source but also as detector. The local THz absorption spectrum is then obtained by a suitable Laplace transformation of the time-dependent Stokes shift ${ }^{[122,123]}$, a method similar to the Fourier transformation of the Free Induction Decay (FID) in NMR. The requirements
of molecular THz spectroscopy, as outlined above, restrict the repertory of suitable chromophores severely. Clearly the probe must be sensitive to the microenvironment or, in other words, should show sizable fluorescence shifts between different solvents. Also the fluorescence lifetime should be long enough to measure the dynamic Stokes shift up to several nanoseconds; therefore lifetime shortening interactions in the excited state like FRET, photo-induced electron transfer or intersystem crossing should be avoided. Moreover the probe has to be free of internal vibrational modes below $300 \mathrm{~cm}^{-1}$, otherwise they could mix with external modes of the environment that are the aim of the detection. But all of these photophysical properties will be useless when the probe molecule alters or perturbs the DNA helical structure. The following section will discuss the advantages and drawbacks of known base analogues. In doing so we will also see why there is still a strong need for further development of base analogues.

1.2 Fluorescent base analogues extend the nucleobase alphabet

One of the earliest and most studied ${ }^{[95,120,124-127]}$ fluorescent nucleobase substitutes is 2 -aminopurine (2AP). Ward et al. ${ }^{[128]}$ reported in 1969 that 2 -aminopurine riboside (together with 2,6-diaminopurine riboside and formycin), in contrast to adenine and other naturally occurring bases, is fluorescent under physiological conditions, and they explored its photophysical properties under different solvent polarities, pH values and temperatures. 2AP has a high fluorescence quantum yield as free base in solution (0.68), but when incorporated into nucleic acids a 100 -fold decrease is observed. Unfortunately it is necessary to place 2AP between two adenines to avoid efficient electron transfer involving adjacent guanines or cytosines ${ }^{[120,127]}$. Dallmann et al. ${ }^{[129]}$ demonstrated that the structural perturbations by 2 AP , replacing adenine and paired with thymine in the middle of the duplex are small. The two structures differ only in the position of the amino group that was moved from the major to the minor groove in 2AP (Fig. 1.1). However, the base pair dynamics was found to be four times faster, and also the lifetime of the next three base pairs were lowered in both directions, thus explaining the lower melting point of the

1 Introduction

duplex with 2 AP in the center.
The acridine derivative 9-amino-6-chloro-2-methoxyacridine (ACMA) was also investigated by Ernsting et al. ${ }^{[130]}$. It was incorporated opposite adenine and needed to be separated from guanine for the same reason as 2AP. The Stokes shift is small and reaches a constant value within 200 femtoseconds, which is considerably faster than in aqueous solutions, where the Stokes shift develops on the nanosecond time scale. Although this is good evidence that ACMA intercalated into DNA, a larger and longer evolving shift is favored.

A series of pteridine analogues (third row in Fig. 1.1) of adenine (6MAP, DMAP) ${ }^{\text {[131] }}$ and guanine (3-MI, 6-MI) ${ }^{[132,133]}$ were developed by Hawkins and co-workers. These compounds, which are commercially available, are characterized by intense fluorescence around 430 nm (fl. quantum yield between 0.39 and 0.88) and a relatively long lifetime of the excited state (3.8 to 6.5 ns). They are very sensitive to the microenvironment, lowering their fluorescence quantum yield in DNA strands (<0.01 to 0.3) depending on the neighboring bases ${ }^{[134]}$. But melting experiments indicate, except for 6 -MI, a sequencedependent destabilization ${ }^{[131]}$ which is, in case of $3-\mathrm{MI}$, similar to that of a single base pair mismatch ${ }^{[132]}$. Nevertheless, the well-documented quenching effects, the high fluorescence quantum yield and the already mentioned commercial availability made them useful in numerous applications ${ }^{[96]}$.

In contrast to 2AP and the pteridine analogues, Matteucci and co-workers ${ }^{[135]}$ developed a tricyclic cytosine analogue $\mathrm{tC}, 1,3$-diaza-2-oxophenothiazine (Fig. 1.1), that is nearly insensitive to the environment. Although this property prevents it from being used as polarity probe, the negligible influence of surrounding bases on its fluorescence quantum yield and lifetime ${ }^{[136]}$ makes tC particularly interesting in fluorescence anisotropy and FRET measurements ${ }^{[137]}$. It should be noted that tC , as evidenced by NMR structure determination, is the first artificial and highly fluorescent DNA base that does not perturb the DNA conformation ${ }^{[138]}$. Also the oxo-homologue of tC named tC^{O} is, on average, the brightest nucleobase analogue among other commercially available base substitutes, like 2AP and the pteridine analogues ${ }^{[139]}$. Moreover, tC^{O} (energy donor) was paired
(a)

(b)

$2 A P^{\sim}$

6MAP ${ }^{\sim}$

DMAP~

tCo~

Furano-dT

~ Coumarin

Nile ${ }^{\sim}$ Red $^{\sim}$

3-MI~

6-MI~

Pyrrolo-dC

~ BPP

mDA~

Pyrene~ ${ }^{\sim}(P)^{\sim}$

dBPy

"expanded" $x A^{\sim}$

"wide" y y~

"double-wide" ${ }^{\text {yyT }}$

Figure 1.1: Structure of a) natural nucleobases and b) fluorescent base analogues. $R=$ 2^{\prime}-deoxyribofuranose; $\mathrm{R}^{1}=$ alkyl-chain.

1 Introduction

with $\mathrm{tC}_{\text {nitro }}$, 7-nitro-1,3-diaza-2-oxophenothiazine (acceptor), to be the first nucleobase analogue FRET-pair and was then used to measure distances inside DNA of more than a full helix turn ${ }^{[140]}$. A recent work ${ }^{[141]}$ offers strategies for a series of functionalized tricyclic cytosines in order to overcome the drawback of their insensitivity to the local environment.

A fluorescent nucleobase named furano-dT was introduced by Woo et al. ${ }^{[142]}$ in 1996, but when incorporated into an oligonucleotide the final step of ammonia treatment in the solid-phase synthesis led to the C-analogue pyrrolocytosine (pyrrolo-dC, see Fig. 1.1). Fortunately, pyrrolo-dC pairs normally as a cytosine (selectively with guanine), does not disrupt the DNA helix, and is tolerated by DNA and RNA polymerases ${ }^{[143]}$. However the fluorescence quantum yield is reduced after incorporation into a single strand and decreases even more after hybridization with a complementary strand ${ }^{[143,144]}$. But pyrrolo-dC, since it is commercially available, has already served as a tool in several applications ${ }^{[145]}$ like characterization of the transcription bubble in T7 RNA polymerase ${ }^{[146]}$, detection of abnormal base pairing in DNA/RNA hybrid strands of the HIV-1 polypurine tract ${ }^{[144]}$ or probing the kinetics of parts of damaged DNA by a human alkyltransferase ${ }^{[147]}$. Interestingly, pyrrolo-dC and 2AP can be used in a fashion similar to that of a molecular beacon ${ }^{[148]}$. Actual development of pyrrolocytosine is concentrated on the enhancement of the fluorescence quantum yield ${ }^{[149,150]}$ by replacing the methyl group with an aromatic tether or the whole aromatic ring system ${ }^{[145]}$.

Coleman and Madaras ${ }^{[151]}$ introduced a coumarin 102 containing nucleoside opposite an abasic site (see Fig. 1.1). In the subsequent study, Brauns et al. ${ }^{[152]}$ were the first to show the dynamic Stokes shift of fluorescence of a specially designed base-pair analogue (inside of a DNA double helix) and concluded that the interior of DNA is "a unique dynamic environment unlike either a fluid or a molecular crystal." The coumarin nucleoside was then used (also in the group of Ernsting) to explore the environment and dynamical features of DNA oligonucleotides ${ }^{[153-157]}$ and "fraying" (5 ps timescale) at the end of the helix ${ }^{[155]}$. When placed into the center of an oligonucleotide, sequence-independent ${ }^{[158]}$ dynamics was observed that is distributed over a time range covering six orders of magnitude (40 fs to 40 ns) and follows a power law with small exponent (0.15). However the power
law dynamics, which lacks distinguishable subcomponents, indicates strong coupling of motions inside different parts of the DNA system ${ }^{[154]}$, thus limiting its use as polarity probe in our TDSS studies.
The next chromophore, Nile Red (Fig. 1.1), also contains four fused aromatic rings and was introduced as base analogue by Okamoto et al. ${ }^{[159]}$. The nucleoside maintained high solvatochromicity comparable to the free Nile Red. The fluorescence, when incorporated opposite adenine, guanine or a missing base, was greatly shifted to shorter wavelength by the addition of β-cyclodextrin, but only slightly opposite cytosine, thymine and an abasic site. The same separation was found in the melting temperatures, where the latter group showed higher T_{m} values. A stabilization induced by a more tightly binding of Nile Red to the duplex was given as explanation. In case of placing Nile Red opposite the first group, Okamoto suggested the usage as probe for the microenvironment of DNA that can monitor polarity changes, caused by interactions between DNA and DNA-binding molecules. However, their results indicate that the observed effect of conformational change depending on polarity is driven by structural perturbations in the duplex.

Okamoto et al. ${ }^{[105]}$ also developed a series of base-discriminating fluorescent nucleobases (e.g., BPP and ${ }^{M D} \mathrm{~A}$ in Fig. 1.1). They have been designed for SNP discrimination, so they rely on quenching of fluorescence when paired with a certain native nucleobase, which stands in contrast to our design of a non perturbing polarity probe with high fluorescence quantum yield.
In 1998 Kool et al. ${ }^{[97]}$ introduced pyrene (P, Fig. 1.1), a polycyclic aromatic hydrocarbon (PAH), that was incorporated into DNA by a Klenow fragment opposite an abasic site. The observed selectivity and efficiency were greater than those for the natural DNA triphosphates. Interestingly, the DNA synthesis stopped after incorporation of P , which makes it useful in detection of abasic mutations ${ }^{[160]}$. A point of more general interest is the observation that the replacement of a native base opposite an abasic site by pyrene, stabilized the duplex in a range of 18 to $23{ }^{\circ} \mathrm{C}^{[97]}$. This finding has been explained by restored $\pi-\pi$-stacking interactions in the strand with the abasic site, since P can cover a similar surface area as native base pairs. Use of hydrocarbons with less aromatic surface,

1 Introduction

for example, 2,2'-bipyridyl deoxynucleoside (dBPy, Fig. 1.1), led to a thermal stabilization of only $3.7-8.4{ }^{\circ} \mathrm{C}$ in comparison with nucleobases ${ }^{[161]}$. Although the larger porphyrin C-nucleoside (PP, Fig. 1.2) showed a stabilization of ca. $10{ }^{\circ} \mathrm{C}^{[162]}$, it is only half of the enhancement induced by pyrene nucleoside P. Increased thermal stability (ΔT_{m} from 1.0 up to $8.4{ }^{\circ} \mathrm{C}$) was also measured for bis-substituted and alkyl-linked phenanthrene (Phen), phenanthroline (PheN) and pyrene ($\mathrm{P}_{1,8}$, see Fig. 1.2), depending on linker length and, again, in comparison with adenine as counterbase to the abasic site ${ }^{[163,164]}$. Additionally, it was demonstrated that the substitution of a native base by a pyrene (P) with flexible, acyclic linkage in the middle of the sequence destabilized the DNA duplex more $\left(\Delta T_{m}=\right.$ $\left.-6.3^{\circ} \mathrm{C}\right)$ than insertion close to the 3 '- or 5 '-ends $\left(\Delta T_{m}=-2.7^{\circ} \mathrm{C}\right)^{[165]}$.

An alternative strategy to the replacement of the nucleobase is the development of acyclic sugar analogs that are linked to an intercalator. The flexibility gained by the acyclic sugar linker allows to place large intercalating fluorophores, like the ethidium derivative Etd (see Fig. 1.2), in the center of DNA duplexes opposite native bases. These double strands showed not only similar Tm values in melting experiments, but also similar fluorescence spectra with emission maxima in a range of 622 and 625 nm under excitation at $520 \mathrm{~nm}{ }^{[166]}$. A possible explanation for this unexpected insensitivity to the counterbase was given by suggesting an extrahelical position for them, due to the large space demand of Etd. Ethidium itself is known to prefer binding to duplexes of RNA, DNA and DNA-RNAhybrids rather than to triplex or G-quadruplex DNA ${ }^{[167]}$. Upon binding into DNA/RNA a more than 10-fold increase in fluorescence signal is observed, since the exchange of amine hydrogens with the solvent is reduced ${ }^{[168]}$. A combination of Etd and 7-deazaguanine (as charge acceptor ${ }^{[169]}$) allows fluorescence detection of single base mismatches and abasic sites when these two pseudonucleotides are incorporated between two base pairs ${ }^{[170]}$.

The aforementioned extrahelical position of the counterbase to the intercalating Etd is supported by further work, where a considerably larger perylene-diimide (PDI2, Fig. 1.2) was placed in the middle of the duplex opposite thymidine and then opposite an abasic site. Interestingly, the melting temperatures of both duplexes were identical ${ }^{[171]}$, thus indicating same stacking interactions for PDI2 even in the presence of the thymi-
1.2 Fluorescent base analogues extend the nucleobase alphabet

Etd

8-Vinyl-2'-deoxyguanosine

5-(Thiophen-2-yl)-6-aza-uridine

Porphyrin C-nucleoside (PP)

Perylene-diimide (PDI2)

2-Hydroxy-7-nitrofluorene (HNF)

Figure 1.2: Structure of large fluorescent base analogues. $\mathrm{R}=2^{\prime}$ '-deoxyribofuranose; R^{1} $=(\mathrm{S})$-aminopropanediol.

1 Introduction

dine counterbase. Other large chromophores, like 1-(Phenylethynyl) pyrene (PEPy) and 9,10-bis(phenylethynyl)anthracene (BPEA), were incorporated into DNA by using a 1,3 butanediol backbone ${ }^{[172]}$. Both were positioned opposite thymidine which led to a destabilization of the duplex (BPEA $\Delta T_{m}=-6.8{ }^{\circ} \mathrm{C}$, PEPy $\Delta T_{m}=-1.4{ }^{\circ} \mathrm{C}$). Compared to the initial pyrene, PEPy analogs have beneficial spectroscopic properties when used in molecular biology applications, since biomolecules will be excited at the same wavelength as pyrene ${ }^{[173]}$. A notable application of PEPy pairs was the detection of single polymorphisms in the gene fragment of 23 S rRNA Helicobacter pylori ${ }^{[174]}$.

The group of Hirao et al. ${ }^{[175]}$ introduced a fluorescent purine analogue, 7-(2,2'-bithien5 -yl)-imidazo[4,5-b]pyridine (Dss in Fig. 1.2) that can be incorporated site-specifically into DNA and RNA by polymerases. Moreover, it functions as a universal base that pairs with all four natural bases with nearly equal thermal stabilities. An important drawback for the usage as polarity probe is the long extension of the base analogue by tethering two thienyl-groups in a row that are somehow located in the major grove. As a consequence, the fluorescence of the Dss chromophore is only slightly changed upon duplex formation. Such observations are typical for a class of nucleoside analogues that are based on extension of purine and pyrimidine moieties. This strategy was frequently used by Srivatsan et al. ${ }^{[176-180]}$, but as already stated, tethering of bulky groups is not favored in the current thesis.

Recent activities by Wagenknecht et al. are centered around thiazole orange (TO) and thiazole red (TR, see Fig. 1.2) as "DNA traffic lights" ${ }^{[181-183] . ~ T h e ~ w a v e l e n g t h-s h i f t ~}$ of fluorescence upon duplex formation, due to aptamer target binding, is quantified as altered contrast ratio. Therefore, Wagenknecht and co-workers ${ }^{[181]}$ suggested aptasensors as potential application.

The group of Diederichsen et al. ${ }^{[184,185]}$ introduced 8-vinyl-2'-deoxyguanosine (1.2) as a DNA polymerase processable base analogue that is capable to detect different types of DNA quadruplex structures.

The group of Eric T. Kool ${ }^{[186,187]}$ continued their work on multichromophoric DNA systems. This approach, where the DNA backbone offers a scaffold for an array of chro-
mophores, has gained more and more interest during the last few years ${ }^{[188,189]}$. For this purpose, sets of size-expanded nucleobases were composed ${ }^{[190]}$. They are based on a series of earlier works by Kool et al. ${ }^{[94,191]}$ and referred to as "expanded DNA" (xDNA), "wide DNA" (yDNA) and "double-wide DNA" (yyDNA, see Fig. 1.1). These size-expanded analogs were designed to extend the genetic alphabet and are able to form base pairs different (orthogonal) from those found in native DNA ${ }^{[95]}$. When a single expanded base pair is substituted into natural DNA, they are destabilizing the natural helix, due to their large size. Therefore, a single expanded nucleobase is not suitable as probe for the desired TDSS experiment. However, when all base pairs are expanded, xDNA and yDNA form a highly stable, sequence-selective and widened double helix ${ }^{[94]}$.

A similar multichromophoric approach was used by Leumann et al. ${ }^{[192]}$ who incorporated multiple 2-pyrenyl-C-nucleosides (each P replaced an adenine/thymine base pair) which then formed a stable excimer. In earlier studies, pyrene has been stacked by using $\mathrm{P}_{1,8}{ }^{[163]}$ or tethering to deoxyuridine ${ }^{[193,194]}$, so that its position is defined upon duplex formation of the parent nucleobase. In an actual work, Häner et al. ${ }^{[195]}$ switched from $\mathrm{P}_{1,8}$ to a porphyrin nucleoside and were able to build double strands containing up to four free base porphyrins. They maintain duplex stability when placed pairwise in opposite positions, whereas a considerable destabilization is observed opposite to natural nucleobases. A model for H -aggregation of the porphyrins, which causes fluorescence quenching, is supported by UV/vis spectroscopy. Häner's group ${ }^{[196]}$ also studied the stacking of electron-rich pyrene (P) and electron-poor perylene-diimide (PDI) and found that electrostatic complementarity is important for aromatic π - π-stacking interactions. P and PDI can stabilize the DNA duplex when incorporated into opposite strands with equal ratio of the chromophores.

Yitzhak Tor and his group extended their work (see pyrrolo-dC) on tethering,fusing thiophene and furan based moieties onto 6 -aza-uridine ${ }^{[197,198]}$ (Fig. 1.2) in order to build isomorphic fluorescent nucleosides; such molecules (including other nucleobases) were intensively studied by his group over the last years ${ }^{[96]}$. A possible application for 6 -azauridine as chromophore in single molecule detection by two photon excitation has been

1 Introduction

suggested lately ${ }^{[199]}$. A contribution to the multichromophoric approach was also tested by demonstrating that three identical isomorphic fluorescent nucleosides in alternating or neighboring positions display enhanced, sequence-dependent signals for either duplex formation or dissociation ${ }^{[200]}$. Further extension of these molecules with substituted aryl rings increases the push-pull interactions yielding enhanced bathochromic shifts and solvatochromism ${ }^{[201]}$ (but the price is a large non-rigid tether).Also worth mentioning is the design of an emissive RNA alphabet with bases that were all derived from thieno[3,4d]pyrimidine ${ }^{[202]}$. These nucleobases exhibit visible emission, high quantum yield, and responsiveness to environmental perturbations.

At the end of this general overview about fluorescent nucleobase analogues we come to the direct predecessor of the chromophores that are studied in the current thesis. After coumarin, the group of Ernsting employed a 2-hydroxy-7-nitrofluorene (HNF, Fig. 1.2) opposite an abasic site ${ }^{[203]}$. In contrast to native DNA, the HNF chromophore is linked via an α-glycosidic-bond to the 2-deoxyribofuranose. NMR structure determination has revealed that the HNF moiety can intercalate into the duplex in two different orientations. In the "face-down" case the methylene group points towards the minor groove while in the "face-up" conformation towards the major groove. The magnitude of the time-resolved Stokes shift $\left(2660 \mathrm{~cm}^{-1}\right)$ is large in comparison to coumarin $\left(960 \mathrm{~cm}^{-1}\right)$, but the lifetime of the excited state is short, only 35 ps , due to intersystem crossing.

1.3 Aim of this work

Many fluorophores have been introduced into duplex DNA (or were attached) during the last few years, but most of them were designed for purposes (FRET, SNP etc.) that are not necessarily compatible with the envisioned TDSS experiments. The base analogues that Ernsting and coworkers have examined so far did not fulfill all desired requirements simultaneously. Short lifetimes of the excited state (ACMA, HNF), electron transfer with nearby bases like guanine (2AP, ACMA), or coupling with modes below $300 \mathrm{~cm}^{-1}$ (coumarin) all hampered the observation of the time-dependent Stokes shift. Continued development
of suitable chromophores, backed up by femtosecond spectroscopy and NMR structure determination, is clearly required. Here we employ NMR spectroscopy to determine the structure of three modified oligonucleotides. The principle design and position of the fluorescent nucleobase analogues, including necessary modifications to their backbone, are given in Fig. 1.3. All modifications were studied in the same basic sequence (Fig. 1.3) to ensure comparability between strands.

The first modified duplex incorporates 2-hydroxy-7-carboxyfluorene (HCF, Fig. 1.3) opposite an abasic site; this construct will be abbreviated 13 merHCF. It has been introduced as successor to the HNF chromophore, so structural similarities such as two chromophoric orientations are most likely ${ }^{[203]}$, but this also allows discussing the effect of changing a functional group in a known environment. Furthermore it is necessary to investigate the protonation state of the carboxyl group, since the logarithmic acid dissociation constant $\left(p K_{a}\right)$ of nucleobases is normally raised when incorporated into the duplex ${ }^{[19]}$.

The second DNA duplex strand introduces 6-hydroxyquinoline (6HQ, Fig. 1.3) as base surrogate. A cytosine was chosen as counterbase and potential partner for hydrogen bonding. The resulting duplex strand will be abbreviated 13 mer6HQ. The photophysical properties of the chromophore are well-known, since it was studied by Ernsting et al. as free N-methyl-6-quinoline ${ }^{[122]}$ and as covalently linked tether to trehalose ${ }^{[204]}$. In contrast to the other duplex strands, the 6 HQ base analogue has been incorporated as 2,3-dihydroxypropylnucleoside which is known as glycol nucleic acid (GNA ${ }^{[71-74]}$). The small size of this flexible acyclic linker will possibly affect the chromophore and the adjacent nucleotides, but it was the only synthesis method with sufficient product yield. Up to now, only crystal structures of duplex strands containing a full GNA backbone were published, so the solution structure of a DNA duplex with a GNA monomer in the center will be of general interest.

In the last duplex which is studied here, the central base pair is replaced by an artificial base pair analogue; this construct will be abbreviated 13 mer4AP-DAP. Here 4 aminophthalimide (4AP, Fig. 1.3) is paired with 2,4-diaminopyrimidine (DAP) in the opposite strand. Both nucleobase analogues were synthesized in cooperative work ${ }^{[205]}$ be-

1 Introduction

tween the groups of Ernsting (DAP) and Wagenknecht (4AP). The 4AP chromophore is known to be highly sensitive to the polarity of the medium and it has been stated that the fluorescence properties (e.g. intensity, lifetime) are further enhanced due to the involvement of hydrogen bonding interaction with the solvent molecules ${ }^{[206]}$. In fact, the observed lifetime of the excited state is lowered from $14-15 \mathrm{~ns}$ in protic media to roughly 1 ns in water. In order to allow hydrogen bonding inside of the duplex, a second artificial nucleobase analogue (DAP) was necessary, since there is no native nucleobase that can provide the correct hydrogen bonding pattern. A problem that has to be addressed is the hydrolysis of the 4AP chromophore in water, especially under basic conditions. A weak acidic buffer extended the lifetime of the 4 AP mononucleotide from hours to a few days, but in the duplex this could cause protonation of the DAP. Therefore, a whole series of questions about 13 mer4AP-DAP has to be answered by NMR and UV/vis spectroscopy. These questions are centered around the duplex structure, hydrogen bonding pattern, protonation of DAP and finally, the chemical lifetime of the sample.

Even though the main topic of this work is the structure determination of oligonucleotides with embedded polarity probes, we will see that equal attention must be given to temperature-dependent measurements of absorption. The corresponding method will therefore be described first. Normally UV absorption measurements, as function of temperature, are used to obtain a hybridization curve and to determine the melting point T_{m} of a DNA duplex. For a modified strand the melting point indicates a degree of duplex stability (or destabilization) when compared to the native or unmodified reference duplex. In this work the measurement which is usually performed at a single wavelength (260 nm) will be replaced by the detection of full spectra at different temperatures, covering the UV/vis range (200-700 nm). The spectra are then analyzed in their entirety by Singular Value Decomposition (SVD). As will be shown, this procedure can uncover significantly more information about the binding properties of the chromophore/duplex system compared to a single melting point determination. Melting will be seen (by focussing on the UV absorption band around 260 nm) as a global and a local, sequence-dependent process of the duplex. This behavior can then be compared to that of the probe (monitoring the

Figure 1.3: Structure of new fluorescent base and base pair analogues. Native DNA is marked black and all modifications including backbone are either red or blue colored. Red molecules are placed at position X and the green ones at Y , respectively.
corresponding absorption band in the visible) which reflects local changes only. In this way possible perturbations of the melting process, like bubble formation, can easily be explained or definitely excluded. Also concurrently evolving processes (e.g. peak shifts, change of active species) will be revealed that would otherwise affect the melting analysis. In combination with the solution NMR structure of the duplex, a deeper understanding is achieved of binding and solvation, structural fluctuations, and the melting process.

2 Conceptual background

The following sections will provide the background for the major topics of this work. At the beginning, the nomenclature and essential structural aspects of DNA (sec. 2.1) will be outlined to provide a common basis for discussion. The middle part will describe the methods to obtain structural restraints and how they are used to determine the structure of DNA (sec. 2.2-2.5). Finally, the last two sections are dedicated to the field of optical spectroscopy. They will introduce Singular Value Decomposition (sec. 2.6) as method to derive more information about the melting process of DNA (sec. 2.7).

2.1 Structural aspects of DNA

The nomenclature in Fig. 2.1 follows the recommendations of Markley et al. ${ }^{[207]}$ for the presentation of NMR structures. Natural DNA is composed of four nucleobases and a phosphodiester bridged backbone of 2'-deoxy- β-D-ribose, also referred to as "sugar". The bases can be subdivided into purine and pyrimidine derivatives. Adenine (A) and guanine (G) belong to the purines, whereas thymine (T) and cytosine (C) represent the pyrimidines. They are shown in Fig. 2.1, forming the two Watson-Crick base pairs A:T and G:C.

By attaching A, G, T, C to the C1' of the sugar the nucleosides adenosine, guanosine, cytidine and thymidine are formed. Consequently, all atoms of the deoxyribose will be marked with ", " to discern them from the nucleobase atoms. Five torsion angles ν_{0} to ν_{4} (Fig.2.1) specify the conformation of the sugar, but due to geometrical constraints in a five-membered ring, only two parameters are necessary to describe them. These are the pseudorotation P and the maximum torsion angle ϕ_{m} (pucker amplitude), so the angle ν_{j}

Minor groove

Major groove

Figure 2.1: Structure and nomenclature of the Watson-Crick base pairs A:T and G:C are shown in the left panel. The upper right corner illustrates 2'-deoxy- β-D-ribose and the lower right denominates the torsion angles.
is given by

$$
\begin{equation*}
\nu_{j}=\phi_{m} \cos \left[P+144^{\circ}(j-2)\right] \quad(j=0,1,2,3,4) . \tag{2.1}
\end{equation*}
$$

Please note that the concept of pseudorotation was originally introduced for cyclopentane ${ }^{[209]}$, but Altona and Sundaralingam ${ }^{[208]}$ extended the concept to the sugar ring of nucleosides and nucleotides, respectively. Although sugar conformations are not static, it is possible to define two regions where ribose and deoxyribose nucleotides are mainly found (black arrows in Fig. 2.2). One of these regions is centered around the C3'-endo conformation, also referred to as N-type (north), that dominates in A-DNA. As outlined in the introduction, the A-form is typically found in single crystals of short duplex strands, while in solution the B-form with C 2 '-endo conformation (or S-type, south) is predominant.

Figure 2.2: Pseudorotation phase angle P and related sugar conformations, picture taken from Altona and Sundaralingam ${ }^{[208]}$. Large black arrows indicate regions where mainly ribose and deoxyribose nucleotides are found.

The glycosidic bond angle χ characterizes, together with the backbone angles $\alpha-\zeta$, the helical structure of an oligonucleotide. Two ranges can be found for χ that are designated syn and anti. The more stable anti conformation is usually found in A- and B-form DNA. For the syn conformation, where the position of the nucleobase above the sugar causes steric interference, the assistance of some external force is required ${ }^{[19]}$. This can be either a high salt concentration to favor Z-DNA ${ }^{[17]}$ or the attachment of a bulky group to the 8 position of purines (6 in pyrimidines).
The variation of the backbone angles $\alpha-\zeta$ allows to distinguish three major helix structures (A, B and Z). The A and B forms are right-handed helices, while Z is lefthanded and occurs in alternating purine-pyrimidine sequences (mainly GC). Due to base

Table 2.1: Average structural parameters for different helical forms ${ }^{[19]}$

	A-DNA	B-DNA	Z-DNA
Helix handedness	Right	Right	Left
base pairs / reapeating unit	1	1	2
base pairs / helix turn	11.6	10	12
Helix twist (${ }^{\circ}$)	32.7	36	$-10^{\text {a }},-50^{\text {b }}$
Rise / base pair (\AA)	2.9	3.4	$-3.9^{\text {a }},-3.5^{\text {b }}$
Helix pitch (\AA)	32	34	45
P distance from helix axis (\AA)	9.5	9.4	$6.2^{\text {a }}, 7.7^{\text {b }}$
Displacement of base pair to helix axis (\AA)	-4.1	0.8	3.0
Glycosidic bond orientation	anti	anti	anti ${ }^{\text {c }}$, $\mathrm{syn}^{\text {d }}$
Major groove depth (\AA) width (Å)	$\begin{gathered} 13.5 \\ 2.7 \end{gathered}$	$\begin{gathered} 8.5 \\ 11.7 \end{gathered}$	Convex
Minor groove depth (\AA)	2.8	7.5	9
width (\AA)	11.0	5.7	4

${ }^{a} \mathrm{CpG}$ or ${ }^{\mathrm{b}} \mathrm{GpC}$ step. ${ }^{\mathrm{c}}$ Cytosine. ${ }^{\mathrm{d}}$ Guanine.
displacement from the helix axis with large inclination, the A-form is thick and compressed along the helix axis. In contrast to this, the nucleobases of B are in the center of the helix and inclined nearly perpendicular to it, thus leads to a smaller diameter and nearly equal depth of the grooves. The mean twist angle in B-DNA is 36°, though they vary in a wide range between 24 to 51°, giving roughly 10 base pairs per helix turn ${ }^{[19]}$. More helical properties that distinguish between A-, B- and Z-DNA are listed in Table 2.1, but note that averaged values are given for sequence-dependent parameters of a dynamic system.

2.2 Nuclear Overhauser Effect spectroscopy

2.2 Nuclear Overhauser Effect spectroscopy

NMR structure determination has become an important tool to study biomolecules in solution. The main reason for this success is the possibility to derive distance information from Nuclear Overhauser Effect spectroscopy (NOESY). The NOE was discovered by Overhauser in $1953{ }^{[210]}$ and originally described the interaction between the saturation of the electron spin resonance and the polarization of their nuclei. The same effect was then observed between different nuclei in decoupling experiments. Therein, a resonance line was selectively saturated prior to recording of the 1D spectrum. In such experiments, Anet and Bourn ${ }^{[211]}$ (1965) found that the signal intensity for nuclei in close proximity to the saturated nucleus was enhanced by 17 to 45% due to dipole-dipole cross-relaxation (see also Fig. 2.4). However, the application of this method to biological macromolecules suffered from the limited selectivity of preirradiation in crowded spectral regions and huge experimental effort ${ }^{[31]}$. The development of two-dimensional (2D) cross-relaxation spectroscopy in 1980 by Macura and Ernst ${ }^{[212]}$ finally allowed the measurement of a complete NOE-network between all the protons in a macromolecule in only one experiment.

In Fig. 2.3 a basic NOESY pulse-sequence is shown. Transverse magnetization is created by the first non-selective $90^{\circ}(\pi / 2)$ pulse and allowed to precess freely for an evolution time t_{1}. The latter is varied in the course of the experiment, thereby frequency-labeling the magnetization components. The second pulse transfers the magnetization back along the (negative) z-axis and longitudinal cross-relaxation takes place for the length of mixing time t_{m}. In contrast to t_{1}, the mixing time remains constant during the measurement, but can be adjusted at the beginning to fulfill the needs of the sample. The last pulse finally generates transverse magnetization whose precession can be detected as a function of t_{2}.

The formal treatment of a multi-spin system, comprising g spin groups in a twodimensional NOESY experiment, is presented in the following. Basic conditions are the presence of dipolar interactions to allow cross-relaxation and the absence of scalar spin-spin-interactions. Then cross-relaxation of longitudinal magnetization components $M_{i j}$

Figure 2.3: Basic NOESY pulse-sequence for two-dimensional cross-relaxation spectroscopy. Transverse magnetization created by the first $90^{\circ}(\pi / 2)$ pulse becomes frequency-labelled in the course of evolution period of length t_{1}. After the second pulse, longitudinal cross-relaxation takes place for the length of mixing time t_{m}. The last pulse finally generates transverse magnetization whose precession can be detected as a function of t_{2}.
can be described with the following system of equations ${ }^{[212]}$:

$$
\begin{equation*}
\dot{\mathbf{m}}=\mathbf{R} \times \mathbf{m} \tag{2.2}
\end{equation*}
$$

Here the vector \mathbf{m} comprises the deviations of $M_{z i}$ from thermal equilibrium for all g spin groups and the relaxation matrix \mathbf{R} contains the cross relaxation rates $R_{i j}$ as well as the external relaxation (leakage) rates R_{i}. A component m_{i} of \mathbf{m} is defined by:

$$
\begin{equation*}
m_{i}=M_{z i}-\frac{n_{i}}{N} M_{0} \quad \text { with } N=\sum_{i} n_{i} \text { and } i=1,2, \ldots, g \tag{2.3}
\end{equation*}
$$

where M_{0} is the total equilibrium magnetization of the N nuclei. At the beginning of the mixing period the initial z-magnetization components are encoded by the precession frequencies $\left(\omega_{i}\right)$ that are witnessed at t_{1} of the evolution period.

$$
\begin{equation*}
m_{i}(0)=M_{0} \frac{n_{i}}{N}\left[\cos \left(\omega_{i} t_{1}\right) \exp \left(-\frac{t_{1}}{T_{2 i}}\right)-1\right] \tag{2.4}
\end{equation*}
$$

The application of the second $\pi / 2$ pulse marks the beginning of the mixing period during which cross-relaxation proceeds. The recovery of the magnetization towards equilibrium

Figure 2.4: NOE effect in a two spin system. The left panel shows a system of two spins A and B , where the size of the boxes represent a simplified occupation ratio. Upon saturation of the B transitions (curly arrows) the ratio is changed to the scheme in the right panel, where solid lines mark the new ratio and dashed lines the old one. The arrows on the right now indicate the pathways for crossrelaxation and W the transition probability. The small indices denominate the type of transition (zero, single and double quantum). In small molecules with short correlation time W_{2} dominates and hence enhances the intensity of A. The longer correlation time in macromolecules prefers W_{0} for which a negative NOE effect is measured. The ratio between W_{0} and W_{2} decides whether enhancement, reduction or even no change of intensity is observed.
at time t_{m} can then be written as solution to eq. (2.2) ${ }^{[212]}$

$$
\begin{equation*}
\mathbf{m}\left(t_{m}\right)=\exp \left[-\mathbf{R} t_{m}\right] \mathbf{m}(0), \tag{2.5}
\end{equation*}
$$

where the matrix $\mathbf{m}\left(t_{m}\right)$ represents the magnetization components after the mixing time t_{m} and $\mathbf{m}(0)$ the intensities of the diagonal peaks (defined in eq. 2.4) at $t=0$ of the mixing period. The diagonal $\left(R_{i i}\right)$ and off-diagonal $\left(R_{i j}\right)$ relaxation matrix elements are given as ${ }^{[213]}$:

$$
\begin{align*}
& R_{i i}=q_{i j} \sum_{i, j}\left(J_{0, i j}\left(\omega_{i}-\omega_{j}\right)+3\left[J_{1, i j}\left(\omega_{i}\right)+J_{1, i j}\left(\omega_{j}\right)\right]+6 J_{2, i j}\left(\omega_{i}+\omega_{j}\right)+R_{1 i}\right) \tag{2.6}\\
& R_{i j}=q_{i j}\left[6 J_{2, i j}(\omega)-J_{0, i j}(\omega)\right] \tag{2.7}\\
& \text { with } q_{i j}=\frac{\hbar^{2} \gamma_{i}^{2} \gamma_{j}^{2} \mu_{0}^{2}}{160 \pi^{2}} .
\end{align*}
$$

2 Conceptual background

The term $R_{1 i}$ in eq. 2.6 represents the leakage rate, which can usually be neglected in the absence of paramagnetic nuclei. The factor $q_{i j}$ collects all constant values, these are \hbar as the reduced Planck constant, γ_{i} and γ_{j} as the gyromagnetic ratios for spins i and \mathbf{j}, respectively and μ_{0} as the magnetic constant or vacuum permeability. $J_{n, i j}(\omega)$ represents the spectral densities for the zero, single and double quantum transitions ($\mathrm{n}=0,1,2$). In Fig. 2.4 the pathways of these transitions are shown with a two-spin system as example and their spectral densities are defined as follows:

$$
\begin{equation*}
J_{n, i j}\left(\omega_{0}\right)=\frac{\tau_{c}^{i j}}{1+\left(n \omega_{0} \tau_{c}^{i j}\right)^{2}} \frac{1}{r_{i j}^{6}} . \tag{2.8}
\end{equation*}
$$

This equation correlates the mixing time t_{m} in eq. 2.5 with the rotational correlation time $\tau_{c}^{i j}$ of the vector between spin groups i and j . The corresponding internuclear distance is $r_{i j}$. One can now distinguish two cases in which similar spin groups are observed. In case of a small molecule with short $\tau_{c}^{i j}$ a relatively long mixing time has to be applied in order to allow full cross-relaxation of the longitudinal magnetization, but when compared to large biomolecules with long τ_{c} (e.g. DNA) then a short mixing time in the range of $100-$ 200 ms has to be chosen. In addition, an approximation has been introduced in eq. 2.8 in which ω_{i} and ω_{j} are replaced by the center frequency ω_{0}, since the differences in resonance frequency for various spins are negligibly small compared to the value of the resonance frequency itself. The factor n in the denominator again marks the type of transition and can range between 0 and 2 (see Fig. 2.4). With the help of some additional assumptions the intensities of NOE cross-peaks can then directly related to distances in a molecule. This approach is called "isolated spin pair approximation" and will be introduced in the next section.

2.3 Isolated Spin Pair Approximation - From NOESY to distance

The usually employed method to derive distances from NOESY spectra is the "isolated spin pair approximation" ${ }^{[214,215]}$ (ISPA), also known as "two-spin approximation" ${ }^{[216]}$.

Several assumptions have to be made at the beginning. First, a single correlation time $\left(\tau_{c}\right)$ for the whole molecule is introduced in order to replace the individual $\tau_{c}^{i j}$ in eq. 2.8.

$$
\begin{equation*}
J_{n, i j}\left(\omega_{0}\right)=\frac{\tau_{c}}{1+n^{2} \omega_{0}^{2} \tau_{c}^{2}} \frac{1}{r_{i j}^{6}} . \tag{2.9}
\end{equation*}
$$

This assumption is valid, since Reid et al. ${ }^{[216]}$ have shown that correlation times for base and sugar protons are comparable. Moreover, it can be assumed that oligonucleotides shorter than 15 base pairs are like isotropic rotors ${ }^{[217]}$. Sometimes one has to consider local mobility of residues or whole substructures. In such cases a modified spectral density function (eq. 2.10) has to be defined ${ }^{[218,219]}$, where τ_{e} is introduced as the effective correlation time of the local mobility site and S^{2} as the generalized order parameter. S^{2} is a measure for the flexibility of the site with values ranging from 0 (unrestricted motion) to 1 (fully restricted motion).

$$
\begin{equation*}
J_{n, i j}\left(\omega_{0}\right)=\left(\frac{S^{2} \tau_{c}}{1+n \omega_{0}^{2} \tau_{c}^{2}}+\frac{S^{2} \tau_{e}}{1+n \omega_{0}^{2} \tau_{e}^{2}}\right) \frac{1}{2 r_{i j}^{6}} . \tag{2.10}
\end{equation*}
$$

In proteins, order parameters range from 1 to as low as 0.6 for flexible side chains ${ }^{[220]}$, while S^{2} in DNA is on the order of 0.8 for all proton pairs ${ }^{[221,222]}$. In the ISPA approach the contribution of local mobility will be canceled when the desired distances are referenced to a series of fixed and known distances. The next step in the ISPA approach is the expansion of eq. 2.5 into a Taylor series ${ }^{[212]}$:

$$
\begin{equation*}
\exp \left[-\mathbf{R} t_{m}\right]=1-\mathbf{R} \tau_{m}+\frac{1}{2} \mathbf{R}^{2} \tau_{m}^{2}+\ldots \tag{2.11}
\end{equation*}
$$

whereby the cross-peak intensities $a_{i j}{ }^{[212]}$ are given by

$$
\begin{equation*}
a_{i j}\left(t_{m}\right)=\left(\delta_{i j}-R_{i j} t_{m}+\frac{1}{2} \sum_{k} R_{i k} R_{j k} t_{m}^{2}+\ldots\right) \frac{n_{j}}{N} M_{0} . \tag{2.12}
\end{equation*}
$$

The central assumption of the ISPA approach is that the Taylor series can be truncated after the linear term for short mixing times, thus cross-peak intensity $(i \neq j)$ becomes a linear function of $r_{i j}^{-6}$ in equation 2.13. For longer mixing periods, effects of spin diffusion may be taken into account, which is magnetization transfer through a third atom (represented by the quadratic term).

$$
\begin{equation*}
a_{i j}\left(t_{m}\right)=R_{i j} t_{m}=q_{i j} \tau_{c} \tau_{m}\left(\frac{6}{1+4 \omega_{0}^{2} \tau_{c}^{2}}-1\right) \frac{n_{j}}{N} M_{0} \frac{1}{r_{i j}^{6}} \tag{2.13}
\end{equation*}
$$

The intensity $a_{i j}$ can now be referenced to a known, fixed distance $r_{r e f}$ with a correspond$\operatorname{ing} a_{r e f}$, thereby eliminating all constant terms.

$$
\begin{equation*}
\frac{a_{r e f}}{a_{i j}}=\left(\frac{r_{i j}}{r_{r e f}}\right)^{6} \quad \text { or } \quad r_{i j}=r_{r e f} \sqrt[6]{\frac{a_{r e f}}{a_{i j}}} \tag{2.14}
\end{equation*}
$$

Commonly used reference distances in nucleic acids are the C H5-H6 ${ }^{[216]}$, T C7-(H7) ${ }_{3}$ to account for fast rotation in methyl groups or solvent exchange with amino and imino protons in C H42-H5.

2.4 Residual Dipolar Couplings

Over the last years Residual Dipolar Coupling (RDC) measurements have evolved into an important source of structure information beside NOE distances ${ }^{[223-225]}$. They offer complementary information about biological macromolecules that compensate a major drawback of NOE data. Due to the r^{-6}-dependence of the NOE effect, the latter is limited to distances up to $5 \AA$ (see sec. 2.2). Although it is possible to observe long-range crosspeaks for proteins, where two residues that are far distant in primary sequence can be folded in close proximity to each other, the rod-like shape of DNA provides cross-peaks between adjacent bases only. Consequently it was impossible to describe long range effects like bending of an A-tract in DNA prior to the development of RDC measurements ${ }^{[226]}$. RDCs, on the other hand, provide information about the orientation of the bond vector relative to the external magnetic field, which is (in case of rod-like shaped DNA) identical to the orientation of the helical long axis. Thus it is possible to compare orientations between residues along the whole strand.
The NMR spectroscopy in partially oriented media was discovered by Saupe and Englert ${ }^{[227]}$ in 1963, followed by a theoretical description a year later ${ }^{[228]}$. One limit for the application to large biomolecules was overcome with the introduction of high resolution NMR and corresponding methods. Tolman et al. ${ }^{[229]}$ were the first to present RDC measurements of cyanometmyoglobin, which has a very highly anisotropic paramagnetic susceptibility. Only two years later, in 1997, Bax and Tjandra ${ }^{[230]}$ were able to measure the diamagnetic protein ubiquitin, which was dissolved in a very dilute solution of bicelles that adopted an ordered, liquid crystalline phase. The induced order by an external component allowed the measurement of residual dipolar couplings, while the high resolution of NMR can be retained. In the following, Tjandra and Bax ${ }^{[231]}$ showed that the degree of solute alignment with the magnetic field can be tuned by variating the concentration of the bicelles. This marked a breakthrough in biological NMR, since dipolar coupling experiments were not limited anymore to samples with highly anisotropic paramagnetic susceptibility.

Figure 2.5: Acquisition of RDCs. (a) Showing the steric interaction between Pf1 phage and the DNA, preventing isotropically tumbling and inducing residual order. B_{0} indicates a static magnetic field. (b) RDCs can be determined by measuring the difference of dipolar coupling in a bond vector with and without alignment.

Over the next years more alignment media were developed. Some were also based on bicelles to align in a liquid crystalline phase ${ }^{[232-235]}$, others on filamentous phage ${ }^{[236]}$, stretched gels ${ }^{[237,238]}$, paramagnetic tagging ${ }^{[239]}$ or DNA nanotubes ${ }^{[240]}$. In this work the bacteriophage Pf1 (see Fig. 2.5 a) was utilized to align oligonucleotides, since it is stable over a wide range of temperatures, but more important is that the interaction between DNA and Pf1 is minimized due to electrostatic repulsion of their negatively charged backbones ${ }^{[241]}$.

RDCs are determined by measuring the difference of the dipolar coupling in the presence $\left({ }^{1} J_{i j}^{\text {ani }}\right)$ and absence of molecular alignment $\left({ }^{1} J_{i j}^{i s o}\right)$, as is shown in Fig. 2.5 b .

$$
\begin{equation*}
{ }^{1} J_{i j}^{a n i}={ }^{1} J_{i j}^{i s o}+D_{i j}, \tag{2.15}
\end{equation*}
$$

where i and jare non-equivalent spins connected via a chemical bond. The dipolar contribution $D_{i j}$ to the observed splitting between i and j derives from the secular part of the magnetic dipole-dipole interaction between the spins. In the high field limit we can write
the effective Hamiltonian ${ }^{[225]}$

$$
\begin{equation*}
H_{i j}^{D}(t)=-\frac{\gamma_{i} \gamma_{j} \mu_{0} h}{8 \pi^{3} r_{i j}^{3}(t)} I_{i z} I_{j z}\left\langle\frac{3 \cos ^{2} \alpha_{i j}(t)-1}{2}\right\rangle . \tag{2.16}
\end{equation*}
$$

Therein, $r_{i j}$ is the distance between the nuclei, γ_{i} and γ_{j} are the gyromagnetic ratios, h is the Planck constant, μ_{0} the permittivity of free space, $I_{i z}$ and $I_{j z}$ are angular momentum spin operators, and $\alpha_{i j}$ is the angle between the inter-nuclear vector of the two spins and the static magnetic field.
Note that the dipolar Hamiltonian $H_{i j}^{D}(t)$ depends on the orientation defined by the angle $\alpha_{i j}$. The measurement of dipolar couplings $D_{i j}$ represents a time and ensemble averaging of $H_{i j}^{D}(t)$ over all sampled orientations. This averaging is denoted by angular brackets in the following equation

$$
\begin{equation*}
D_{i j}=-\frac{\gamma_{i} \gamma_{j} \mu_{0} h}{8 \pi^{3}}\left\langle\frac{3 \cos ^{2} \alpha_{i j}(t)-1}{2 r_{i j}^{3}(t)}\right\rangle \tag{2.17}
\end{equation*}
$$

For isotropically tumbling molecules $D_{i j}$ would be zero, but a non-zero value is obtained when there is an anisotropic distribution of orientations relative to the static magnetic field. The averaging in eq. 2.17 contains information about orientation of the B_{0} field and the inter-nuclear vector in the molecular frame (xyz-coordinates). For macromolecules like DNA, it is desirable to describe the orientation of the inter-nuclear vector in relation to the molecular frame rather than the magnetic field, since the gathering of information to support structure determination is the motivation for the RDC experiment. The time averaged $\alpha_{i j}$ are therefore written as convolution of the macromolecule tumbling with respect to the magnetic field vector ($\xi_{x}, \xi_{y}, \xi_{z}$) and the inter-nuclear vector moving inside the macromolecular frame $\left(\zeta_{x}, \zeta_{y}, \zeta_{z}\right)$. The convolution is illustrated graphically in Fig. 2.6 and mathematically as follows ${ }^{[225]}$

$$
\cos \alpha_{i j}=\left(\begin{array}{l}
\cos \xi_{x} \tag{2.18}\\
\cos \xi_{y} \\
\cos \xi_{y}
\end{array}\right)\left(\begin{array}{l}
\cos \zeta_{x} \\
\cos \zeta_{y} \\
\cos \zeta_{y}
\end{array}\right)=\sum_{k=}^{x, y, z} \cos \xi_{k} \cos \zeta_{k} .
$$

Figure 2.6: Orientation of the B_{0} field and the inter-nuclear vector in the molecular frame. The angles ξ_{x}, ξ_{y} and ξ_{z} represent the orientation of the macromolecular frame (xyz-coordinates) relative to the magnetic field, while the orientation of internuclear vector is defined by the angles ζ_{x}, ζ_{y} and ζ_{z} relative to the frame. Picture taken from Blackledge et al. ${ }^{[225]}$

The inter-nuclear vector between i and j is assumed to be rigid within the macromolecular frame. As consequence, the averaging of $a_{i j}$ only acts on the orientation of the frame (ξ-angles) relative to the static magnetic field B_{0}. With this in mind, the preferential orientational averaging of the molecule can be defined as alignment tensor \mathbf{A} whose units are dimensionless

$$
\begin{equation*}
A_{k l}=\frac{3}{2}\left\langle\cos \xi_{k} \cos \xi_{l}\right\rangle-\frac{1}{2} \delta_{k l} . \tag{2.19}
\end{equation*}
$$

At this point, an effective inter-nuclear distance $r_{i j, \text { eff }}$ will be introduced to account for the averaging of $r_{i j}{ }^{[225]}$. With eq. 2.19 and $r_{i j, e f f}$ at hand eq. 2.17 can be rewritten as

$$
\begin{equation*}
D_{i j}=-\frac{\gamma_{i} \gamma_{j} \mu_{0} h S_{a x i a l}}{8 \pi^{3} r_{i j, e f f}^{3}} \sum_{k, l=}^{x, y, z} A_{k l} \cos \zeta_{k} \cos \zeta_{l} . \tag{2.20}
\end{equation*}
$$

The scaling factor $S_{\text {axial }}$ accounts for the local flexibility of the inter-nuclear vector. It is based on a model for axially symmetric motion that is called "diffusion in a cone" and depends on the amplitude of the motion but not on the position of the vector with respect to the alignment tensor ${ }^{[225]}$. In this model, the order parameter $S_{\text {axial }}$ is related to the

Figure 2.7: Dependence of RDC values on the orientation of the inter-nuclear vector $(\theta$, ϕ) in the eigenframe of the alignment tensor with eigenvalues $A_{x x}, A_{y y}$ and $A_{z z}$ (left panel). The orientational degeneracy of RDCs is shown on the right. The surface of the sphere is shaded as function of equal couplings. In other words, a solely measured RDC can cover a whole range of orientations indicated by a single color. At least 5 RDCs are necessary to calculate a distinct orientation of a vector inside the molecule. Picture taken from Blackledge et al. ${ }^{[225]}$
generalized order parameter S, which scales down the measured RDCs linearly ${ }^{[242]}$ and is again related to an effective correlation time ${ }^{[218]}$.

In practice, the alignment tensor A has all elements non-zero. It would be preferable to find a specific molecular frame, the so called principal axis system (PAS), in which all offdiagonal elements of \mathbf{A} are zero and only the diagonal terms $A_{x x}, A_{y y}$ and $A_{z z}$ remain. A three-dimensional Euler rotation of the current molecular frame with parameters α, β and $\gamma^{[225]}$ can be used to transform eq. 2.20 into the following equation, where the orientation of the inter-nuclear vector is defined by the polar angles θ and ϕ in the eigenframe of the alignment tensor:

$$
\begin{equation*}
D_{i j}=-\frac{\gamma_{i} \gamma_{j} \mu_{0} h S_{\text {axial }}}{16 \pi^{3}\left(r_{i j}^{\text {eff }}\right)^{3}}\left[A_{a}\left(3 \cos ^{2} \theta-1\right)+A_{r} \sin ^{2} \theta \cos 2 \phi\right] \tag{2.21}
\end{equation*}
$$

By convention is $\left|A_{x x}\right| \leq\left|A_{y y}\right| \leq\left|A_{z z}\right|^{[225]}$. The axial A_{a} and rhombic component A_{r} of the alignment tensor \mathbf{A} are defined in relation to the eigenvalues $A_{x x}, A_{y y}$ and $A_{z z}$

$$
\begin{equation*}
A_{a}=\frac{1}{2} A_{z z} \quad \text { and } \quad A_{r}=\frac{1}{3}\left(A_{x x}-A_{y y}\right) . \tag{2.22}
\end{equation*}
$$

2 Conceptual background

It is easy to see from eq. 2.21 and eq. 2.22 that five parameters determine the orientation of any structure or sub-structure of interest, these are the eigenvalues $A_{x x}, A_{y y}$ and $A_{z z}$ of the alignment tensor \mathbf{A} and the polar angles θ and ϕ. The necessary parameters can be determined directly via singular value decomposition ${ }^{[243]}$ after the measurement of at least five RDCs.

Unfortunately there are number of orientations for a single inter-nuclear vector that are compatible with a solely measured RDC. The right panel in Fig. 2.7 illustrates the strong angular degeneracy as shades on a spherical surface, where only extreme values give nearly unambiguous orientations. The more common intermediate values lead to a large number of potential solutions for the orientation, thus limiting the value of RDCs in structure determination. But the angular degeneracy can be lifted either by measuring more couplings in structures of known conformation, or by measuring RDCs in the presence of liquid crystals that orient the molecule differently ${ }^{[225,242]}$.

2.5 Simulated Annealing calculations

Simulated Annealing (SA) is an algorithm to overcome the problem hat the energy function in a Molecular Dynamics (MD) simulation converges to a local instead of the global minimum (see FIg. 2.8). The basic idea is to allow the molecule to leave a found local minimum by providing sufficient kinetic energy. The average kinetic energy for a given temperature can be calculated via Boltzmann statistics

$$
\begin{equation*}
<E_{k i n, i}>=<\frac{1}{2} m_{i} \nu_{i}^{2}>=\frac{3}{2} k_{b} T \tag{2.23}
\end{equation*}
$$

where k_{b} is the Boltzmann factor, m_{i} the atom mass and ν_{i} the atom velocity. The amount of kinetic energy $E_{k i n, i}$, that is necessary to overcome kinetic barriers and allows access to the global minimum, can be provided as high temperature at the beginning of the simulation. In order to achieve temperature coupling of the MD (to a target temperature T_{0}), a friction coefficient $b_{i}=\beta_{i}\left(T_{0} / T-1\right)$ is added ${ }^{[244]}$ to the Newtonian equation of motion:

$$
\begin{equation*}
F_{i}(t)=m_{i} \frac{\partial^{2} r_{i}}{\partial t^{2}}=-\frac{\partial V_{i}}{\partial r_{i}}+\beta_{i}\left(T_{0} / T-1\right) \nu_{i} \tag{2.24}
\end{equation*}
$$

The acceleration $\frac{\partial^{2} r_{i}}{\partial t^{2}}$ of each atom i at time t is related to the derivative of the potential energy V_{i} with respect to the atom position r_{i}. The force $F_{i}(t)$ at position r_{i} can act on the atoms for a given time-step (typically between $1-5 \mathrm{fs}$). A verlet algorithm determines then a new set of coordinates and velocities from the last and current values. This cycle is repeated until a convergence criterion (e.g. a minimum change in the gradient of the potential energy) is met. Initially, atom velocities are computed using a Gaussian or Maxwell distribution. The atom coordinates are derived from a starting structure. Since the initial coordinates and velocities determine all subsequent ones, it is important to start from a reasonable structure. In this work, where unknown structures of modified oligonucleotides are probed, a starting structure is obtained via MD hybridization of extended strands to a reasonable double strand.

The number of cartesian coordinates, that has to be calculated during each step of

Figure 2.8: Find global minimum with Simulated Annealing. The red dot marks a molecule at high temperature. It has sufficient kinetic energy to reach the next local minimum on the energy surface (red arrow). Constant cooling is applied, but as a long as the temperature is high enough, the molecule can "jump" to the next minimum (orange arrow). Finally in the cold state (at room temperature), the molecule is expected to be trapped in the global minimum.
the Molecular Dynamics simulation, is usually three times larger than the atom counted in the molecule. Especially in macromolecules like DNA or proteins, this number easily reaches the order of thousands. Nevertheless it is possible to simulate macromolecules via Molecular Dynamics by predefinition of atom types. For these predefined atoms many parameters such as bond lengths, bond angles, dihedral angles, partial charges etc. are assumed to be fixed and are comprised in the force field. In the present work the program Xplor-NIH ${ }^{[245]}$ was utilized which employs the CHARMM force field ${ }^{[246,247]}$. The total potential energy $V_{\text {tot }}$ consists of two components ${ }^{[244]}$

$$
\begin{equation*}
V_{t o t}=E_{e m p}+E_{e f f}, \tag{2.25}
\end{equation*}
$$

where the empirical ($E_{\text {emp }}$) and the effective energy term $\left(E_{\text {eff }}\right)$ are given as ${ }^{[244]}$

$$
\begin{align*}
& E_{\text {emp }}=E_{\text {bond }}+E_{\text {angle }}+E_{\text {dihe }}+E_{v d W}+E_{\text {Coulomb }}, \tag{2.26}\\
& E_{\text {eff }}=E_{\text {noe }}+E_{\text {rdc }}+E_{\text {plan }}+E_{\text {cdih }} . \tag{2.27}
\end{align*}
$$

$E_{\text {bond }}, E_{\text {angle }}, E_{\text {dihe }}$ and all energy terms of $E_{\text {eff }}$ are calculated as the product of a force constant and the deviation of the observed value from the equilibrium one, e.g.

$$
\begin{equation*}
E_{\text {bond }}=k_{\text {bond }}\left(r_{i j}^{o b s}-r_{i j}^{e q u}\right) \tag{2.28}
\end{equation*}
$$

The equilibrium values for $E_{n o e}$ and $E_{r d c}$ are taken from experiment while these of $E_{c d i h}$ and $E_{\text {plan }}$ are averages from the literature ${ }^{[244]}$. The corresponding scaling factor for each term are defined in the calculation input and thus can be used to increase the restraining power of selected energy terms. Equilibrium values and force constants of $E_{b o n d}, E_{\text {angle }}$, $E_{\text {dihe }}$ constitute one part of the force field. $E_{v d W}$ is given as

$$
\begin{equation*}
E_{v d W}=\sum_{i, j}\left(\frac{A_{i j}}{r_{i j}^{12}}-\frac{B_{i j}}{r_{i j}^{6}}\right) \tag{2.29}
\end{equation*}
$$

with $A_{i j}=2 \sqrt{\varepsilon_{i i} \varepsilon_{j j}}\left(\sigma_{i i}-\sigma_{j j}\right)$ and $A_{i j}=2 \sqrt{\varepsilon_{i i} \varepsilon_{j j}}\left(\sigma_{i i}-\sigma_{j j}\right)$. The terms for atomic permittivity $\left(\varepsilon_{i i / j j}\right)$ and van-der-Waals radii $\left(r_{i i / j j}\right)$ set up another part of the force field. The partial atomic charges $\left(q_{i}, q_{j}\right)$ in $E_{\text {Coulomb }}$ constitute the last part of the force field.

$$
\begin{equation*}
E_{\text {Coulomb }}=\sum_{i j} \frac{q_{i} q_{j}}{\varepsilon_{0} r_{i j}} \tag{2.30}
\end{equation*}
$$

Explicit treatment of water is not feasible due to restrictions on the calculation time, so the solvent screening effect is approximated by introducing a distance dependent permittivity of free space $\varepsilon_{0}\left(r_{i j}\right)$.
Finally, force field parameters for the native bases and their 2'-deoxyribose backbone are derived from crystal structures, infrared spectroscopy data (force constants) and empirical testing (where no experimental source is available) ${ }^{[246]}$. Every non-native modification to our basic DNA sequence has to be added manually to the existing force field. The necessary parameters for bond lengths, bond angles, dihedral angles and in particular partial atomic charges are calculated using ab-initio methods.

Figure 2.9: Data matrix M and Singular Value Decomposition (SVD) of DNA absorption spectra. The result is a product of three matrices named \mathbf{U}, \mathbf{S} and \mathbf{V}^{T}.

2.6 Singular Value Decomposition

The last two sections enter the field of optical spectroscopy, whereby the hybridization of DNA will be monitored. The underlying concepts are developed here in sections 2.6 and 2.7.

The Singular Value Decomposition (SVD), also referred to as Principal Component Analysis (PCA), decomposes a two-dimensional data matrix \mathbf{M} into the product of three matrices named \mathbf{U}, \mathbf{S} and \mathbf{V}^{T} (see Fig. 2.9). The SVD method serves here as a tool to analyse the absorption spectra of the modified oligonucleotides. Therefore, the absorption spectra will be written as columns to build up the data matrix \mathbf{M} with dimensions nwl x $n t m$. Here $n w l$ is the number of wavelengths which are stored on an array $W L$, and $n t m$ is the number of temperatures which are stored on an array $T M$.

After decomposition the columns in \mathbf{U} store a set of orthonormal "basic spectra" (depending on wavelength λ), while the rows of \mathbf{V}^{T} describe "basic thermodynamic curves" of populations or concentrations as a function of temperature. Since \mathbf{U} and \mathbf{V}^{T} only consist of orthonormal functions, a list of factors is needed to fully describe our data in M. The last matrix \mathbf{S} stores these factors on its diagonal axis, connecting the i-th column of \mathbf{U} with the i-th row of \mathbf{V}^{T}, and furthermore sorts them by importance or weight, so the first one is the most important. They represent the singular values, but not all of them are necessary to describe the data in \mathbf{M}. If not mentioned otherwise, the $n s$ singular values

Figure 2.10: A Reduced set of matrices can fully describe the data matrix M. For example, when only two singular values ($n s=2$) of \mathbf{S} are necessary to describe \mathbf{M}, one can build matrices with $n s$ columns in $\mathbf{U}_{c u t}$ and $n s$ rows in $\mathbf{V}_{c u t}^{T}$, respectively. In addition, the product of the new matrices should produce a dataset with better signal to noise ratio than \mathbf{M}.
higher than the 100th part of the first one are used to construct a cut set of matrices with $n s$ columns in $\mathbf{U}_{\text {cut }}$ and $n s$ rows in $\mathbf{V}_{\text {cut }}^{T}$, respectively(see Fig. 2.10). It is assumed that the omitted singular values only contribute to the noise in the spectra, so the product of the new matrices should have a better signal to noise ratio than the original dataset in \mathbf{M}.

At this point the number of independent spectra contained in the data is known. The chemical species which cause them must be $n s$ or larger, because such independent spectrum may, accidentally, be a linear combination of two species. The matrix $\mathbf{V}_{\text {cut }}^{T}$ is then separated into a product of linear factors \mathbf{F} and nonlinear parameters \mathbf{P} (see Fig. 2.11). This allows scaling on purpose, for example, if the last column of P is scaled to be 1 in in the first row and 0 for the second one, one would know, that (for highest temperature) only the first basic spectrum is necessary to describe the last spectrum in the data matrix \mathbf{M} (in figure 2.10). In addition, the resulting \mathbf{F} can be multiplied with $\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }}$ to give the product $\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }} . \mathbf{F}$. In consequence of the rescaled \mathbf{P}, the first spectrum of $\mathbf{U}_{c u t} \cdot \mathbf{S}_{c u t} \cdot \mathbf{F}$ is equal to the last (high temperature) spectrum in M. Also important, \mathbf{P} (in combination with $\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }} \cdot \mathbf{F}$) can be inspected to assign species and their thermodynamic behaviour when changing temperature. For example, linear line shapes can be stacking interactions or peak shifts and sigmoidal line shapes denote melting curves. The

2 Conceptual background

Figure 2.11: Separating $\mathbf{V}_{\text {cut }}^{T}$ into a product of linear factors \mathbf{F} and nonlinear parameters \mathbf{P}.This allows scaling on purpose, but more important, \mathbf{P} can be inspected to assign species and their thermodynamic behaviour when changing temperature. A possible way to present the dissection of \mathbf{M} via SVD is shown in the middle of the figure by the two pictures of $\mathbf{U}_{c u t} . \mathbf{S}_{c u t} . \mathbf{F}$ and \mathbf{P}, respectively. Please note, the product $\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }} . \mathbf{F} . \mathbf{P}$ still reproduces the data stored in M.
reader should note that $\mathbf{V}_{\text {cut }}^{T}$ can contain more than one melting curve, which may show different melting characteristics, and thus indicates a non-uniform melting process of the DNA double strand. The next step is to find the parameters which describe the thermodynamic functions found in \mathbf{P} and the expansion factors in \mathbf{F}. How to do this is topic of the following chapter 2.7, while the SVD, as mentioned in the beginning, has served as tool to access the thermodynamic behaviour like melting from a set of full absorption spectra.

2.7 Development of the double SVD assisted two-state model

The thermodynamics of duplex formation is usually examined by melting curves, which are measured at a single wavelength over different temperatures. However, such melting curves are directly affected by the errors of the measurement at the given wavelength ${ }^{[248]}$. To overcome this, one could think of repeated experiments or analysis of additional wavelengths nearby. In this work a more advanced approach is used to obtain precise results, especially when the complexity of the chromophore absorption change increases.
The basic idea is to measure full absorption spectra at different temperatures. The fact that such method needs considerable more time to record the desired spectra has two side effects. One is the larger step size between temperatures to limit the acquisition time of the whole experiment, the other is the avoidance of hysteresis or temperature gradients in the sample, since the temperature remains constant during the record of each spectrum.

Our recorded spectra are then combined into the two-dimensional data matrix M (see Fig. 2.9). By Singular Value Decomposition (SVD, see 2.6), the data matrix \mathbf{M} is decomposed into a product of three matrices U.S. \mathbf{V}^{T} containing "basic spectra", "singular values" and "thermodynamic curves". Usually, only the first 2-4 values (columns in \mathbf{U}, rows in \mathbf{V})are necessary to describe the data, so a new product $\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }} . \mathbf{V}_{\text {cut }}^{T}$ is made which results in a smoothed (noise reduced) M. The desired melting curves of the full absorption spectra are stored in $\mathbf{V}_{\text {cut }}^{T}$. From here onwards, each row can be analyzed like curves obtained by single wavelength measurement.

In figure 2.12 a melting curve of 13mer4AP-DAP is shown (red line, obtained via SVD, see 4.3.4). A common way to check helix stability is the estimation of the melting point. It is, by definition, the temperature where one half of the strands is in duplex state and the other half in single strand state. Applied on the melting curve which is scaled to the amplitude change over temperature, one would note from the figure at half height $61^{\circ} \mathrm{C}$, but it is easy to see that such reading depends on the measured temperature range, due to the slope of the linear parts of the melting curve ${ }^{[248]}$. Another common method ${ }^{[111,138,139,249]}$, plotted as blue line in figure 2.12, uses the first derivative of the melting curve, thus the

Figure 2.12: Melting Point Estimation from a double strand DNA melting curve is a common way to check DNA stability. The melting curve (red), its first derivative (blue) and the fitted two-state model (green) without assumed linear stacking interactions are shown and compared against each other. The estimated melting points are indicated by grey vertical lines, depending on the method and slope of the linear parts, three different melting points will be estimated.
melting point is indicated by its maximum at $58.9^{\circ} \mathrm{C}$, but this method is also affected by the linear parts of the melting curve and therefore is not reliable.
The most widely used method is a two-state model ${ }^{[250,251]}$ with linear stacking interactions ${ }^{[19,252,253]}$. It assumes that the temperature (T) dependence of the extinction coefficients is linear $\left(\epsilon_{[s s]}=m_{[s s]} T+b_{[s s]}\right)$ and, in addition, different for the single- (ss) and double-stranded (ds) forms. The two-state part defines the equilibrium constant K for hybridization of nonself-complementary DNA depending on c_{T} and α (molar fraction of single stranded form to the total ss strand concentration):

$$
\begin{equation*}
K=\frac{[d s]}{\left[s s_{1}\right]\left[s s_{2}\right]}=\frac{2(1-\alpha)}{\alpha^{2} c_{T}} . \tag{2.31}
\end{equation*}
$$

After substituting K into $\Delta G^{\circ}=-R T \ln (K)=\Delta H^{\circ}-T \Delta S^{\circ}$ and rearranging, we obtain
an equation for α depending on ΔH° and ΔS°.

$$
\begin{equation*}
\alpha=\frac{-1+\sqrt{2 c_{T} \exp \left[-\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}\right]+1}}{c_{T} \exp \left[-\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}\right]} \tag{2.32}
\end{equation*}
$$

Equation (2.32) is then combined with the linear temperature dependence of the extinction coefficients, leading to an equation for the measured amplitude change $A(\alpha, T)$:

$$
\begin{equation*}
A(\alpha, T)=\alpha\left(m_{[s s]} T+b_{[s s]}\right)+(1-\alpha)\left(m_{[d s]} T+b_{[d s]}\right) \tag{2.33}
\end{equation*}
$$

After least-squares fitting with equation 2.33 , the resulting $\alpha(T)$, which only describes the two-state model, can be plotted as green line in figure 2.12. Its melting point can be estimated to $58.9{ }^{\circ} \mathrm{C}$. Unfortunately, this is the third melting point for only one measured melting curve, but the last one is not affected by the slopes of the assumed stacking interactions. Furthermore, if the slopes for the single strand state and the duplex state are either similar or small, then the melting points of the red and blue curves would converge towards that one of the two-state model (green line), which is so far the most reliable.

However, a two-state model, wherein only fully separated strands and the duplex exist, is an oversimplification which cannot cover all types of DNA/RNA double strands. Statistical models like the zipper model ${ }^{[19,254]}$ or the extended type with bulge formation introduced by Ernsting ${ }^{[203]}$ account for a more complex way of hybridization, but this means to assume a specific model for a given double strand, which may end in a different model for every modified oligonucleotide analyzed in this work. Also the number of parameters increases with the complexity of the model and consequently the number of possible solutions in the least-squares fit of a simple melting curve, which explains the relatively rare application of statistical models ${ }^{[19]}$. The last method, which should be mentioned here, is the widely used nearest-neighbor method by SantaLucia ${ }^{[255,256]}$. It focuses on the interactions between neighboring base pairs, but is based on experimental data of natural nucleobases and therefore not suitable for oligonucleotides with noncanonical modifications to the strands.

2 Conceptual background

The new approach will use the basic idea of the two-state model in combination with the analysis of the spectral change via SVD. Remember, that full absorption spectra were measured covering the DNA band as well as the absorption of the built-in chromophore. The before mentioned two-state model (with linear stacking interactions) assumes temperature dependent extinction coefficients for the single strands and the duplex state at a given wavelength. The expansion to a full spectrum can then take additional effects into account like peak shifting, local melting or the rise of a new species. The way to do this is splitting the SVD into the analysis of duplex state at temperatures below the melting point and the analysis of the single strands at higher temperatures. Knowing the change of absorption with temperature for both, an extrapolation can be done from either side into the middle, i.e. in the direction where strand separation occurs. For example, the absorption spectrum of the double strand can be simulated for $70^{\circ} \mathrm{C}$ where, in reality, the separation into single strands is almost complete. At any given temperature, the observed spectrum should be a linear combination of the two extrapolated spectra, i.e. of the separate strands $S_{[s s]}(T)$ and of the duplex $S_{[d s]}(T)$. The mathematical description of this linear combination is shown in equation 2.34, where α is the fraction of extrapolated single strand spectra $S_{[s s]}(T)$, which is used to build the measured spectra $M(\alpha, T)$. In other words, the linear equation terms of (2.33) are substituted with the extrapolated spectra $S_{[. . .]}(T)$.

$$
\begin{equation*}
M(\alpha, T)=\alpha S_{[s s]}(T)+(1-\alpha) S_{[d s]}(T) . \tag{2.34}
\end{equation*}
$$

From the corresponding fit the degree of dissociation α is obtained. As result we obtain a dissociation curve (shown in Fig. 2.13) following in any case the characteristics of a twostate model, since it was constructed from a set of two spectra (measured or extrapolated) at a given temperature. The advantage of this approach is, as long as there are spectral changes dominated by either the duplex state or the single strands (which would allow a separate analysis via SVD), one can reduce the analysis of any complex melting process to correspond to the easy pattern of the two-state model. Additionally, the SVD parts can be investigated for the type of spectral change (e.g. amplitude change, peak shift). In

Figure 2.13: SVD assisted two-state model shown as schematic diagram. SVD analysis is performed on regions dominated by either separated strands or duplex state and then extrapolated to the missing temperature region. By fitting the degree of dissociation $\alpha(T)$ to the linear combination of the extrapolated spectra, a melting curve is obtained on which the two-state model can be applied.
the end, one can gain more knowledge about a modified double strand than from a single wavelength melting curve. A detailed demonstration of the method was performed on the 6-Hydroxy-quinolinium chromophore (13mer6HQ) in chapter 4.2.3.

3 Experimental section

All methods and preparations will be outlined in detail for 13 merHCF. In order to avoid redundancy, the corresponding sections of 13 mer6HQ and 13 mer4AP-DAP will only comprise experimental details that differ from 13merHCF.

3.1 13merHCF

3.1.1 NMR sample preparation

2-Hydroxy-7-carboxyfluorene was synthesized by Matthias Pfaffe in the same way as HNF ${ }^{[203]}$. The 2'-deoxyriboside of HCF was prepared by reaction of 2-hydroxyfluorene-7carboxylic acid methyl ester with 1^{\prime} - α-Chloro- $3^{\prime}, 5^{\prime}$ '-di-O-toluoyl-2'-deoxy-D-ribose in the presence of activated molecular sieve. The corresponding phosphoramidite was reached in three steps by standard methods. The predominantly formed α-glycoside was then purified by column chromatography. Fixed-phase synthesis of the labeled strand was performed at BioTeZ (Berlin) with a small modification, since the coupling of HCF-2'-deoxyriboside required a fourfold increase over the normal reaction time. The reader should note that instead of the originally intended methyl ester, the free acid was incorporated into the strand, due to the preparation conditions in the last step of the fixed-phase synthesis. The HCF labeled strand and the abasic counterstrand, also from BioTeZ, were delivered already purified by reverse-phase high-pressure liquid chromatography (HPLC). After hybridization they were subjected to size exclusion chromatography (in Sephadex PD-10 column) and lyophilization with $3 \% \mathrm{NH}_{3}$-solution to remove residual, low molecular weight impurities (mainly NEt_{3}-buffer from HPLC). Equivalent amounts of complementary single

3 Experimental section

strands were hybridized by rapid heating to $90^{\circ} \mathrm{C}$ and subsequent gradual cooling to room temperature at a rate of $0.5{ }^{\circ} \mathrm{C}$ per minute. The NMR samples were prepared in $\left(\mathrm{D}_{2} \mathrm{O}\right.$ matched) Shigemi tubes at 5 mM duplex concentration in $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{D}_{2} \mathrm{O} 99.98 \%\right)$ and $\mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O} / 90: 10\right)$ buffer solutions at pH 7 , containing $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{NPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 150 mM NaCl .

3.1.2 RDC sample preparation

The samples for the residual dipolar coupling (RDC) experiment were prepared in $\mathrm{D}_{2} \mathrm{O}$ buffer as described before. The addition of $20 \mathrm{mg} / \mathrm{ml} \mathrm{Pf1} \mathrm{(obtained} \mathrm{from} \mathrm{Asla} \mathrm{Biotech}$ Ltd., Riga) requires exchange of the Pf1 buffer, since it is obtained in a non-deuterated solution. The exchange is achieved by ultracentrifuging $100 \mathrm{\mu l}$ of Pf1 two times with $600 \mu \mathrm{l}$ deuterated phosphate buffer at 60000 rpm for 2 hours (at $4{ }^{\circ} \mathrm{C}$). Afterwards the Pf1 sediment is joined with the DNA sample. The high viscosity of Pf1 complicates sample handling and thus the suspension has to be stirred until a viscose, clear, gel-like sample is obtained. After transfer into the Shigemi tube, bubbles have to be removed by slow centrifugation of the NMR tube (up to 500 rpm). The degree of orientation can be checked by measuring the quadrupole splitting of deuterium ${ }^{[257]}$, which is expected to show a symmetric doublet with splitting in the range of 5 to 15 Hz . In case of degradation or noncomplete suspension of Pf1, this peak doublet can be asymmetric, extremely broadened or even non-observable.

3.1.3 Duplex melting experiments

The UV/vis absorption experiments were performed on a Varian Cary 300 spectrometer in double beam mode. As stated in the introduction, full spectra (between 210 and 400 $\mathrm{nm})$ were measured with 1 nm step size, 0.6 s average time, 2 nm bandwidth and source changeover at 400 nm . Between each rising temperature step of $5{ }^{\circ} \mathrm{C}$, a time delay of 10 minutes was included to heat and equilibrate the sample with the heating block. A sample of double-stranded 13 merHCF was prepared in a water/phosphate buffer at pH 7 with 10 $\mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}$ and 150 mM sodium chloride. Measurements were performed in a closed
non-degassed cuvette with 2 mm optical path length. A total concentration $c_{T}=45 \mu \mathrm{M}$ of single strands was estimated from maximum absorption around 260 nm at $90^{\circ} \mathrm{C} .14$ absorption spectra between 25 and $90^{\circ} \mathrm{C}$ were recorded and corrected for density change.

3.1.4 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before. A sample containing 150 mM sodium chloride and $20 \mu \mathrm{M}\left(c_{T}\right)$ of double-stranded 13 merHCF was prepared at $\mathrm{pH}=1.15$ (through addition of 1 M HCl). A set of 29 spectra were measured up to $\mathrm{pH}=12.07$ by adding increasing concentrations of $\mathrm{NaOH}(0.01-1 \mathrm{M})$ into a cuvette with 10 mm optical path length.

3.1.5 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with inverse probehead. Dallmann and the author determined in an earlier work ${ }^{[129]}$ that 298 K is the most suitable temperature for monitoring the imino proton signal intensity of duplex strands, and this temperature was therefore chosen as standard for all types of NMR experiments. For the 13 merHCF duplex, dissolved in the aforementioned $\mathrm{D}_{2} \mathrm{O}$ buffer, a DQF-COSY- (Double Quantum Filtered Correlated Spectroscopy), a TOCSY- (Total Correlation Spectroscopy) and a NOESY-spectrum were measured. For DQF-COSY and TOCSY, 2048×512 points ($\mathrm{F} 2 \times \mathrm{F} 1$ dimension) were acquired with 16 and 56 transients, respectively. The more important NOESY-spectrum employs 4096×2048 points with 16 transients and 100 ms mixing time. The NOESY in $\mathrm{H}_{2} \mathrm{O}$ was recorded using the same parameters in a WATERGATE pulse-sequence to suppress the HOD signal. The RDC experiment requires two HMQC-spectra (Heteronuclear Multiple Quantum Coherence) in $\mathrm{D}_{2} \mathrm{O}$ before Pf 1 is added, one ${ }^{1} \mathrm{H}$ decoupled spectrum for assignment and a coupled spectrum as basis to calculate the coupling. After addition of Pf1, the sample became highly viscous and the standard shim procedure failed to produce reasonable linewidths. As a workaround, 1D spectra were measured after each shimming step in order to iteratively optimize the lineshape of the HOD signal. The alternative worked well, but is much more

3 Experimental section

time-consuming than the standard method. The two ${ }^{1} \mathrm{H}$ coupled HMQC- spectra with and without Pf1 were acquired with 8192×512 points and 192 transients. The high number of points in the F2 dimension is necessary to obtain RDC -values with a precision below 1 Hz. All spectra were processed with the Bruker TopSpin software.

3.1.6 Force field parametrization for HCF

Density functional theory (DFT) calculations of the HCF moiety were performed in Gaussian03 using the b3lyp method and triple zeta valence plus polarization (TZVP) as basis set. Partial charges were derived with the of ChelpG-algorithm by Breneman et al. ${ }^{[258]}$. Although the sugar moiety was simulated as well, only the partial charges for the HCF residue were integrated into the force field. A comparison between the neutral HCF (with COOH) and the negatively charged (with COO^{-}) confirmed that the effect on the partial charges of the sugar is negligible, so the same parameter set as for the sugar of the native nucleobases could be used.

3.1.7 Distance restraints

The assigned NOE cross-peaks were converted to distance restraints by referencing their integrals to the integrals of known distances employing the Isolated Spin Pair Approximation (ISPA). The NOE cross-peaks were integrated with the program Cara ${ }^{[259]}$ using the sum-over-rectangle method. As reference distances Methyl-H6 T (3.09 \AA) for all NOE cross-peaks involving methyl protons, H42-H5 C (2.4 \AA) for all NOE cross-peaks involving exchangeable protons and H5-H6 C $(2.48 \AA)$ for the remaining NOE cross-peaks were used (bond lengths adapted from the force field parameters). For the purpose of exporting the integral values obtained by Cara ${ }^{[259]}$ to an Xplor-NIH ${ }^{[245]}$ restraints file, a LUA script is used that was written by Dallmann ${ }^{[260]}$ (see section 3.1). This script classifies the integrated peaks according to the overlap with other peaks and scales their volume integrals accordingly. Additionally, uncertainties for the NOE restraints are automatically calculated from the standard deviation of the reference peaks' volume integrals. The estimated uncertainty is then increased according to the classification of each peak. Furthermore,
this classification is printed into a separate file, which can be used to assess whether or not peak overlap might prevent a reliable estimation of the peak volume.

3.1.8 Residual Dipolar Coupling restraints

The RDC values of 13 merHCF are listed in table 3.1. As outlined in section 2.4 , the difference in the coupling constant of C-H bond vectors in the presence and absence of Pf1 phage was measured. The orientation of the corresponding inter-nuclear vector was defined in eq. 2.21 in section 2.4. All occurring constants can be joined in the factor D_{a}, which can be written as

$$
\begin{equation*}
D_{a}=-\frac{\gamma_{i} \gamma_{j} \mu_{0} h S_{f l e x}}{16 \pi^{3}\left(r_{i j}^{e f f}\right)^{3}} \tag{3.1}
\end{equation*}
$$

Only one value of D_{a} may be used throughout the calculation. RDC values of different vectors like C-C bonds need to be scaled to C-H values. Scaling is achieved by introducing a prefactor to the D_{a}-term, which is simply defined as the ratio of the two D_{a} involved. An example for C-C RDCs is given in the next equation

$$
\begin{equation*}
D_{a}^{p r e}(C C)=\frac{D_{a}(C H)}{D_{a}(C C)}=\frac{\gamma_{H}}{\gamma_{C}}\left(\frac{r_{C C}}{r_{C H}}\right)^{3}=\frac{42.576}{10.705}\left(\frac{1.496}{1.090}\right)^{3} \approx 10.28 \tag{3.2}
\end{equation*}
$$

where $\frac{\gamma_{H}}{\gamma_{C}}$ is the change in gyromagnetic ratio between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$, while $r_{C C}$ and $r_{C H}$ are the lengths of the corresponding inter-nuclear vector. Although only C-H RDCs were measured in this work, it was necessary to implement the experimentally determined C-H RDCs of the T methyl groups as C-C RDCs. Due to the fast rotation of the methyl group, only a single averaged value can be measured for the three $\mathrm{C}-\mathrm{H}$ bond vectors, but it can be scaled as follows to a single C-C bond vector

$$
\begin{equation*}
P_{2}(\cos \beta)=\frac{3}{2} \cos ^{2} \beta-\frac{1}{2} \tag{3.3}
\end{equation*}
$$

where β is the $\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7[1-3]$ angle. It has been revealed by Ottiger and Bax ${ }^{[261]}$ that the usually assumed ideal tetrahedral angle of 109.5° for methyl groups has to be replaced with experimentally determined 110.9°. With eq. 3.2 and eq. 3.3 the scaling of methyl

C-H to methyl C-C can be written as

$$
\begin{equation*}
\frac{D_{C H _M e}}{D_{C C _M e}}=P_{2}(\cos \beta) D_{a}^{p r e}(C C) \tag{3.4}
\end{equation*}
$$

A value of -3.17 was determined by measuring the correlation of experimentally determined C-H and C-C methyl RDCs ${ }^{[261]}$. For the ideal tetrahedral angle one would obtain a factor of -3.42. In order to implement the methyl C-H RDCs into the structure calculations, they have to be converted into the corresponding C5-C7 RDCs. This is done in a second input file, where all experimentally determined methyl C-H RDC values were converted by hand to the corresponding C-C values with the factor $1 /-3.17=-0.3155$. In that case, the prefactor $D_{a}^{p r e}(\mathrm{CC})$ can be used to scale the C-C RDC input file to the C-H RDC input. However, the direct scaling of the the RDC values is not equivalent to scaling via D_{a}-factor, since the energy for the RDC potential term is given by ${ }^{[244]}$

$$
\begin{equation*}
E_{R D C}=k_{R D C}\left(D_{\text {calc }}-D_{\text {obs }}\right)^{2} \tag{3.5}
\end{equation*}
$$

where $\mathrm{k}_{R D C}$ is the scale factor for the RDC energy term, which has to be modified for different sets of RDCs with a weighting factor $\omega_{i j}$. When using the prefactor $D_{M e}^{p r e}$ for implementation of methyl RDCs, the energy of the C-C methyl RDCs has to be scaled by

$$
\begin{equation*}
\omega_{C C}=\frac{1}{(-3.17)^{2}} \omega_{C H} \approx 0.0995 \omega_{C H}=0.1 \omega_{C H} \tag{3.6}
\end{equation*}
$$

The dependence of the energy on the square of the difference between calculated ($D_{\text {calc }}$) and observed ($D_{o b s}$) would otherwise allow methyl RDCs to have a stronger restraining effect than the C-H RDCs.

Table 3.1: Experimentally determined RDCs used in the structure determination of 13 merHCF. The RDCs were measured with a precision of $\pm 0.6 \mathrm{~Hz}$.

Res	Vector	$\mathbf{J}_{(C H)}(\mathbf{H z})$	$\mathbf{J}_{(C H)}$ (aligned) (Hz)	RDC (Hz)
A6	C2-H2	202.8	214.8	12.0
A8	C2-H2	200.4	209.4	9.0
A16	C2-H2	202.2	211.8	9.6
A24	C2-H2	201.0	213.6	12.6
C2	C5-H5	166.8	171.6	4.8
C12	C5-H5	169.2	174.6	5.4
C14	C5-H5	168.0	173.4	5.4
T11	C5-C7	127.2	121.2	-2.0
T19	C5-C7	127.2	121.2	-2.0
T21	C5-C7	126.6	121.2	-1.8
HCF	C1'-H1"	171.0	171.6	0.6
C14	C1'-H1'	168.0	166.2	-1.8
C17	C1'-H1'	161.4	118.8	-42.6
G25	C1'-H1'	159.0	171.6	12.6
C2	C6-H6	175.2	183.6	8.4
T3	C6-H6	174.6	182.4	7.8
C9	C6-H6	174.0	182.4	8.4
T11	C6-H6	176.4	183.6	7.2
C12	C6-H6	174.0	179.4	5.4
C14	C6-H6	171.6	167.4	-4.2
C17	C6-H6	174.0	182.4	8.4
T19	C6-H6	175.2	183.6	8.4
T21	C6-H6	175.8	183.6	7.8
G1	C8-H8	214.8	223.8	9.0
A8	C8-H8	214.8	223.2	8.4
G13	C8-H8	214.2	222.6	8.4
G15	C8-H8	214.2	223.8	9.6
A16	C8-H8	214.8	223.2	8.4
A24	C8-H8	214.2	225.0	10.8
G25	C8-H8	214.2	229.2	15.0
HCF	C1-H1	151.8	156.6	4.8
HCF	C3-H3	151.2	153.0	1.8
HCF	C4-H4	150.0	155.4	5.4
HCF	C5-H5	152.4	152.4	0.0
HCF	C6-H6	150.6	156.6	6.0
HCF	C8-H8	152.4	157.8	5.4
HCF	C9-H91	129.0	135.0	6.0
ABA	C3'-H3'	151.2	147.0	-4.2

3.1.9 Structure calculation

Calculation input All structure calculations were performed with Xplor-NIH v2.20 [245]. A total of 334 (330) NOE distance restraints and 38 Residual Dipolar Couplings were used in calculations for the face-up (-down) orientation. The experimental data were supplemented with 124 backbone dihedral restraints, 72 hydrogen bond distance restraints and 27 planarity restraints (see Tab. 3.2).

The initial molecular dynamics calculations of extended strands were performed with dihedral restraints allowing both A-form and B-form conformations (with error bars of $\pm 50^{\circ}$). B-form conformation was experimentally confirmed by ${ }^{3} \mathrm{~J}$ coupling constants for H1'-H2' derived from DQF-COSY and NOESY-cross-peak intensities characteristic for BDNA. Consequently, regular dihedral values from the literature ${ }^{[213]}$ were included in the calculations.

Table 3.2: Overview of structural statistics for 13 merHCF in face-up and face-down orientation.

	face-up	face-down
RDC restraints	38	38
NOE restraints		
- total	375	362
- interresidue	110	102
- intraresidue	265	260
Dihedral angle restraints	124	124
H-bond restraints	72	72
Base pair planarity restr.	27	27
NOE viol. $(>0.5 \AA)$	0	0
RDC viol. $(>0.4 \mathrm{~Hz})$	0	0
Dihedral viol. $\left(>5^{\circ}\right)$	0	0
RMSD to ave. struct. in \AA	0.41	0.45

The structures were calculated in two steps. First, a reasonable starting structure with well defined local conformation was computed. To ensure that no bias is introduced towards local energy minima, the calculation started from an elongated and equilibrated structure. The resulting structure, which is mainly defined by NOE restraint data, was used as input for Simulated Annealing calculations including RDC data. The need for
locally well defined starting structures in order to calculate reasonable structures which satisfy NOE as well as RDC data is documented in the literature ${ }^{[262,263]}$.

Simulated Annealing protocol The complete MD protocols used for structure determination are given in the Appendix, section 2. The same protocols were used for both (orientational) forms of 13 merHCF . The input scripts are based on the example files of the Xplor-NIH package (refine_full.py and sa.inp) but were substantially modified.

The first protocol is used to generate a reasonable starting structure. It starts with two extended strands which are then hybridized to form a duplex strand. This protocol only uses the NOE restraints as experimental input and starts with an initial minimization (50 steps) followed by 48 ps of high-temperature cartesian coordinate dynamics at 3000 K , subsequent gradual cooling to 25 K in 120 steps of 0.05 ps length and a final minimization (3000 steps).

The second MD protocol, which utilizes in addition the experimental RDC restraints and the starting structure, consisted of an initial cartesian coordinate minimization (1000 steps) followed by 50 ps of high-temperature torsion angle dynamics at 20000 K , subsequent gradual cooling to 25 K in 154 steps of 0.5 ps length (34 steps to cool down to 3000 K , followed by 120 steps to reach the end temperature) and a final cartesian coordinate minimization (3000 steps). The alignment tensor values were allowed to float during the calculations, as implemented in Xplor-NIH (v2.20) ${ }^{[245]}$.

For each run an ensemble of 100 structures was computed. The 10 minimum energy structures without violation of restraints were chosen to compute an averaged structure which was energy-minimized to yield the final structure. The root-mean-square deviation (RMSD) of the 10 minimum energy structures to the average structure is a measure for the precision of the calculation.

Structure validation Several methods were used to check the accuracy of the average structures. Back-calculation of NOESY-spectra along the Full Matrix Relaxation Approach ${ }^{[213,264,265]}$ were performed with Xplor-NIH (v2.20) ${ }^{[245]}$. The back-calculated spectra were then visualized with the help of a Mathematica script to allow comparison with
experimental spectra. The script was written by the author on the basis of his diploma thesis ${ }^{[266]}$ (see sec. 3.2). It uses the same input files like Gifa ${ }^{[267]}$, a program that was used prior to the Mathematica script. However, the latter offers more user comfort and has the advantage of running on actual hard- and software. RDCs were predicted from the average structure using the program Pales ${ }^{[268]}$ and were also compared to the experimental data.

3.2 13mer6HQ

3.2.1 NMR sample preparation

The DNA-oligonucleotide, that incorporates 6-hydroxyquinoline (6HQ) linked to R-Glycerol, was assembled in 24 mmol scale synthesis on an ÄKTA Oligopilot at Noxxon Pharma GmbH, Berlin. The necessary phosphoramidite was synthesized by Felix Hövelmann in four steps, using 6-hydroxyquinoline and S-glycidol as precursors. It should be noted that the latter will lead to the R-glycerol phosphoramidite. The counterstrand with cytosine as complementary base to 6 HQ was ordered from BioTeZ, Berlin. Purification and hybridization were carried out the same way as for13merHCF (sec. 3.1.1). Interestingly, the final product already contained the deprotonated quinolinium, which is optically indicated by the yellow color of the solution. The deprotonation was caused by the $3 \% \mathrm{NH}_{3}$-solution that was used in the lyophilization step (see sec. 3.1.1). The double strand was then diluted in pH 7 buffer solution $\left(10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}\right.$ and 150 mM NaCl$)$, but the quinolinium retained its deprotonated state. However, the reason for this contradiction is a very slow reaction rate, so that roundabout four weeks had passed until the reaction was complete. The concentration of the sample was 3 mM .

3.2.2 RDC sample preparation

Several months separate the first NMR experiment from the RDC measurement, so the sample was colorless, due to protonation of the quinolinium. In order to regain the deprotonated state, the sample was treated again with $3 \% \mathrm{NH}_{3}$-solution between desalting and lyophilization. All other preparation steps were performed as stated in sec. 3.1.2.

3.2.3 Duplex melting experiments

A single- and double-stranded sample of 13 mer 6 HQ was prepared in a water/ammonia mixture with $p H=8.5$ and 150 mM NaCl . Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_{T}=131 \mu \mathrm{M}$ of single strands was estimated for the double strand from
maximum absorption around 260 nm at $90^{\circ} \mathrm{C}$, and the single strand was concentrated to give a comparable absorption signal. A set of 17 (15) spectra between 10 and 90 (80) ${ }^{\circ} \mathrm{C}$ were recorded for the double strand (single) and corrected for density change. The configuration of the Varian Cary 300 spectrometer was the same as in sec. 3.1.3.

3.2.4 NMR experiments

13mer6HQ utilized the same experiments as 13 merHCF in sec. 3.1.5. Only experimental parameters like the number of transients were adjusted to the needs of the sample.

3.2.5 Residual Dipolar Coupling restraints

Table 3.3: Measured RDCs of $13 \mathrm{mer} 6 \mathrm{HQ}(\pm 0.6 \mathrm{~Hz})$. For more details see sec. 3.1.8.

Res	Vector	$\mathbf{J}_{(C H)}(\mathbf{H z})$	$\mathbf{J}_{(C H)}$ (aligned) (Hz)	RDC (Hz)
A8	C2-H2	201.6	245.4	43.8
A16	C2-H2	201.6	238.2	36.6
A24	C2-H2	204.6	241.8	37.2
C2	C5-H5	165.6	223.2	57.6
C14	C5-H5	167.4	184.2	16.8
T3	C7-H7	126.6	108.6	-6.0
T11	C7-H7	126.6	108.6	-6.0
T19	C7-H7	127.2	109.8	-5.8
T21	C7-H7,	126.6	108.6	-6.0
G1	C1'-H1,	165.0	184.2	19.2
C2	C1'-H1,	166.8	176.4	9.6
G4	C1'-H1,	157.8	180.6	22.8
G10	C1'-H1,	165.0	184.2	19.2
T11	C1'-H1,	163.2	194.4	31.2
C12	C1'-H1,	164.4	183.6	19.2
G13	C1'-H1,	160.2	174.6	14.4
C14	C1'-H1,	165.0	177.0	12.0
C17	C1'-H1,	162.6	175.2	12.6
T19	C1'-H1,	163.2	194.4	31.2
C20	C1'-H1,	164.4	179.4	15.0
G22	C1'-H1,	161.4	190.8	29.4
A24	C1'-H1,	166.8	182.4	15.6
G25	C1'-H1,	161.4	190.8	29.4
A24	C8-H8	214.8	255.0	40.2
6HQ	C2-H2	180.0	194.4	14.4

3.2.6 Structure calculation

The structure calculation and validation was performed analogue to 13 merHCF in sec. 3.1.9, therefore only the calculation input is given.

Calculation input Hydrogen bonding restraints for the central AT base pairs were omitted, due to a lack of evidence in the $\mathrm{H}_{2} \mathrm{O}$-NOESY spectrum. Consequently, 60 restraints remain for the other 10 base pairs (13merHCF 72). Moreover, the lower concentration of $13 \mathrm{mer} 6 \mathrm{HQ}(3 \mathrm{mM}$) in comparison to 13 merHCF (5 mM) reduces the number of determinable RDCs (256 HQ vs. 38 HCF).

Table 3.4: Overview of structural statistics for 13mer6HQ.

	13mer6HQ
RDC restraints	25
NOE restraints	
- total	418
- interresidue	148
- intraresidue	270
Dihedral angle restraints	124
H-bond restraints	60
Base pair planarity restr.	23
NOE viol. $(>0.5 \AA)$	0
RDC viol. $(>0.4 \mathrm{~Hz})$	0
Dihedral viol. $\left(>5^{\circ}\right)$	0
RMSD to ave. struct. in \AA	0.36

3.3 13mer4AP-DAP

Some significant changes were made for 13 mer4AP-DAP. First of all a weak acidic buffer (pH 6.35) was used to avoid hydrolysis under basic conditions of the 4AP. Furthermore, only a small amount of sample was available, so that all experiments were carried out with the same sample and the optical experiments were measured before NMR.

3.3.1 NMR sample preparation

Subsequently to the optical experiments, the whole sample was desalted via size exclusion chromatography (in Sephadex PD-10 column) and lyophilization, again without $3 \% \mathrm{NH}_{3}$ solution. The NMR samples were prepared in ($\mathrm{D}_{2} \mathrm{O}$ matched) Shigemi tubes at 1.2 mM duplex concentration in $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{D}_{2} \mathrm{O} 99.98 \%\right)$ and afterwards in $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O} / 90: 10\right)$ buffer solutions at pH 6.35, containing $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 150 mM NaCl .

3.3.2 Duplex melting experiments

Michael Weinberger (Wagenknecht group) was responsible for the synthesis of 4AP and Falko Berndt (Ernsting group) correspondingly for DAP. Both synthetic routes ${ }^{[205]}$ utilized stereoselective Heck-type palladium-catalysed cross-coupling with 2'-deoxyribofuranoside glycal followed by stereoselective reduction with $\mathrm{NaBH}(\mathrm{OAc})_{3}$. Both nucleosides were further processed to the corresponding phosphoramidites and subsequently incorporated via automated DNA synthesis. The 4AP single strand, provided by the Wagenknecht group, and the DAP counterstrand, obtained from BioTeZ, were delivered already purified by reverse-phase high-pressure liquid chromatography (HPLC). After hybridization they were subjected to size exclusion chromatography (in Sephadex PD-10 column) and lyophilization, but this time without $3 \% \mathrm{NH}_{3}$-solution. Equivalent amounts of complementary single strands were hybridized by rapid heating to $90^{\circ} \mathrm{C}$ and subsequent gradual cooling to room temperature at a rate of $0.5^{\circ} \mathrm{C}$ per minute. The whole sample of double-stranded 13 mer4AP-DAP was then prepared in a water/phosphate buffer ($10 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, p H$ $=6.35)$ with 150 mM sodium chloride. Measurements were performed in a double cuvette
(closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_{T}=20.5 \mu \mathrm{M}$ of single strands was estimated from maximum absorption around 260 nm at $85^{\circ} \mathrm{C}$. A set of 14 spectra between 20 and $85^{\circ} \mathrm{C}$ were recorded and corrected for density change. The configuration of the Varian Cary 300 spectrometer was the same as in sec. 3.1.3.

3.3.3 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before. A solution of 1.717 mg 2,4-diaminopyrimidine in 10 g pure water (Millipore) was prepared. A set of 15 samples were measured between pH 3 and 11 by adding $0,3 \mathrm{~g}$ of aforementioned sample to 2.7 mg of the corresponding pH buffer solutions.

3.3.4 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with inverse probehead. In order to raise the signal-to-noise ratio, the NOESY experiments were performed with lower FID size of 4096×1024, but huge number of scans in a range of 160 to 240 . HMQC experiments were omitted, due to the low concentration of the sample.

3.3.5 Structure calculation

The structure calculation and validation was performed analogue to 13 merHCF in sec. 3.1.9. The RDC part in the Simulated Annealing algorithm was not included, due to missing RDC values. This is simply done by adding a comment tag to the line where the RDC term is added to the target function. For later discussion a second set of calculations with RDCs from 13 merHCF were performed and compared to the original without RDCs.

Calculation input The data in following table were the basis for both calculation types, so that the only difference is the additional application of RDCs in the second set. The

3 Experimental section

RDC data for the second set was taken from 13 merHCF (Tab. 3.1), therein the RDCs of the HCF chromophore were omitted to avoid interference with 4AP.

Table 3.5: Overview of structural statistics for 13mer4AP-DAP in 1 H -bond and 2 H -bond orientation.

	1H-bond	2H-bond
NOE restraints		
- total	357	420
- interresidue	134	137
- intraresidue	223	283
Dihedral angle restraints	124	124
H-bond restraints	72	72
Base pair planarity restr.	27	27
NOE viol. $(>0.5 \AA)$	0	0
RDC viol. $(>0.4 \mathrm{~Hz})$	0	0
Dihedral viol. $\left(>5^{\circ}\right)$	0	0
RMSD to ave. struct. in \AA	0.52	0.85

4 Results and discussion

4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF

The HCF chromophore is the direct successor of HNF ${ }^{[203]}$ and only differs in the carboxyl group (HNF: NO_{2}) at position 7 of fluorene (see Fig. 4.1). So both molecules have many common properties. First of all, both were linked via an α-glycosidic-bond to 2deoxyribofuranose, the only form that yielded sufficient amount and purity. They also share incorporation into the center of the strand opposite an abasic site, thus making HCF also a base pair surrogate. The resulting duplex strand is named 13 merHCF . As stated in the introduction (see 1.3), the HNF chromophore suffers from a short lifetime of the excited state (35 ps), due to intersystem crossing, and for this reason the HCF derivative was designed.

The introduction of the carboxyl group makes it necessary to investigate the protonation state of HCF. For this purpose, a sample of double-stranded 13merHCF was measured at different pH values (see sec. 3.1.4). The change in absorption of the HCF band around 320 nm (see Fig. 4.9) was fitted to a pH dependent two-state model. A pK_{a} value of 3.9 ± 0.1 has been determined which is similar to other organic compounds like benzoic acid. Therefore, 2-hydroxy-7-carboxyfluorene is present in the deprotonated form (shown in Fig. 4.1) when buffered at $\mathrm{pH}=7$. This finding is also supported by Manoharan and Dogra ${ }^{[269]}$ who measured absorption spectra at different pH values and found that 2 -carboxyfluorene is deprotonated at $\mathrm{pH}=8$ and exists in neutral form at $\mathrm{pH}=2$.

A symmetric and non-palindromic sequence was chosen to minimize mispairing, loop formation and fraying effects ${ }^{[155]}$. A length of 13 base pairs allows to use the central base

Figure 4.1: Structure of 13 merHCF. Native DNA is marked black and all modifications including backbone are colored either red or green. The HCF moiety is placed inside the duplex at position X and the abasic site (in green) at Y, respectively.
pair as modification site, which also ensures that perturbations of the structure can be directly assigned to the incorporated chromophore. Furthermore, it should be noted that in contrast to native DNA, both strands incorporate a H1" hydrogen in the center, due to the α-glycosidic linkage of HCF and the omitted base in the complementary strand. This will interrupt the stepwise assignment of DNA, because under the assumption that B-DNA is the dominant form in solution, one can "walk" in alternating steps between intra- and interresidual cross-peaks from the 5 '-end down to the 3 'end and vice versa. The method is known as "NOE-walk" and will be described in more detail in the next section.

Figure 4.2: NOE-Walk in 13merHCF. The assignment of the $\mathrm{H} 6 / \mathrm{H} 8$ (abscissa) and H1' (ordinate) region in the $\mathrm{D}_{2} \mathrm{O}$-NOESY spectrum is shown. Red lines mark the NOE-walk for the HCF containing strand and green lines for the abasic strand. The starting point (5 '-end) of both walks was denoted by a square, while the endpoint (3'-end) is indicated by an arrowhead. Note that both walks are interrupted at the modification site (marked by X), due to the α-glycosidic linkage of HCF and the omitted base in the other strand. For clarity only the positions of intraresidual $\mathrm{H} 6 / \mathrm{H} 8-\mathrm{H} 1$ ' cross-peaks were labeled.

4.1.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts ${ }^{[213]}$ and Bloomfield et al. ${ }^{[19]}$. The "NOE-walks" of the H6/H8 to H1' region are in case of 13 merHCF interrupted at the central strand positions $7(\mathrm{HCF})$ and 20 (abasic site), but as stated before, this was expected and agrees well with HNF. In Figure 4.2 the NOESY spectrum measured in $\mathrm{D}_{2} \mathrm{O}$ is shown and the corresponding walks are marked red for the HCF strand and green for the abasic strand, respectively. The starting point (5^{\prime}-end) of both walks was denoted by a square, while the endpoint (3 '-end) is indicated by an arrowhead. The crosses mark the positions, where the alternating walk between H1' sugar protons and H6/H8 nucleobase protons is interrupted by a H1' to H1" step. Even though the

4 Results and discussion

corresponding cross-peak can be found in the spectrum, it cannot be depicted in Fig. 4.2, because it is part of a completely different spectral region. The other sugar protons (H2', H2", H3' etc.) were subsequently assigned by additional NOE-walks in combination with other spectra (COSY,TOCSY). Chemical shift tables of all assigned hydrogens and carbons are given in the Appendix (sec. 1.1).

Exchangeable hydrogens were assigned in $\mathrm{H}_{2} \mathrm{O}$ after completion of the $\mathrm{D}_{2} \mathrm{O}$-NOESY spectrum. The separation of the amino hydrogen (H41, H42) signals of C and, in addition, the large low-field shift of the imino proton signals (H1 in G, H3 in T) in the range of 12 $15 \mathrm{ppm}{ }^{[213]}$ clearly indicate a proper hydrogen bonding pattern for the native base pairs. Even though ppm values were not used directly in the MD simulations, the knowledge of correct hydrogen bonding allows to introduce a set of hydrogen bonding restraints (see Tab. 3.2 in 3.1.9) that were derived from high-resolution X-ray structure determination ${ }^{[270]}$.

Comparison of ${ }^{1} \mathrm{H}$ Chemical Shift Deviations (CSDs) were made between 13merHCF, 13 merHNF and $13 \mathrm{merRef}{ }^{[260]}$; the results are presented in Fig. 4.3. Here the chemical shift differences of all protons belonging to a single residue but different DNA samples are summarized. Note that absolute values are given to prevent canceling of deviations. Three comparisons are made, 13 merHCF to 13 merRef with A-T in the center (blue), the corresponding 13 merHNF to 13 merRef (red) and the modified double strands against each other (green). The fluorene containing duplexes (blue,red) show a similar pattern of deviations when compared to 13 merRef, so one can expect that the deviations between them would be rather small. This is true except for the fluorene residues (7), where the deviation nearly reaches 0.5 ppm . The difference can be explained readily by the incorporation of the carboxyl group, which leads to higher ppm values for the neighboring H6 and H8 hydrogens (see Fig. 4.1). Moreover it can be concluded for both duplexes, 13 merHCF and 13 merHNF , that the effect of the chromophore is limited roughly to the next two base pairs in both directions around the center.

Figure 4.3: CSD comparison between 13 merHCF and 13 merHNF with reference strand (13merRef). Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.

Figure 4.4: Averaged structures of 13 merHCF. The HCF is marked red and the abasic site green, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. The HCF methylene group faces up to the reader in the left panel and down in the right panel; the orientations are named correspondingly. RMSD among all hydrogens besides methyl protons is $0.41 \AA$ for face-up and 0.45 Åfor face-down, respectively. The white arrows indicate the point of view in Fig. 4.6.

4.1.2 NMR solution structure

Two NMR solution structures of 13 merHCF had to be determined using RDC and NOE distance restraints. As in case of $13 \mathrm{merHNF}{ }^{[203]}$, a single structure was not sufficient to describe the data found in the NOESY spectra. Therefore an ensemble of 100 structures was calculated for each orientation and the ten energy-lowest, violation-free structures were chosen to obtain averaged structures for both. Further details about the Simulated Annealing simulations can be found in section 3.1.9 and 3.1.9.

Figure 4.5: Overlay of the 10 minimum-energy, violation-free structures. The left side corresponds to the face-up orientation of the average structures (left in Fig. 4.4) and the right to face-down.

In Fig. 4.4 the averaged structures for the face-up (left) and the face-down (right) orientation of 13 merHCF are shown. The names were derived from the side where the HCF methylene group faces to the reader. The chromophore in both structures fits nearly parallel between the surrounding base pairs. A perturbing factor that limits a fully parallel placing of HCF is the additional oxygen atom between the chromophore and the sugar. On the other hand is the α-glycosidic-bond unproblematic to the structure, even in the presence of the added oxygen. The 2-deoxyribofuranose and HCF are able to retain a roughly perpendicular orientation to each other, in which H 1 ' and H 1 " would be in a plain area with the chromophore, thereby allowing the sugar to flip from the minor to the major groove side without inducing perturbations.

Figure 4.6: Close view on the three central base pairs of 13 merHCF. The face-up orientation is again at left and face-down at right. In order to fit the HCF into the center of the helix, the 2'-deoxyribose compensates the α-glycosidic bond by switching to a sugar conformation between $\mathrm{O}_{1}{ }^{\prime}$-endo and C_{4} '-exo for face-up and $\mathrm{O}_{1}{ }^{\prime}$-exo for face-down, respectively.

The structures that were combined to averaged structures are depicted as overlay in Fig. 4.5. The set of face-up structures on the left sum up to a root mean square deviation (RMSD) of 0.41 and to 0.45 for the face-down set, respectively. The biggest contribution to the RMSD value comes from the abasic site. Single structures with different placement of the abasic site in comparison to their corresponding averaged structures can be found in both orientations. Without a nucleobase attached to the 2-deoxyribofuranose the NOE-walk along the abasic strand is interrupted, which means that interresidual distance NOEs are missing and hence the flexibility of the abasic site cannot be restrained by experimental data. As a second consequence of the missing base, a preferred orientation of the chromophore through potential hydrogen bonding or sterical interactions is also missing.

The only interactions that actually limit the rotation around the C 2 - O 2 -bond are stacking interactions with the neighboring bases. In Fig. 4.6 a close view of the three central base pairs is shown. For both orientations stacking with adjacent bases was found. In face-up position the chromophore stacks mainly with adenine residue 6 , while the facedown conformer favors adenine 8. Additional stacking to the corresponding thymine T21 and partly T19 of the abasic strand suggests a possible contribution to duplex stability,
which will be topic of the melting experiments in the next section. Moreover, it becomes clear how the 2'-deoxyribose compensates the α-glycosidic bond in the HCF nucleotide. For example, the sugar of adenine A6 retains the usual C2'-endo conformation of B-DNA, while the 2'-deoxyribose of HCF switches to a conformation between O_{1} '-endo and C_{4} '-exo for face-up and O_{1} '-exo for face-down, respectively.

Up to this point 13 merHCF clearly resembles 13 merHNF, and due to the fact that this was already expected at the beginning of the NMR experiments, a small detail besides the functional group was changed during sample preparation. More precisely, the concentration of duplex DNA had been raised from 3 mM in 13 merHNF to 5 mM in 13 merHCF . The intention was to verify the RDC measurements, which may have suffered from one of two major drawbacks. The first is hidden in the name Residual Dipolar Couplings. The word residual points out that in RDC measurements only a small portion of the sample contributes to the measured anisotropy, which is induced by weak alignment of the sample. This adds to the demand for high precision (1 Hz) in a highly viscous sample, thus making RDC measurements a challenging task. Is in consequence only a limited number of suitable RDCs available, a second drawback has to be considered. As outlined in section 2.4, at least five RDCs are necessary to determine a single angle in the molecular frame. The general degeneracy of a single RDC value limits the usability as restraint in molecular dynamics simulations. In case of the 13 merHNF sample only 19 RDC values were part of the structure refinement. The question which arose at that time was, is the compatibility of the measured RDC values to both orientations a consequence of the parallel orientation of the chromophore or caused by degeneracy of the few restraints? In the latter case, it follows that potential bending of the duplex has not been detected, due to a lack of experimental data.

In the highly concentrated 13 merHCF solution, 38 RDCs were found which is twice the number for 13 merHNF. The experimental values were then plotted against predicted values of the averaged structures in Fig. 4.7. The results agree well with both structures and support the previous finding, according to which the RDC values are compatible with both orientations. However, a high concentration of duplex DNA is neither always

Figure 4.7: Pales ${ }^{[268]}$ plots of experimental RDCs against predicted values of the 13 mer HCF structures (face-up left, face-down right). Both plots look nearly identical, due to degeneracy of RDCs (see sec. 2.4). In case of 13 merHCF , both conformations have nearly the same orientation relative to the helical axis (roughly perpendicular), so the same set of values can describe both conformations.
available nor desirable for a unknown structure. A side effect that can be observed in such samples are unusual cross-peaks in the NOESY spectrum. At first sight they might be misidentified as spin diffusion signals, but in that case the intensity of their signal would be sensitive to the mixing time. With the help of back-calculated NOESY spectra, depicted in Fig. 4.8, those cross-peaks can be explained as well as the necessity for two orientations of the chromophore. The upper panel of Fig. 4.8 presents the region where H1 and H3 of HCF meet the H1" of their backbone. The black lines mark the experimental NOESY data with equal integrals of intensity for both peaks. The different line shape of the H3 signal is caused by coupling with the neighboring H4 proton. The back-calculated face-up spectrum (green) can only cover the H1/H1" cross-peak, while the face-down orientation (red) only covers the H3/H1" signal, so both conformers are required to complete the experimental NOESY spectrum. The reason for this is the strong distance change upon rotation. In close proximity the distance is roughly $2 \AA$ which results in a strong signal, while after rotation the weak intensity of a $4.5 \AA$ distance is observed.

The lower panel of Fig. 4.8 allows to compare the whole $\mathrm{H} 6 / \mathrm{H} 8$ to H 1 ' region between all NOESY spectra. It is not surprising that they describe most of the signals in the
same fashion, but in this picture the two differences are of greater interest. The first deviating signal is the (red) HCF-H8/H1'-T21 cross-peak that is only present in the faceup orientation. In contrast to the $\mathrm{H} 1 / \mathrm{H} 3$ pair the corresponding H 6 atom is in both orientations more than $5 \AA$ away from H1'-T21 and therefore not visible, due to the missing symmetry of HCF around the long axis. However the most interesting signal is the (black) C26-H6/G1-H1' cross-peak which is only present in the experimental NOESY spectrum. The distance corresponding to this assignment would cover $11 \AA$ in both orientations. An explanation via spin diffusion would involve too many atoms and is not reasonable. The real reason for this very unusual peak is the high concentration of 13 merHCF as mentioned before, since it is not an interresidual cross-peak between two strands of a single duplex. The effect is known as "end-to-end" stacking and was first described by Nakata et al. ${ }^{[271]}$, who observed long rods of stacked oligonucleotides. In fact, C26-H6/G1-H1' assigns atoms of two different duplexes and therefore should be named "interduplex" cross-peak. Such peaks raise the complexity of the spectrum and one should be aware of it when assignment reaches the helix ends.

Figure 4.8: NOESY back-calculations of both conformers overlaid with experimental data. The face-up spectrum is colored red, the face-down spectrum green, and the experimental spectrum black. Top: spectra of both conformers are needed to simulate the cross-peaks of the experimental spectrum. Bottom: overlay of the H6/H8 to H1' region. The cross-peak marked with the read arrow is only visible in the face-up orientation. An interduplex cross-peak that indicates "End-to-end" stacking is marked with a black arrow.

Figure 4.9: Absorption change of ds13merHCF upon melting, when raising temperature from $25^{\circ} \mathrm{C}$ (blue) to $90^{\circ} \mathrm{C}$ (red line; $\left.c_{T}=45 \mu \mathrm{M}\right)$. Spectra are shown for an optical path length of 2 mm . For better comparison they are also shown on an expanded ordinate scale (labeled "10x").

4.1.3 Duplex melting experiments

A sample of double-stranded 13 merHCF (having the sequence composition shown in Fig. 4.1) was prepared in a water/phosphate buffer ($10 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, p H=7$) with 150 mM sodium chloride. Measurements were performed in a cuvette with 2 mm optical path length. A total concentration $c_{T}=45 \mu \mathrm{M}$ of single strands was estimated from maximum absorption around 260 nm at $90^{\circ} \mathrm{C} .14$ absorption spectra between 25 and $90^{\circ} \mathrm{C}$ were recorded and corrected for density change. The resulting spectra are shown in Fig. 4.9, including a ten-times magnification of them (labeled "10x").

The thermodynamics of duplex formation is usually examined by "melting curves" measured at a single wavelength. In this work, however, full absorption spectra were measured

4 Results and discussion

Figure 4.10: Weighted spectra of 13 merHCF , as used in SVD. At wavelengths longer than 300 nm , absorbance values were multiplied by a factor ten. In this way the absorption change of DNA (around 260 nm) and of the HCF chromophore (around 330 nm) are given equal importance; otherwise the DNA band would dominate the analysis.
at different temperatures to allow a more detailed description of the melting process. The basic idea is to take advantage of the full spectral window shown in Fig. 4.10. Here we see the absorption change of the DNA band on the left side and the corresponding change of HCF on the right. Such weighted spectra are needed to treat the absorption change of the DNA (around 260 nm) and of the chromophore (around 320 nm) on the same level; otherwise the DNA band could dominate in the Singular Value Decomposition (SVD). This method searches for principal components in the entire spectral window (see chapter 2.6). In other words, "melting curves" for every single wavelength are analyzed in order to find temperature dependent components which describe the melting of the double strand and of the chromophore. A quick inspection by eye shows already that the HCF

Figure 4.11: Basic spectra are shown at left ($\mathbf{U}_{\text {cut }} \cdot \mathbf{S}_{\text {cut }} . \mathbf{F}$ in 2.6). The first component (red) was set to be the $90^{\circ} \mathrm{C}$ spectrum, i.e. it represents the fully separated single strands. The right panel shows the thermodynamic curves corresponding to the basic spectra (\mathbf{P} in 2.6). Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.77 while that of the second component increases from 0 to 0.23 .
probe combines a blue shift with hyperchromism upon melting. Interestingly, only two components are needed to describe the hyperchromism of the bands due to DNA and to the built-in chromophore at the same time. Fig. 4.11 shows the basic spectra on the left ($\mathbf{U}_{\text {cut }} . \mathbf{F}$ in 2.6) and the corresponding thermodynamic curves on the right (\mathbf{P} in 2.6). The first component (red) was set to be the $90^{\circ} \mathrm{C}$ spectrum. Note that the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor). Upon duplex formation, the one shown in red experiences an amplitude decrease of 0.23 . By design, the blue curve has the same amount as amplitude increase (Fig. 4.11).

A SVD performed only on the DNA absorption band also reveals two components. But in that picture (which is not presented here) both components describe the same melting behaviour and melting point, due to the fact that the absorbance shape around 260 nm is a mixture of absorption bands from the four natural nucleotides ${ }^{[19]}$. Therefore the effect of hyperchromism is also a mixture: one component is related to the lineshape of the single strands at high temperature, and the other transforms it to the lineshape of the duplex state upon hybridization. But let us return to the combined analysis in figure 4.11. Red

Figure 4.12: Thermodynamic curves of 13 merHCF , scaled to the measured amplitude change of 0.23 . The left panel shows SVD data (points) and fits with a twostate model including stacking (lines). The effect of stacking, assumed to be linear, was combined with the sigmoidal line shape of the two-state model. The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking (i.e. the degree of dissociation). The grey vertical lines indicate the melting points (derived from the right panel). The strands as a whole (red) melt at $59.7^{\circ} \mathrm{C}$ and the HCF region (blue) at $61.1^{\circ} \mathrm{C}$.
lines denote the hybridization of the whole strand, while the blue lines are connected to the chromophore and upon duplex formation affect the lineshape of the DNA absorption band. Keep in mind that the latter is a mixture of bands, and their carriers are not equally distributed over the double strand. More specifically, the HCF chromophore is surrounded by A-T base pairs. The NMR solution structure indicates additional stacking interactions with T21 and partly T19 of the opposite strand (see Fig. 4.6). Therefore an interaction between HCF and all adjacent base pairs, strong enough to have an observable effect on the DNA absorption band, seems likely.

Based on equation 2.33, a two-state model with stacking interactions was applied to the melting curves in figure 4.11. The resulting fits with stacking interactions (left) and the degree of dissociation (i.e. with the optical effects of stacking removed, right) are shown in figure 4.12. As stated before, the red lines are related to the whole strand and the blue ones to the HCF part. The melting points are marked by grey vertical lines and were derived from the right part of figure 4.12. The parameters for DNA ($c_{T}=45 \mu \mathrm{M}$) are T_{m}
$=59.7 \pm 0.1^{\circ} \mathrm{C}, \Delta H^{\circ}=-340 \pm 30 \mathrm{~kJ} / \mathrm{mol}, \Delta S^{\circ}=-920 \pm 80 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$. The parameters for HCF are $T_{m}=61.1 \pm 0.1^{\circ} \mathrm{C}, \Delta H^{\circ}=-360 \pm 20 \mathrm{~kJ} / \mathrm{mol}, \Delta S^{\circ}=-1000 \pm 40 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$.

The $1.4^{\circ} \mathrm{C}$ higher melting point of HCF suggests that the middle of the strand melts last. The slightly steeper slope of the duplex state part (blue line on the left of Fig. 4.12) indicates that DNA stacking is more cooperative, even though the overall melting point is lower compared to the $63.3^{\circ} \mathrm{C}$ of $13 \mathrm{merRef}{ }^{[129]}\left(c_{T}=23.7 \mu \mathrm{M}\right)$ with a central A-T base pair. These findings agree with the NMR structure as well as with Kool et al., who found that large aromatic hydrocarbons like the Pyrene nucleoside ${ }^{[97]}$ or later the β-C-Porphyrinyl nucleoside ${ }^{[162]}$ help to maintain stacking in both strands of a duplex. In the case of Pyrene opposite an abasic site $\left(T_{m}=41.6^{\circ} \mathrm{C}\right)$, they observed a thermal stabilization between 18 and $23{ }^{\circ} \mathrm{C}$ compared to natural nucleobases in the same position (T, C, A or G opposite abasic site), furthermore, it fits perfectly in the melting point gap between their natural control duplex with central A-T pair $\left(T_{m}=43.2^{\circ} \mathrm{C}\right)$ and a shortened duplex in which the central base pair is deleted $\left(T_{m}=39.9^{\circ} \mathrm{C}\right)$. The last point is not surprising, since the stabilizing effect depends on stacking with adjacent base pairs. When the ongoing melting process causes them to unstack, the additional stabilization will be lost.

4 Results and discussion

4.2 6-Hydroxy-quinolinium - 13mer6HQ

13 mer6HQ incorporates N-methyl-6-quinolone (MQ) as artificial nucleobase in the center (Fig. 4.13). MQ was introduced by Ernsting et al. ${ }^{[122]}$ as polarity probe for femtosecond solvation experiments. In this first study, where pure water and methanol were used as benchmark solvents, it was shown that the time-resolved Stokes shift of fluorescence reflects the infrared spectrum of the surrounding liquid. MQ is a betaine that has several advantages over other probes. Betaines are not outwardly charged, so they do not polarize the environment more than is needed for the experiment. Additionally, MQ is free of internal vibrational modes that could interfere with solute motion (see sec. 1) and the solvent polarity couples mainly through dipole moment change. More interesting for this work is the property that the molecule is small enough to replace natural bases in nucleic acids or tryptophan in proteins.

This goal was reached in several steps. The first one was the measurement of the disaccharide trehalose in a mixture with water and MQ as free probe ${ }^{[272]}$. This was followed by the attachment of the MQ moiety to trehalose in order to allow measurement of water molecules in the vicinity of the disaccharide ${ }^{[123,204]}$. The study uncovered problems that occur when a betaine is linked to a biomolecule. The originally intended linkage via N-carboxymethyl ester failed, due to unexpected high instability, but was successfully replaced by direct N -alkylation of the quinoline derivative with trehalose triflate. Finally, MQ was incorporated into DNA by Felix Hövelmann, who continued previous works of Lucas Bethge in the group of Oliver Seitz.

6 -Hydroxyquinoline (6 HQ) was chosen as precursor for the synthesis of 13 mer 6 HQ , but two critical issues need to be considered. The first one is the linkage of the quinoline moiety to the backbone. The native linkage via 2-deoxyribose would be too labile due to the positively charged chromophore. The second issue is the limited choice of hydroxyl protective groups. It was discovered that any protecting group placed on the hydroxyl group became unstable upon alkylation on the nitrogen, prohibiting the use of acyl or silyl groups.

Figure 4.13: Structure of 13 mer6HQ. For convenience, the 6 HQ moiety including Rglycerol backbone is depicted in red and the complementary cytosine in green. The correspondingly colored letters X and Y mark their positions in the duplex strand.

As first alternative to 2-deoxyribose a L-Serinol linkage was tested, but proved to be too labile, so the product could not be isolated. Then the strategy was changed towards a carbacycle, which is missing the endocyclic oxygen, and could therefore overcome the stability problem. However the low yield and poor solubility of intermediate compounds demanded a second change of the strategy. In order to finally overcome the problem of labile linkers, the tethering of 6 HQ via a short alkyl chain was chosen, resulting in R -glycerol-6HQ after four steps. The glycerol backbone is advantageous for the following reasons: First of all, it is known to produce intact duplex structures (GNA ${ }^{[73]}$). Secondly, the alkyl linkage in R-glycerol-6HQ should be sufficiently stable to survive the conditions during DNA-synthesis, cleavage and purification. Finally, the allyl proctection group on the hydroxyl group will be sufficiently stable and can be cleaved on the CPG after DNA synthesis.

R-glycerol-6HQ was incorporated as central nucleotide of the sequence shown in Fig.

Figure 4.14: NOE-Walk in 13mer6HQ. The assignment of the $\mathrm{H} 6 / \mathrm{H} 8$ (abscissa) and H1' (ordinate) region in the $\mathrm{D}_{2} \mathrm{O}-\mathrm{NOESY}$ spectrum is shown. The red line depicts the NOE-walk for the 6HQ containing strand and the green line for the complementary strand. The starting point (5 '-end) of both walks was denoted by a square, while the endpoint (3 '-end) is indicated by an arrowhead. For clarity only the positions of intraresidual $\mathrm{H} 6 / \mathrm{H} 8-\mathrm{H} 1$ ' cross-peaks were labeled. The introduction of R-glycerol, depicted as Q7, made it necessary to extend the spectral region in both dimensions.
4.13 and Cytosine was chosen as potential hydrogen bonding partner to allow base pair formation. R-glycerol for the backbone was selected after simulations of both configurations using Hyperchem 7.5, which revealed a slightly better energy for R. Up to now, only crystal structures of duplex strands containing a full GNA backbone are known ${ }^{[273,274]}$, so the solution structure of a DNA duplex with a GNA monomer in the center will be of general interest.

4.2.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts ${ }^{[213]}$ and Bloomfield et al. ${ }^{[19]}$ as before. In contrast to 13 merHCF, complete "NOE-walks" for both strands
of 13 mer 6 HQ could be achieved. The $\mathrm{D}_{2} \mathrm{O}$-NOESY spectrum of 13 mer 6 HQ is shown in Figure 4.14. The walks are marked red for the 6 HQ strand and green for the complementary strand, respectively. The H2/H1' signal of R-glyerol-6HQ (denoted as Q7) can be found in the upper left corner, which made it made it necessary to extend the spectral region in both dimensions. The strong low-field shift of the H2 hydrogen (8.82 ppm, see Tab. 4) can be explained by deshielding through the adjacent, positively charged nitrogen, which adds to the already observed ring current deshielding in aromatic systems.

The other unusual shift, that should be noted, is the heavily high-field shifted crosspeak A8, which is now in the center of the $\mathrm{H} 6 / \mathrm{H} 8$ to H 1 ' region. The signals of adenine H8/H1' are usually found on the left, which is true for the remaining adenines A6, A16 and A24. The explanation for the shift can be derived from Fig. 4.17 of the solution structure, where a close view on the three central base pairs is shown. Here one can see that the five-membered ring of the adenine A8 stacks very well with 6 HQ , which shields the magnetic field in the vicinity of the adenine H8, causing a high-field shift of the A8 cross-peak. In contrast to this, a usual chemical shift is observed for the H8 hydrogen of adenine A6. The reason for this is that the stacking with 6 HQ is centered around the six-membered ring of adenine and hence far away from the H 8 hydrogen.

The chemical shift deviations were calculated the same way as for 13 merHCF, but this time compared to native strands, which contain either GC or AT as central base pair. One has to consider that the complementary strand is now a native strand, which is furthermore identical to the corresponding strand in the reference DNA with GC in the center $(13 \operatorname{mer} \operatorname{Ref}(\mathrm{GC}))$. It is then not surprising that the CSDs between the complentary strand and $13 m e r R e f(G C)$ are relatively small and the only larger difference to the AT reference strand (for convenience $13 \operatorname{merRef}(\mathrm{AT})$) occurs at residue 20 , where the cytosine of 13 mer 6 HQ is compared to a thymine in $13 \mathrm{merRef}(\mathrm{AT})$. The CSD pattern for the 6 HQ strand is similar to 13 merHCF (see Fig. 4.3). When taking into account that large CSD at position 7 is mainly caused by the completely different backbone (GNA, DNA) and the different nucleobases ($6 \mathrm{HQ}, \mathrm{G}$ and A), one can see that 13 mer 6 HQ shows similar behaviour in the CSDs for the residues 5,6 and 8 . Since the reference strands are known to comprise

Chemical Shift Deviation

Figure 4.15: CSD comparison between 13 mer 6 HQ and different reference strands, which contain either GC or AT as central base pair. Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.
usual B-DNA helices, this may indicate structural deviation in the 6 HQ strand but not in the complementary strand.

Figure 4.16: Averaged structure of 13 mer 6 HQ . The averaged structure on the left was constructed from the 10 best-energy and violation-free structures on the right. The 6 HQ is marked red, while the corresponding colors for $\mathrm{A}, \mathrm{G}, \mathrm{C}$ and T are blue, yellow, orange and violet.The vertical arrow indicates the point of view in Fig. 4.6 and the horizontal one in Fig. 4.19. RMSD among all atoms besides methyl protons is $0.36 \AA$.

4.2.2 NMR solution structure

The NMR solution structure was determined from experimental NOE and residual dipolar coupling data (see sec. 3.1.9). All NMR resonances could be assigned with the exception of some severely overlapped H5'/H5" signals. Integration and conversion yielded 418 distance restraints, which were used in a first step to generate a start structure. Afterwards, a total of $25{ }^{1} J_{C H}$ RDC restraints were included into the refinement using a single floating alignment tensor. The 10 best-energy, violation-free structures out of 100 calculated were

Figure 4.17: Close view on the three central base pairs of 13 mer 6 HQ . The 6 HQ moiety stacks well with the five-membered ring of adenine A8 and the six-membered ring of A6.
used to construct the averaged structure, which is shown in Figure 4.16. The root-mean-square-deviations (RMSD) among all hydrogens besides methyl protons are $0.36 \AA$ (see sec. 3.2.6).

The deprotonated 6-Hydroxyquinolinium fits perfectly into the helical fold (see Fig. 4.16 and 4.17), other conformations, like in 13 merHCF , were not observed. The distance of $1.79 \AA$ between the 6 HQ oxygen and amino H 42 of cytosine indicates the desired hydrogen bond (Fig. 4.18), thus forming an artificial base pair. Interestingly, 6 HQ does not face the cytosine with its short side (along carbons C6-C7), like the purines (A,G) do, it presents instead the long side (carbons C3 to C6). Two reasons are conceivable, which may complement each other. One is the linkage to the backbone, the position of hydrogen N 9 in the five-membered rings of purines is more compatible to the C 2 position in 6 HQ than to nitrogen N1. Moreover, glycerol is missing a bond in comparison to the size of 2-deoxyribose, which could be denoted in terms of sugar nomenclature as attachment of 6 HQ to C 2 ' and not C1'. However, the missing bond is balanced by the size and direction

Figure 4.18: Close view on the central base pair of 13 mer 6 HQ .6 HQ forms a base pair with cytosine and a single hydrogen bond. Interestingly, 6 HQ presents its long side to the cytosine and not the short one along carbons C6-C7.
of 6 HQ .
Figure 4.19 is a side view of the three central base pairs as indicated by the vertical arrow in Fig. 4.16. The white arrow marks the helical long axis of the double strand, while the red arrow indicates the deviating direction of the stacking in adenine $\mathrm{A} 6,6 \mathrm{HQ}$ and A 8 (in front). The nucleobases in the back (T19, C20, T21) are not affected and stack along the helical axis. It is known that double stranded GNA shows a strong inclination between backbone and nucleobase, which might explain the observation that neither the R - nor S-enantiomer of GNA cross-pairs with DNA ${ }^{[275]}$. However, the 6 HQ strand only comprises a single GNA monomer and it has been demonstrated that 6 HQ forms a base pair with

Figure 4.19: Side view on the three central base pairs of 13 mer 6 HQ . The face-up orientation is again at left and face-down at right. The base A6-6HQ - A8 are in front and the corresponding T21-C20-T19 in the back. The short length of glycerol in comparison to a 2-deoxyribose backbone leads to a differing stacking axis (red arrow), which is in usual B-DNA identical to the helical axis (white arrow).
cytosine, so this cannot be the explanation. Unfortunately, the glycerol backbone provides only three bonds between O3' and O2', which means that a second bond compared to 2deoxyribose is missing. This time, the distance is covered by a small inclination between the the sugar of the adjacent adenines and the helical long axis. Consequently, since the nucleobases retain their roughly perpendicular angle relative to the sugar, they form the differing stacking axis with 6 HQ . A comparison between 13 mer6HQ and our reference DNA 13 merRef ${ }^{[129]}$, where the central base pair is $\mathrm{A}: \mathrm{T}$, shows that the distances between

Figure 4.20: Pales ${ }^{[268]}$ plots of experimental RDCs against predicted values of the 13 mer6HQ structure. The predicted values, which were directly derived from the averaged structure, agree well with the experimental RDCs.

C3' of adenine A6 and C5' of adenine A8 are $10.18 \AA$ in 13 merRef and $8.98 \AA$ in 13 mer 6 HQ , respectively. The resulting difference of $1.2 \AA$ and the differing stacking axis prove that the missing bond length is crucial for the B-DNA backbone.

The Pales ${ }^{[268]}$ plot in Fig. 4.20, which compares experimental RDCs with predicted RDCs derived from the average structure, confirms that the obtained structure is part of the experimental data.

Finally for this section, the validity of the $13 m e r 6 \mathrm{HQ}$ average structure will be checked using the back-calculated spectrum in Fig. 4.21. The experimental NOESY spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ is depicted in black and the back-calculated in red, respectively. On the left half, a series of back-calculated cross-peaks can be found that appear not to be present in the experimental spectrum. In fact, the signals are present, but suffer from a low signal-tonoise ratio. More interesting is the second C26-H6/H5 cross-peak on the right, which is shifted to higher field in both dimensions, due to unstacking from the helix. The occurrence of this cross-peak indicates fraying at the helix ends. The other cross-peaks of the back-calculated spectrum agree well with the data.

Figure 4.21: NOESY back-calculation (red) overlaid with experimental data (black). The left side shows back-calculated cross-peaks, which are apparently missing in the experimental data. In fact, weak signals are present in the data, but suffer from a low signal-to-noise ratio. The cross-peak on the right marks the unstacked $\mathrm{H} 6 / \mathrm{H} 5$ signal of C 26 , which indicates fraying of the helix ends.

Figure 4.22: Absorption change of ds13mer6HQ upon melting, when raising temperature from $10{ }^{\circ} \mathrm{C}$ (violet) to $90{ }^{\circ} \mathrm{C}$ (red line; $c_{T}=131 \mu \mathrm{M}$). Data from the 1 and 10 mm cuvettes are labelled " 1 x " and "10x", respectively. A ten-times magnification of the latter is labelled " 100 x ".

4.2.3 Duplex melting experiments

A sample of double-stranded 13 mer 6 HQ was prepared in a water/ammonia mixture with $p H=8.5$ and salt concentration of 150 mM sodium chloride. Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_{T}=131 \mu \mathrm{M}$ of single strands was estimated from maximum absorption around 260 nm at $90^{\circ} \mathrm{C}$. A set of 17 spectra between 10 and $90^{\circ} \mathrm{C}$ were recorded and corrected for density change. Results are shown in Fig. 4.22, where the data from the 1 and 10 mm cuvettes are labelled " 1 x " and " 10 x ", respectively. A ten-times magnification of the latter is labelled "100x".

4 Results and discussion

Figure 4.23: The UV part of the spectrum was used for SVD of the DNA absorption peak. The first spectrum is violet $\left(10^{\circ} \mathrm{C}\right)$ and the last one is red $\left(90^{\circ} \mathrm{C}\right)$.

Analysis of the 13mer6HQ DNA band

The changes of the DNA peak with increasing temperature ($10-90{ }^{\circ} \mathrm{C}$) were quantified in a spectral window from 300 to 210 nm (see Fig. 4.23). The UV absorption spectra in this range were analyzed for principal components via Singular Value Decomposition (SVD). Two components are needed to describe the hyperchromism. Fig. 4.24 shows the basic spectra on the left and the corresponding thermodynamic curves on the right. The first component (red) was set to be the $90{ }^{\circ} \mathrm{C}$ spectrum. Note that the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor.) Upon duplex formation, the red one shows an amplitude decrease of 0.24 . By design, the blue curve shows the same amount as amplitude increase (Fig. 4.24).

Figure 4.24: Basic spectra are shown left. The first component (red) was set to be the $90{ }^{\circ} \mathrm{C}$ spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.76 while that of the second component increases from 0 to 0.24 .

Like before (chapter 4.1.3) a two-state model with stacking interactions ${ }^{[19]}$ was applied to the thermodynamic data (Fig. 4.25). It assumes that the temperature (T) dependence of the extinction coefficients is linear $\left(\epsilon_{[s s]}=m_{[s s]} T+b_{[s s]}\right)$ and, in addition, different for the single- (ss) and double-stranded (ds) forms. It is not necessary to fit the linear parts separately, therefore Equation 2.33 can be directly applied (as introduced in 2.7) to the data (dots) shown in Fig. 4.25. The thermodynamic parameters for the red line are $\Delta H^{\circ}=-320 \pm 20 \mathrm{~kJ} / \mathrm{mol}, \Delta S^{\circ}=-900 \pm 50 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ and $\Delta H^{\circ}=-330 \pm 30$ $\mathrm{kJ} / \mathrm{mol}, \Delta S^{\circ}=-930 \pm 70 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ for the blue one, respectively. The values for both lines are equal in the range of their errors. A unique melting point of $53 \pm 0.1^{\circ} \mathrm{C}$ is noted at the total concentration $c_{T}=131 \mu \mathrm{M}$ of single strands. Remember that in case of 13merHCF a second melting point was observed, reflecting the HCF chromophore in its environment. The $53{ }^{\circ} \mathrm{C}$ of the 13 mer 6 HQ DNA absorption band can be compared with the $63.3{ }^{\circ} \mathrm{C}$ of 13 merRef ${ }^{[129]}\left(c_{T}=23.7 \mu \mathrm{M}\right.$, central A-T). The observed thermal destabilization, corresponding to a melting-point decrease of 10.3 K , is in fact a minimum value. This is because the total strand concentration of 13 mer6HQ (owing to the weak absorbance of the 6 -Hydroxy-quinolinium chromophore) is more than 5 times higher than

4 Results and discussion

Figure 4.25: Thermodynamic curves, scaled to the measured amplitude change of 0.24 . The left panel shows SVD data (points) and fits with a two-state model including stacking (lines). The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking. In contrast to the initial curves on the left, a unique melting point of $53{ }^{\circ} \mathrm{C}$ for both principal components is estimated (grey vertical lines).
was used for 13 merRef. A melting point of $67{ }^{\circ} \mathrm{C}$ can be estimated for 13 merRef at c_{T} $=131 \mu \mathrm{M}$ (of 13 mer 6 HQ) by using the Nearest Neighbor Model ${ }^{[255]}$, the corresponding melting-point decrease is then in a range of 14 K .

Figure 4.26: Basic spectra for the duplex part are shown left. The first is arbitrarily set to the absorption spectrum at $30{ }^{\circ} \mathrm{C}$ (red). The right part shows the corresponding amplitude curves. Dots represent the experimental data and lines the fit and extrapolation up to $90^{\circ} \mathrm{C}$.

Dissection of the 6-Hydroxy-quinolinium band

The approach for this part is similar to the previous description, and the main goal is to observe the hybridization of the chromophore in the visible spectral region. For this purpose the spectral range, which was subjected to analysis, was restricted to $\lambda>340$ nm where the absorption by the quinolinium chromophore should be dominant. The first examination via SVD revealed at least three principal components. They all show a melting curve with negative slopes for the linear parts. Inspection of the basic spectra led to the conclusion that two different species are involved in the melting process, since the change of the chromophore absorption could not be explained by simple hyperchromism with blue shift of the peak, as observed before with 13merHCF. At this point the new approach of the double SVD-assisted two-state model was developed. The theoretical background was already described in 2.7. Since melting/hybridization occurs in a small temperature range around $50^{\circ} \mathrm{C}$, one can try to understand the behaviour of the duplex separately at low temperature, and that of the fully separated single strands at high temperature. In each of these two limiting temperature intervals, a SVD analysis of the absorption spectra in Fig. 4.22 is made. Knowing the change of absorption with temperature for both, an extrapolation can be done from either side into the middle, i.e.

Figure 4.27: From the known duplex region $\left(10-30^{\circ} \mathrm{C}\right)$ onwards, the next twelve spectra were extrapolated (35 up to $90^{\circ} \mathrm{C}$) to simulate the behaviour of a non-melting double strand.
in the direction where strand separation occurs. For example, the absorption spectrum of the double strand can be simulated for $60^{\circ} \mathrm{C}$ where, in reality, the separation into single strands is almost complete. At any given temperature, the observed spectrum should be a linear combination of the two extrapolated spectra, i.e. of the separate strands and of the duplex. From the corresponding fit the degree of dissociation α is obtained. In other words, extrapolations with the help of basic spectra (from SVD) replace the linear parts of the two-state model used above. As a result we obtain a dissociation curve which is shown in Fig. 4.31 below.

The first step on that way is the extrapolation of the duplex part. The spectra from 10 to $30{ }^{\circ} \mathrm{C}$ were used, and they could be described by two principal components in the

Figure 4.28: Basic spectra and amplitudes as in Fig. 4.26, but for the separated single strands. The first basic spectrum is taken to be the absorption spectrum at $70^{\circ} \mathrm{C}$ (red).

SVD. Both thermodynamic curves can be described by straight lines, which are then used to extrapolate the thermodynamic behaviour up to $90{ }^{\circ} \mathrm{C}$ (Fig. 4.26). The second principal spectrum in Fig. 4.26 was smoothed (by a Wiener filter ${ }^{[276]}$) to reduce noise when extrapolating to high temperature. Fig. 4.27 shows the resulting change of absorption for the duplex, as extrapolated for the whole temperature range.

The same procedure was then performed for the single strands, using the last 4 spectra, i.e. for temperature from 70 up to $90^{\circ} \mathrm{C}$. In this way Figs. 4.28 and 4.29 are obtained (analogues to Figs. 4.26 and 4.27, respectively). A look at the extrapolated spectra (Fig. 4.27 and 4.29) reveals a similar behaviour compared to the HCF chromophore, which underwent a blue shift and hyperchromism on the blue side of the spectrum upon melting. In addition, the missing absorption band around 430 nm in the duplex state spectra (Fig. 4.27) is now present in the extrapolated single strand spectra (Fig. 4.29). The band indicates the deprotonated state of 6 HQ , due to the basic buffer ($\mathrm{pH}=8.5$), and disappears when the $6 \mathrm{HQ}-\mathrm{C}$ base pair and hence the hydrogen bond is formed.

As last step before the two-state model can be applied, a linear combination based on equation 2.34, where α is the fraction of extrapolated single strand spectra $S_{[s s]}(T)$, is used to build the measured spectra $M(\alpha, T)$ around 400 nm . In other words, the linear equation terms of (2.33) are substituted with the extrapolated spectra $S_{[\ldots]}(T)$.

Figure 4.29: The known region is now the high temperature part $\left(70-90{ }^{\circ} \mathrm{C}\right)$, where fully separated single strands are assumed. In this case, extrapolation from 65 ${ }^{\circ} \mathrm{C}$ down to $10{ }^{\circ} \mathrm{C}$ simulates two strands which cannot hybridize at lower temperatures.

The α values produced, using equation (2.34), are plotted as dots in Fig. 4.31. Hence the extrapolated spectra are already scaled to the measured data; the two-state model defined in equation (2.32) can be directly applied (line in Fig. 4.31). Best fit parameters are $\Delta H^{\circ}=-365 \pm 5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=-1030 \pm 20 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ for the hybridization. The melting point is $0.1^{\circ} \mathrm{C}$ higher $\left(53.1 \pm 0.1^{\circ} \mathrm{C}\right)$ than the $53^{\circ} \mathrm{C}$ for the complete strand, which is a negligible difference. The fact that the melting points for the whole strand and the built-in chromophore are the same and more than 10 K lower than in 13 merRef gives no evidence for local melting (e.g. bubble formation) and is in good agreement with the NMR solution structure. Figure 4.19 shows the differing stacking axis in the middle of the modified strand, caused by the short glycerol linker. In combination with the limited

Figure 4.30: Overlay of linearly combined spectra (dashed black lines, eq. (2.34)) and measured data (blue $10-90^{\circ} \mathrm{C}$ red) around 400 nm (10 mm path length). On the right, for a better pairwise comparison, each data curve and its linear combined spectrum is plotted with an offset.

Figure 4.31: The α values of the linear combined spectra are shown as points, whereas the line represents the applied two-state model for α. The resulting melting point is $53.1^{\circ} \mathrm{C}$.
flexibility of the small linker, this promotes melting of the strand as a whole at lower temperature. Nevertheless, the designated $6 \mathrm{HQ}-\mathrm{C}$ base pair was formed and proven by the missing absorption band at 430 nm in duplex state, which in turn became accessible by the new analysis method.

Figure 4.32: The absorption spectrum of single-stranded 13 mer 6 HQ , measured from 10 (blue) to $80^{\circ} \mathrm{C}$ (red), is shown on the left hand side. The extrapolation on the right was performed in the same way as the separated strands form of ds 13 mer 6 HQ . Therefore, the $70^{\circ} \mathrm{C}$ spectrum (orange) was set to be the first basic spectrum and all spectra with higher temperature were used as dataset for the extrapolation to lower temperatures.

Comparison of the measured 13 mer 6 HQ single strand with its extrapolated spectrum

A single strand of 13 mer 6 HQ was measured prior to the double strand. The data can be used to compare our SVD-assisted extrapolation on the isolated single strand (see right part of Fig. 4.32) with its real spectra at lower temperatures. The aim is to get an idea of the robustness and possible limits of the extrapolation. The extrapolation was performed the same way as on the single strand form of ds 13 mer 6 HQ . Therefore, the $70^{\circ} \mathrm{C}$ spectrum (orange) was set to be the first basic spectrum, which is in addition the first data point where the fully single stranded form of ds 13 mer 6 HQ can be assumed (see Fig. 4.31). In contrast to the five high temperature data points used in Fig. 4.28, only three spectra were available in this case, due to end of data acquisition at $80^{\circ} \mathrm{C}$.

Figure 4.32 shows measured (left) and extrapolated data (right) next to each other. It is easy to notice that the extrapolation increasingly differs from the measurement at lower temperatures. Due to the fact that in an eventual application the duplex form would be dominant at lower temperatures, the extrapolation only needs to be exact for spectra which are largely dominated by the single stranded form. The overlay in figure 4.33 allows a direct comparison between the measured and extrapolated data. From 80 down to 55

Figure 4.33: Overlay of the extrapolated spectra (dashed black lines) and measured data (blue $10^{\circ} \mathrm{C}$ to red $80^{\circ} \mathrm{C}$). For a better pairwise comparison, each data curve and its extrapolated spectrum is plotted with an offset. From 80 down to 55 ${ }^{\circ} \mathrm{C}$ (6th line from top) there is a good agreement. Deviations become relevant at $50{ }^{\circ} \mathrm{C}$ (7th from top) and rise more and more when going downwards. However, the effect on the linear combined spectra (in Fig. 4.30) is small, when taking the melting point of the double strand $\left(53.1{ }^{\circ} \mathrm{C}\right.$, Fig. 4.31) into account, which states that for $50{ }^{\circ} \mathrm{C}$ and below the duplex form is dominant.
${ }^{\circ} \mathrm{C}$ (6th line from top) there is a good agreement. The deviations become visible in the $50{ }^{\circ} \mathrm{C}$ spectrum and rise more and more when going downwards. However, at $50{ }^{\circ} \mathrm{C}$ the duplex form is dominant and the upcoming deviations from the measurement cannot have a visible effect on the linear combination of extrapolated spectra (see Fig. 4.30, the same should be observed for the duplex part going to high temperature). In other words, the transition of the DNA eliminates the rising error of the extrapolations as long as they are both correct around the melting point.

4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine -13mer4AP-DAP

The 13mer4AP-DAP double strand was developed in cooperation with the group of H.-A. Wagenknecht (Karlsruhe Institute of Technology). The artificial base pair in the center comprises 4 -aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP) as base surrogates. The 4AP chromophore is comparable in size to natural purines and shows remarkable solvatochromicity, red-shifted fluorescence in polar solvents, and hydrogen bonding capabilities ${ }^{[205]}$. Therefore DAP was designed as a potential counterbase, offering three potential hydrogen bonding sites. Michael Weinberger (Wagenknecht group) was responsible for the synthetic route of 4AP and Falko Berndt (Ernsting group) correspondingly for DAP. Both synthetic routes ${ }^{[205]}$ utilized stereoselective Heck-type palladium-catalysed cross-coupling with 2'-deoxyribofuranoside glycal followed by stereoselective reduction with $\mathrm{NaBH}(\mathrm{OAc})_{3}$. Both nucleosides were further processed to the corresponding phosphoramidites and subsequently incorporated via automated DNA synthesis.

The finally obtained double strand of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ required some alterations in the process of structure determination. As stated in the introduction (sec. 1.3), the hydrolysis of the 4AP chromophore in water had to be addressed, especially under basic conditions. A weak acidic buffer was chosen (pH 6.35), which extended the lifetime of the 4AP mononucleotide from hours to a few days. As a consequence of this, it was discussed that DAP might be protonated by the acidic buffer. A subsequent measurement of 2,4-diaminopyrimidine absorption at different pH values revealed a pK_{a} of 7.4 ± 0.1. Hence the picture of the 4AP-DAP base pair presented in the introduction (Fig. 1.3) was changed to that of Fig. 4.34. Furthermore it should be noted that only a small amount of the 4AP strand was available, so that the same sample had to be used in all experiments. In order minimize the time and sample preparation effort, a closed double cuvette was used that offers 1 and 10 mm optical path lengths at the same time. In addition to the customized cuvette, the order of experiments was reversed, so that the optical experiments (absorbance, fluorescence etc.) were measured first, since their overall

Figure 4.34: Structure of 13 mer4AP-DAP. The 4AP moiety (red) was placed at position X and the DAP (green) at Y, respectively. Please note the additional hydrogen in DAP.
acquisition time was shorter than that of a single NOESY experiment. Moreover, it was doubted that the sample amount would be sufficient for structure determination, since the theoretically achievable maximal concentration was only 1.5 mM in a Shigemi NMR tube ($250 \mathrm{\mu l}$). In contrast to this, all previous samples were measured with at least 3 mM concentration. The limiting factor for the sample concentration is the RDC measurement, which requires much more nuclei in the center of the magnetic field than the NOESY experiment, due to the principal concept of measuring residual dipolar couplings. Even though that RDCs became a standard tool in structure determination, they are not required to perform restrained Molecular Dynamics. As outlined in the introduction, this method was invented to use only NOE distance restraints which is, of course, still possible. So it was decided to omit the RDC experiment for the price of some quality, due to the fact that RDCs can offer structural information without suffering from the limited range of NOEs $(<5 \AA)$. In the first cycle only a minimal set of NMR spectra was measured at $10^{\circ} \mathrm{C}$ directly after the last optical experiment, just in case that $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ is not

Figure 4.35: NOE-Walk in 13mer4AP-DAP. The assignment of the H6/H8 (abscissa) and H1' (ordinate) region in the $\mathrm{D}_{2} \mathrm{O}$-NOESY spectrum is shown. Red lines mark the NOE-walk for the 4AP-DAP containing strand and green lines for the DAP strand. The starting point (5 '-end) of both walks was denoted by a square, while the endpoint (3 '-end) is indicated by an arrowhead. Note that the 4AP walk is interrupted at the modification site (marked by X), while DAP (D20) is high-field shifted. For clarity only the positions of intraresidual H6/H8-H1' cross-peaks were labeled.
stable in the long term. Fortunately the sample remained stable, but the finally achieved concentration was only 1.2 mM . However, the gained time window allowed for extensive optimization of the pulse sequence and a high number of transients during the NOESY experiment.

4.3.1 Chemical shift analysis

The assignment was achieved by standard methods ${ }^{[19,213]}$ that were already described for 13 merHCF and 13 mer 6 HQ . In Figure 4.35 both NOE walks are shown. The walk of the 4 AP strand (red) is interrupted at the 4 AP site (like the HCF strand), while the complementary strand resembles the 6 HQ strand with shifted signals at the DAP

Chemical Shift Deviation

Figure 4.36: CSD comparison between 13 mer4AP-DAP and different reference strands, which contain either GC or AT as central base pair. Chemical shift differences of all protons belonging to a single residue but different DNA samples were summed and are given as absolute values.
modification. The interruption may indicate deviations from B-DNA stacking at the 4AP site, although the chromophore is linked to a conventional DNA backbone and its H5 resembles the H6 of pyrimidine bases, whereas the interruptions in 13merHCF were caused by the α-glycosidic bond.

In Fig. 4.34 the artificial base pair was depicted with three hydrogen bonds. Even without knowing the structure, it is possible to analyze the hydrogen bonding pattern. Imino proton signals in DNA double strands are usually observed at 12 ppm or higher, when the proton is part of a hydrogen bond. Otherwise they are shifted high-field to values around $10 \mathrm{ppm}{ }^{[213]}$. In case of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$, a sole signal was observed in the

4 Results and discussion

latter region which indicates that a base pair is not correctly hydrogen bonded. Moreover, 4AP contains the only new imino hydrogen and its principle design differs from purines in the sense that the five- and six-membered ring switched positions, so 4AP was suspected to lack a hydrogen bond. It should be noted that a missing hydrogen bond in the center of 4AP-DAP (see Fig. 4.34) also questions the existence of the other desired hydrogen bonds.

The chemical shift deviations of 13 mer4AP-DAP were calculated in comparison to native strands (Fig. 4.36), which contain either GC or AT as central base pair. It must be considered that the spectra were measured at $10^{\circ} \mathrm{C}$ instead of $25^{\circ} \mathrm{C}$, therefore an overall shift in all residues is observed, due to stronger stacking at lower temperature. A prominent example is cytosine at position $26(\mathrm{C} 26)$, which shows the largest CSD among all residues far from modification sites. As stated in the end of section 4.2 .2 of $13 \mathrm{mer} 6 \mathrm{HQ}, \mathrm{C} 26$ is sensitive to fraying at the helix end, which is in case of 13 mer4AP-DAP reduced, due to the lower sample temperature. The deviations around DAP (20) are higher than the average inside the double strand, but among all nucleobase analogues in this work they seem rather small and this maybe related to the fact that DAP is also a pyrimidine like thymine and cytosine. In contrast to this, 4 AP shows the largest CSD to which all its hydrogens contribute, especially the aforementioned H1. So it seems more and more likely that 4AP will not take the desired position inside the helix.

Figure 4.37: Assignment of two imino signal sets in 13mer4AP-DAP. Cross-peaks with the same assignment are circled either yellow or blue. Top and bottom picture represent the two conformations.

4.3.2 NMR solution structure

Two solution structures were found for $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$. In Figure 4.37 the reason for this is depicted. Two sets of imino proton signals can be assigned for the central AT base pairs. The region of the signals indicate correct hydrogen bonding pattern of these base pairs in both conformations. Furthermore, both pairs are adjacent to the 4AP-DAP pair, so that the conformational change should be found here. Two conformations with

Figure 4.38: Averaged structures of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$. The 4AP is marked red and the DAP green, while the corresponding colors for $\mathrm{A}, \mathrm{G}, \mathrm{C}$ and T are blue, yellow, orange and violet. The conformations were named after the number of hydrogen bonds for the 4AP-DAP base pair. Therefore is on the left the " 1 H -bond" conformer and on the right the " 2 H -bond", respectively. RMSD among all hydrogens besides methyl protons is for 1 H -bond $0.52 \AA$ and 2 H bond $0.85 \AA$, respectively. The white arrows indicate the point of view in Fig. 4.40.
different assignment patterns raise the complexity of the structure determination, since the intensity of all NOEs around the central base pairs depends, in addition to the distance, in such a case on the relation between both conformations. All details about the Simulated Annealing simulations can be found in sections 3.1.9 and 3.3.5.

None of the conformers shown in Fig. 4.38 comprises the three desired hydrogen bonds.
However, they were named in accordance to the number of observed hydrogen bonds in the 4AP-DAP base pair, therefore is on the left the " 1 H -bond" conformer and on the right

Figure 4.39: Overlay of the 10 minimum-energy, violation-free structures. The left side corresponds to the 1 H -bond orientation of the average structures (left in Fig. 4.38) and the right to 2 H -bond. The deviations alongside the backbone, especially for the 2 H -bond, are larger than in comparison to the other structures ($13 \mathrm{merHCF}, 13 \mathrm{mer} 6 \mathrm{HQ}$). The problem which arises here is that without RDCs only short distance information from base to base is available. So a weakly bent helix can be described with the same NOEs as a straight helix.
the corresponding " 2 H -bond" structure. Therein, the 1 H -bond conformer is characterized by a straight well-defined B-DNA, while 2 H -bond is wider in the center and starts to bend above the 4AP chromophore. The problem with a bent structure is that there is no evidence for it in the NOE data, since they only provide information from one residue to the next residue, thus limiting the quality of the structure. RDC measurements could validate or falsify the bending, since they provide long range information which describes

Figure 4.40: Close view on the three central base pairs of 13 mer4AP-DAP. The 1 H -bond orientation is again at left and 2 H -bond at right. Interestingly, the 1 H -bond 4AP (left) only stacks to adenine A8, while the five-membered ring faces to the minor groove instead of the center of the helix. Also worth to mention, the six-membered ring in the 2 H -bond conformation is stacked to C 1 '- N 9 bond of adenine A6.
the orientation of the bases in relation to the helical axis, but cannot be measured due to the low concentration of the sample. As a consequence, a second set of structures was calculated, which take advantage of the way restraints are used in Molecular Dynamics. The background and the results will be discussed in the next section (4.3.3).
The overlay of the 10 minimum-energy, violation-free structures in Fig. 4.39 shows more variation along the backbone than the previous structures ($13 \mathrm{merHCF}, 13 \mathrm{mer} 6 \mathrm{HQ}$). Especially the 2 H -bond overlay varies at the helical ends, which is usually compensated by the aforementioned RDCs. It should be noted that the RMSD value can also indicate high flexibility in parts of the structure or the presence of different conformers like in 13 merHCF .

In Figure 4.40 the three central base pairs are shown as indicated by the white arrows in Fig. 4.38. The 1 H -bond orientation is again at left and 2 H -bond at right. One can see that the 4AP-DAP base pair fits into the helical structure for both conformations. Interestingly, the 1 H -bond 4AP (left) only stacks to adenine A8, while the five-membered ring faces to the minor groove instead of the center of the helix. Remember, in case of 13 mer6HQ the glycerol linker placed 6 HQ in a position where stacking with both adjacent

Figure 4.41: Close view on the central base pair of 13 mer4AP-DAP. In the 1 H -bond conformation (top), the 4AP forms a base pair with DAP that clearly resembles the $6 \mathrm{HQ}-\mathrm{C}$ pair in Fig. 4.18. Reason for this is that both chromophores, 4AP and 6 HQ , were linked via the same atom position in their six-membered ring to the backbone. In the bottom picture the 2 H -bond conformer is shown. Although at first sight the bases seem to be in the right position for triple hydrogen bonding, the distances clearly indicate the presence of only two bonds.
adenines was possible. Also worth mentioning is that the six-membered ring in the $2 \mathrm{H}-$ bond conformation is stacked to C1'-N9 bond of adenine A6. So both conformations are somewhat displaced inside the the helix, which might affect the stacking interactions.

Figure 4.18 provides a close view to the central base pairs of both conformations. In the 1 H -bond conformation (top), the 4AP forms a base pair with DAP that clearly resembles

4 Results and discussion

Figure 4.42: NOESY back-calculations of both conformers overlaid with experimental data. The 1 H -bond spectrum is colored red, the 2 H -bond spectrum green, and the experimental spectrum black. The circles depict the same crosspeaks as in Fig. 4.37.
the 6 HQ -C pair in Fig. 4.18. Reason for this is that both chromophores, 4AP and 6HQ, were linked via the same atom position in their six-membered ring to the backbone. The only difference is that the hydrogen bond faces to the minor groove, while the bond in 13mer6HQ faces the major groove, due to the changed perspective indicated in Fig 4.16. In the bottom picture the 2 H -bond conformer is shown. Although at first sight the bases seem to be in the right position for triple hydrogen bonding, the distances clearly indicate the presence of only two bonds. Furthermore, the different placement of 4AP is handled by the 2'-deoxyribose by switching between 2'-endo conformation (top) and 3'-endo (bottom). The latter is typical for A-DNA, thereby explaining the wider center, the interruption of the NOE-walk and the chemical shift deviations of the backbone in the previous section. Also interesting, the backbone of DAP has also changed in the bottom picture to an intermediate state between C2'-exo and C3'-endo.

As last point of this section the back-calculation of the NOESY spectrum will illustrate the two conformations for the spectral region in Fig. 4.37. In order to cover all cross-peaks in the experimental spectrum, both back-calculated spectra are needed.

4.3.3 What if RDCs were included?

In this section it is argued that the lack of RDC information can be overcome by a single assumption. First of all, some important information will be given, how Xplor-NIH ${ }^{[245]}$ handles restrained Molecular Dynamics. The theoretical background introduced the total potential energy $V_{\text {tot }}$ in equation 2.25, which is composed of an effective $V_{\text {eff }}$ and an empirical energy term $V_{e m p}$. All experimental restraints are part of the effective energy, while the empirical term contains force field components like Coulomb or Van-der-Waals interaction.

When a structure calculation has found a supposed global minimum then the total potential energy $V_{\text {tot }}$ only contains $V_{\text {emp }}$, since the contributions of all restraints in $V_{\text {eff }}$ are zero as long as the structure is free of violations. It is important to understand that the restraints do not define the structure in the minimum, instead they limit the possible pathways on the potential energy surface in order to find a reasonable minimum and hence a possible solution structure. The great advantage of this concept is that faulty restraints cannot affect the structure as long as a pathway to a minimum in energy is described. In this case they show up as violated restraints and one has to check the restraint and the structure for the reason of the difference. Usually one has to exclude NOE restraints which are heavily overlapped or near the limit of detection. Other reasons include errors in the assignment or that the structure, when everything else is ruled out, is only in a local minimum and therefore not correct. The latter is the reason, why so many calculations have to be performed and so much time invested to find the solution structure. Additional validity checks like back-calculation of NOESY spectra, Pales plots and RMSD values are helpful in the decision.

In the end, structure determination via restrained Molecular Dynamics means to find the best way to the potential energy minimum. At this point one could ask if the bent H 2 -bond conformation is stuck in a local minimum, since the 1 H -bond conformer and also the other structures (13merHCF, 13mer6HQ) were rod shaped. The next question is then, how to describe a rod shape as a route on the potential energy surface, which can be scanned for a minimum. The headline of this section has already answered the last question. RDCs

Figure 4.43: Averaged structures of 13 mer4AP-DAP with RDCs of 13 merHCF. The 4AP is marked red and the DAP green, while the corresponding colors for A, G, C and T are blue, yellow, orange and violet. Still on the left side is the " 1 H -bond" conformer and on the right the " 2 H -bond", respectively. RMSD among all hydrogens besides methyl protons is for 1 H -bond $0.26 \AA$ and 2 H bond $0.28 \AA$, respectively. The white arrows indicate the point of view in Fig. 4.45.
can provide the long range information that is necessary to describe a straight double strand, but measured RDCs are not available for 13 mer4AP-DAP. However, the required information can be taken from set of RDCs that have proven to describe a straight strand, in this case from 13 merHCF. The only necessary modification prior to their application is that all values that belong to the HCF chromophore will be omitted, since all double strands of this work differ only in their central base pair.

Figure 4.44: Overlay of the 10 minimum-energy, violation-free structures of 13 mer 4 AP DAP with RDCs of 13 merHCF . The left side corresponds to the 1 H -bond orientation of the average structures (left in Fig. 4.38) and the right to 2 H -bond.

Figure 4.43 presents the averaged structures of 13 mer4AP-DAP that were obtained by simply adding RDCs from 13 merHCF (Tab. 3.1) to the simulations described in section 3.3.5. Two straight double strands were obtained. It is now easy to see, how the change of the 4AP backbone to C3'-endo affects the 2 H -bond structure (right panel). The enlarged distance between the adenines A6 and A8, which surround the 4AP chromophore, appears as an uplift of A6 (located above 4AP). The effect of the 4AP-DAP introduction is now limited to the next two base pairs in both directions.
A closer look on the central base pair in Figure 4.45 reveals that the relative positions

Figure 4.45: Close view on the central base pair of 13 mer4AP-DAP with RDCs of 13 merHCF. The only notable difference to the previous picture of the central base pair conformations (Fig. 4.18) is the distance of the missing hydrogen bond (red), which is raised by $0.41 \AA$, a value below the error margin of the involved NOE distances. Neither the number of hydrogen bonds nor the relative positions of 4 AP and DAP have changed. The deviating conformations of the 2'-deoxyribose in the 2 H -bond structure (bottom), for example C3'-endo for 4AP, were also retained.
of 4AP and DAP to each other did not change, which is not surprising. As outlined in the beginning of the section, the RDCs affect mainly the overall shape of the double strand. The only notable difference to the previous picture of the central base pair conformations (Fig. 4.18) is the distance of the missing hydrogen bond (red), which is raised by $0.41 \AA$, a value below the error margin of the involved NOE distances. The reason for the rise

Figure 4.46: Pales ${ }^{[268]}$ plots of experimental 13 merHCF RDCs against predicted values of the of 13 mer4AP-DAP structures (1 H -bond, 2 H -bond right). It is easy to see that the RDC values of 13 merHCF work as well with $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$.
is the induced propeller twist between 4 AP and DAP in contrast to the nearly planar arrangement of the NOE only structure. A base pair twist is not special, in fact planarity is, since it was a side effect of the first crystal structures that offered only averaged values for the helix parameters and was later revised by the first single crystal structures ${ }^{[2,14]}$. Note that the backbone conformation of 4AP in the 2 H -bond structure is still C3'-endo and that DAP also retained its intermediate state between C2'-exo and C3'-endo.

Pales plots for both RDC structures will prove that 13 mer4AP-DAP is as compatible as 13 merHCF to the RDC data (Fig. 4.46).

Finally for this section, it can be summarized that the solution structures, which were found under the assumption of linear double strands, exhibit better RMSD values and less perturbations. So it seems very likely that the RDC structures are closer to the real structures, even though the RDCs came from 13 merHCF. At this point it should be repeated that restraints were used to find a way to the minimum in potential energy, where the structures are defined by the effective energy $V_{e f f}$ and the restraints sum to zero. This clearly shows, how important the RDC measurement for structure determination is. Moreover, it was demonstrated that it is possible to benefit from RDC data of other double strands.

4.3.4 Duplex melting experiments

Figure 4.47: Absorption change of ds13mer4AP-DAP upon melting, when raising temperature from $20{ }^{\circ} \mathrm{C}$ (blue) to $85{ }^{\circ} \mathrm{C}$ (red line; $\left.c_{T}=20.5 \mu \mathrm{M}\right)$. Data from the 1 and 10 mm cuvettes are labelled " 1 x " and " 10 x ", respectively. A ten-times magnification of the latter is labelled " 100 x ".

A sample of double-stranded 13 mer4AP-DAP was prepared in a water/phosphate buffer (10 mM NaH ${ }_{2} \mathrm{PO}_{4}, p H=6.35$) with 150 mM sodium chloride (see sec. 3.3). Measurements were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total concentration $c_{T}=20.5 \mu \mathrm{M}$ of single strands was estimated from maximum absorption around 260 nm at $85^{\circ} \mathrm{C}$. A set of 14 spectra between 20 and $85{ }^{\circ} \mathrm{C}$ were recorded and corrected for density change. Results are shown in Fig. 4.47, where the data from the 1 and 10 mm cuvettes are labelled " 1 x " and " 10 x ", respectively. A ten-times magnification of the latter is labelled " 100 x ".

Analysis of the 13mer4AP-DAP DNA band

Figure 4.48: The UV part of the spectrum was used for SVD of the DNA absorption peak. The first spectrum is blue $\left(20^{\circ} \mathrm{C}\right)$ and the last one is orange $\left(80^{\circ} \mathrm{C}\right)$. The 85 ${ }^{\circ} \mathrm{C}$ measurement (1 mm cuvette for DNA peak) had to be omitted due to an error in the cuvette holder while heating the sample.

The strategy here starts similar to the one in 13 mer6HQ by separate examination of the DNA absorption band. The changes of the DNA peak with increasing temperature $\left(20-80^{\circ} \mathrm{C}\right.$) were quantified in a spectral window from 300 to 220 nm (see Fig. 4.48). The UV absorption spectra in this range were analyzed for principal components via Singular Value Decomposition (SVD). Two components are needed to describe the hyperchromism. Fig. 4.49 shows the basic spectra on the left and the corresponding thermodynamic curves on the right. The first component (red) was set to be the $80^{\circ} \mathrm{C}$ spectrum. As before, the thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor.)

Figure 4.49: Basic spectra are shown left. The first component (red) was set to be the $80^{\circ} \mathrm{C}$ spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.8 while that of the second component increases from 0 to 0.2 .

Upon duplex formation, the red one shows an amplitude decrease of 0.2 . By design, the blue curve shows the same amount as amplitude increase (Fig. 4.49).

Again, the two-state model with stacking interactions was applied to the thermodynamic data shown in figure 4.50. When comparing the basic spectra of 13mer4AP-DAP in figure 4.49 with the DNA part of 13 merHCF (Fig. 4.11) or 13 mer6HQ (Fig. 4.24 one can see that they all look the same. Assuming the same assignment, introduced with 13 merHCF , the red line is related to the whole strand, while the blue line describes the basepairs around the two artificial nucleobases in the center. In contrast to 13 merHCF , the order of the melting points in the right (two-state only) part of figure 4.50 (grey vertical lines) has changed. The blue one comes first at $59.1 \pm 0.1^{\circ} \mathrm{C}$ and the whole strand (red) follows at $59.5 \pm 0.1^{\circ} \mathrm{C}$. In principle, this indicates a weak local melting or bubble formation in the center of the duplex, but when taking the other parameters into account (red: $\Delta H^{\circ}=$ $-330 \pm 20 \mathrm{~kJ} / \mathrm{mol}, \Delta S^{\circ}=-880 \pm 50 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ and blue: $\Delta H^{\circ}=-340 \pm 20 \mathrm{~kJ} / \mathrm{mol}, \Delta S^{\circ}$ $=-930 \pm 60 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$, they are possibly equal within the margin of errors. In order to clarify whether or not there is evidence of local melting, the analysis of the 4AP part of the absorption spectrum is necessary. A lower estimated melting point would support this

Figure 4.50: Thermodynamic curves, scaled to the measured amplitude change of 0.2 . The left panel shows SVD data (points) and fits with a two-state model including stacking (lines). The two-state model part is plotted separately (right panel), representing a melting curve of hyperchromism without the influence of stacking. The grey vertical lines indicate the melting points (derived from the right panel), therein the whole strand (red) melts at 59.5 ${ }^{\circ} \mathrm{C}$ and the center (blue) at $59.1^{\circ} \mathrm{C}$.
theory. A second possible cause, why the blue line has a lower melting point, would be the absorption of 2,4-diaminopyrimidine around 270 nm , but then the effect on the lineshape of the DNA peak is rather small, since there is no evidence of alteration (additional hidden peak) in the basic spectra (Fig. 4.49) and in the end, the theory of local melting would still remain.

Dissection of the 4-Aminophthalimide band

The same procedure was then performed on the spectral window of 4-Aminophthalimide $(\lambda>480 \mathrm{~nm})$. Two components are needed in the SVD to describe the hyperchromism in figure 4.52. The red component describes the rising amplitude of hyperchromism, but compared to the other molecules it has a rather small amplitude change of 0.1 , less than a half of the usually observed value. In addition, it is the only sample with linear lineshape of the blue shift over the full temperature range (blue component). Both observations indicate weaker base-stacking for the 4AP chromophore.

While the red curve was fitted with equation 2.33, representing the two-state model with

Figure 4.51: Spectrum was used for SVD of the 4AP absorption band. The first spectrum is blue $\left(20{ }^{\circ} \mathrm{C}\right)$ and the last one is red $\left(85{ }^{\circ} \mathrm{C}\right)$.
linear stacking, the blue line was fitted by a simple linear least-squares fit, which describes a linear blue shift from 385 nm at $20^{\circ} \mathrm{C}$ down to 379 nm at $85^{\circ} \mathrm{C}$. Best fit parameters for the melting curve are $\Delta H^{\circ}=-360 \pm 40 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=-1000 \pm 100 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ upon hybridization. Interestingly, when looking closely on the duplex part of figure 4.53, we notice an initial decrease of absorption up to $45^{\circ} \mathrm{C}$. This observation suggests that stacking first increases, even though the hypsochromic effect is small ($<2 \%$). This finding can be explained when taking the NMR solution structures into account. At low temperatures the weakly stacked 1 H -bond conformer dominates which changes with rising temperature. Shortly before the melting point more and more molecules are in the 2 H -bond state, which shows a better stacking interaction (see Fig. 4.40) and therefore would explain the initial absorption decrease. From the right panel (Fig. 4.53) a melting point of $56.9^{\circ} \mathrm{C}$ was estimated, which is as supposed lower than the $59.5^{\circ} \mathrm{C}$ (red component) or $59.1^{\circ} \mathrm{C}$ (blue)

Figure 4.52: Basic spectra are shown left. The first component (red) was set to be the $85{ }^{\circ} \mathrm{C}$ spectrum, i.e. it represents the fully separated single strands. The right part shows the thermodynamic curves related to the basic spectra. Upon hybridization, the amplitude of the first-component spectrum (red) decreases from 1 to 0.9.
obtained for the DNA peak. In summary, the theory of local melting in the center of the duplex is supported by its lower melting point, the two melting points of the DNA peak, the linear blue shift and the weak base-stacking of the 4AP chromophore. Additional evidence comes from NMR, where the signal of the 4AP proton H1 was assigned in the region of non-hydrogen-bonded imino protons around 10 ppm (see sec. 4.3.2). Moreover, the $1 \mathrm{H}-$ bond conformation supports the findings of the melting experiments, due to the placing of the five-membered ring into the minor groove region. In case of 2 -aminopurine, which contains an amino group facing towards the minor groove, it has been demonstrated that the base pair dynamics is much faster and thereby lowering the melting temperature ${ }^{[129]}$ in comparison to an adenine containing reference strand (13merRef). It should be noted that both double strands only differed in the position of a single amino group in the center.

4 Results and discussion

Figure 4.53: Melting curve (red), scaled to the measured amplitude change of 0.1. The left panel shows SVD data (points) and fit with a two-state model including stacking (red line) for the red component and, in addition, the peak shift (blue) with a separate axis to allow a direct reading of wavenumbers. The right panel shows the red component alone and without stacking, since it is the only one with melting behaviour. The grey vertical line indicates the melting point of the 4 AP at $56.9^{\circ} \mathrm{C}$. Best fit parameters are $\Delta H^{\circ}=-360 \pm$ $40 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=-1000 \pm 100 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$ for the hybridization.

5 Summary

The same basic sequence of 13 base pairs with chemical modifications only in the middle position was investigated by NMR structure determination. With this conservative approach it becomes possible to study perturbations which are induced by the artificial nucleobase. Especially the influence of base stacking and of the linker can be detailed. Structural differences are also associated with thermodynamic variations. The latter are observed with the help of entire UV/Vis-spectra as function of temperature. In this way the duplex melting process is characterized in local and global terms.

UV/Vis-spectra upon melting were analyzed in their entirety by Singular Value Decomposition (SVD). Thus the spectral shift of the probe absorption band is followed, being caused by the solvatochromicity of the incorporated chromophore. The band is located in the visible range of the spectrum and provides direct information about local melting. In contrast, the strong absorption of the native nucleobases is located in the UV region and contains two kinds of information. One refers to the usually observed global melting of the double strand, the other gives indirect information on local melting, as seen by the nucleobases in the immediate neighborhood of the modification. Altogether three melting points T_{m} are obtained as specified in Tab. 5.1. Melting can now be understood in terms of global and local processes. The latter describe effects near the modified center, like bulge formation upon temperature rise.

NMR structure determination in solution is a valuable instrument to investigate structural perturbations, base stacking, and linker effects. Three chemical modifications were studied in the center of the basic 13mer sequence, representing different types of perturbations. These are (i) the large 2-hydroxy-7-carboxyfluorene (HCF) replacing a full base

5 Summary

pair, (ii) the betaine 6-Hydroxyquinolinium (6HQ) incorporated as glycol nucleic acid (GNA), and (iii) 4-aminophthalimide (4AP) together with 2,4-diaminopyrimidine (DAP) forming an artificial base pair. The NOESY spectra of the HCF and 4AP-DAP double strands gave in each case evidence for the presence of a second conformer. Instead of three structures, two additional conformations were required to fully describe the found cross-peak patterns. As a result, altogether five structures were determined in the course of this study.

Table 5.1: Global and local melting points of the three investigated DNA double strands.

13mer denoted by central base pair	HCF	6HQ	4AP-DAP	Ref ${ }^{[129]}$
Global T_{m} of DNA $\left({ }^{\circ} \mathrm{C}\right)$	59.7	53	59.5	63.3
Local T_{m} of DNA $\left({ }^{\circ} \mathrm{C}\right)$	61.1	53	59.1	
Local T_{m} of Chromophore $\left({ }^{\circ} \mathrm{C}\right)$	61.1	53.1	56.1	

The HCF chromophore is the largest of all fluorescent base analogues in this work and was placed opposite an abasic site, thus making it a full base pair surrogate. HCF adopts two conformations inside the double helix which are distinguished by the methylene group, in the sense that this group faces either towards the major groove or towards the minor groove. The HCF moiety fits well into the helical fold for both conformations. The unusual α-glycosidic linkage of HCF is compensated by small deformations of the 2'-deoxyribose moiety. The sugar switches to conformations other than C2'-endo of B-DNA to allow optimal chromophore incorporation. Because of the sugar flexibility, an equal distribution for both conformations is observed. The abasic site has no effect on HCF, but the lack of a nucleobase raises the flexibility in the center of the counterstrand, since its position is no longer restricted by the stacking of an attached nucleobase. On the other hand, stacking interactions of HCF to the neighboring adenines are accompanied by additional interactions with thymine T21 (and partly T19) of the opposite strand (see Fig. 4.6). The local melting points of the chromophore and of the DNA ($61.1^{\circ} \mathrm{C}$, in Tab. 5.1) agree, and they are $1.4^{\circ} \mathrm{C}$ higher than the global melting point of the double strand $\left(59.7^{\circ} \mathrm{C}\right)$. Even though the local melting indicates a stabilizing effect of HCF, the global melting is lower than for the native double strand 13 merRef with AT in the center $\left(63.3^{\circ} \mathrm{C}\right)$. Both
findings agree well with earlier results of Matray and Kool ${ }^{[97]}$, who used pyrene as base pair surrogate.

The second base analogue, 6 HQ , was placed opposite cytosine with which it forms a single hydrogen bond. The unique feature of this double strand is the incorporation of 6 HQ as GNA. Up to now, structures of nucleic acids with full GNA backbone are known only from X-ray diffraction of crystals ${ }^{[274,275]}$, therefore the solution structure is of general interest. Our linker R-Glycerol is small compared to 2'-deoxyribofuranose. For insertion of the chromophore into the helix one C-C bond length is missing, and another C-C bond length is missing for spacing the adjacent adenines. The first deficiency is compensated by the size of 6 HQ and its linkage to R-glycerol via N 1 , allowing a more diagonal placement of 6 HQ relative to cytosine to reach the distance needed for hydrogen bonding (Fig. 4.13). A side effect of this placement is strong π - π-stacking interaction to adenines A6 and A8 (Fig. 4.17), leading to a huge chemical shift of the H 8 hydrogen in adenine A8. The need to compensate the second missing bond length causes structural perturbations. In order to minimize the distance between 3 '-end of adenine A 6 and the 5 '-end of A 8 , both bases are inclined towards the major groove; thus, the backbone distance is shortened by $1.2 \AA$ in comparison to 13 merRef. As a consequence, a stacking axis of A6-6HQ-A8 is observed that leans towards the major groove, stabilized by strong stacking interactions in between. For the melting analysis of 13 mer 6 HQ it was necessary to develop a variant of the new method for UV/vis spectral analysis, to treat adequately the complex behavior of the 6 HQ chromophore. The double SVD assisted two-state model revealed that 6 HQ not only undergoes a blue shift and hyperchromism upon melting like HCF, but also a change of the absorption spectrum that resembles the alteration from the protonated to the deprotonated state. A closer look on global and local melting shows that only a single melting point within error margins $\left(\pm 0.1^{\circ} \mathrm{C}\right)$ is observed (Tab. 5.1), which is otherwise only found for pure native strands. However this does not prove the native melting character of 13 mer6HQ, since it has the lowest melting point of all double strands. The differing stacking axis of the three central bases destabilizes the 6HQ strand, but the strong stacking interactions also prevent bulge formation. Stability of the duplex is only

5 Summary

maintained by the remaining base pairs far from the center. This competes with the fraying at the helix ends upon temperature rise. Altogether this double strand shows the melting behavior of a shorter duplex.
The last double strand introduces an artificial base pair composed of 4AP and DAP. First evidence that refuted the desired pattern of three hydrogen bonds was found in the NOESY spectrum. There the chemical shift of the H1 proton (in 4AP) was assigned in the non-hydrogen bonded region of the spectrum. In addition, the $\mathrm{H}_{2} \mathrm{O}$-NOESY also proved the presence of the protonated form of DAP (Fig. 4.34). Instead of a structure with three hydrogen bonds, two conformations were found that comprise either a single hydrogen bond or two hydrogen bonds. The single-bonded form is similar to the structure of 13 mer 6 HQ , with a diagonal placement of the 4AP moiety so that its long side faces towards DAP. The reason for this is the linkage via C 6 which corresponds to N 1 in 6 HQ and is well-known from pyrimidine bases. However, 6 HQ and 4AP are in size and shape more comparable to purines which are linked via the five-membered ring, resulting in a different angle of the nucleobase to its counterpart in the opposite strand. The conformer that comprises two hydrogen bonds tries to overcome this by switching the sugar of 4AP to the C3'-endo conformation of A-DNA. Although at first sight all sites which are capable of hydrogen bonding now face each other, distance measurements revealed (in Fig. 4.18) that only two bonds are possible. Interestingly, the melting experiments show that the second form, which exhibits better π - π-stacking interactions, is favored upon rising temperature, causing an initial decrease in absorption. But finally, when comparing local and global melting in 13mer4AP-DAP (Tab. 5.1), bulge formation caused by premelting of the central 4AP-DAP pair is clearly indicated. The melting point of the adjacent base pairs is also lower than the global one, supporting the bulge formation in the center. On the other hand the difference is only $0.4^{\circ} \mathrm{C}$, so the bulge seems to be mostly limited to the 4AP-DAP base pair.

In summary, all investigated double strands suffer from structural perturbations, either caused by the linker or by the chromophore itself. Further development of base analogues and their linkage is clearly needed in future; some general lessons can be already learned
from the set of structures in this work. From 13merHCF it can be concluded that a α glycosidic linkage can be balanced by the 2'-deoxyribofuranose, and that a large aromatic surface can replace a complete base pair, but at the price of increased flexibility. 13mer6HQ demonstrates that R-glycerol is too small in comparison to 2'-deoxyribofuranose. A possible solution is the addition of at least one bond length in order to connect the 3 '-end of adenine A6 with the 5 '-end of A8, but this would raise flexibility. The problem of high flexibility inside the double strand is faster base pair dynamics and hence a lowered duplex stability. Moreover, this effect propagates to the surrounding base pairs in both directions ${ }^{[129]}$. From this point of view the 4AP-DAP base pair linked via the native 2^{\prime} deoxyribofuranose looks more promising. However, the weak point of this design is the linkage of 4AP to the backbone. The connection to the sugar moiety should be changed from the current C6 atom of 4AP to the neighboring C5. This should enable 4AP to form a triple hydrogen bonded base pair with DAP. In such a case one can expect the triple form to be the only present conformer, since both actual conformers require the connection via C6.

The SVD analysis of UV/Vis spectra in their entirety revealed measurable local melting in the DNA absorption band. The local melting is induced by perturbations of the double strand and is only reported by native bases in close proximity to the modification. Native bases as simultaneous detector of global and local melting offer the possibility to study modifications that do not contain separate absorption bands like the chromophores which were studied here. A second possibility could be melting experiments of native double strands comprising an intercalator, for example the groove binding Hoechst 33258. In that case, perturbations of the melting process will be reported by the strand and can then be compared to the signal of the Hoechst dye. The absence of a local melting component in native strands like 13merRef can serve as indicator of undisturbed melting, when observed in modified double strands. Finally, it should be noted that the method can be automated experimentally and analytically. The fully automated variant would allow application as a replacement for the conventional DNA melting experiment at a single wavelength.

6 Zusammenfassung

Die gleiche Grundsequenz von 13 Basenpaaren mit chemischen Modifikationen nur in der mittleren Position wurde mittels NMR Strukturbestimmung untersucht. Mit diesem konservativen Ansatz ist es möglich strukturelle Störungen zu studieren, welche durch die künstliche Nukleobase verursacht wurden. Insbesondere der Einfluss der Basenstapelung sowie des Linkers kann so genau beschrieben werden. Strukturelle Unterschiede gehen auch mit thermodynamischen Änderungen einher. Letztere wurden mit Hilfe vollständiger UV/Vis-Spektren als Funktion der Temperatur erfasst. Auf diese Weise kann der Schmelzprozess des Duplex lokal und global beschrieben werden.
UV/Vis-Spektren beim Schmelzen wurden in ihrer Gesamtheit mittels Singularwertzerlegung (SVD) analysiert. Somit kann die spektrale Verschiebung der Sonden-Absorptionsbande verfolgt werden, welche durch die Solvatochromie des eingebauten Chromophors verursacht wird. Die Bande befindet sich im sichtbaren Bereich des Spektrums und liefert direkt Informationen über das lokale Schmelzen. Im Gegensatz dazu absorbieren die natürlichen Nukleobasen stark im UV-Bereich und enthalten zwei Arten von Informationen. Eine gehört zum normalerweise beobachteten globalen Schmelzen des Doppelstranges, die andere liefert indirekte Informationen über das lokale Schmelzen, wie es von den Nukleobasen in unmittelbarer Umgebung der Modifikation gesehen wird. Insgesamt drei Schmelzpunkte T_{m} wurden erhalten, so wie in Tab. 6.1 angegeben. Das Schmelzen kann nun als globaler und lokaler Prozess verstanden werden. Letzteres beschreibt Effekte in der Nähe des modifizierten Zentrums, beispielsweise Blasenbildung bei steigender Temperatur.

NMR Strukturbestimmung in Lösung ist ein wertvolles Instrument um strukturelle

6 Zusammenfassung

Störungen, Basenstapelung und Linker-Effekte zu untersuchen. Drei chemische Modifikationen, welche unterschiedliche Störungen verursachen, wurden hierfür im Zentrum der 13mer Grundsequenz studiert. Diese sind (i) das große 2-Hydroxy-7-carboxyfluoren (HCF), welches ein komplettes Basenpaar ersetzt, (ii) das Betain 6-Hydroxychinolinium (6HQ), welches als Glykolnukleinsäure (GNA) eingebaut wurde, und (iii) 4-Aminophthalimid (4AP) zusammen mit 2,4-Diaminopyrimidin (DAP), welche ein künstliches Basenpaar bilden. Die NOESY-Spektren der HCF und 4AP-DAP Doppelstränge geben in beiden Fällen Hinweise auf das Vorhandensein einer zweiten Konformation. Anstelle von drei Strukturen, waren zwei zusätzliche Konformationen notwendig, um die gefundenen Kreuz-signal-Muster vollständig zu beschreiben. Im Ergebnis wurden insgesamt fünf Strukturen während der Untersuchung bestimmt.

Table 6.1: Globale und lokale Schmelzpunkte der drei untersuchten DNA Doppelstränge.

13mer benannt nach zentralem Basenpaar	HCF	$\mathbf{6 H Q}$	4AP-DAP	Ref $^{[\mathbf{1 2 9]}}$
Globaler T_{m} der DNA $\left({ }^{\circ} \mathrm{C}\right)$	59.7	53	59.5	63.3
Lokaler T_{m} der DNA $\left({ }^{\circ} \mathrm{C}\right)$	61.1	53	59.1	
Lokaler T_{m} des Chromophors $\left({ }^{\circ} \mathrm{C}\right)$	61.1	53.1	56.1	

Das HCF Chromophor ist das größte von allen fluoreszierenden Basenanaloga in dieser Arbeit und wurde gegenüber einer abasischen Stelle eingebaut, was es zu einem vollen Basenpaar-Ersatz macht. HCF nimmt zwei Konformationen innerhalb des Doppelstranges ein, welche durch die Methylengruppe unterschieden werden, in dem Sinne, dass diese Gruppe entweder in Richtung der großen Furche oder der kleinen Furche zeigt. Das HCFGerüst passt für beide Konformere sehr gut in die helikale Faltung. Die ungewöhnliche α-glykosidische Bindung des HCFs wird kompensiert durch kleine Deformationen des 2'-Deoxyribose-Teils. Der Zucker geht dabei zu Konformationen über, die von C2'-endo für BDNA abweichen, um einen optimalen Einbau des Chromophors zu ermöglichen. Aufgrund der Flexibilität des Zuckers wird eine Gleichverteilung beider Konformere beobachtet. Die abasische Stelle hat keinen Effekt auf das HCF, aber das Fehlen einer Nukleobase erhöht die Flexibilität im Zentrum des Gegenstranges, da dessen Position nicht durch
die Stapelung einer angehängten Nukleobase eingeschränkt wird. Auf der anderen Seite werden Stapelwechselwirkungen des HCF zu den benachbarten Adeninen begleitet von zusätzlichen Wechselwirkungen mit Thymin T21 (und teilweise T19) des Gegenstranges (siehe Fig. 4.6). Der lokale Schmelzpunkt des Chromophors und der DNA ($61.1^{\circ} \mathrm{C}$, in Tab. 6.1) stimmen überein, und sie sind $1,4^{\circ} \mathrm{C}$ höher als der globale Schmelzpunkt des Doppelstranges $\left(59,7^{\circ} \mathrm{C}\right)$. Obwohl das lokale Schmelzen einen stabilisierenden Effekt des HCFs anzeigt, ist der globale Schmelzpunkt niedriger als der des natürlichen Doppelstranges 13 merRef mit AT im Zentrum $\left(63,3^{\circ} \mathrm{C}\right)$. Beide Ergebnisse stimmen sehr gut mit früheren Resultaten von Matray und Kool ${ }^{[97]}$ überein, welche Pyren als Basenpaar-Ersatz verwendeten.

Das zweite Basenanalog, 6HQ, wurde gegenüber Cytosin platziert, mit dem es eine einzelne Wasserstoffbrücke bildet. Die einzigartige Eigenschaft dieses Doppelstranges ist der Einbau von 6 HQ als GNA. Bisher sind nur Röntgen-Kristallstrukturen ${ }^{[274,275]}$ von Nukleinsäuren mit vollem GNA-Rückgrat bekannt, daher ist die Struktur in Lösung von generellem Interesse. Unser Linker R-Glycerol ist klein im Vergleich zu 2'Deoxyribofuranose. Eine C-C-Bindungslänge fehlt für den Einbau des Chromophors in die Helix und eine andere C-C-Bindung fehlt im Raum zwischen den Adeninen. Das erste Manko wird durch die Größe des 6HQ und dessen Bindung via N1 ausgeglichen, diese erlaubt eine mehr diagonale Positionierung von 6 HQ relativ zu Cytosin, um die nötige Distanz für die Wasserstoffbrücke zu erreichen (Fig. 4.13). Ein Nebeneffekt dieser Positionierung ist eine starke π - π-Stapelwechselwirkung zu den Adeninen A6 und A8 (Fig. 4.17), welche zu einer starken chemischen Verschiebung des H8 Wasserstoffs in Adenin A8 führen. Die Notwendigkeit die zweite fehlende Bindungslänge auszugleichen verursacht strukturelle Störungen. Um die Distanz zwischen dem 3'-Ende von Adenin A6 und dem 5'-Ende von A8 zu minimieren, neigen sich beide Basen in Richtung der großen Furche, wodurch der Abstand im Vergleich zu 13merRef um $1,2 \AA$ kürzer ist. Infolgedessen wird eine Stapelachse für A6-6HQ-A8 beobachtet, die sich zur großen Furche hin neigt, stabilisiert durch starke Stapelwechselwirkungen dazwischen. Für die Schmelzanalyse von 13mer6HQ war es notwendig eine Variation der neuen Methode zur UV/Vis-Spektralanalyse zu en-

6 Zusammenfassung

twickeln, um das komplexe Verhalten des 6HQ Chromophors angemessen zu berücksichtigen. Das doppelt SVD gestützte Zwei-Zustände-Modell offenbarte, dass 6HQ beim Schmelzen nicht nur eine Blauverschiebung und Hyperchromie erfährt, sondern auch eine Änderung des Absorptionsspektrums, welche dem Übergang von der protonierten zur deprotonierten Form ähnelt. Ein genauer Blick auf das globale und lokale Schmelzen zeigt, dass innerhalb der Fehlergrenzen ($\pm 0,1^{\circ} \mathrm{C}$) nur ein Schmelzpunkt beobachtet wird, welcher sonst nur in reinen natürlichen Strängen vorkommt. Dennoch beweist dies nicht, dass $13 m e r 6 H Q$ auf natürliche Weise schmilzt, da es von allen Doppelsträngen den niedrigsten Schmelzpunkt besitzt. Die abweichende Stapelachse destabilisiert den 6HQ-Strang, aber die starken Stapelwechselwirkungen verhindern auch eine Blasenbildung. Die Stabilität im Duplex wird nur durch die verbliebenen Basenpaare fern vom Zentrum gewährleistet. Dies konkurriert wiederum mit dem Ausfransen an den Helix-Enden bei steigender Temperatur. Insgesamt zeigt dieser Doppelstrang das Schmelzverhalten eines kürzeren Duplexes.

Der letzte Doppelstrang führt ein künstliches Basenpaar bestehend aus 4AP und DAP ein. Das erste Anzeichen, welches den drei gewünschten Wasserstoffbrücken widersprach, wurde im NOESY-Spektrum gefunden. Darin wurde die chemische Verschiebung des H1 Wasserstoffs (in 4AP) in der nicht über Wasserstoffbrücken gebundenen Region des NOESY-Spektrums zugeordnet. Außerdem bewies das $\mathrm{H}_{2} \mathrm{O}$-NOESY das Vorhandensein der protonierten Form von DAP (Fig. 4.34). Anstelle einer Struktur mit drei Wasserstoffbrücken wurden zwei Konformere gefunden, die entweder eine einzelne oder zwei Wasserstoffbrücken enthalten. Die Form mit einer Brücke ähnelt der Struktur von 13mer6HQ, bei der 4AP-Teil diagonal liegt, so dass dessen lange Seite in Richtung DAP zeigt. Der Grund dafür ist die Bindung über C6, welche dem N1 in 6HQ entspricht und wohlbekannt ist von den Pyrimidin-Basen. Jedoch sind 6HQ und 4AP in Größe und Form eher vergleichbar mit den Purinen, welche über den Fünfring angebunden sind, was wiederum zu einem anderen Winkel zwischen Nukleobase und dem Gegenstück im gegenüberliegenden Strang führt. Das Konformer, welches zwei Wasserstoffbrücken trägt, versucht dies zu umgehen indem der Zucker von 4AP zur C3'-endo Konformation von A-DNA wechselt. Obwohl sich auf den ersten Blick nun alle zu Wasserstoffbrücken fähigen Stellen gegenüberstehen,
zeigen Abstandsmessungen (in Fig. 4.18), dass nur zwei Bindungen möglich sind. Interessanterweise zeigen die Schmelzexperimente, dass die zweite Form, welche bessere $\pi-\pi$ Stapelwechselwirkungen aufweist, mit steigender Temperatur bevorzugt wird, wodurch die Absorption zu Beginn sinkt. Letztlich aber zeigt sich, wenn man das globale und lokale Schmelzen von 13mer4AP-DAP miteinander vergleicht (Tab. 6.1), dass sich eine Blase durch vorzeitiges Schmelzen des zentralen 4AP-DAP-Paares bildet. Der Schmelzpunkt der benachbarten Basenpaare ist ebenfalls niedriger als der globale, was die Blasenbildung im Zentrum unterstützt. Andererseits beträgt der Unterschied nur $0,4^{\circ} \mathrm{C}$, somit scheint die Blase hauptsächlich auf das 4AP-DAP Basenpaar limitiert zu sein.

Zusammengefasst leiden alle untersuchten Doppelstränge unter strukturellen Störungen, welche entweder durch den Linker oder das Chromophor selbst verursacht werden. Die weitere Entwicklung von Basenanaloga und ihrer Anbindung ist daher auch in Zukunft zwingend notwendig. Jedoch lassen sich einige allgemeine Lehren aus der Auswahl an Strukturen in dieser Arbeit ziehen. Aus dem 13merHCF kann geschlussfolgert werden, dass eine α-glykosidische Bindung durch die 2'-Deoxyribofuranose ausgeglichen werden kann, und dass eine große aromatische Oberfläche ein komplettes Basenpaar ersetzen kann, aber zum Preis erhöhter Flexibilität. 13mer6HQ zeigt, dass R-Glycerol im Vergleich zu 2'Deoxyribofuranose zu klein ist. Eine potentielle Lösung wäre der Einbau wenigstens einer zusätzlichen Bindungslänge, um das 3'-Ende von Adenin A6 mit dem 5'-Ende von A8 zu verbinden, aber das würde die Flexibilität erhöhen. Das Problem erhöhter Flexibilität innerhalb des Doppelstranges ist eine schnellere Basenpaardynamik und somit eine geringere Duplexstabilität. Außerdem pflanzt sich dieser Effekt über die umliegenden Basenpaare in beide Richtungen fort ${ }^{[129]}$. Aus dieser Perspektive sieht das 4AP-DAP Basenpaar angebunden über die natürliche 2'-Deoxyribofuranose vielversprechender aus. Jedoch ist der Schwachpunkt dieses Designs die Anbindung von 4AP an das Rückgrat. Die Verbindung zum Zucker-Teil sollte geändert werden vom aktuellen C6-Atom in 4AP zum benachbarten C5. Das sollte es 4AP erlauben ein dreifach wasserstoffverbrücktes Basenpaar mit DAP zu bilden. In diesem Fall kann man erwarten, dass die Dreifach-Form das einzig vorhandene Konformer sein wird, da die beiden gegenwärtigen Konformere die Anbindung über C6

6 Zusammenfassung

benötigen.
Die SVD-Analyse der UV/Vis-Spektren in ihrer Gesamtheit offenbarte ein messbares lokales Schmelzen in der DNA-Absorptionsbande. Das lokale Schmelzen wird durch Störungen in den Doppelsträngen verursacht und wird nur durch die natürlichen Basen in unmittelbarer Umgebung der Modifikation wiedergegeben. Natürliche Nukleobasen als simultaner Detektor für globales und lokales Schmelzen ermöglichen es Modifikationen zu untersuchen, welche im Gegensatz zu den hier genutzten Chromophoren keine separate Absorptionsbande enthalten. Eine zweite Möglichkeit könnten Schmelzexperimente natürlicher Doppelstränge sein, denen ein Interkalator hinzugefügt wurde, wie z.B. der Furchenbinder Hoechst 33258. In jenem Fall würden Störungen des Schmelzprozesses vom Strang angezeigt werden und könnten anschließend mit dem Signal des HoechstFarbstoffs verglichen werden. Die Abwesenheit der lokalen Schmelzkomponente in natürlichen Strängen wie 13merRef kann wiederum als Indikator für ungestörtes Schmelzen in modifizierten Doppelsträngen dienen. Schließlich sollte noch angemerkt werden, dass die Methode sowohl experimentell als auch analytisch automatisiert werden kann. Die voll automatisierte Variante würde es erlauben das konventionelle DNA-Schmelzexperiment bei einer Wellenlänge zu ersetzen.

Appendix

Appendix

1 Chemical shift tables

1.1 13merHCF shift tables

Table 1: ${ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 merHCF. Reference ${ }^{[277]}$ is the signal of HOD at $4.77 \mathrm{pm}(298 \mathrm{~K})$.

Res	H1	H2	H3	H4	H41	H42	H5	H6	H7	H8
$\mathbf{1}$	-	-	-	-	-	-	-	-	-	7.946
$\mathbf{2}$	-	-	-	-	8.269	6.56	5.334	7.51	-	-
$\mathbf{3}$	-	-	13.937	-	-	-	-	7.316	1.62	-
$\mathbf{4}$	12.688	-	-	-	-	-	-	-	-	7.668
$\mathbf{5}$	-	-	-	-	8.189	6.351	5.402	7.344	-	-
$\mathbf{6}$	-	7.105	-	-	-	-	-	-	-	8.313
$\mathbf{7}$	5.851	-	5.905	6.662	-	-	6.94	7.124	-	7.273
$\mathbf{8}$	-	7.346	-	-	-	-	-	-	-	8.018
$\mathbf{9}$	-	-	-	-	7.967	6.373	5.091	7.148	-	-
$\mathbf{1 0}$	12.705	-	-	-	-	-	-	-	-	7.802
$\mathbf{1 1}$	-	-	13.747	-	-	-	-	7.266	1.38	-
$\mathbf{1 2}$	-	-	-	-	8.591	7.002	5.695	7.485	-	-
$\mathbf{1 3}$	-	-	-	-	-	-	-	-	-	7.932
$\mathbf{1 4}$	-	-	-	-	8.16	6.947	5.857	7.578	-	-
$\mathbf{1 5}$	12.893	-	-	-	-	-	-	-	-	7.934
$\mathbf{1 6}$	-	7.882	-	-	-	-	-	-	-	8.203
$\mathbf{1 7}$	-	-	-	-	8.07	6.413	5.201	7.168	-	-
$\mathbf{1 8}$	12.546	-	-	-	-	-	-	-	-	7.792
$\mathbf{1 9}$	-	-	13.213	-	-	-	-	7.191	1.438	-
$\mathbf{2 0}$	-	-	-	-	-	-	-	-	-	-
$\mathbf{2 1}$	-	-	-	-	-	-	-	7.209	1.512	-
$\mathbf{2 2}$	12.545	-	-	-	-	-	-	-	-	7.811
$\mathbf{2 3}$	-	-	-	-	8.253	6.334	5.351	7.328	-	-
$\mathbf{2 4}$	-	7.654	-	-	-	-	-	-	-	8.161
$\mathbf{2 5}$	12.908	-	-	-	-	-	-	-	-	7.653
$\mathbf{2 6}$	-	-	-	-	8.095	6.446	5.201	7.303	-	-

In addition to the tabulated spins HCF contains a H 91 and H 92 at 3.140 and 2.770 ppm, respectively. The corresponding carbon atom is C 9 at 39.3 ppm .

Table 2: ${ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 merHCF

Res	H1'	H1"	H2'	H2"	H3'	H4'	H5'	H5"
1	5.971	-	2.641	2.766	4.837	4.262	-	-
2	6.074	-	2.115	2.514	4.834	4.252	-	-
3	5.727	-	2.113	2.427	4.868	4.095	-	-
4	5.813	-	2.619	2.654	4.978	4.355	-	-
5	5.429	-	1.937	2.275	4.794	4.130	-	-
6	6.317	-	2.755	2.805	5.036	4.377	4.123	4.044
7	-	5.238	2.269	2.352	4.846	4.591	-	-
8	6.092	-	2.51	2.793	4.955	4.394	4.228	4.161
9	5.487	-	2.001	2.32	4.799	4.129	-	-
10	5.94	-	2.587	2.762	4.922	4.349	-	-
11	6.031	-	2.072	2.451	4.856	4.214	-	-
12	5.695	-	2.015	2.359	4.835	4.116	-	-
13	6.152	-	2.62	2.384	4.685	4.181	-	-
14	5.695	-	1.834	2.338	4.673	4.047	3.71	3.692
15	5.435	-	2.71	2.786	4.993	4.303	-	-
16	6.25	-	2.699	2.909	5.056	4.476	-	-
17	5.559	-	1.934	2.306	4.800	4.14	-	-
18	5.918	-	2.575	2.736	4.94	4.342	-	-
19	6.104	-	2.318	2.500	4.902	4.231	-	-
20	4.133	4.109	2.212	2.231	4.761	4.127	-	-
21	5.771	-	1.967	2.406	4.855	4.289	-	-
22	5.746	-	2.586	2.76	4.948	4.316	-	-
23	5.431	-	1.947	2.288	4.798	4.130	-	-
24	5.990	-	2.722	2.876	5.026	4.370	-	-
25	5.798	-	2.454	2.634	4.948	4.339	4.178	4.215
26	6.075	-	2.129	2.196	4.443	4.023	-	-

Appendix

Table 3: ${ }^{13} \mathrm{C}$ chemical shifts of 13 merHCF

Res	C1'	C2	C3'	C4	C1	C2	C3	C4	C5	C6	C8
$\mathbf{1}$	82.1	-	76.6	-	-	-	-	-	-	-	135.8
$\mathbf{2}$	83.7	-	74.0	-	-	-	-	-	95.7	140.1	-
$\mathbf{3}$	82.7	-	75.0	-	-	-	-	-	-	136.6	-
$\mathbf{4}$	81.4	-	76.6	-	-	-	-	-	-	-	135.4
$\mathbf{5}$	83.6	-	73.6	-	-	-	-	-	95.4	139.7	-
$\mathbf{6}$	82.4	-	76.7	-	-	151.5	-	-	-	-	139.1
$\mathbf{7}$	102.0	-	76.4	85.9	109.7	-	112.8	120.3	118.0	125.6	122.3
$\mathbf{8}$	83.1	-	75.0	-	-	150.8	-	-	-	-	138.3
$\mathbf{9}$	83.3	-	73.7	-	-	-	-	-	95.1	139.2	-
$\mathbf{1 0}$	82.1	-	76.3	-	-	-	-	-	-	-	135.4
$\mathbf{1 1}$	82.7	-	75.2	-	-	-	-	-	-	135.8	-
$\mathbf{1 2}$	83.7	-	75.2	-	-	-	-	-	96.0	141.0	-
$\mathbf{1 3}$	81.9	-	70.5	-	-	-	-	-	-	-	136.5
$\mathbf{1 4}$	85.0	-	75.0	-	-	-	-	-	96.7	140.3	-
$\mathbf{1 5}$	81.2	-	76.6	-	-	-	-	-	-	-	135.5
$\mathbf{1 6}$	82.2	-	76.9	-	-	152.4	-	-	-	-	138.3
$\mathbf{1 7}$	83.1	-	73.7	-	-	-	-	-	95.1	139.1	-
$\mathbf{1 8}$	81.9	-	76.4	-	-	-	-	-	-	-	135.3
$\mathbf{1 9}$	82.7	-	74.6	-	-	-	-	-	-	135.9	-
$\mathbf{2 0}$	67.3	32.9	77.3	-	-	-	-	-	-	-	-
$\mathbf{2 1}$	83.7	-	74.8	-	-	-	-	-	-	135.8	-
$\mathbf{2 2}$	81.2	-	76.3	-	-	-	-	-	-	-	135.2
$\mathbf{2 3}$	83.5	-	73.9	-	-	-	-	-	95.4	139.7	-
$\mathbf{2 4}$	82.3	-	76.9	-	-	151.5	-	-	-	-	138.7
$\mathbf{2 5}$	81.1	-	76.2	-	-	-	-	-	-	-	134.4
$\mathbf{2 6}$	84.0	-	68.5	-	-	-	-	-	95.4	140.3	-

1.2 13mer6HQ shift tables

Table 4: ${ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 mer 6 HQ . Reference ${ }^{[277]}$ is the signal of HOD at $4.77 \mathrm{pm}(298 \mathrm{~K})$.

Res	H1	H2	H3	H4	H41	H42	H5	H6	H7	H8
$\mathbf{1}$	-	-	-	-	-	-	-	-	-	7.94
$\mathbf{2}$	-	-	-	-	8.296	6.593	5.329	7.511	-	-
$\mathbf{3}$	-	-	13.93	-	-	-	-	7.323	1.626	-
$\mathbf{4}$	12.683	-	-	-	-	-	-	-	-	7.87
$\mathbf{5}$	-	-	-	-	8.27	6.372	5.36	7.234	-	-
$\mathbf{6}$	-	6.717	-	-	-	-	-	-	-	8.327
$\mathbf{7}$	-	8.82	7.623	8.242	-	-	7.009	-	6.596	7.403
$\mathbf{8}$	-	7.68	-	-	-	-	-	-	-	7.64
$\mathbf{9}$	-	-	-	-	8.045	6.422	5.071	7.097	-	-
$\mathbf{1 0}$	12.722	-	-	-	-	-	-	-	-	7.803
$\mathbf{1 1}$	-	-	13.758	-	-	-	-	7.265	1.38	-
$\mathbf{1 2}$	-	-	-	-	8.607	7.011	5.691	7.481	-	-
$\mathbf{1 3}$	-	-	-	-	-	-	-	-	-	7.926
$\mathbf{1 4}$	-	-	-	-	8.149	6.979	5.845	7.57	-	-
$\mathbf{1 5}$	12.937	-	-	-	-	-	-	-	-	7.945
$\mathbf{1 6}$	-	7.889	-	-	-	-	-	-	-	8.216
$\mathbf{1 7}$	-	-	-	-	8.113	6.445	5.229	7.19	-	-
$\mathbf{1 8}$	12.684	-	-	-	-	-	-	-	-	7.832
$\mathbf{1 9}$	-	-	-	-	-	-	-	7.246	1.442	-
$\mathbf{2 0}$	-	-	-	-	-	-	5.663	7.559	-	-
$\mathbf{2 1}$	-	-	-	-	-	-	-	7.419	1.619	-
$\mathbf{2 2}$	12.5	-	-	-	-	-	-	-	-	7.868
$\mathbf{2 3}$	-	-	-	-	8.296	6.339	5.361	7.333	-	-
$\mathbf{2 4}$	-	7.645	-	-	-	-	-	-	-	8.151
$\mathbf{2 5}$	12.911	-	-	-	-	-	-	-	-	7.645
$\mathbf{2 6}$	-	-	-	-	8.108	6.527	5.166	7.282	-	-

Appendix

Table 5: ${ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 mer 6 HQ

Res	$\mathbf{H 1} \mathbf{'}^{\prime}$	$\mathbf{H 1} "$	$\mathbf{H 2}$	H2"	H3'	H4'	H5'	H5"
$\mathbf{1}$	5.96	-	2.639	2.76	4.836	4.267	3.736	3.728
$\mathbf{2}$	6.067	-	2.118	2.512	4.838	4.161	4.135	4.093
$\mathbf{3}$	5.721	-	2.116	2.435	4.873	4.137	4.091	4.05
$\mathbf{4}$	5.808	-	2.606	2.666	4.974	4.353	4.132	4.058
$\mathbf{5}$	5.528	-	1.803	2.279	4.846	4.117	-	-
$\mathbf{6}$	5.876	-	2.706	2.802	5.028	4.364	4.111	4.043
$\mathbf{7}$	4.993	4.833	4.299	-	4.199	-	-	-
$\mathbf{8}$	5.82	-	2.365	2.681	4.719	4.161	3.899	3.524
$\mathbf{9}$	5.454	-	1.959	2.297	-	-	-	-
$\mathbf{1 0}$	5.952	-	2.586	2.762	4.927	4.351	4.112	4.053
$\mathbf{1 1}$	6.041	-	2.077	2.451	4.86	4.219	4.128	4.115
$\mathbf{1 2}$	5.693	-	2.013	2.358	4.837	4.217	4.12	4.068
$\mathbf{1 3}$	6.147	-	2.623	2.383	4.683	4.18	4.117	4.083
$\mathbf{1 4}$	5.681	-	1.821	2.33	4.669	4.047	3.713	3.689
$\mathbf{1 5}$	5.436	-	2.714	2.791	4.998	4.309	4.081	3.962
$\mathbf{1 6}$	6.257	-	2.714	2.917	5.067	4.482	4.225	4.153
$\mathbf{1 7}$	5.575	-	1.939	2.314	4.816	4.483	4.266	4.151
$\mathbf{1 8}$	5.938	-	2.597	2.74	4.939	4.359	4.142	4.066
$\mathbf{1 9}$	6.055	-	2.152	2.512	4.848	4.256	4.207	4.124
$\mathbf{2 0}$	5.951	-	2.019	2.471	4.843	4.216	4.125	4.096
$\mathbf{2 1}$	5.724	-	2.163	2.403	4.873	4.239	4.122	4.089
$\mathbf{2 2}$	5.788	-	2.608	2.648	4.972	4.348	4.126	4.044
$\mathbf{2 3}$	5.433	-	1.966	2.294	4.815	4.137	4.109	4.083
$\mathbf{2 4}$	5.978	-	2.711	2.864	5.022	4.357	4.109	3.967
$\mathbf{2 5}$	5.787	-	2.444	2.624	4.944	4.337	4.17	4.127
$\mathbf{2 6}$	6.061	-	2.121	2.193	4.436	4.261	4.018	4.021

Table 6: ${ }^{13} \mathrm{C}$ chemical shifts of 13 mer 6 HQ

Res	C1'	C2'	C3'	C4'	C1	C2	C3	C4	C5	C6	C8
$\mathbf{1}$	82.1	-	76.5	86.2	-	-	-	-	-	-	135.5
$\mathbf{2}$	84.0	-	74.0	-	-	-	-	-	95.7	140.2	-
$\mathbf{3}$	83.0	-	75.3	-	-	-	-	-	-	136.5	-
$\mathbf{4}$	81.4	37.6	76.6	-	-	-	-	-	-	-	135.4
$\mathbf{5}$	83.3	-	-	-	-	-	-	-	95.5	139.7	-
$\mathbf{6}$	81.5	-	76.9	-	-	151.1	-	-	-	-	138.9
$\mathbf{7}$	-	-	-	-	-	144.1	121.3	145.3	110.6	-	117.4
$\mathbf{8}$	82.3	36.4	-	-	-	151.6	-	-	-	-	137.9
$\mathbf{9}$	83.3	36.9	76.3	-	-	-	-	-	95.2	139.3	-
$\mathbf{1 0}$	82.1	-	76.6	-	-	-	-	-	-	-	135.5
$\mathbf{1 1}$	82.8	36.4	75.2	-	-	-	-	-	-	135.8	-
$\mathbf{1 2}$	83.7	36.5	75.2	-	-	-	-	-	96.1	140.9	-
$\mathbf{1 3}$	82.0	39.1	70.6	85.1	-	-	-	-	-	-	136.4
$\mathbf{1 4}$	85.2	37.1	75.1	85.5	-	-	-	-	96.7	140.3	-
$\mathbf{1 5}$	81.4	-	76.8	-	-	-	-	-	-	-	135.5
$\mathbf{1 6}$	82.2	-	77.0	84.8	-	152.5	-	-	-	-	138.3
$\mathbf{1 7}$	83.2	37.0	74.1	-	-	-	-	-	95.5	139.1	-
$\mathbf{1 8}$	82.0	37.6	76.6	-	-	-	-	-	-	-	135.5
$\mathbf{1 9}$	82.7	36.3	-	-	-	-	-	-	-	135.8	-
$\mathbf{2 0}$	84.3	37.4	-	-	-	-	-	-	95.1	141.3	-
$\mathbf{2 1}$	82.9	-	-	83.3	-	-	-	-	-	136.6	-
$\mathbf{2 2}$	81.3	-	76.8	-	-	-	-	-	-	-	135.5
$\mathbf{2 3}$	83.4	36.9	74.2	-	-	-	-	-	95.5	139.7	-
$\mathbf{2 4}$	82.2	37.6	76.9	84.5	-	151.9	-	-	-	-	138.9
$\mathbf{2 5}$	81.5	39.0	75.2	-	-	-	-	-	-	-	134.5

Appendix

1.3 13mer4AP-DAP shift tables

Table 7: ${ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 mer4AP-DAP. Reference ${ }^{[277]}$ is the signal of HOD at $4.94 \mathrm{pm}(283 \mathrm{~K})$.

Res	H1	H2	H3	H41	H42	H5	H6	H7	H8
1	12.697	-	-	-	-	-	-	-	7.904
2	-	-	-	8.255	6.585	5.251	7.462	-	-
3	-	-	13.952	-	-	-	7.293	1.569	-
4	12.704	-	-	-	-	-	-	-	7.846
5	-	-	-	8.231	6.365	5.324	7.234	-	-
6	-	$\begin{aligned} & 7.424 \\ & 7.502 \end{aligned}$	-	-	-	-	-	-	8.001
7	11.228	-	-	-	-	6.452	-	-	-
8	-	$\begin{aligned} & 7.347 \\ & 7.760 \end{aligned}$	-	-	-	-	-	-	8.079
9	-	-	-	7.974	6.459	5.128	7.185	-	-
10	12.675	-	-	-	-	-	-	-	7.79
11	-	-	13.789	-	-	-	7.241	1.324	-
12	-	-	-	8.587	7.06	5.636	7.448	-	-
13	-	-	-	-	-	-	-	-	7.888
14	-	-	-	8.212	6.972	5.782	7.528	-	-
15	12.92	-	-	-	-	-	-	-	7.911
16	-	7.831	-	-	-	-	-	-	8.172
17	-	-	-	8.084	6.486	5.153	7.144	-	-
18	12.697	-	-	-	-	-	-	-	7.781
	12.682							-	
19	-	-	14.179	-	-	-	7.239	1.425	-
			13.791						
20	6.795	-	-	-	-	-	7.598	-	-
21	-	-	13.443	-	-	-	7.361	1.565	-
			13.670						
22	12.56	-	-		-	-	-	-	7.831
23	-	-	-	8.271	6.374	5.332	7.321	-	-
24	-	7.591	-	-	-	-	-	-	8.12
25	12.885	-	-	-	-	-	-	-	7.615
26	-	-	-	8.086	6.469	5.046	7.198	-	-

Table 8: ${ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 mer 4 AP -DAP

Res	$\mathbf{H 1} \mathbf{'}^{\prime}$	H2'	H2"	H3'	H4'	H5 ${ }^{\prime}$	H5"
$\mathbf{1}$	5.903	2.607	2.712	4.785	4.233	3.692	3.667
$\mathbf{2}$	6.015	2.073	2.454	4.787	4.191	4.107	4.054
$\mathbf{3}$	5.647	2.089	2.399	4.807	4.189	4.086	4.014
$\mathbf{4}$	5.77	2.57	2.603	4.941	4.314	4.083	4.004
$\mathbf{5}$	5.418	1.844	2.203	4.732	4.181	4.089	4.045
$\mathbf{6}$	5.987	2.549	2.89	4.788	4.285	4.066	3.962
$\mathbf{7}$	6.241	1.534	2.004	4.605	4.191	3.964	-
$\mathbf{8}$	6.033	2.622	2.739	4.824	4.318	4.045	3.967
$\mathbf{9}$	5.469	1.99	2.286	4.732	4.117	-	-
$\mathbf{1 0}$	5.927	2.558	2.735	4.92	4.323	4.098	4.024
$\mathbf{1 1}$	6.002	2.05	2.412	4.764	4.184	4.073	3.965
$\mathbf{1 2}$	5.589	1.981	2.312	4.785	4.147	4.074	3.997
$\mathbf{1 3}$	6.094	2.594	2.327	4.644	4.143	4.05	4.024
$\mathbf{1 4}$	5.597	1.787	2.287	4.621	3.998	3.67	3.65
$\mathbf{1 5}$	5.366	2.67	2.726	4.958	4.26	4.028	4.001
$\mathbf{1 6}$	6.21	2.663	2.868	5.01	4.443	4.176	4.1
$\mathbf{1 7}$	5.517	1.928	2.279	4.774	-	4.11	4.211
$\mathbf{1 8}$	5.888	2.572	2.706	4.905	4.314	4.101	4.033
$\mathbf{1 9}$	5.952	2.074	2.446	4.806	4.319	4.182	4.085
$\mathbf{2 0}$	4.676	1.955	2.294	4.723	4.186	4.083	4.015
$\mathbf{2 1}$	5.709	2.116	2.387	4.832	4.149	4.082	4.04
$\mathbf{2 2}$	5.771	2.575	2.617	4.923	4.305	4.08	3.986
$\mathbf{2 3}$	5.348	1.956	2.263	4.765	4.084	-	-
$\mathbf{2 4}$	5.943	2.669	2.834	4.982	4.327	4.078	3.936
$\mathbf{2 5}$	5.726	2.392	2.579	4.925	4.298	3.998	3.961
$\mathbf{2 6}$	5.981	2.095	2.144	4.389	4.227	3.967	3.956

Appendix

2 Input files for Molecular Dynamics calculations

In this chapter the protocols of the MD simulations are given using 13 merHCF as example. All samples were using the same set of protocols, so they are not shown explicitly for each one. In case of 13 mer4AP-DAP, a modification was necessary for the final MD script. All parts that are necessary to implement RDC values were commented, since they were not measured for this duplex.

2.1 Input file to generate extended strands

This file is used to generate extended single strands of the duplexes that were used as input to calculate the start-structure.

```
remarks file lars_13merHC-.inp
remarks Sequence 13merHC-,lars 5/2011
topology @lars_nucleic.top {*Read topology file for chldna.*}
end
parameter
@lars_nucleic.par
hbonds
        acce=true don=5.5 doff=6.5
        dcut=7.5 aon=60.0 aoff=80.0
        acut=100.0
end
    nbonds
        atom cdie shift eps=1.0 e14fac=0.4
        cutnb=7.5 ctonnb=6.0 ctofnb=6.5
        nbxmod=5 vswitch
    end
end
    {*We are generating one strand*}
        {*at a time. *}
    segment
    name="A " {*This name has to match the *}
                                    {*four characters in columns 73-*}
                                    {*76 in the coordinate *}
                                    {*file; in XPLOR this name is *}
    chain
    LINK NUC HEAD - * TAIL + * END
    LAST 3TER HEAD - * END
```

```
FIRST 5TER TAIL + * END
Sequence GUA CYT THY GUA CYT ADE HC- ADE CYT GUA THY CYT GUA end
end
end
for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main
    patch deox reference=nil=( resid $1 ) end
end loop main
    {*at a time. *}
    segment
    name="B " {*This name has to match the *}
                                    {*four characters in columns 73-*}
                                    *76 in the coordinate *}
                                    {*file; in XPLOR this name is *}
    chain
LINK NUC HEAD - * TAIL + * END
LAST 3TER HEAD - * END
FIRST 5TER TAIL + * END
Sequence CYT GUA ADE CYT GUA THY ABA THY GUA CYT ADE GUA CYT end
end
end
for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main
    patch deox reference=nil=( segid b AND resid $1 ) end
end loop main
end
vector do ( resid = encode ( decode ( resid ) + 13 ) ) (segid "B ")
vector do (segid = " ") (segid "A " or segid "B ")
vector ident (x) ( all )
vector do (x=x/3.) ( all )
vector do (y=random(0.5) ) ( all )
vector do (z=random(0.5) ) ( all )
```


Appendix

```
vector do (fbeta=50) (all)
    {*Friction coefficient, in 1/ps.*}
vector do (mass=100) (all) {*Heavy masses, in amus.*}
```


parameter

```
nbonds cutnb=5.5 rcon=20. nbxmod=-2 repel=0.9 wmin=1. tolerance=0.5 rexp=2 irexp=2 inhibit=0.25
```


end

```
end
flags exclude * include bond angle vdw end
minimize powell nstep=500 nprint=10 end
flags include impr dihedral end
minimize powell nstep=500 nprint=10 end
dynamics verlet
nstep \(=500\) timestep \(=0.001\) iasvel=maxwell firsttemp= 300.
tcoupling \(=\) true tbath \(=300\). nprint=50 iprfrq=0
end
```


parameter

```
nbonds
rcon=2. nbxmod=-3 repel=0.75
end
end
minimize powell nstep=100 nprint=25 end
dynamics verlet
nstep \(=1500\) timestep=0.001 iasvel=maxwell firsttemp= 300.
tcoupling \(=\) true tbath \(=300\). nprint=100 iprfrq=0
end
flags exclude vdw elec end
hbuild selection=( hydrogen ) phistep=360 end
hbuild selection=( hydrogen ) phistep=4 end
flags include vdw elec end
minimize powell nstep=4000 nprint=50 end
write coordinates output=start_13merHC-.pdb end
write structure output=start_13merHC-.psf end
print threshold=0.02 bonds
print threshold=3.0 angles
print threshold=3.0 dihedrals
print threshold=3.0 impropers
stop
```


2.2 Input file to generate start-structure

This protocol is used to generate the start-structure and only uses NOE distance restraints.

```
remarks file nmr/sa.inp
remarks Simulated annealing protocol for NMR structure determination.
remarks The starting structure for this protocol can be any structure with
remarks a reasonable geometry, such as randomly assigned torsion angles or
remarks extended strands.
remarks Author: Michael Nilges
{====>}
evaluate ($init_t = 3000) {*Initial simulated annealing temperature.*}
{====>}
evaluate ($high_steps= 48000) {*Total number of steps at high temp.*}
{====>}
evaluate ($cool_steps = 6000 ) {*Total number of steps during cooling.*}
parameter {*Read the parameter file.*}
{====>}
    @lars_nucleic.par
end
{====>}
structure @start_13merHC-.psf end {*Read the structure file.*}
{====>}
coordinates @start_13merHC-.pdb {*Read the coordinates.*}
noe
{====>}
    nres=3000 {*Estimate greater than the actual number of NOEs.*}
    class all
{====>}
    @NOE_13merHCF_xplor.tbl {*Read NOE distance ranges.*}
    @hbond_13mer_HCF.tbl
end
{====>}
restraints dihedral
    nass = 1000
    @dihedral_13mer_HCF_cut_ABDNA.tbl {*Read dihedral angle
    restraints.*}
end
@plane_13mer_HCF.inp
{* Reduce the scaling factor on the force applied to disulfide *}
{* bonds and angles from 1000.0 to 100.0 in order to reduce computation instability. *}
parameter
    bonds ( name SG ) ( name SG ) 100. TOKEN
    angle ( name CB ) ( name SG ) ( name SG ) 50. TOKEN
end
flags exclude * include bonds angle impr vdw elec noe cdih plan end
```


Appendix

\{*Friction coefficient for MD heatbath, in 1/ps. *\}

vector do (fbeta=10) (all)
$\{*$ Uniform heavy masses to speed molecular dynamics.*\}
vector do (mass=100) (all)
noe
\{*Parameters for NOE effective energy term.*\}
ceiling=1000
averaging * cent
potential * soft
scale $\quad * 50$.
sqoffset * 0.0
sqconstant * 1.0
sqexponent * 2
soexponent * 1
asymptote * 0.1 \{*Initial value--modified later.*\}
rswitch * 0.5
end
parameter \{*Parameters for the repulsive energy term.*\} nbonds
repel=1. \{*Initial value for repel--modified later.*\}
rexp=2 irexp=2 rcon=1.
nbxmod=3
wmin=0.01
cutnb=4.5 ctonnb=2.99 ctofnb=3.
tolerance $=0.5$
end
end
restraints dihedral
scale=5.
end
\{====>\}
evaluate (\$end_count=100) \{*Loop through a family of 100 structures.*\}
coor copy end
valuate ($\$$ count $=0$)
evaluate ($\$$ count2 $=0$)
while (\$count < \$end_count) loop main
evaluate (\$count=\$count+1)
evaluate (\$count2=\$count2+1)
coor swap end
coor copy end
\{* ===1nitial minimization.*\}
restraints dihedral scale=5. end
noe asymptote * 0.1 end
parameter nbonds repel=1. end end
constraints interaction
(all) (all) weights * 1 vdw 0.002 end end
minimize powell nstep=50 drop=10. nprint=25 end

```
    {* ========================================= High-temperature dynamics.*}
constraints interaction (all) (all)
    weights * 1 angl 0.4 impr 0.1 vdw 0.002 end end
evaluate ($nstep1=int($high_steps * 2. / 3. ) )
evaluate ($nstep2=int($high_steps * 1. / 3.))
dynamics verlet
    nstep=$nstep1 timestep=0.003 iasvel=maxwell firstt=$init_t
    tcoupling=true tbath=$init_t nprint=50 iprfrq=0
end
    {* ============== Tilt the asymptote and increase weights on geometry.*}
noe asymptote * 1.0 end
constraints interaction
            (all) (all) weights * 1 vdw 0.002 end end
{* Bring scaling factor for S-S bonds back *}
parameter
    bonds ( name SG ) ( name SG ) 1000. TOKEN
    angle ( name CB ) ( name SG ) ( name SG ) 500. TOKEN
end
dynamics verlet
    nstep=$nstep2 timestep=0.001 iasvel=current tcoupling=true
    tbath=$init_t nprint=50 iprfrq=0
end
{* ================================================= Cool the system.*}
restraints dihedral scale=200. end
evaluate ($final_t = 100) { K }
evaluate ($tempstep = 50) { K }
evaluate ($ncycle = ($init_t-$final_t)/$tempstep)
evaluate ($nstep = int($cool_steps/$ncycle))
evaluate ($ini_rad = 0.9) evaluate ($fin_rad = 0.75)
evaluate ($ini_con= 0.003) evaluate ($fin_con= 4.0)
evaluate ($bath = $init_t)
evaluate ($k_vdw = $ini_con)
evaluate ($k_vdwfact = ($fin_con/$ini_con)^(1/$ncycle))
evaluate ($radius= $ini_rad)
evaluate ($radfact = ($fin_rad/$ini_rad)^(1/$ncycle))
evaluate ($i_cool = 0)
while ($i_cool < $ncycle) loop cool
    evaluate ($i_cool=$i_cool+1)
    evaluate ($bath = $bath - $tempstep)
```


Appendix

evaluate (\$k_vdw=min(\$fin_con,\$k_vdw*\$k_vdwfact))
evaluate (\$radius=max (\$fin_rad,\$radius*\$radfact))
parameter nbonds repel=\$radius end end
constraints interaction (all) (all)
weights * 1. vdw \$k_vdw end end
dynamics verlet
nstep=\$nstep time=0.001 iasvel=current firstt=\$bath
tcoup=true tbath=\$bath nprint=\$nstep iprfrq=0
end

```
{===>} {*Abort condition.*}
    evaluate ($critical=$temp/$bath)
    if ($critical > 10.) then
        display ****&&&& rerun job with smaller timestep (i.e., 0.003)
        stop
    end if
end loop cool
{* =============================================== Final minimization.*}
constraints interaction (all) (all) weights * 1. vdw 1. end end
    parameter
                                    {*Parameters for the repulsive energy term.*}
        nbonds
        repel=0. {*Initial value for repel--modified later.*}
        SWITCH
        vSWITCH
        RDIE
        cutnb=11.5
        nbxmod=5
        wmin=0.01
        ctofnb=10.5
        ctonnb=9.5
        tolerance=0.5
    end
end
flags exclude * include bonds angle impr vdw elec noe cdih plan end
minimize powell nstep=5000 drop=10.0 nprint=25 end
{* ================================= Write out the final structure(s).*}
print threshold=0.5 noe
evaluate ($rms_noe=$result)
evaluate ($violations_noe=$violations)
print threshold=5. cdih
evaluate ($rms_cdih=$result)
evaluate ($violations_cdih=$violations)
print thres=0.05 bonds
evaluate ($rms_bonds=$result)
print thres=5. angles
evaluate ($rms_angles=$result)
print thres=5. impropers
evaluate ($rms_impropers=$result)
```

```
    remarks ===============================================================
    remarks overall,bonds,angles,improper,vdw,noe,cdih,elec
    remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih, $elec
    remarks ================================================================
    remarks bonds,angles,impropers,noe,cdih
    remarks rms-d: $rms_bonds,$rms_angles,$rms_impropers,$rms_noe,$rms_cdih
    remarks ===============================================================
    remarks
    oe, cdih
    remarks violations.: $violations_noe, $violations_cdih
    remarks ================================================================
    remarks enviol: $ener $$violations_noe $violations_cdih
    remarks ===============================================================
{===>}} {*Name(s) of the family of final structures.*}
    evaluate ($filename="z13merHC-"+encode($count)+".pdb")
    write coordinates output =$filename end
    evaluate ($filename2="z13merHC-"+encode($count2)+".noe")
    set display=$filename2 end
    @@picktbl_13merHCF
    close $filename2 end
    set display=OUTPUT end
end loop main
stop
```


2.3 Input file to finally calculate the NMR solution structure

The final MD protocol uses the start-structure, NOE distance restraints and RDC values to calculate the NMR solution structure. In case of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ all lines that implement RDC values were set as comments to omit them in the calculation.

```
# Das ist das zur Zeit gueltige Skript mit allen Neuerungen!
# Hier wird das modifizierte python-file protocol.py benutzt!
\begin{tabular}{ll} 
seed & \(=10\) \\
numberOfStructures & \(=100\) \\
startStructure & \(=1\)
\end{tabular}
```

\# User-specific which has to be adjusted for each new sample
lsdSampleName = "13merHC-" \# specify sample name
outFilename = lsdSampleName+"_STRUCTURE.pdb" \# pdb output filename
lsdNOEexp = "NOE_13merHCF_xplor.tbl" \# file for reading in experimental NOE constraints
lsdDipoInp = "RDC_13merHCF.inp.xplor"
\# file for reading in experimental RDC constraints
lsdDipoInpMe = "RDC_13merHCF_Me.inp.xplor"

Appendix

\# file for reading in experimental Me-RDC constraints
lsdInitCoord = "start_"+lsdSampleName+".pdb"
\# file created with initial extended structure coordinates
lsdInitPSF = "start_"+lsdSampleName+".psf" \# file created with initial extended structure
1sdPlan \quad "plane_13merHCF.inp" \# file for reading in planar constraints
lsdHbond \quad "hbond_13merHCF.tbl" \# file for reading in Hbond constraints
1sdDihe = "dihedral_13mer_HCF_cut_ABDNA.tbl"
\# file for reading in ideal dihedral constraints

lsdNOEthresh $=0.5$	\# threshold for NOE error reports	
lsdRDCthresh $=2.5$	\# threshold for RDC error reports	
lsdRDCscale $=5.0$	\# scaling factor for RDCs	
lsdMeRDCscale $=0.5$		
\# scaling factor for methyl RDCs (should usually be $0.1 * l$ sdRDCscale)		
lsdFixedRDC $=1$		
\# if lsdFixedRDC is 0, fixed values are used, else floating ones		
lsdDaRDC	$=-22.43$	\# Da-value when using fixed values
lsdRhRDC	$=0.2174$	\# Rhombicity when using fixed values

\# end of lsd mod \#
xplor.parseArguments() \# check for typos on the command-line
simWorld.setRandomSeed(seed)

\#

\# Create the PSF and initial PDB files as an extended structure
import protocol
protocol.initParams("lsd_old_nucleic")
protocol.initTopology("lsd_old_nucleic")
protocol.initStruct(lsdInitPSF)

\#

\# starting coords
\#
protocol.initCoords(lsdInitCoord)
\# list of potential terms used in refinement
from potList import PotList
potList $=$ PotList()
crossTerms=PotList('cross terms') \# can add some pot terms which are not
\# refined against- but included in analysis

```
# parameters to ramp up during the simulated annealing protocol
#
from simulationTools import MultRamp, StaticRamp, InitialParams
rampedParams=[]
highTempParams=[]
from varTensorTools import create_VarTensor, calcTensor
media={}
for medium in ['pf1']:
    media[medium] = create_VarTensor(medium)
    pass
```

```
rom xplorPot import XplorPot
#planarity restraints
xplor.command("@%s" % lsdPlan)
potList.append(XplorPot("plan",xplor.simulation))
#NOE potentials
from noePotTools import create_NOEPot
noePots = PotList("noe")
noe = create_NOEPot("noeAll",lsdNOEexp)
noe.setPotType("hard")
noe.setThreshold(lsdNOEthresh)
noePots.append(noe)
need to be satisfied by all structure
noeHB = create_NOEPot("noeNH",1sdHbond)
noeHB.setPotType("hard")
noeHB.setScale(1000)
noeHB.setThreshold( 0.1 )
noePots.append(noeHB)
potList.append(noePots)
rampedParams.append( StaticRamp("noePots.setScale( 50 )"))
protocol.initDihedrals(lsdDihe)
potList.append(XplorPot("CDIH"))
highTempParams.append( StaticRamp("potList['CDIH'].setScale(200)") )
rampedParams.append( StaticRamp("potList['CDIH'].setScale(200)") )
#rampedParams.append( MultRamp(10,200,"potList['CDIH'].setScale(VALUE)") )
from rdcPotTools import Da_prefactor, create_RDCPot, scale_toCH
rdcPots = PotList('rdcs')
# weight is the relative weighting of expts, as determined by expt. error
for (name,medium,weight,files) in 
    ('JCH' ,'pf1',lsdRDCscale,lsdDipoInp),('methyl' ,'pf1',lsdMeRDCscale,lsdDipoInpMe)
    ]:
    term = create_RDCPot(name,oTensor=media[medium],defThreshold=1sdRDCthresh)
    if type(files)==type('string'):
            files=(files,)
            pass
        for file in files:
            term.addRestraints( open(file).read())
            pass
        erm.setShowAllRestraints(1)
        term.setScale(weight)
        #term.setAveType("average")
        term.setAveType("sum")
        print name
        scale_toCH(term) #also sets useDistance
        print term.info()
        print term.gyroA()
        dcPots.append(term)
        pass
```


Appendix

```
potList.append(rdcPots)
rampedParams.append( MultRamp(0.01,1,"rdcPots.setScale( VALUE )") )
from rdcPotTools import Da_prefactor
print "factor:", Da_prefactor['CH'] / Da_prefactor["NH"]
for medium in media.values():
    calcTensor(medium)
    print "medium: ", medium.instanceName(), \
        "Da: ",medium.Da(), "Rh: ",medium.Rh()
    pass
#let's try fixing Da, Rh:
print medium
for (medium,Da,Rh) in (('pf1',1sdDaRDC,1sdRhRDC),):
    medium = media[medium]
    medium.setDa(Da)
    medium.setRh(Rh)
    pass
```

```
potList.append( XplorPot("VDW"))
potList.append( XplorPot("elec"))
rampedParams.append( StaticRamp("""xplor.command(')'param nbonds
    atom
    repel=0
    wmin=0.01
    nbxmod=5
    cutnb=58.5
    ctonnb=56.5
    ctofnb=57.5
    tolerance=0.5
    rdie
    vswitch
    switch
        end end'"')""") )
for name in ("bond","angl","impr"):
        potList.append( XplorPot(name))
        pass
rampedParams.append( MultRamp(0.4,1.0,"potList['ANGL'].setScale(VALUE)"))
rampedParams.append( MultRamp(0.1,1.0,"potList['IMPR'].setScale(VALUE)"))
```

from ivm import IVM
import varTensorTools
mini $=\operatorname{IVM}() \quad$ \#initial alignment of orientation tensor axes
for medium in (('pf1'),) : media[medium]. setFreedom("fixDa, fixRh")
varTensorTools.topologySetup(mini,media.values())
protocol.initMinimize(mini,
numSteps=20)
mini.fix("not resname ANI")
mini.run() \#this initial minimization is not strictly necessary

```
#uncomment to allow Da, Rh to vary
if lsdFixedRDC==0:
    pass
else:
    for medium in (('pf1'),): media[medium].setFreedom("varyDa, varyRh")
dyn = IVM()
protocol.initDynamics(dyn,potList=potList)
varTensorTools.topologySetup(dyn,media.values())
protocol.torsionTopology(dyn)
# Give atoms uniform weights, except for the anisotropy axis
from atomAction import SetProperty
AtomSel("not resname ANI").apply( SetProperty("mass",100.) )
varTensorTools.massSetup(media.values(),300)
AtomSel("all ").apply( SetProperty("fric",10.))
##
## minc used for final cartesian minimization
##
from selectTools import IVM_groupRigidSidechain
minc = IVM()
protocol.initMinimize(minc,potList=potList)
IVM_groupRigidSidechain(minc)
protocol.cartesianTopology(minc,"not resname ANI")
varTensorTools.topologySetup(minc,media.values())
init_t1 = 200000
init_t2 = 20000
init_t3 = 3000
from simulationTools import AnnealIVM
anneal2= AnnealIVM(initTemp =init_t2,
                                    finalTemp=init_t3,
                                    tempStep =500,
                                    ivm=dyn,
                                    rampedParams = rampedParams)
anneal3= AnnealIVM(initTemp =init_t3,
                finalTemp=25,
                tempStep =25,
                ivm=dyn,
                rampedParams = rampedParams)
```

\# initialize parameters for initial minimization.
InitialParams (rampedParams)
\# high-temp dynamics setup - only need to specify parameters which
\# differfrom initial values in rampedParams
InitialParams (highTempParams)
\# initial minimization
protocol.initMinimize(dyn,

[^0]
Appendix

numSteps=50)
dyn.run()
\# initial minimization
protocol.initMinimize(dyn,
potList=potList, numSteps=1000)
minc.run()
def calcOneStructure(loopInfo):
\# mod by lsd: second annealing loop, actual annealing
\# initialize parameters for high temp dynamics.
InitialParams (rampedParams)
\# high-temp dynamics setup - only need to specify parameters which
\# differfrom initial values in rampedParams
InitialParams(highTempParams)
protocol.initDynamics(dyn,
initVelocities=1,
bathTemp=init_t2,
potList=potList,
finalTime=50)
dyn.setETolerance(init_t2/100) \#used to det. stepsize. default: t/1000 dyn.run()
\# initialize parameters for cooling loop
InitialParams (rampedParams)
\# perform simulated annealing
\#
protocol.initDynamics(dyn,
finalTime=0.5, \#time to integrate at a given temp
numSteps=0, \# take as many steps as necessary \#eTol_minimum=0.001 \# cutoff for auto-TS det.
)
anneal2.run()
anneal3.run()
\#
\# torsion angle minimization
\#
protocol.initMinimize(dyn, numSteps=5000)
dyn.run()
\#\#
\#\#all atom minimization
\#\#
protocol.initMinimize(minc,potList=potList, numSteps=3000)
minc.run()
\#
\# perform analysis and write structure
loopInfo.writeStructure(potList, crossTerms)
pass

```
from simulationTools import StructureLoop
StructureLoop(numStructures=numberDfStructures,
startStructure=startStructure,
structLoopAction=calcOneStructure,
pdbTemplate=outFilename,
genViolationStats=1,
averageFilename="average_min.pdb",
averageFitSel="not resname ANI and not (name H71 or name H72 or name H73)",
averageRefineSteps=15,
averageTopFraction=0.1,
averagePotList=potList).run()
```


2.4 Parameter file used by Xplor-NIH

```
IRNA PARAMETER FILE 'FRAMEOWRK' FROM PARALLHDG.DNA AND ATOM NAMES
! AND HEAVY ATOM PARAMETERS FROM DNA-RNA.PARAM
!INCLUDES ALL NONEXCHANGEABLE HYDROGEN TERMS FOR BOND, ANGLE, AND
!IMPROPERS WITH ENERGY CONSTANT VARIABLES: $kchbond, $kchangle, AND $kchimpr.
!BOND, ANGLE, AND IMPROPERS WERE ESTIMATED FROM VALUES FROM THE STANDARD
!NUCLEOTIDES OF INSIGHTII 95.0 (BIOSYM/MOLECULAR SIMULATIONS).
!CREATED 2/24/96-- JASON P. RIFE AND PETER B. MOORE
! DNA-RNA-ALLATOM.PARAM
et echo=off message=off end
```

! checkversion 1.0
evaluate (\$kchbond = 2000)
evaluate (\$kchangle $=1000$)
evaluate (\$kchimpr = 1000)

Appendix

BOND CY10 CY25	1000.0	$1.351!$ Nobs $=$	1
BOND CY12 NY13	1000.0	$1.339!$ Nobs $=$	1
BOND CY12 NY16	1000.0	$1.314!$ Nobs $=$	1
BOND CY12 NY24	1000.0	$1.366!$ Nobs $=$	1
BOND NY13 HY14	1000.0	$1.008!$ Nobs $=$	1
BOND NY13 HY15	1000.0	$1.006!$ Nobs $=$	1
BOND NY16 CY17	1000.0	$1.342!$ Nobs $=$	1
BOND CY17 CY25	1000.0	$1.450!$ Nobs $=$	1
BOND CY17 NY26	1000.0	$1.326!$ Nobs $=$	1
BOND CY18 HY19	1000.0	$1.092!$ Nobs $=$	1
BOND CY18 CY20	1000.0	$1.527!$ Nobs $=$	1
BOND CY18 OY23	1000.0	$1.425!$ Nobs $=$	1
BOND CY2O HY21	1000.0	$1.089!$ Nobs $=$	1
BOND CY20 HY22	1000.0	$1.089!$ Nobs $=$	1
BOND OY23 HY30	1000.0	$0.963!$ Nobs $=$	1
BOND NY24 HY31	1000.0	$1.010!$ Nobs $=$	1
BOND NY26 HY27	1000.0	$1.014!$ Nobs $=$	1
BOND NY26 HY28	1000.0	$1.008!$ Nobs $=$	1

ANGLe	HY19	CY18	CY20	500.0	111.73	$!$	Nobs	$=$	1
ANGLe	HY19	CY18	OY23	500.0	111.35	$!$	Nobs	$=$	1
ANGLe	CY20	CY18	OY23	500.0	106.94	!	Nobs	$=$	1
ANGLe	CY8	CY20	CY18	500.0	101.56	!	Nobs	$=$	1
ANGLe	CY8	CY20	HY21	500.0	110.76	!	Nobs	=	1
ANGLe	CY8	CY20	HY22	500.0	113.50	$!$	Nobs	=	1
ANGLe	CY18	CY20	HY21	500.0	108.80	!	Nobs	$=$	1
ANGLe	CY18	CY20	HY22	500.0	110.87	$!$	Nobs	$=$	1
ANGLe	HY21	CY20	HY22	500.0	110.92	!	Nobs	$=$	1
ANGLe	CY18	OY23	нүзО	500.0	109.89	!	Nobs	$=$	1
ANGLe	CY10	NY24	CY12	500.0	120.27	!	Nobs	$=$	1
ANGLe	CY10	NY24	HY31	500.0	119.01	$!$	Nobs	=	1
ANGLe	CY12	NY24	HY31	500.0	120.70	!	Nobs	=	1
ANGLe	C1D	CY25	CY10	500.0	122.92	!	modde	d	lsd
ANGLe	C1D	CY25	CY17	500.0	121.43	!	modde	d	1sd
ANGLe	CY10	CY25	CY17	500.0	115.50	!	Nobs	=	1
ANGLe	CY17	NY26	HY27	500.0	119.25	!	Nobs	=	1
ANGLe	CY17	NY26	HY28	500.0	118.79	!	Nobs	$=$	1
ANGL	Y27	NY26	HY28	500.	120.67		Nob		

\{ Note: edit if necessary \} DIHEdral HY29 OY1 CY2 HY3 DIHEdral HY29 OY1 CY2 HY4 DIHEdral HY29 OY1 CY2 CY5 DIHEdral OY1 CY2 CY5 HY6 DIHEdral OY1 CY2 CY5 OY7

750.0		60.00	Nobs	1	Value		60.14
750.0	0	-60.00	Nobs	1	Value		-60.46
750.0	0	180.00	! Nobs =	1	Value		-179.72
750.0	0	180.00	! Nobs	1	Value		172.91
750.0	0	-60.00	! Nobs	1	Value		-69.50
750.0	0	-60.00	! Nobs	1	Value		-65.45
750.0	0	60.00	! Nobs	1	Value	=	52.14
750.0	0	180.00	! Nobs	1	Value	=	171.28
750.0	0	60.00	! Nobs	1	Value		51.84
750.0	0	120.00	! Nobs	1	Value		122.24
750.0	0	-120.00	! Nobs	1	Value		-119.94
750.0	0	0.00	! Nobs	1	Value		-2.57
750.0	0	-90.00	! Nobs	1	Value	=	-96.57
750.0	0	-90.00	! Nobs	1	Value		-99.03
750.0	0	-90.00	! Nobs	1	Value	=	-89.40
750.0	0	90.00	! Nobs	1	Value	=	95.37
750.0	0	-90.00	! Nobs	1	Value	=	-83.70
750.0	0	180.00	! Nobs	1	Value	=	177.39
750.0	0	0.0	! Nobs	1	Value	=	-1.13
750.0	0	0.0	! Nobs	1	Value	$=$	-1.67
750.0	0	180.00	! Nobs	1	Value	=	179.81
750.0	0	0.0	! Nobs	1	Value	=	-4.80
750.0	0	180.00	! Nobs	1	Value	=	179.53
750.0	0	180.00	! Nobs	1	Value	=	174.19
750.0	0	0.0	! Nobs	1	Value	=	-1.49
750.0	0	0.0	! Nobs	1	Value	=	-0.22
750.0	0	180.00	! Nobs	1	Value	=	-178.44
750.0	0	180.00	! Nobs	1	Value	=	-179.63
750.0	0	0.0	! Nobs	1	Value	=	2.16
750.0	0	180.00	! Nobs	1	Value	=	179.93
750.0	0	0.0	- ! Nobs	1	Value	=	-0.68
750.0	0	180.00	Nobs	1	Value	=	-177.69
750.0	0	0.0	- ! Nobs	1	Value	=	0.81
750.0	0	0.00	! Nobs	1	Value	=	2.91
750.0	0	180.00	! Nobs =	1	Value	=	-178.58

Appendix

DIHEdral CY12 NY16 CY17 CY25 DIHEdral CY12 NY16 CY17 NY26 DIHEdral NY16 CY17 CY25 CY8 DIHEdral NY16 CY17 CY25 CY10 DIHEdral NY26 CY17 CY25 CY8 DIHEdral NY26 CY17 CY25 CY10 DIHEdral NY16 CY17 NY26 HY28 DIHEdral CY25 CY17 NY26 HY28 DIHEdral CY5 CY18 CY20 HY21 DIHEdral HY19 CY18 CY20 HY22 DIHEdral OY23 CY18 CY20 CY8 DIHEdral CY2O CY18 OY23 HY30

750.00	0.00 ! Nobs =	1 ... Value	-2.69
750.00	180.00 ! Nobs	1 ... Value	178.27
750.00	180.00 ! Nobs	1 ... Value	-172.01
750.00	0.00 ! Nobs $=$	1 ... Value	3.74
750.00	0.00 ! Nobs $=$	1 ... Value	7.00
750.00	180.00 ! Nobs	1 ... Value	-177.26
750.00	0.00 ! Nobs	1 ... Value	-1.69
750.00	180.00 ! Nobs $=$	Value	179.27
750.00	90.00 ! Nobs $=$	Value	80.22
750.00	90.00 ! Nobs	Value	82.56
750.00	90.00 ! Nobs	1 ... Value	81.38
750.00	180.00 ! Nobs $=$	1 ... Value	170.64

\{ Note: edit if necessary \} IMPRoper CY2 OY1 HY3 HY4 IMPRoper CY5 CY2 HY6 OY7 ! >>> NOTE - unusual value for IMPRoper CY8 OY7 HY9 CY2O IMPRoper CY10 HY11 NY24 CY25 IMPRoper CY12 NY13 NY16 NY24 IMPRoper NY13 CY12 HY14 HY15 IMPRoper CY17 NY16 CY25 NY26
$750.0035 .000!$ Nobs $=1 \ldots$ Value $=33.228$
$750.00-35.000$! Nobs $=1 \ldots$ Value $=-38.195$
750.0035 .000 ! Nobs $=1 \ldots$ Value $=41.369$
750.000 .000 ! Nobs $=1 \ldots$ Value $=-0.545$
$750.000 .000!$ Nobs $=1 \ldots$ Value $=0.351$
$750.000 .000!$ Nobs $=1 \ldots$ Value $=0.940$
$750.000 .000!$ Nobs $=1 \ldots$ Value $=0.570$
following improper : $\quad 40.17$ reset to +35.0
750.0035 .000 ! Nobs = $1 \ldots$ Value $=40.170$
$750.0035 .000!$ Nobs $=1 \ldots$ Value $=30.715$
750.000 .000 ! Nobs $=1 \ldots$ Value $=0.769$
$750.000 .000!$ Nobs $=1 \ldots$ Value $=-2.663 \mathrm{mod}$ by lsd IMPRoper CY25 C1D CY10 CY17
following improper : $\quad-7.15$ reset to 0.0
>>> NOTE - unusual value for following improper : -7.15 reset to 0.0
IMPRoper NY26 CY17 HY27 HY28 $750.00 \quad 0.000$! Nobs $=\quad 1 \ldots$ Value $=-7.146$
!add IMPRoper for chirality around C1,
IMPRoper H C2D O4D CY25 \$kchimpr 0 -65.280
\{ Note: edit if necessary \}
NONBonded OY1 $0.1591 \quad 2.8509 \quad 0.1591 \quad 2.8509$! assuming Oxygen
$\begin{array}{llll}\text { NONBonded CY2 } & 0.1200 & 3.7418\end{array}$
NONBonded HY3 0.04981 .4254 NONBonded HY4 $0.0498 \quad 1.4254$

NONBonded CY5 0.12003 .7418
NONBonded HY6 $0.0498 \quad 1.4254$
$\begin{array}{llll}\text { NONBonded OY7 } & 0.1591 & 2.8509\end{array}$
NONBonded CY8 0.12003 .7418 NONBonded HY9 $0.0498 \quad 1.4254$ NONBonded CY10 0.12003 .7418 NONBonded HY11 $0.0498 \quad 1.4254$ $\begin{array}{llll}\text { NONBonded CY12 } & 0.1200 & 3.7418\end{array}$ NONBonded NY13 $0.2384 \quad 2.8509$ NONBonded HY14 $0.0498 \quad 1.4254$ NONBonded HY15 0.04981 .4254 NONBonded NY16 $0.2384 \quad 2.8509$ NONBonded CY17 $0.1200 \quad 3.7418$ $\begin{array}{llll}\text { NONBonded CY18 } & 0.1200 & 3.7418\end{array}$ NONBonded HY19 $0.0498 \quad 1.4254$ NONBonded CY2O 0.12003 .7418 NONBonded HY21 $0.0498 \quad 1.4254$ NONBonded HY22 0.04981 .4254 NONBonded OY23 $0.1591 \quad 2.8509$
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.04981 .4254 ! assuming Hydrogen
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.15912 .8509 ! assuming Oxygen
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.10003 .3854 ! assuming Carbon
0.23842 .8509 ! assuming Nitrogen
0.04981 .4254 ! assuming Hydrogen
0.04981 .4254 ! assuming Hydrogen
0.23842 .8509 ! assuming Nitrogen
0.10003 .3854 ! assuming Carbon
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.10003 .3854 ! assuming Carbon
0.04981 .4254 ! assuming Hydrogen
0.04981 .4254 ! assuming Hydrogen
0.15912 .8509 ! assuming Oxygen

NONBonded NY24	0.2384	2.8509	0.2384	2.8509	! assuming Nitrogen
NONBonded CY25	0.1200	3.7418	0.1000	3.3854	! assuming Carbon
NONBonded NY26	0.2384	2.8509	0.2384	2.8509	! assuming Nitrogen
NONBonded HY27	0.0498	1.4254	0.0498	1.4254 ! assuming Hydrogen	
NONBonded HY28	0.0498	1.4254	0.0498	1.4254 ! assuming Hydrogen	
NONBonded HY29	0.0498	1.4254	0.0498	1.4254 ! assuming Hydrogen	
NONBonded HY30	0.0498	1.4254	0.0498	1.4254 ! assuming Hydrogen	
NONBonded HY31	0.0498	1.4254	0.0498	1.4254 ! assuming Hydrogen	

BOND	0X1	CX2	1000.0	1.428	! Nobs =	=	1	
BOND	0x1	HX21	1000.0	0.962	! Nobs $=$	=	1	
BOND	CX2	HX3	1000.0	1.096	! Nobs =	=	1	1
BOND	CX2	HX4	1000.0	1.099	! Nobs =	$=$	1	1
BOND	CX2	CX5	1000.0	1.518	! Nobs $=$	$=$	1	
BOND	CX5	HX6	1000.0	1.098	! Nobs $=$	$=$	1	
BOND	CX5	0X7	1000.0	1.430	! Nobs =	$=$	1	
BOND	CX5	CX14	1000.0	1.551	! Nobs $=$		1	
BOND	0x7	CX8	1000.0	1.435	! Nobs $=$	=	1	
BOND	Cx8	HX9	1000.0	1.094	! Nobs $=$	$=$	1	
BOND	CX8	CX16	1000.0	1.536	! Nobs $=$	$=$	1	
BOND	C1D	CX20	1000.0	1.509	! modded	d by	y 1	sd
BOND	CX10	HX11	1000.0	1.082	! Nobs $=$	=	1	
BOND	CX10	CX20	1000.0	1.391	! Nobs $=$	=	1	
BOND	CX10	CX23	1000.0	1.406	! Nobs	=	1	
BOND	CX12	CX23	1000.0	1.407	! Nobs	=	1	
BOND	CX12	CX24	1000.0	1.374	! Nobs $=$	$=$	1	
BOND	CX12	HX34	1000.0	1.083	! Nobs $=$	$=$	1	
BOND	CX13	CX20	1000.0	1.398	! Nobs $=$	$=$	1	
BOND	CX13	CX24	1000.0	1.396	! Nobs $=$	$=$	1	
BOND	CX13	CX30	1000.0	1.482	! Nobs $=$	$=$	1	
BOND	CX14	HX15	1000.0	1.093	! Nobs $=$	$=$	1	
BOND	CX14	CX16	1000.0	1.524	! Nobs $=$	$=$	1	
BOND	CX14	0x19	1000.0	1.430	! Nobs $=$	$=$	1	
BOND	CX16	HX17	1000.0	1.090	! Nobs =	=	1	
BOND	CX16	HX18	1000.0	1.088	! Nobs $=$	=	1	
BOND	0x19	HX22	1000.0	0.963	! Nobs $=$	=	1	1
BOND	CX23	NX25	1000.0	1.381	! Nobs $=$	$=$	1	
BOND	CX24	CX29	1000.0	1.497	! Nobs	$=$	1	
BOND	NX25	HX26	1000.0	1.007	! Nobs $=$	$=$	1	
BOND	NX25	HX27	1000.0	1.006	! Nobs $=$	$=$	1	
BOND	NX28	CX29	1000.0	1.393	! Nobs $=$	$=$	1	
BOND	NX28	CX30	1000.0	1.408	! Nobs $=$	$=$	1	
BOND	NX28	нх33	1000.0	1.009	! Nobs $=$	$=$	1	
BOND	CX29	0×32	1000.0	1.208	! Nobs $=$	$=$	1	
BOND	CX30	0x31	1000.0	1.210	! Nobs $=$		1	
\{ Note: edit if necessary \}								
ANGLe	CX2	0x1	HX21	500.0	108.71	!	Nob	s $=$
ANGLe	OX1	CX2	HX3	500.0	111.02	!	Nob	s $=$
ANGLe	OX1	CX2	HX4	500.0	110.85	! N	Nob	s =

Appendix

ANGLe	OX1	CX2	CX5	500.0	109.55	Nob	$=$	1
ANGLe	HX3	CX2	HX4	500.0	108.36	Nobs $=$	=	1
ANGLe	HX3	CX2	CX5	500.0	108.57	Nobs	=	1
ANGLe	HX4	CX2	CX5	500.0	108.42	Nobs	=	1
ANGLe	Cx2	CX5	HX6	500.0	107.54	! Nobs $=$	$=$	1
ANGLe	CX2	CX5	0X7	500.0	109.63	! Nobs $=$	$=$	1
ANGLe	CX2	CX5	CX14	500.0	114.88	! Nobs $=$	$=$	1
ANGLe	HX6	CX5	0x7	500.0	108.82	! Nobs $=$	=	1
ANGLe	HX6	CX5	CX14	500.0	108.72	! Nobs =	=	1
ANGLe	0X7	CX5	CX14	500.0	107.12	! Nobs $=$	=	1
ANGLe	CX5	0X7	CX8	500.0	109.83	! Nobs	=	1
ANGLe	0X7	CX8	HX9	500.0	109.62	! Nobs $=$	=	1
ANGLe	OX7	CX8	CX16	500.0	104.20	! Nobs	=	1
ANGLe	04D	C1D	CX20	500.0	109.88	! mod	by	sd
ANGLe	HX9	CX8	CX16	500.0	109.16	! Nobs		1
ANGLe	H	C1D	CX20	500.0	109.27	!	b	sd
ANGLe	C2D	C1D	CX20	500.0	114.55	!	y	d
ANGLe	HX11	CX10	CX20	500.0	118.07	Nobs	=	1
ANGLe	HX11	CX10	CX23	500.0	119.45	Nobs	=	1
ANGLe	CX20	CX10	CX23	500.0	122.48	! Nobs	$=$	1
ANGLe	CX23	CX12	CX24	500.0	117.51	! Nobs	=	1
ANGLe	CX23	CX12	HX34	500.0	121.57	! Nobs	=	1
ANGLe	CX24	CX12	HX34	500.0	120.92	! Nobs	=	1
ANGLe	CX20	CX13	CX24	500.0	120.33	! Nobs	=	1
ANGLe	CX20	CX13	CX30	500.0	131.38	! Nobs	=	1
ANGLe	CX24	CX13	CX30	500.0	108.28	! Nobs $=$	=	1
ANGLe	CX5	CX14	HX15	500.0	111.38	! Nobs	=	1
ANGLe	CX5	CX14	CX16	500.0	103.02	Nobs	=	1
ANGLe	CX5	CX14	0X19	500.0	112.03	! Nobs	=	1
ANGLe	HX15	CX14	CX16	500.0	111.74	! Nobs	$=$	1
ANGLe	HX15	CX14	0X19	500.0	110.45	! Nobs	=	1
ANGLe	CX16	CX14	0×19	500.0	107.98	! Nobs	=	1
ANGLe	Cx8	CX16	CX14	500.0	102.58	! Nobs	=	1
ANGLe	CX8	CX16	HX17	500.0	109.82	! Nobs	=	1
ANGLe	CX8	CX16	HX18	500.0	112.71	! Nobs	=	1
ANGLe	CX14	CX16	HX17	500.0	109.59	! Nobs $=$	=	1
ANGLe	CX14	CX16	HX18	500.0	111.72	! Nobs	=	1
ANGLe	HX17	CX16	HX18	500.0	110.18	! Nobs	=	1
ANGLe	CX14	0×19	HX22	500.0	108.93	Nobs	=	1
ANGLe	C1D	CX20	CX10	500.0	120.99	mod	d by	1sd
ANGLe	C1D	CX20	CX13	500.0	121.86	mod	d by	lsd
ANGLe	CX10	CX20	CX13	500.0	117.13	! Nobs	=	1
ANGLe	CX10	CX23	CX12	500.0	119.62	! Nobs	=	1
ANGLe	CX10	CX23	NX25	500.0	120.09	! Nobs	=	1
ANGLe	CX12	CX23	NX25	500.0	120.24	! Nobs	$=$	1
ANGLe	Cx12	CX24	CX13	500.0	122.92	! Nobs	=	1
ANGLe	CX12	CX24	CX29	500.0	128.41	! Nobs	$=$	1
ANGLe	CX13	CX24	CX29	500.0	108.67	! Nobs $=$	=	1
ANGLe	CX23	NX25	HX26	500.0	117.56	! Nobs $=$	=	1
ANGLe	CX23	NX25	HX27	500.0	117.77	! Nobs $=$	=	1
ANGLe	HX26	NX25	HX27	500.0	114.53	! Nobs $=$	$=$	1
ANGLe	CX29	NX28	CX30	500.0	113.29	Nobs	=	1
ANGLe	CX29	NX28	HX33	500.0	123.64	Nobs	=	1
ANGLe	CX30	NX28	HX33	500.0	123.04	Nobs	=	1
ANGLe	CX24	CX29	NX28	500.0	104.62	! Nobs	=	1
ANGLe	CX24	CX29	0x32	500.0	129.17	! Nobs $=$	$=$	1

| ANGLe NX28 CX29 0X32 | 500.0 | 126.21 | Nobs $=$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ANGLe CX13 CX30 NX28 | 500.0 | $105.13!$ | Nobs $=$ | 1 |
| ANGLe CX13 CX30 0X31 | 500.0 | $130.41!$ | Nobs $=$ | 1 |
| ANGLe NX28 CX30 0X31 | 500.0 | $124.46!$ Nobs $=$ | 1 | |

\{ Note: edit if necessary \}
DIHEdral HX21 OX1 CX2 HX3 DIHEdral HX21 OX1 CX2 HX4 DIHEdral HX21 OX1 CX2 CX5 DIHEdral OX1 CX2 CX5 HX6 DIHEdral OX1 CX2 CX5 CX14 DIHEdral HX3 CX2 CX5 HX6 DIHEdral HX3 CX2 CX5 OX7 DIHEdral HX3 CX2 CX5 CX14 DIHEdral HX4 CX2 CX5 HX6 DIHEdral CX14 CX5 OX7 CX8 DIHEdral CX5 $\begin{array}{llll}0 \times 7 & \text { CX8 } & \text { HX9 }\end{array}$ DIHEdral HX9 CX8 CX16 CX14 DIHEdral CX20 CX8 CX16 HX18 DIHEdral CX16 CX8 CX20 CX10 DIHEdral CX16 CX8 CX20 CX13 DIHEdral HX11 CX10 CX20 CX8 DIHEdral HX11 CX10 CX20 CX13 DIHEdral CX23 CX10 CX20 CX8 DIHEdral CX23 CX10 CX20 CX13 DIHEdral HX11 CX10 CX23 CX12 DIHEdral HX11 CX10 CX23 NX25 DIHEdral CX20 CX10 CX23 CX12 DIHEdral CX20 CX10 CX23 NX25 DIHEdral CX24 CX12 CX23 CX10 DIHEdral CX24 CX12 CX23 NX25 DIHEdral HX34 CX12 CX23 CX10 DIHEdral HX34 CX12 CX23 NX25 DIHEdral CX23 CX12 CX24 CX13 DIHEdral CX23 CX12 CX24 CX29 DIHEdral HX34 CX12 CX24 CX13 DIHEdral HX34 CX12 CX24 CX29 DIHEdral CX24 CX13 CX20 CX8 DIHEdral CX24 CX13 CX20 CX10 DIHEdral CX30 CX13 CX20 CX8 DIHEdral CX30 CX13 CX20 CX10 DIHEdral CX20 CX13 CX24 CX12 DIHEdral CX20 CX13 CX24 CX29 DIHEdral CX30 CX13 CX24 CX12 DIHEdral CX30 CX13 CX24 CX29 DIHEdral CX20 CX13 CX30 NX28 DIHEdral CX20 CX13 CX30 0X31 DIHEdral CX24 CX13 CX30 NX28 DIHEdral CX24 CX13 CX30 0x31 DIHEdral CX5 CX14 CX16 HX17 DIHEdral HX15 CX14 CX16 HX18 DIHEdral 0X19 CX14 CX16 CX8 DIHEdral CX5 CX14 OX19 HX22 DIHEdral HX15 CX14 OX19 HX22 DIHEdral CX16 CX14 OX19 HX22 DIHEdral CX12 CX24 CX29 NX28

750.0	0	60.00	N	No	1		Value		59.
750.0	0	-60.00	N	Nobs $=$	1		Value		-61.50
750.0	0	180.00	N	Nobs $=$	1		Value		178.90
750.0	0	180.00	N	Nobs $=$	1		alue		171.53
750.0	0	60.00	N	Nobs $=$	1		alue		50.36
750.0	,	-60.00	N	Nobs $=$	1		lue		-67.09
750.0	0	60.00	N	Nobs	1		lue	$=$	51.08
750.0	0	180.00	N	Nobs $=$	1		alue	=	171.74
750.0	0	60.00	N	Nobs $=$	1		alue	=	50.44
750.0	0	0.00	N	Nobs	1		alue	=	9.07
750.0	0	90.00	N	Nobs	1		alue	=	87.96
750.0	0	-90.00	! N	Nobs =	1		Value	=	-80.38
750.0	0	-90.00	N	Nobs	1		Value	=	-82.97
750.0	0	-90.00	N	Nobs	1		Value	=	-96.73
750.0	0	90.00	N	Nobs	1		Value	=	81.66
750.0	0	0.00	N	Nobs $=$	1		Value	=	-2.07
750.0	0	180.00	N	Nobs $=$	1		Value	=	179.46
750.0	0	180.00	N	Nobs $=$	1		Value	=	178.46
750.0	0	0.00	N	Nobs	1		Value	=	0.00
750.0	0	180.00	N	Nobs	1		Value	=	-179.04
750.0	0	0.00	! N	Nobs	1		alue	=	-1.73
750.0	0	0.00	! N	Nobs	1		alue	=	0.42
750.0	0	180.00	! N	Nobs	1		Value	=	177.73
750.0	0	0.00	N	Nobs	1		Value	=	-0.40
750.0	0	180.00	N	Nobs	1		Value	=	-177.71
750.0	0	180.00	N	Nobs	1		Value	=	179.18
750.0	0	0.00	N	Nobs	1		Value	=	1.86
750.0	0	0.00	N	Nobs	1		Value	=	-0.02
750.0	0	180.00	N	Nobs	1		Value	=	179.67
750.0	0	180.00	N	Nobs	1		Value	=	-179.59
750.0	0	0.00	N	Nobs	1		Value	=	0.10
750.0	0	180.00	! N	Nobs	1		ulu	=	-178.86
750.0	0	0.00	N	Nobs	1		Value	=	-0.41
750.0	0	0.00	N	Nobs	1		Value	=	2.05
750.0	0	180.00	N	Nobs	1		Value	=	-179.49
750.0	0	0.00	N	Nobs	1		Value	=	0.43
750.0	0	180.00	! N	Nobs	1		Value	=	-179.31
750.0	0	180.00	! N	Nobs	1		Value	=	179.71
750.0	0	0.00	N	Nobs	1		Value	=	-0.03
750.0	0	180.00	N	Nobs	1		Value	=	178.75
750.0	0	0.00	N	Nobs	1		Value	=	-1.46
750.0	0	0.00	N	Nobs $=$	1		Value	=	-0.42
750.0	0	180.00	N	Nobs $=$	1		Value	=	179.37
750.0	0	90.00	N	Nobs $=$	1		Value	=	86.21
750.0	0	90.00	! N	Nobs =	1		Value	=	88.94
750.0	0	90.00	! N	Nobs $=$	1		Value	=	88.25
750.0	0	-60.00	! N	Nobs $=$	1		Value	=	-67.94
750.0	0	60.00	! N	Nobs $=$	1		Value	=	56.85
750.0	0	180.00	! N	Nobs $=$	1		Value	=	179.31
750.0	0	180.00	! N	Nobs =	1	..	Value	=	-179.25

Appendix

DIHEdral	CX12	CX24	CX29	0x32	750.0	0	0.00	!	Nobs	1		Value	0.74
DIHEdral	Cx13	CX24	CX29	NX28	750.0	0	0.00	!	Nobs	1		Value	0.48
DIHEdral	CX13	CX24	CX29	0×32	750.0	0	180.00	!	Nobs	1		Value	-179.54
DIHEdral	Сх30	NX28	CX29	CX24	750.0	0	0.00	!	Nobs	1		Value	-0.78
DIHEdral	CX30	NX28	CX29	0x32	750.0	0	180.00	!	Nobs	1		Value	179.24
DIHEdral	нх33	NX28	CX29	CX24	750.0	0	180.00	!	Nobs	1		Value	-179.19
DIHEdral	HX33	NX28	CX29	0x32	750.0	0	0.00	!	Nobs	1		Value	0.82
DIHEdral	CX29	NX28	Cx30	CX13	750.0	0	0.00	!	Nobs	1		Value	0.77
DIHEdral	CX29	NX28	Сх30	0×31	750.0	0	180.00	!	Nobs	1		Value	-179.04
DIHEdral H	HX33	NX28	Сх30	CX13	750.0	0	180.00	!	Nobs	1		Value	179.19
DIHEdral	нхЗ3	NX28	CX30	0×31	750.0	0	0.00	!	Nobs	1	...	Value $=$	-0.62

\{ Note: edit if necessary \} IMPRoper CX2 OX1 HX3 HX4 IMPRoper CX5 CX2 HX6 OX7 750.0035 .000 ! Nobs $=1 \ldots$ Value $=33.335$ $750.00-35.000!$ Nobs $=1 \ldots$ Value $=-37.677$! >>> NOTE - unusual value for following improper : 41.94 reset to +35.0
IMPRoper CX8 0X7 HX9 CX16 750.0035 .000 ! Nobs $=1 \ldots$ Value $=41.939$ IMPRoper CX10 HX11 CX20 CX23 750.0 0 0.000 ! Nobs = $1 \ldots$ Value $=-0.313$ IMPRoper CX12 CX23 CX24 HX34 IMPRoper CX13 CX20 CX24 CX30
750.000 .000 ! Nobs $=1 \ldots$ Value $=-0.218$
750.000 .000 ! Nobs $=1 \ldots$ Value $=0.475$
! >>> NOTE - unusual value for following improper : 40.01 reset to +35.0
IMPRoper CX14 CX5 HX15 CX16 750.0035 .000 ! Nobs $=1 \ldots$ Value $=40.005$ IMPRoper CX16 CX8 CX14 HX17 750.0035 .000 ! Nobs $=1 \ldots$ Value $=30.720$ IMPRoper CX20 CX8 CX10 CX13 $750.00 \quad 0.000$! Nobs $=1 \ldots$ Value $=-0.905$ IMPRoper CX23 CX10 CX12 NX25 $750.00 \quad 0.000$! Nobs $=1 \ldots$ Value $=-1.535$ IMPRoper CX24 CX12 CX13 CX29 $750.00 \quad 0.000$! Nobs $=1 \ldots$ Value $=-0.171$! >>> NOTE - unusual value for following improper : -20.06 reset to -35.0 IMPRoper NX25 CX23 HX26 HX27 750.000 .000 ! Nobs $=1 \ldots$ Value $=-20.059$ IMPRoper NX28 CX29 СХ30 нХ33 750.0 0 $0.000!$ Nobs $=1 \ldots$ Value $=0.749$ IMPRoper CX29 CX24 NX28 0X32 $750.00 \quad 0.000$! Nobs $=1 \ldots$ Value $=-0.008$ IMPRoper CX30 CX13 NX28 0X31 $750.00 \quad 0.000$! Nobs $=1 \ldots$ Value $=-0.091$! Improper to keep both rings parallel IMPRoper NX28 CX24 CX13 CX10 750.000000 IMPRoper NX28 CX24 CX13 CX23 $750.00 \quad 0.000$ IMPRoper CX29 CX24 CX13 CX20 IMPRoper CX12 CX24 CX13 CX30 !secure chirality
IMPRoper H C2D 04D CX2O IMPRoper CX10 NX25 CX23 HX26
\{ Note: edit if necessary \} $\begin{array}{llll}\text { NONBonded OX1 } & 0.1591 & 2.8509\end{array}$ NONBonded CX2 0.12003 .7418 $\begin{array}{llll}\text { NONBonded HX3 } & 0.0498 & 1.4254\end{array}$ $\begin{array}{lll}\text { NONBonded HX4 } & 0.0498 & 1.4254\end{array}$ NONBonded CX5 0.12003 .7418 NONBonded HX6 $0.0498 \quad 1.4254$ $\begin{array}{llll}\text { NONBonded OX7 } & 0.1591 & 2.8509\end{array}$ $\begin{array}{llll}\text { NONBonded CX8 } & 0.1200 & 3.7418\end{array}$ NONBonded HX9 $0.0498 \quad 1.4254$ NONBonded CX10 $0.1200 \quad 3.7418$ NONBonded HX11 $0.0498 \quad 1.4254$ NONBonded CX12 0.12003 .7418 NONBonded CX13 $0.1200 \quad 3.7418$ NONBonded CX14 $0.1200 \quad 3.7418$
NONBonded HX15 $0.0498 \quad 1.4254 \quad 0.0498 \quad 1.4254$! assuming Hydrogen

| NONBonded CX16 | 0.1200 | 3.7418 | 0.1000 | 3.3854 | ! assuming Carbon |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NONBonded HX17 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | ! assuming Hydrogen |
| NONBonded HX18 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | ! assuming Hydrogen |
| NONBonded 0X19 | 0.1591 | 2.8509 | 0.1591 | 2.8509 | ! assuming Oxygen |
| NONBonded CX20 | 0.1200 | 3.7418 | 0.1000 | 3.3854 ! assuming Carbon | |
| NONBonded HX21 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen | |
| NONBonded HX22 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen | |
| NONBonded CX23 | 0.1200 | 3.7418 | 0.1000 | 3.3854 | ! assuming Carbon |
| NONBonded CX24 | 0.1200 | 3.7418 | 0.1000 | 3.3854 | ! assuming Carbon |
| NONBonded NX25 | 0.2384 | 2.8509 | 0.2384 | 2.8509 | ! assuming Nitrogen |
| NONBonded HX26 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | ! assuming Hydrogen |
| NONBonded HX27 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | ! assuming Hydrogen |
| NONBonded NX28 | 0.2384 | 2.8509 | 0.2384 | 2.8509 | ! assuming Nitrogen |
| NONBonded CX29 | 0.1200 | 3.7418 | 0.1000 | 3.3854 | ! assuming Carbon |
| NONBonded CX30 | 0.1200 | 3.7418 | 0.1000 | 3.3854 | ! assuming Carbon |
| NONBonded 0X31 | 0.1591 | 2.8509 | 0.1591 | 2.8509 | ! assuming Oxygen |
| NONBonded OX32 | 0.1591 | 2.8509 | 0.1591 | 2.8509 | ! assuming Oxygen |
| NONBonded HX33 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | ! assuming Hydrogen |
| NONBonded HX34 | 0.0498 | 1.4254 | 0.0498 | 1.4254 | assuming Hydrogen |

set echo=true end

******************** change by lsd - 6HQ ${ }^{* ~}$

BOND	P	OQ21	3350.720		1.593			added bond by lsd
BOND	P	OQ19	2326.889		1.607			added bond by lsd
BOND	CQ1	NQ2	1000.0	1.495	! Nobs	=		1
BOND	CQ1	CQ20	1000.0	1.522	! Nobs	$=$		1
BOND	CQ1	HQ26	1000.0	1.086	! Nobs	=		1
BOND	CQ1	HQ27	1000.0	1.091	! Nobs	$=$		1
BOND	NQ2	CQ3	1000.0	1.389	! Nobs	$=$		1
BOND	NQ2	CQ7	1000.0	1.337	! Nobs	$=$		1
BOND	CQ3	CQ4	1000.0	1.428	! Nobs	=		1
BOND	CQ3	CQ9	1000.0	1.411	! Nobs	=		1
BOND	CQ4	CQ5	1000.0	1.410	! Nobs	=		1
BOND	CQ4	CQ12	1000.0	1.411	! Nobs	=		1
BOND	CQ5	CQ6	1000.0	1.371	! Nobs	=		1
BOND	CQ5	HQ14	1000.0	1.083	! Nobs	=		1
BOND	CQ6	CQ7	1000.0	1.393	! Nobs	=		1
BOND	CQ6	HQ15	1000.0	1.081	! Nobs	=		1
BOND	CQ7	HQ8	1000.0	1.080	! Nobs	=		1
BOND	CQ9	CQ10	1000.0	1.370	! Nobs	=		1
BOND	CQ9	HQ16	1000.0	1.077	! Nobs	=		1
BOND	CQ10	CQ11	1000.0	1.416	! Nobs	=		1
BOND	CQ10	HQ17	1000.0	1.082	! Nobs	$=$		1
BOND	CQ11	CQ12	1000.0	1.376	! Nobs	=		1
BOND	CQ11	0Q13	1000.0	1.346	! Nobs	=		1
BOND	CQ12	HQ18	1000.0	1.083	! Nobs	=		1
BOND	OQ13	HQ30	1000.0	0.966	! Nobs	=		1
BOND	OQ19	CQ20	1000.0	1.424	! Nobs	=		1

Appendix

BOND OQ19 HQ29	1000.0	0.966	$!$	Nobs $=$	1
BOND CQ20 CQ22	1000.0	$1.532!$	Nobs $=$	1	
BOND CQ20 HQ25	1000.0	1.097	Nobs $=$	1	
BOND OQ21 CQ22	1000.0	$1.420!$	Nobs $=$	1	
BOND OQ21 HQ28	1000.0	$0.964!$ Nobs $=$	1		
BOND CQ22 HQ23	1000.0	$1.096!$ Nobs $=$	1		
BOND CQ22 HQ24	1000.0	$1.096!$ Nobs $=$	1		

\{ Note: edit if necessary
ANGLe CQ22 OQ21 P 1175.163 120.900 ! data taken from normal dna by lsd
ANGLe 01P $\mathrm{P} \quad$ OQ21 $357.719 \quad 108.100$!again modded by lsd
ANGLe O2P P OQ21 $412.677 \quad 108.300$!again modded by lsd
ANGLe 03R P OQ21 $833.356 \quad 104.000$!again modded by lsd

ANGLe 01P	P	OQ19	357.719	108.100	!again modded by lsd
ANGLe 02P	P	OQ19	412.677	108.300	!again modded by lsd
ANGLe 05R	P	OQ19	833.356	104.000 !again modded by lsd	

ANGLe NQ2 CQ1 CQ20 $500.0 \quad 116.04$! Nobs $=1$
ANGLe NQ2 CQ1 HQ26 $500.0 \quad 107.23!$ Nobs $=1$
ANGLe NQ2 CQ1 HQ27 500.0 107.76 ! Nobs = 1
ANGLe CQ20 CQ1 HQ26 $500.0 \quad 106.40$! Nobs $=1$
ANGLe CQ20 CQ1 HQ27 $500.0 \quad 109.68$! Nobs $=1$
ANGLe HQ26 CQ1 HQ27 $500.0 \quad 109.59$! Nobs $=1$
ANGLe CQ1 NQ2 CQ3 $500.0 \quad 118.99$! Nobs $=\quad 1$
ANGLe CQ1 NQ2 CQ7 $500.0 \quad 119.88$! Nobs $=1$
ANGLe CQ3 NQ2 CQ7 $500.0 \quad 121.11!$ Nobs $=1$
ANGLe NQ2 CQ3 CQ4 $500.0 \quad 118.64$! Nobs $=1$
ANGLe NQ2 CQ3 CQ9 $500.0 \quad 122.50$! Nobs $=1$
ANGLe CQ4 CQ3 CQ9 $500.0 \quad 118.86!$ Nobs $=1$
ANGLe CQ3 CQ4 CQ5 500.0 118.72 ! Nobs $=1$
ANGLe CQ3 CQ4 CQ12 $500.0 \quad 119.66$! Nobs $=1$
ANGLe CQ5 CQ4 CQ12 $500.0 \quad 121.62$! Nobs $=1$
ANGLe CQ4 CQ5 CQ6 $500.0 \quad 120.23!$ Nobs $=1$
ANGLe CQ4 CQ5 HQ14 $500.0 \quad 119.26$! Nobs $=1$
ANGLe CQ6 CQ5 HQ14 500.0 120.50 ! Nobs $=1$
ANGLe CQ5 CQ6 CQ7 $500.0 \quad 119.49$! Nobs $=\quad 1$
ANGLe CQ5 CQ6 HQ15 $500.0 \quad 121.80$! Nobs $=1$
ANGLe CQ7 CQ6 HQ15 $500.0 \quad 118.71$! Nobs $=1$
ANGLe NQ2 CQ7 CQ6 $500.0 \quad 121.77$! Nobs $=1$
ANGLe NQ2 CQ7 HQ8 500.0 116.11 ! Nobs $=1$
ANGLe CQ6 CQ7 HQ8 $500.0 \quad 122.11$! Nobs $=\quad 1$
ANGLe CQ3 CQ9 CQ10 $500.0 \quad 120.12$! Nobs $=1$
ANGLe CQ3 CQ9 HQ16 $500.0 \quad 121.44$! Nobs $=1$
ANGLe CQ10 CQ9 HQ16 $500.0 \quad 118.43$! Nobs $=1$
ANGLe CQ9 CQ10 CQ11 500.0 121.41 ! Nobs $=1$
$\begin{array}{llll}\text { ANGLe CQ9 } & \text { CQ10 HQ17 } & 500.0 & 120.46!\text { Nobs }= \\ 1\end{array}$
ANGLe CQ11 CQ10 HQ17 $500.0 \quad 118.14$! Nobs $=1$
ANGLe CQ10 CQ11 CQ12 $500.0 \quad 119.52!$ Nobs $=1$
ANGLe CQ10 CQ11 OQ13 $500.0 \quad 115.70$! Nobs $=1$
ANGLe CQ12 CQ11 OQ13 $500.0 \quad 124.78$! Nobs $=1$
ANGLe CQ4 CQ12 CQ11 $\quad 500.0 \quad 120.42!$ Nobs $=\quad 1$
ANGLe CQ4 CQ12 HQ18 500.0 118.69 ! Nobs = 1
ANGLe CQ11 CQ12 HQ18 $500.0 \quad 120.90$! Nobs $=1$
ANGLe CQ11 OQ13 HQ30 $500.0 \quad 111.90$! Nobs $=1$
ANGLe CQ20 OQ19 HQ29 $500.0 \quad 109.90$! Nobs $=\quad 1$

ANGLe CQ1 CQ20	OQ19	500.0	108.46 !	\| Nobs $=$	1				
ANGLe CQ1 CQ20	20 CQ22	500.0	108.93 !	! Nobs =	1				
ANGLe CQ1 CQ20	(HQ25	500.0	109.41 !	Nobs =	1				
ANGLe OQ19 CQ20	$2 \mathrm{CQ22}$	500.0	110.93 !	Nobs =	1				
ANGLe OQ19 CQ20	$2 \mathrm{HQ25}$	500.0	111.16	Nobs =	1				
ANGLe CQ22 CQ20	$2 \mathrm{HQ25}$	500.0	107.91 !	Nobs =	1				
ANGLe CQ22 0 Q21	1 HQ28	500.0	109.93 !	Nobs =	1				
ANGLe CQ20 CQ22	22 OQ21	500.0	107.25 !	! Nobs =	1				
ANGLe CQ20 CQ22	2 HQ 23	500.0	109.58 !	! Nobs =	1				
ANGLe CQ20 CQ22	2 HQ24	500.0	108.15 !	! Nobs =	1				
ANGLe OQ21 CQ22	2 HQ23	500.0	112.04 !	+ Nobs =	1				
ANGLe OQ21 CQ22	2 HQ24	500.0	111.52 !	! Nobs =	1				
ANGLe HQ23 CQ22	2 HQ24	500.0	108.22 !	! Nobs =	1				
\{ Note: edit if necessary \}									
DIHEdral HQ27 CQ	CQ1 NQ2	CQ7	750.00	90.00	! Nobs =	1	. Value		99.41
DIHEdral HQ27	CQ1 CQ20	HQ25	750.00	180.00	! Nobs =	1	.. Value		-170.45
DIHEdral CQ1 N	NQ2 CQ3	CQ4	750.00	180.00	! Nobs =	1	.. Value		-179.29
DIHEdral CQ1 NQ	NQ2 CQ3	CQ9	750.00	0.00	! Nobs =	1	. Value		1.29
DIHEdral CQ7 NQ	NQ2 CQ3	CQ4	750.00	0.00	! Nobs =	1	. Value		2.40
DIHEdral CQ7 N	NQ2 CQ3	CQ9	750.00	180.00	! Nobs =	1	Value		-177.02
DIHEdral CQ1 NQ	NQ2 CQ7	CQ6	750.00	180.00	! Nobs =	1	. Value		179.55
DIHEdral CQ1 N	NQ2 CQ7	HQ8	750.00	0.00	! Nobs =	1	. Value	$=$	-1.94
DIHEdral CQ3 N	NQ2 CQ7	CQ6	750.00	0.00	! Nobs =	1	. Value	=	-2.15
DIHEdral CQ3 NQ	NQ2 CQ7	HQ8	750.00	180.00	! Nobs =	1	.. Value	=	176.35
DIHEdral NQ2 CQ	CQ3 CQ4	CQ5	750.00	0.00	! Nobs =	1	.. Value	=	-1.07
DIHEdral NQ2 CQ	CQ3 CQ4	CQ12	750.00	180.00	! Nobs =	1	.. Value	=	179.45
DIHEdral CQ9 C	CQ3 CQ4	CQ5	750.00	180.00	! Nobs =	1	.. Value	=	178.37
DIHEdral CQ9 CQ	CQ3 CQ4	CQ12	750.00	0.00	! Nobs =	1	.. Value	=	-1.11
DIHEdral NQ2 CQ3	CQ3 CQ9	CQ10	750.00	180.00	! Nobs =	1	.. Value		-179.89
DIHEdral NQ2 CQ	CQ3 CQ9	HQ16	750.00	0.00	! Nobs =	1	. Value		1.05
DIHEdral CQ4 CQ	CQ3 CQ9	CQ10	750.00	0.00	! Nobs =	1	Value		0.70
DIHEdral CQ4 CQ	CQ3 CQ9	HQ16	750.00	180.00	! Nobs =	1	.. Value	=	-178.36
DIHEdral CQ3 CQ	CQ4 CQ5	CQ6	750.00	0.00	! Nobs =	1	.. Value	=	-0.51
DIHEdral CQ3 CQ	CQ4 CQ5	HQ14	750.00	180.00	! Nobs =	1	.. Value	=	-179.88
DIHEdral CQ12	CQ4 CQ5	CQ6	750.00	180.00	! Nobs =	1	.. Value	=	178.97
DIHEdral CQ12	CQ4 CQ5	HQ14	750.00	0.00	! Nobs =	1	.. Value	=	-0.41
DIHEdral CQ3 CQ	CQ4 CQ12	CQ11	750.00	0.00	! Nobs =	1	.. Value	=	0.57
DIHEdral CQ3 CQ	CQ4 CQ12	HQ18	750.00	180.00	! Nobs =	1	.. Value	=	-179.72
DIHEdral CQ5 CQ	CQ4 CQ12	CQ11	750.00	180.00	! Nobs =	1	.. Value	=	-178.90
DIHEdral CQ5 CQ	CQ4 CQ12	HQ18	750.00	0.00	! Nobs =	1	.. Value	=	0.81
DIHEdral CQ4 CQ	CQ5 CQ6	CQ7	750.00	0.00	! Nobs =	1	. Value	=	0.82
DIHEdral CQ4 CQ	CQ5 CQ6	HQ15	750.00	180.00	! Nobs =	1	. Value	=	-178.93
DIHEdral HQ14	CQ5 CQ6	CQ7	750.00	180.00	! Nobs =	1	Value	=	-179.81
DIHEdral HQ14	CQ5 CQ6	HQ15	750.00	0.00	! Nobs =	1	.. Value	=	0.44
DIHEdral CQ5 Ca	CQ6 CQ7	NQ2	750.00	0.00	! Nobs =	1	.. Value	=	0.50
DIHEdral CQ5 C	CQ6 CQ7	HQ8	750.00	180.00	! Nobs =	1	.. Value	=	-177.91
DIHEdral HQ15 C	CQ6 CQ7	NQ2	750.00	180.00	! Nobs =	1	.. Value	=	-179.74
DIHEdral HQ15 C	CQ6 CQ7	HQ8	750.00	0.00	! Nobs =	1	. Value	=	1.84
DIHEdral CQ3 C	CQ9 CQ10	CQ11	750.00	0.00	! Nobs =	1	. Value	=	0.26
DIHEdral CQ3 C	CQ9 CQ10	HQ17	750.00	180.00	! Nobs =	1	.. Value	=	-179.76
DIHEdral HQ16 C	CQ9 CQ10	CQ11	750.00	180.00	! Nobs =	1	... Value	=	179.35
DIHEdral HQ16 C	CQ9 CQ10	HQ17	750.00	0.00	! Nobs =	1	.. Value	=	-0.67
DIHEdral CQ9 C	CQ10 CQ11	CQ12	750.00	0.00	! Nobs =	1	.. Value	=	-0.82
DIHEdral CQ9 CQ	CQ10 CQ11	OQ13	750.00	180.00	! Nobs =	1	Value	=	179.56
DIHEdral HQ17 CQ	CQ10 CQ11	CQ12	750.00	180.00	! Nobs	1	.. Value		179.20

Appendix

\{ Note: edit if necessary \}
$\begin{array}{llll}\text { NONBonded CQ1 } & 0.1200 & 3.7418\end{array}$
$\begin{array}{llll}\text { NONBonded NQ2 } & 0.2384 & 2.8509\end{array}$
NONBonded CQ3 0.12003 .7418 $\begin{array}{llll}\text { NONBonded CQ4 } & 0.1200 & 3.7418\end{array}$ $\begin{array}{llll}\text { NONBonded CQ5 } & 0.1200 & 3.7418\end{array}$ NONBonded CQ6 0.12003 .7418 $\begin{array}{llll}\text { NONBonded CQ7 } & 0.1200 & 3.7418\end{array}$ NONBonded HQ8 0.04981 .4254 $\begin{array}{llll}\text { NONBonded CQ9 } & 0.1200 & 3.7418\end{array}$ NONBonded CQ10 0.12003 .7418 $\begin{array}{llll}\text { NONBonded CQ11 } & 0.1200 & 3.7418\end{array}$ NONBonded CQ12 $0.1200 \quad 3.7418$ NONBonded OQ13 $0.1591 \quad 2.8509$ NONBonded HQ14 $0.0498 \quad 1.4254$ NONBonded HQ15 0.04981 .4254 NONBonded HQ16 $0.0498 \quad 1.4254$

| NONBonded HQ17 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NONBonded HQ18 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded OQ19 | 0.1591 | 2.8509 | 0.1591 | 2.8509 ! assuming Oxygen |
| NONBonded CQ20 | 0.1200 | 3.7418 | 0.1000 | 3.3854 ! assuming Carbon |
| NONBonded OQ21 | 0.1591 | 2.8509 | 0.1591 | 2.8509 ! assuming Oxygen |
| NONBonded CQ22 | 0.1200 | 3.7418 | 0.1000 | 3.3854 ! assuming Carbon |
| NONBonded HQ23 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ24 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ25 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ26 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ27 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ28 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ29 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |
| NONBonded HQ30 | 0.0498 | 1.4254 | 0.0498 | 1.4254 ! assuming Hydrogen |

set echo=true end
 \qquad
******************* change by lsd - HCF ${ }^{* ~}$

Appendix

BOND	CZ28	CZ31	1000.0	1.535		Nobs		1
BOND	CZ28	HZ32	1000.0	1.090		Nobs	$=$	1
BOND	CZ28	HZ33	1000.0	1.090		Nobs	$=$	1
BOND	CZ30	CZ31	1000.0	1.539	!	Nobs	=	1
BOND	CZ30	HZ34	1000.0	1.096		Nobs	=	1
BOND	Cz30	CZ36	1000.0	1.509	!	Nob	$=$	1
BOND	CZ31	HZ35	1000.0	1.098	!	Nobs	$=$	1
BOND	CZ31	OZ39	1000.0	1.422	!	Nobs	=	1
BOND	CZ36	HZ37	1000.0	1.101	!	Nobs	=	1
BOND	CZ36	HZ38	1000.0	1.097	!	Nobs	=	1

\{ Note: edit if necessary \}

ANGLe	CZ2	CZ1	CZ6	500.0	120.21	! Nobs	
ANGLe	CZ2	CZ1	0214	500.0	124.48	Nobs	
ANGLe	Cz6	CZ1	$0 \mathrm{Z14}$	500.0	115.30	Nobs	=
ANGLe	CZ1	CZ2	CZ3	500.0	120.19	Nobs	=
ANGLe	CZ1	CZ2	HZ25	500.0	120.77	! Nobs	=
ANGLe	CZ3	CZ2	HZ25	500.0	119.04	Nobs	=
ANGLe	CZ2	CZ3	CZ4	500.0	119.74	! Nobs	=
ANGLe	CZ2	CZ3	HZ18	500.0	119.21	! Nobs	=
ANGLe	CZ4	CZ3	HZ18	500.0	121.04	Nobs	=
ANGLe	CZ3	CZ4	CZ5	500.0	119.77	Nobs	=
ANGLe	CZ3	CZ4	CZ7	500.0	131.57	! Nobs	=
ANGLe	Cz5	CZ4	CZ7	500.0	108.67	! Nobs	=
ANGLe	CZ4	CZ5	CZ6	500.0	120.93	! Nobs	=
ANGLe	CZ4	CZ5	CZ9	500.0	109.97	! Nobs	=
ANGLe	Cz6	CZ5	CZ9	500.0	129.10	! Nobs	=
ANGLe	CZ1	CZ6	CZ5	500.0	119.15	! Nobs	=
ANGLe	CZ1	CZ6	HZ19	500.0	118.53	Nobs	=
ANGLe	CZ5	CZ6	HZ19	500.0	122.32	Nobs	=
ANGLe	CZ4	CZ7	CZ8	500.0	108.63	Nobs	=
ANGLe	CZ4	CZ7	CZ10	500.0	131.15	! Nobs	=
ANGLe	CZ8	CZ7	CZ10	500.0	120.22	! Nobs	=
ANGLe	CZ7	CZ8	CZ9	500.0	109.98	! Nobs	=
ANGLe	CZ7	CZ8	CZ13	500.0	120.64	! Nobs	=
ANGLe	CZ9	CZ8	CZ13	500.0	129.38	! Nobs	=
ANGLe	CZ5	CZ9	CZ8	500.0	102.76	! Nobs	=
ANGLe	CZ5	CZ9	HZ21	500.0	111.76	Nobs	=
ANGLe	CZ5	CZ9	HZ22	500.0	111.84	Nobs	=
ANGLe	CZ8	CZ9	HZ21	500.0	111.92	Nobs	=
ANGLe	CZ8	CZ9	HZ22	500.0	111.91	Nobs	$=$
ANGLe	HZ21	CZ9	HZ22	500.0	106.76	Nobs	=
ANGLe	CZ7	CZ10	CZ11	500.0	119.12	Nobs	=
ANGLe	CZ7	CZ10	HZ23	500.0	120.97	! Nobs	=
ANGLe	CZ11	CZ10	Hz23	500.0	119.91	! Nobs	$=$
ANGLe	CZ10	CZ11	CZ12	500.0	120.68	! Nobs	=
ANGLe	CZ10	CZ11	HZ24	500.0	120.08	! Nobs	=
ANGLe	CZ12	CZ11	HZ24	500.0	119.24	! Nobs	=
ANGLe	CZ11	CZ12	CZ13	500.0	120.14	! Nobs	=
ANGLe	CZ11	CZ12	CZ15	500.0	122.01	! Nobs	=
ANGLe	CZ13	CZ12	CZ15	500.0	117.85	Nobs	=
ANGLe	CZ8	CZ13	CZ12	500.0	119.19	Nobs	=
ANGLe	CZ8	CZ13	HZ2O	500.0	121.95	Nobs	=
ANGLe	CZ12	CZ13	HZ2O	500.0	118.86	! Nobs	
ANGLe	CZ1	OZ14	C1D	500.0	120.09	! Nobs	

Appendix

!the generic bonds were taken from param11.dna with $3 * \mathrm{kq}$

BOND	C5R	OH	876.000	1.4300	$!$
BOND	C5D	OH	876.000	1.4300	$!$
B	end				
BOND	C3R	OH	876.000	1.4300	$!$
BOND	C3D	OH	876.000	1.4300	$!3$
BOND	O2R	HO	1350.000	0.9572	

! Phos.	- combined RNA/DNA statistics used					
!		kq	x_eq	sigma		
BOND	P	O1P	1489.209	1.485	$!0.015$	Phos
BOND	P	O2P	1489.209	1.485	$!0.015$	P
BOND	P	O5R	3350.720	1.593	$!0.010$	P
BOND	P	OH	3350.720	1.593	$!0.010$	P ! For 5pho patch
BOND	P	O3R	2326.889	1.607	$!0.012$	P
BOND	P	OX17	2326.889	1.607	$!0.012$	P \quad ! mod by anda
BOND	PX1	O3R	2326.889	1.607	$!0.012$	P \quad ! mod by anda

! Sugars							
!RNA statistics							
BOND	05R	C5R	1709.551	1.425	$!$	0.014	Sugar
BOND	C5R	C4R	1982.674	1.510	$!$	0.013	S
BOND	C4R	C3R	2769.190	1.524	!	0.011	S
BOND	C3R	C2R	2769.190	1.525	$!$	0.011	S
BOND	C2R	C1R	3350.720	1.528	$!$	0.010	S
BOND	04R	C1R	2326.888	1.414	!	0.012	S
BOND	04R	C4R	2326.888	1.453	$!$	0.012	S
BOND	03R	C3R	1982.674	1.423	$!$	0.013	S
BOND	C2R	02R	1982.674	1.413	!	0.013	S
! DNA statistics							
BOND	05R	C5D	1709.551	1.427	$!$	0.014	Sugar
BOND	C5D	C4D	5235.500	1.511	$!$	0.008	S
BOND	C4D	C3D	3350.720	1.528	!	0.010	S
BOND	C3D	C2D	3350.720	1.518	$!$	0.010	S
BOND	C2D	C1D	1709.551	1.521	!	0.014	S
BOND	04D	C1D	1982.674	1.420	!	0.013	S
BOND	04D	C4D	2769.190	1.446	$!$	0.011	S
BOND	03R	C3D	1982.674	1.431	!	0.013	S
!hydrogen/carbon							
BOND	C4R	H	\$kchbond	1.09			
BOND	C3R	H	\$kchbond	1.09			
BOND	C2R	H	\$kchbond	1.09			
BOND	C1R	H	\$kchbond	1.09			
BOND	C5R	H	\$kchbond	1.09			
BOND	C4D	H	\$kchbond	1.09			
BOND	C3D	H	\$kchbond	1.09			
BOND	C2D	H	\$kchbond	1.09			
BOND	C1D	H	\$kchbond	1.09			
BOND	C5D	H	\$kchbond	1.09			
! Bases							
! base specific bonds taken from param11.dna , $3 * \mathrm{kq}$							
BOND	02U	но	1350.000	0.957	!	UR	
BOND	HN	NNA	1416.000	1.010	$!$	URA	
BOND	HN	N1T	1416.000	1.010	!	Infer.	
BOND	HN	N1C	1416.000	1.010			
BOND	HN	N9G	1416.000	1.010			
BOND	HN	N9A	1416.000	1.010			
BOND	HN	N9P	1416.000	1.010			

Appendix

BOND	HN	N3U	1416.000	1.010	
BOND	HN	N3T	1416.000	1.010	
BOND	H2	N2	1416.000	1.010	
BOND	H2	N4C	1416.000	1.010	
BOND	H2	N2G	1416.000	1.010	
BOND	H2	N6A	1416.000	1.010	
BOND	HO	OH	1350.000	0.960	! PARAM7 (IR stretch $3400 \mathrm{~cm}-1$)

!Base sugar joint bonds (scale from sugar)

!			kq	x_eq	sigma		
BOND	C1R	N1T	1709.551	1.473	! 0.014	Base	
BOND	C1R	N1U	4136.691	1.469	! 0.009	B	
BOND	C1R	N1C	2326.889	1.470	! 0.012	B	
BOND	C1R	N9G	4136.691	1.459	! 0.009	B	
BOND	C1R	N9A	3350.720	1.462	! 0.010	B	
BOND	C1R	N9P	3350.720	1.462	! 0.010	B	
BOND	C1D	N1T	1709.551	1.473	$!0.014$	B	! DNA
BOND	C1D	N1U	4136.691	1.469	! 0.009	B	
BOND	C1D	N1C	2326.889	1.470	! 0.012	B	
BOND	C1D	N9G	4136.691	1.459	$!0.009$	B	
BOND	C1D	N9A	3350.720	1.462	! 0.010	B	
BOND	C1D	N9P	3350.720	1.462	! 0.010	B	
!cytosine				kq	x_eq	sigma	
BOND		C2C	ON	1370.370	1.240 !0	0.009	B
BOND		C4C	N4C	1370.370	1.335 ! 0	0.009	B
BOND		N1C	C2C	1110.000	1.397 !0	0.010	B
BOND		N1C	C6C	3083.333	1.367 ! 0	0.006	B
BOND		C2C	NC	1734.375	1.353 ! 0	0.008	B
BOND		NC	C4C	2265.306	1.335 !0	0.007	B
BOND		C4C	C5C	1734.375	$1.425!0$	0.008	B
BOND		C5C	C6C	1734.375	1.339 !0	0.008	B
BOND		C5C	H	\$kchbond	1.09		
BOND		C6C	H	\$kchbond	1.09		

!thymine						
BOND	N1T	C2T	1734.375	1.376	0.008	B
BOND	C2T	N3T	1734.375	$1.373!0.008$	B	
BOND	N3T	C4T	1734.375	$1.382!0.008$	B	
BOND	C4T	C5T	1370.370	$1.445!0.009$	B	
BOND	C5T	C6T	2265.306	$1.339!0.007$	B	
BOND	C6T	N1T	2265.306	$1.378!0.007$	B	
BOND	C2T	ON	1734.375	$1.220!0.008$	B	
BOND	C4T	ON	1370.370	$1.228!0.009$	B	
BOND	C5T	CC3E	3083.333	$1.496!0.006$	B	
BOND	C6T	H	$\$ k c h b o n d ~$	1.09		
BOND	CC3E	H	$\$ k c h b o n d$	1.09		
!adenine						
BOND	NC	C2A	1370.370	$1.339!0.009$	B	
BOND	C2A	N3A	1370.370	1.331	0.009	B
BOND	N3A	C4A	3083.333	$1.344!0.006$	B	
BOND	C4A	C5A	2265.306	$1.383!0.007$	B	
BOND	C5A	C6A	1370.370	$1.406!0.009$	B	

! Phos.
!the ANGLe s were taken from param11.dna with $3 * \mathrm{kq}$

| ANGLe | HO \quad OH | C5R | 139.500 | 107.300 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Appendix

ANGLe	но	05R	C5R	139.500	107.300	
ANGLe	но	OH	C5D	139.500	107.300	
ANGLe	но	05R	C5D	139.500	107.300	
ANGLe	но	03R	P	139.500	107.300	
ANGLe	но	OH	P	$139.500 \quad 107$	107.300 !	For 5pho patch
ANGLe	но	02R	C2R	139.500	107.300	
ANGLe	OH	P	03R	144.300	102.600	!
ANGLe	OH	P	05R	144.300	102.600	$!$
ANGLe	OH	P	01P	296.700	108.230	!
ANGLe	OH	P	02P	296.700	108.230	$!$
ANGLe	OH	C5R	C4R	210.000	112.000	!
ANGLe	OH	C5D	C4D	210.000	112.000	!
ANGLe	C4D	C3D	OH	139.500	111.000	!
ANGLe	C4R	C3R	OH	139.500	111.000	$!$
ANGLe	C2D	C3D	OH	139.500	111.000	!
ANGLe	C2R	C3R	OH	139.500	111.000	!
ANGLe	C3R	OH	но	139.500	107.300	$!$
ANGLe	C3D	OH	но	139.500	107.300	!
!Phos.	combine	RNA/D	NA stat	ics used		
!				kq	x_eq	igma
ANGLe	01P	P	02P	1337.074	119.600	$!1.5 \mathrm{P}$
ANGLe	05R	P	01P	357.719	108.100	$!2.9$ P
ANGLe	05R	P	02P	412.677	108.300	$!2.7$ P
ANGLe	03R	P	05R	833.356	104.000	!1.9 P
ANGLe	0×17	P	05R	833.356	104.000	!1.9 P !mod by anda
ANGLe	03R	PX1	0X4	833.356	104.000	!1.9 P !mod by anda
ANGLe	02P	P	03R	293.791	108.300	!3.2 P
ANGLe	01P	P	03R	293.791	107.400	!3.2 P
ANGLe	0×3	PX1	03R	293.791	108.300	!3.2 P !mod by anda
ANGLe	0X2	PX1	03R	293.791	107.400	!3.2 P !mod by anda
ANGLe	02P	P	0x17	293.791	108.300	!3.2 P !mod by anda
ANGLe	01P	P	0x17	293.791	107.400	!3.2 P !mod by anda
ANGLe	05R	C5R	C4R	1534.906	110.200	$!1.4 \mathrm{P}$
ANGLe	P	05R	C5R	1175.163	120.900	$!1.6 \mathrm{P}$
ANGLe	P	03R	C3R	2089.178	119.700	$!1.2 \mathrm{P}$
ANGLe	05R	C5D	C4D	1534.906	110.200	!1.4 P ! DNA
ANGLe	P	05R	C5D	1175.163	120.900	! 1.6 P
ANGLe	P	03R	C3D	2089.178	119.700	!1.2 P
ANGLe	PX1	03R	C3D	2089.178	119.700	!1.2 P !mod by anda
ANGLe	P	OX17	CX12	2089.178	119.700	!1.2 P !mod by anda

!Sugars
!RNA statistics

!				kq	x_eq	sigma
ANGLe	04R	C4R	C3R	561.212	105.500	!1.4 S
ANGLe	C5R	C4R	C3R	488.878	115.500	!1.5 S
ANGLe	C5R	C4R	04R	561.212	109.200	$!1.4$ S
ANGLe	C1R	04R	C4R	1357.996	109.600	$!0.9$ S
ANGLe	C4R	C3R	C2R	1099.976	102.700	$!1.0 \mathrm{~S}$
ANGLe	C3R	C2R	C1R	1357.996	101.500	!0.9 S
ANGLe	04R	C1R	C2R	561.212	106.400	!1.4 S

Appendix

ANGLe	H	C1R	N1C	\$kchangle	107.70
ANGLe	H	C1R	N1U	\$kchangle	107.70
ANGLe	H	C1R	N1T	\$kchangle	107.70
ANGLe	H	C1R	N9A	\$kchangle	107.70
ANGLe	H	C1R	N9P	\$kchangle	107.70
ANGLe	H	C1R	N9G	\$kchangle	107.70
ANGLe	H	C1R	O4R	\$kchangle	106.86

!Deoxyribose terms involving non-exchageables

ANGLe	OH	C5D	H	\$kchangle	109.70
ANGLe	O5R	C5D	H	\$kchangle	109.70
ANGLe	H	C5D	H	\$kchangle	109.17
ANGLe	C4D	C5D	H	\$kchangle	109.17
ANGLe	C5D	C4D	H	\$kchangle	107.78
ANGLe	H	C4D	C3D	\$kchangle	106.91
ANGLe	H	C4D	O4D	\$kchangle	112.98
ANGLe	H	C3D	C4D	\$kchangle	111.16
ANGLe	H	C3D	O3R	\$kchangle	109.34
ANGLe	H	C3D	OH	\$kchangle	109.34
ANGLe	H	C3D	C2D	\$kchangle	111.98
ANGLe	H	C2D	C3D	\$kchangle	111.36
ANGLe	H	C2D	H	\$kchangle	107.52
ANGLe	H	C1D	H	\$kchangle	107.52
ANGLe	H	C2D	C1D	\$kchangle	112.29
ANGLe	H	C1D	C2D	\$kchangle	110.94
ANGLe	H	C1D	N1C	\$kchangle	108.25
ANGLe	H	C1D	N1U	\$kchangle	108.25
ANGLe	H	C1D	N1T	\$kchangle	108.25
ANGLe	H	C1D	N9A	\$kchangle	108.25
ANGLe	H	C1D	N9P	\$kchangle	108.25
ANGLe	H	C1D	N9G	\$kchangle	108.25
ANGLe	H	C1D	O4D	\$kchangle	107.95

! Bases

! cytosine				kq	x_eq	sigma	
ANGLe	C6C	N1C	C2C	2277.447	120.300	$!0.40$	B
ANGLe	N1C	C2C	NC	743.656	119.200	$!0.70$	B
ANGLe	C2C	NC	C4C	1457.566	119.900	$!0.50$	B
ANGLe	NC	C4C	C5C	2277.447	121.900	$!0.40$	B
ANGLe	C4C	C5C	C6C	1457.566	117.400	$!0.50$	B
ANGLe	C5C	C6C	N1C	1457.566	121.000	$!0.50$	B
ANGLe	N1C	C2C	ON	1012.199	118.900	$!0.60$	B
ANGLe	NC	C2C	ON	743.656	121.900	$!0.70$	B
ANGLe	NC	C4C	N4C	743.656	118.000	$!0.70$	B
ANGLe	C5C	C4C	N4C	743.656	120.200	$!0.70$	B
ANGLe	C6C	N1C	C1R	763.873	120.800	!1.20	B scale from sugar
ANGLe	C2C	N1C	C1R	909.071	118.800	! 1.10	B scale from sugar
ANGLe	C6C	N1C	C1D	763.873	120.800	! 1.20	B ! DNA
ANGLe	C2C	N1C	C1D	909.071	118.800	! 1.10	B
ANGLe	C4C	N4C	H2	105.000	120.000	!from	param11.dna, 3*keq
ANGLe	H2	N4C	H2	105.000	120.000		
ANGLe	N1C	C6C	H	\$kchangle	119.63		
ANGLe	C5C	C6C	H	\$kchangle	119.36		
ANGLe	C4C	C5C	H	\$kchangle	121.54		
ANGLe	C6C	C5C	H	\$kchangle	121.54		

!thymine				kq	x_eq	sigma
ANGLe	C6T	N1T	C2T	1457.566	121.300	! 0.50 в
ANGLe	N1T	C2T	N3т	1012.199	114.600	$!0.60$ в
angle	C2T	N3т	C4T	1012.199	127.200	$!0.60$ в
angle	пзт	C4T	C5T	1012.199	115.200	$!0.60$ в
ANGLe	C4T	C5T	C6T	1012.199	118.000	$!0.60$ в
angle	C5T	C6T	N1T	1012.199	123.700	$!0.60$ в
angle	N1T	C2T	on	569.362	123.100	$!0.80$ в
angle	пзт	C2T	on	1012.199	122.300	$!0.60$ в
ANGLe	N3T	C4T	on	1012.199	119.900	$!0.60$ в
angle	C5T	C4T	on	743.656	124.900	$!0.70$ в
angle	C4T	C5T	CC3E	1012.199	119.000	$!0.60$ в
angle	C6T	C5T	CC3E	1012.199	122.900	$!0.60$ B
angle	C6T	N1T	C1R	488.878	120.400	!1.50 B scale from sugar
ANGLe	C2T	N1T	C1R	429.678	118.200	! 1.60 B scale from sugar
angle	C6T	N1T	C1D	488.878	120.400	! 1.50 B ! DNA
angle	C2T	N1T	C1D	429.678	118.200	$!1.60$ в
ANGLe	C2T	N3T	HN	105.000	116.500	!from param11.dna, 3*keq
ANGLe	C4T	N3T	HN	105.000	116.500	
angle	C5T	СС3E	H	\$kchangle	109.50	
angle	H	CC3E	H	\$kchangle	109.44	
angle	N1T	C6T	H	\$kchangle	119.52	
angle	C5T	C6T	H	\$kchangle	119.52	
!adenine				kq	x_eq	sigma
angle	C6A	nc	C2A	1012.199	118.600	!0.60 в
angle	nc	C2A	мзА	1457.566	129.300	! 0.50 в
angle	C2A	n3A	C4A	1457.566	110.600	$!0.50$ в
ANGLe	N3A	C4A	C5A	743.656	126.800	$!0.70$ в
angle	C4A	C5A	C6A	1457.566	117.000	$!0.50$ в
ANGLe	C5A	C6A	nc	1457.566	117.700	$!0.50$ в
angle	C4A	C5A	n7A	1457.566	110.700	$!0.50$ в
angle	C5A	n7A	C8A	1457.566	103.900	$!0.50$ в
angle	n7A	C8A	n9a	1457.566	113.800	$!0.50$ в
ANGLe	C8A	n9A	C4A	2277.447	105.800	$!0.40$ в
ANGLe	n9a	C4A	C5A	2277.447	105.800	! 0.40 B
angle	N3A	C4A	n9a	569.362	127.400	$!0.80$ в
angle	C6A	C5A	n7A	743.656	132.300	$!0.70$ в
angle	nC	C6A	n6A	1012.199	118.600	$!0.60$ в
angle	C5A	C6A	n6A	569.362	123.700	$!0.80$ в
angle	C8A	n9A	C1R	339.499	127.700	! 1.80 B scale from sugar
ancle	C4A	n9A	C1R	339.499	126.300	! 1.80 B scale from sugar
angle	C8A	n9a	C1D	339.499	127.700	! 1.80 B ! DNA
angle	C4A	n9a	C1D	339.499	126.300	$!1.80$ в
ANGLe	C6A	N6A	H2	105.000	120.000	!from param11.dna, 3*keq
angle	H2	N6A	H2	105.000	120.000	
angle	n7A	C8A	H	\$kchangle	123.16	
ANGLe	n9a	C8A	H	\$kchangle	123.16	
angle	nC	C2A	H	\$kchangle	115.54	
ANGLe	N3A	C2A	H	\$kchangle	115.54	
!purine				kq	x_eq	sigma
ANGLe	C6P	nc	C2P	1012.199	118.600	$!0.60$ в
angle	nC	C2P	N3P	1457.566	129.300	$!0.50$ в
ANGLe	C2P	N3P	C4P	1457.566	110.600	! 0.50 в

Appendix

ANGLe	N3P	C4P	C5P	743.656	126.800	$!0.70$ в
AnGLe	C4P	C5P	C6P	1457.566	117.000	! 0.50 в
ANGLe	C5P	C6P	NC	1457.566	117.700	! 0.50 в
ANGLe	C4P	C5P	N7P	1457.566	110.700	! 0.50 в
angle	C5P	N7P	C8P	1457.566	103.900	$!0.50$ в
angle	N7P	C8P	N9P	1457.566	113.800	!0.50 в
ANGLe	C8P	N9P	C4P	2277.447	105.800	! 0.40 B
angle	N9P	C4P	C5P	2277.447	105.800	!0.40 в
angle	N3P	C4P	N9P	569.362	127.400	!0.80 в
angle	C6P	C5P	N7P	743.656	132.300	!0.70 в
angle	NC	C6P	H	\$kchangle	120.164	! 0.60 B !modified by anda
ANGLe	C5P	C6P	H	\$kchangle	120.164	! 0.80 B !modified by anda
angle	C8P	N9P	C1R	339.499	127.700	! 1.80 B scale from sugar
angle	C4P	n9P	C1R	339.499	126.300	! 1.80 B scale from sugar
ANGLe	C8P	N9P	C1D	339.499	127.700	! 1.80 B ! DNA
ANGLe	C4P	N9P	C1D	339.499	126.300	! 1.80 в
ANGLe	N7P	C8P	H	\$kchangle	123.16	
ANGLe	N9P	C8P	H	\$kchangle	123.16	
angle	NC	C2P	H	\$kchangle	115.54	
angle	N3P	C2P	H	\$kchangle	115.54	
! guanine				kq	x_eq	sigma
angle	C6G	nNa	C2G	1012.199	125.100	!0.60 в
angle	nNA	C2G	N3G	1012.199	123.900	$!0.60$ в
ANGLe	C2G	N3G	C4G	1457.566	111.900	!0.50 в
ANGLe	N3G	C4G	C5G	1457.566	128.600	!0.50 в
angle	C4G	C5G	C6G	1012.199	118.800	$!0.60$ в
angle	C5G	C6G	nna	1457.566	111.500	! 0.50 в
angle	C4G	C5G	N7G	2277.447	110.800	! 0.40 в
angle	C5G	N7G	C8G	1457.566	104.300	! 0.50 в
angle	${ }^{\text {N7G }}$	C8G	${ }^{\text {N9G }}$	1457.566	113.100	! 0.50 в
angle	C8G	N9G	C4G	2277.447	106.400	! 0.40 в
angle	${ }^{\text {N9G }}$	C4G	C5G	2277.447	105.400	! 0.40 в
angle	N3G	C4G	N9G	1012.199	126.000	! 0.60 в
angle	C6G	C5G	N7G	1012.199	130.400	10.60 в
ANGLe	nNA	C2G	N2G	449.866	116.20	10.90 в
ANGLe	N3G	C2G	N2G	743.656	119.900	!0.70 в
angle	nna	C6G	06G	1012.199	119.900	!0.60 в
angle	C5G	C6G	${ }^{06 G}$	1012.199	128.600	$!0.60$ в
angle	C8G	n9G	C1R	650.874	127.000	! 1.30 B scale from sugar
angle	C4G	N9G	C1R	650.874	126.500	!1.30 B scale from sugar
angle	C8G	N9G	C1D	650.874	127.000	! 1.30 B ! DNA
angle	C4G	N9G	C1D	650.874	126.500	! 1.30 в
angle	C2G	N2G	H2	105.000	120.000	!from param11.dna, 3*keq
angle	н2	N2G	H2	105.000	120.000	
ANGLe	C2G	nNA	HN	105.000	119.300	
angle	C6G	NNA	HN	105.000	119.300	
angle	N7G	C8G	H	\$kchangle	122.91	
angle	N9G	C8G	H	\$kchangle	122.91	
!uracile				kq	x_eq	sigma
ANGLe	c6u	N1U	C2U	1012.199	121.000	!0.60 в
angle	${ }^{\text {N1U }}$	C2U	N3U	1012.199	114.900	! 0.60 в
angle	C2U	N3U	C4U	1012.199	127.000	! 0.60 в
angle	N3U	C4U	C5U	1012.199	114.600	! 0.60 в
ANGLe	C4U	C5U	c6u	1012.199	119.700	!0.60 в

ANGLe	C5U	C6U	N1U	1457.566	122.700	10.50 B
ANGLe	N1U	C2U	ON	743.656	122.800	$!0.70$ B
ANGLe	N3U	C2U	ON	743.656	122.200	$!0.70$ B
ANGLe	N3U	C4U	ON	743.656	119.400	$!0.70$ B
ANGLe	C5U	C4U	ON	1012.199	125.900	$!0.60$ B
ANGLe	C6U	N1U	C1R	561.212	121.200	$!1.40$ B
ANGLe	C2U	N1U	C1R	763.872	117.700	$!1.20$ B
ANGLe	C6U	N1U	C1D	561.212	121.200	! 1.40 B ! DNA
ANGLe	C2U	N1U	C1D	763.872	117.700	$!1.20$ B
ANGLe	C4U	ON	HO	105.000	120.000	!from param11.dna, 3*keq
ANGLe	C2U	N3U	HN	105.000	116.500	
ANGLe	C4U	N3U	HN	105.000	116.500	
ANGLe	N1U	C6U	H	\$kchangle	119.38	
ANGLe	C5U	C6U	H	\$kchangle	119.38	
ANGLe	C4U	C5U	H	\$kchangle	119.56	
ANGLe	C6U	C5U	H	\$kchangle	119.56	
ANGLe	C3D	C2D	NX29	1457.566	110.00	!check param, added fpr pyr
ANGLe	H	C2D	NX29	500.00	109.51	!check param, added fpr pyr

\{
!Dihedrals from param11.dna (included for terminal residues)

Appendix

DIHEdral	X	C2G	N2G	X	18.0	2	180.000
DIHEdral	X	C6A	N6A	X	18.0	2	180.000
!DIHEdral	X	C6A	N4C	X	18.00	2	180.000
DIHEdral	X	C4C	N4C	X	18.00	2	180.000
\}							

! IMPRopers to keep the two purine rings parallel:
! guanine

IMPRoper	C8G	C4G	C5G	NNA	250.0	2	180.000	
IMPRoper	C8G	C5G	C4G	C2G	250.0	2	180.000	
IMPRoper	N3G	C4G	C5G	N7G	250.0	2	180.000	
IMPRoper	C6G	C5G	C4G	N9G	250.0	2	180.000	
!adenine								
IMPRoper	C8A	C4A	C5A	N9A	250.0	2	180.000	! WYE AND PATCHED RESIDUES
IMPRoper	C8A	C5A	C4A	C2A	250.0	2	180.000	
IMPRoper	C8A	C4A	C5A	NC	250.0	2	180.000	
IMPRoper	N3A	C4A	C5A	N7A	250.0	2	180.000	
IMPRoper	C6A	C5A	C4A	N9A	250.0	2	180.000	
!purine								
IMPRoper	C8P	C4P	C5P	N9P	250.0	2	180.000	! WYE AND PATCHED RESIDUES
IMPRoper	C8P	C5P	C4P	C2P	250.0	2	180.000	
IMPRoper	C8P	C4P	C5P	NC	250.0	2	180.000	
IMPRoper	N3P	C4P	C5P	N7P	250.0	2	180.000	

IMPRoper	H	C4C	C6C	C5C	\$kchimpr	0	0.000
IMPRoper	H	N1C	C5C	C6C	\$kchimpr	0	0.000
IMPRoper	H	C4U	C6U	C5U	\$kchimpr	0	0.000
IMPRoper	H	N1U	C5U	C6U	\$kchimpr	0	0.000
IMPRoper	H	N1T	C5T	C6T	\$kchimpr	0	0.000
IMPRoper	H	N7A	N9A	C8A	\$kchimpr	0	0.000
IMPRoper	H	NC	N3A	C2A	\$kchimpr	0	0.000
IMPRoper	H	N7P	N9P	C8P	\$kchimpr	0	0.000
IMPRoper	H	NC	N3P	C2P	\$kchimpr	0	0.000
IMPRoper	H	NC	C5P	C6P	\$kchimpr	0	0.000
IMPRoper	H	N7G	N9G	C8G	\$kchimpr	0	0.000
! Impropers for ribose chirality							
IMPRoper	H	C2R	04R	N9A	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C2R	04R	N9P	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C2R	04R	N9G	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C2R	04R	N1C	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C2R	04R	N1U	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C2R	04R	N1T	\$kchimpr	0	-65.000!C1R
IMPRoper	H	C3R	C1R	02R	\$kchimpr	0	$65.000!\mathrm{C} 2 \mathrm{R}$
IMPRoper	H	C4R	C2R	03R	\$kchimpr	0	$60.300!$ C3R
IMPRoper	H	C4R	C2R	OH	\$kchimpr	0	60.300!C3R; TERMINAL RES
IMPRoper	H	C5R	C3R	04R	\$kchimpr	0	$70.300!$ C4R
IMPRoper	H	05R	H	C4R	\$kchimpr	0	72.000 !C5R;
IMPRoper	H	OH	H	C4R	\$kchimpr	0	72.000 ! C5R ; TERMINAL RES
! Impropers for deoxyribose chirality							
IMPRoper	H	C2D	04D	N9A	\$kchimpr	0	-65.280! C1D

IMPRoper	H	C2D	O4D	N9P	\$kchimpr	0	$-65.280!$ C1D
IMPRoper	H	C2D	O4D	N9G	\$kchimpr	0	$-65.280!$ C1D
IMPRoper	H	C2D	04D	N1C	\$kchimpr	0	$-65.280!$ C1D
IMPRoper	H	C2D	04D	N1T	\$kchimpr	0	$-65.280!$ C1D
IMPRoper	H	C2D	O4D	N1U	\$kchimpr	0	$-65.280!$ C1D
IMPRoper	H	C2D	O4D	H	\$kchimpr	0	$-65.280!$ C1D $!$ mod by anda (ABA)
IMPRoper	H	C3D	H	C1D	\$kchimpr	0	$-73.500!$ C2D
IMPRoper	H	C4D	C2D	03R	\$kchimpr	0	$62.660!$ C3D
IMPRoper	H	C4D	C2D	OH	\$kchimpr	0	$62.660!$ C3D; TERMINAL RES
IMPRoper	H	C5D	C3D	04D	\$kchimpr	0	$70.220!$ C4D
IMPRoper	H	O5R	H	C4D	\$kchimpr	0	$71.430!$ C5D;
IMPRoper	H	OH	H	C4D	\$kchimpr	0	$71.430!$ C5D; TERMINAL RES

\{
!Phos. - periodical potentials from combined RNA/DNA statistics

| ! | | | | kq | x_eq | | (sigma in parenthesis) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

!Phos. - discrete values from combined RNA/DNA statistics

!					kq		x_eq	(sigma in parenthesis)				
!DIHEdral	03R	P	05R	C5R	6.07	0	285.3			(9.8)	alpha1	! P
!DIHEdral	03R	P	05R	C5R	3.98	0	81.1			(12.1)	alpha2;	alpha3=180.
!DIHEdral	P	05R	C5R	C4R	3.44	0	183.5		!	(13.0)	beta	! P
!DIHEdral	05R	C5R	C4R	C3R	17.94	0	52.5		!	(5.7)	gamma1	! S
!DIHEdral	05R	C5R	C4R	C3R	14.23	0	179.4		!	(6.4)	gamma2	! S
!DIHEdral	05R	C5R	C4R	C3R	3.85	0	292.9		!	(12.3)	gamma3	!S
!DIHEdral	C4R	C3R	03R	P	7.88	0	214.0		!	(8.6)	eps	$!\mathrm{P}$
!DIHEdral	C3R	03R	P	05R	25.30	0	289.2		!	(4.8)	zeta1	! P
!DIHEdral	C3R	03R	P	05R	2.85	0	80.7		!	(14.3)	zeta2;	eta3=180.
\}\{												
!Sugars												
! c3'-endo conformation as the default for for RNA, c2'-endo for DNA,!RNA statistics, C3'-endo												
DIHEdral	C5R	C4R	C3R	03R	30.120		81.1	!		elta !	c3'-endo	S (4.4)
DIHEdral	04R	C4R	C3R	03R	33.100		201.8	!		4.2 !	c3'-endo	S
DIHEdral	04R	C1R	C2R	C3R	24.280		335.4	!		4.9 ! c	c3'-endo	S
DIHEdral	C1R	C2R	C3R	C4R	74.360		35.9	!		2.8 ! c	c3'-endo	S
DIHEdral	C2R	C3R	C4R	04R	60.670		324.7	!		3.1 ! c	c3' -endo	S
DIHEdral	C3R	C4R	04R	C1R	22.420		20.5	!		5.1 ! c	c3'-endo	S
DIHEdral	C4R	04R	C1R	C2R	15.670		2.8	!		6.1 ! c	c3'-endo	S
DIHEdral	C5R	C4R	C3R	C2R	60.670		204.0	!		3.1 ! c	c3'-endo	
DIHEdral	03R	C3R	C2R	02R	28.790		44.3	!		4.5 ! c	c3'-endo	
DIHEdral	C4R	04R	C1R	N1T	13.800	2	241.4	!		6.5 ! c	c3'-endo	S

Appendix

DIHEdral	C4R	O4R	C1R	N1C	13.80	0	241.4	6.5	! c3'-endo S		
DIHEdral	C4R	O4R	C1R	N1U	13.80	0	241.4	$!$	6.5	$!$	c3'-endo

!DNA c2'-endo sugar base joint torsions (combined RNA/DNA statistics used)

| DIHEdral | O4D | C1D | N1T | C2T | 1.72 | 0 | 229.8 | 18.4 | c2'-endo S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIHEdral | O4D | C1D | N1C | C2C | 1.72 | 0 | 229.8 | $!18.4$ | $!c{ }^{\prime}$-endo S |
| DIHEdral | O4D | C1D | N1U | C2U | 1.72 | 0 | 229.8 | $!18.4$ | c2'-endo S |
| DIHEdral | O4D | C1D | N9A | C4A | 1.00 | 0 | 237.0 | 24.3 | c2'-endo S |
| DIHEdral | O4D | C1D | N9P | C4P | 1.00 | 0 | 237.0 | 24.3 | c2'-endo S |
| DIHEdral | O4D | C1D | N9G | C4G | 1.00 | 0 | 237.0 | 24.3 | c2'-endo S |

! In the case of c3'-endo conformation, the following DIHEdrals are provided !to overwrite the c2'-endo DIHEdrals

! DIHEdral	C5R	C4R	C3R	03R	24.28	0	147.3	!	delta	!	c2'-endo	S (4.9
! DIHEdral	04R	C1R	C2R	C3R	50.43	0	35.2	!	3.4	!	c2'-endo	S
! DIHEdral	04R	C4R	C3R	03R	20.75	0	268.1	!	5.3	!	c2'-endo	S
! DIHEdral	C1R	C2R	C3R	C4R	74.36	0	324.6	!	2.8	!	c2'-endo	S
! DIHEdral	C2R	C3R	C4R	04R	31.53	0	24.2	!	4.3	!	c2'-endo	S
! DIHEdral	C3R	C4R	04R	C1R	17.94	0	357.7	!	5.7	!	c2'-endo	S
! DIHEdral	C4R	04R	C1R	C2R	21.56	0	339.2	!	5.2	!	c2'-endo	S
! DIHEdral	C5R	C4R	C3R	C2R	34.68	0	263.4	!	4.1	!	c2'-endo	S
! DIHEdral	03R	C3R	C2R	02R	33.05	0	319.7	!	4.2	!	c2'-endo	S
!DIHEdral	C4R	04R	C1R	N1T	19.27	0	216.6	!	5.5	!	c2'-endo	S
!DIHEdral	C4R	04R	C1R	N1C	19.27	0	216.6	!	5.5	!	c2'-endo	S
!DIHEdral	C4R	04R	C1R	N1U	19.27	0	216.6	!	5.5	!	c2'-endo	S
!DIHEdral	C4R	04R	C1R	N9G	19.27	0	216.6	!	5.5	!	c2'-endo	S

! Impropers	taken	from param11.dna	$3 *$ kq				
IMPRoper	C5R	X	X	C2R	94.5	0	35.260
IMPRoper	C5R	X	X	C1R	94.5	0	35.260
IMPRoper	OH	X	X	C3R	94.5	0	35.260
IMPRoper	OH	X	X	C4R	94.5	0	35.260
IMPRoper	OH	X	X	C1R	94.5	0	35.260
IMPRoper	O3R	X	X	C3R	94.5	0	35.260
IMPRoper	05R	X	X	C1R	94.5	0	35.260
IMPRoper	O2R	X	X	C2R	94.5	0	35.260
IMPRoper	C4R	05R	C1R	N1T	94.5	0	35.260
IMPRoper	C4R	05R	C1R	N1C	94.5	0	35.260
IMPRoper	C4R	05R	C1R	N9G	94.5	0	35.260
IMPRoper	C4R	05R	C1R	N9A	94.5	0	35.260
IMPRoper	C4R	O5R	C1R	N9P	94.5	0	35.260
IMPRoper	C5R	O4R	C3R	C4R	94.5	0	35.260
IMPRoper	N1T	C2R	O4R	C1R	94.5	0	35.260
IMPRoper	N1C	C2R	O4R	C1R	94.5	0	35.260
IMPRoper	N9A	C2R	O4R	C1R	94.5	0	35.260
IMPRoper	N9P	C2R	04R	C1R	94.5	0	35.260
IMPRoper	N9G	C2R	04R	C1R	94.5	0	35.260

Appendix

!thymidi							
IMPRoper	C4T	X	X	ON	2400.0	0	0.000
IMPRoper	C4T	X	X	N1T	250.0	0	0.000
IMPRoper	C6T	X	X	N3T	250.0	0	0.000
IMPRoper	C4T	X	X	N2	2400.0	0	0.000
IMPRoper	C2T	X	X	ON	2400.0	0	0.000
IMPRoper	C1R	C2T	C6T	N1T	2400.0	0	0.000
IMPRoper	C1D	C2T	C6T	N1T	2400.0	0	0.000
IMPRoper	ON	N3T	C5T	C4T	250.0	0	0.000
IMPRoper	C2T	N3T	C4T	C5T	250.0	0	0.000
IMPRoper	C5T	C6T	N1T	C2T	250.0	0	0.000
IMPRoper	H2	C4T	H2	ON	250.0	0	0.000
IMPRoper	CC3E	C4T	C6T	C5T	2400.0	0	0.000
!infer							
IMPRoper	HN	C2T	C4T	N3T	250.0	0	0.000
! The ring-spanning impropers have been left out.							
! adenine							
IMPRoper	N2A	N3A	NC	C2A	250.0	0	0.000
IMPRoper	H2	C2A	H2	N2A	250.0	0	0.000
IMPRoper	C4A	C5A	N7A	C8A	250.0	0	0.000
IMPRoper	C5A	C4A	N9A	C8A	250.0	0	0.000
IMPRoper	C4A	X	X	NC	250.0	0	0.000
IMPRoper	C2A	X	X	N9A	250.0	0	0.000
IMPRoper	C2A	X	X	C5A	250.0	0	0.000
IMPRoper	C6A	C5A	C4A	N3A	250.0	0	0.000
IMPRoper	C5A	X	X	N9A	250.0	0	0.000
IMPRoper	C6A	X	X	N6A	2400.0	0	0.000
IMPRoper	H2	X	X	N6A	250.0	0	0.000
! infer							
IMPRoper	C1R	C4A	C8A	N9A	2400.0	0	0.000
IMPRoper	C1D	C4A	C8A	N9A	2400.0	0	0.000
IMPRoper	N9A	C4A	C5A	N7A	250.0	0	0.000
IMPRoper	N7A	C8A	N9A	C4A	250.0	0	0.000
IMPRoper	N3A	C2A	NC	C6A	250.0	0	0.000
IMPRoper	C5A	C6A	N6A	H2	2000.0	0	0.000
! The ring-spanning impropers have been left out.							
!purine							
IMPRoper	N2P	N3P	NC	C2P	250.0	0	0.000
IMPRoper	C4P	C5P	N7P	C8P	250.0	0	0.000
IMPRoper	C5P	C4P	N9P	C8P	250.0	0	0.000
IMPRoper	C4P	X	X	NC	250.0	0	0.000
IMPRoper	C2P	X	X	N9P	250.0	0	0.000
IMPRoper	C2P	X	X	C5P	250.0	0	0.000
IMPRoper	C6P	C5P	C4P	N3P	250.0	0	0.000
IMPRoper	C5P	X	X	N9P	250.0	0	0.000
!infer							
IMPRoper	C1R	C4P	C8P	N9P	2400.0	0	0.000
IMPRoper	C1D	C4P	C8P	N9P	2400.0	0	0.000
IMPRoper	N9P	C4P	C5P	N7P	250.0	0	0.000
IMPRoper	N7P	C8P	N9P	C4P	250.0	0	0.000
IMPRoper	N3P	C2P	NC	C6P	250.0	0	0.000

Appendix

NONBonded	04D	0.2304	2.7290	0.2304	2.7290
novBonded	05R	0.2304	2.7290	0.2304	2.7290
novBonded	01P	0.2304	2.7290	0.2304	2.7290
NONBonded	02P	0.2304	2.7290	0.2304	2.7290
NONBonded	P	0.5849	3.3854	0.5849	3.3854
! bases					
NONBonded	C2	0.0900	3.2970	0.0900	3.2970
NONBonded	C3	0.0900	3.2970	0.0900	3.2970
NONBonded	CB	0.0900	3.2970	0.0900	3.2970
novBonded	CE	0.0900	3.2970	0.0900	3.2970
noNBonded	CH	0.0900	3.2970	0.0900	3.2970
novBonded	N2	0.1600	2.8591	0.1600	2.8591
NONBonded	N3U	0.1600	2.8591	0.1600	2.8591
NONBonded	N3T	0.1600	2.8591	0.1600	2.8591
novBonded	nna	0.1600	2.8591	0.1600	2.8591
NONBonded	NB	0.1600	2.8591	0.1600	2.8591
NONBonded	NC	0.1600	2.8591	0.1600	2.8591
NONBonded	NH2E	0.1600	3.0291	0.1600	3.0291
NONBonded	NS	0.1600	2.8591	0.1600	2.8591
NONBonded	N1T	0.1600	2.8591	0.1600	2.8591
NONBonded	N1C	0.1600	2.8591	0.1600	2.8591
NONBonded	n9A	0.1600	2.8591	0.1600	2.8591
NONBonded	n9P	0.1600	2.8591	0.1600	2.8591
NONBonded	N9G	0.1600	2.8591	0.1600	2.8591
NONBonded	N1U	0.1600	2.8591	0.1600	2.8591
NONBonded	ON	0.2304	2.7290	0.2304	2.7290
NONBonded	02R	0.2304	2.7290	0.2304	2.7290
NONBonded	OH	0.2304	2.5508	0.2304	2.5508
novBonded	SD	0.3515	2.6727	0.3515	2.6727
NONBonded	02	0.2304	2.7290	0.2304	2.7290
! NEW					
novBonded	C6C	0.0900	3.2970	0.0900	3.2970
NONBonded	C5C	0.0900	3.2970	0.0900	3.2970
NONBonded	C4C	0.0900	3.2970	0.0900	3.2970
novBonded	C2C	0.0900	3.2970	0.0900	3.2970
NONBonded	C6U	0.0900	3.2970	0.0900	3.2970
NONBonded	C5U	0.0900	3.2970	0.0900	3.2970
NONBonded	c4u	0.0900	3.2970	0.0900	3.2970
NONBonded	C2U	0.0900	3.2970	0.0900	3.2970
NONBonded	C8A	0.0900	3.2970	0.0900	3.2970
NONBonded	C6A	0.0900	3.2970	0.0900	3.2970
NONBonded	C5A	0.0900	3.2970	0.0900	3.2970
novBonded	C4A	0.0900	3.2970	0.0900	3.2970
NONBonded	C2A	0.0900	3.2970	0.0900	3.2970
novBonded	C8P	0.0900	3.2970	0.0900	3.2970
NONBonded	C6P	0.0900	3.2970	0.0900	3.2970
NONBonded	C5P	0.0900	3.2970	0.0900	3.2970
NONBonded	C4P	0.0900	3.2970	0.0900	3.2970
NONBonded	C2P	0.0900	3.2970	0.0900	3.2970
NONBonded	C8G	0.0900	3.2970	0.0900	3.2970
NONBonded	C6G	0.0900	3.2970	0.0900	3.2970
NONBonded	C5G	0.0900	3.2970	0.0900	3.2970

Appendix

NONBonded	C4G	0.0900	3.2970	0.0900	3.2970
NONBonded	C2G	0.0900	3.2970	0.0900	3.2970
NONBonded	C6T	0.0900	3.2970	0.0900	3.2970
NONBonded	C5T	0.0900	3.2970	0.0900	3.2970
NONBonded	C4T	0.0900	3.2970	0.0900	3.2970
NONBonded	C2T	0.0900	3.2970	0.0900	3.2970
NONBonded	N4C	0.1600	2.8591	0.1600	2.8591
NONBonded	O4U	0.2304	2.7290	0.2304	2.7290
NONBonded	N7G	0.1600	2.8591	0.1600	2.8591
NONBonded	N3G	0.1600	2.8591	0.1600	2.8591
NONBonded	N2G	0.1600	2.8591	0.1600	2.8591
NONBonded	N3A	0.1600	2.8591	0.1600	2.8591
NONBonded	N7A	0.1600	2.8591	0.1600	2.8591
NONBonded	N6A	0.1600	2.8591	0.1600	2.8591
NONBonded	O6G	0.2304	2.7290	0.2304	2.7290
NONBonded	CC3E	0.0900	3.2970	0.0900	3.2970
NONBonded	N2A	0.1600	2.8591	0.1600	2.8591
NONBonded	N2P	0.1600	2.8591	0.1600	2.8591
NONBonded	N3P	0.1600	2.8591	0.1600	2.8591
NONBonded	N7P	0.1600	2.8591	0.1600	2.8591
! special					
!AEXP 4					
!REXP 6					

! HAEX 4
!AAEX 2
! "all" possible combinations of HB-pairs in nucleic acids:
! WELL DEPTHS DEEPENED BY 0.5 KCAL TO IMPROVE BASEPAIR ENERGIES /LN
! AND DISTANCES INCREASED BY 0.05

!			Emin (Kcal/mol)	Rmin
(A)				

! the following NBFIXes are for DNA-DNA hydrogen bonding
! terms

nbfix	H	O4R	0.05	0.1	0.05	0.1
nbfix	H	O4D	0.05	0.1	0.05	0.1
nbfix	H	O3R	0.05	0.1	0.05	0.1
nbfix	H	O2R	0.05	0.1	0.05	0.1
nbfix	H	OH	0.05	0.1	0.05	0.1
nbfix	H	N7A	0.05	0.1	0.05	0.1
nbfix	H	N7P	0.05	0.1	0.05	0.1
nbfix	H	N7G	0.05	0.1	0.05	0.1
nbfix	H	N3A	0.05	0.1	0.05	0.1
nbfix	H	N3P	0.05	0.1	0.05	0.1
nbfix	H	N3G	0.05	0.1	0.05	0.1
				0.1	0.05	0.1
nbfix	HN	ON	0.05	0.1		
nbfix	HN	02R	0.05	0.1	0.05	0.1
nbfix	HN	OH	0.05	0.1	0.05	0.1
nbfix	HN	NC	0.05	0.1	0.05	0.1
nbfix	H2	ON	0.05	0.1	0.05	0.1
nbfix	H2	02R	0.05	0.1	0.05	0.1
nbfix	H2	OH	0.05	0.1	0.05	0.1
						0.1
nbfix	H2	NC	0.05	0.1	0.05	0.1
set echo $=$ on	message=on end					

2.5 Topology file used by Xplor-NIH

```
!RNA TOPOLOGY FILE 'FRAMEWORK' FROM TOPALLHDG.DNA AND ATOM NAMES
    ! FROM DNA-RNA.PaRAM
    !INCLUDES ALL NONEXCHANGEABLE HyDRogenS and terMS For bond, angle, and
    !ImpRopers. nonexchangeable hydrogen Charges were assigned 0.035.
    !CARBON CHARGES WERE REDUCED 0.035 FOR EACH ATTACHED HydROGEN.
    !CREATED 2/24/96-- JASON P. RIFE AND PETER B. MOORE
    ! DNA-RNA-ALLATOM.TOP
    set echo=false end
    ! checkversion 1.0
    autogenerate angles=True end
    {*==========================*}
{ Note: edit masses if necessary }
MASS OY1 15.99900 ! assuming 0 -> 15.99900 + 1.008 * 0 (Hs)
MASS CY2 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)
MASS HY3 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)
```


Appendix

ss	0
SS OY7	0
Mass Cy8	12.01100 ! assuming C -> $12.01100+1.008 * 0$ (Hs)
MASS HY9	1.00800 ! assuming H >> $1.00800+1.008 * 0$ (Hs)
MASS CY10	12.01100 ! assuming C $->12.01100+1.008 * 0$ (Hs)
MASS HY11	1.00800 ! assuming H $->1.00800+1.008 * 0$ (Hs)
MASS CY12	
MASS NY13	14.00700 ! assuming N $\rightarrow 14.00700+1.008 * 0$ (Hs)
MASS HY14	$800+1.008 * 0$ (Hs)
MASS HY15	0800 ! assuming H \rightarrow 1.00800 + 1.008 * 0 (Hs)
MASS NY16	15.01500 ! assuming $\mathrm{N} \rightarrow 14.00700+1.008 * 1$ (Hs)
MASS CY17	100
MASS CY18	. $01100+1.008$
	. $0800+1.008 * 0$ (Hs)
	12.01100 ! assuming C -> $12.01100+1.008 * 0$ (Hs)
MASS HY21	Hs)
MASS HY22	$800+1.008 * 0$ (Hs)
MASS OY23	15.99900 ! assuming $0->15.99900+1.008 * 0$ (Hs)
MASS NY24	700
MASS CY25	100 ! assuming C $\rightarrow 12.01100+1.008$
SS	suming N $\rightarrow 14.00700+1.008 * 0$ (Hs)
MASS HY27	. 0800 + 1.008 * 0 (Hs)
MASS HY28	. 00800 ! assuming H \rightarrow > $1.00800+1.008 * 0$ (Hs)
MASS HY29	800 ! assuming H \rightarrow 1.00800 + 1.008* 0 (Hs)
SS HYзо	1.00800 ! assuming H \rightarrow 1.00800 + $1.008 * 0$ (Hs)
MASS HY31	800

!********************** end of change by lsd - DAP $* * * * * * * * * * * * * * * * * * * ~$
\qquad
\{ Note: edit masses if necessary \}
MASS OX1 15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CX2 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX3 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HX4 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS CX5 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX6 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS 0X7 15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CX8 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX9 1.00800 ! assuming H $\rightarrow 1.00800+1.008$ * 0 (Hs)
MASS CX10 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX11 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS CX12 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CX13 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CX14 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX15 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS CX16 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX17 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HX18 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS 0X19 15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CX20 12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HX21 1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HX22 1.00800 ! assuming $H \rightarrow 1.00800+1.008 * 0$ (Hs)

SS CX23	12.01100 ! assuming C -> $12.01100+1.008$ * 0 (Hs)
MASS CX24	12.01100 ! assuming C $->12.01100+1.008 * 0$ (Hs)
MASS NX25	14.00700 ! assuming N -> $14.00700+1.008 * 0$ (Hs)
MASS HX26	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HX27	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS NX28	14.00700 ! assuming $\mathrm{N} \rightarrow$-> $14.00700+1.008 * 0$ (Hs)
MASS CX29	12.01100 ! assuming C $->12.01100+1.008 * 0$ (Hs)
MASS CX30	12.01100 ! assuming C $->12.01100+1.008 * 0$ (Hs)
MASS OX31	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS 0x32	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS HX33	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HX34	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)

autogenerate angles=true end
$!* * * * * * * * * * * * * * * * * * *$ end of change by lsd - 4AP $* ~$

Appendix

MASS PZ1	30.97400 ! assuming P -> $30.97400+1.008 * 0$ (Hs)
MASS OZ2	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS 023	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CZ1	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz2	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz3	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz4	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz5	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz6	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ7	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
Mass Cz8	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS Cz9	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ10	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ11	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ1	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ13	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS OZ14	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CZ15	12.01100 ! assuming $C \rightarrow 12.01100+1.008 * 0$ (Hs)
MASS 0 Z16	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS 0217	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS HZ18	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HZ19	1.00800 ! assuming H \rightarrow 1.00800 + $1.008 * 0$ (Hs)
MASS HZ20	1.00800 ! assuming H \rightarrow 1.00800 + $1.008 * 0$ (Hs)
MASS HZ21	1.00800 ! assuming H \rightarrow 1.00800 $+1.008 * 0$ (Hs)
MASS HZ22	1.00800 ! assuming H \rightarrow 1.00800 $+1.008 * 0$ (Hs)
MASS HZ23	1.00800 ! assuming H \rightarrow 1.00800 $+1.008 * 0$ (Hs)
MASS HZ24	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HZ25	1.00800 ! assuming H \rightarrow 1.00800 $+1.008 * 0$ (Hs)
MASS CZ26	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS 0227	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS CZ28	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HZ29	1.00800 ! assuming H \rightarrow 1.00800 $+1.008 * 0$ (Hs)
MASS Cz30	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS CZ31	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HZ32	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HZ33	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HZ34	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS HZ35	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS CZ36	12.01100 ! assuming C $\rightarrow 12.01100+1.008 * 0$ (Hs)
MASS HZ37	1.00800 ! assuming H \rightarrow 1.00800 + $1.008 * 0$ (Hs)
MASS HZ38	1.00800 ! assuming H $\rightarrow 1.00800+1.008 * 0$ (Hs)
MASS 0239	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS $0 z 41$	15.99900 ! assuming $0 \rightarrow 15.99900+1.008 * 0$ (Hs)
MASS HZ43	1.00800 ! assuming H \rightarrow 1.00800 + $1.008 * 0$ (Hs)

\{* DNA/RNA default masses *\}

MASS	P	$30.97400!$ phosphorus
MASS	01 P	$15.99940!$ O in phosphate
MASS	02 P	$15.99940!$ O in phosphate
MASS	$05 R$	15.99940 ! ester -P-0-C-
MASS	C5R	12.011 ! corresp. to CH2E

MASS	C4R	12.011! corresp. to CH1E
MASS	C3R	12.011! corresp. to CH1E
MASS	C2R	12.011! corresp. to CH1E
MASS	C1R	12.011! corresp. to CH1E
MASS	04R	15.99940 ! ester -P-0-C-
MASS	03R	15.99940 ! ester -P-0-C-
MASS	02R	15.99940! ester -P-0-C-
MASS	OH	15.99940! corresp. to OH1
! DEOXY	SUGAR	
MASS	C5D	14.02700! corresp. to CH2E
MASS	C4D	13.01900! corresp. to CH1E
MASS	C3D	13.01900 ! corresp. to CH1E
MASS	C2D	13.01900! corresp. to CH1E
MASS	C1D	13.01900! corresp. to CH1E
MASS	04D	15.99940 ! ester -P-0-C-
MASS	05D	15.99940 !
MASS	03D	15.99940 !
! Insert Bases		
! Generic		
MASS	N2	14.00670! nitrogen in -NH2
MASS	NNA	14.00670! corresp. to NH1
MASS	ON	15.99940 ! corresp. to 0
MASS	NC	14.00670! corresp. to NR
MASS	NS	14.00670 ! nitrogen in ring $>\mathrm{N}-$
! Insert 4 Bases		
$!$ GUA		
MASS	N9G	14.00670! nitrogen in ring $>\mathrm{N}$ -
MASS	C2G	12.011! (prev CE)
MASS	N3G	14.00670! (prev NC)
MASS	C4G	12.01100! (prev CB)
MASS	C5G	12.01100! (prev CB)
MASS	C6G	12.01100! (prev CN)
MASS	N7G	14.00670! (prev NB)
MASS	C8G	12.011! (prev CE)
MASS	06G	15.99940! (prev CE)
MASS	N2G	14.00670! nitrogen in -NH2
! ADE		
MASS	N9A	14.00670 ! nitrogen in ring $>\mathrm{N}$ -
MASS	C2A	12.011! (prev CE)
MASS	N3A	14.00670! (prev NC)
MASS	C4A	12.01100! (prev CB)
MASS	C5A	12.01100! (prev CB)
MASS	C6A	12.01100! (prev CA)
MASS	N7A	14.00670! (prev NB)
MASS	C8A	12.011! (prev CE)
MASS	N6A	14.00670! nitrogen in -NH2
! PUR		
MASS	N9P	14.00670! nitrogen in ring $>\mathrm{N}$ -
MASS	C2P	12.011! (prev CE)
MASS	N3P	14.00670! (prev NC)
MASS	C4P	12.01100! (prev CB)

Appendix

MASS	C5P	12.01100! (prev CB)
MASS	C6P	12.01100! (prev CA)
MASS	N7P	14.00670! (prev NB)
MASS	C8P	12.011! (prev CE)
! CYT		
MASS	N1C	14.00670! nitrogen in ring $>\mathrm{N}$ -
MASS	C2C	12.01100! (prev CN)
MASS	C4C	12.01100! (prev CA)
MASS	C5C	12.011! (prev CF)
MASS	C6C	12.011! (prev CF)
MASS	N4C	14.00670! nitrogen in -NH2
! THY		
MASS	N1T	14.00670! nitrogen in ring $>\mathrm{N}-$
MASS	N3T	14.00670! nitrogen in ring $>\mathrm{N}$ -
MASS	C2T	12.01100! (prev CN)
MASS	C4T	12.01100! (prev CN)
MASS	C5T	12.011! (prev CS)
MASS	C6T	12.011! (prev CF)
MASS	CC3E	12.01100! (prev CF)
! END		
MASS	H	1.00800! non-exchangeable Hydrogens
MASS	HN	1.00800! corresp. to H
MASS	H2	1.00800 ! hydrogen in -NH2
MASS	но	1.00800! hydroxy hydrogen
! URI		
MASS	N1U	14.00670! nitrogen in ring $>\mathrm{N}-$
MASS	C2U	12.01100! (prev CN)
MASS	C4U	12.01100! (prev CA)
MASS	C5U	12.011! (prev CF)
MASS	C6U	12.011! (prev CF)
MASS	N3U	14.00670!

RESIdue DAP

\{ Note: electrostatics should normally			
\{ crystallographic refinement since it can			
\{ artefacts. For this reason, all charges			
\{ zero by default. Edit them if necessary \}			
GROUP			
ATOM P	TYPE=P	CHARGE $=1.20$	END
AT0M 01P	TYPE=01P	CHARGE $=-0.40$	END
ATOM 02P	TYPE=02P	CHARGE $=-0.40$	END
ATOM 05	TYPE=05R	CHARGE $=-0.36$	END
Charge of the group: 0.04			
GROUP			
ATOM C5	TYPE=C5R	CHARGE $=-0.070$	END
ATOM H5	TYPE=H	CHARGE $=0.035$	END

Appendix

DIHEdral	N3				H	H22 !	!	flat ?	(0 degrees =	cis) -	-0.2	
DIHEdral	N3	C2		N2	H	H21 !	! f	flat ?	(180 degrees	= trans)		181.56
DIHEdral	N1	C2		N2		H22 !	! f	flat ?	(180 degrees	= trans)		180.37
DIHEdral	N1	C2		N2		H21 !	! f	flat ?	(0 degrees =	cis)	2.1	
DIHEdral	N3	C4		N4		H42 !	! f	flat ?	(0 degrees =	is) -	-1.6	
DIHEdral	C5	C4		N4		H42 !	! f	flat ?	(180 degrees	trans)		179.27
\{ Note: edit these IMPRopers if necessary \}												
IMPRoper	C6	H6		N1	C5	C5	$!$ ch	chiralit	ty or flatness	improper		-0.54
IMPRoper	C2	N2		N3	N1	N1 !	$!$ ch	chiralit	ty or flatness	improper		0.35
IMPRoper	N2	C2		H22	H2	H21 !	$!$ ch	chiralit	ty or flatness	improper		0.94
IMPRoper	C4	N3		C5		N4!	$!$ ch	chiralit	ty or flatness	improper		0.57
IMPRoper	N1	C6		C2		H1 !	$!$ ch	chiralit	ty or flatness	improper		0.77
IMPRoper	C5	C1,		C6		C4!	! ch	chiralit	ty or flatness	improper		-2.66
IMPRoper	N4	C4		H41	H4	H42!	! ch	chiralit	ty or flatness	improper		-7.15
! Ribose												
IMPRoper		H1 '	C2'	, 0	04'	, C5	5 !	!C1'				
IMPRoper		H2 '	C3'	, C	C1'	, 02 '	2, !	! C2 $^{\prime}$				
IMPRoper		H3'	C4'	, C	C2'	, 03 '	3' !	! C3				
IMPRoper		H4'	C5'	, C	C3'	, 04 '	4' !	! 64				
IMPRoper		H5'	05'	, H	H5',	, ${ }^{\text {C4 }}$	4' !	! ${ }^{\text {' }}$				

END \{ RESIdue DAP \}

RESIdue 4AP

```
\{ Note: electrostatics should normally not be used in \}
\{ crystallographic refinement since it can produce \}
\{ artefacts. For this reason, all charges are set to \}
\{ zero by default. Edit them if necessary \}
GROUp
ATOM \(P \quad\) TYPE \(=P \quad\) CHARGE \(=1.20 \quad\) END
ATOM 01P TYPE=01P CHARGE=-0.40 END
ATOM 02P TYPE=02P CHARGE \(=-0.40\) END
ATOM 05, TYPE=05R CHARGE \(=-0.36\) END
!Charge of the group: 0.04
GROUp
ATOM C5' TYPE=C5R CHARGE=-0.070 END
ATOM H5 \({ }^{\prime}\) TYPE \(=\mathrm{H} \quad\) CHARGE \(=0.035\) END
ATOM H5', TYPE \(=\) H CHARGE=0.035 END
! Charge of the group: 0.00
GROUp
ATOM C4' TYPE=C4R CHARGE=0.065 END
ATOM H4, TYPE \(=\mathrm{H} \quad\) CHARGE \(=0.035\) END
ATOM 04, TYPE=04R CHARGE=-0.30 END
ATOM C1' TYPE=C1R CHARGE=0.238 END ! increased from 0.165 by lsd
ATOM H1, TYPE \(=\mathrm{H} \quad\) CHARGE \(=0.035\) END
! Charge of the group: 0.073 is complmentary to -0.073 of 4AP
GROUP
ATOM C2, TYPE=C2R CHARGE=0.115 END
ATOM H2, TYPE \(=\mathrm{H} \quad\) CHARGE \(=0.035\) END
ATOM 02, TYPE=02R CHARGE \(=-0.40\) END
ATOM HO2' TYPE=HO CHARGE=0.25 END
! Charge of the group: 0.00
GROUp
ATOM C3' TYPE=C3R CHARGE \(=-0.035\) END
```

```
ATOM H3, TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM 03' TYPE=03R CHARGE=-0.36 END
!Charge of the group: -0.36
!4AP-base
GROUp
ATOM C5 TYPE CX10 CHARge -0.267 END ! Nr of Hs = 0
ATOM H5 TYPE HX11 CHARge 0.161 END ! Nr of Hs = 0
ATOM C3 TYPE CX12 CHARge -0.269 END ! Nr of Hs = 0
ATOM C6a TYPE CX13 CHARge -0.239 END ! Nr of Hs = 0
ATOM C6 TYPE CX2O CHARge 0.095 END ! Nr of Hs = 0
ATOM C4 TYPE CX23 CHARge 0.434 END ! Nr of Hs = 0
ATOM C2a TYPE CX24 CHARge -0.038 END ! Nr of Hs = 0
ATOM N4 TYPE NX25 CHARge -0.824 END ! Nr of Hs = 0
ATOM H41 TYPE HX26 CHARge 0.348 END ! Nr of Hs = 0
ATOM H42 TYPE HX27 CHARge 0.362 END ! Nr of Hs = 0
ATOM N1 TYPE NX28 CHARge -0.642 END ! Nr of Hs = 0
ATOM C2 TYPE CX29 CHARge 0.702 END ! Nr of Hs = 0
ATOM C7 TYPE CX3O CHARge 0.663 END ! Nr of Hs = 0
ATOM 07 TYPE OX31 CHARge -0.523 END ! Nr of Hs = 0
ATOM 02 TYPE OX32 CHARge -0.551 END ! Nr of Hs = 0
ATOM H1 TYPE HX33 CHARge 0.367 END ! Nr of Hs = 0
ATOM H3 TYPE HX34 CHARge 0.148 END ! Nr of Hs = 0
```


| \{ Note: edit these | IMPRopers | if necessary \} | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| IMPRoper | C5 | H5 | C6 | C4 | ! chirality or flatness improper | -0.31 |
| IMPRoper | C3 | C4 | C2a | H3 | ! chirality or flatness improper | -0.22 |
| IMPRoper | C6a | C6 | C2a | C7 | ! chirality or flatness improper | 0.47 |
| IMPRoper | C4 | C5 | C3 | N4 | ! chirality or flatness improper | -1.53 |
| IMPRoper | C2a | C3 | C6a | C2 | ! chirality or flatness improper | -0.17 |
| IMPRoper | N4 | C4 | H41 | H42 | ! chirality or flatness improper | -20.06 |
| IMPRoper | C5 | N4 | C4 | H41 | | |
| IMPRoper | N1 | C2 | C7 | H1 | ! chirality or flatness improper | 0.75 |
| IMPRoper | C2 | C2a | N1 | O2 | ! chirality or flatness improper | -0.01 |
| IMPRoper | C7 | C6a | N1 | O7 | ! chirality or flatness improper | -0.09 |
| ! Improper | to keep both rings parallel | | | | | |
| ! IMPRoper | N1 | C2a | C6a | C5 | | |

Appendix

!	IMPRoper	N1	C2a	C6a	C4
!	IMPRoper	C2	C2a	C6a	C6
!	IMPRoper	C3	C2a	C6a	C7

!Ribose

IMPRoper	H1'	C2'	04'	C6	!C1 ${ }^{\prime}$
IMPRoper	H2'	C3'	C1'	02'	!C2'
IMPRoper	H3'	C4'	C2'	03 '	! C3'
IMPRoper	H4'	C5 ${ }^{\text {' }}$	C3'	04'	! 4 $^{\prime}$
IMPRoper	H5'	05,	H5',	C4'	! ${ }^{\text {5 }}$

END \{ RESIdue 4AP \}

RESIdue 6HQ
\{ Note: electrostatics should normally not be used in \}
\{ crystallographic refinement since it can produce \}
\{ artefacts. For this reason, all charges are set to \}
\{ zero by default. Edit them if necessary \}
GROUp
ATOM $P \quad$ TYPE $=P \quad$ CHARGE $=1.20 \quad$ END
ATOM 01P TYPE=01P CHARGE=-0.40 END
ATOM 02P TYPE=02P CHARGE $=-0.40$ END
ATOM 03g TYPE OQ21 CHARGE=0.40 END
GROUp
ATOM C1g TYPE CQ1 CHARGE= 0.365 END ! inc. from 0.095 by lsd
ATOM N1 TYPE NQ2 CHARGE=-0.05 END ! inc. from -0.102 by lsd
ATOM C8a TYPE CQ3 CHARGE $=0.167$ END
ATOM C4a TYPE CQ4 CHARGE= 0.162 END
ATOM C4 TYPE CQ5 CHARGE $=-0.015$ END
ATOM C3 TYPE CQ6 CHARGE $=-0.207$ END
ATOM C2 TYPE CQ7 CHARGE $=0.151$ END
ATOM H2 TYPE HQ8 CHARGE $=0.134$ END
ATOM C8 TYPE CQ9 CHARGE=-0.195 END
ATOM C7 TYPE CQ10 CHARGE $=-0.120$ END
ATOM C6 TYPE CQ11 CHARGE $=0.472$ END
ATOM C5 TYPE CQ12 CHARGE $=-0.421$ END
ATOM 06 TYPE OQ13 CHARGE=-0.586 END
ATOM H4 TYPE HQ14 CHARGE $=0.142$ END
ATOM H3 TYPE HQ15 CHARGE $=0.161$ END
ATOM H8 TYPE HQ16 CHARGE $=0.139$ END
ATOM H7 TYPE HQ17 CHARGE $=0.176$ END
ATOM H5 TYPE HQ18 CHARGE $=0.175$ END

ATOM C2g TYPE CQ2O CHARGE $=0.271$ END
ATOM C3g TYPE CQ22 CHARGE $=0.213$ END
ATOM H3', TYPE HQ23 CHARGE $=0.008$ END
ATOM H3' TYPE HQ24 CHARGE $=0.028$ END
ATOM H2' TYPE HQ25 CHARGE $=0.010$ END
ATOM H1', TYPE HQ26 CHARGE $=0.077$ END
ATOM H1' TYPE HQ27 CHARGE= 0.085 END
ATOM H6 TYPE HQ3O CHARGE $=0.457$ END

ATOM 02g TYPE OQ19 CHARGE=-0.400 END ! inc. from -0.674 by lsd

BOND	C1g	N1	BOND	C1g	C2g	BOND	C1g	H1''	BOND	C1g	H1'
BOND	N1	C8a	BOND	N1	C2	BOND	C8a	C4a	BOND	C8a	C8
BOND	C4a	C4	BOND	C4a	C5	BOND	C4	C3	BOND	C4	H4
BOND	C3	C2	BOND	C3	н3	BOND	C2	H2	BOND	C8	C7
BOND	C8	H8	BOND	C7	C6	BOND	C7	H7	BOND	C6	C5
BOND	C6	06	BOND	C5	H5	BOND	06	H6	BOND	02g	C2g
BOND	C2g	C3g	BOND	C2g	H2'	BOND	03g	C3g			
BOND	C3g	н3',	BOND	C3g	н3'						
BOND	P	01P	BOND	P	02P	BOND		03g			

\{ Note: edit these DIHEdrals if necessary \}
! DIHEdral H1' C1g N1 C2 ! flexible dihedral ??? 99.41
! DIHEdral H1' C1g C2g H2' ! flat ? (180 degrees = trans) 189.55
! DIHEdral C1g N1 C8a C4a ! flat ? (180 degrees = trans) 180.71
! DIHEdral C1g N1 C8a C8 ! flat ? (0 degrees = cis) 1.29
DIHEdral C2 N1 C8a C4a ! flat ? (0 degrees $=$ cis) 2.40
DIHEdral C2 N1 C8a C8 ! flat ? (180 degrees = trans) 182.98
! DIHEdral C1g N1 C2 C3 ! flat ? (180 degrees = trans) 179.55
! DIHEdral C1g N1 C2 H2 ! flat ? (0 degrees = cis) -1.94
DIHEdral C8a N1 C2 C3 ! flat ? (0 degrees = cis) -2.15
DIHEdral C8a N1 C2 H2 ! flat ? (180 degrees = trans) 176.35
DIHEdral N1 C8a C4a C4 ! flat ? (0 degrees = cis) -1.07
DIHEdral N1 C8a C4a C5 ! flat ? (180 degrees = trans) 179.45
DIHEdral C8 C8a C4a C4 ! flat ? (180 degrees = trans) 178.37
DIHEdral C8 C8a C4a C5 ! flat ? (0 degrees = cis) -1.11
DIHEdral N1 C8a C8 C7 ! flat ? (180 degrees = trans) 180.11
DIHEdral N1 C8a C8 H8 ! flat ? (0 degrees = cis) 1.05
DIHEdral C4a C8a C8 C7 ! flat ? (0 degrees = cis) 0.70
DIHEdral C4a C8a C8 H8 ! flat ? (180 degrees = trans) 181.64
DIHEdral C8a C4a C4 C3 ! flat ? (0 degrees = cis) -0.51
DIHEdral C8a C4a C4 H4 ! flat ? (180 degrees = trans) 180.12
DIHEdral C5 C4a C4 C3 ! flat ? (180 degrees = trans) 178.97
DIHEdral C5 C4a C4 H4 ! flat ? (0 degrees $=$ cis) -0.41
DIHEdral C8a C4a C5 C6 ! flat ? (0 degrees = cis) 0.57
DIHEdral C8a C4a C5 H5 ! flat ? (180 degrees = trans) 180.28
DIHEdral C4 C4a C5 C6 ! flat ? (180 degrees = trans) 181.10
DIHEdral C4 C4a C5 H5 ! flat ? (0 degrees = cis) 0.81
DIHEdral C4a C4 C3 C2 ! flat ? (0 degrees = cis) 0.82
DIHEdral C4a C4 C3 H3 ! flat ? (180 degrees = trans) 181.07
DIHEdral H4 C4 C3 C2 ! flat ? (180 degrees = trans) 180.19
DIHEdral H4 C4 C3 H3 ! flat ? (0 degrees $=$ cis) 0.44
DIHEdral C4 C3 C2 N1 ! flat ? (0 degrees = cis) 0.50
DIHEdral C4 C3 C2 H2 ! flat ? (180 degrees = trans) 182.09
DIHEdral H3 C3 C2 N1 ! flat ? (180 degrees = trans) 180.26
DIHEdral H3 C3 C2 H2 ! flat ? (0 degrees = cis) 1.84
DIHEdral C8a C8 C7 C6 ! flat ? (0 degrees = cis) 0.26
DIHEdral C8a C8 C7 H7 ! flat ? (180 degrees = trans) 180.24
DIHEdral H8 C8 C7 C6 ! flat ? (180 degrees = trans) 179.35
DIHEdral H8 C8 C7 H7 ! flat ? (0 degrees = cis) -0.67
DIHEdral C8 C7 C6 C5 ! flat ? (0 degrees = cis) -0.82
DIHEdral C8 C7 C6 06 ! flat ? (180 degrees = trans) $\quad 179.56$
DIHEdral H7 C7 C6 C5 ! flat ? (180 degrees = trans) 179.20
DIHEdral H7 C7 C6 06 ! flat ? (0 degrees = cis) -0.42
DIHEdral C7 C6 C5 C4a ! flat ? (0 degrees = cis) 0.38
DIHEdral C7 C6 C5 H5 ! flat ? (180 degrees = trans) 180.69

Appendix

DIHEdral	06	C6	C5	C4a ! flat ? (180 degrees = trans)	179.97
DIHEdral	06	C6	C5	H5 ! flat ? (0 degrees = cis)	0.27
DIHEdral	C7	C6	06	H6 ! flat ? (180 degrees = trans)	179.93
DIHEdral	C5	C6	06	H6 ! flat ? (0 degrees = cis) 0	0.33
DIHEdral	C1g	C2g	C3g	03g ! flexible dihedral ??? 60.68	
! DIHEdral	C1g	C2g	C3g	H3' ${ }^{\prime}$! flexible dihedral ??? -61.	
DIHEdral	C1g	C2g	C3g	H3' ! flat ? (180 degrees = trans)	181.08
DIHEdral	02g	C2g	C3g	03g ! flat ? (180 degrees = trans)	180.00
! DIHEdral	02g	C2g	C3g	H3' ${ }^{\prime}$! flexible dihedral ??? 58.	16
! DIHEdral	02g	C2g	C3g	H3' ! flexible dihedral ??? -59.60	
! DIHEdral	H2'	C2g	C3g	03g ! flexible dihedral ??? -58.01	
DIHEdral	H2'	C2g	C3g	H3') ! flat ? (180 degrees = trans)	180.15
DIHEdral	H2'	C2g	C3g	H3' ! flexible dihedral ??? 62.39	

\{ Note: edit these IMPRopers if necessary \}
! IMPRoper C1g N1 C2g H1', ! chirality or flatness improper 33.17
! IMPRoper N1 C1g C8a C2 ! chirality or flatness improper -0.94
IMPRoper C8a N1 C4a C8 ! chirality or flatness improper 0.33
IMPRoper C4a C8a C4 C5 ! chirality or flatness improper 0.30
IMPRoper C4 C4a C3 H4 ! chirality or flatness improper 0.33
IMPRoper C3 C4 C2 H3 ! chirality or flatness improper 0.13
IMPRoper C2 N1 C3 H2 ! chirality or flatness improper -0.83
IMPRoper C8 C8a C7 H8 ! chirality or flatness improper 0.49
IMPRoper C7 C8 C6 H7 ! chirality or flatness improper -0.01
IMPRoper C6 C7 C5 06 ! chirality or flatness improper 0.22
IMPRoper C5 C4a C6 H5 ! chirality or flatness improper -0.16
IMPRoper C2g C1g 02g C3g ! chirality or flatness improper -35.35
IMPRoper C3g C2g O3g H3'' ! chirality or flatness improper 29.83

END \{ RESIdue 6HQ \}

RESIdue HCF

```
{ Note: electrostatics should normally not be used in }
{ crystallographic refinement since it can produce }
{ artefacts. For this reason, all charges are set to }
{ zero by default. Edit them if necessary }
GROUp
ATOM P TYPE=P CHARGE=1.20 END
ATOM 01P TYPE=01P CHARGE=-0.40 END
ATOM O2P TYPE=02P CHARGE=-0.40 END
ATOM 05, TYPE=05R CHARGE=-0.36 END
GROUp
ATOM C5, TYPE=C5R CHARGE=-0.070 END
ATOM H5' TYPE=H CHARGE=0.035 END
ATOM H5', TYPE=H CHARGE=0.035 END
GROUp
ATOM C4' TYPE=C4R CHARGE=0.065 END
ATOM H4, TYPE=H CHARGE=0.035 END
ATOM 04' TYPE=04R CHARGE=-0.30 END
ATOM C1' TYPE=C1R CHARGE=0.390 END !increased from 0.165 by lsd
```

```
ATOM H1', TYPE=HZ29 CHARGE=0.022 END !changed from 0.035 by lsd
!Charge of the group: 0.212
GROUP
ATOM C2' TYPE=C2R CHARGE=0.115 END
ATOM H2' TYPE=H CHARGE=0.035 END
ATOM 02' TYPE=02R CHARGE=-0.40 END
ATOM HO2' TYPE=HO CHARGE=0.25 END
!Charge of the group: 0.00
GROUp
ATOM C3, TYPE=C3R CHARGE=-0.035 END
ATOM H3' TYPE=H CHARGE=0.035 END
!Charge of the group: 0.00
GROUp
ATOM 03' TYPE=03R CHARGE=-0.36 END
!Charge of the group: -0.36
!HCF-Base
GROUp
ATOM C2 TYPE=CZ1 CHARge=0.390 END ! Nr of Hs = 0
ATOM C3 TYPE=CZ2 CHARge= -0.262 END ! Nr of Hs = 0
ATOM C4 TYPE=CZ3 CHARge= -0.101 END ! Nr of Hs = 0
ATOM C10 TYPE=CZ4 CHARge= -0.065 END ! Nr of Hs = 0
ATOM C11 TYPE=CZ5 CHARge= 0.066 END ! Nr of Hs = 0
ATOM C1 TYPE=CZ6 CHARge= -0.308 END ! Nr of Hs = 0
ATOM C13 TYPE=CZ7 CHARge= 0.096 END ! Nr of Hs = 0
ATOM C12 TYPE=CZ8 CHARge= -0.025 END ! Nr of Hs = 0
ATOM C9 TYPE=CZ9 CHARge= 0.122 END ! Nr of Hs = 0
ATOM C5 TYPE=CZ10 CHARge= -0.154 END ! Nr of Hs = 0
ATOM C6 TYPE=CZ11 CHARge= -0.108 END ! Nr of Hs = 0
ATOM C7 TYPE=CZ12 CHARge= -0.032 END ! Nr of Hs = 0
ATOM C8 TYPE=CZ13 CHARge= -0.157 END ! Nr of Hs = 0
ATOM 02 TYPE=OZ14 CHARge= -0.343 END ! reduced charge from -0.361 to zero charge of HCF-base + C1'-C4'-group
ATOM C14 TYPE=CZ15 CHARge= 0.707 END ! Nr of Hs = 0
ATOM 0142 TYPE=0Z16 CHARge= -0.575 END ! Nr of Hs = 0
ATOM 0141 TYPE=0Z17 CHARge= -0.625 END ! Nr of Hs = 0
ATOM H4 TYPE=HZ18 CHARge=0.117 END ! Nr of Hs = 0
ATOM H1 TYPE=HZ19 CHARge= 0.141 END ! Nr of Hs = 0
ATOM H8 TYPE=HZ2O CHARge= 0.124 END ! Nr of Hs = 0
ATOM H91 TYPE=HZ21 CHARge= 0.009 END ! Nr of Hs = 0
ATOM H92 TYPE=HZ22 CHARge= 0.010 END ! Nr of Hs = 0
ATOM H5 TYPE=HZ23 CHARge= 0.103 END ! Nr of Hs = 0
ATOM H6 TYPE=HZ24 CHARge= 0.119 END ! Nr of Hs = 0
ATOM HЗ TYPE=HZ25 CHARge= 0.110 END ! Nr of Hs = 0
ATOM H141 TYPE=HZ43 CHARge= 0.429 END ! Nr of Hs = 0
```

! HCF-Base

BOND	C2	C3		BOND	C2	C1	BOND	C2	02	BOND	C3	C4
BOND	C3	НЗ		BOND	C4	C10	BOND	C4	H4	BOND	C10	C11
BOND	C10	C13		BOND	C11	C1	BOND	C11	C9	BOND	C1	H1
BOND	C13	C12		BOND	C13	C5	BOND	C12	C9	BOND	C12	C8
BOND	C9	H91		BOND	C9	H92	BOND	C5	C6	BOND	C5	H5
BOND	C6	C7		BOND	C6	H6	BOND	C7	C8	BOND	C7	C14
BOND	C8	н8		BOND	C14	0142	BOND	C14	0141	BOND	0141	H141
! Ribose												
	BOND P	P	01P			BOND	P 02	02P			D P	05'
	BOND	05'	C5'			BOND	C5 ${ }^{\text {, }}$	C4,			D C4,	04'

Appendix

BOND	C4)	C3'			BOND	04'	C1 ${ }^{\text {, }}$				BOND	C1 ${ }^{\prime}$	02
BOND	C1'	C2,			BOND	C2'	C3'			BOND	C3'	03'	
BOND	C2'	02'	D 02'	HO2		BOND	C5'		5				
BOND	C5'	H5',	BOND	C3'	н3'		vD C	'	H2				
BOND	C1'	H1',	BOND	C4'	H4,								

| \{ Note: edit these | IMPRopers | if necessary \} | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| !HCF-Base | | | | | | |
| IMPRoper | C2 | C3 | C1 | O2 | ! chirality or flatness improper | -0.17 |
| IMPRoper | C3 | C2 | C4 | H3 | ! chirality or flatness improper | 0.33 |
| IMPRoper | C4 | C3 | C10 | H4 | ! chirality or flatness improper | 0.23 |
| IMPRoper | C10 | C4 | C11 | C13 | ! chirality or flatness improper | 0.07 |
| IMPRoper | C11 | C10 | C1 | C9 | ! chirality or flatness improper | -0.07 |
| IMPRoper | C1 | C2 | C11 | H1 | ! chirality or flatness improper | 0.23 |
| IMPRoper | C13 | C10 | C12 | C5 | ! chirality or flatness improper | -0.01 |
| IMPRoper | C12 | C13 | C9 | C8 | ! chirality or flatness improper | -0.01 |
| IMPRoper | C9 | C11 | C12 | H91 | ! chirality or flatness improper | -28.83 |
| IMPRoper | C5 | C13 | C6 | H5 | ! chirality or flatness improper | 0.01 |
| IMPRoper | C6 | C5 | C7 | H6 | ! chirality or flatness improper | -0.04 |
| IMPRoper | C7 | C6 | C8 | C14 | ! chirality or flatness improper | -0.03 |
| IMPRoper | C8 | C12 | C7 | H8 | ! chirality or flatness improper | -0.02 |
| IMPRoper | C14 | C7 | C142 | 0141 | ! chirality or flatness improper | 0.00 |

! Ribose
IMPRoper 02 C2' 04' H1'’!C1'
IMPRoper $\quad \mathrm{H}^{\prime}{ }^{\prime}$ C3' C1' 02^{\prime} ! CL^{\prime} '
IMPRoper $\quad \mathrm{H}^{\prime}{ }^{\prime} \mathrm{C} 4^{\prime}$ C2' 03^{\prime} ! $\mathrm{C} 3^{\prime}$
IMPRoper \quad H4' C5' C3' 04^{\prime} '!C4,
IMPRoper H5' 05' H5', C4' !C5'

END \{ RESIdue HCF \}
\qquad

GROUp						
ATOM N3	TYPE=N3G	CHARGE $=-0.35$	EXCLusion=(C6		END	
ATOM C2	TYPE=C2G	CHARGE $=0.35$	EXCLusion=(C5)	END	
GROUp						
ATOM N2	TYPE=N2G	CHARGE $=-0.42$	END			
ATOM H21	TYPE= H 2	CHARGE $=0.21$	End			
ATOM H22	TYPE=H2	CHARGE=0.21	END			
GROUp						
ATOM N1	TYPE=NNA	CHARGE $=-0.26$	END			
ATOM H1	TYPE=HN	CHARGE=0.26	END			
GROUp						
ATOM C6	TYPE=C6G	CHARGE $=0.30$	END			
ATOM 06	TYPE=06G	CHARGE $=-0.30$	END			
GROUp						
ATOM C5	TYPE=C5G	CHARGE $=0.02$	END			
ATOM N7	TYPE=N7G	CHARGE $=-0.25$	END			
ATOM C8	TYPE=C8G	CHARGE=0.145	End			
ATOM H8	TYPE=H	CHARGE $=0.035$	END			
$!$						
GROUP						
ATOM C2'	TYPE=C2R	CHARGE $=0.115$	End			
ATOM H2'	TYPE=H	CHARGE $=0.035$	END			
ATOM 02,	TYPE=02R	CHARGE $=-0.40$	END			
ATOM HO2,	TYPE=HO	CHARGE $=0.25$	END			
GROUP						
ATOM C3'	TYPE=C3R	CHARGE $=-0.035$	END			
ATOM H3'	TYPE=H	CHARGE=0.035	END			
GROUP						
ATOM 03'	TYPE=03R	CHARGE=-0.36	END			
BOND P	01P	BOND P O2P	BOND	P	05'	
BOND $05{ }^{\text {, }}$	C5'	BoND C5, C4,	BOND	C4'	04'	
BOND C4,	C3'	BOND 04, C1'	BOND	C1,	N9	
BOND C1,	C2'	BoND N9 C4	BOND	N9	C8	
BOND C4	N3	BoND C4 C5	BOND	N3	C2	
BOND C2	N2	Bond C2 N1	BOND	N2	H21	
BOND N2	H22	BoND N1 H1	BOND N	N1	C6	
BOND C6	06	BoND C6 C5	BOND	C5	N7	
BOND N 7	C8	BOND C2' C3'	BOND	C3'	03'	
BOND C2'	02'	BoND C8 H8				
BOND 02,	H02'					
BOND C5'	H5 ${ }^{\text {, }}$	BoND C5 ${ }^{\prime}$ H5',	BOND	C4'	H4'	
BOND C3'	H3'	BOND C2' H2'	BOND	C1,	H1'	
\{						
DIHEdral	P 05,	C5, C4'	DIHEdral 05,	C5 ${ }^{\text {, }}$	C4'	04,
DIHEdral	05, C5,	C4' C3'				
\}\{						
DIHEdral	C3' C4'	04' C1'				
DIHEdral	C4, 04'	C1, C2'	DIHEdral 04'	C1 ${ }^{\prime}$	C2'	C3'
DIHEdral	C1 ${ }^{\prime}$ C2'	C3) C4'	DIHEdral 04'	C4'	C3'	03'

Appendix

DIHEdral	C5 ${ }^{\prime}$, C4	,	C3'	3) C	C2'		DIHEdral 03'	C3'	C2 ${ }^{\prime}$	02'
DIHEdral	04'	, C1	1'	N9		C4					
DIHEdral	C3'	, C 2	'	02'	2) H2	H2'					
\}											
!											
IMPRoper	N3	C2		N2		H21		IMPRoper C1'	C4	C8	N9
IMPRoper	N9	C4		C5		N7		IMPRoper C4	C5	N7	C8
IMPRoper	C5	N7		C8		N9		IMPRoper N7	C8	N9	C4
IMPRoper	C8	N9		C4		C5		IMPRoper N2	N3	N1	C2
IMPRoper	H1	C2		C6		N1		IMPRoper 06	N1	C5	C6
IMPRoper		N3		C2		N1		IMPRoper N3	C2	N1	C6
IMPRoper	C2	N1		C6		C5		IMPRoper N1	C6	C5	C4
IMPRoper		C5		C4		N3		IMPRoper C5	C4	N3	C2
IMPRoper		H21		C2		N2					
IMPRoper		N7		N9		C8					
! IMPRoper to keep the two purine rings parallel:											
IMPRoper		C4		C5		N1		IMPRoper C8	C5	C4	C2
IMPRoper	N3	C4		C5		N7		IMPRoper C6	C5	C4	N9
!RIBOSE IMPROPERS											
IMPRoper		H1,	C2 ${ }^{\prime}$		04'	, N9	!C1				
IMPRoper		H2'	C3'		C1'	, 02'	!C2'				
IMPRoper		H3'	C4'		C2'	, 03'	! C3' $^{\prime}$				
IMPRoper		H4'	C5 ${ }^{\prime}$		C3)	, 04'	! 4^{\prime}				
IMPRoper		H5 '	05') H	H5',	, ' C4'	! ${ }^{\text {5 }}$				

END \{GUA\}

RESIdue ADE
GROUp
ATOM P TYPE $=P \quad$ CHARGE $=1.20 \quad$ END

ATOM 01P TYPE=01P CHARGE $=-0.40$ END
ATOM 02P TYPE=02P CHARGE $=-0.40$ END

ATOM 05, TYPE=05R CHARGE $=-0.36$ END
GROUp
ATOM C5, TYPE=C5R CHARGE=-0.070 END
ATOM H5, TYPE $=$ H CHARGE $=0.035$ END
ATOM H5', TYPE=H CHARGE=0.035 END
GROUp
ATOM C4, TYPE=C4R CHARGE=0.065 END
ATOM H4, TYPE $=\mathrm{H} \quad$ CHARGE $=0.035$ END
ATOM 04, TYPE=04R CHARGE $=-0.30$ END
ATOM C1, TYPE=C1R CHARGE=0.165 END
ATOM H1, TYPE $=\mathrm{H} \quad$ CHARGE $=0.035$ END
! Insert Base
GROUP
ATOM N9 TYPE=N9A CHARGE $=-0.19$ END

Appendix

$\left.\begin{array}{llllllll}\text { \} } & & & & & & & \\ \text { ! } & & & & & & & \\ \text { IMPRoper C5 } & \text { C6 } & \text { N6 } & \text { H61 } & \text { IMPRoper } & \text { C1 } & \text { C4 } & \text { C8 } \\ \text { N9 } \\ \text { IMPRoper N9 } & \text { C4 } & \text { C5 } & \text { N7 } & \text { IMPRoper } & \text { C4 } & \text { C5 } & \text { N7 } \\ \text { C8 }\end{array}\right]$
!RIBOSE IMPROPERS

IMPRoper	H1 '	C2'	04'	N9	!C1'
IMPRoper	H2 '	C3'	C1'	02'	! 2 $^{\prime}$
IMPRoper	H3'	C4'	C2 ${ }^{\prime}$	03 '	! C3'
IMPRoper	H4'	C5 ${ }^{\text {, }}$	C3'	04,	! 4^{\prime}
IMPRoper	H5 ${ }^{\prime}$	05'	H5'	C4	C5

END \{ADE\}

RESIdue PUR
GROUP

ATOM P	TYPE=P	CHARGE=1.20	END
ATOM 01P	TYPE=01P	CHARGE=-0.40	END
ATOM 02P	TYPE=02P	CHARGE=-0.40	END
ATOM 05,	TYPE=05R	CHARGE=-0.36	END
GROUp			
ATOM C5,	TYPE=C5R	CHARGE=-0.070	END
ATOM H5,	TYPE=H	CHARGE=0.035	END
ATOM H5',	TYPE=H	CHARGE=0.035	END
GROUp			
ATOM C4,	TYPE=C4R	CHARGE=0.065	END
ATOM H4'	TYPE=H	CHARGE=0.035	END
ATOM 04,	TYPE=04R	CHARGE=-0.30	END
ATOM C1,	TYPE=C1R	CHARGE=0.165	END
ATOM H1,	TYPE=H	CHARGE=0.035	END

! Insert Base
GROUP
ATOM N9 TYPE=N9P CHARGE=-0.19 END
ATOM C4 TYPE=C4P CHARGE=0.19 EXCLusion=(N1) END
GROUP
ATOM N3 TYPE=N3P CHARGE=-0.26 EXCLusion=(C6) END
ATOM C2 TYPE=C2P CHARGE=0.225 EXCLusion=(C5) END
ATOM H2 TYPE=H CHARGE=0.035 END
GROUp

Appendix

IMPRoper N1	C6	C5	C4	IMPRoper C6	C5	C4	N3
IMPRoper C5	C4	N3	C2				
IMPRoper H2	N1	N3	C2	IMPRoper H8	N7	N9	C8
! IMPRoper to	keep the	two purine	rings	parallel:			
IMPRoper C8	C4	C5	N1	IMPRoper C8	C5	C4	C2
IMPRoper N3	C4	C5	N7	IMPRoper C6	C5	C4	N9

!RIBOSE IMPROPERS

IMPRoper	C2'	C3'	C1'	02'	
IMPRoper	H1,	C2'	04'	N9	!C1
IMPRoper	H2'	C3'	C1'	02'	! C^{\prime}
IMPRoper	H3'	C4'	C2'	03'	! ${ }^{\text {3 }}$
IMPRoper	H4'	C5'	C3'	04'	! 4^{\prime}
IMPRoper	H5 '	05'	H5' ${ }^{\prime}$	C4'	! ${ }^{\text { }}$

END \{PUR\}

RESIdue ABA					
GROUp					
ATOM P	TYPE=P	CHARGE $=1.20$	END		
ATOM 01P	TYPE=01P	CHARGE $=-0.40$	END		
ATOM 02P	TYPE=02P	CHARGE $=-0.40$	END		
ATOM 05,	TYPE=05R	CHARGE $=-0.36$	End		
GROUp					
ATOM C5'	TYPE=C5R	CHARGE $=-0.070$	END		
ATOM H5'	TYPE=H	CHARGE=0.035	END		
ATOM H5',	TYPE=H	CHARGE $=0.035$	END		
GROUp					
ATOM C4,	TYPE=C4R	CHARGE $=0.065$	End		
ATOM H4,	TYPE $=\mathrm{H}$	CHARGE $=0.035$	End		
atom 04,	TYPE=04R	CHARGE $=-0.30$	END		
ATOM C1,	TYPE=C1R	CHARGE=0.165	END		
ATOM H1,	TYPE=H	CHARGE $=0.018$	END		
ATOM H1',	TYPE=H	CHARGE $=0.017$	End		
GROUP					
ATOM C2,	TYPE=C2R	CHARGE=0.115	END		
ATOM H2'	TYPE=H	CHARGE $=0.035$	END		
ATOM 02,	TYPE=02R	CHARGE $=-0.40$	END		
ATOM HO2,	TYPE= HO	CHARGE $=0.25$	END		
GROUP					
ATOM C3',	TYPE=C3R	CHARGE $=-0.035$	END		
ATOM H^{\prime} '	TYPE=H	CHARGE=0.035	END		
GROUP					
ATOM 03'	TYPE=03R	CHARGE=-0.36	END		
BOND P	01P	BOND P	02P	BOND P	05'
BOND 05,	C5,	BoND C5'	C4'	Bond C4'	04'
Bond C4,	C3'	BOND 04'	C1'		
Bond C1,	C2 ${ }^{\prime}$	BoND C2'	C3'		
BOND C3'	03 ,	BOND C2,	02'		

```
BOND O2' HO2' BOND C1' H1',
BOND C5' H5' BOND C5' H5', BOND C4' H4,
BOND C3' H3' BOND C2' H2, BOND C1, H1,
{
DIHEdral P 05, C5' C4' DIHEdral 05, C5' C4, 04,
DIHEdral 05' C5' C4' C3'
}{
DIHEdral C3' C4' 04' C1'
DIHEdral C4' 04' C1' C2'
DIHEdral C1' C2' C3' C4' DIHEdral 04' C4' C3' 03'
DIHEdral C5, C4, C3' C2
DIHEdral 04' C1' H1'' C2
DIHEdral C3' C2' 02' H2'
! New dihedrals
DIHEdral C5' C4' C3' 03'
}
    !RIBOSE IMPROPERS
!IMPRoper H1' C2' 04' H1'' !C1' !mod by anda
IMPRoper H2, C3' C1' O2' !C2'
IMPRoper H3' C4' C2' O3' !C3'
IMPRoper H4, C5' C3' 04' !C4'
IMPRoper H5' O5' H5'' C4' !C5'
```

END \{ABA\}

RESIdue CYT				
GROUp				
ATOM P	TYPE=P	CHARGE $=1.20$	END	
ATOM 01P	TYPE=01P	CHARGE $=-0.40$	END	
atom 02P	TYPE $=02 \mathrm{P}$	CHARGE $=-0.40$	END	
ATOM 05'	TYPE=05R	CHARGE $=-0.36$	END	
GROUp				
ATOM C5'	TYPE=C5R	CHARGE $=-0.070$	END	
ATOM H5'	TYPE=H	CHARGE $=0.035$	END	
ATOM H5 ',	TYPE=H	CHARGE $=0.035$	END	
GROUp				
ATOM C4,	TYPE=C4R	CHARGE $=0.065$	END	
ATOM H4,	TYPE=H	CHARGE $=0.035$	END	
ATOM 04,	TYPE $=04 \mathrm{R}$	CHARGE $=-0.30$	END	
atom C1,	TYPE=C1R	CHARGE $=0.165$	END	
ATOM H1,	TYPE=H	CHARGE $=0.035$	END	
! Insert Base				
GROUp				
ATOM N1	TYPE=N1C	CHARGE $=-0.19$	EXCLUSION= (C4)	End
atom C6	TYPE=C6C	CHARGE=0.155	EXCLUSION=(N3)	END

Appendix


```
! New dihedrals
DIHEdral C5' C4' C3' O3' DIHEdral C4' 04, C1' N1
}
\begin{tabular}{llllllll} 
IMPRoper C5 & C4 & N4 & H41 & & IMPRoper & C1' & C2 \\
C6 & N1 \\
IMPRoper 02 & N1 & N3 & C2 & IMPRoper & N4 & N3 & C5 \\
C4 \\
IMPRoper N1 & C2 & N3 & C4 & IMPRoper & C2 & N3 & C4 \\
C5 \\
IMPRoper N3 & C4 & C5 & C6 & IMPRoper & C4 & C5 & C6 \\
N1 \\
IMPRoper C5 & C6 & N1 & C2 & IMPRoper & C6 & N1 & C2 \\
N3 \\
IMPRoper H42 & C4 & H41 & N4 & & & & \\
IMPRoper H5 & C4 & C6 & C5 & IMPRoper & H6 & N1 & C5
\end{tabular} C6
!RIBOSE IMPROPERS
IMPRoper H1' C2' 04' N1 !C1'
IMPRoper H2, C3' C1' 02' !C2
IMPRoper H3' C4' C2' O3' !C3
IMPRoper H4, C5' C3' 04, !C4
IMPRoper H5' 05' H5'' C4' !C5'
! New dihedrals
DIHEdral
l
```

END \{CYT\}

RESIdue THY				
GROUp				
ATOM P	TYPE=P	CHARGE $=1.20$	End	
AT0M 01P	TYPE=01P	CHARGE=-0.40	END	
ATOM 02P	TYPE=02P	CHARGE $=-0.40$	End	
atom 05,	TYPE=05R	CHARGE $=-0.36$	End	
GROUp				
ATOM C5,	TYPE=C5R	CHARGE $=-0.070$	End	
ATOM H5'	TYPE=H	CHARGE $=0.035$	END	
ATOM H5',	TYPE=H	CHARGE=0.035	End	
GROUp				
ATOM C4,	TYPE=C4R	CHARGE=0.065	END	
ATOM H4,	TYPE=H	CHARGE $=0.035$	END	
ATOM 04,	TYPE=04R	CHARGE $=-0.30$	END	
atom C1,	TYPE=C1R	CHARGE $=0.20$	END	
ATOM H1,	TYPE=H	CHARGE=0.165	END	
! Insert Base				
GROUp				
ATOM N1	TYPE=N1T	CHARGE=-0.19	EXCLUSION= (C4)	END
atom C6	TYPE=C6T	CHARGE=0.155	EXCLUSION= (N3)	END
ATOM H6	TYPE=H	CHARGE $=0.035$	END	
GROUp				
ATOM C2	TYPE=C2T	CHARGE $=0.35$	EXCLUSION= (C5)	END
ATOM 02	TYPE=0N	CHARGE=-0.35	END	
GROUp				
ATOM N3	TYPE=N3T	CHARGE $=-0.26$	END	
ATOM H3	TYPE=HN	CHARGE $=0.26$	END	
GROUp				
ATOM C4	TYPE=C4T	CHARGE $=0.30$	END	
ATOM 04	TYPE $=0 \mathrm{~N}$	CHARGE $=-0.30$	END	

Appendix

GROUP

| ATOM C5 | TYPE=C5T | CHARGE=-0.035 END | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ATOM C7 | TYPE=CC3E | CHARGE=-0.070 END ! name per IUPAC-IUB recomm. | | |
| ATOM H71 | TYPE=H | CHARGE=0.035 | END ! name per IUPAC-IUB recomm. | |
| ATOM H72 | TYPE=H | CHARGE=0.035 | END ! name per IUPAC-IUB recomm. | |
| ATOM H73 | TYPE=H | CHARGE=0.035 | END ! name per IUPAC-IUB recomm. | |

GROUp
! END

GROUP

ATOM C2'	TYPE=C2R	CHARGE=0.115	END
ATOM H2'	TYPE=H	CHARGE=0.035	END
ATOM 02'	TYPE=02R	CHARGE=-0.40	END
ATOM HO2,	TYPE=HO	CHARGE=0.25	END
GROUP			
ATOM C3'	TYPE=C3R	CHARGE=-0.035	END
ATOM H3'	TYPE=H	CHARGE=0.035	END
GROUP			
ATOM O3,	TYPE=03R	CHARGE=-0.36	END

BOND P	01P				BOND	P	02P			BOND	D P		05,
BOND 05,	C5 ${ }^{\text {, }}$				BOND	C5 ${ }^{\text {' }}$	C4,			BOND	d C4		04'
BOND C4'	C3'				BOND	04'	C1 ${ }^{\text {, }}$			BOND	D C1		N1
BOND C1'	C2'				BOND	N1	C2			BOND	ND 1		C6
BOND C2	02				BOND	C2	N3			BOND	N N		Н3
BOND N3	C4				BOND	C4	04			BOND	d C4		C5
BOND C5	C7				BOND	C5	C6			BOND	D C2		C3'
BOND C3'	03 ,				BOND	C2 ${ }^{\prime}$	02'						
BOND 02'	H02'												
BOND C5'	H5'				BOND	C5 ${ }^{\text {, }}$	H5 ${ }^{\text {, }}$						
BOND C3'	H3'	BOND	C2'	H2'				BOND C1'	H1				
BOND C4'	H4'				BOND	C7	H71			BOND	D C7		H72
BOND C7	H73				BOND	C6	H6						
\{													
DIHEdral	P	05) C		C4'				DIHEdral 05'	C5'		C4'	04	'
DIHEdral	05,	C5'	C4,	C3'									
\} $\{$													
DIHEdral	C3'	C4'	04'	C1 ${ }^{\prime}$									
DIHEdral	C4'	04,	C1,	C2,				DIHEdral 04,	C1'		C2 ${ }^{\text {, }}$	C3	'
DIHEdral	C1'	C2'	C3'	C4'				DIHEdral 04'	C4'	, C	C3'	03	3'
DIHEdral	C5'	C4'	C3'	C2'				DIHEdral 02'	C2'	, C	C3'	03	'
DIHEdral	04'	C1'	N1	C2									
DIHEdral	C3'	C2'	02'	H2'									

! New dihedrals

DIHEdral	C5,	C4, C3'	O3,	DIHEdral	C4,	O4,	C1'	N1
\}								

IMPRoper 02	N1	N3	C2	IMPRoper C4	C5	C6	N1	
IMPRoper N1	C2	N3	C4	IMPRoper	C2	N3	C4	C5
				IMPRoper	N3	C4	C5	C6
IMPRoper C5	C6	N1	C2	IMPRoper	C6	N1	C2	N3
IMPRoper H3	C2	C4	N3					
IMPRoper C7	C4	C6	C5	IMPRoper	H6	N1	C5	C6

!RIBOSE IMPROPERS

IMPRoper	H1 '	C2'	04'	N1	C1,
IMPRoper	H2 ${ }^{\prime}$	C3'	C1'	02'	! 2 $^{\prime}$
IMPRoper	H3'	C4'	C2'	03'	! ${ }{ }^{\prime}$
IMPRoper	H4'	C5'	C3'	04'	! $64{ }^{\prime}$
IMPRoper	H5 ${ }^{\prime}$	05'	H5',	C4'	! ${ }{ }^{\prime}$

END \{THY\}

RESIdue URI				
GROUp				
ATOM P	TYPE=P	CHARGE $=1.20$	END	
ATOM 01P	TYPE=01P	CHARGE=-0.40	END	
ATOM 02P	TYPE=02P	CHARGE=-0.40	END	
ATOM 05'	TYPE $=05 \mathrm{R}$	CHARGE $=-0.36$	END	
GROUp				
ATOM C5'	TYPE=C5R	CHARGE=-0.070	END	
ATOM H5'	TYPE=H	CHARGE $=0.035$	END	
ATOM H5',	TYPE=H	CHARGE $=0.035$	END	
GROUp				
ATOM C4'	TYPE=C4R	CHARGE $=0.065$	END	
ATOM H4,	TYPE=H	CHARGE $=0.035$	END	
ATOM 04'	TYPE $=04 \mathrm{R}$	CHARGE $=-0.30$	END	
atom C1,	TYPE=C1R	CHARGE $=0.165$	END	
ATOM H1'	TYPE=H	CHARGE $=0.035$	END	
GROUp				
ATOM N1	TYPE=N1U	CHARGE=-0.19	EXCLUSION= (C4)	END
ATOM C6	TYPE=C6U	CHARGE=0.155	EXCLUSION=(N3)	END
ATOM H 6	TYPE=H	CHARGE $=0.035$	END	
GROUp				
ATOM C2	TYPE=C2U	CHARGE $=0.30$	EXCLUSION= (C5)	END
ATOM 02	TYPE $=0 \mathrm{~N}$	CHARGE=-0.30	END	
GROUp				
ATOM N3	TYPE=N3U	CHARGE $=-0.28$	END	
ATOM H3	TYPE $=\mathrm{HN}$	CHARGE $=0.26$	END	
GROUp				
ATOM C4	TYPE=C4U	CHARGE=0.28	END	
ATOM 04	TYPE $=0 \mathrm{~N}$	CHARGE $=-0.30$	END	
GROUp				
ATOM C5	TYPE=C5U	CHARGE $=-0.035$	END ! JPR	
ATOM H5	TYPE=H	CHARGE $=0.035$	END ! JPR	

Appendix

END \{URI

PRESidue DEOX ! Patch to make DEOXYribose of the ribose				
DELETE ATOM 02, END				
DELETE ATOM HO2' END				
GROUP				
MODIFY	ATOM C2'	TYPE=C2D	CHARGE $=-0.07$	END
MODIFY	ATOM C5,	TYPE=C5D	CHARGE=-0.07	END
MODIFY	ATOM C4,	TYPE=C4D	CHARGE=0.065	END
MODIFY	ATOM 04,	TYPE $=04 \mathrm{D}$	CHARGE=-0.30	END
MODIFY	ATOM C1,	TYPE=C1D	CHARGE=0.165	END
MODIFY	ATOM C3'	TYPE=C3D	CHARGE $=-0.035$	END
ADD	ATOM H2 ',	TYPE=H	CHARGE=0.035	END
ADD BOND C2' H2',				
ADD ANGLE C1' C2' H2'				
ADD ANGLE C3' C2' H2' ${ }^{\prime}$				
ADD ANGLE H2' C2' H2' ${ }^{\prime}$				
ADD IMPRoper H2' C3' H2', C1'! C2' chirality term				
END \{DEOX\}				
PRESidue HCFDEOX ! Patch to make DEOXYribose of the rib				
MODIFY	ATOM C1,	TYPE=C1D	CHARGE $=0.390$	END
END \{DEOX\}				

Appendix

```
    DELETE ATOM +P END
    DELETE ATOM +O1P END
    DELETE ATOM +02P END
!
ADD BOND +H5T +O5'
ADD ANGLe +H5T +05, +C5,
! ADD DIHEdral +H5T +05' +C5' +C4'
END {5TER}
```


PRESidue NUC	! patch for nucleic acid backbone
	! should be used as "LINK NUC HEAD $-*$ TAIL $+*$ END"
	! i.e. it links the previous RNA residue (-) with
! the current one (+)	

 MODIFY ATOM -O3' END !
 MODIFY ATOM +P END !
 MODIFY ATOM +O1P END ! this should correctly define the electrostatic
 MODIFY ATOM +O2P END ! group boundary
 MODIFY ATOM +05' END !
 ADD BOND -03' +P
 ADD ANGLE -C3' \(-03^{\prime}+\mathrm{P}\)
 ADD ANGLE -03' \(+\mathrm{P} \quad+01 \mathrm{P}\)
 ADD ANGLE \(-03^{\prime}+\mathrm{P}+02 \mathrm{P}\)
 ADD ANGLE \(-03^{\prime}+\mathrm{P}+05^{\prime}\)
 !ADD DIHEdral -03' +P +05' +C5'
! ADD DIHEdral -C4' -C3' $-03^{\prime} \quad+\mathrm{P}$
! ADD DIHEdral -C3' -03' +P +05'
END \{NUC\}

PRESidue N6HQ ! patch for nucleic acid backbone of Glycerol-6HQ
! should be used as "LINK NUC HEAD $-*$ TAIL $+*$ END"
! i.e. it links the previous RNA residue (-) with
! the current one (+)
GROUp
MODIFY ATOM -O3' END !
MODIFY ATOM +P END
MODIFY ATOM +O1P END ! this should correctly define the electrostatic
MODIFY ATOM +O2P END ! group boundary
MODIFY ATOM +O3g END !
ADD BOND -03, +P
ADD ANGLE -C3' $-03^{\prime}+$
ADD ANGLE -03' $+\mathrm{P}+01 \mathrm{P}$

```
ADD ANGLE -03' +P +02P
ADD ANGLE -03' +P +03g
END {N6HQ}
PRESidue S6HQ ! patch for nucleic acid backbone of Glycerol-6HQ
    ! should be used as "LINK NUC HEAD - * TAIL + * END"
    ! i.e. it links the previous RNA residue (-) with
    ! the current one (+)
GROUp
MODIFY ATOM -O2g END !
MODIFY ATOM +P END !
MODIFY ATOM +O1P END ! this should correctly define the electrostatic
MODIFY ATOM +O2P END ! group boundary
MODIFY ATOM +05' END !
ADD BOND -O2g +P
ADD ANGLE -C2g -03' +P
ADD ANGLE -02g +P +01P
ADD ANGLE -02g +P +02P
ADD ANGLE -02g +P +05,
END {S6HQ}
set echo=true end
```


3 Script Code

3.1 Script to export distances from Cara to XPLOR-NIH

-- First part: Script to output all chosen and integrated peaks from one project
-- and combine them in one peaklist
-- Second part: Choose the best integrated peak among same ones or average over
-- equivalently rated peaks

- Third part: Convert peak volumes to distances. Tricky is here the
-- differentiation of d2o and h2o and methyl peaks (all have different
- reference peaks)!
-- Fourth part: An XPLOR-inputfile is generated where the distance information
-- and some predefined upper and lower limits (deduced from the maximum
-- deviation of the standard peaks) are used
-- written by Andre Dallmann April-05-2007

[^1]
Appendix

PREPARATIONS

$\mathrm{t}=\{ \}$-- table for all the variables used in the script
-- choosing one project
local ProjectNames $=\{ \}$
i $=0$
for a, b in pairs(cara:getProjects()) do
i $=1+1$
ProjectNames[i] = b:getName()
end
t.ProjectName=dlg.getSymbol("Select Project","", unpack(ProjectNames))
t.project = cara:getProject (t.ProjectName)

- Get Output Filename
t.Filename = dlg.getText("Enter the output filename", "", t.ProjectName)
-- open outfile
outfile = io.output (t.Filename.."_all.peaks")
-- Write header to peaklist
label = string.format ("\%25.25s", "Peaklabel")
id = string.format ("\%9.9s", "PeakID")
assx = string.format ("\%9.9s", "ID(X)")
assy $=$ string.format ("\%9.9s", "ID(Y)")
posx $=$ string.format ("\%9.9s", "PPM(X)")
posy $=$ string.format ("\%9.9s", "PPM(Y)")
ampl = string.format ("\%7.7s", "Ampl")
grade $=$ string.format ("\%9.9s", "Grade")
vol = string.format ("\%15.15s", "VolumeInt")
outfile:write("IDnew"..id..label..assx..assy..posx..posy..ampl..vol..grade.."\n")
-- generate tables for information
count $=0$
i = 0
t.label $=\{ \}$
t.id_old = \{\}
t.assx $=\{ \}$
t.assy $=\{ \}$
t. posx $=\{ \}$
t.posy $=\{ \}$
t.ampl = \{\}
t.grade $=\{ \}$
t.vol $=$ \{\}
\qquad
-- generate list of all peaks graded abc of all peaklists in specified project for peaklistid, peaklist in pairs(t.project:getPeakLists()) do
--cycle through all peaklists
t.peaklist = t.project:getPeakList(peaklistid)
for peakid,peak in pairs(t.peaklist:getPeaks()) do --cycle through all peaks
t.peak $=$ t.peaklist:getPeak(peakid)
if ((t.peak:getAttr("grade")== "a") or (t.peak:getAttr("grade")== "b") or
(t.peak:getAttr("grade")== "c")) then
-- choose only peaks with grade abc
i = i + 1 -- this is the index for all the tables, corresponds to new peakid
t.label[i] = string.format ("\%25.25s", t.peak:getLabel())
t.id_old[i] = string.format ("\%9.0f", t.peak:getId())
t.ass $=\{t \cdot p e a k:$ getAssig() $\}$
t.assx[i] = string.format ("\%9.0f", t.ass[1])
t.assy[i] = string.format ("\%9.Of", t.ass[2])
t.pos $=\{t \cdot p e a k: \operatorname{getPos}()\}$
t.posx[i] = string.format ("\%9.3f", t.pos[1])
t.posy[i] = string.format ("\%9.3f", t.pos[2])
t.ampl[i] = string.format ("\%7.Of", t.peak:getAmp())
t.grade[i] = string.format ("\%7.7s", t.peak:getAttr("grade"))
t.vol[i] = string.format ("\%15.3f", t.peak:getVol())
outfile:write(i.." "..t.id_old[i]..t.label[i]..t.assx[i]..t.assy[i]..t.posx[i]
..t.posy[i] ..t.ampl[i] ..t.vol[i] ..t.grade[i] .." $\backslash \mathrm{n} "$)
end --of if loop
end -- of second for loop
end -- of first for loop

End of Main Body
-- close outfile
outfile:close()
\qquad
\qquad End of FIRST PART
\qquad

- SECOND PART
\qquad
-------------------------------- PREPARATIONS \qquad
-- open outfile
outfile = io.output(t.Filename.."_combo.peaks")
-- initialize variables
$\mathrm{x}=0$
counter $=1$
a = string.format ("\%7.7s","a")
b = string.format ("\%7.7s","b")
c = string.format ("\%7.7s","c")

Appendix

for i,assx in pairs (t.assx) do
for j,assy in pairs (t.assy) do
if (((t.assx[i] == t.assx[j]) and (t.assy[i] == t.assy[j]) or ($(t . a s s x[i]==t . a s s y[j])$ and
(t.assy[i] == t.assx[j]))) and (j~=i)) then
-- select all peaks that have the same assignment (including cross-diagonal peaks)
counter = counter + 1
if (t.grade[i]==t.grade[j]) then
$t . \operatorname{vol}[i]=$ string.format ("\%15.3f",(t.vol[i] + t.vol[j])) -- average volumes, rest stays
t.label[j] = nil -- set j th peak to nil
t.assx[j] = nil
t.assy $[j]=$ nil
t.posx[j] = nil
t.posy[j] = nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
if $(((a==t . \operatorname{grade}[i])$ and ($(t . \operatorname{grade}[j]==b)$ or (t.grade[j]==b))) or ((b==t.grade[i]) and
(t.grade[j]==c))) then
counter $=1$
t.label[j] = nil -- set jth peak to nil
t.assx[j] = nil
t.assy[j] = nil
t.posx[j] = nil
t.posy $[j]=$ nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
if (($a==t . \operatorname{grade[j])~and~((t.grade[i]==b)~or~(t.grade[i]==b)))~or~((b==t.grade[j])~and~}$
(t.grade[i]==c))) then
counter $=1$
$t . \operatorname{vol}[i]=t . v o l[j]$--transfer volume and grade of better integrated peak (j)
t.grade[i] = t.grade[j]
t.label[j] = nil -- set j th peak to nil
t.assx[j] = nil
t.assy[j] = nil
t.posx[j] = nil
t.posy $[j]=$ nil
t.ampl[j] = nil
t.grade[j] = nil
t.vol[j] = nil
t.id_old[j] = nil
end
end -- if loop
end -- second for loop
if (counter > 1) then -- only valid if grades are the same and averaging is needed
$t . \operatorname{vol}[i]=$ string.format ("\%15.3f",(t.vol[i]/counter))
end
counter = 1
end -- first for loop
\qquad
---------------------- Generating new combined peaklist
-- initiliaize new tables for the combined peaklist
t.labelnew $=\{ \}$
t.assxnew $=\{ \}$
t.assynew $=\{ \}$
t.assxlabel $=\{ \}$
t.assylabel $=\{ \}$
t.assxresid $=\{ \}$
t.assyresid = \{\}
t.gradenew $=\{ \}$
t.volnew $=$ \{\}
for i,assx in pairs (t.assx) do -- generate new table with combined peak
$\mathrm{x}=\mathrm{x}+1$
t.labelnew $[\mathrm{x}]=\mathrm{t}$. label [i]
t.assxnew $[\mathrm{x}]=\mathrm{t} . \operatorname{assx}[\mathrm{i}]$
$t . a s s y n e w[x]=t . a s s y[i]$
t.assxlabel[x] = string.format ("\%7.7s", t.project:getSpin(t.assx[i]):getLabel())

- get Peaklabel
t.assylabel $[\mathrm{x}]$ = string.format ("\%7.7s", t.project:getSpin(t.assy[i]):getLabel())
-- get Peaklabel
$t . a s s x r e s i d[x]=$ string.format ("\%5.5s", t.project:getSpin(t.assx[i]):getSystem():getId())
-- get residue id, works only if SpinsystemId equal to residue number !!
t.assyresid[x] = string.format ("\%5.5s", t.project:getSpin(t.assy[i]):getSystem():getId())
-- get residue id, works only if SpinsystemId equal to residue number !!
t.gradenew[x] = t.grade[i]
t.volnew $[\mathrm{x}]=\mathrm{t}$.vol[i]
outfile:write (x.." "..t.labelnew[x]..t.assxlabel[x]..t.assylabel[x]..t.gradenew[x]..t.volnew[x].."\n") end
-- loop to correct for base rectangle sum method error
-- for peaks with grade c or b divide volume by 2 or 1.5 respectively
-- this is a very rough approximation!!!
for $i, v o l$ in pairs (t.volnew) do
if (t .gradenew[i]==c) then
t.volnew[i]=string.format("\%15.3f", vol/2)
elseif (t.gradenew[i]==b) then
t.volnew[i]=string.format("\%15.3f",vol/1.5)
end
end
-- close outfile
outfile:close()

Appendix

```
i = 0
-------------------------------------------------------------------------------------------------
------------------------------------------------------
```

\qquad

```
- THIRD PART --
--------------------------------------------------------------------------------------
----------------------------- PREPARATIONS ---------------------------------------
-- open outfile
outfile = io.output( t.Filename.."_dist.peaks" )
-- initialize variables
sumcyt = 0
summet = 0
sumcytamino = 0
sumcyth42h5 = 0
countcyt = 0
countmet = 0
countcytamino = 0
countcyth42h5 = 0
```

\qquad

```
---------------------------- Main Body ----------------------------------------
```

---------------- Setting up Reference Volumes and Distances ------
-- sum up reference peaks
for $j, a s s x$ in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do -- establish reference for d2o peaks
countcyt = countcyt +1
sumcyt $=$ sumcyt $+t$. volnew $[j]$
end
for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do
-- establish reference for methyl peaks
countmet $=$ countmet +1
summet $=$ summet $+t . v o l n e w[j]$
end
for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable peaks
countcytamino $=$ countcytamino +1
sumcytamino $=$ sumcytamino + t.volnew[j]
end
for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable-non-exchangeable peaks
countcyth42h5 = countcyth42h5 + 1
sumcyth42h5 = sumcyth42h5 + t.volnew[j]
end
for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable-non-exchangeable peaks
countcyth42h5 = countcyth42h5 +
sumcyth42h5 = sumcyth42h5 + t.volnew[j]
end
end
refvolcyt = string.format ("\%13.3f", sumcyt / countcyt)

- average volume of CYT H5-H6
refdistcyt $=2.48$-- distance of CYT H5-H6
refvolmet = string.format ("\%13.3f", summet / countmet)
- average volume of THY H6-H7
refdistmet $=3.09$-- distance of THY H6-H7
efvolcytamino = string.format ("\%13.3f", sumcytamino / countcytamino)
-- average volume of CYT H41-H42
efdistcytamino $=1.70$-- distance of CYT H41-H42
refvolcyth42h5 = string.format ("\%13.3f", sumcyth42h5 / countcyth42h5)
-- average volume of CYT H42-H5
refdistcyth42h5 = 2.40 -- distance of CYT H42-H5

Prepare standard deviations for references

-- initialize variables
stddevsumcyt $=0$
stddevsummet $=0$
stddevsumcytamino $=0$
stddevsumcyth42h5 = 0
maxdev1 $=0$
maxdev2 $=0$
maxdev3 $=0$
maxdev4 = 0
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do

dummy1 = math.abs(t.volnew[j]-refvolcyt) -- dummy for maximum deviation
if (dummy1 > maxdev1)then
maxdev1 = dummy1
end
end
for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do
-- establish reference for methyl peaks

dummy2 = math.abs(t.volnew[j]-refvolmet) -- dummy for maximum deviation
if (dummy2 > maxdev2) then
maxdev2 = dummy2
end
end
for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable peaks
stddevsumcytamino $=$ stddevsumcytamino $+(t . v o l n e w[j]-r e f v o l c y t a m i n o) ~ へ 2 ~$

- standard deviation

Appendix

dummy3 = math.abs(t.volnew[j]-refvolcytamino) -- dummy for maximum deviation
if (dummy3 > maxdev3) then
maxdev3 $=$ dummy 3
end
end
for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable-non-exchangeable peaks
--(appears twice because of selection reasons)
stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5)^2
-- standard deviation
dummy 4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation
if (dummy4 > maxdev4) then
maxdev4 = dummy4
end
end
for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do
-- establish reference for h2o exchangeable-non-exchangeable peaks stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5) ~2
-- standard deviation
dummy 4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation
if (dummy4 > maxdev4) then
maxdev4 = dummy4
end
end
end
\qquad
stddevcyt = string.format ("\%13.3f", (stddevsumcyt / countcyt)~(1/2))
stddevmet $=$ string.format ("\%13.3f", (stddevsummet/ countmet) $\left.)^{\wedge}(1 / 2)\right)$
stddevcytamino = string.format ("\%13.3f", (stddevsumcytamino / countcytamino)^(1/2))

\qquad
if (maxdev1==nil) then
maxdevcyt = string.format ("\%13.3f", dummy $1 /$ refvolcyt)
else
maxdevcyt = string.format (" $\% 13.3 f "$, maxdev1/refvolcyt)
end
if (maxdev2==nil) then
maxdevmet = string.format ("\%13.3f", dummy $2 /$ refvolmet)
else
maxdevmet $=$ string.format ($\% 13.3 f$ ", maxdev2/refvolmet)
end
if (maxdev3==nil) then
maxdevcytamino = string.format ("\%13.3f", dummy3/refvolcytamino)
else
maxdevcytamino = string.format ("\%13.3f", maxdev3/refvolcytamino)
end
if (maxdev4==nil) then
maxdevcyth 42 h 5 = string.format ("\%13.3f", dummy $4 /$ refvolcyth42h5)
else
maxdevcyth42h5 = string.format ("\%13.3f", maxdev4/refvolcyth42h5) end

```
--------------------- Prepare for distance calculation
function f ( String ) -- function to format the atomlabels
FormattedString = string.format( "%7.7s", String )
return FormattedString
end
function f2 ( String ) -- function to format the atomlabels
FormattedString = string.format( "%9.9s", String )
return FormattedString
end
- initialize new tables for distance and the lower and upper limit (same)
t.distance = {}
t.limit = {}
i = nil
assx = nil
```

\qquad
-- select atom pairs corresponding to references and calculate distances and
-- limits and write out new peaklist to file

- limits are calculated by taking the maximum deviation of the corresponding
-reference peak times the distance
for i,assx in pairs (t.assxlabel) do
print(t.label[i])
if (((assx==f("H5")) or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1'")) or
(assx==f("H2")) or (assx==f("H2'")) or
(assx==f("H2')")) or (assx==f("H3'")) or (assx==f("H4'")) or (assx==f("H5'")) or
(assx==f("H5',""))) and
((t.assylabel[i]==f("H5")) or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))
or (t.assylabel[i]==f("H1'")) or
(t.assylabel[i]==f("H2")) or (t.assylabel[i]==f("H2'")) or (t.assylabel[i]==f("H2',"))
or (t.assylabel[i]==f("H3'")) or
(t.assylabel[i]==f("H4'")) or (t.assylabel[i]==f("H5'")) or (t.assylabel[i]==f("H5',"))))
then
t.distance[i] = string.format ("\%7.2f", refdistcyt*(refvolcyt/t.volnew[i])^(1/6))
print(t.label[i])
print(t.distance[i])
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyt)
else
if (t .gradenew[i]==b) then
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyt*1.2
lse
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyt*1.4)
end
end
outfile:write (f2("d2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].." "n")
end
if ((assx==f("H7")) or (t.assylabel[i]==f("H7"))) then
t.distance[i] = string.format ("\%7.2f", refdistmet*(refvolmet/t.volnew[i])~(1/6)
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

Appendix

t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevmet)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevmet*1.2)
else
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevmet*1.4)
end
end
outfile:write (f2("methyl: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].." $\backslash n "$)
end
if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))
and ((t.assylabel[i]==f("H1")) or
(t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42")))
then
t.distance[i] = string.format ("\%7.2f", refdistcytamino*(refvolcytamino/t.volnew[i])~ (1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcytamino)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcytamino*1.2)
else
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcytamino*1.4)
end
end
outfile:write (f2("h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]
..t.volnew[i]..t.distance[i]..t.limit[i].." "\n")
end
if ((($a s s x==f(" H 5 "))$ or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1'")) or
(assx==f("H2")) or (assx==f("H2'")) or (assx==f("H2')")) or (assx==f("H3'")) or
(assx==f("H4'")) or (assx==f("H5'")) or (assx==f("H5')")))) and ((t.assylabel[i]==f("H1"))
or (t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42")))) then
t.distance[i] = string.format ("\%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i]) ^(1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5*1.2)
else
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5*1.4)
end
end
outfile:write (f2("d2o_h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]
..t.gradenew[i] ..t.volnew[i] ..t.distance[i] ..t.limit[i] .. "\n")
end
if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))
and $((t . a s s y l a b e l[i]==f(" H 5 "))$ or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))
or (t.assylabel[i]==f("H1'")) or (t.assylabel[i]==f("H2")) or (t.assylabel[i]==f("H2'"))
or (t.assylabel[i]==f("H2',")) or (t.assylabel[i]==f("H3'")) or (t.assylabel[i]==f("H4'")) or
(t.assylabel[i]==f("H5'")) or (t.assylabel[i]==f("H5')")))) then
t.distance[i] = string.format ("\%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i])~ (1/6))
if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5)
else
if (t.gradenew[i]==b) then
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5*1.2)
else
t.limit[i] = string.format ("\%7.1f", t.distance[i]*maxdevcyth42h5*1.4)
end
end
outfile:write (f2("d2o_h2o: ")..f(i)..t.labelnew[i]...assx..t.assylabel[i]
..t.gradenew[i]..t.volnew[i]..t.distance[i]..t.limit[i].." $\backslash n$ ")
end
end
\qquad

- close outfile
outfile:close()
i $=0$
\qquad
\qquad
\qquad
- FOURTH PART --
\square

\qquad
-- open outfile
outfile = io.output(t.Filename.."_reference.peaks")
function f (String) -- function to format the atomlabels
FormattedString = string.format($" \% 7.2 f$ ", String)
return FormattedString
end
\qquad


```
outfile:write ("\n---------------------------------------------------------------------------------------------------------------------
for non-exchangeable proton cross-peaks: CYT H5-H6\n\nreference_vol ref_dist standard_dev
maximum_dev(%)\n"..refvolcyt..f(refdistcyt)..stddevcyt..maxdevcyt.."\n\n
Peaklabel Volume Dist Dev\n")
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do -- reference for d2o peaks
outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyt).."\n")
end
end
utfile:write ("\n------------------------------------------------------------------------------------------
for methyl proton cross-peaks: MET H6-H7\n\nreference_vol ref_dist standard_dev
```


Appendix

maximum_dev (\%) \n". .refvolmet. .f(refdistmet)..stddevmet. .maxdevmet.. "\n\n
Peaklabel Volume Dist Dev\n")
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do -- reference for methyl peaks
outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistmet).." $\backslash \mathrm{n}$ ")
end
end

for exchangeable proton cross-peaks: CYT H41-H42 \n\nreference_vol ref_dist standard_dey
maximum_dev (\%) \n". .refvolcytamino..f(refdistcytamino) . .stddevcytamino. . maxdevcytamino. . "\n\n
Peaklabel Volume Dist Dev\n")
for $j, a s s x$ in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j]," $\mathrm{H} 4[12] / \mathrm{H} 4[12]$ [0-9]:C[0-9]+") do
-- reference for h2o exchangeable peaks
outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcytamino)..."\n")
end
end

for non-exchangeable/exchangeable proton cross-peaks: CYT H42-H5\n\nreference_vol
ef_dist standard_dev
naximum_dev (\%) \n"..refvolcyth42h5..f(refdistcyth42h5)..stddevcyth42h5. .maxdevcyth42h5.. "\n\n
Peaklabel Volume Dist Dev\n")
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do
-- reference for h2o exchangeable-non-exchangeable peaks
--(appears twice because of selection reasons)
outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5)..."\n")
end
end
for j,assx in pairs (t.assxnew) do
for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do
-- reference for h2o exchangeable-non-exchangeable peaks
outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5).." ${ }^{n}$ ")
end
end
\qquad
-- close outfile
outfile:close()
$i=0$ \qquad
\qquad
\qquad

- FIFTH PART --
\qquad
\qquad
\qquad

```
outfile = io.output( t.Filename.."_xplor.list" )
outfile2 = io.output( t.Filename.."_xplor_all.list" )
outfile3 = io.output( "picktbl_"..t.Filename)
outfile4 = io.output( t.Filename.."_xplor.noe" )
outfile5 = io.output( t.Filename.."_xplor_all.noe" )
function find (index) -- function to format the atomlabels
local Boolean = false
local Booleanx = false
local Booleany = false
for x in string.gfind(t.assxlabel[index],"H[2345]'[']*") do
Booleanx=true
end
for y in string.gfind(t.assylabel[index],"H[2345]'[']*") do
Booleany=true
end
if (Booleanx==true) and (Booleany==true) then
Boolean=true
else
Boolean=false
end
eturn Boolean
end
function find_h1 (index) -- function to format the atomlabels
local Boolean2 = false
local Boolean2x = false
local Boolean2y = false
for x in string.gfind(t.assxlabel[index],"H[12345]'[']*") do
Boolean2x=true
end
for y in string.gfind(t.assylabel[index],"H[12345]'[']*") do
Boolean2y=true
end
if (Boolean2x==true) and (Boolean2y==true) then
Boolean2=false
lse
return Boolean2
end
end
for i,assx in pairs (t.assxnew) do -- iterate over all peaks
if (t.distance[i]) and (find(i)==false) then -- filter out negative volume peaks
if (find_h1(i)==false) and ((t.distance[i]/1) < 4.5) then
outfile:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")
outfile2:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")
outfile3:write ("pick bond (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")".." geometry\ndisplay \$result".."\n")
outfile4:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i] .."\n")
outfile5:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i] .."\n")
else
outfile2:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
```


Appendix

```
(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]
..t.limit[i]..t.limit[i].." !added!\n")
outfile5:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]
..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")
end
end
end
```

\qquad

- close outfile
outfile:close()
outfile2:close()
outfile3:close()
outfile4:close()
outfile5:close()
i $=0$
= nil
\qquad
print ("\ngenerateinput_byanda is done.")
print ("Have a nice day!")

End generateinput

3.2 Mathematica script to visualize NOESY back-calculation

```
NOESY - spectra back-calculation
```

Read data

SetDirectory["D:
Lars
Promotion
13merHCF
Fertige Strukturen
HC-_diss
198_face-down
gifa"]
ppm - file containing chemical shifts
ppmfile=Import["13merHCF_gifa.ppm", "Table"];
Dimensions [ppmfile]
TableForm[Sort[ppmfile,\#1[[3]]<\#2[[3]]\&]]; (* Can be used for inspection of data *)
ppmscanlist=Table[\{ToString[ppmfile[[m, 3]]+ppmfile[[m,4]]],ppmfile[[m,5]]\},\{m,1,Length[ppmfile]\}];
Dimensions [ppmscanlist]

Read xplor-intensities calculated from Full Matrix Relaxation Approach
Choose between GIFA or XPLOR file, the latter is recommended.
GIFA
(*Intfile=Import["13merHCF_gifa.spect","Table"];*)
(*Intlist=Table[\{ToString[Intfile[[m,3]]+Intfile[[m,4]]],ToString[Intfile[[m,6]]+Intfile[[m,7]]],

Intfile[[m, 8]]\},\{m,1,Length[Intfile] $\} ; *)$

XPLOR
rawIntfile=Import["13merHCF.spect","Table"]
Intfile=Table[rawIntfile[[2*n]], \{n, 2,Length[rawIntfile]/2\}];
Intlist=Table[\{ToString[Intfile[[m,1]]+Intfile[[m,3]]],ToString[Intfile[[m,4]]+Intfile[[m,6]]],
Intfile[[m, 7]]\}, \{m, 1, Length[Intfile] \}];
Dimensions[Intlist]
TableForm[Sort[Intlist,\#1[[1]]<\#2[[1]]\&]]; (* Can be used for inspection of data *)

Build a peaklist that uses the data of both input files
peaklist=\{\}; (* Enthält dann (x,y,Int) *)
Do [
xvar=false;
yvar=false;
Do [
If [Intlist[[mInt,1]]==ppmscanlist[[mppm,1]],
xcoord=ppmscanlist[[mppm,2]];xvar=true];
If [Intlist[[mInt, 2]] ==ppmscanlist[[mppm, 1]],ycoord=ppmscanlist[[mppm, 2]];yvar=true];
\{mppm,1,Length[ppmscanlist]\}];
tmp $=\{x$ coord, ycoord, Intlist [[mInt, 3]] $\}$;
If [xvar==true\&\&yvar==true, peaklist=Append [peaklist,tmp]];
(*Second round to add missing symmetry around diagonal axis to peaklist *)
xvar=false;
yvar=false;
Do [
If [Intlist[[mInt, 1]] ==ppmscanlist[[mppm, 1]], ycoord=ppmscanlist[[mppm, 2]];yvar=true];
If [Intlist [[mInt , 2]]==ppmscanlist [[mppm, 1]], xcoord=ppmscanlist [[mppm, 2]];xvar=true];
If [Intlist[[mInt,2]]==Intlist[[mInt,1]],xvar=false;yvar=false;],\{mppm,1,Length[ppmscanlist]\}];
tmp $=\{x$ coord, y coord, Intlist $[[m \operatorname{Int}, 3]]\}$;
If [xvar==true\&\&yvar==true, peaklist=Append [peaklist,tmp]];
, \{mInt,1,Length[Intlist]\}]
Dimensions[peaklist]
TableForm[Sort[peaklist,\#1[[1]]<\#2[[1]]\&]]; (* Can be used for inspection of data *)

Use peaklist to build NOESY spectrum
Define peaks with different lineshapes. First is Lorenz-type, second Gaussian lineshape
cale=1; (* Parameters that effect lineshape *)
${ }_{\mathrm{w}}=0.015$;
alpha=0.9;
peakL[peaknummer_, $\left.x_{-}, y_{-}\right]:=$
$1 /\left(1+((x \text {-peaklist }[[\text { peaknummer }, 1]]) /(0.5 \mathrm{w}))^{\wedge} 2\right) * 1 /(1+((y$-peaklist [[peaknummer, 2$\left.\left.]]) /(0.5 \mathrm{w})\right)^{\wedge} 2\right)$;
peakG[peaknummer. $\left., x_{-}, y_{-}\right]:=$
$\operatorname{Exp}[-\log [2]((x-$ peaklist [[peaknummer,1]])/(0.5w))^2]*Exp[-Log[2] ((y-peaklist[[peaknummer,2]])/(0.5w)) 2$]$;
peakfun[peaknummer_ $\left., x_{-}, y_{-}\right]:=$
10~6*peaklist [[peaknummer, 3]] *scale* (alpha*peakG [peaknummer, $\mathrm{x}, \mathrm{y}]+(1-\mathrm{al}$ pha) peakL [peaknummer, $\mathrm{x}, \mathrm{y}]$)
Define intensity for a single set of coordinates in the spectrum
Intensity $\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]:=$Sum [peakfun [peaknummer, $\left.\mathrm{x}, \mathrm{y}\right]$, \{peaknummer, 1 , Length[peaklist]\}]
Intensity [5,6]
Plot [peakfun $[5, x, 6],\{x, 6,10\}$, PlotRange->All]
Build a selected region of the spectrum using a targetfunction that is automatically composed
Choose spectral region

Appendix

xrange $=\{6.925,8.14\}$; ($*$ This is H6/H8 region *)
yrange $=\{5.1,6.2\}$; ($*$ This is H1' region *)
Targetfunction=0;
Do [
xvar=false;
yvar=false;
If [peaklist[[mInt, 1]]>=xrange[[1]]-0.1\&\&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true];
If [peaklist[[mInt, 2]]>=yrange[[1]]-0.1\&\&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true];
If [xvar==true\&\&yvar==true,Targetfunction=Targetfunction+peakfun[mInt, x,y]];
,\{mInt, 1, Length[peaklist]\}]

Build spectrum

ContourPlot [Targetfunction, $\{x, x r a n g e[[1]], x r a n g e[[2]]\},\{y, y r a n g e[[1]], y r a n g e[[2]]\}$
PlotPoints->20, Contours->Table[10^k, \{k,4,8,0.5\}], PlotRange->All,
FrameLabel-> \{ppm, ppm\},ImageSize->600,ColorFunction->"Aquamarine",
AspectRatio->1/2]

Build for export

ContourPlot [Targetfunction, $\{x$, xrange[[1]], xrange[[2]]\}, $\{y$, yrange[[1]], yrange[[2]]\},
PlotPoints->20, Contours->Table[10^k, \{k, 4, 8, 0.5\}], PlotRange->All,
FrameLabel->\{ppm, ppm\},ImageSize->900, ContourShading->None,
ContourStyle->Hue[0],AspectRatio->1/2,Frame->False]

HCF H1', - H1/H3 region
Choose spectral region for H1/H3 to H1'' of HCF
xrange $=\{5.5,5.8\}$;
yrange $=\{4.9,5.1\}$;
Targetfunction=0;
Do [
xvar=false;
yvar=false;
If [peaklist[[mInt, 1]]>=xrange[[1]]-0.1\&\&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true];
If [peaklist[[mInt,2]]>=yrange[[1]]-0.1\&\&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true] If [xvar==true\&\&yvar==true, Targetfunction=Targetfunction+peakfun [mInt , x, y]] ;
, \{mInt, 1, Length[peaklist]\}]

Build spectrum

ContourPlot [Targetfunction, $\{x, \operatorname{xrange}[[1]]$, xrange[[2]] $\},\{y, y r a n g e[[1]], y r a n g e[[2]]\}$, PlotPoints->20, Contours->Table[10^k, \{k, 5, 9, 0.5\}], PlotRange->All, FrameLabel->\{ppm, ppm\}, ImageSize->600, ColorFunction->"Aquamarine", AspectRatio->1/2]

Bibliography

[1] J. Watson and F. Crick. Molecular structure of nucleic acids. Nature, 177:737-738, 1953.
[2] Richard Wing, Horace Drew, Tsunehiro Takano, Chris Broka, Shoji Tanaka, Keiichi Itakura, and Richard E. Dickerson. Crystal structure analysis of a complete turn of b-dna. Nature, 287(5784):755-758, 1980.
[3] H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson. Structure of a b-dna dodecamer: conformation and dynamics. Proceedings of the National Academy of Sciences, 78(4):2179-2183, 1981.
[4] Richard E. Dickerson and Horace R. Drew. Structure of a b-dna dodecamer: Ii. influence of base sequence on helix structure. Journal of Molecular Biology, 149(4):761 - 786, 1981.
[5] Horace R. Drew and Richard E. Dickerson. Structure of a b-dna dodecamer: Iii. geometry of hydration. Journal of Molecular Biology, 151(3):535-556, 1981.
[6] H. R. Drew, S. Samson, and R. E. Dickerson. Structure of a b-dna dodecamer at 16 k. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 79(13):4040-4044, 1982.
[7] A. V. Fratini, M. L. Kopka, H. R. Drew, and R. E. Dickerson. Reversible bending and helix geometry in a b-dna dodecamer - cgcgaattbrcgcg. Journal of Biological Chemistry, 257(24):4686-4707, 1982.

Bibliography

[8] R. E. Dickerson, M. L. Kopka, and P. Pjura. A random-walk model for helix bending in b-dna. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 80(23):7099-7103, 1983.
[9] U. Heinemann and C. Alings. Crystallographic study of one turn of g-c-rich b-dna. Journal of Molecular Biology, 210(2):369-381, November 1989.
[10] R. E. Dickerson, H. R. Drew, B. N. Conner, R. M. Wing, A. V. Fratini, and M. L. Kopka. The anatomy of a-dna, b-dna, and z-dna. Science, 216(4545):475-485, 1982.
[11] Z. Shakked, D. Rabinovich, W. B. T. Cruse, E. Egert, O. Kennard, G. Sala, S. A. Salisbury, and M. A. Viswamitra. Crystalline a-dna - the x-ray-analysis of the fragment d(g-g-t-a-t-a-c-c). Proceedings of the Royal Society Series B-biological Sciences, 213(1193):479-487, 1981.
[12] Benjamin N. Conner, Tsunehiro Takano, Shoji Tanaka, Keiichi Itakura, and Richard E. Dickerson. The molecular structure of d(icpcpgpg), a fragment of righthanded double helical a-dna. Nature, 295(5847):294-299, January 1982.
[13] A. H. J. Wang, S. Fujii, J. H. Vanboom, G. A. Vandermarel, S. A. A. Vanboeckel, and A. Rich. Molecular-structure of $\mathrm{r}(\mathrm{gcg}) \mathrm{d}(\mathrm{tatacgc})$ - a dna rna hybrid helix joined to double helical dna. Nature, 299(5884):601-604, 1982.
[14] A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Vandermarel, and A. Rich. Molecular-structure of a left-handed double helical dna fragment at atomic resolution. Nature, 282(5740):680-686, 1979.
[15] H. Drew, T. Takano, S. Tanaka, K. Itakura, and R. E. Dickerson. High-salt d(cpgpcpg), a left-handed z' dna double helix. Nature, 286(5773):567-573, 1980.
[16] A. H. J. Wang, G. J. Quigley, F. J. Kolpak, G. Vandermarel, J. H. Vanboom, and A. Rich. Left-handed double helical dna - variations in the backbone conformation. Science, 211(4478):171-176, 1981.
[17] A. Rich, A. Nordheim, and A. H. J. Wang. The chemistry and biology of left-handed z-dna. Annual Review of Biochemistry, 53:791-846, 1984.
[18] Stephen Neidle. Principles of Nucleic Acid Structure. Academic Press Inc., 2007.
[19] Victor A. Bloomfield, Donald M. Crothers, and Jr. Ignacio Tinoco. Nucleic Acids: structures, properties and functions. University Science Books, 2000.
[20] G. R. Clark, D. G. Brown, M. R. Sanderson, T. Chwalinski, S. Neidle, J. M. Veal, R. L. Jones, W. D. Wilson, G. Zon, E. Garman, and D. I. Stuart. Crystal and solution structures of the oligonucleotide d(atgcgeat)2 - a combined x-ray and nmrstudy. Nucleic Acids Research, 18(18):5521-5528, September 1990.
[21] N. Verdaguer, J. Aymami, D. Fernandezforner, I. Fita, M. Coll, T. Huynhdinh, J. Igolen, and J. A. Subirana. Molecular-structure of a complete turn of a-dna. Journal of Molecular Biology, 221(2):623-635, September 1991.
[22] S. Jain and M. Sundaralingam. Effect of crystal packing environment on conformation of the dna duplex - molecular-structure of the a-dna octamer d(g-t-g-t-a-c-a-c) in 2 crystal forms. Journal of Biological Chemistry, 264(22):12780-12784, August 1989.
[23] Z. Shakked, G. Guersteinguzikevich, M. Eisenstein, F. Frolow, and D. Rabinovich. The conformation of the dna double helix in the crystal is dependent on its environment. Nature, 342(6248):456-460, November 1989.
[24] R. E. Dickerson. Definitions and nomenclature of nucleic-acid structure parameters. Journal of Biomolecular Structure E3 Dynamics, 6(4):627-634, February 1989.
[25] J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst. Investigation of exchange processes by 2-dimensional nmr-spectroscopy. Journal of Chemical Physics, 71(11):4546-4553, 1979.
[26] G. Bodenhausen, R. Freeman, and D. L. Turner. 2-dimensional j-spectroscopy -proton-coupled c-13 nmr. Journal of Chemical Physics, 65(2):839-840, 1976.

Bibliography

[27] G. Bodenhausen and R. Freeman. Correlation of proton and c-13 nmr-spectra by heteronuclear 2-dimensional spectroscopy. Journal of Magnetic Resonance, 28(3):471476, 1977.
[28] A. Bax, R. Freeman, and G. Morris. Correlation of proton chemical-shifts by twodimensional fourier-transform nmr. Journal of Magnetic Resonance, 42(1):164-168, 1981.
[29] A. Bax and R. Freeman. Investigation of complex networks of spin-spin coupling by two-dimensional nmr. Journal of Magnetic Resonance, 44(3):542-561, 1981.
[30] L. Müller, A. Kumar, and R. R. Ernst. Two-dimensional carbon-13 nmrspectroscopy. Journal of Chemical Physics, 63(12):5490-5491, 1975.
[31] Anil Kumar, R. R. Ernst, and K. Wüthrich. A two-dimensional nuclear overhauser enhancement (2 d noe) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochemical and Biophysical Research Communications, 95(1):1-6, 1980.
[32] Anil Kumar, G. Wagner, R. R. Ernst, and K. Wüthrich. Studies of j-connectivities and selective $1 \mathrm{~h}-1 \mathrm{~h}$ overhauser effects in $\mathrm{h}_{2} \mathrm{o}$ solutions of biological macromolecules by two-dimensional nmr experiments. Biochemical and Biophysical Research Communications, 96(3):1156-1163, 1980.
[33] A. Kumar, G. Wagner, R. R. Ernst, and K. Wüthrich. Buildup rates of the nuclear overhauser effect measured by two-dimensional proton magnetic-resonance spectroscopy - implications for studies of protein conformation. Journal of the American Chemical Society, 103(13):3654-3658, 1981.
[34] G. Wagner, A. Kumar, and K. Wüthrich. Systematic application of two-dimensional h-1-nmr techniques for studies of proteins .2. combined use of correlated spectroscopy and nuclear overhauser spectroscopy for sequential assignments of backbone resonances and elucidation of polypeptide secondary structures. European Journal of Biochemistry, 114(2):375-384, 1981.
[35] G. Wagner and K. Wüthrich. Sequential resonance assignments in protein h-1 nuclear magnetic-resonance spectra - basic pancreatic trypsin-inhibitor. Journal of Molecular Biology, 155(3):347-366, 1982.
[36] G. Wagner and K. Wüthrich. Amide proton-exchange and surface conformation of the basic pancreatic trypsin-inhibitor in solution - studies with two-dimensional nuclear magnetic-resonance. Journal of Molecular Biology, 160(2):343-361, 1982.
[37] E. R. P. Zuiderweg, R. Kaptein, and K. Wüthrich. Secondary structure of the lac repressor dna-binding domain by two-dimensional h-1 nuclear magnetic-resonance in solution. Proceedings of the National Academy of Sciences of the United States of America-biological Sciences, 80(19):5837-5841, 1983.
[38] M. Rance, O. W. Sorensen, G. Bodenhausen, G. Wagner, R. R. Ernst, and K. Wüthrich. Improved spectral resolution in cosy h-1-nmr spectra of proteins via double quantum filtering. Biochemical and Biophysical Research Communications, 117(2):479-485, 1983.
[39] A. Pardi, G. Wagner, and K. Wüthrich. Protein conformation and proton nmr chemical-shifts. European Journal of Biochemistry, 137(3):445-454, 1983.
[40] K. Wüthrich, M. Billeter, and W. Braun. Pseudo-structures for the 20 common amino-acids for use in studies of protein conformations by measurements of intramolecular proton proton distance constraints with nuclear magnetic-resonance. Journal of Molecular Biology, 169(4):949-961, 1983.
[41] D. Marion and K. Wüthrich. Application of phase sensitive two-dimensional correlated spectroscopy (cosy) for measurements of h-1-h-1 spin-spin coupling-constants in proteins. Biochemical and Biophysical Research Communications, 113(3):967-974, 1983.
[42] A. Pardi, M. Billeter, and K. Wüthrich. Calibration of the angular-dependence of the amide proton-c-alpha proton coupling-constants, 3jhn-alpha, in a globular
protein - use of 3jhn-alpha for identification of helical secondary structure. Journal of Molecular Biology, 180(3):741-751, 1984.
[43] G. M. Clore and A. M. Gronenborn. Sequence-dependent structural variations in 2 right-handed alternating pyrimidine-purine dna oligomers in solution determined by nuclear overhauser enhancement measurements. Embo Journal, 2(12):2109-2115, 1983.
[44] Dennis R. Hare, David E. Wemmer, Shan-Ho Chou, Gary Drobny, and Brian R. Reid. Assignment of the non-exchangeable proton resonances of $\mathrm{d}(\mathrm{c}-\mathrm{g}-\mathrm{c}-\mathrm{g}-\mathrm{a}-\mathrm{a}-\mathrm{t}$ -t-c-g-c-g) using two-dimensional nuclear magnetic resonance methods. Journal of Molecular Biology, 171(3):319 - 336, 1983.
[45] J. Feigon, W. Leupin, W. A. Denny, and D. R. Kearns. Two-dimensional proton nuclear magnetic-resonance investigation of the synthetic deoxyribonucleic-acid decamer d(atatcgatat)2. Biochemistry, 22(25):5943-5951, 1983.
[46] D. G. Reid, S. A. Salisbury, S. Bellard, Z. Shakked, and D. H. Williams. Proton nuclear overhauser effect study of the structure of a deoxyoligonucleotide duplex in aqueous-solution. Biochemistry, 22(8):2019-2025, 1983.
[47] R. M. Scheek, N. Russo, R. Boelens, and R. Kaptein. Sequential resonance assignments in dna h-1-nmr spectra by two-dimensional noe spectroscopy. Journal of the American Chemical Society, 105(9):2914-2916, 1983.
[48] Timothy Havel and Kurt Wüthrich. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular ${ }^{1} \mathrm{~h}-{ }^{1} \mathrm{~h}$ proximities in solution. Bulletin of Mathematical Biology, 46(4):673-698, 1984.
[49] A. T. Brünger, G. M. Clore, A. M. Gronenborn, and M. Karplus. 3-dimensional structure of proteins determined by molecular-dynamics with interproton distance restraints - application to crambin. Proceedings of the National Academy of Sciences of the United States of America, 83(11):3801-3805, June 1986.
[50] M. M. Bluhm, G. Bodo, H. M. Dintzis, and J. C. Kendrew. The crystal structure of myoglobin .4. a fourier projection of sperm-whale myoglobin by the method of isomorphous replacement. Proceedings of the Royal Society of London Series Amathematical and Physical Sciences, 246(1246):369-389, 1958.
[51] M. P. Williamson, T. F. Havel, and K. Wuthrich. Solution conformation of proteinase inhibitor-iia from bull seminal plasma by h-1 nuclear magnetic-resonance and distance geometry. Journal of Molecular Biology, 182(2):295-315, 1985.
[52] R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, and W. F. Vangunsteren. A protein-structure from nuclear magnetic-resonance data - lac repressor headpiece. Journal of Molecular Biology, 182(1):179-182, 1985.
[53] G.Marius Clore and Angela M. Gronenborn. Probing the three-dimensional structures of dna and rna oligonucleotides in solution by nuclear overhauser enhancement measurements. FEBS Letters, 179(2):187-198, 1985.
[54] S. L. Beaucage and M. H. Caruthers. Deoxynucleoside phosphoramidites - a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters, $22(20): 1859-1862,1981$.
[55] N. D. Sinha, J. Biernat, J. Mcmanus, and H. Koster. Polymer support oligonucleotide synthesis .18. use of beta-cyanoethyl-n,n-dialkylamino-/n-morpholino phosphoramidite of deoxynucleosides for the synthesis of dna fragments simplifying deprotection and isolation of the final product. Nucleic Acids Research, 12(11):4539-4557, 1984.
[56] J. C. Schulhof, D. Molko, and R. Teoule. The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups. Nucleic Acids Research, 15(2):397-416, January 1987.
[57] M. H. Caruthers, A. D. Barone, S. L. Beaucage, D. R. Dodds, E. F. Fisher, L. J. Mcbride, M. Matteucci, Z. Stabinsky, and J. Y. Tang. Chemical synthesis of deoxy-
oligonucleotides by the phosphoramidite method. Methods In Enzymology, 154:287313, 1987.
[58] B. F. Li, P. F. Swann, M. Kalnik, and D. J. Patel. Synthesis and structural studies by nuclear magnetic resonance of dodecadeoxynucleotides containing o6-methylguanine, o6-ethylguanine and o4-methylthymine. IARC scientific publications, (84):44-8, 1987.
[59] M. W. Kalnik, M. Kouchakdjian, B. F. L. Li, P. F. Swann, and D. J. Patel. Base pair mismatches and carcinogen-modified bases in dna - an nmr-study of a.c and a.o4met pairing in dodecanucleotide duplexes. Biochemistry, 27(1):100-108, January 1988.
[60] Frederick E. Evans and Robert A. Levine. Nmr study of stacking interactions and conformational adjustments in the dinucleotide-carcinogen adduct 2'-deoxycytidylyl-(3 .fwdarw. 5)-2'-deoxy-8-(n-fluoren-2-ylacetamido)guanosine. Biochemistry, 27(8):3046-3055, 1988.
[61] J. G. Pelton and D. E. Wemmer. Structural modeling of the distamycin-a$\mathrm{d}(\text { cgcgaattcgcg })_{2}$ complex using 2 d nmr and molecular mechanics. Biochemistry, 27(21):8088-8096, October 1988.
[62] J. M. L. Pieters, E. Devroom, G. A. Vandermarel, J. H. Vanboom, and C. Altona. Conformational consequences of the incorporation of arabinofuranosylcytidine in dna - an nmr-study of the dna fragments d(cgctagcg) and d(cgactagcg) in solution. European Journal of Biochemistry, 184(2):415-425, September 1989.
[63] Peter M. M. Rae and Robert E. Steele. Modified bases in the dnas of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. Biosystems, 10(1-2):37-53, 1978.
[64] R. A. J. Warren. Modified bases in bacteriophage dnas. Annual Review of Microbiology, 34:137-158, 1980.
[65] Mark Lukin and Carlos de los Santos. Nmr structures of damaged dna. Chemical Reviews, 106(2):607-686, 2006. PMID: 16464019.
[66] P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt. Sequence-selective recognition of dna by strand displacement with a thymine-substituted polyamide. Science, 254(5037):1497-1500, December 1991.
[67] J. C. Hanvey, N. J. Peffer, J. E. Bisi, S. A. Thomson, R. Cadilla, J. A. Josey, D. J. Ricca, C. F. Hassman, M. A. Bonham, K. G. Au, S. G. Carter, D. A. Bruckenstein, A. L. Boyd, S. A. Noble, and L. E. Babiss. Antisense and antigene properties of peptide nucleic-acids. Science, 258(5087):1481-1485, November 1992.
[68] A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi, R. Kumar, M. Meldgaard, C. E. Olsen, and J. Wengel. Lna (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron, 54(14):3607-3630, April 1998.
[69] Jakob T. Nielsen, Khalil Arar, and Michael Petersen. Solution structure of a locked nucleic acid modified quadruplex: Introducing the v4 folding topology. Angewandte Chemie, 121(17):3145-3149, 2009.
[70] K.-U. Schöning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, and A. Eschenmoser. Chemical etiology of nucleic acid structure: The alpha-threofuranosyl-(3'$>2^{\prime}$) oligonucleotide system. Science, 290(5495):1347-1351, 2000.
[71] N. Ueda, T. Kawabata, and K. Takemoto. Synthesis of n-(2,3-dihydroxypropyl) derivatives of nucleic bases. Journal of Heterocyclic Chemistry, 8(5):827-\&, 1971.
[72] O. L. Acevedo and R. S. Andrews. Synthesis of propane-2,3-diol combinatorial monomers. Tetrahedron Letters, 37(23):3931-3934, June 1996.
[73] L. L. Zhang, A. Peritz, and E. Meggers. A simple glycol nucleic acid. Journal of the American Chemical Society, 127(12):4174-4175, March 2005.

Bibliography

[74] Allen T. Horhota, Jack W. Szostak, and Larry W. McLaughlin. Glycerol nucleoside triphosphates: Synthesis and polymerase substrate activities. Organic Letters, 8(23):5345-5347, 2006. PMID: 17078714.
[75] D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences of the United States of America, 83(9):2934-2938, May 1986.
[76] T. R. Krugh, D. E. Graves, and M. P. Stone. 2-dimensional nmr-studies on the anthramycin-d(atgcat)2 adduct. Biochemistry, 28(26):9988-9994, December 1989.
[77] A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. A. Fodor. Light-generated oligonucleotide arrays for rapid dna-sequence analysis. Proceedings of the National Academy of Sciences of the United States of America, 91(11):50225026, May 1994.
[78] J. L. Schwartz, J. S. Rice, B. A. Luxon, J. M. Sayer, G. Xie, H. J. C. Yeh, X. Liu, D. M. Jerina, and D. G. Gorenstein. Solution structure of the minor conformer of a dna duplex containing a dg mismatch opposite a benzo[a]pyrene diol epoxide/da adduct: Glycosidic rotation from syn to anti at the modified deoxyadenosine. Biochemistry, 36(37):11069-11076, 1997. PMID: 9333324.
[79] R. T. Ranasinghe and T. Brown. Fluorescence based strategies for genetic analysis. Chemical Communications, (44):5487-5502, November 2005.
[80] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Ko-
rlach, and S. Turner. Real-time dna sequencing from single polymerase molecules. Science, 323(5910):133-138, January 2009.
[81] F. Sanger, S. Nicklen, and A. R. Coulson. Dna sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12):5463-5467, 1977.
[82] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. B. H. Kent, and L. E. Hood. Fluorescence detection in automated dna-sequence analysis. Nature, 321(6071):674-679, June 1986.
[83] L. S. Lerman. Structural considerations in interaction of dna and acridines. Journal of Molecular Biology, 3(1):18-30, 1961.
[84] A. Fede, M. Billeter, W. Leupin, and K. Wüthrich. Determination of the nmr solution structure of the hoechst $33258-\mathrm{d}(\text { gtggaattccac })_{2}$ complex and comparison with the x-ray crystal-structure. Structure, 1(3):177-186, November 1993.
[85] H. P. Spielmann, D. E. Wemmer, and J. P. Jacobsen. Solution structure of a dna complex with the fluorescent bis-intercalator toto determined by nmr-spectroscopy. Biochemistry, 34(27):8542-8553, July 1995.
[86] A. N. Glazer and R. A. Mathies. Energy-transfer fluorescent reagents for dna analyses. Current Opinion In Biotechnology, 8(1):94-102, February 1997.
[87] K. E. Erkkila, D. T. Odom, and J. K. Barton. Recognition and reaction of metallointercalators with dna. Chemical Reviews, 99(9):2777-2795, September 1999.
[88] G. Subramaniam, M. M. Paz, G. S. Kumar, A. Das, Y. Palom, C. C. Clement, D. J. Patel, and M. Tomasz. Solution structure of a guanine-n7-linked complex of the mitomycin c metabolite 2,7-diaminomitosene and dna. basis of sequence selectivity. Biochemistry, 40(35):10473-10484, September 2001.
[89] Adolf Wacker, Sigrid Kirschfeld, and Lothar Träger. Über den einbau purin-analoger verbindungen in die bakterien-nukleinsäure. Journal of Molecular Biology, 2(4):241 - 242, 1960 .

Bibliography

[90] Adolf Wacker, Sigrid Kirschfeld, Dieter Hartmann, and Dieter Weinblum. Über den einbau von 5 -nitrouracil, 5 -aminouracil und 2 -thiothymin in die bakteriendesoxyribonukleinsäure. Journal of Molecular Biology, 2(1):69-71, 1960.
[91] Jorge R. Barrio, John A. Secrist III, and Nelson J. Leonard. Fluorescent adenosine and cytidine derivatives. Biochemical and Biophysical Research Communications, 46(2):597-604, 1972.
[92] T. M. Nordlund, S. Andersson, L. Nilsson, R. Rigler, A. Graeslund, and L. W. McLaughlin. Structure and dynamics of a fluorescent dna oligomer containing the ecori recognition sequence: fluorescence, molecular dynamics, and nmr studies. Biochemistry, 28(23):9095-9103, 1989. PMID: 2605243.
[93] K. M. Guckian, T. R. Krugh, and E. T. Kool. Solution structure of a dna duplex containing a replicable difluorotoluene-adenine pair. Nature Structural Biology, 5(11):954-959, November 1998.
[94] James N. Wilson and Eric T. Kool. Fluorescent dna base replacements: reporters and sensors for biological systems. Organic \& Biomolecular Chemistry, 4:4265-4274, 2006.
[95] Vyacheslav V. Filichev and Erik B. Pedersen. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions. John Wiley \& Sons, Inc., 2008.
[96] R. W. Sinkeldam, N. J. Greco, and Y. Tor. Fluorescent analogs of biomolecular building blocks: Design, properties, and applications. Chemical Reviews, 110(5):25792619, May 2010.
[97] Tracy J. Matray and Eric T. Kool. Selective and stable dna base pairing without hydrogen bonds. Journal of the American Chemical Society, 120(24):6191-6192, 1998.
[98] K. M. Guckian, T. R. Krugh, and E. T. Kool. Solution structure of a nonpolar, non-
hydrogen-bonded base pair surrogate in dna. Journal of the American Chemical Society, 122(29):6841-6847, July 2000.
[99] D. Loakes. The applications of universal dna base analogues. Nucleic Acids Research, 29(12):2437-2447, June 2001.
[100] S. Tyagi and F. R. Kramer. Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14(3):303-308, March 1996.
[101] S. Tyagi, D. P. Bratu, and F. R. Kramer. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 16(1):49-53, January 1998.
[102] B. Dubertret, M. Calame, and A. J. Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology, 19(4):365-370, April 2001.
[103] K. M. Wang, Z. W. Tang, C. Y. J. Yang, Y. M. Kim, X. H. Fang, W. Li, Y. R. Wu, C. D. Medley, Z. H. Cao, J. Li, P. Colon, H. Lin, and W. H. Tan. Molecular engineering of dna: Molecular beacons. Angewandte Chemie-international Edition, 48(5):856-870, 2009.
[104] Frédéric Godde, Jean-Jacques Toulmé, and Serge Moreau. Benzoquinazoline derivatives as substitutes for thymine in nucleic acid complexes. use of fluorescence emission of benzo[g]quinazoline-2,4-(1h,3h)-dione in probing duplex and triplex formation. Biochemistry, 37(39):13765-13775, 1998.
[105] Akimitsu Okamoto, Yoshio Saito, and Isao Saito. Design of base-discriminating fluorescent nucleosides. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2-3):108-122, 2005.
[106] H.-A. Wagenknecht. Fluorescent dna base modifications and substitutes: Multiple fluorophore labeling and the deteq concept. Fluorescence Methods and Applications: Spectroscopy, Imaging, and Probes, 1130:122-130, 2008.
[107] Olaf Köhler, Dilip Venkatrao Jarikote, and Oliver Seitz. Forced intercalation probes (fit probes): Thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. ChemBioChem, 6(1):69-77, 2005.
[108] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams. Real time quantitative pcr. Genome Research, 6(10):986-994, October 1996.
[109] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer. The miqe guidelines: Minimum information for publication of quantitative real-time pcr experiments. Clinical Chemistry, 55(4):611-622, April 2009.
[110] K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting per product and nucleic-acid hybridization. Pcr-methods and Applications, 4(6):357-362, June 1995.
[111] Elke Socher, Dilip V. Jarikote, Andrea Knoll, Lars Röglin, Jens Burmeister, and Oliver Seitz. Fit probes: Peptide nucleic acid probes with a fluorescent base surrogate enable real-time dna quantification and single nucleotide polymorphism discovery. Analytical Biochemistry, 375(2):318-330, 2008.
[112] Felix Hövelmann, Lucas Bethge, and Oliver Seitz. Single labeled dna fit probes for avoiding false-positive signaling in the detection of dna/rna in qper or cell media. ChemBioChem, 13(14):2072-2081, 2012.
[113] S. Dhanasekaran, T. M. Doherty, and J. Kenneth. Comparison of different standards for real-time pcr-based absolute quantification. Journal of Immunological Methods, 354(1-2):34-39, March 2010.
[114] L. Stryer. Fluorescence energy-transfer as a spectroscopic ruler. Annual Review of Biochemistry, 47:819-846, 1978.
[115] J.Y. Ju, I. Kheterpal, J.R. Scherer, C.C. Ruan, C.W. Fuller, A.N. Glazer, and R.A. Mathies. Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for dna sequencing and analysis. Analytical Biochemistry, 231(1):131-140, 1995.
[116] D. M. J. Lilley and T. J. Wilson. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Current Opinion In Chemical Biology, 4(5):507517, October 2000.
[117] O. Schiemann, N. Piton, Y. G. Mu, G. Stock, J. W. Engels, and T. F. Prisner. A peldor-based nanometer distance ruler for oligonucleotides. Journal of the American Chemical Society, 126(18):5722-5729, May 2004.
[118] O. Schiemann and T. F. Prisner. Long-range distance determinations in biomacromolecules by epr spectroscopy. Quarterly Reviews of Biophysics, 40(1):1-53, February 2007.
[119] J. M. Obliosca, C. Liu, and H. C. Yeh. Fluorescent silver nanoclusters as dna probes. Nanoscale, 5(18):8443-8461, 2013.
[120] C. Z. Wan, T. Fiebig, O. Schiemann, J. K. Barton, and A. H. Zewail. Femtosecond direct observation of charge transfer between bases in dna. Proceedings of the National Academy of Sciences of the United States of America, 97(26):14052-14055, December 2000.
[121] A. H. Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond. Journal of Physical Chemistry A, 104(24):5660-5694, June 2000.
[122] J. L. N. Lustres, S. A. Kovalenko, M. Mosquera, T. Senyushkina, W. Flasche, and N. P. Ernsting. Ultrafast solvation of n-methyl-6-quinolone probes local ir spectrum. Angewandte Chemie-international Edition, 44(35):5635-5639, 2005.
[123] Mohsen Sajadi, Falko Berndt, Celin Richter, Mario Gerecke, Rainer Mahrwald, and Nikolaus P. Ernsting. Observing the hydration layer of trehalose with a linked
molecular terahertz probe. The Journal of Physical Chemistry Letters, 5(11):18451849, 2014.
[124] Anders Holmén, Bengt Nordén, and Bo Albinsson. Electronic transition moments of 2-aminopurine. J. Am. Chem. Soc., 119:3114-3121, 1997.
[125] Lawrence C. Sowers, Yves Boulard, and G. Victor Fazakerley. Multiple structures for the 2-aminopurine-cytosine mispair. Biochemistry, 39:7613-7620, 2000.
[126] Edward L. Rachofsky, Roman Osman, and J. B. Alexander Ross. Probing structure and dynamics of dna with 2-aminopurine: Effects of local environment on fluorescence. Biochemistry, 40:946-956, 2001.
[127] S. K. Pal, L. Zhao, T. B. Xia, and A. H. Zewail. Site- and sequence-selective ultrafast hydration of dna. Proceedings of the National Academy of Sciences of the United States of America, 100(24):13746-13751, November 2003.
[128] D. C. Ward, E. Reich, and L. Stryer. Fluorescence studies of nucleotides and polynucleotides: I. formycin, 2,6-diaminopurine riboside, and 2-aminopurine riboside, polynucleotides: I. formycin,. J. Biol. Chem., 244:1228-1237, 1969.
[129] André Dallmann, Lars Dehmel, Torben Peters, Clemens Mügge, Christian Griesinger, Jennifer Tuma, and Nikolaus P. Ernsting. 2-aminopurine incorporation perturbs the dynamics and structure of dna. Angewandte Chemie International Edition, 49(34):5989-5992, 2010.
[130] S. Hess, W. B. Davis, A. A. Voityuk, N. Rosch, M. E. Michel-Beyerle, N. P. Ernsting, S. A. Kovalenko, and J. L. P. Lustres. Excited-state photophysics of an acridine derivative selectively intercalated in duplex dna. Chemphyschem, 3(5):452, May 2002.
[131] Mary E. Hawkins, Wolfgang Pfleiderer, Oliver Jungmann, and Frank M. Balis. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for dna incorporation. Analytical Biochemistry, 298(2):231-240, 2001.
[132] Mary E. Hawkins, Wolfgang Pfleiderer, Frank M. Balis, Denise Porter, and Jay R. Knutson. Fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into oligonucleotides. Analytical Biochemistry, 244(1):86-95, 1997.
[133] Mary E. Hawkins, Wolfgang Pfleiderer, Abhijit Mazumder, Yves G. Pommier, and Frank M. Balis. Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the hiv-1 integrase 3 '-processing reaction. Nucleic Acids Research, 23(15):2872-2880, 1995.
[134] MaryE. Hawkins. Fluorescent pteridine nucleoside analogs. Cell Biochemistry and Biophysics, 34(2):257-281, 2001.
[135] K. Y. Lin, R. J. Jones, and M. Matteucci. Tricyclic 2'-deoxycytidine analogs syntheses and incorporation into oligodeoxynucleotides which have enhanced binding to complementary rna. Journal of the American Chemical Society, 117(13):38733874, April 1995.
[136] Peter Sandin, L. Marcus Wilhelmsson, Per Lincoln, Vicki E. C. Powers, Tom Brown, and Bo Albinsson. Fluorescent properties of dna base analogue tc upon incorporation into dna - negligible influence of neighbouring bases on fluorescence quantum yield. Nucleic Acids Research, 33(16):5019-5025, 2005.
[137] P. Sandin, P. Lincoln, T. Brown, and L. M. Wilhelmsson. Synthesis and oligonucleotide incorporation of fluorescent cytosine analogue tc: a promising nucleic acid probe. Nature Protocols, 2(3):615-623, 2007.
[138] K. Cecilia Engman, Peter Sandin, Sadie Osborne, Tom Brown, Martin Billeter, Per Lincoln, Bengt Nordén, Bo Albinsson, and L. Marcus Wilhelmsson. Dna adopts normal b-form upon incorporation of highly fluorescent dna base analogue tc: Nmr structure and uv-vis spectroscopy characterization. Nucleic Acids Research, 32(17):5087-5095, 2004.
[139] Peter Sandin, Karl Börjesson, Hong Li, Jerker Mårtensson, Tom Brown, L. Marcus Wilhelmsson, and Bo Albinsson. Characterization and use of an unprecedentedly
bright and structurally non-perturbing fluorescent dna base analogue. Nucleic Acids Research, 36(1):157-167, 2008.
[140] K. Borjesson, S. Preus, A. H. El-Sagheer, T. Brown, B. Albinsson, and L. M. Wilhelmsson. Nucleic acid base analog fret-pair facilitating detailed structural measurements in nucleic acid containing systems. Journal of the American Chemical Society, 131(12):4288-4293, April 2009.
[141] B. J. Rodgers, N. A. Elsharif, N. Vashisht, M. M. Mingus, M. A. Mulvahill, G. Stengel, R. D. Kuchta, and B. W. Purse. Functionalized tricyclic cytosine analogues provide nucleoside fluorophores with improved photophysical properties and a range of solvent sensitivities. Chemistry-a European Journal, 20(7):2010-2015, February 2014.
[142] J. S. Woo, R. B. Meyer, and H. B. Gamper. G/c-modified oligodeoxynucleotides with selective complementarity: Synthesis and hybridization properties. Nucleic Acids Research, 24(13):2470-2475, July 1996.
[143] D. A. Berry, K. Y. Jung, D. S. Wise, A. D. Sercel, W. H. Pearson, H. Mackie, J. B. Randolph, and R. L. Somers. Pyrrolo-dc and pyrrolo-c: fluorescent analogs of cytidine and 2 '-deoxycytidine for the study of oligonucleotides. Tetrahedron Letters, 45(11):2457-2461, March 2004.
[144] C. Dash, J. W. Rausch, and S. F. J. Le Grice. Using pyrrolo-deoxycytosine to probe rna/dna hybrids containing the human immunodeficiency virus type-1 3 ' polypurine tract. Nucleic Acids Research, 32(4):1539-1547, February 2004.
[145] L. M. Wilhelmsson. Fluorescent nucleic acid base analogues. Quarterly Reviews of Biophysics, 43(2):159-183, May 2010.
[146] C. H. Liu and C. T. Martin. Fluorescence characterization of the transcription bubble in elongation complexes of t 7 rna polymerase. Journal of Molecular Biology, 308(3):465-475, May 2001.
[147] Hong Zang, Qingming Fang, Anthony E. Pegg, and F. Peter Guengerich. Kinetic analysis of steps in the repair of damaged dna by human o6-alkylguanine-dna alkyltransferase. The Journal of biological chemistry, 280(35):30873-81, September 2005.
[148] A. A. Marti, S. Jockusch, Z. M. Li, J. Y. Ju, and N. J. Turro. Molecular beacons with intrinsically fluorescent nucleotides. Nucleic Acids Research, 34(6):e50, 2006.
[149] X. Ming and F. Seela. A nucleobase-discriminating pyrrolo-dc click adduct designed for dna fluorescence mismatch sensing. Chemistry-a European Journal, 18(31):95909600, July 2012.
[150] M. S. Noe, A. C. Rios, and Y. Tor. Design, synthesis, and spectroscopic properties of extended and fused pyrrolo-dc and pyrrolo-c analogs. Organic Letters, 14(12):31503153, June 2012.
[151] R. S. Coleman and M. L. Madaras. Synthesis of a novel coumarin c-riboside as a photophysical probe of oligonucleotide dynamics. J. Org. Chem., 63(2):5700-5703, 1998.
[152] E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg. Measurement of local dna reorganization on the picosecond and nanosecond time scales. Journal of the American Chemical Society, 121(50):11644-11649, December 1999.
[153] M. M. Somoza, D. Andreatta, C. J. Murphy, R. S. Coleman, and M. A. Berg. Effect of lesions on the dynamics of dna on the picosecond and nanosecond timescales using a polarity sensitive probe. Nucleic Acids Research, 32(8):2494-2507, April 2004.
[154] D. Andreatta, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy, R. S. Coleman, and M. A. Berg. Power-law solvation dynamics in dna over six decades in time. Journal of the American Chemical Society, 127(20):7270-7271, May 2005.
[155] D. Andreatta, S. Sen, J. L. P. Lustres, S. A. Kovalenko, N. P. Ernsting, C. J. Murphy,
R. S. Coleman, and M. A. Berg. Ultrafast dynamics in dna: "fraying" at the end of the helix. Journal of the American Chemical Society, 128(21):6885-6892, May 2006.
[156] R. S. Coleman, M. A. Berg, and C. J. Murphy. Coumarin base-pair replacement as a fluorescent probe of ultrafast dna dynamics. Tetrahedron, 63(17):3450-3456, April 2007.
[157] M. A. Berg, R. S. Coleman, and C. J. Murphy. Nanoscale structure and dynamics of dna. Physical Chemistry Chemical Physics, 10(9):1229-1242, 2008.
[158] E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, and M. A. Berg. Complex local dynamics in dna on the picosecond and nanosecond time scales. Physical Review Letters, 88(15):158101, April 2002.
[159] Akimitsu Okamoto, Kazuki Tainaka, and Yoshimasa Fujiwara. Nile red nucleoside: Design of a solvatofluorochromic nucleoside as an indicator of micropolarity around dna. The Journal of Organic Chemistry, 71(9):3592-3598, 2006. PMID: 16626146.
[160] Tracy J. Matray and Eric T. Kool. A specific partner for abasic damage in dna. Nature, 399:704-708, 1999.
[161] Christine Brotschi, Adrian Häberli, and Christian J. Leumann. A stable dna duplex containing a non-hydrogen-bonding and non-shape-complementary base couple: Interstrand stacking as the stability determining factor. Angewandte Chemie International Edition, 40(16):3012-3014, 2001.
[162] Hugo Morales-Rojas and Eric T. Kool. A porphyrin c-nucleoside incorporated into dna. Organic Letters, 4(25):4377-4380, 2002.
[163] Simon M. Langenegger and Robert Häner. A simple, non-nucleosidic base surrogate increases the duplex stability of dna containing an abasic site. Chemistry ${ }^{8}$ Biodiversity, 1(2):259-264, 2004.
[164] Simon M. Langenegger and Robert Häner. Remarkable stabilization of duplex dna containing an abasic site by non-nucleosidic phenanthroline and pyrene building blocks. ChemBioChem, 6(5):848-851, 2005.
[165] Natalia N. Dioubankova, Andrey D. Malakhov, Dmitry A. Stetsenko, Vladimir A. Korshun, and Michael J. Gait. (r)-2,4-dihydroxybutyramide seco-pseudonucleosides: New versatile homochiral synthons for synthesis of modified oligonucleotides. Organic Letters, 4(26):4607-4610, 2002. PMID: 12489941.
[166] Robert Huber, Nicole Amann, and Hans-Achim Wagenknecht. Synthesis of dna with phenanthridinium as an artificial dna base. J. Org. Chem., 69:744-751, 2004.
[167] Jinsong Ren and Jonathan B. Chaires. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry, 38(49):16067-16075, 1999.
[168] John Olmsted and David R. Kearns. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16):3647-3654, 1977.
[169] Shana O. Kelley and Jacqueline K. Barton. Dna-mediated electron transfer from a modified base to ethidium: Pi-stacking as a modulator of reactivity. Chemistry \mathcal{G} Biology, 5(8):413-425, 1998.
[170] Linda Valis, Nicole Amann, and Hans-Achim Wagenknecht. Detection of single base mismatches and abasic sites using phenanthridinium as an artificial dna base and charge donor. Org. Biomol. Chem., 3:36-38, 2005.
[171] Clemens Wagner and Hans-Achim Wagenknecht. Perylene-3,4:9,10-tetracarboxylic acid bisimide dye as an artificial dna base surrogate. Organic Letters, 8(19):41914194, 2006.
[172] Andrei D. Malakhov, Mikhail V. Skorobogatyi, Igor A. Prokhorenko, Sergei V. Gontarev, Dmitry T. Kozhich, Dmitry A. Stetsenko, Irina A. Stepanova, Zakhar O. Shenkarev, Yuri A. Berlin, and Vladimir A. Korshun. 1-(phenylethynyl)pyrene and

9,10-bis(phenylethynyl)anthracene, useful fluorescent dyes for dna labeling: Excimer formation and energy transfer. European Journal of Organic Chemistry, 2004(6):1298-1307, 2004.
[173] Hajime Maeda, Tomohiro Maeda, Kazuhiko Mizuno, Kazuhisa Fujimoto, Hisao Shimizu, and Masahiko Inouye. Alkynylpyrenes as improved pyrene-based biomolecular probes with the advantages of high fluorescence quantum yields and long absorption/emission wavelengths. Chemistry A European Journal, 12(3):824-831, 2006.
[174] Igor A. Prokhorenko, Andrei D. Malakhov, Anna A. Kozlova, Kuvat Momynaliev, Vadim M. Govorun, and Vladimir A. Korshun. Phenylethynylpyrene-labeled oligonucleotide probes for excimer fluorescence snp analysis of 23 s rrna gene in clarithromycin-resistant helicobacter pylori strains. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 599(1ấ€"2):144-151, 2006.
[175] M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao. A unique fluorescent base analogue for the expansion of the genetic alphabet. Journal of the American Chemical Society, 132(14):4988-+, April 2010.
[176] A. A. Tanpure and S. G. Srivatsan. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in rna. Chembiochem, 13(16):2392-2399, November 2012.
[177] M. G. Pawar and S. G. Srivatsan. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment. Journal of Physical Chemistry B, 117(46):14273-14282, November 2013.
[178] P. M. Sabale, A. Nuthanakanti, and S. G. Srivatsan. Synthesis and fluorescence properties of a full set of extended rna base analogues. Indian Journal of Chemistry Section A-inorganic Bio-inorganic Physical Theoretical \& Analytical Chemistry, 52(8-9):1004-1013, August 2013.
[179] P. M. Sabale, J. T. George, and S. G. Srivatsan. A base-modified pna-graphene
oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. Nanoscale, 6(18):10460-10469, 2014.
[180] A. A. Tanpure and S. G. Srivatsan. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the lucifer chromophore. Chembiochem, 15(9):1309-1316, June 2014.
[181] Carolin Holzhauser and Hans-Achim Wagenknecht. "dna traffic lights": Concept of wavelength-shifting dna probes and application in an aptasensor. ChemBioChem, 13(8):1136-1138, 2012.
[182] C. Holzhauser and H.-A. Wagenknecht. Dna and rna "traffic lights": Synthetic wavelength-shifting fluorescent probes based on nucleic acid base substitutes for molecular imaging. Journal of Organic Chemistry, 78(15):7373-7379, August 2013.
[183] S. Barrois, S. Worner, and H.-A. Wagenknecht. The role of duplex stability for wavelength-shifting fluorescent dna probes: energy transfer vs. exciton interactions in dna "traffic lights". Photochemical छ Photobiological Sciences, 13(8):1126-1129, 2014.
[184] André Nadler, Julian Strohmeier, and Ulf Diederichsen. 8-vinyl-2'-deoxyguanosine as a fluorescent 2'-deoxyguanosine mimic for investigating dna hybridization and topology. Angewandte Chemie International Edition, 50(23):5392-5396, 2011.
[185] Bastian Holzberger, Julian Strohmeier, Vanessa Siegmund, Ulf Diederichsen, and Andreas Marx. Enzymatic synthesis of 8-vinyl- and 8-styryl-2'-deoxyguanosine modified dna - novel fluorescent molecular probes. Bioorganic \& Medicinal Chemistry Letters, 22(9):3136-3139, 2012.
[186] V. Singh, S. L. Wang, and E. T. Kool. Genetically encoded multispectral labeling of proteins with polyfluorophores on a dna backbone. Journal of the American Chemical Society, 135(16):6184-6191, April 2013.
[187] L. H. Yuen, R. M. Franzini, S. L. Wang, P. Crisalli, V. Singh, W. Jiang, and E. T. Kool. Pattern-based detection of toxic metals in surface water with dna polyfluorophores. Angewandte Chemie-international Edition, 53(21):5361-5365, May 2014.
[188] Hiroyuki Asanuma, Taiga Fujii, Tomohiro Kato, and Hiromu Kashida. Coherent interactions of dyes assembled on dna. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(2):124-135, 2012. Photochemical Methodology Utilized in Chemical Biology.
[189] Y. N. Teo and E. T. Kool. Dna-multichromophore systems. Chemical Reviews, 112(7):4221-4245, July 2012.
[190] M. Winnacker and E. T. Kool. Artificial genetic sets composed of size-expanded base pairs. Angewandte Chemie-international Edition, 52(48):12498-12508, November 2013.
[191] Andrew T. Krueger, Haige Lu, Alex H. F. Lee, and Eric T. Kool. Synthesis and properties of size-expanded dnas: Toward designed, functional genetic systems. Acc Chem Res., 40(2):141-150, 2007.
[192] F. Wojciechowski, J. Lietard, and C. J. Leumann. 2-pyrenyl-dna: Synthesis, pairing, and fluorescence properties. Organic Letters, 14(20):5176-5179, October 2012.
[193] Peter Kaden, Elke Mayer-Enthart, Anton Trifonov, Torsten Fiebig, and Hans-Achim Wagenknecht. Real-time spectroscopic and chemical probing of reductive electron transfer in dna. Angewandte Chemie International Edition, 44(11):1636-1639, 2005.
[194] Elke Mayer-Enthart and Hans-Achim Wagenknecht. Structure-sensitive and selfassembled helical pyrene array based on dna architecture. Angewandte Chemie International Edition, 45(20):3372-3375, 2006.
[195] Mykhailo Vybornyi, Alina L. Nussbaumer, Simon M. Langenegger, and Robert Häner. Assembling multiporphyrin stacks inside the dna double helix. Bioconjugate Chemistry, 25(10):1785-1793, 2014. PMID: 25186936.
[196] C. B. Winiger, S. M. Langenegger, O. Khorev, and R. Häner. Influence of perylenediimide-pyrene supramolecular interactions on the stability of dna-based hybrids: Importance of electrostatic complementarity. Beilstein Journal of Organic Chemistry, 10:1589-1595, July 2014.
[197] R. W. Sinkeldam, A. J. Wheat, H. Boyaci, and Y. Tor. Emissive nucleosides as molecular rotors. Chemphyschem, 12(3):567-570, February 2011.
[198] R. W. Sinkeldam, P. A. Hopkins, and Y. Tor. Modified 6-aza uridines: Highly emissive ph-sensitive fluorescent nucleosides. Chemphyschem, 13(14):3350-3356, October 2012.
[199] R. S. K. Lane, R. Jones, R. W. Sinkeldam, Y. Tor, and S. W. Magennis. Two-photoninduced fluorescence of isomorphic nucleobase analogs. Chemphyschem, 15(5):867871, April 2014.
[200] M. S. Noe, R. W. Sinkeldam, and Y. Tor. Oligodeoxynucleotides containing multiple thiophene-modified isomorphic fluorescent nucleosides. Journal of Organic Chemistry, 78(16):8123-8128, August 2013.
[201] Patrycja A. Hopkins, Renatus W. Sinkeldam, and Yitzhak Tor. Visibly emissive and responsive extended 6-aza-uridines. Organic letters, 16(20):5290-3, October 2014.
[202] D. Shin, R. W. Sinkeldam, and Y. Tor. Emissive rna alphabet. Journal of the American Chemical Society, 133(38):14912-14915, September 2011.
[203] André Dallmann, Matthias Pfaffe, Clemens Mügge, Rainer Mahrwald, Sergey A. Kovalenko, and Nikolaus P. Ernsting. Local thz time domain spectroscopy of duplex dna via fluorescence of an embedded probe. The Journal of Physical Chemistry B, 113(47):15619-15628, 2009.
[204] F. Berndt, M. Sajadi, N. P. Ernsting, and R. Mahrwald. Covalent linkage of n-methyl-6-oxyquinolinium betaine to trehalose. Carbohydrate Research, 346(18):2960-2964, December 2011.
[205] M. Weinberger, F. Berndt, R. Mahrwald, N. P. Ernsting, and H. A. Wagenknecht. Synthesis of 4 -aminophthalimide and 2,4-diaminopyrimidine c-nucleosides as isosteric fluorescent dna base substitutes. Journal of Organic Chemistry, 78(6):25892599, March 2013.
[206] G. Saroja, T. Soujanya, B. Ramachandram, and A. Samanta. 4-aminophthalimide derivatives as environment-sensitive probes. Journal of Fluorescence, 8(4):405-410, December 1998.
[207] John L Markley, Ad Bax, Yoji Arata, C.W Hilbers, Robert Kaptein, Brian D Sykes, Peter E Wright, and Kurt Wüthrich. Recommendations for the presentation of nmr structures of proteins and nucleic acids. Journal of Molecular Biology, 280(5):933 952, 1998.
[208] C. Altona and Sundaralingam M. Conformational-analysis of sugar ring in nucleosides and nucleotides - new description using concept of pseudorotation. Journal of the American Chemical Society, 94(23):8205-\&, 1972.
[209] J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer. The thermodynamics and molecular structure of cyclopentane. Journal of the American Chemical Society, 69(10):24832488, 1947.
[210] Albert W. Overhauser. Polarization of nuclei in metals. Phys. Rev., 92:411-415, Oct 1953.
[211] F. A. L. Anet and A. J. R. Bourn. Nuclear magnetic resonance spectral assignments from nuclear overhauser effects. Journal of the American Chemical Society, 87(22):5250-\&, 1965.
[212] S. Macura and R. R. Ernst. Elucidation of cross relaxation in liquids by twodimensional nmr-spectroscopy. Molecular Physics, 41(1):95-117, 1980.
[213] G. C. K. Roberts, editor. NMR of Macromolecules: A Practical Approach. Oxford University Press, New York, USA, 1993.
[214] Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, 1987.
[215] Angela M. Gronenborn and G. Marius Clore. Investigation of the solution structures of short nucleic acid fragments by means of nuclear overhauser enhancement measurements. Progress in Nuclear Magnetic Resonance Spectroscopy, 17:1-32, 1985.
[216] Brian R. Reid, Kevin Banks, Peter Flynn, and Willy Nerdal. Nmr distance measurements in dna duplexes: sugars and bases have the same correlation times. Biochemistry, 28(26):10001-10007, December 1989.
[217] A. J. Birchall and A. N. Lane. Anisotropic rotation in nucleic acid fragments: significance for determination of structures from nmr data. European Biophysics Journal, 19(2):73-78, 1990.
[218] Giovanni Lipari and Attila Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. Journal of the American Chemical Society, 104(17):4546-4559, 1982.
[219] Giovanni Lipari and Attila Szabo. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. analysis of experimental results. Journal of the American Chemical Society, 104(17):4559-4570, 1982.
[220] Peter F. Flynn, Ramona J. Bieber Urbauer, Hui Zhang, Andrew L. Lee, and A. Joshua Wand. Main chain and side chain dynamics of a heme protein: 15 n and 2 h nmr relaxation studies of r . capsulatus ferrocytochrome c2. Biochemistry, 40(22):6559-6569, 2001. PMID: 11380250.
[221] Andrew N. Lane. Nmr studies of dynamics in nucleic acids. Progress in Nuclear Magnetic Resonance Spectroscopy, 25(5):481 - 505, 1993.
[222] A. N. Lane. Influence of conformational averaging on ${ }^{1} \mathrm{~h}-\mathrm{h}$ noes and structure determination in dna. Magnetic Resonance In Chemistry, 34:S3-S10, December 1996.
[223] Eike Brunner. Residual dipolar couplings in protein nmr. Concepts in Magnetic Resonance, 13(4):238-259, 2001.
[224] J. H. Prestegard, C. M. Bougault, and A. I. Kishore. Residual dipolar couplings in structure determination of biomolecules. Chemical Reviews, 104(8):3519-3540, 2004. PMID: 15303825.
[225] Martin Blackledge. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy, 46(1):23-61, 2005.
[226] D. MacDonald, K. Herbert, X. L. Zhang, T. Polgruto, and P. Lu. Solution structure of an a-tract dna bend. Journal of Molecular Biology, 306(5):1081-1098, March 2001.
[227] A. Saupe and G. Englert. High-resolution nuclear magnetic resonance spectra of orientated molecules. Phys. Rev. Lett., 11(10):462, November 1963.
[228] A. Saupe. Kernresonanzen in kristallinen flussigkeiten + in kristallinflussigen losungen .i. Zeitschrift Fur Naturforschung Part A-astrophysik Physik Und Physikalische Chemie, A 19(2):161-+, 1964.
[229] J. R. Tolman, J. M. Flanagan, M. A. Kennedy, and J. H. Prestegard. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proceedings of the National Academy of Sciences, 92(20):92799283, 1995.
[230] Ad Bax and Nico Tjandra. High-resolution heteronuclear nmr of human ubiquitin in an aqueous liquid crystalline medium. Journal of Biomolecular NMR, 10(3):289-292, 1997.
[231] Nico Tjandra and Ad Bax. Direct measurement of distances and angles in biomolecules by nmr in a dilute liquid crystalline medium. Science, 278(5340):11111114, 1997.
[232] Marcel Ottiger and Ad Bax. Bicelle-based liquid crystals for nmr-measurement of dipolar couplings at acidic and basic ph values. Journal of biomolecular NMR, 13(2):187-91, February 1999.
[233] H. M. Al-Hashimi, H. Valafar, M. Terrell, E. R. Zartler, M. K. Eidsness, and J. H. Prestegard. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. Journal of Magnetic Resonance, 143(2):402-406, April 2000.
[234] L. G. Barrientos, C. Dolan, and A. M. Gronenborn. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings. Journal of biomolecular NMR, 16(4):329-37, April 2000.
[235] Markus Ruckert and Gottfried Otting. Alignment of biological macromolecules in novel nonionic liquid crystalline media for nmr experiments. Journal of the American Chemical Society, 122(32):7793-7797, August 2000.
[236] M R Hansen, L Mueller, and a Pardi. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nature structural biology, 5(12):1065-74, December 1998.
[237] James Chou, Sander Gaemers, Bernard Howder, John Louis, and Ad Bax. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. Journal of Biomolecular NMR, 21(4):377-382, December 2001.
[238] Junhe Ma, Gregory I. Goldberg, and Nico Tjandra. Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for nmr measurements. Journal of the American Chemical Society, 130(48):16148-9, December 2008.
[239] Jens Wohnert, Katherine J Franz, Mark Nitz, Barbara Imperiali, and Harald Schwalbe. Protein alignment by a coexpressed lanthanide-binding tag for the mea-
surement of residual dipolar couplings. Journal of the American Chemical Society, 125(44):13338-13339, November 2003.
[240] Shawn M. Douglas, James J. Chou, and William M. Shih. Dna-nanotube-induced alignment of membrane proteins for nmr structure determination. Proceedings of the National Academy of Sciences, 104(16):6644-6648, 2007.
[241] J. H. Prestegard, H. M. Al-Hashimi, and J. R. Tolman. Nmr structures of biomolecules using field oriented media and residual dipolar couplings. Quarterly reviews of biophysics, 33(4):371-424, November 2000.
[242] Eva de Alba and Nico Tjandra. Nmr dipolar couplings for the structure determination of biopolymers in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 40(2):175-197, 2002.
[243] J. A. Losonczi, M. Andrec, M. W. Fischer, and J. H. Prestegard. Order matrix analysis of residual dipolar couplings using singular value decomposition. Journal of magnetic resonance (San Diego, Calif. : 1997), 138(2):334-42, June 1999.
[244] Axel T. Brünger. X-PLOR (Version 4.0) A System for X-Ray Crystallography and NMR. Yale University, 1996.
[245] Charles D. Schwieters, John J. Kuszewski, Nico Tjandra, and G. Marius Clore. The xplor-nih nmr molecular structure determination package. J. Magn. Reson., 160:65-73, 2003.
[246] Scott J. Weiner, Peter A. Kollman, David A. Case, U. Chandra Singh, Caterina Ghio, Guliano Alagona, Salvatore Profeta, and Paul Weiner. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106(3):765-784, 1984.
[247] Alexander D. MacKerell, Nilesh Banavali, and Nicolas Foloppe. Development and current status of the charmm force field for nucleic acids. Biopolymers, 56(4):257265, 2000.
[248] J. L. Mergny and L. Lacroix. Analysis of thermal melting curves. Oligonucleotides, 13(6):515-537, 2003.
[249] Vyacheslav V. Filichev and Erik B. Pedersen. Stable and selective formation of hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (tina) prepared via postsynthetic sonogashira solid-phase coupling reactions. Journal of the American Chemical Society, 127(42):14849-14858, 2005.
[250] Francis H. Martin, Olke C. Uhlenbeck, and Paul Doty. Self-complementary oligoribonucleotides: Adenylic acid-uridylic acid block copolymers. Journal of Molecular Biology, 57(2):201-215, 1971.
[251] Philip N. Borer, Barbara Dengler, Ignacio Tinoco Jr., and Olke C. Uhlenbeck. Stability of ribonucleic acid double-stranded helices. Journal of Molecular Biology, 86(4):843-853, 1974.
[252] Matthew Petersheim and Douglas H. Turner. Base-stacking and base-pairing contributions to helix stability: Thermodynamics of double-helix formation with ccgg, ccggp, ccggap, accggp, ccggup and accggupt. Biochemistry, 22:256-263, 1983.
[253] D. H. Turner, N. Sugimoto, and S. M. Freier. Rna structure prediction. Annual Review of Biophysics and Biophysical Chemistry, 17(1):167-192, 1988.
[254] Vassili Ivanov, Yan Zeng, and Giovanni Zocchi. Statistical mechanics of base stacking and pairing in dna melting. Phys. Rev. E, 70:051907, Nov 2004.
[255] John SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide dna nearest-neighbor thermodynamics. Proc Natl Acad Sci, 95(4):1460-1465, 1998.
[256] John SantaLucia. The thermodynamics of dna structural motifs. Annual Review of Biophysics and Biomolecular Structure, 33:415-440, 2004.
[257] R. S. Lipsitz and N. Tjandra. Residual dipolar couplings in nmr structure analysis. Annual Review of Biophysics and Biomolecular Structure, 33:387-413, 2004.
[258] Curt M. Breneman and Kenneth B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. Journal of Computational Chemistry, 11(3):361373, 1990.
[259] R. L. J. Keller. Optimizing the process of Nuclear Magnetic Resonance spectrum analysis and Computer Aided Resonance Assignment (Cara). PhD thesis, Swiss Federal Institute Of Technology Zurich, 2004.
[260] André Dallmann. Structure and dynamics of fluorophore-labelled DNA helices probed by NMR-spectroscopy. PhD thesis, Humboldt-Universität zu Berlin, 2010.
[261] Marcel Ottiger and Ad Bax. How tetrahedral are methyl groups in proteins? a liquid crystal nmr study. Journal of the American Chemical Society, 121(19):4690-4695, May 1999.
[262] Annaleen Vermeulen, Hongjun Zhou, and Arthur Pardi. Determining dna global structure and dna bending by application of nmr residual dipolar couplings. Journal of the American Chemical Society, 122(40):9638-9647, 2000.
[263] Olivier Mauffret, Georges Tevanian, and Serge Fermandjian. Residual dipolar coupling constants and structure determination of large dna duplexes. Journal of biomolecular NMR, 24(4):317-28, December 2002.
[264] R. Boelens, T. M. G. Koning, and R. Kaptein. Determination of biomolecular structures from proton-proton noe's using a relaxation matrix approach. Journal of Molecular Structure, 173:299-311, 1988.
[265] B. A. Borgias and T. L. James. Mardigras - a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. J. Magn. Res., 87:475487, 1990.
[266] Lars Dehmel. Die entwicklung eines lua-skripts zur automatischen integration von noesy-spektren. Master's thesis, Humboldt-Universität zu Berlin, 2009.
[267] Jean-Luc Pons, T. E. Malliavin, and Marc A. Delsuc. Gifa v. 4: A complete package for nmr data set processing. Journal of Biomolecular NMR, 8(4):445-452, December 1996.
[268] Markus Zweckstetter. Nmr: prediction of molecular alignment from structure using the pales software. Nat. Protocols, 3(4):679-690, 2008.
[269] R. Manoharan and Sneh K. Dogra. The absorption and fluorescence spectra of 2- and 4-fluorenecarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 43(2):119-137, 1988.
[270] K. Huang, J. M. Louis, L. Donaldson, F. L. Lim, A. D. Sharrocks, and G. M. Clore. Solution structure of the mef2a-dna complex: structural basis for the modulation of dna bending and specificity by mads-box transcription factors. Embo Journal, 19(11):2615-2628, June 2000.
[271] M. Nakata, G. Zanchetta, B. D. Chapman, C. D. Jones, J. O. Cross, R. Pindak, T. Bellini, and N. A. Clark. End-to-end stacking and liquid crystal condensation of 6-to 20-base pair dna duplexes. Science, 318(5854):1276-1279, November 2007.
[272] Mohsen Sajadi, Yathrib Ajaj, Ilya Ioffe, Hermann Weingärtner, and Nikolaus P. Ernsting. Terahertz absorption spectroscopy of a liquid using a polarity probe: A case study of trehalose/water mixtures. Angewandte Chemie International Edition, 49(2):454-457, 2010.
[273] Mark K. Schlegel, Lars-Oliver Essen, and Eric Meggers. Atomic resolution duplex structure of the simplified nucleic acid gna. Chem. Commun., 46:1094-1096, 2010.
[274] Andrew T. Johnson, Mark K. Schlegel, Eric Meggers, Lars-Oliver Essen, and Olaf Wiest. On the structure and dynamics of duplex gna. The Journal of Organic Chemistry, 76(19):7964-7974, 2011. PMID: 21838272.
[275] Eric Meggers and Lilu Zhang. Synthesis and properties of the simplified nucleic acid

Bibliography
glycol nucleic acid. Accounts of Chemical Research, 43(8):1092-1102, 2010. PMID: 20405911.
[276] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 2nd Edition: The Art of Scientific Computing. Cambridge University Press, 1992.
[277] H. E. Gottlieb, V. Kotlyar, and A. Nudelman. Nmr chemical shifts of common laboratory solvents as trace impurities. Journal of Organic Chemistry, 62(21):75127515, October 1997.

List of Abbreviations

2AP	2-Aminopurine
4AP	4-Aminophthalimide
6HQ	6-Hydroxy-quinolinium
13mer4AP-DAP	13mer DNA double strand incorporating 4AP and DAP
13mer6HQ	13mer DNA double strand incorporating 6HQ
13merHCF	13mer DNA double strand incorporating HCF
13merHNF	13mer DNA double strand incorporating HNF
13merRef	13mer DNA double strand as reference with central AT pair
13merRef(GC)	13mer DNA double strand as reference with central GC pair
ACMA	9-Amino-6-chloro-2-methoxyacridine
A	Adenine
B3LYP	Becke, 3-parameter, Lee-Yang-Parr, a DFT method
CARA	Computer Aided Resonance Assignment
C	Cytosine
CPG	Controlled Pore Glass
CSD	Chemical Shift Deviation
DQF-COSY	Double Quantum Filtered Correlated Spectroscopy
DAP	2,4-Diaminopyrimidine
DETEQ	Detection by Electron Transfer-controlled Emission Quenching
DFT	Density Functional Theory
DNA	Deoxyribose Nucleic Acid
ddNTPs	di-deoxyNucleotideTriphosphates
FID	Free Induction Decay

List of Abbreviations

FIT	Forced Intercalation TO-PNA probes
FRET	Fluorescence Resonance Energy Transfer
GNA	Glycol Nucleic Acid
G	Guanine
HCF	2-Hydroxy-7-Carboxyfluorene
HMQC	Heteronuclear Multiple Quantum Coherence
HNF	2-Hydroxy-7-Nitrofluorene
HOD	Hydrogen Oxygen Deuterium, half deuterated water
ISPA	Isolated Spin Pair Approximation
LNA	Locked Nucleic Acid
MD	Molecular Dynamics
MQ	N-methyl-6-quinolone
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Enhancement (Effect) Spectroscopy
qPCR	Real-time quantitative Polymerase Chain Reaction
PAS	Principal Axis System
PCA	Principal Component Analysis
PCR	Polymerase Chain Reaction
PELDOR	Pulsed Electron-electron Double Resonance
Pf1	Phage f1, a filamentous bacteriophage
PNA	Peptide Nucleic Acid
RDC	Residual Dipolar Coupling
RNA	Ribose Nucleic Acid
RMSD	Root-Mean-Square Deviation
SBW	Spectral Bandwidth
SA	Simulated Annealing
SNP	Single Nucleotide Polymorphism
SVD	Singular Value Decomposition

TDSS Time-Dependent Stokes Shift
T Thymine
TNA Threose Nucleic Acid
TO Thiazole Orange
TR Thiazole Red
TOCSY Total Correlation Spectroscopy
TZVP Triple Zeta Valence plus Polarisation
UV/Vis Ultraviolet and visible range

List of Figures

1.1 Structure of natural nucleobases and fluorescent base analogues 7
1.2 Structure of large fluorescent base analogues 11
1.3 Structure of new fluorescent base and base pair analogues 17
2.1 Structure and nomenclature of the Watson-Crick base pairs A:T and G:C. 20
2.2 Pseudorotation phase angle P 21
2.3 Basic NOESY pulse-sequence 24
2.4 NOE effect in a two spin system 25
2.5 Acquisition of RDCs 30
2.6 Orientation of the B_{0} field and the inter-nuclear vector in the molecular frame. 32
2.7 Dependence of RDC values on the orientation of the inter-nuclear vector in the eigenframe of the alignment tensor 33
2.8 Find global minimum with Simulated Annealing 36
2.9 Data matrix \mathbf{M} and SVD of DNA absorption spectra 38
2.10 A Reduced set of matrices can fully describe the data matrix \mathbf{M} 39
2.11 Separating $\mathbf{V}_{\text {cut }}^{T}$ into a product of linear factors \mathbf{F} and nonlinear parameters P 40
2.12 Melting Point Estimation from dsDNA melting curve 42
2.13 SVD assisted two-state model 45
4.1 Structure of 13 merHCF 64
4.2 NOE-Walk in 13 merHCF 65

List of Figures

4.3 CSD comparison between 13 merHCF and 13 merHNF with reference strand 67
4.4 Averaged structures of 13 merHCF 68
4.5 Overlay of the 10 minimum-energy, violation-free structures 69
4.6 Close view on the three central base pairs of 13 merHCF 70
4.7 Pales plots of experimental RDCs against predicted values of the 13 merHCF structures. 72
4.8 NOESY back-calculations of both conformers overlaid with experimental data. 74
4.9 Absorption change of ds13merHCF upon melting 75
4.10 Weighted spectra of 13 merHCF in SVD 76
4.11 Basic spectra and thermodynamic curves of 13 merHCF 77
4.12 Thermodynamic curves of 13 merHCF, scaled to the measured amplitude change 78
4.13 Structure of 13 mer 6 HQ 81
4.14 NOE-Walk in 13mer6HQ 82
4.15 CSD comparison between 13 mer 6 HQ and different reference strands 84
4.16 Averaged structures of 13 mer 6 HQ 85
4.17 Close view on the three central base pairs of 13 mer 6 HQ 86
4.18 Close view on the central base pair of 13 mer 6 HQ 87
4.19 Side view on the three central base pairs of 13 mer 6 HQ 88
4.20 Pales plot of the experimental RDCs against predicted values of the 13 mer- 6 HQ structure. 89
4.21 NOESY back-calculation overlaid with experimental data. 90
4.22 Absorption change of ds13mer6HQ upon melting 91
4.23 UV part of the spectrum used for SVD of the DNA absorption peak 92
4.24 Basic spectra and thermodynamic curves of the DNA band 93
4.25 Thermodynamic curves, scaled to the measured amplitude change 94
4.26 Basic spectra and thermodynamic curves for the duplex part extrapolation 95
4.27 From the known duplex region $\left(10-30^{\circ} \mathrm{C}\right)$ onwards, the next twelve spectra were extrapolated 96
4.28 Basic spectra and amplitudes as in Fig. 4.26, but for the separated single strands. 97
4.29 The known region is now the high temperature part $\left(70-90^{\circ} \mathrm{C}\right)$, where fully separated single strands are assumed. 98
4.30 Overlay of linearly combined spectra and measured data around 400 nm 99
4.31 The α values of the linear combined spectra 99
4.32 The absorption spectrum of single-stranded 13mer6HQ, measured from 10 (blue) to $80^{\circ} \mathrm{C}$ (red). 100
4.33 Overlay of the extrapolated spectra and measured data of ss13mer6HQ. 101
4.34 Structure of 13mer4AP-DAP 103
4.35 NOE-Walk in 13mer4AP-DAP 104
4.36 CSD comparison between 13mer4AP-DAP and different reference strands 105
4.37 Assignment of two imino signal sets in 13mer4AP-DAP. 107
4.38 Averaged structures of 13mer4AP-DAP 108
4.39 Overlay of the 10 minimum-energy, violation-free structures 109
4.40 Close view on the three central base pairs of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ 110
4.41 Close view on the central base pair of 13 mer4AP-DAP 111
4.42 NOESY back-calculations of both conformers overlaid with experimental data. 112
4.43 Averaged structures of 13mer4AP-DAP with RDCs of 13 merHCF 114
4.44 Overlay of the 10 minimum-energy, violation-free structures of 13mer4AP- DAP with RDCs of 13 merHCF 115
4.45 Close view on the central base pair of $13 \mathrm{mer} 4 \mathrm{AP}-\mathrm{DAP}$ with RDCs 116
4.46 Pales plots of experimental 13merHCF RDCs against predicted values of the of 13 mer4AP-DAP structures 117
4.47 Absorption change of ds13mer6HQ upon melting 118
4.48 UV part of the spectrum used for SVD of the DNA absorption peak 119

List of Figures

4.49 Basic spectra and thermodynamic curves of the DNA band 120
4.50 Thermodynamic curves, scaled to the measured amplitude change 121
4.51 Spectrum used for SVD of the 4AP absorption band 122
4.52 Basic spectra and thermodynamic curves of the 4AP band 123
4.53 Melting curve, scaled to the measured amplitude change 124

List of Tables

2.1 Average structural parameters for different helical forms ${ }^{[19]}$ 22
3.1 Experimentally determined RDCs used in the structure determination for 13merHCF 53
3.2 Overview of structural statistics for 13 merHCF in face-up and face-down orientation 54
3.3 Measured RDCs of 13mer6HQ 58
3.4 Overview of structural statistics for 13 mer 6 HQ 59
3.5 Overview of structural statistics for 13 mer4AP-DAP in 1 H -bond and $2 \mathrm{H}-$ bond orientation 62
5.1 Global and local melting points of the three investigated DNA double strands. 126
6.1 Globale und lokale Schmelzpunkte der drei untersuchten DNA Doppelstränge. 132
$1 \quad{ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 merHCF 138
$2 \quad{ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 merHCF 139
$3 \quad{ }^{13} \mathrm{C}$ chemical shifts of 13 merHCF 140
$4 \quad{ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 mer 6 HQ 141
$5 \quad{ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 mer6HQ 142
$6 \quad{ }^{13} \mathrm{C}$ chemical shifts of 13 mer 6 HQ 143
$7 \quad{ }^{1} \mathrm{H}$ chemical shifts of the nucleobases in 13 mer4AP-DAP 144
$8 \quad{ }^{1} \mathrm{H}$ chemical shifts of the backbone in 13 mer4AP-DAP 145

Danksagung

Als Erstes möchte ich Prof. Nikolaus P. Ernsting für das Thema und die Betreuung meiner Doktorarbeit danken. Dazu zähle ich nicht nur die Unterstützung bei wissenschaftlichen Fragestellungen oder die Gelegenheit in Eigenregie experimentell zu arbeiten und neue Ideen zu verwirklichen, sondern auch das Vertrauen und die Möglichkeit mich neben den Herausforderungen eines Wissenschaftlers auch denen eines zweifachen Vaters zu stellen und diese unter einen Hut zu bekommen.

Besonders danken möchte ich Dr. André Dallmann für die Einführung in das Gebiet der Strukturaufklärung mittels NMR-Spektroskopie. Er stand mir immer mit Rat und Tat zur Seite, denn der Weg zur ersten Struktur ist mit vielen Stolpersteinen gepflastert.

Ebenso möchte ich Prof. Dr. Clemens Mügge für das Vertrauen und die Unterstützung am NMR-Spektrometer danken. Ohne die Freiheit lange und auch vielfältige Experimente am Spektrometer durchzuführen, wäre die Strukturbestimmung von 13mer4AP-DAP nicht möglich gewesen. An dieser Stelle möchte ich auch Angela Thiesies und Katharina Pfaff für die Kooperation und Unterstützung am Spektrometer danken.

Heiderose Steingräber und Sabrina Penn möchte ich für Hilfe bei den vielen kleinen Dingen im Alltag eines Wissenschaftlers danken sowie die angenehme Arbeitsatmosphäre.

Mein Dank gilt auch den anderen Mitgliedern des Arbeitskreises. Dr. Horst Hennig danke ich für die vielen anregenden Diskussionen, Dr. Sergey Kovalenko und Dr. Alexander Dobryakov für die Ratschläge zur wissenschaftlichen Arbeit. Martin Quick und Mario Gerecke für die gute Zusammenarbeit und stete Hilfsbereitschaft. Auch bei den ehemaligen Mitgliedern der Arbeitsgruppe möchte ich mich dafür bedanken. Im Einzelnen sind dies Iris Suter, Dr. Luis Perez-Lustres, Dr. Mohsen Sajadi Hezaveh und Xinxing Zhang.

Weiterhin möchte ich mich bei Prof. Dr. Rainer Mahrwald und Dr. Matthias Pfaffe für die Synthese des HCF-Bausteins bedanken. Ebenso bei Felix Hövelmann und Prof. Dr. Oliver Seitz für die Bereitstellung des 6HQ Stranges. Der 13mer4AP-DAP Doppelstrang ist in Kooperation mit der Arbeitsgruppe von Prof. Dr. Hans-Achim Wagenknecht entstanden. Ihm und Dr. Michael Weinberger danke ich für die Synthese des 4AP Stranges. Aus unserer Gruppe danke ich Dr. Falko Berndt für die Herstellung des DAP-Gegenstücks.

Schließlich möchte ich bei meiner Frau und unseren Eltern für die fortwährende Unterstützung bedanken, ohne die ich diese Arbeit nicht hätte fertigstellen können.

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Berlin, den 15.12.2014
Lars Dehmel

[^0]: potList=[potList['CDIH'], potList['IMPR']],

[^1]: -FIRST PART

