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Abstract

The solution structures of three differently modified DNA double strands were solved

by NMR spectroscopy. They all incorporate polarity probes in the center of the helix

that are sensitive to the immediate environment. Their melting behavior was char-

acterized by a new method that utilizes complete absorption spectra in combination

with Singular Value Decomposition (SVD). The latter allows to analyze the spectra

in their entirety, which is required to follow the blue shift of the probe signal that is

caused by the aforementioned sensitivity to the environment. In this way the duplex

melting process is characterized in local and global terms.

The first modification, 2-hydroxy-7-carboxyfluorene (HCF), is placed opposite an

abasic site to avoid steric strain. NMR spectroscopy revealed two equally distributed

conformations, since rotation of the HCF chromophore is only hindered by stacking

interactions inside the helix. The second double strand comprises R-glycerol linked

6-hydroxyquinolinium (6HQ) opposite cytosine. The incorporation of 6HQ as glycol

nucleic acid (GNA) mononucleotide is a unique structural feature. Until now, only

crystal structures of full GNA backbone duplexes are known, so the solution structure

of this double strand is of general interest. The small size of R-glycerol disturbs

the backbone of the 6HQ strand, which causes a stacking axis that differs from the

helical long axis for the three central bases. The last modification is an artificial base

pair made of 4-aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP). Instead

of the desired three hydrogen bonds, two structures containing either a single or two

hydrogen bonds are observed that can be explained by the linkage of 4AP to 2’-

deoxyribofuranose.
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Inhaltsangabe

Die Strukturen in Lösung dreier unterschiedlich modifizierter DNA Doppelstränge

wurden mittels NMR Spektroskopie gelöst. Sie alle besitzen polare Sonden im Zentrum

der Helix, welche sensitiv für die nähere Umgebung sind. Ihr Schmelzverhalten wurde

mit Hilfe einer neuen Methode charakterisiert, welche komplette Absorptionsspektren

in Kombination mit Singularwertzerlegung (SVD) nutzt. Letztere erlaubt die Analyse

der Spektren als Ganzes, die notwendig ist um der Blauverschiebung des Sondensignals

zu folgen, welche durch die zuvor genannte Sensitivität zur Umgebung verursacht wird.

Auf diese Weise kann der Schmelzprozess des Duplex lokal und global beschrieben

werden.

Die erste Modifikation, 2-Hydroxy-7-Carboxyfluoren (HCF), wurde gegenüber ei-

ner abasischen Seite platziert, um sterische Spannungen zu vermeiden. Die NMR

Spektroskopie deckte zwei gleichverteilte Konformationen auf, da die Rotation des

HCF Chromophors nur durch die Stapelwechselwirkung innerhalb der Helix unter-

bunden wird. Der zweite Doppelstrang enthält ein über R-Glycerol gebundenes 6-

Hydroxychinolinium (6HQ) gegenüber Cytosin. Der Einbau von 6HQ als Mononuk-

leotid einer Glykolnukleinsäure (GNA) ist ein strukturelles Alleinstellungsmerkmal.

Bisher sind nur Kristallstrukturen von vollständiger GNA bekannt, daher ist die

Struktur in Lösung dieses Doppelstranges von generellem Interesse. Die geringe Größe

von R-Glycerol stört das Rückgrat des 6HQ-Stranges, welche eine von der helikalen

Achse abweichende Stapelachse für die drei zentralen Basen verursacht. Die letzte

Modifikation ist ein künstliches Basenpaar bestehend aus 4-Aminophthalimid (4AP)

und 2,4-Diaminopyrimidin (DAP). Anstatt der gewünschten drei Wasserstoffbrücken

wurden zwei Strukturen, die entweder eine oder zwei Wasserstoffbrücken beinhalten,

beobachtet, welche durch die Verbindung von 4AP zur 2’-Deoxyribofuranose erklärt

werden können.
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1 Introduction

1.1 The development of DNA structure determination

The structure of nucleic acids (DNA, RNA) and proteins forms the basis for our un-

derstanding of biological processes like gene expression or protein bio-synthesis. In 1953

Watson and Crick were the first to propose the correct double helical structure of what

is now known as B-form DNA [1]. They deduced their model from X-ray fiber diffraction,

which was the method of choice at the time, but it only provided an overall configuration

with idealized parameters.

Although true on average it could not explain sequence specific effects, until Wing et

al. [2] published in 1980 the first single-crystal structure analysis of a B-DNA dodecamer

with a full helical turn. This was followed by a series of articles in which Dickerson and

Drew [3–6] described sequence-dependent features like molecular bending [4] or the “spine

of hydration” [5], thus making it famous as the “Dickerson-Drew dodecamer”.

During the next few years more and more crystal structures were solved, showing a

wide variety of B-DNA helical parameters [7–9] and also giving structural insights into A-

and Z-DNA [10]. Different approaches were used to study A-DNA crystals. Shakked et

al. (1981) [11] and Conner et al. (1982) [12] used short self-complementary octamers and

tetramers, respectively, while Wang et al. (1982) [13] used a DNA–RNA hybrid double

helix to prove the assumed A-type structure.

The first single-crystal duplex of Z-DNA was also solved by Wang et al. in 1979 [14],

and together with the aforementioned A- and B-forms a detailed molecular picture was

developed steadily [10,15–17]. However questions remained in which way crystal-packing
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1 Introduction

factors and crystallization conditions affect the conformation of DNA. It was found that

all octanucleotides crystallize in the A-form [18], due to crystal-packing effects, while their

counterparts in solution favor the B-conformer [18,19]. Single-crystals of longer duplexes

tend to the A-form when having a very GC-rich sequence [18,20], thus explaining the B-

form helix of the Dickerson-Drew dodecamer d(CGCGAATTCGCG) in contrast to the

A-form found in the dodecamer d(CCCCCGCGGGGG) of Verdaguer et al. (1991) [21]. In

addition, Jain et al. [22] and Shakked et al. [23] showed (both in 1989) that the mean values

of local helix parameters depend on crystallization conditions and therefore contribute

to their “unexpectedly large range of variation” [19,24]. With this in mind, it becomes

clear that structural information based on X-ray crystallography of single crystals can be

contradictory or limited, since the native environment to study biological problems is a

water containing solution.

Nuclear Magnetic Resonance Spectroscopy (NMR) is a well-established method to study

molecules in solution, especially after the development of two-dimensional experiments in

the late 1970s (Jeener et. al [25], Freeman et al. [26–29], Ernst et al. [30]) which extended the

field of applications to biological macromolecules. At the beginning of the 1980s, Ernst et.

al. and in particular Wüthrich et al. were the driving forces in protein structure determi-

nation [31–42], which also forms the basis for the related research on DNA structures. First

efforts were targeted towards sequential resonance assignment strategies and qualitative

analyses of the structure [43–47], but rapidly rising computational power made it possi-

ble to develop structure determination software [48,49] that uses NMR-derived inter-proton

distances as restraints.

In contrast to X-ray crystallography, where a gap of 20 years separates the first pro-

tein structure (Bluhm et al. 1958 [50]) from its DNA counterpart [14], the first solution

structures of proteins (Williamson et al. [51], Kaptein et al. [52]) and nucleic acids (Clore et

al. [53]) were all published in 1985. The former gap originated from the requirements to

obtain single crystals of short oligonucleotides and therefore demanded the development

of synthesis strategies for oligonucleotides with a predefined primary sequence, which were

lacking in 1958. However, subsequent development led to the solid-phase phosphoramidite

2



1.1 The development of DNA structure determination

method [54–57] that not only offered a payable way to produce large quantities, but it also

allowed the modification and expansion of the genetic alphabet. This, in combination with

automated oligonucleotide synthesis, made it feasible to investigate functionalized or com-

pletely new nucleotides at any position in the duplex. Consequently, artificial DNA duplex

strands became the subject of NMR structure determination in the late 1980s [58–62].

A large number of modified compounds has been introduced (or observed in naturally

occurring DNA [63–65]) over the last decades depending on the scope of application. They

can be divided into several classes; these include backbone variations (e.g. PNA [66,67],

LNA [68,69], TNA [70], GNA [71–74] etc.) or molecules covalently linked to natural bases [75–80].

A famous example for using both strategies is the DNA sequencing method by Sanger et

al. [81] which utilizes di-deoxynucleotidetriphosphates (ddNTPs) to terminate the chain-

reaction of DNA polymerase at the 3’-end and, in addition, fluorescent labeling of the

nucleobases for detection in automated sequencing machines [82]. Other strategies focus

on intercalation [83–88], full replacement of a nucleobase [89–96] or even of a complete base

pair [97,98] by nucleobase analogues [99].

Most of these studies introduce chromophores as base analogues or tethered label, since

their fluorescent properties can be used in a number of ways to study DNA and RNA. A

common field of application is the detection of single nucleotide polymorphisms (SNP) via

molecular beacons [100–103], base-discriminating fluorescent nucleosides [104,105], detection

by electron transfer-controlled emission quenching (DETEQ) [106] or forced intercalation

TO-PNA probes (FIT) [107]. Real-time quantitative PCR (qPCR) [108,109] is also a possible

application for molecular beacons [110] or FIT probes [111,112] and can be used, for example,

to quantify gene expression [113]. Other methods like the well-known fluorescence reso-

nance energy transfer (FRET) [114–116], pulsed electron-electron double resonance (PEL-

DOR [117,118], strongly emerging field in NMR) or fluorescent silver nanoclusters [119] can

serve as distance measurement tools, working on a larger scale than the classic NOESY

experiment (< 5 vs. 80 Å with PELDOR or FRET). All examples mentioned before em-

ployed steady-state fluorescence. Time-resolved measurements on the femtosecond (fs) to

nanosecond (ns) time scale were first performed by Zewail et al. [120,121] in 2000. Using

3



1 Introduction

transient absorption, these authors investigated electron transfer and water solvation in

duplex DNA.

The fluorophores that will be studied in this work all belong to the group of nucleobase

replacing analogues. In contrast to tethered labels, these molecules are primarily designed

to minimize disruption of the local structure and to maintain the biochemical or biological

function, which may be affected negatively by other strategies, like tethering of a bulky

group, addition of an intercalator, or a groove binding molecule. The underlying idea on

one hand is to place a nucleobase at the “center of action”, and on the other hand to

achieve a rigid, well defined position and orientation in the duplex [94]. These conditions

are crucial for the above stated distance measurements like FRET as well as for the time-

resolved studies below. As we will see later, another condition is that the spectral position

of the fluorescence band depends sensitively on polarity, so that the label can be used to

investigate the microenvironment [96].

The basic idea which caused the present structural study is to observe the hydration

dynamics and vibrational modes of biomolecules. This aim can be achieved, in principle,

by detecting the time-dependent Stokes shift (TDSS) of fluorescence from a suitable re-

porter molecule, or probe. When incorporated into duplex DNA, the chromophore serves

as a “local” molecular spectrometer in the THz-region. This kind of measurement, but

without a polarity probe that has been optimized for spatial and energetic fits, would

be disturbed by the absorption of unbound water and would also lack space-resolved in-

formation (due to structural fluctuations). The THz experiment starts when the charge

distribution of the chromophore is suddenly altered by femtosecond optical excitation. By

this excitation the electric field around the probe is changed instantly and is now affecting

nearby water molecules and neighboring nucleobases. Their response to the reaction field

R(t), induced by the chromophore, can be measured as dynamic fluorescence Stokes shift

on a ps- to ns-timescale. In this way the chromophore is used not only as THz light source

but also as detector. The local THz absorption spectrum is then obtained by a suitable

Laplace transformation of the time-dependent Stokes shift [122,123], a method similar to

the Fourier transformation of the Free Induction Decay (FID) in NMR. The requirements

4



1.2 Fluorescent base analogues extend the nucleobase alphabet

of molecular THz spectroscopy, as outlined above, restrict the repertory of suitable chro-

mophores severely. Clearly the probe must be sensitive to the microenvironment or, in

other words, should show sizable fluorescence shifts between different solvents. Also the

fluorescence lifetime should be long enough to measure the dynamic Stokes shift up to sev-

eral nanoseconds; therefore lifetime shortening interactions in the excited state like FRET,

photo-induced electron transfer or intersystem crossing should be avoided. Moreover the

probe has to be free of internal vibrational modes below 300 cm-1, otherwise they could

mix with external modes of the environment that are the aim of the detection. But all of

these photophysical properties will be useless when the probe molecule alters or perturbs

the DNA helical structure. The following section will discuss the advantages and draw-

backs of known base analogues. In doing so we will also see why there is still a strong

need for further development of base analogues.

1.2 Fluorescent base analogues extend the nucleobase alphabet

One of the earliest and most studied [95,120,124–127] fluorescent nucleobase substitutes is

2-aminopurine (2AP). Ward et al. [128] reported in 1969 that 2-aminopurine riboside (to-

gether with 2,6-diaminopurine riboside and formycin), in contrast to adenine and other

naturally occurring bases, is fluorescent under physiological conditions, and they explored

its photophysical properties under different solvent polarities, pH values and tempera-

tures. 2AP has a high fluorescence quantum yield as free base in solution (0.68), but

when incorporated into nucleic acids a 100-fold decrease is observed. Unfortunately it is

necessary to place 2AP between two adenines to avoid efficient electron transfer involving

adjacent guanines or cytosines [120,127]. Dallmann et al. [129] demonstrated that the struc-

tural perturbations by 2AP, replacing adenine and paired with thymine in the middle of

the duplex are small. The two structures differ only in the position of the amino group

that was moved from the major to the minor groove in 2AP (Fig. 1.1). However, the base

pair dynamics was found to be four times faster, and also the lifetime of the next three

base pairs were lowered in both directions, thus explaining the lower melting point of the
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1 Introduction

duplex with 2AP in the center.

The acridine derivative 9-amino-6-chloro-2-methoxyacridine (ACMA) was also investi-

gated by Ernsting et al. [130]. It was incorporated opposite adenine and needed to be

separated from guanine for the same reason as 2AP. The Stokes shift is small and reaches

a constant value within 200 femtoseconds, which is considerably faster than in aqueous

solutions, where the Stokes shift develops on the nanosecond time scale. Although this

is good evidence that ACMA intercalated into DNA, a larger and longer evolving shift is

favored.

A series of pteridine analogues (third row in Fig. 1.1) of adenine (6MAP, DMAP) [131]

and guanine (3-MI, 6-MI) [132,133] were developed by Hawkins and co-workers. These com-

pounds, which are commercially available, are characterized by intense fluorescence around

430 nm (fl. quantum yield between 0.39 and 0.88) and a relatively long lifetime of the

excited state (3.8 to 6.5 ns). They are very sensitive to the microenvironment, lower-

ing their fluorescence quantum yield in DNA strands (< 0.01 to 0.3) depending on the

neighboring bases [134]. But melting experiments indicate, except for 6-MI, a sequence-

dependent destabilization [131] which is, in case of 3-MI, similar to that of a single base

pair mismatch [132]. Nevertheless, the well-documented quenching effects, the high fluores-

cence quantum yield and the already mentioned commercial availability made them useful

in numerous applications [96].

In contrast to 2AP and the pteridine analogues, Matteucci and co-workers [135] developed

a tricyclic cytosine analogue tC, 1,3-diaza-2-oxophenothiazine (Fig. 1.1), that is nearly

insensitive to the environment. Although this property prevents it from being used as

polarity probe, the negligible influence of surrounding bases on its fluorescence quantum

yield and lifetime [136] makes tC particularly interesting in fluorescence anisotropy and

FRET measurements [137]. It should be noted that tC , as evidenced by NMR structure

determination, is the first artificial and highly fluorescent DNA base that does not perturb

the DNA conformation [138]. Also the oxo-homologue of tC named tCO is, on average,

the brightest nucleobase analogue among other commercially available base substitutes,

like 2AP and the pteridine analogues [139]. Moreover, tCO (energy donor) was paired

6
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1 Introduction

with tCnitro, 7-nitro-1,3-diaza-2-oxophenothiazine (acceptor), to be the first nucleobase

analogue FRET-pair and was then used to measure distances inside DNA of more than a

full helix turn [140]. A recent work [141] offers strategies for a series of functionalized tricyclic

cytosines in order to overcome the drawback of their insensitivity to the local environment.

A fluorescent nucleobase named furano-dT was introduced by Woo et al. [142] in 1996,

but when incorporated into an oligonucleotide the final step of ammonia treatment in the

solid-phase synthesis led to the C-analogue pyrrolocytosine (pyrrolo-dC, see Fig. 1.1).

Fortunately, pyrrolo-dC pairs normally as a cytosine (selectively with guanine), does not

disrupt the DNA helix, and is tolerated by DNA and RNA polymerases [143]. However the

fluorescence quantum yield is reduced after incorporation into a single strand and decreases

even more after hybridization with a complementary strand [143,144]. But pyrrolo-dC, since

it is commercially available, has already served as a tool in several applications [145] like

characterization of the transcription bubble in T7 RNA polymerase [146], detection of ab-

normal base pairing in DNA/RNA hybrid strands of the HIV-1 polypurine tract [144] or

probing the kinetics of parts of damaged DNA by a human alkyltransferase [147]. Inter-

estingly, pyrrolo-dC and 2AP can be used in a fashion similar to that of a molecular

beacon [148]. Actual development of pyrrolocytosine is concentrated on the enhancement

of the fluorescence quantum yield [149,150] by replacing the methyl group with an aromatic

tether or the whole aromatic ring system [145].

Coleman and Madaras [151] introduced a coumarin 102 containing nucleoside opposite an

abasic site (see Fig. 1.1). In the subsequent study, Brauns et al. [152] were the first to show

the dynamic Stokes shift of fluorescence of a specially designed base-pair analogue (inside

of a DNA double helix) and concluded that the interior of DNA is “a unique dynamic

environment unlike either a fluid or a molecular crystal.” The coumarin nucleoside was then

used (also in the group of Ernsting) to explore the environment and dynamical features of

DNA oligonucleotides [153–157] and “fraying” (5 ps timescale) at the end of the helix [155].

When placed into the center of an oligonucleotide, sequence-independent [158] dynamics

was observed that is distributed over a time range covering six orders of magnitude (40

fs to 40 ns) and follows a power law with small exponent (0.15). However the power
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1.2 Fluorescent base analogues extend the nucleobase alphabet

law dynamics, which lacks distinguishable subcomponents, indicates strong coupling of

motions inside different parts of the DNA system [154], thus limiting its use as polarity

probe in our TDSS studies.

The next chromophore, Nile Red (Fig. 1.1), also contains four fused aromatic rings and

was introduced as base analogue by Okamoto et al. [159]. The nucleoside maintained high

solvatochromicity comparable to the free Nile Red. The fluorescence, when incorporated

opposite adenine, guanine or a missing base, was greatly shifted to shorter wavelength by

the addition of β-cyclodextrin, but only slightly opposite cytosine, thymine and an abasic

site. The same separation was found in the melting temperatures, where the latter group

showed higher Tm values. A stabilization induced by a more tightly binding of Nile Red to

the duplex was given as explanation. In case of placing Nile Red opposite the first group,

Okamoto suggested the usage as probe for the microenvironment of DNA that can monitor

polarity changes, caused by interactions between DNA and DNA-binding molecules. How-

ever, their results indicate that the observed effect of conformational change depending

on polarity is driven by structural perturbations in the duplex.

Okamoto et al. [105] also developed a series of base-discriminating fluorescent nucleobases

(e.g., BPP and MDA in Fig. 1.1). They have been designed for SNP discrimination, so

they rely on quenching of fluorescence when paired with a certain native nucleobase, which

stands in contrast to our design of a non perturbing polarity probe with high fluorescence

quantum yield.

In 1998 Kool et al. [97] introduced pyrene (P, Fig. 1.1), a polycyclic aromatic hydrocar-

bon (PAH), that was incorporated into DNA by a Klenow fragment opposite an abasic

site. The observed selectivity and efficiency were greater than those for the natural DNA

triphosphates. Interestingly, the DNA synthesis stopped after incorporation of P, which

makes it useful in detection of abasic mutations [160]. A point of more general interest is

the observation that the replacement of a native base opposite an abasic site by pyrene,

stabilized the duplex in a range of 18 to 23 °C [97]. This finding has been explained by

restored π–π-stacking interactions in the strand with the abasic site, since P can cover a

similar surface area as native base pairs. Use of hydrocarbons with less aromatic surface,
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1 Introduction

for example, 2,2’-bipyridyl deoxynucleoside (dBPy, Fig. 1.1), led to a thermal stabilization

of only 3.7 - 8.4 ℃ in comparison with nucleobases [161]. Although the larger porphyrin

C-nucleoside (PP, Fig. 1.2) showed a stabilization of ca. 10 ℃ [162], it is only half of the

enhancement induced by pyrene nucleoside P. Increased thermal stability (ΔTm from 1.0

up to 8.4 ℃) was also measured for bis-substituted and alkyl-linked phenanthrene (Phen),

phenanthroline (PheN) and pyrene (P1,8, see Fig. 1.2), depending on linker length and,

again, in comparison with adenine as counterbase to the abasic site [163,164]. Additionally,

it was demonstrated that the substitution of a native base by a pyrene (P) with flexible,

acyclic linkage in the middle of the sequence destabilized the DNA duplex more (ΔTm =

-6.3 ℃) than insertion close to the 3’- or 5’-ends (ΔTm = -2.7 ℃) [165].

An alternative strategy to the replacement of the nucleobase is the development of

acyclic sugar analogs that are linked to an intercalator. The flexibility gained by the

acyclic sugar linker allows to place large intercalating fluorophores, like the ethidium

derivative Etd (see Fig. 1.2), in the center of DNA duplexes opposite native bases. These

double strands showed not only similar Tm values in melting experiments, but also similar

fluorescence spectra with emission maxima in a range of 622 and 625 nm under excitation

at 520 nm [166]. A possible explanation for this unexpected insensitivity to the counterbase

was given by suggesting an extrahelical position for them, due to the large space demand of

Etd. Ethidium itself is known to prefer binding to duplexes of RNA, DNA and DNA-RNA-

hybrids rather than to triplex or G-quadruplex DNA [167]. Upon binding into DNA/RNA

a more than 10-fold increase in fluorescence signal is observed, since the exchange of amine

hydrogens with the solvent is reduced [168]. A combination of Etd and 7-deazaguanine (as

charge acceptor [169]) allows fluorescence detection of single base mismatches and abasic

sites when these two pseudonucleotides are incorporated between two base pairs [170].

The aforementioned extrahelical position of the counterbase to the intercalating Etd

is supported by further work, where a considerably larger perylene-diimide (PDI2, Fig.

1.2) was placed in the middle of the duplex opposite thymidine and then opposite an

abasic site. Interestingly, the melting temperatures of both duplexes were identical [171],

thus indicating same stacking interactions for PDI2 even in the presence of the thymi-
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1 Introduction

dine counterbase. Other large chromophores, like 1-(Phenylethynyl)pyrene (PEPy) and

9,10-bis(phenylethynyl)anthracene (BPEA), were incorporated into DNA by using a 1,3-

butanediol backbone [172]. Both were positioned opposite thymidine which led to a desta-

bilization of the duplex (BPEA ΔTm = -6.8 ℃, PEPy ΔTm = -1.4 ℃). Compared to

the initial pyrene, PEPy analogs have beneficial spectroscopic properties when used in

molecular biology applications, since biomolecules will be excited at the same wavelength

as pyrene [173]. A notable application of PEPy pairs was the detection of single polymor-

phisms in the gene fragment of 23S rRNA Helicobacter pylori [174].

The group of Hirao et al. [175] introduced a fluorescent purine analogue, 7-(2,2’-bithien-

5-yl)-imidazo[4,5-b]pyridine (Dss in Fig. 1.2) that can be incorporated site-specifically

into DNA and RNA by polymerases. Moreover, it functions as a universal base that

pairs with all four natural bases with nearly equal thermal stabilities. An important

drawback for the usage as polarity probe is the long extension of the base analogue by

tethering two thienyl-groups in a row that are somehow located in the major grove. As

a consequence, the fluorescence of the Dss chromophore is only slightly changed upon

duplex formation. Such observations are typical for a class of nucleoside analogues that

are based on extension of purine and pyrimidine moieties. This strategy was frequently

used by Srivatsan et al. [176–180], but as already stated, tethering of bulky groups is not

favored in the current thesis.

Recent activities by Wagenknecht et al. are centered around thiazole orange (TO) and

thiazole red (TR, see Fig. 1.2) as “DNA traffic lights” [181–183]. The wavelength-shift

of fluorescence upon duplex formation, due to aptamer target binding, is quantified as

altered contrast ratio. Therefore, Wagenknecht and co-workers [181] suggested aptasensors

as potential application.

The group of Diederichsen et al. [184,185] introduced 8-vinyl-2’-deoxyguanosine (1.2) as

a DNA polymerase processable base analogue that is capable to detect different types of

DNA quadruplex structures.

The group of Eric T. Kool [186,187] continued their work on multichromophoric DNA

systems. This approach, where the DNA backbone offers a scaffold for an array of chro-
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1.2 Fluorescent base analogues extend the nucleobase alphabet

mophores, has gained more and more interest during the last few years [188,189]. For this

purpose, sets of size-expanded nucleobases were composed [190]. They are based on a series

of earlier works by Kool et al. [94,191] and referred to as “expanded DNA” (xDNA), “wide

DNA” (yDNA) and “double-wide DNA” (yyDNA, see Fig. 1.1). These size-expanded

analogs were designed to extend the genetic alphabet and are able to form base pairs

different (orthogonal) from those found in native DNA [95]. When a single expanded base

pair is substituted into natural DNA, they are destabilizing the natural helix, due to their

large size. Therefore, a single expanded nucleobase is not suitable as probe for the desired

TDSS experiment. However, when all base pairs are expanded, xDNA and yDNA form a

highly stable, sequence-selective and widened double helix [94].

A similar multichromophoric approach was used by Leumann et al. [192] who incorpo-

rated multiple 2-pyrenyl-C-nucleosides (each P replaced an adenine/thymine base pair)

which then formed a stable excimer. In earlier studies, pyrene has been stacked by using

P1,8 [163] or tethering to deoxyuridine [193,194], so that its position is defined upon duplex

formation of the parent nucleobase. In an actual work, Häner et al. [195] switched from

P1,8 to a porphyrin nucleoside and were able to build double strands containing up to four

free base porphyrins. They maintain duplex stability when placed pairwise in opposite

positions, whereas a considerable destabilization is observed opposite to natural nucle-

obases. A model for H-aggregation of the porphyrins, which causes fluorescence quench-

ing, is supported by UV/vis spectroscopy. Häner’s group [196] also studied the stacking of

electron-rich pyrene (P) and electron-poor perylene-diimide (PDI) and found that electro-

static complementarity is important for aromatic π-π-stacking interactions. P and PDI

can stabilize the DNA duplex when incorporated into opposite strands with equal ratio of

the chromophores.

Yitzhak Tor and his group extended their work (see pyrrolo-dC) on tethering,fusing

thiophene and furan based moieties onto 6-aza-uridine [197,198] (Fig. 1.2) in order to build

isomorphic fluorescent nucleosides; such molecules (including other nucleobases) were in-

tensively studied by his group over the last years [96]. A possible application for 6-aza-

uridine as chromophore in single molecule detection by two photon excitation has been
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suggested lately [199]. A contribution to the multichromophoric approach was also tested

by demonstrating that three identical isomorphic fluorescent nucleosides in alternating

or neighboring positions display enhanced, sequence-dependent signals for either duplex

formation or dissociation [200]. Further extension of these molecules with substituted aryl

rings increases the push-pull interactions yielding enhanced bathochromic shifts and sol-

vatochromism [201] (but the price is a large non-rigid tether).Also worth mentioning is the

design of an emissive RNA alphabet with bases that were all derived from thieno[3,4-

d]pyrimidine [202]. These nucleobases exhibit visible emission, high quantum yield, and

responsiveness to environmental perturbations.

At the end of this general overview about fluorescent nucleobase analogues we come to

the direct predecessor of the chromophores that are studied in the current thesis. After

coumarin, the group of Ernsting employed a 2-hydroxy-7-nitrofluorene (HNF, Fig. 1.2)

opposite an abasic site [203]. In contrast to native DNA, the HNF chromophore is linked

via an α-glycosidic-bond to the 2-deoxyribofuranose. NMR structure determination has

revealed that the HNF moiety can intercalate into the duplex in two different orientations.

In the “face-down” case the methylene group points towards the minor groove while in the

“face-up” conformation towards the major groove. The magnitude of the time-resolved

Stokes shift (2660 cm-1) is large in comparison to coumarin (960 cm-1), but the lifetime of

the excited state is short, only 35 ps, due to intersystem crossing.

1.3 Aim of this work

Many fluorophores have been introduced into duplex DNA (or were attached) during the

last few years, but most of them were designed for purposes (FRET, SNP etc.) that are not

necessarily compatible with the envisioned TDSS experiments. The base analogues that

Ernsting and coworkers have examined so far did not fulfill all desired requirements simul-

taneously. Short lifetimes of the excited state (ACMA, HNF), electron transfer with nearby

bases like guanine (2AP, ACMA), or coupling with modes below 300 cm-1 (coumarin) all

hampered the observation of the time-dependent Stokes shift. Continued development
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1.3 Aim of this work

of suitable chromophores, backed up by femtosecond spectroscopy and NMR structure

determination, is clearly required. Here we employ NMR spectroscopy to determine the

structure of three modified oligonucleotides. The principle design and position of the flu-

orescent nucleobase analogues, including necessary modifications to their backbone, are

given in Fig. 1.3. All modifications were studied in the same basic sequence (Fig. 1.3) to

ensure comparability between strands.

The first modified duplex incorporates 2-hydroxy-7-carboxyfluorene (HCF, Fig. 1.3) op-

posite an abasic site; this construct will be abbreviated 13merHCF. It has been introduced

as successor to the HNF chromophore, so structural similarities such as two chromophoric

orientations are most likely [203], but this also allows discussing the effect of changing a

functional group in a known environment. Furthermore it is necessary to investigate the

protonation state of the carboxyl group, since the logarithmic acid dissociation constant

(pKa) of nucleobases is normally raised when incorporated into the duplex [19].

The second DNA duplex strand introduces 6-hydroxyquinoline (6HQ, Fig. 1.3) as base

surrogate. A cytosine was chosen as counterbase and potential partner for hydrogen

bonding. The resulting duplex strand will be abbreviated 13mer6HQ. The photophys-

ical properties of the chromophore are well-known, since it was studied by Ernsting et

al. as free N-methyl-6-quinoline [122] and as covalently linked tether to trehalose [204]. In

contrast to the other duplex strands, the 6HQ base analogue has been incorporated as

2,3-dihydroxypropylnucleoside which is known as glycol nucleic acid (GNA [71–74]). The

small size of this flexible acyclic linker will possibly affect the chromophore and the adja-

cent nucleotides, but it was the only synthesis method with sufficient product yield. Up

to now, only crystal structures of duplex strands containing a full GNA backbone were

published, so the solution structure of a DNA duplex with a GNA monomer in the center

will be of general interest.

In the last duplex which is studied here, the central base pair is replaced by an ar-

tificial base pair analogue; this construct will be abbreviated 13mer4AP-DAP. Here 4-

aminophthalimide (4AP, Fig. 1.3) is paired with 2,4-diaminopyrimidine (DAP) in the

opposite strand. Both nucleobase analogues were synthesized in cooperative work [205] be-
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tween the groups of Ernsting (DAP) and Wagenknecht (4AP). The 4AP chromophore is

known to be highly sensitive to the polarity of the medium and it has been stated that

the fluorescence properties (e.g. intensity, lifetime) are further enhanced due to the in-

volvement of hydrogen bonding interaction with the solvent molecules [206]. In fact, the

observed lifetime of the excited state is lowered from 14 - 15 ns in protic media to roughly

1 ns in water. In order to allow hydrogen bonding inside of the duplex, a second artificial

nucleobase analogue (DAP) was necessary, since there is no native nucleobase that can

provide the correct hydrogen bonding pattern. A problem that has to be addressed is the

hydrolysis of the 4AP chromophore in water, especially under basic conditions. A weak

acidic buffer extended the lifetime of the 4AP mononucleotide from hours to a few days,

but in the duplex this could cause protonation of the DAP. Therefore, a whole series of

questions about 13mer4AP-DAP has to be answered by NMR and UV/vis spectroscopy.

These questions are centered around the duplex structure, hydrogen bonding pattern,

protonation of DAP and finally, the chemical lifetime of the sample.

Even though the main topic of this work is the structure determination of oligonucleo-

tides with embedded polarity probes, we will see that equal attention must be given

to temperature-dependent measurements of absorption. The corresponding method will

therefore be described first. Normally UV absorption measurements, as function of tem-

perature, are used to obtain a hybridization curve and to determine the melting point Tm

of a DNA duplex. For a modified strand the melting point indicates a degree of duplex

stability (or destabilization) when compared to the native or unmodified reference duplex.

In this work the measurement which is usually performed at a single wavelength (260 nm)

will be replaced by the detection of full spectra at different temperatures, covering the

UV/vis range (200-700 nm). The spectra are then analyzed in their entirety by Singular

Value Decomposition (SVD). As will be shown, this procedure can uncover significantly

more information about the binding properties of the chromophore/duplex system com-

pared to a single melting point determination. Melting will be seen (by focussing on the

UV absorption band around 260 nm) as a global and a local, sequence-dependent process

of the duplex. This behavior can then be compared to that of the probe (monitoring the
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Figure 1.3: Structure of new fluorescent base and base pair analogues. Native DNA is
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respectively.

corresponding absorption band in the visible) which reflects local changes only. In this

way possible perturbations of the melting process, like bubble formation, can easily be

explained or definitely excluded. Also concurrently evolving processes (e.g. peak shifts,

change of active species) will be revealed that would otherwise affect the melting analysis.

In combination with the solution NMR structure of the duplex, a deeper understanding

is achieved of binding and solvation, structural fluctuations, and the melting process.
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2 Conceptual background

The following sections will provide the background for the major topics of this work. At

the beginning, the nomenclature and essential structural aspects of DNA (sec. 2.1) will

be outlined to provide a common basis for discussion. The middle part will describe the

methods to obtain structural restraints and how they are used to determine the structure

of DNA (sec. 2.2 - 2.5). Finally, the last two sections are dedicated to the field of optical

spectroscopy. They will introduce Singular Value Decomposition (sec. 2.6) as method to

derive more information about the melting process of DNA (sec. 2.7).

2.1 Structural aspects of DNA

The nomenclature in Fig. 2.1 follows the recommendations of Markley et al. [207] for the

presentation of NMR structures. Natural DNA is composed of four nucleobases and a

phosphodiester bridged backbone of 2’-deoxy-β-D-ribose, also referred to as “sugar”. The

bases can be subdivided into purine and pyrimidine derivatives. Adenine (A) and guanine

(G) belong to the purines, whereas thymine (T) and cytosine (C) represent the pyrimidines.

They are shown in Fig. 2.1, forming the two Watson-Crick base pairs A:T and G:C.

By attaching A, G, T, C to the C1’ of the sugar the nucleosides adenosine, guanosine,

cytidine and thymidine are formed. Consequently, all atoms of the deoxyribose will be

marked with “ ’ ” to discern them from the nucleobase atoms. Five torsion angles ν0 to

ν4 (Fig.2.1) specify the conformation of the sugar, but due to geometrical constraints in

a five-membered ring, only two parameters are necessary to describe them. These are the

pseudorotation P and the maximum torsion angle φm (pucker amplitude), so the angle νj
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Figure 2.1: Structure and nomenclature of the Watson-Crick base pairs A:T and G:C are
shown in the left panel. The upper right corner illustrates 2’-deoxy-β-D-ribose
and the lower right denominates the torsion angles.

is given by

νj = φmcos[P + 144◦(j − 2)] (j = 0, 1, 2, 3, 4). (2.1)

Please note that the concept of pseudorotation was originally introduced for cyclopen-

tane [209], but Altona and Sundaralingam [208] extended the concept to the sugar ring of

nucleosides and nucleotides, respectively. Although sugar conformations are not static, it

is possible to define two regions where ribose and deoxyribose nucleotides are mainly found

(black arrows in Fig. 2.2). One of these regions is centered around the C3’-endo confor-

mation, also referred to as N-type (north), that dominates in A-DNA. As outlined in the

introduction, the A-form is typically found in single crystals of short duplex strands, while

in solution the B-form with C2’-endo conformation (or S-type, south) is predominant.
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2.1 Structural aspects of DNA

Figure 2.2: Pseudorotation phase angle P and related sugar conformations, picture taken
from Altona and Sundaralingam [208]. Large black arrows indicate regions
where mainly ribose and deoxyribose nucleotides are found.

The glycosidic bond angle χ characterizes, together with the backbone angles α − ζ, the

helical structure of an oligonucleotide. Two ranges can be found for χ that are designated

syn and anti. The more stable anti conformation is usually found in A- and B-form DNA.

For the syn conformation, where the position of the nucleobase above the sugar causes

steric interference, the assistance of some external force is required [19]. This can be either

a high salt concentration to favor Z-DNA [17] or the attachment of a bulky group to the 8

position of purines (6 in pyrimidines).

The variation of the backbone angles α − ζ allows to distinguish three major helix

structures (A, B and Z). The A and B forms are right-handed helices, while Z is left-

handed and occurs in alternating purine-pyrimidine sequences (mainly GC). Due to base
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Table 2.1: Average structural parameters for different helical forms [19]

A-DNA B-DNA Z-DNA
Helix handedness Right Right Left
base pairs / reapeating unit 1 1 2
base pairs / helix turn 11.6 10 12
Helix twist (°) 32.7 36 -10a, -50b

Rise / base pair (Å) 2.9 3.4 -3.9a, -3.5b

Helix pitch (Å) 32 34 45
P distance from helix axis (Å) 9.5 9.4 6.2a, 7.7b

Displacement of base pair
to helix axis (Å) -4.1 0.8 3.0

Glycosidic bond orientation anti anti antic, synd

Major groove depth (Å) 13.5 8.5 Convex
width (Å) 2.7 11.7

Minor groove depth (Å) 2.8 7.5 9
width (Å) 11.0 5.7 4

aCpG or bGpC step. cCytosine. dGuanine.

displacement from the helix axis with large inclination, the A-form is thick and compressed

along the helix axis. In contrast to this, the nucleobases of B are in the center of the helix

and inclined nearly perpendicular to it, thus leads to a smaller diameter and nearly equal

depth of the grooves. The mean twist angle in B-DNA is 36°, though they vary in a wide

range between 24 to 51°, giving roughly 10 base pairs per helix turn [19]. More helical

properties that distinguish between A-, B- and Z-DNA are listed in Table 2.1, but note

that averaged values are given for sequence-dependent parameters of a dynamic system.

22



2.2 Nuclear Overhauser Effect spectroscopy

2.2 Nuclear Overhauser Effect spectroscopy

NMR structure determination has become an important tool to study biomolecules in

solution. The main reason for this success is the possibility to derive distance informa-

tion from Nuclear Overhauser Effect spectroscopy (NOESY). The NOE was discovered by

Overhauser in 1953 [210] and originally described the interaction between the saturation

of the electron spin resonance and the polarization of their nuclei. The same effect was

then observed between different nuclei in decoupling experiments. Therein, a resonance

line was selectively saturated prior to recording of the 1D spectrum. In such experiments,

Anet and Bourn [211] (1965) found that the signal intensity for nuclei in close proximity to

the saturated nucleus was enhanced by 17 to 45 % due to dipole-dipole cross-relaxation

(see also Fig. 2.4). However, the application of this method to biological macromolecules

suffered from the limited selectivity of preirradiation in crowded spectral regions and huge

experimental effort [31]. The development of two-dimensional (2D) cross-relaxation spec-

troscopy in 1980 by Macura and Ernst [212] finally allowed the measurement of a complete

NOE-network between all the protons in a macromolecule in only one experiment.

In Fig. 2.3 a basic NOESY pulse-sequence is shown. Transverse magnetization is created

by the first non-selective 90° (π/2) pulse and allowed to precess freely for an evolution

time t1. The latter is varied in the course of the experiment, thereby frequency-labeling

the magnetization components. The second pulse transfers the magnetization back along

the (negative) z-axis and longitudinal cross-relaxation takes place for the length of mixing

time tm. In contrast to t1, the mixing time remains constant during the measurement, but

can be adjusted at the beginning to fulfill the needs of the sample. The last pulse finally

generates transverse magnetization whose precession can be detected as a function of t2.

The formal treatment of a multi-spin system, comprising g spin groups in a two-

dimensional NOESY experiment, is presented in the following. Basic conditions are the

presence of dipolar interactions to allow cross-relaxation and the absence of scalar spin-

spin-interactions. Then cross-relaxation of longitudinal magnetization components Mij
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t

t1 tm t2

1H

90° 90° 90°

Figure 2.3: Basic NOESY pulse-sequence for two-dimensional cross-relaxation spec-
troscopy. Transverse magnetization created by the first 90° (π/2) pulse be-
comes frequency-labelled in the course of evolution period of length t1. After
the second pulse, longitudinal cross-relaxation takes place for the length of
mixing time tm. The last pulse finally generates transverse magnetization
whose precession can be detected as a function of t2.

can be described with the following system of equations [212]:

ṁ = R × m. (2.2)

Here the vector m comprises the deviations of Mzi from thermal equilibrium for all g spin

groups and the relaxation matrix R contains the cross relaxation rates Rij as well as the

external relaxation (leakage) rates Ri. A component mi of m is defined by:

mi = Mzi − ni

N
M0 with N =

∑
i

ni and i = 1, 2, ..., g. (2.3)

where M0 is the total equilibrium magnetization of the N nuclei. At the beginning of

the mixing period the initial z-magnetization components are encoded by the precession

frequencies (ωi) that are witnessed at t1 of the evolution period.

mi(0) = M0
ni

N
[cos(ωi t1) exp

(
− t1

T2i

)
− 1]. (2.4)

The application of the second π/2 pulse marks the beginning of the mixing period during

which cross-relaxation proceeds. The recovery of the magnetization towards equilibrium
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Figure 2.4: NOE effect in a two spin system. The left panel shows a system of two spins
A and B, where the size of the boxes represent a simplified occupation ratio.
Upon saturation of the B transitions (curly arrows) the ratio is changed to the
scheme in the right panel, where solid lines mark the new ratio and dashed
lines the old one. The arrows on the right now indicate the pathways for cross-
relaxation and W the transition probability. The small indices denominate
the type of transition (zero, single and double quantum). In small molecules
with short correlation time W2 dominates and hence enhances the intensity
of A. The longer correlation time in macromolecules prefers W0 for which
a negative NOE effect is measured. The ratio between W0 and W2 decides
whether enhancement, reduction or even no change of intensity is observed.

at time tm can then be written as solution to eq. (2.2) [212]

m(tm) = exp[−R tm] m(0), (2.5)

where the matrix m(tm) represents the magnetization components after the mixing

time tm and m(0) the intensities of the diagonal peaks (defined in eq. 2.4) at t = 0 of the

mixing period. The diagonal (Rii) and off-diagonal (Rij) relaxation matrix elements are

given as [213]:

Rii = qij

∑
i,j

(J0,ij(ωi − ωj) + 3 [J1,ij(ωi) + J1,ij(ωj)] + 6 J2,ij(ωi + ωj) + R1i) (2.6)

Rij = qij [6 J2,ij(ω) − J0,ij(ω)] (2.7)

with qij =
h̄2 γ2

i γ2
j μ2

0
160 π2 .
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The term R1i in eq. 2.6 represents the leakage rate, which can usually be neglected in

the absence of paramagnetic nuclei. The factor qij collects all constant values, these are

h̄ as the reduced Planck constant, γi and γj as the gyromagnetic ratios for spins i and j,

respectively and μ0 as the magnetic constant or vacuum permeability. Jn,ij(ω) represents

the spectral densities for the zero, single and double quantum transitions (n = 0,1,2). In

Fig. 2.4 the pathways of these transitions are shown with a two-spin system as example

and their spectral densities are defined as follows:

Jn,ij(ω0) =
τ ij

c

1 +
(
n ω0 τ ij

c
)2

1
r6

ij

. (2.8)

This equation correlates the mixing time tm in eq. 2.5 with the rotational correlation time

τ ij
c of the vector between spin groups i and j. The corresponding internuclear distance is

rij . One can now distinguish two cases in which similar spin groups are observed. In case

of a small molecule with short τ ij
c a relatively long mixing time has to be applied in order

to allow full cross-relaxation of the longitudinal magnetization, but when compared to

large biomolecules with long τc (e.g. DNA) then a short mixing time in the range of 100 -

200 ms has to be chosen. In addition, an approximation has been introduced in eq. 2.8 in

which ωi and ωj are replaced by the center frequency ω0, since the differences in resonance

frequency for various spins are negligibly small compared to the value of the resonance

frequency itself. The factor n in the denominator again marks the type of transition and

can range between 0 and 2 (see Fig. 2.4). With the help of some additional assumptions

the intensities of NOE cross-peaks can then directly related to distances in a molecule.

This approach is called “isolated spin pair approximation” and will be introduced in the

next section.
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2.3 Isolated Spin Pair Approximation - From NOESY to distance

The usually employed method to derive distances from NOESY spectra is the “isolated

spin pair approximation” [214,215] (ISPA), also known as “two-spin approximation” [216].

Several assumptions have to be made at the beginning. First, a single correlation time

(τc) for the whole molecule is introduced in order to replace the individual τ ij
c in eq. 2.8.

Jn,ij(ω0) =
τc

1 + n2 ω2
0 τ2

c

1
r6

ij

. (2.9)

This assumption is valid, since Reid et al. [216] have shown that correlation times for

base and sugar protons are comparable. Moreover, it can be assumed that oligonucleotides

shorter than 15 base pairs are like isotropic rotors [217]. Sometimes one has to consider

local mobility of residues or whole substructures. In such cases a modified spectral den-

sity function (eq. 2.10) has to be defined [218,219], where τe is introduced as the effective

correlation time of the local mobility site and S2 as the generalized order parameter. S2

is a measure for the flexibility of the site with values ranging from 0 (unrestricted motion)

to 1 (fully restricted motion).

Jn,ij(ω0) =
(

S2 τc

1 + n ω2
0 τ2

c

+
S2 τe

1 + n ω2
0 τ2

e

) 1
2 r6

ij

. (2.10)

In proteins, order parameters range from 1 to as low as 0.6 for flexible side chains [220],

while S2 in DNA is on the order of 0.8 for all proton pairs [221,222]. In the ISPA approach the

contribution of local mobility will be canceled when the desired distances are referenced to

a series of fixed and known distances. The next step in the ISPA approach is the expansion

of eq. 2.5 into a Taylor series [212]:

exp[−R tm] = 1 − R τm +
1
2

R2 τ2
m + . . . , (2.11)
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whereby the cross-peak intensities aij
[212] are given by

aij(tm) = (δij − Rij tm +
1
2

∑
k

Rik Rjk t2
m + . . . )

nj

N
M0. (2.12)

The central assumption of the ISPA approach is that the Taylor series can be truncated

after the linear term for short mixing times, thus cross-peak intensity (i �= j) becomes

a linear function of r−6
ij in equation 2.13. For longer mixing periods, effects of spin dif-

fusion may be taken into account, which is magnetization transfer through a third atom

(represented by the quadratic term).

aij(tm) = Rij tm = qij τc τm

( 6
1 + 4 ω2

0 τ2
c

− 1
)

nj

N
M0

1
r6

ij

(2.13)

The intensity aij can now be referenced to a known, fixed distance rref with a correspond-

ing aref , thereby eliminating all constant terms.

aref

aij
=

(
rij

rref

)6
or rij = rref

6

√
aref

aij
(2.14)

Commonly used reference distances in nucleic acids are the C H5-H6 [216], T C7-(H7)3

to account for fast rotation in methyl groups or solvent exchange with amino and imino

protons in C H42-H5.
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2.4 Residual Dipolar Couplings

Over the last years Residual Dipolar Coupling (RDC) measurements have evolved into

an important source of structure information beside NOE distances [223–225]. They offer

complementary information about biological macromolecules that compensate a major

drawback of NOE data. Due to the r-6-dependence of the NOE effect, the latter is limited

to distances up to 5 Å (see sec. 2.2). Although it is possible to observe long-range cross-

peaks for proteins, where two residues that are far distant in primary sequence can be

folded in close proximity to each other, the rod-like shape of DNA provides cross-peaks

between adjacent bases only. Consequently it was impossible to describe long range effects

like bending of an A-tract in DNA prior to the development of RDC measurements [226].

RDCs, on the other hand, provide information about the orientation of the bond vector

relative to the external magnetic field, which is (in case of rod-like shaped DNA) identical

to the orientation of the helical long axis. Thus it is possible to compare orientations

between residues along the whole strand.

The NMR spectroscopy in partially oriented media was discovered by Saupe and En-

glert [227] in 1963, followed by a theoretical description a year later [228]. One limit for

the application to large biomolecules was overcome with the introduction of high resolu-

tion NMR and corresponding methods. Tolman et al. [229] were the first to present RDC

measurements of cyanometmyoglobin, which has a very highly anisotropic paramagnetic

susceptibility. Only two years later, in 1997, Bax and Tjandra [230] were able to measure

the diamagnetic protein ubiquitin, which was dissolved in a very dilute solution of bicelles

that adopted an ordered, liquid crystalline phase. The induced order by an external com-

ponent allowed the measurement of residual dipolar couplings, while the high resolution

of NMR can be retained. In the following, Tjandra and Bax [231] showed that the degree

of solute alignment with the magnetic field can be tuned by variating the concentration

of the bicelles. This marked a breakthrough in biological NMR, since dipolar coupling

experiments were not limited anymore to samples with highly anisotropic paramagnetic

susceptibility.
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B0
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Figure 2.5: Acquisition of RDCs. (a) Showing the steric interaction between Pf1 phage
and the DNA, preventing isotropically tumbling and inducing residual order.
B0 indicates a static magnetic field. (b) RDCs can be determined by measuring
the difference of dipolar coupling in a bond vector with and without alignment.

Over the next years more alignment media were developed. Some were also based on

bicelles to align in a liquid crystalline phase [232–235], others on filamentous phage [236],

stretched gels [237,238], paramagnetic tagging [239] or DNA nanotubes [240]. In this work

the bacteriophage Pf1 (see Fig. 2.5 a) was utilized to align oligonucleotides, since it is

stable over a wide range of temperatures, but more important is that the interaction

between DNA and Pf1 is minimized due to electrostatic repulsion of their negatively

charged backbones [241].

RDCs are determined by measuring the difference of the dipolar coupling in the presence

(1Jani
ij ) and absence of molecular alignment (1J iso

ij ), as is shown in Fig. 2.5 b.

1Jani
ij = 1J iso

ij + Dij , (2.15)

where i and j are non-equivalent spins connected via a chemical bond. The dipolar contri-

bution Dij to the observed splitting between i and j derives from the secular part of the

magnetic dipole–dipole interaction between the spins. In the high field limit we can write
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2.4 Residual Dipolar Couplings

the effective Hamiltonian [225]

HD
ij (t) = − γi γj μ0 h

8 π3 r3
ij(t)

Iiz Ijz 〈3 cos2αij(t) − 1
2

〉. (2.16)

Therein, rij is the distance between the nuclei, γi and γj are the gyromagnetic ratios, h is

the Planck constant, μ0 the permittivity of free space, Iiz and Ijz are angular momentum

spin operators, and αij is the angle between the inter-nuclear vector of the two spins and

the static magnetic field.

Note that the dipolar Hamiltonian HD
ij (t) depends on the orientation defined by the

angle αij . The measurement of dipolar couplings Dij represents a time and ensemble

averaging of HD
ij (t) over all sampled orientations. This averaging is denoted by angular

brackets in the following equation

Dij = −γi γj μ0 h

8 π3

〈3 cos2αij(t) − 1
2 r3

ij(t)

〉
. (2.17)

For isotropically tumbling molecules Dij would be zero, but a non-zero value is obtained

when there is an anisotropic distribution of orientations relative to the static magnetic

field. The averaging in eq. 2.17 contains information about orientation of the B0 field and

the inter-nuclear vector in the molecular frame (xyz-coordinates). For macromolecules

like DNA, it is desirable to describe the orientation of the inter-nuclear vector in relation

to the molecular frame rather than the magnetic field, since the gathering of information

to support structure determination is the motivation for the RDC experiment. The time

averaged αij are therefore written as convolution of the macromolecule tumbling with

respect to the magnetic field vector (ξx, ξy, ξz) and the inter-nuclear vector moving inside

the macromolecular frame (ζx, ζy, ζz). The convolution is illustrated graphically in Fig.

2.6 and mathematically as follows [225]

cos αij =

⎛
⎜⎜⎜⎜⎝

cos ξx

cos ξy

cos ξy

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cos ζx

cos ζy

cos ζy

⎞
⎟⎟⎟⎟⎠ =

x,y,z∑
k=

cos ξk cos ζk. (2.18)
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Figure 2.6: Orientation of the B0 field and the inter-nuclear vector in the molecular frame.
The angles ξx, ξy and ξz represent the orientation of the macromolecular frame
(xyz-coordinates) relative to the magnetic field, while the orientation of inter-
nuclear vector is defined by the angles ζx, ζy and ζz relative to the frame.
Picture taken from Blackledge et al. [225]

The inter-nuclear vector between i and j is assumed to be rigid within the macromolec-

ular frame. As consequence, the averaging of aij only acts on the orientation of the frame

(ξ-angles) relative to the static magnetic field B0. With this in mind, the preferential

orientational averaging of the molecule can be defined as alignment tensor A whose units

are dimensionless

Akl =
3
2

〈cos ξk cos ξl〉 − 1
2

δkl. (2.19)

At this point, an effective inter-nuclear distance rij,eff will be introduced to account for

the averaging of rij
[225]. With eq. 2.19 and rij,eff at hand eq. 2.17 can be rewritten as

Dij = −γi γj μ0 h Saxial

8 π3 r3
ij,eff

x,y,z∑
k,l=

Akl cos ζk cos ζl. (2.20)

The scaling factor Saxial accounts for the local flexibility of the inter-nuclear vector. It

is based on a model for axially symmetric motion that is called “diffusion in a cone” and

depends on the amplitude of the motion but not on the position of the vector with respect

to the alignment tensor [225]. In this model, the order parameter Saxial is related to the
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Figure 2.7: Dependence of RDC values on the orientation of the inter-nuclear vector (θ ,
φ) in the eigenframe of the alignment tensor with eigenvalues Axx, Ayy and Azz

(left panel). The orientational degeneracy of RDCs is shown on the right. The
surface of the sphere is shaded as function of equal couplings. In other words,
a solely measured RDC can cover a whole range of orientations indicated by a
single color. At least 5 RDCs are necessary to calculate a distinct orientation
of a vector inside the molecule. Picture taken from Blackledge et al. [225]

generalized order parameter S, which scales down the measured RDCs linearly [242] and is

again related to an effective correlation time [218].

In practice, the alignment tensor A has all elements non-zero. It would be preferable to

find a specific molecular frame, the so called principal axis system (PAS), in which all off-

diagonal elements of A are zero and only the diagonal terms Axx, Ayy and Azz remain. A

three-dimensional Euler rotation of the current molecular frame with parameters α, β and

γ [225] can be used to transform eq. 2.20 into the following equation, where the orientation

of the inter-nuclear vector is defined by the polar angles θ and φ in the eigenframe of the

alignment tensor:

Dij = −γi γj μ0 h Saxial

16 π3 (reff
ij )3

[
Aa (3 cos2θ − 1) + Ar sin2θ cos 2φ

]
(2.21)

By convention is |Axx| ≤ |Ayy| ≤ |Azz| [225]. The axial Aa and rhombic component Ar of

the alignment tensor A are defined in relation to the eigenvalues Axx, Ayy and Azz

Aa =
1
2

Azz and Ar =
1
3

(Axx − Ayy) . (2.22)
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It is easy to see from eq. 2.21 and eq. 2.22 that five parameters determine the orientation

of any structure or sub-structure of interest, these are the eigenvalues Axx, Ayy and Azz

of the alignment tensor A and the polar angles θ and φ. The necessary parameters can

be determined directly via singular value decomposition [243] after the measurement of at

least five RDCs.

Unfortunately there are number of orientations for a single inter-nuclear vector that

are compatible with a solely measured RDC. The right panel in Fig. 2.7 illustrates the

strong angular degeneracy as shades on a spherical surface, where only extreme values

give nearly unambiguous orientations. The more common intermediate values lead to a

large number of potential solutions for the orientation, thus limiting the value of RDCs

in structure determination. But the angular degeneracy can be lifted either by measuring

more couplings in structures of known conformation, or by measuring RDCs in the presence

of liquid crystals that orient the molecule differently [225,242].
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2.5 Simulated Annealing calculations

Simulated Annealing (SA) is an algorithm to overcome the problem hat the energy func-

tion in a Molecular Dynamics (MD) simulation converges to a local instead of the global

minimum (see FIg. 2.8). The basic idea is to allow the molecule to leave a found local

minimum by providing sufficient kinetic energy. The average kinetic energy for a given

temperature can be calculated via Boltzmann statistics

< Ekin,i >=<
1
2

mi ν2
i >=

3
2

kb T, (2.23)

where kb is the Boltzmann factor, mi the atom mass and νi the atom velocity. The

amount of kinetic energy Ekin,i, that is necessary to overcome kinetic barriers and allows

access to the global minimum, can be provided as high temperature at the beginning of the

simulation. In order to achieve temperature coupling of the MD (to a target temperature

T0), a friction coefficient bi = βi(T0/T − 1) is added [244] to the Newtonian equation of

motion:

Fi(t) = mi
∂2ri

∂t2 = −∂Vi

∂ri
+ βi(T0/T − 1)νi. (2.24)

The acceleration ∂2ri
∂t2 of each atom i at time t is related to the derivative of the potential

energy Vi with respect to the atom position ri. The force Fi(t) at position ri can act on

the atoms for a given time-step (typically between 1-5 fs). A verlet algorithm determines

then a new set of coordinates and velocities from the last and current values. This cycle is

repeated until a convergence criterion (e.g. a minimum change in the gradient of the po-

tential energy) is met. Initially, atom velocities are computed using a Gaussian or Maxwell

distribution. The atom coordinates are derived from a starting structure. Since the initial

coordinates and velocities determine all subsequent ones, it is important to start from a

reasonable structure. In this work, where unknown structures of modified oligonucleotides

are probed, a starting structure is obtained via MD hybridization of extended strands to

a reasonable double strand.

The number of cartesian coordinates, that has to be calculated during each step of
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local minima

global minimum

Figure 2.8: Find global minimum with Simulated Annealing. The red dot marks a
molecule at high temperature. It has sufficient kinetic energy to reach the
next local minimum on the energy surface (red arrow). Constant cooling is
applied, but as a long as the temperature is high enough, the molecule can
“jump” to the next minimum (orange arrow). Finally in the cold state (at
room temperature), the molecule is expected to be trapped in the global min-
imum.

the Molecular Dynamics simulation, is usually three times larger than the atom counted

in the molecule. Especially in macromolecules like DNA or proteins, this number easily

reaches the order of thousands. Nevertheless it is possible to simulate macromolecules via

Molecular Dynamics by predefinition of atom types. For these predefined atoms many

parameters such as bond lengths, bond angles, dihedral angles, partial charges etc. are

assumed to be fixed and are comprised in the force field. In the present work the program

Xplor-NIH [245] was utilized which employs the CHARMM force field [246,247]. The total

potential energy Vtot consists of two components [244]

Vtot = Eemp + Eeff , (2.25)

where the empirical (Eemp) and the effective energy term (Eeff ) are given as [244]

Eemp = Ebond + Eangle + Edihe + EvdW + ECoulomb, (2.26)

Eeff = Enoe + Erdc + Eplan + Ecdih. (2.27)
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Ebond, Eangle, Edihe and all energy terms of Eeff are calculated as the product of a force

constant and the deviation of the observed value from the equilibrium one, e.g.

Ebond = kbond

(
robs

ij − requ
ij

)
(2.28)

The equilibrium values for Enoe and Erdc are taken from experiment while these of Ecdih

and Eplan are averages from the literature [244]. The corresponding scaling factor for each

term are defined in the calculation input and thus can be used to increase the restraining

power of selected energy terms. Equilibrium values and force constants of Ebond, Eangle,

Edihe constitute one part of the force field. EvdW is given as

EvdW =
∑
i,j

(
Aij

r12
ij

− Bij

r6
ij

)
(2.29)

with Aij = 2 √
εii εjj

(
σii − σjj

)
and Aij = 2 √

εii εjj
(
σii − σjj

)
. The terms for atomic

permittivity (εii/jj) and van-der-Waals radii (rii/jj) set up another part of the force field.

The partial atomic charges (qi, qj) in ECoulomb constitute the last part of the force field.

ECoulomb =
∑
ij

qi qj

ε0 rij
(2.30)

Explicit treatment of water is not feasible due to restrictions on the calculation time,

so the solvent screening effect is approximated by introducing a distance dependent per-

mittivity of free space ε0(rij).

Finally, force field parameters for the native bases and their 2’-deoxyribose backbone are

derived from crystal structures, infrared spectroscopy data (force constants) and empirical

testing (where no experimental source is available) [246]. Every non-native modification to

our basic DNA sequence has to be added manually to the existing force field. The necessary

parameters for bond lengths, bond angles, dihedral angles and in particular partial atomic

charges are calculated using ab-initio methods.
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Figure 2.9: Data matrix M and Singular Value Decomposition (SVD) of DNA absorption
spectra. The result is a product of three matrices named U, S and VT .

2.6 Singular Value Decomposition

The last two sections enter the field of optical spectroscopy, whereby the hybridization of

DNA will be monitored. The underlying concepts are developed here in sections 2.6 and

2.7.

The Singular Value Decomposition (SVD), also referred to as Principal Component

Analysis (PCA), decomposes a two-dimensional data matrix M into the product of three

matrices named U, S and VT (see Fig. 2.9). The SVD method serves here as a tool to

analyse the absorption spectra of the modified oligonucleotides. Therefore, the absorption

spectra will be written as columns to build up the data matrix M with dimensions nwl x

ntm. Here nwl is the number of wavelengths which are stored on an array WL, and ntm

is the number of temperatures which are stored on an array TM .

After decomposition the columns in U store a set of orthonormal “basic spectra” (de-

pending on wavelength λ), while the rows of VT describe “basic thermodynamic curves” of

populations or concentrations as a function of temperature. Since U and VT only consist

of orthonormal functions, a list of factors is needed to fully describe our data in M. The

last matrix S stores these factors on its diagonal axis, connecting the i-th column of U

with the i-th row of VT , and furthermore sorts them by importance or weight, so the first

one is the most important. They represent the singular values, but not all of them are

necessary to describe the data in M. If not mentioned otherwise, the ns singular values
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Figure 2.10: A Reduced set of matrices can fully describe the data matrix M. For example,
when only two singular values (ns = 2) of S are necessary to describe M, one
can build matrices with ns columns in Ucut and ns rows in VT

cut, respectively.
In addition, the product of the new matrices should produce a dataset with
better signal to noise ratio than M.

higher than the 100th part of the first one are used to construct a cut set of matrices with

ns columns in Ucut and ns rows in VT
cut, respectively(see Fig. 2.10). It is assumed that

the omitted singular values only contribute to the noise in the spectra, so the product of

the new matrices should have a better signal to noise ratio than the original dataset in M.

At this point the number of independent spectra contained in the data is known. The

chemical species which cause them must be ns or larger, because such independent spec-

trum may, accidentally, be a linear combination of two species. The matrix VT
cut is then

separated into a product of linear factors F and nonlinear parameters P (see Fig. 2.11).

This allows scaling on purpose, for example, if the last column of P is scaled to be 1 in

in the first row and 0 for the second one, one would know, that (for highest tempera-

ture) only the first basic spectrum is necessary to describe the last spectrum in the data

matrix M (in figure 2.10). In addition, the resulting F can be multiplied with Ucut.Scut

to give the product Ucut.Scut.F. In consequence of the rescaled P, the first spectrum of

Ucut.Scut.F is equal to the last (high temperature) spectrum in M. Also important, P

(in combination with Ucut.Scut.F) can be inspected to assign species and their thermo-

dynamic behaviour when changing temperature. For example, linear line shapes can be

stacking interactions or peak shifts and sigmoidal line shapes denote melting curves. The
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Figure 2.11: Separating VT
cut into a product of linear factors F and nonlinear parameters

P.This allows scaling on purpose, but more important, P can be inspected to
assign species and their thermodynamic behaviour when changing tempera-
ture. A possible way to present the dissection of M via SVD is shown in the
middle of the figure by the two pictures of Ucut.Scut.F and P, respectively.
Please note, the product Ucut.Scut.F.P still reproduces the data stored in
M.

reader should note that VT
cut can contain more than one melting curve, which may show

different melting characteristics, and thus indicates a non-uniform melting process of the

DNA double strand. The next step is to find the parameters which describe the thermo-

dynamic functions found in P and the expansion factors in F. How to do this is topic

of the following chapter 2.7, while the SVD, as mentioned in the beginning, has served

as tool to access the thermodynamic behaviour like melting from a set of full absorption

spectra.
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2.7 Development of the double SVD assisted two-state model

2.7 Development of the double SVD assisted two-state model

The thermodynamics of duplex formation is usually examined by melting curves, which

are measured at a single wavelength over different temperatures. However, such melting

curves are directly affected by the errors of the measurement at the given wavelength [248].

To overcome this, one could think of repeated experiments or analysis of additional wave-

lengths nearby. In this work a more advanced approach is used to obtain precise results,

especially when the complexity of the chromophore absorption change increases.

The basic idea is to measure full absorption spectra at different temperatures. The fact

that such method needs considerable more time to record the desired spectra has two side

effects. One is the larger step size between temperatures to limit the acquisition time of

the whole experiment, the other is the avoidance of hysteresis or temperature gradients in

the sample, since the temperature remains constant during the record of each spectrum.

Our recorded spectra are then combined into the two-dimensional data matrix M (see

Fig. 2.9). By Singular Value Decomposition (SVD, see 2.6), the data matrix M is de-

composed into a product of three matrices U.S.VT containing “basic spectra”, “singular

values” and “thermodynamic curves”. Usually, only the first 2-4 values (columns in U,

rows in V)are necessary to describe the data, so a new product Ucut.Scut.VT
cut is made

which results in a smoothed (noise reduced) M. The desired melting curves of the full

absorption spectra are stored in VT
cut. From here onwards, each row can be analyzed like

curves obtained by single wavelength measurement.

In figure 2.12 a melting curve of 13mer4AP-DAP is shown (red line, obtained via SVD,

see 4.3.4). A common way to check helix stability is the estimation of the melting point.

It is, by definition, the temperature where one half of the strands is in duplex state and

the other half in single strand state. Applied on the melting curve which is scaled to the

amplitude change over temperature, one would note from the figure at half height 61 ℃, but

it is easy to see that such reading depends on the measured temperature range, due to the

slope of the linear parts of the melting curve [248]. Another common method [111,138,139,249],

plotted as blue line in figure 2.12, uses the first derivative of the melting curve, thus the
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Figure 2.12: Melting Point Estimation from a double strand DNA melting curve is a
common way to check DNA stability. The melting curve (red), its first
derivative (blue) and the fitted two-state model (green) without assumed
linear stacking interactions are shown and compared against each other. The
estimated melting points are indicated by grey vertical lines, depending on
the method and slope of the linear parts, three different melting points will
be estimated.

melting point is indicated by its maximum at 58.9 ℃, but this method is also affected by

the linear parts of the melting curve and therefore is not reliable.

The most widely used method is a two-state model [250,251] with linear stacking interac-

tions [19,252,253]. It assumes that the temperature (T ) dependence of the extinction coef-

ficients is linear (ε[ss] = m[ss]T + b[ss]) and, in addition, different for the single- (ss) and

double-stranded (ds) forms. The two-state part defines the equilibrium constant K for

hybridization of nonself-complementary DNA depending on cT and α (molar fraction of

single stranded form to the total ss strand concentration):

K =
[ds]

[ss1][ss2]
=

2(1 − α)
α2cT

. (2.31)

After substituting K into ΔG◦ = −RTln(K) = ΔH◦ − TΔS◦ and rearranging, we obtain
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2.7 Development of the double SVD assisted two-state model

an equation for α depending on ΔH◦ and ΔS◦.

α =
−1 +

√
2 cT exp

[
−ΔH◦−T ΔS◦

RT

]
+ 1

cT exp
[
−ΔH◦−T ΔS◦

RT

] . (2.32)

Equation (2.32) is then combined with the linear temperature dependence of the extinction

coefficients, leading to an equation for the measured amplitude change A(α, T ):

A(α, T ) = α(m[ss]T + b[ss]) + (1 − α)(m[ds]T + b[ds]). (2.33)

After least-squares fitting with equation 2.33, the resulting α(T ), which only describes

the two-state model, can be plotted as green line in figure 2.12. Its melting point can be

estimated to 58.9 ℃. Unfortunately, this is the third melting point for only one measured

melting curve, but the last one is not affected by the slopes of the assumed stacking

interactions. Furthermore, if the slopes for the single strand state and the duplex state

are either similar or small, then the melting points of the red and blue curves would

converge towards that one of the two-state model (green line), which is so far the most

reliable.

However, a two-state model, wherein only fully separated strands and the duplex exist, is

an oversimplification which cannot cover all types of DNA/RNA double strands. Statistical

models like the zipper model [19,254] or the extended type with bulge formation introduced

by Ernsting [203] account for a more complex way of hybridization, but this means to assume

a specific model for a given double strand, which may end in a different model for every

modified oligonucleotide analyzed in this work. Also the number of parameters increases

with the complexity of the model and consequently the number of possible solutions in the

least-squares fit of a simple melting curve, which explains the relatively rare application of

statistical models [19]. The last method, which should be mentioned here, is the widely used

nearest-neighbor method by SantaLucia [255,256]. It focuses on the interactions between

neighboring base pairs, but is based on experimental data of natural nucleobases and

therefore not suitable for oligonucleotides with noncanonical modifications to the strands.
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The new approach will use the basic idea of the two-state model in combination with

the analysis of the spectral change via SVD. Remember, that full absorption spectra were

measured covering the DNA band as well as the absorption of the built-in chromophore.

The before mentioned two-state model (with linear stacking interactions) assumes tem-

perature dependent extinction coefficients for the single strands and the duplex state at a

given wavelength. The expansion to a full spectrum can then take additional effects into

account like peak shifting, local melting or the rise of a new species. The way to do this

is splitting the SVD into the analysis of duplex state at temperatures below the melting

point and the analysis of the single strands at higher temperatures. Knowing the change

of absorption with temperature for both, an extrapolation can be done from either side

into the middle, i.e. in the direction where strand separation occurs. For example, the

absorption spectrum of the double strand can be simulated for 70 ℃ where, in reality, the

separation into single strands is almost complete. At any given temperature, the observed

spectrum should be a linear combination of the two extrapolated spectra, i.e. of the sep-

arate strands S[ss](T ) and of the duplex S[ds](T ). The mathematical description of this

linear combination is shown in equation 2.34, where α is the fraction of extrapolated single

strand spectra S[ss](T ), which is used to build the measured spectra M(α, T ). In other

words, the linear equation terms of (2.33) are substituted with the extrapolated spectra

S[... ](T ).

M(α, T ) = αS[ss](T ) + (1 − α)S[ds](T ). (2.34)

From the corresponding fit the degree of dissociation α is obtained. As result we obtain a

dissociation curve (shown in Fig. 2.13) following in any case the characteristics of a two-

state model, since it was constructed from a set of two spectra (measured or extrapolated)

at a given temperature. The advantage of this approach is, as long as there are spectral

changes dominated by either the duplex state or the single strands (which would allow a

separate analysis via SVD), one can reduce the analysis of any complex melting process

to correspond to the easy pattern of the two-state model. Additionally, the SVD parts

can be investigated for the type of spectral change (e.g. amplitude change, peak shift). In
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Figure 2.13: SVD assisted two-state model shown as schematic diagram. SVD analysis
is performed on regions dominated by either separated strands or duplex
state and then extrapolated to the missing temperature region. By fitting
the degree of dissociation α(T ) to the linear combination of the extrapolated
spectra, a melting curve is obtained on which the two-state model can be
applied.

the end, one can gain more knowledge about a modified double strand than from a single

wavelength melting curve. A detailed demonstration of the method was performed on the

6-Hydroxy-quinolinium chromophore (13mer6HQ) in chapter 4.2.3.
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3 Experimental section

All methods and preparations will be outlined in detail for 13merHCF. In order to avoid

redundancy, the corresponding sections of 13mer6HQ and 13mer4AP-DAP will only com-

prise experimental details that differ from 13merHCF.

3.1 13merHCF

3.1.1 NMR sample preparation

2-Hydroxy-7-carboxyfluorene was synthesized by Matthias Pfaffe in the same way as

HNF [203]. The 2’-deoxyriboside of HCF was prepared by reaction of 2-hydroxyfluorene-7-

carboxylic acid methyl ester with 1’-α-Chloro-3’,5’-di-O-toluoyl-2’-deoxy-D-ribose in the

presence of activated molecular sieve. The corresponding phosphoramidite was reached in

three steps by standard methods. The predominantly formed α-glycoside was then purified

by column chromatography. Fixed-phase synthesis of the labeled strand was performed

at BioTeZ (Berlin) with a small modification, since the coupling of HCF-2’-deoxyriboside

required a fourfold increase over the normal reaction time. The reader should note that in-

stead of the originally intended methyl ester, the free acid was incorporated into the strand,

due to the preparation conditions in the last step of the fixed-phase synthesis. The HCF

labeled strand and the abasic counterstrand, also from BioTeZ, were delivered already

purified by reverse-phase high-pressure liquid chromatography (HPLC). After hybridiza-

tion they were subjected to size exclusion chromatography (in Sephadex PD-10 column)

and lyophilization with 3 % NH3-solution to remove residual, low molecular weight im-

purities (mainly NEt3-buffer from HPLC). Equivalent amounts of complementary single
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strands were hybridized by rapid heating to 90 ℃ and subsequent gradual cooling to room

temperature at a rate of 0.5 ℃ per minute. The NMR samples were prepared in (D2O

matched) Shigemi tubes at 5 mM duplex concentration in D2O (D2O 99.98 %) and H2O

(H2O:D2O/90:10) buffer solutions at pH 7, containing 10 mM Na2HPO4/NaH2PO4 and

150 mM NaCl.

3.1.2 RDC sample preparation

The samples for the residual dipolar coupling (RDC) experiment were prepared in D2O

buffer as described before. The addition of 20 mg/ml Pf1 (obtained from Asla Biotech

Ltd., Riga) requires exchange of the Pf1 buffer, since it is obtained in a non-deuterated

solution. The exchange is achieved by ultracentrifuging 100 μl of Pf1 two times with

600 μl deuterated phosphate buffer at 60000 rpm for 2 hours (at 4 ℃). Afterwards the

Pf1 sediment is joined with the DNA sample. The high viscosity of Pf1 complicates

sample handling and thus the suspension has to be stirred until a viscose, clear, gel-like

sample is obtained. After transfer into the Shigemi tube, bubbles have to be removed by

slow centrifugation of the NMR tube (up to 500 rpm). The degree of orientation can be

checked by measuring the quadrupole splitting of deuterium [257], which is expected to show

a symmetric doublet with splitting in the range of 5 to 15 Hz. In case of degradation or non-

complete suspension of Pf1, this peak doublet can be asymmetric, extremely broadened

or even non-observable.

3.1.3 Duplex melting experiments

The UV/vis absorption experiments were performed on a Varian Cary 300 spectrometer

in double beam mode. As stated in the introduction, full spectra (between 210 and 400

nm) were measured with 1nm step size, 0.6 s average time, 2 nm bandwidth and source

changeover at 400 nm. Between each rising temperature step of 5 ℃, a time delay of 10

minutes was included to heat and equilibrate the sample with the heating block. A sample

of double-stranded 13merHCF was prepared in a water/phosphate buffer at pH 7 with 10

mM NaH2PO4 and 150 mM sodium chloride. Measurements were performed in a closed

48



3.1 13merHCF

non-degassed cuvette with 2 mm optical path length. A total concentration cT = 45 μM

of single strands was estimated from maximum absorption around 260 nm at 90 ℃. 14

absorption spectra between 25 and 90 ℃ were recorded and corrected for density change.

3.1.4 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before. A

sample containing 150 mM sodium chloride and 20 μM (cT ) of double-stranded 13merHCF

was prepared at pH = 1.15 (through addition of 1 M HCl). A set of 29 spectra were

measured up to pH = 12.07 by adding increasing concentrations of NaOH (0.01 - 1 M)

into a cuvette with 10 mm optical path length.

3.1.5 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with

inverse probehead. Dallmann and the author determined in an earlier work [129] that 298 K

is the most suitable temperature for monitoring the imino proton signal intensity of du-

plex strands, and this temperature was therefore chosen as standard for all types of NMR

experiments. For the 13merHCF duplex, dissolved in the aforementioned D2O buffer,

a DQF-COSY- (Double Quantum Filtered Correlated Spectroscopy), a TOCSY- (Total

Correlation Spectroscopy) and a NOESY-spectrum were measured. For DQF-COSY and

TOCSY, 2048 x 512 points (F2 x F1 dimension) were acquired with 16 and 56 transients,

respectively. The more important NOESY-spectrum employs 4096 x 2048 points with 16

transients and 100 ms mixing time. The NOESY in H2O was recorded using the same

parameters in a WATERGATE pulse-sequence to suppress the HOD signal. The RDC

experiment requires two HMQC-spectra (Heteronuclear Multiple Quantum Coherence) in

D2O before Pf1 is added, one 1H decoupled spectrum for assignment and a coupled spec-

trum as basis to calculate the coupling. After addition of Pf1, the sample became highly

viscous and the standard shim procedure failed to produce reasonable linewidths. As a

workaround, 1D spectra were measured after each shimming step in order to iteratively

optimize the lineshape of the HOD signal. The alternative worked well, but is much more
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time-consuming than the standard method. The two 1H coupled HMQC- spectra with and

without Pf1 were acquired with 8192 x 512 points and 192 transients. The high number

of points in the F2 dimension is necessary to obtain RDC-values with a precision below 1

Hz. All spectra were processed with the Bruker TopSpin software.

3.1.6 Force field parametrization for HCF

Density functional theory (DFT) calculations of the HCF moiety were performed in Gaus-

sian03 using the b3lyp method and triple zeta valence plus polarization (TZVP) as basis

set. Partial charges were derived with the of ChelpG-algorithm by Breneman et al. [258].

Although the sugar moiety was simulated as well, only the partial charges for the HCF

residue were integrated into the force field. A comparison between the neutral HCF (with

COOH) and the negatively charged (with COO-) confirmed that the effect on the partial

charges of the sugar is negligible, so the same parameter set as for the sugar of the native

nucleobases could be used.

3.1.7 Distance restraints

The assigned NOE cross-peaks were converted to distance restraints by referencing their

integrals to the integrals of known distances employing the Isolated Spin Pair Approxi-

mation (ISPA). The NOE cross-peaks were integrated with the program Cara [259] using

the sum-over-rectangle method. As reference distances Methyl-H6 T (3.09 Å) for all NOE

cross-peaks involving methyl protons, H42-H5 C (2.4 Å) for all NOE cross-peaks involving

exchangeable protons and H5-H6 C (2.48 Å) for the remaining NOE cross-peaks were used

(bond lengths adapted from the force field parameters). For the purpose of exporting the

integral values obtained by Cara [259] to an Xplor-NIH [245] restraints file, a LUA script is

used that was written by Dallmann [260] (see section 3.1 ). This script classifies the inte-

grated peaks according to the overlap with other peaks and scales their volume integrals

accordingly. Additionally, uncertainties for the NOE restraints are automatically calcu-

lated from the standard deviation of the reference peaks’ volume integrals. The estimated

uncertainty is then increased according to the classification of each peak. Furthermore,
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this classification is printed into a separate file, which can be used to assess whether or

not peak overlap might prevent a reliable estimation of the peak volume.

3.1.8 Residual Dipolar Coupling restraints

The RDC values of 13merHCF are listed in table 3.1. As outlined in section 2.4, the

difference in the coupling constant of C-H bond vectors in the presence and absence of

Pf1 phage was measured. The orientation of the corresponding inter-nuclear vector was

defined in eq. 2.21 in section 2.4. All occurring constants can be joined in the factor Da,

which can be written as

Da = −γi γj μ0 h Sflex

16 π3 (reff
ij )3

. (3.1)

Only one value of Da may be used throughout the calculation. RDC values of different

vectors like C-C bonds need to be scaled to C-H values. Scaling is achieved by introducing

a prefactor to the Da-term, which is simply defined as the ratio of the two Da involved.

An example for C-C RDCs is given in the next equation

Dpre
a (CC) =

Da(CH)
Da(CC)

=
γH

γC

(
rCC

rCH

)3
=

42.576
10.705

(1.496
1.090

)3
≈ 10.28. (3.2)

where γH
γC

is the change in gyromagnetic ratio between C-C and C-H, while rCC and rCH

are the lengths of the corresponding inter-nuclear vector. Although only C-H RDCs were

measured in this work, it was necessary to implement the experimentally determined C-H

RDCs of the T methyl groups as C-C RDCs. Due to the fast rotation of the methyl group,

only a single averaged value can be measured for the three C-H bond vectors, but it can

be scaled as follows to a single C-C bond vector

P2(cosβ) =
3
2

cos2β − 1
2

(3.3)

where β is the C5-C7-H7[1-3] angle. It has been revealed by Ottiger and Bax [261] that the

usually assumed ideal tetrahedral angle of 109.5 ° for methyl groups has to be replaced

with experimentally determined 110.9 °. With eq. 3.2 and eq. 3.3 the scaling of methyl
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C-H to methyl C-C can be written as

DCH_Me

DCC_Me
= P2(cosβ) Dpre

a (CC) . (3.4)

A value of -3.17 was determined by measuring the correlation of experimentally determined

C-H and C-C methyl RDCs [261]. For the ideal tetrahedral angle one would obtain a factor

of -3.42. In order to implement the methyl C-H RDCs into the structure calculations,

they have to be converted into the corresponding C5-C7 RDCs. This is done in a second

input file, where all experimentally determined methyl C-H RDC values were converted

by hand to the corresponding C-C values with the factor 1 / -3.17 = -0.3155. In that case,

the prefactor Dpre
a (CC) can be used to scale the C-C RDC input file to the C-H RDC

input. However, the direct scaling of the the RDC values is not equivalent to scaling via

Da-factor, since the energy for the RDC potential term is given by [244]

ERDC = kRDC (Dcalc − Dobs)2 (3.5)

where kRDC is the scale factor for the RDC energy term, which has to be modified for

different sets of RDCs with a weighting factor ωij . When using the prefactor Dpre
Me for

implementation of methyl RDCs, the energy of the C-C methyl RDCs has to be scaled by

ωCC =
1

(−3.17)2 ωCH ≈ 0.0995 ωCH = 0.1 ωCH . (3.6)

The dependence of the energy on the square of the difference between calculated (Dcalc)

and observed (Dobs) would otherwise allow methyl RDCs to have a stronger restraining

effect than the C-H RDCs.
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Table 3.1: Experimentally determined RDCs used in the structure determination of
13merHCF. The RDCs were measured with a precision of ±0.6 Hz.

Res Vector J(CH) (Hz) J(CH)(aligned) (Hz) RDC (Hz)
A6 C2-H2 202.8 214.8 12.0
A8 C2-H2 200.4 209.4 9.0

A16 C2-H2 202.2 211.8 9.6
A24 C2-H2 201.0 213.6 12.6
C2 C5-H5 166.8 171.6 4.8

C12 C5-H5 169.2 174.6 5.4
C14 C5-H5 168.0 173.4 5.4
T11 C5-C7 127.2 121.2 -2.0
T19 C5-C7 127.2 121.2 -2.0
T21 C5-C7 126.6 121.2 -1.8
HCF C1’-H1” 171.0 171.6 0.6
C14 C1’-H1’ 168.0 166.2 -1.8
C17 C1’-H1’ 161.4 118.8 -42.6
G25 C1’-H1’ 159.0 171.6 12.6
C2 C6-H6 175.2 183.6 8.4
T3 C6-H6 174.6 182.4 7.8
C9 C6-H6 174.0 182.4 8.4
T11 C6-H6 176.4 183.6 7.2
C12 C6-H6 174.0 179.4 5.4
C14 C6-H6 171.6 167.4 -4.2
C17 C6-H6 174.0 182.4 8.4
T19 C6-H6 175.2 183.6 8.4
T21 C6-H6 175.8 183.6 7.8
G1 C8-H8 214.8 223.8 9.0
A8 C8-H8 214.8 223.2 8.4

G13 C8-H8 214.2 222.6 8.4
G15 C8-H8 214.2 223.8 9.6
A16 C8-H8 214.8 223.2 8.4
A24 C8-H8 214.2 225.0 10.8
G25 C8-H8 214.2 229.2 15.0
HCF C1-H1 151.8 156.6 4.8
HCF C3-H3 151.2 153.0 1.8
HCF C4-H4 150.0 155.4 5.4
HCF C5-H5 152.4 152.4 0.0
HCF C6-H6 150.6 156.6 6.0
HCF C8-H8 152.4 157.8 5.4
HCF C9-H91 129.0 135.0 6.0
ABA C3’-H3’ 151.2 147.0 -4.2
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3.1.9 Structure calculation

Calculation input All structure calculations were performed with Xplor-NIH v2.20 [245].

A total of 334 (330) NOE distance restraints and 38 Residual Dipolar Couplings were used

in calculations for the face-up (-down) orientation. The experimental data were supple-

mented with 124 backbone dihedral restraints, 72 hydrogen bond distance restraints and

27 planarity restraints (see Tab. 3.2).

The initial molecular dynamics calculations of extended strands were performed with

dihedral restraints allowing both A-form and B-form conformations (with error bars of

±50 °). B-form conformation was experimentally confirmed by 3J coupling constants for

H1’-H2’ derived from DQF-COSY and NOESY-cross-peak intensities characteristic for B-

DNA. Consequently, regular dihedral values from the literature [213] were included in the

calculations.

Table 3.2: Overview of structural statistics for 13merHCF in face-up and face-down ori-
entation.

face-up face-down
RDC restraints 38 38
NOE restraints

- total 375 362
- interresidue 110 102
- intraresidue 265 260

Dihedral angle restraints 124 124
H-bond restraints 72 72

Base pair planarity restr. 27 27
NOE viol. (> 0.5 Å) 0 0
RDC viol. (> 0.4 Hz) 0 0
Dihedral viol. (> 5 °) 0 0

RMSD to ave. struct. in Å 0.41 0.45

The structures were calculated in two steps. First, a reasonable starting structure

with well defined local conformation was computed. To ensure that no bias is introduced

towards local energy minima, the calculation started from an elongated and equilibrated

structure. The resulting structure, which is mainly defined by NOE restraint data, was

used as input for Simulated Annealing calculations including RDC data. The need for
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locally well defined starting structures in order to calculate reasonable structures which

satisfy NOE as well as RDC data is documented in the literature [262,263].

Simulated Annealing protocol The complete MD protocols used for structure deter-

mination are given in the Appendix, section 2. The same protocols were used for both

(orientational) forms of 13merHCF. The input scripts are based on the example files of

the Xplor-NIH package (refine_full.py and sa.inp) but were substantially modified.

The first protocol is used to generate a reasonable starting structure. It starts with two

extended strands which are then hybridized to form a duplex strand. This protocol only

uses the NOE restraints as experimental input and starts with an initial minimization

(50 steps) followed by 48 ps of high-temperature cartesian coordinate dynamics at 3000 K,

subsequent gradual cooling to 25 K in 120 steps of 0.05 ps length and a final minimization

(3000 steps).

The second MD protocol, which utilizes in addition the experimental RDC restraints

and the starting structure, consisted of an initial cartesian coordinate minimization (1000

steps) followed by 50 ps of high-temperature torsion angle dynamics at 20000 K, subsequent

gradual cooling to 25 K in 154 steps of 0.5 ps length (34 steps to cool down to 3000 K,

followed by 120 steps to reach the end temperature) and a final cartesian coordinate

minimization (3000 steps). The alignment tensor values were allowed to float during the

calculations, as implemented in Xplor-NIH (v2.20) [245].

For each run an ensemble of 100 structures was computed. The 10 minimum energy

structures without violation of restraints were chosen to compute an averaged structure

which was energy-minimized to yield the final structure. The root-mean-square deviation

(RMSD) of the 10 minimum energy structures to the average structure is a measure for

the precision of the calculation.

Structure validation Several methods were used to check the accuracy of the average

structures. Back-calculation of NOESY-spectra along the Full Matrix Relaxation Ap-

proach [213,264,265] were performed with Xplor-NIH (v2.20) [245]. The back-calculated spec-

tra were then visualized with the help of a Mathematica script to allow comparison with
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experimental spectra. The script was written by the author on the basis of his diploma

thesis [266] (see sec. 3.2). It uses the same input files like Gifa [267], a program that was used

prior to the Mathematica script. However, the latter offers more user comfort and has the

advantage of running on actual hard- and software. RDCs were predicted from the average

structure using the program Pales [268] and were also compared to the experimental data.
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3.2 13mer6HQ

3.2.1 NMR sample preparation

The DNA-oligonucleotide, that incorporates 6-hydroxyquinoline (6HQ) linked to R-Glyce-

rol, was assembled in 24 μmol scale synthesis on an ÄKTA Oligopilot at Noxxon Pharma

GmbH, Berlin. The necessary phosphoramidite was synthesized by Felix Hövelmann in

four steps, using 6-hydroxyquinoline and S-glycidol as precursors. It should be noted that

the latter will lead to the R-glycerol phosphoramidite. The counterstrand with cytosine as

complementary base to 6HQ was ordered from BioTeZ, Berlin. Purification and hybridiza-

tion were carried out the same way as for13merHCF (sec. 3.1.1). Interestingly, the final

product already contained the deprotonated quinolinium, which is optically indicated by

the yellow color of the solution. The deprotonation was caused by the 3 % NH3-solution

that was used in the lyophilization step (see sec. 3.1.1). The double strand was then

diluted in pH 7 buffer solution(10 mM Na2HPO4/NaH2PO4 and 150 mM NaCl), but the

quinolinium retained its deprotonated state. However, the reason for this contradiction

is a very slow reaction rate, so that roundabout four weeks had passed until the reaction

was complete. The concentration of the sample was 3 mM.

3.2.2 RDC sample preparation

Several months separate the first NMR experiment from the RDC measurement, so the

sample was colorless, due to protonation of the quinolinium. In order to regain the depro-

tonated state, the sample was treated again with 3 % NH3-solution between desalting and

lyophilization. All other preparation steps were performed as stated in sec. 3.1.2.

3.2.3 Duplex melting experiments

A single- and double-stranded sample of 13mer6HQ was prepared in a water/ammonia

mixture with pH = 8.5 and 150 mM NaCl. Measurements were performed in a dou-

ble cuvette (closed but not evacuated) with 1 and 10 mm optical path length. A total

concentration cT = 131 μM of single strands was estimated for the double strand from
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3 Experimental section

maximum absorption around 260 nm at 90 ℃, and the single strand was concentrated

to give a comparable absorption signal. A set of 17 (15) spectra between 10 and 90 (80)

℃ were recorded for the double strand (single) and corrected for density change. The

configuration of the Varian Cary 300 spectrometer was the same as in sec. 3.1.3.

3.2.4 NMR experiments

13mer6HQ utilized the same experiments as 13merHCF in sec. 3.1.5. Only experimental

parameters like the number of transients were adjusted to the needs of the sample.

3.2.5 Residual Dipolar Coupling restraints

Table 3.3: Measured RDCs of 13mer6HQ (±0.6 Hz). For more details see sec. 3.1.8.

Res Vector J(CH) (Hz) J(CH)(aligned) (Hz) RDC (Hz)
A8 C2-H2 201.6 245.4 43.8

A16 C2-H2 201.6 238.2 36.6
A24 C2-H2 204.6 241.8 37.2
C2 C5-H5 165.6 223.2 57.6

C14 C5-H5 167.4 184.2 16.8
T3 C7-H7 126.6 108.6 -6.0

T11 C7-H7 126.6 108.6 -6.0
T19 C7-H7 127.2 109.8 -5.8
T21 C7-H7 126.6 108.6 -6.0
G1 C1’-H1’ 165.0 184.2 19.2
C2 C1’-H1’ 166.8 176.4 9.6
G4 C1’-H1’ 157.8 180.6 22.8

G10 C1’-H1’ 165.0 184.2 19.2
T11 C1’-H1’ 163.2 194.4 31.2
C12 C1’-H1’ 164.4 183.6 19.2
G13 C1’-H1’ 160.2 174.6 14.4
C14 C1’-H1’ 165.0 177.0 12.0
C17 C1’-H1’ 162.6 175.2 12.6
T19 C1’-H1’ 163.2 194.4 31.2
C20 C1’-H1’ 164.4 179.4 15.0
G22 C1’-H1’ 161.4 190.8 29.4
A24 C1’-H1’ 166.8 182.4 15.6
G25 C1’-H1’ 161.4 190.8 29.4
A24 C8-H8 214.8 255.0 40.2
6HQ C2-H2 180.0 194.4 14.4
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3.2 13mer6HQ

3.2.6 Structure calculation

The structure calculation and validation was performed analogue to 13merHCF in sec.

3.1.9, therefore only the calculation input is given.

Calculation input Hydrogen bonding restraints for the central AT base pairs were

omitted, due to a lack of evidence in the H2O-NOESY spectrum. Consequently, 60 re-

straints remain for the other 10 base pairs (13merHCF 72). Moreover, the lower concen-

tration of 13mer6HQ (3 mM) in comparison to 13merHCF (5 mM) reduces the number of

determinable RDCs (25 6HQ vs. 38 HCF).

Table 3.4: Overview of structural statistics for 13mer6HQ.

13mer6HQ
RDC restraints 25
NOE restraints

- total 418
- interresidue 148
- intraresidue 270

Dihedral angle restraints 124
H-bond restraints 60

Base pair planarity restr. 23
NOE viol. (> 0.5 Å) 0
RDC viol. (> 0.4 Hz) 0
Dihedral viol. (> 5 °) 0

RMSD to ave. struct. in Å 0.36
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3 Experimental section

3.3 13mer4AP-DAP

Some significant changes were made for 13mer4AP-DAP. First of all a weak acidic buffer

(pH 6.35) was used to avoid hydrolysis under basic conditions of the 4AP. Furthermore,

only a small amount of sample was available, so that all experiments were carried out with

the same sample and the optical experiments were measured before NMR.

3.3.1 NMR sample preparation

Subsequently to the optical experiments, the whole sample was desalted via size exclusion

chromatography (in Sephadex PD-10 column) and lyophilization, again without 3 % NH3-

solution. The NMR samples were prepared in (D2O matched) Shigemi tubes at 1.2 mM

duplex concentration in D2O (D2O 99.98 %) and afterwards in H2O (H2O:D2O/90:10)

buffer solutions at pH 6.35, containing 10 mM Na2HPO4/NaH2PO4 and 150 mM NaCl.

3.3.2 Duplex melting experiments

Michael Weinberger (Wagenknecht group) was responsible for the synthesis of 4AP and

Falko Berndt (Ernsting group) correspondingly for DAP. Both synthetic routes [205] utilized

stereoselective Heck-type palladium-catalysed cross-coupling with 2’-deoxyribofuranoside

glycal followed by stereoselective reduction with NaBH(OAc)3. Both nucleosides were fur-

ther processed to the corresponding phosphoramidites and subsequently incorporated via

automated DNA synthesis. The 4AP single strand, provided by the Wagenknecht group,

and the DAP counterstrand, obtained from BioTeZ, were delivered already purified by

reverse-phase high-pressure liquid chromatography (HPLC). After hybridization they were

subjected to size exclusion chromatography (in Sephadex PD-10 column) and lyophiliza-

tion, but this time without 3 % NH3-solution. Equivalent amounts of complementary

single strands were hybridized by rapid heating to 90 ℃ and subsequent gradual cooling

to room temperature at a rate of 0.5 ℃ per minute. The whole sample of double-stranded

13mer4AP-DAP was then prepared in a water/phosphate buffer (10 mM NaH2PO4, pH

= 6.35) with 150 mM sodium chloride. Measurements were performed in a double cuvette
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3.3 13mer4AP-DAP

(closed but not evacuated) with 1 and 10 mm optical path length. A total concentration

cT = 20.5 μM of single strands was estimated from maximum absorption around 260 nm

at 85 ℃. A set of 14 spectra between 20 and 85 ℃ were recorded and corrected for density

change. The configuration of the Varian Cary 300 spectrometer was the same as in sec.

3.1.3.

3.3.3 Titration against pH experiments

The Varian Cary 300 spectrometer was used with the same settings as mentioned before.

A solution of 1.717 mg 2,4-diaminopyrimidine in 10 g pure water (Millipore) was prepared.

A set of 15 samples were measured between pH 3 and 11 by adding 0,3 g of aforementioned

sample to 2.7 mg of the corresponding pH buffer solutions.

3.3.4 NMR experiments

All NMR experiments were carried out on a Bruker Avance 600 MHz spectrometer with

inverse probehead. In order to raise the signal-to-noise ratio, the NOESY experiments

were performed with lower FID size of 4096 x 1024, but huge number of scans in a range

of 160 to 240. HMQC experiments were omitted, due to the low concentration of the

sample.

3.3.5 Structure calculation

The structure calculation and validation was performed analogue to 13merHCF in sec.

3.1.9. The RDC part in the Simulated Annealing algorithm was not included, due to

missing RDC values. This is simply done by adding a comment tag to the line where the

RDC term is added to the target function. For later discussion a second set of calculations

with RDCs from 13merHCF were performed and compared to the original without RDCs.

Calculation input The data in following table were the basis for both calculation types,

so that the only difference is the additional application of RDCs in the second set. The
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3 Experimental section

RDC data for the second set was taken from 13merHCF (Tab. 3.1), therein the RDCs of

the HCF chromophore were omitted to avoid interference with 4AP.

Table 3.5: Overview of structural statistics for 13mer4AP-DAP in 1H-bond and 2H-bond
orientation.

1H-bond 2H-bond
NOE restraints

- total 357 420
- interresidue 134 137
- intraresidue 223 283

Dihedral angle restraints 124 124
H-bond restraints 72 72

Base pair planarity restr. 27 27
NOE viol. (> 0.5 Å) 0 0
RDC viol. (> 0.4 Hz) 0 0
Dihedral viol. (> 5 °) 0 0

RMSD to ave. struct. in Å 0.52 0.85

62



4 Results and discussion

4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF

The HCF chromophore is the direct successor of HNF [203] and only differs in the carboxyl

group (HNF: NO2) at position 7 of fluorene (see Fig. 4.1). So both molecules have

many common properties. First of all, both were linked via an α-glycosidic-bond to 2-

deoxyribofuranose, the only form that yielded sufficient amount and purity. They also

share incorporation into the center of the strand opposite an abasic site, thus making

HCF also a base pair surrogate. The resulting duplex strand is named 13merHCF. As

stated in the introduction (see 1.3), the HNF chromophore suffers from a short lifetime

of the excited state (35 ps), due to intersystem crossing, and for this reason the HCF

derivative was designed.

The introduction of the carboxyl group makes it necessary to investigate the protonation

state of HCF. For this purpose, a sample of double-stranded 13merHCF was measured at

different pH values (see sec. 3.1.4). The change in absorption of the HCF band around

320 nm (see Fig. 4.9) was fitted to a pH dependent two-state model. A pKa value of

3.9 ± 0.1 has been determined which is similar to other organic compounds like benzoic

acid. Therefore, 2-hydroxy-7-carboxyfluorene is present in the deprotonated form (shown

in Fig. 4.1) when buffered at pH = 7. This finding is also supported by Manoharan

and Dogra [269] who measured absorption spectra at different pH values and found that

2-carboxyfluorene is deprotonated at pH = 8 and exists in neutral form at pH = 2.

A symmetric and non-palindromic sequence was chosen to minimize mispairing, loop

formation and fraying effects [155]. A length of 13 base pairs allows to use the central base
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Figure 4.1: Structure of 13merHCF. Native DNA is marked black and all modifications
including backbone are colored either red or green. The HCF moiety is placed
inside the duplex at position X and the abasic site (in green) at Y, respectively.

pair as modification site, which also ensures that perturbations of the structure can be

directly assigned to the incorporated chromophore. Furthermore, it should be noted that

in contrast to native DNA, both strands incorporate a H1” hydrogen in the center, due

to the α-glycosidic linkage of HCF and the omitted base in the complementary strand.

This will interrupt the stepwise assignment of DNA, because under the assumption that

B-DNA is the dominant form in solution, one can “walk” in alternating steps between

intra- and interresidual cross-peaks from the 5’-end down to the 3’end and vice versa. The

method is known as “NOE-walk” and will be described in more detail in the next section.
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4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF
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Figure 4.2: NOE-Walk in 13merHCF. The assignment of the H6/H8 (abscissa) and H1’
(ordinate) region in the D2O-NOESY spectrum is shown. Red lines mark the
NOE-walk for the HCF containing strand and green lines for the abasic strand.
The starting point (5’-end) of both walks was denoted by a square, while the
endpoint (3’-end) is indicated by an arrowhead. Note that both walks are
interrupted at the modification site (marked by X), due to the α-glycosidic
linkage of HCF and the omitted base in the other strand. For clarity only the
positions of intraresidual H6/H8-H1’ cross-peaks were labeled.

4.1.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts [213] and Bloom-

field et al. [19]. The “NOE-walks” of the H6/H8 to H1’ region are in case of 13merHCF

interrupted at the central strand positions 7 (HCF) and 20 (abasic site), but as stated

before, this was expected and agrees well with HNF. In Figure 4.2 the NOESY spectrum

measured in D2O is shown and the corresponding walks are marked red for the HCF

strand and green for the abasic strand, respectively. The starting point (5’-end) of both

walks was denoted by a square, while the endpoint (3’-end) is indicated by an arrowhead.

The crosses mark the positions, where the alternating walk between H1’ sugar protons

and H6/H8 nucleobase protons is interrupted by a H1’ to H1” step. Even though the

65



4 Results and discussion

corresponding cross-peak can be found in the spectrum, it cannot be depicted in Fig.

4.2, because it is part of a completely different spectral region. The other sugar protons

(H2’, H2”, H3’ etc.) were subsequently assigned by additional NOE-walks in combination

with other spectra (COSY,TOCSY). Chemical shift tables of all assigned hydrogens and

carbons are given in the Appendix (sec. 1.1).

Exchangeable hydrogens were assigned in H2O after completion of the D2O-NOESY

spectrum. The separation of the amino hydrogen (H41, H42) signals of C and, in addition,

the large low-field shift of the imino proton signals (H1 in G, H3 in T) in the range of 12 -

15 ppm [213] clearly indicate a proper hydrogen bonding pattern for the native base pairs.

Even though ppm values were not used directly in the MD simulations, the knowledge of

correct hydrogen bonding allows to introduce a set of hydrogen bonding restraints (see Tab.

3.2 in 3.1.9) that were derived from high-resolution X-ray structure determination [270].

Comparison of 1H Chemical Shift Deviations (CSDs) were made between 13merHCF,

13merHNF and 13merRef [260]; the results are presented in Fig. 4.3. Here the chemical

shift differences of all protons belonging to a single residue but different DNA samples

are summarized. Note that absolute values are given to prevent canceling of deviations.

Three comparisons are made, 13merHCF to 13merRef with A-T in the center (blue),

the corresponding 13merHNF to 13merRef (red) and the modified double strands against

each other (green). The fluorene containing duplexes (blue,red) show a similar pattern of

deviations when compared to 13merRef, so one can expect that the deviations between

them would be rather small. This is true except for the fluorene residues (7), where

the deviation nearly reaches 0.5 ppm. The difference can be explained readily by the

incorporation of the carboxyl group, which leads to higher ppm values for the neighboring

H6 and H8 hydrogens (see Fig. 4.1). Moreover it can be concluded for both duplexes,

13merHCF and 13merHNF, that the effect of the chromophore is limited roughly to the

next two base pairs in both directions around the center.
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Figure 4.4: Averaged structures of 13merHCF. The HCF is marked red and the abasic
site green, while the corresponding colors for A, G, C and T are blue, yellow,
orange and violet. The HCF methylene group faces up to the reader in the left
panel and down in the right panel; the orientations are named correspondingly.
RMSD among all hydrogens besides methyl protons is 0.41 Å for face-up and
0.45 Åfor face-down, respectively. The white arrows indicate the point of view
in Fig. 4.6.

4.1.2 NMR solution structure

Two NMR solution structures of 13merHCF had to be determined using RDC and NOE

distance restraints. As in case of 13merHNF [203], a single structure was not sufficient to

describe the data found in the NOESY spectra. Therefore an ensemble of 100 structures

was calculated for each orientation and the ten energy-lowest, violation-free structures

were chosen to obtain averaged structures for both. Further details about the Simulated

Annealing simulations can be found in section 3.1.9 and 3.1.9.
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5'
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Figure 4.5: Overlay of the 10 minimum-energy, violation-free structures. The left side
corresponds to the face-up orientation of the average structures (left in Fig.
4.4) and the right to face-down.

In Fig. 4.4 the averaged structures for the face-up (left) and the face-down (right)

orientation of 13merHCF are shown. The names were derived from the side where the

HCF methylene group faces to the reader. The chromophore in both structures fits nearly

parallel between the surrounding base pairs. A perturbing factor that limits a fully parallel

placing of HCF is the additional oxygen atom between the chromophore and the sugar.

On the other hand is the α-glycosidic-bond unproblematic to the structure, even in the

presence of the added oxygen. The 2-deoxyribofuranose and HCF are able to retain a

roughly perpendicular orientation to each other, in which H1’ and H1” would be in a plain

area with the chromophore, thereby allowing the sugar to flip from the minor to the major

groove side without inducing perturbations.
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Figure 4.6: Close view on the three central base pairs of 13merHCF. The face-up orienta-
tion is again at left and face-down at right. In order to fit the HCF into the
center of the helix, the 2’-deoxyribose compensates the α-glycosidic bond by
switching to a sugar conformation between O1’-endo and C4’-exo for face-up
and O1’-exo for face-down, respectively.

The structures that were combined to averaged structures are depicted as overlay in

Fig. 4.5. The set of face-up structures on the left sum up to a root mean square deviation

(RMSD) of 0.41 and to 0.45 for the face-down set, respectively. The biggest contribution

to the RMSD value comes from the abasic site. Single structures with different place-

ment of the abasic site in comparison to their corresponding averaged structures can be

found in both orientations. Without a nucleobase attached to the 2-deoxyribofuranose

the NOE-walk along the abasic strand is interrupted, which means that interresidual dis-

tance NOEs are missing and hence the flexibility of the abasic site cannot be restrained by

experimental data. As a second consequence of the missing base, a preferred orientation

of the chromophore through potential hydrogen bonding or sterical interactions is also

missing.

The only interactions that actually limit the rotation around the C2-O2-bond are stack-

ing interactions with the neighboring bases. In Fig. 4.6 a close view of the three central

base pairs is shown. For both orientations stacking with adjacent bases was found. In

face-up position the chromophore stacks mainly with adenine residue 6, while the face-

down conformer favors adenine 8. Additional stacking to the corresponding thymine T21

and partly T19 of the abasic strand suggests a possible contribution to duplex stability,
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4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF

which will be topic of the melting experiments in the next section. Moreover, it becomes

clear how the 2’-deoxyribose compensates the α-glycosidic bond in the HCF nucleotide.

For example, the sugar of adenine A6 retains the usual C2’-endo conformation of B-DNA,

while the 2’-deoxyribose of HCF switches to a conformation between O1’-endo and C4’-exo

for face-up and O1’-exo for face-down, respectively.

Up to this point 13merHCF clearly resembles 13merHNF, and due to the fact that this

was already expected at the beginning of the NMR experiments, a small detail besides

the functional group was changed during sample preparation. More precisely, the concen-

tration of duplex DNA had been raised from 3 mM in 13merHNF to 5 mM in 13merHCF.

The intention was to verify the RDC measurements, which may have suffered from one of

two major drawbacks. The first is hidden in the name Residual Dipolar Couplings. The

word residual points out that in RDC measurements only a small portion of the sample

contributes to the measured anisotropy, which is induced by weak alignment of the sam-

ple. This adds to the demand for high precision (1 Hz) in a highly viscous sample, thus

making RDC measurements a challenging task. Is in consequence only a limited number

of suitable RDCs available, a second drawback has to be considered. As outlined in section

2.4, at least five RDCs are necessary to determine a single angle in the molecular frame.

The general degeneracy of a single RDC value limits the usability as restraint in molecular

dynamics simulations. In case of the 13merHNF sample only 19 RDC values were part of

the structure refinement. The question which arose at that time was, is the compatibility

of the measured RDC values to both orientations a consequence of the parallel orientation

of the chromophore or caused by degeneracy of the few restraints? In the latter case,

it follows that potential bending of the duplex has not been detected, due to a lack of

experimental data.

In the highly concentrated 13merHCF solution, 38 RDCs were found which is twice

the number for 13merHNF. The experimental values were then plotted against predicted

values of the averaged structures in Fig. 4.7. The results agree well with both structures

and support the previous finding, according to which the RDC values are compatible

with both orientations. However, a high concentration of duplex DNA is neither always
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Figure 4.7: Pales [268] plots of experimental RDCs against predicted values of the 13mer-
HCF structures (face-up left, face-down right). Both plots look nearly iden-
tical, due to degeneracy of RDCs (see sec. 2.4). In case of 13merHCF, both
conformations have nearly the same orientation relative to the helical axis
(roughly perpendicular), so the same set of values can describe both confor-
mations.

available nor desirable for a unknown structure. A side effect that can be observed in such

samples are unusual cross-peaks in the NOESY spectrum. At first sight they might be

misidentified as spin diffusion signals, but in that case the intensity of their signal would be

sensitive to the mixing time. With the help of back-calculated NOESY spectra, depicted

in Fig. 4.8, those cross-peaks can be explained as well as the necessity for two orientations

of the chromophore. The upper panel of Fig. 4.8 presents the region where H1 and H3

of HCF meet the H1” of their backbone. The black lines mark the experimental NOESY

data with equal integrals of intensity for both peaks. The different line shape of the H3

signal is caused by coupling with the neighboring H4 proton. The back-calculated face-up

spectrum (green) can only cover the H1/H1” cross-peak, while the face-down orientation

(red) only covers the H3/H1” signal, so both conformers are required to complete the

experimental NOESY spectrum. The reason for this is the strong distance change upon

rotation. In close proximity the distance is roughly 2 Å which results in a strong signal,

while after rotation the weak intensity of a 4.5 Å distance is observed.

The lower panel of Fig. 4.8 allows to compare the whole H6/H8 to H1’ region between

all NOESY spectra. It is not surprising that they describe most of the signals in the
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4.1 2-Hydroxy-7-carboxyfluorene - 13merHCF

same fashion, but in this picture the two differences are of greater interest. The first

deviating signal is the (red) HCF-H8/H1’-T21 cross-peak that is only present in the face-

up orientation. In contrast to the H1/H3 pair the corresponding H6 atom is in both

orientations more than 5 Å away from H1’-T21 and therefore not visible, due to the missing

symmetry of HCF around the long axis. However the most interesting signal is the (black)

C26-H6/G1-H1’ cross-peak which is only present in the experimental NOESY spectrum.

The distance corresponding to this assignment would cover 11 Å in both orientations. An

explanation via spin diffusion would involve too many atoms and is not reasonable. The

real reason for this very unusual peak is the high concentration of 13merHCF as mentioned

before, since it is not an interresidual cross-peak between two strands of a single duplex.

The effect is known as “end-to-end” stacking and was first described by Nakata et al. [271],

who observed long rods of stacked oligonucleotides. In fact, C26-H6/G1-H1’ assigns atoms

of two different duplexes and therefore should be named “interduplex” cross-peak. Such

peaks raise the complexity of the spectrum and one should be aware of it when assignment

reaches the helix ends.

73



4 Results and discussion

HCF H3/H1'‘ HCF H1/H1'‘

C26-H6/G1-H1'

HCF-H8/H1'-T21
face-up only

Figure 4.8: NOESY back-calculations of both conformers overlaid with experimental data.
The face-up spectrum is colored red, the face-down spectrum green, and the
experimental spectrum black. Top: spectra of both conformers are needed to
simulate the cross-peaks of the experimental spectrum. Bottom: overlay of
the H6/H8 to H1’ region. The cross-peak marked with the read arrow is only
visible in the face-up orientation. An interduplex cross-peak that indicates
“End-to-end” stacking is marked with a black arrow.
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Figure 4.9: Absorption change of ds13merHCF upon melting, when raising temperature
from 25 ℃ (blue) to 90 ℃ (red line; cT = 45 μM). Spectra are shown for an
optical path length of 2 mm. For better comparison they are also shown on
an expanded ordinate scale (labeled “10x”).

4.1.3 Duplex melting experiments

A sample of double-stranded 13merHCF (having the sequence composition shown in Fig.

4.1) was prepared in a water/phosphate buffer (10 mM NaH2PO4, pH = 7) with 150

mM sodium chloride. Measurements were performed in a cuvette with 2 mm optical path

length. A total concentration cT = 45 μM of single strands was estimated from maximum

absorption around 260 nm at 90 ℃. 14 absorption spectra between 25 and 90 ℃ were

recorded and corrected for density change. The resulting spectra are shown in Fig. 4.9,

including a ten-times magnification of them (labeled “10x”).

The thermodynamics of duplex formation is usually examined by “melting curves” mea-

sured at a single wavelength. In this work, however, full absorption spectra were measured
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Figure 4.10: Weighted spectra of 13merHCF, as used in SVD. At wavelengths longer than
300 nm, absorbance values were multiplied by a factor ten. In this way the
absorption change of DNA (around 260 nm) and of the HCF chromophore
(around 330 nm) are given equal importance; otherwise the DNA band would
dominate the analysis.

at different temperatures to allow a more detailed description of the melting process. The

basic idea is to take advantage of the full spectral window shown in Fig. 4.10. Here

we see the absorption change of the DNA band on the left side and the corresponding

change of HCF on the right. Such weighted spectra are needed to treat the absorption

change of the DNA (around 260 nm) and of the chromophore (around 320 nm) on the

same level; otherwise the DNA band could dominate in the Singular Value Decomposition

(SVD). This method searches for principal components in the entire spectral window (see

chapter 2.6). In other words, “melting curves” for every single wavelength are analyzed in

order to find temperature dependent components which describe the melting of the double

strand and of the chromophore. A quick inspection by eye shows already that the HCF
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Figure 4.11: Basic spectra are shown at left (Ucut.Scut.F in 2.6). The first component
(red) was set to be the 90 ℃ spectrum, i.e. it represents the fully separated
single strands. The right panel shows the thermodynamic curves correspond-
ing to the basic spectra (P in 2.6). Upon hybridization, the amplitude of the
first-component spectrum (red) decreases from 1 to 0.77 while that of the
second component increases from 0 to 0.23.

probe combines a blue shift with hyperchromism upon melting. Interestingly, only two

components are needed to describe the hyperchromism of the bands due to DNA and to

the built-in chromophore at the same time. Fig. 4.11 shows the basic spectra on the left

(Ucut.F in 2.6) and the corresponding thermodynamic curves on the right (P in 2.6). The

first component (red) was set to be the 90 ℃ spectrum. Note that the thermodynamic

curves were multiplied with a scale factor so that the amplitudes fall into the range from

0 to 1 (the corresponding basic spectra were scaled with the inverse factor). Upon duplex

formation, the one shown in red experiences an amplitude decrease of 0.23. By design,

the blue curve has the same amount as amplitude increase (Fig. 4.11).

A SVD performed only on the DNA absorption band also reveals two components. But

in that picture (which is not presented here) both components describe the same melting

behaviour and melting point, due to the fact that the absorbance shape around 260 nm is

a mixture of absorption bands from the four natural nucleotides [19]. Therefore the effect of

hyperchromism is also a mixture: one component is related to the lineshape of the single

strands at high temperature, and the other transforms it to the lineshape of the duplex

state upon hybridization. But let us return to the combined analysis in figure 4.11. Red
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Figure 4.12: Thermodynamic curves of 13merHCF, scaled to the measured amplitude
change of 0.23. The left panel shows SVD data (points) and fits with a two-
state model including stacking (lines). The effect of stacking, assumed to be
linear, was combined with the sigmoidal line shape of the two-state model.
The two-state model part is plotted separately (right panel), representing a
melting curve of hyperchromism without the influence of stacking (i.e. the
degree of dissociation). The grey vertical lines indicate the melting points
(derived from the right panel). The strands as a whole (red) melt at 59.7 ℃
and the HCF region (blue) at 61.1 ℃.

lines denote the hybridization of the whole strand, while the blue lines are connected to

the chromophore and upon duplex formation affect the lineshape of the DNA absorption

band. Keep in mind that the latter is a mixture of bands, and their carriers are not equally

distributed over the double strand. More specifically, the HCF chromophore is surrounded

by A-T base pairs. The NMR solution structure indicates additional stacking interactions

with T21 and partly T19 of the opposite strand (see Fig. 4.6). Therefore an interaction

between HCF and all adjacent base pairs, strong enough to have an observable effect on

the DNA absorption band, seems likely.

Based on equation 2.33, a two-state model with stacking interactions was applied to the

melting curves in figure 4.11. The resulting fits with stacking interactions (left) and the

degree of dissociation (i.e. with the optical effects of stacking removed, right) are shown

in figure 4.12. As stated before, the red lines are related to the whole strand and the blue

ones to the HCF part. The melting points are marked by grey vertical lines and were

derived from the right part of figure 4.12. The parameters for DNA (cT = 45 μM) are Tm
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= 59.7 ± 0.1 ℃, ΔH◦ = -340 ± 30 kJ/mol, ΔS◦ = -920 ± 80 J/(K mol) . The parameters

for HCF are Tm = 61.1 ± 0.1 ℃, ΔH◦ = -360 ± 20 kJ/mol, ΔS◦ = -1000 ± 40 J/(K mol).

The 1.4 ℃ higher melting point of HCF suggests that the middle of the strand melts

last. The slightly steeper slope of the duplex state part (blue line on the left of Fig. 4.12)

indicates that DNA stacking is more cooperative, even though the overall melting point is

lower compared to the 63.3 ℃ of 13merRef [129] (cT = 23.7 μM) with a central A-T base pair.

These findings agree with the NMR structure as well as with Kool et al., who found that

large aromatic hydrocarbons like the Pyrene nucleoside [97] or later the β-C-Porphyrinyl

nucleoside [162] help to maintain stacking in both strands of a duplex. In the case of Pyrene

opposite an abasic site (Tm = 41.6 ℃), they observed a thermal stabilization between 18

and 23 ℃ compared to natural nucleobases in the same position (T,C,A or G opposite

abasic site), furthermore, it fits perfectly in the melting point gap between their natural

control duplex with central A-T pair (Tm = 43.2 ℃) and a shortened duplex in which

the central base pair is deleted (Tm = 39.9 ℃). The last point is not surprising, since the

stabilizing effect depends on stacking with adjacent base pairs. When the ongoing melting

process causes them to unstack, the additional stabilization will be lost.
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4.2 6-Hydroxy-quinolinium - 13mer6HQ

13mer6HQ incorporates N-methyl-6-quinolone (MQ) as artificial nucleobase in the center

(Fig. 4.13). MQ was introduced by Ernsting et al. [122] as polarity probe for femtosecond

solvation experiments. In this first study, where pure water and methanol were used

as benchmark solvents, it was shown that the time-resolved Stokes shift of fluorescence

reflects the infrared spectrum of the surrounding liquid. MQ is a betaine that has several

advantages over other probes. Betaines are not outwardly charged, so they do not polarize

the environment more than is needed for the experiment. Additionally, MQ is free of

internal vibrational modes that could interfere with solute motion (see sec. 1) and the

solvent polarity couples mainly through dipole moment change. More interesting for this

work is the property that the molecule is small enough to replace natural bases in nucleic

acids or tryptophan in proteins.

This goal was reached in several steps. The first one was the measurement of the

disaccharide trehalose in a mixture with water and MQ as free probe [272]. This was

followed by the attachment of the MQ moiety to trehalose in order to allow measurement of

water molecules in the vicinity of the disaccharide [123,204]. The study uncovered problems

that occur when a betaine is linked to a biomolecule. The originally intended linkage

via N-carboxymethyl ester failed, due to unexpected high instability, but was successfully

replaced by direct N-alkylation of the quinoline derivative with trehalose triflate. Finally,

MQ was incorporated into DNA by Felix Hövelmann, who continued previous works of

Lucas Bethge in the group of Oliver Seitz.

6-Hydroxyquinoline (6HQ) was chosen as precursor for the synthesis of 13mer6HQ, but

two critical issues need to be considered. The first one is the linkage of the quinoline

moiety to the backbone. The native linkage via 2-deoxyribose would be too labile due to

the positively charged chromophore. The second issue is the limited choice of hydroxyl

protective groups. It was discovered that any protecting group placed on the hydroxyl

group became unstable upon alkylation on the nitrogen, prohibiting the use of acyl or silyl

groups.
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Figure 4.13: Structure of 13mer6HQ. For convenience , the 6HQ moiety including R-
glycerol backbone is depicted in red and the complementary cytosine in green.
The correspondingly colored letters X and Y mark their positions in the
duplex strand.

As first alternative to 2-deoxyribose a L-Serinol linkage was tested, but proved to be

too labile, so the product could not be isolated. Then the strategy was changed towards

a carbacycle, which is missing the endocyclic oxygen, and could therefore overcome the

stability problem. However the low yield and poor solubility of intermediate compounds

demanded a second change of the strategy. In order to finally overcome the problem of

labile linkers, the tethering of 6HQ via a short alkyl chain was chosen, resulting in R-

glycerol-6HQ after four steps. The glycerol backbone is advantageous for the following

reasons: First of all, it is known to produce intact duplex structures (GNA [73]). Secondly,

the alkyl linkage in R-glycerol-6HQ should be sufficiently stable to survive the conditions

during DNA-synthesis, cleavage and purification. Finally, the allyl proctection group on

the hydroxyl group will be sufficiently stable and can be cleaved on the CPG after DNA

synthesis.

R-glycerol-6HQ was incorporated as central nucleotide of the sequence shown in Fig.
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Figure 4.14: NOE-Walk in 13mer6HQ. The assignment of the H6/H8 (abscissa) and H1’
(ordinate) region in the D2O-NOESY spectrum is shown. The red line de-
picts the NOE-walk for the 6HQ containing strand and the green line for the
complementary strand. The starting point (5’-end) of both walks was de-
noted by a square, while the endpoint (3’-end) is indicated by an arrowhead.
For clarity only the positions of intraresidual H6/H8-H1’ cross-peaks were
labeled. The introduction of R-glycerol, depicted as Q7, made it necessary
to extend the spectral region in both dimensions.

4.13 and Cytosine was chosen as potential hydrogen bonding partner to allow base pair

formation. R-glycerol for the backbone was selected after simulations of both configura-

tions using Hyperchem 7.5, which revealed a slightly better energy for R. Up to now, only

crystal structures of duplex strands containing a full GNA backbone are known [273,274],

so the solution structure of a DNA duplex with a GNA monomer in the center will be of

general interest.

4.2.1 Chemical shift analysis

The assignment of the spectra followed the guidelines described by Roberts [213] and Bloom-

field et al. [19] as before. In contrast to 13merHCF, complete "NOE-walks" for both strands
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of 13mer6HQ could be achieved. The D2O-NOESY spectrum of 13mer6HQ is shown in

Figure 4.14. The walks are marked red for the 6HQ strand and green for the complemen-

tary strand, respectively. The H2/H1’ signal of R-glyerol-6HQ (denoted as Q7) can be

found in the upper left corner, which made it made it necessary to extend the spectral

region in both dimensions. The strong low-field shift of the H2 hydrogen (8.82 ppm, see

Tab. 4) can be explained by deshielding through the adjacent, positively charged nitrogen,

which adds to the already observed ring current deshielding in aromatic systems.

The other unusual shift, that should be noted, is the heavily high-field shifted cross-

peak A8, which is now in the center of the H6/H8 to H1’ region. The signals of adenine

H8/H1’ are usually found on the left, which is true for the remaining adenines A6, A16

and A24. The explanation for the shift can be derived from Fig. 4.17 of the solution

structure, where a close view on the three central base pairs is shown. Here one can see

that the five-membered ring of the adenine A8 stacks very well with 6HQ, which shields

the magnetic field in the vicinity of the adenine H8, causing a high-field shift of the A8

cross-peak. In contrast to this, a usual chemical shift is observed for the H8 hydrogen

of adenine A6. The reason for this is that the stacking with 6HQ is centered around the

six-membered ring of adenine and hence far away from the H8 hydrogen.

The chemical shift deviations were calculated the same way as for 13merHCF, but this

time compared to native strands, which contain either GC or AT as central base pair.

One has to consider that the complementary strand is now a native strand, which is

furthermore identical to the corresponding strand in the reference DNA with GC in the

center (13merRef(GC)). It is then not surprising that the CSDs between the complentary

strand and 13merRef(GC) are relatively small and the only larger difference to the AT

reference strand (for convenience 13merRef(AT)) occurs at residue 20, where the cytosine

of 13mer6HQ is compared to a thymine in 13merRef(AT). The CSD pattern for the 6HQ

strand is similar to 13merHCF (see Fig. 4.3). When taking into account that large CSD

at position 7 is mainly caused by the completely different backbone (GNA, DNA) and the

different nucleobases (6HQ, G and A), one can see that 13mer6HQ shows similar behaviour

in the CSDs for the residues 5,6 and 8 . Since the reference strands are known to comprise
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Figure 4.15: CSD comparison between 13mer6HQ and different reference strands, which
contain either GC or AT as central base pair. Chemical shift differences of
all protons belonging to a single residue but different DNA samples were
summed and are given as absolute values.

usual B-DNA helices, this may indicate structural deviation in the 6HQ strand but not in

the complementary strand.
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Figure 4.16: Averaged structure of 13mer6HQ. The averaged structure on the left was
constructed from the 10 best-energy and violation-free structures on the
right. The 6HQ is marked red, while the corresponding colors for A, G, C
and T are blue, yellow, orange and violet.The vertical arrow indicates the
point of view in Fig. 4.6 and the horizontal one in Fig. 4.19. RMSD among
all atoms besides methyl protons is 0.36 Å.

4.2.2 NMR solution structure

The NMR solution structure was determined from experimental NOE and residual dipolar

coupling data (see sec. 3.1.9). All NMR resonances could be assigned with the exception of

some severely overlapped H5’/H5” signals. Integration and conversion yielded 418 distance

restraints, which were used in a first step to generate a start structure. Afterwards, a

total of 25 1JCH RDC restraints were included into the refinement using a single floating

alignment tensor. The 10 best-energy, violation-free structures out of 100 calculated were
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Figure 4.17: Close view on the three central base pairs of 13mer6HQ. The 6HQ moiety
stacks well with the five-membered ring of adenine A8 and the six-membered
ring of A6.

used to construct the averaged structure, which is shown in Figure 4.16. The root-mean-

square-deviations (RMSD) among all hydrogens besides methyl protons are 0.36 Å(see

sec. 3.2.6).

The deprotonated 6-Hydroxyquinolinium fits perfectly into the helical fold (see Fig. 4.16

and 4.17), other conformations, like in 13merHCF, were not observed. The distance of

1.79 Å between the 6HQ oxygen and amino H42 of cytosine indicates the desired hydrogen

bond (Fig. 4.18), thus forming an artificial base pair. Interestingly, 6HQ does not face

the cytosine with its short side (along carbons C6-C7), like the purines (A,G) do, it

presents instead the long side (carbons C3 to C6). Two reasons are conceivable, which

may complement each other. One is the linkage to the backbone, the position of hydrogen

N9 in the five-membered rings of purines is more compatible to the C2 position in 6HQ

than to nitrogen N1. Moreover, glycerol is missing a bond in comparison to the size of

2-deoxyribose, which could be denoted in terms of sugar nomenclature as attachment of

6HQ to C2’ and not C1’. However, the missing bond is balanced by the size and direction
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1.79 Å

Figure 4.18: Close view on the central base pair of 13mer6HQ. 6HQ forms a base pair
with cytosine and a single hydrogen bond. Interestingly, 6HQ presents its
long side to the cytosine and not the short one along carbons C6-C7.

of 6HQ.

Figure 4.19 is a side view of the three central base pairs as indicated by the vertical

arrow in Fig. 4.16. The white arrow marks the helical long axis of the double strand, while

the red arrow indicates the deviating direction of the stacking in adenine A6, 6HQ and A8

(in front). The nucleobases in the back (T19, C20, T21) are not affected and stack along

the helical axis. It is known that double stranded GNA shows a strong inclination between

backbone and nucleobase, which might explain the observation that neither the R- nor

S-enantiomer of GNA cross-pairs with DNA [275]. However, the 6HQ strand only comprises

a single GNA monomer and it has been demonstrated that 6HQ forms a base pair with
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A6

A8

Figure 4.19: Side view on the three central base pairs of 13mer6HQ. The face-up orienta-
tion is again at left and face-down at right. The base A6 - 6HQ - A8 are in
front and the corresponding T21 - C20 - T19 in the back. The short length
of glycerol in comparison to a 2-deoxyribose backbone leads to a differing
stacking axis (red arrow), which is in usual B-DNA identical to the helical
axis (white arrow).

cytosine, so this cannot be the explanation. Unfortunately, the glycerol backbone provides

only three bonds between O3’ and O2’, which means that a second bond compared to 2-

deoxyribose is missing. This time, the distance is covered by a small inclination between

the the sugar of the adjacent adenines and the helical long axis. Consequently, since the

nucleobases retain their roughly perpendicular angle relative to the sugar, they form the

differing stacking axis with 6HQ. A comparison between 13mer6HQ and our reference

DNA 13merRef [129], where the central base pair is A:T, shows that the distances between
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Figure 4.20: Pales [268] plots of experimental RDCs against predicted values of the
13mer6HQ structure. The predicted values, which were directly derived from
the averaged structure, agree well with the experimental RDCs.

C3’ of adenine A6 and C5’ of adenine A8 are 10.18 Å in 13merRef and 8.98 Å in 13mer6HQ,

respectively. The resulting difference of 1.2 Å and the differing stacking axis prove that

the missing bond length is crucial for the B-DNA backbone.

The Pales [268] plot in Fig. 4.20, which compares experimental RDCs with predicted

RDCs derived from the average structure, confirms that the obtained structure is part of

the experimental data.

Finally for this section, the validity of the 13mer6HQ average structure will be checked

using the back-calculated spectrum in Fig. 4.21. The experimental NOESY spectrum

(D2O) is depicted in black and the back-calculated in red, respectively. On the left half,

a series of back-calculated cross-peaks can be found that appear not to be present in the

experimental spectrum. In fact, the signals are present, but suffer from a low signal-to-

noise ratio. More interesting is the second C26-H6/H5 cross-peak on the right, which

is shifted to higher field in both dimensions, due to unstacking from the helix. The

occurrence of this cross-peak indicates fraying at the helix ends. The other cross-peaks of

the back-calculated spectrum agree well with the data.
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Second C26-H6/H5.The exp. cross-peaks were too
weak to be displayed.

Figure 4.21: NOESY back-calculation (red) overlaid with experimental data (black). The
left side shows back-calculated cross-peaks, which are apparently missing in
the experimental data. In fact, weak signals are present in the data, but
suffer from a low signal-to-noise ratio. The cross-peak on the right marks
the unstacked H6/H5 signal of C26, which indicates fraying of the helix ends.
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Figure 4.22: Absorption change of ds13mer6HQ upon melting, when raising temperature
from 10 ℃ (violet) to 90 ℃ (red line; cT = 131 μM). Data from the 1
and 10 mm cuvettes are labelled “1x” and “10x”, respectively. A ten-times
magnification of the latter is labelled “100x”.

4.2.3 Duplex melting experiments

A sample of double-stranded 13mer6HQ was prepared in a water/ammonia mixture with

pH = 8.5 and salt concentration of 150 mM sodium chloride. Measurements were per-

formed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical path

length. A total concentration cT = 131 μM of single strands was estimated from maxi-

mum absorption around 260 nm at 90 ℃. A set of 17 spectra between 10 and 90 ℃ were

recorded and corrected for density change. Results are shown in Fig. 4.22, where the data

from the 1 and 10 mm cuvettes are labelled “1x” and “10x”, respectively. A ten-times

magnification of the latter is labelled “100x”.
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Figure 4.23: The UV part of the spectrum was used for SVD of the DNA absorption peak.
The first spectrum is violet (10 ℃) and the last one is red (90 ℃).

Analysis of the 13mer6HQ DNA band

The changes of the DNA peak with increasing temperature (10 - 90 ℃) were quantified

in a spectral window from 300 to 210 nm (see Fig. 4.23). The UV absorption spectra

in this range were analyzed for principal components via Singular Value Decomposition

(SVD). Two components are needed to describe the hyperchromism. Fig. 4.24 shows the

basic spectra on the left and the corresponding thermodynamic curves on the right. The

first component (red) was set to be the 90 ℃ spectrum. Note that the thermodynamic

curves were multiplied with a scale factor so that the amplitudes fall into the range from

0 to 1 (the corresponding basic spectra were scaled with the inverse factor.) Upon duplex

formation, the red one shows an amplitude decrease of 0.24. By design, the blue curve

shows the same amount as amplitude increase (Fig. 4.24).
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Figure 4.24: Basic spectra are shown left. The first component (red) was set to be the
90 ℃ spectrum, i.e. it represents the fully separated single strands. The
right part shows the thermodynamic curves related to the basic spectra.
Upon hybridization, the amplitude of the first-component spectrum (red)
decreases from 1 to 0.76 while that of the second component increases from
0 to 0.24.

Like before (chapter 4.1.3) a two-state model with stacking interactions [19] was applied

to the thermodynamic data (Fig. 4.25). It assumes that the temperature (T ) dependence

of the extinction coefficients is linear (ε[ss] = m[ss]T + b[ss]) and, in addition, different

for the single- (ss) and double-stranded (ds) forms. It is not necessary to fit the linear

parts separately, therefore Equation 2.33 can be directly applied (as introduced in 2.7)

to the data (dots) shown in Fig. 4.25. The thermodynamic parameters for the red line

are ΔH◦ = -320 ± 20 kJ/mol, ΔS◦ = -900 ± 50 J/(K mol) and ΔH◦ = -330 ± 30

kJ/mol, ΔS◦ = -930 ± 70 J/(K mol) for the blue one, respectively. The values for both

lines are equal in the range of their errors. A unique melting point of 53 ± 0.1 ℃ is

noted at the total concentration cT = 131 μM of single strands. Remember that in case

of 13merHCF a second melting point was observed, reflecting the HCF chromophore in

its environment. The 53 ℃ of the 13mer6HQ DNA absorption band can be compared

with the 63.3 ℃ of 13merRef [129] (cT = 23.7 μM, central A-T). The observed thermal

destabilization, corresponding to a melting-point decrease of 10.3 K, is in fact a minimum

value. This is because the total strand concentration of 13mer6HQ (owing to the weak

absorbance of the 6-Hydroxy-quinolinium chromophore) is more than 5 times higher than
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Figure 4.25: Thermodynamic curves, scaled to the measured amplitude change of 0.24.
The left panel shows SVD data (points) and fits with a two-state model
including stacking (lines). The two-state model part is plotted separately
(right panel), representing a melting curve of hyperchromism without the
influence of stacking. In contrast to the initial curves on the left, a unique
melting point of 53 ℃ for both principal components is estimated (grey
vertical lines).

was used for 13merRef. A melting point of 67 ℃ can be estimated for 13merRef at cT

= 131 μM (of 13mer6HQ) by using the Nearest Neighbor Model [255], the corresponding

melting-point decrease is then in a range of 14 K.
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Figure 4.26: Basic spectra for the duplex part are shown left. The first is arbitrarily
set to the absorption spectrum at 30 ℃ (red). The right part shows the
corresponding amplitude curves. Dots represent the experimental data and
lines the fit and extrapolation up to 90 ℃.

Dissection of the 6-Hydroxy-quinolinium band

The approach for this part is similar to the previous description, and the main goal is

to observe the hybridization of the chromophore in the visible spectral region. For this

purpose the spectral range, which was subjected to analysis, was restricted to λ > 340

nm where the absorption by the quinolinium chromophore should be dominant. The

first examination via SVD revealed at least three principal components. They all show a

melting curve with negative slopes for the linear parts. Inspection of the basic spectra led

to the conclusion that two different species are involved in the melting process, since the

change of the chromophore absorption could not be explained by simple hyperchromism

with blue shift of the peak, as observed before with 13merHCF. At this point the new

approach of the double SVD-assisted two-state model was developed. The theoretical

background was already described in 2.7. Since melting/hybridization occurs in a small

temperature range around 50 ℃, one can try to understand the behaviour of the duplex

separately at low temperature, and that of the fully separated single strands at high

temperature. In each of these two limiting temperature intervals, a SVD analysis of

the absorption spectra in Fig. 4.22 is made. Knowing the change of absorption with

temperature for both, an extrapolation can be done from either side into the middle, i.e.
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Figure 4.27: From the known duplex region (10-30 ℃) onwards, the next twelve spectra
were extrapolated (35 up to 90 ℃) to simulate the behaviour of a non-melting
double strand.

in the direction where strand separation occurs. For example, the absorption spectrum of

the double strand can be simulated for 60 ℃ where, in reality, the separation into single

strands is almost complete. At any given temperature, the observed spectrum should be

a linear combination of the two extrapolated spectra, i.e. of the separate strands and of

the duplex. From the corresponding fit the degree of dissociation α is obtained. In other

words, extrapolations with the help of basic spectra (from SVD) replace the linear parts

of the two-state model used above. As a result we obtain a dissociation curve which is

shown in Fig. 4.31 below.

The first step on that way is the extrapolation of the duplex part. The spectra from

10 to 30 ℃ were used, and they could be described by two principal components in the
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Figure 4.28: Basic spectra and amplitudes as in Fig. 4.26, but for the separated single
strands. The first basic spectrum is taken to be the absorption spectrum at
70 ℃ (red).

SVD. Both thermodynamic curves can be described by straight lines, which are then

used to extrapolate the thermodynamic behaviour up to 90 ℃ (Fig. 4.26). The second

principal spectrum in Fig. 4.26 was smoothed (by a Wiener filter [276]) to reduce noise when

extrapolating to high temperature. Fig. 4.27 shows the resulting change of absorption for

the duplex, as extrapolated for the whole temperature range.

The same procedure was then performed for the single strands, using the last 4 spectra,

i.e. for temperature from 70 up to 90 ℃. In this way Figs. 4.28 and 4.29 are obtained

(analogues to Figs. 4.26 and 4.27, respectively). A look at the extrapolated spectra

(Fig. 4.27 and 4.29) reveals a similar behaviour compared to the HCF chromophore,

which underwent a blue shift and hyperchromism on the blue side of the spectrum upon

melting. In addition, the missing absorption band around 430 nm in the duplex state

spectra (Fig. 4.27) is now present in the extrapolated single strand spectra (Fig. 4.29).

The band indicates the deprotonated state of 6HQ, due to the basic buffer (pH = 8.5),

and disappears when the 6HQ-C base pair and hence the hydrogen bond is formed.

As last step before the two-state model can be applied, a linear combination based on

equation 2.34, where α is the fraction of extrapolated single strand spectra S[ss](T ), is

used to build the measured spectra M(α, T ) around 400 nm. In other words, the linear

equation terms of (2.33) are substituted with the extrapolated spectra S[... ](T ).
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Figure 4.29: The known region is now the high temperature part (70-90 ℃), where fully
separated single strands are assumed. In this case, extrapolation from 65
℃ down to 10 ℃ simulates two strands which cannot hybridize at lower
temperatures.

The α values produced, using equation (2.34), are plotted as dots in Fig. 4.31. Hence

the extrapolated spectra are already scaled to the measured data; the two-state model

defined in equation (2.32) can be directly applied (line in Fig. 4.31). Best fit parameters

are ΔH◦ = -365 ± 5 kJ/mol and ΔS◦ = -1030 ± 20 J/(K mol) for the hybridization.

The melting point is 0.1 ℃ higher (53.1 ± 0.1 ℃) than the 53 ℃ for the complete strand,

which is a negligible difference. The fact that the melting points for the whole strand and

the built-in chromophore are the same and more than 10 K lower than in 13merRef gives

no evidence for local melting (e.g. bubble formation) and is in good agreement with the

NMR solution structure. Figure 4.19 shows the differing stacking axis in the middle of

the modified strand, caused by the short glycerol linker. In combination with the limited
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Figure 4.30: Overlay of linearly combined spectra (dashed black lines, eq. (2.34)) and

measured data (blue 10 - 90 ℃ red) around 400 nm (10 mm path length).
On the right, for a better pairwise comparison, each data curve and its linear
combined spectrum is plotted with an offset.
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Figure 4.31: The α values of the linear combined spectra are shown as points, whereas
the line represents the applied two-state model for α. The resulting melting
point is 53.1 ℃.

flexibility of the small linker, this promotes melting of the strand as a whole at lower

temperature. Nevertheless, the designated 6HQ-C base pair was formed and proven by

the missing absorption band at 430 nm in duplex state, which in turn became accessible

by the new analysis method.
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Figure 4.32: The absorption spectrum of single-stranded 13mer6HQ, measured from 10
(blue) to 80 ℃ (red), is shown on the left hand side. The extrapolation on
the right was performed in the same way as the separated strands form of
ds 13mer6HQ. Therefore, the 70 ℃ spectrum (orange) was set to be the first
basic spectrum and all spectra with higher temperature were used as dataset
for the extrapolation to lower temperatures.

Comparison of the measured 13mer6HQ single strand with its extrapolated spectrum

A single strand of 13mer6HQ was measured prior to the double strand. The data can be

used to compare our SVD-assisted extrapolation on the isolated single strand (see right

part of Fig. 4.32) with its real spectra at lower temperatures. The aim is to get an idea of

the robustness and possible limits of the extrapolation. The extrapolation was performed

the same way as on the single strand form of ds 13mer6HQ. Therefore, the 70 ℃ spectrum

(orange) was set to be the first basic spectrum, which is in addition the first data point

where the fully single stranded form of ds 13mer6HQ can be assumed (see Fig. 4.31). In

contrast to the five high temperature data points used in Fig. 4.28, only three spectra

were available in this case, due to end of data acquisition at 80 ℃.

Figure 4.32 shows measured (left) and extrapolated data (right) next to each other. It

is easy to notice that the extrapolation increasingly differs from the measurement at lower

temperatures. Due to the fact that in an eventual application the duplex form would

be dominant at lower temperatures, the extrapolation only needs to be exact for spectra

which are largely dominated by the single stranded form. The overlay in figure 4.33 allows

a direct comparison between the measured and extrapolated data. From 80 down to 55
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Figure 4.33: Overlay of the extrapolated spectra (dashed black lines) and measured data
(blue 10 ℃ to red 80 ℃). For a better pairwise comparison, each data curve
and its extrapolated spectrum is plotted with an offset. From 80 down to 55
℃ (6th line from top) there is a good agreement. Deviations become relevant
at 50 ℃ (7th from top) and rise more and more when going downwards.
However, the effect on the linear combined spectra (in Fig. 4.30) is small,
when taking the melting point of the double strand (53.1 ℃, Fig. 4.31) into
account, which states that for 50 ℃ and below the duplex form is dominant.

℃ (6th line from top) there is a good agreement. The deviations become visible in the

50 ℃ spectrum and rise more and more when going downwards. However, at 50 ℃ the

duplex form is dominant and the upcoming deviations from the measurement cannot have

a visible effect on the linear combination of extrapolated spectra (see Fig. 4.30, the same

should be observed for the duplex part going to high temperature). In other words, the

transition of the DNA eliminates the rising error of the extrapolations as long as they are

both correct around the melting point.
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4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine -

13mer4AP-DAP

The 13mer4AP-DAP double strand was developed in cooperation with the group of H.-A.

Wagenknecht (Karlsruhe Institute of Technology). The artificial base pair in the center

comprises 4-aminophthalimide (4AP) and 2,4-diaminopyrimidine (DAP) as base surro-

gates. The 4AP chromophore is comparable in size to natural purines and shows remark-

able solvatochromicity, red-shifted fluorescence in polar solvents, and hydrogen bonding

capabilities [205]. Therefore DAP was designed as a potential counterbase, offering three

potential hydrogen bonding sites. Michael Weinberger (Wagenknecht group) was respon-

sible for the synthetic route of 4AP and Falko Berndt (Ernsting group) correspondingly

for DAP. Both synthetic routes [205] utilized stereoselective Heck-type palladium-catalysed

cross-coupling with 2’-deoxyribofuranoside glycal followed by stereoselective reduction

with NaBH(OAc)3. Both nucleosides were further processed to the corresponding phos-

phoramidites and subsequently incorporated via automated DNA synthesis.

The finally obtained double strand of 13mer4AP-DAP required some alterations in

the process of structure determination. As stated in the introduction (sec. 1.3), the

hydrolysis of the 4AP chromophore in water had to be addressed, especially under basic

conditions. A weak acidic buffer was chosen (pH 6.35), which extended the lifetime of

the 4AP mononucleotide from hours to a few days. As a consequence of this, it was

discussed that DAP might be protonated by the acidic buffer. A subsequent measurement

of 2,4-diaminopyrimidine absorption at different pH values revealed a pKa of 7.4 ± 0.1.

Hence the picture of the 4AP-DAP base pair presented in the introduction (Fig. 1.3)

was changed to that of Fig. 4.34. Furthermore it should be noted that only a small

amount of the 4AP strand was available, so that the same sample had to be used in all

experiments. In order minimize the time and sample preparation effort, a closed double

cuvette was used that offers 1 and 10 mm optical path lengths at the same time. In

addition to the customized cuvette, the order of experiments was reversed, so that the

optical experiments (absorbance, fluorescence etc.) were measured first, since their overall
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Figure 4.34: Structure of 13mer4AP-DAP. The 4AP moiety (red) was placed at position X
and the DAP (green) at Y, respectively. Please note the additional hydrogen
in DAP.

acquisition time was shorter than that of a single NOESY experiment. Moreover, it

was doubted that the sample amount would be sufficient for structure determination,

since the theoretically achievable maximal concentration was only 1.5 mM in a Shigemi

NMR tube (250 μl). In contrast to this, all previous samples were measured with at

least 3 mM concentration. The limiting factor for the sample concentration is the RDC

measurement, which requires much more nuclei in the center of the magnetic field than the

NOESY experiment, due to the principal concept of measuring residual dipolar couplings.

Even though that RDCs became a standard tool in structure determination, they are not

required to perform restrained Molecular Dynamics. As outlined in the introduction, this

method was invented to use only NOE distance restraints which is, of course, still possible.

So it was decided to omit the RDC experiment for the price of some quality, due to the

fact that RDCs can offer structural information without suffering from the limited range

of NOEs (< 5 Å). In the first cycle only a minimal set of NMR spectra was measured at

10 ℃ directly after the last optical experiment, just in case that 13mer4AP-DAP is not
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Figure 4.35: NOE-Walk in 13mer4AP-DAP. The assignment of the H6/H8 (abscissa) and
H1’ (ordinate) region in the D2O-NOESY spectrum is shown. Red lines mark
the NOE-walk for the 4AP-DAP containing strand and green lines for the
DAP strand. The starting point (5’-end) of both walks was denoted by a
square, while the endpoint (3’-end) is indicated by an arrowhead. Note that
the 4AP walk is interrupted at the modification site (marked by X), while
DAP (D20) is high-field shifted. For clarity only the positions of intraresidual
H6/H8-H1’ cross-peaks were labeled.

stable in the long term. Fortunately the sample remained stable, but the finally achieved

concentration was only 1.2 mM. However, the gained time window allowed for extensive

optimization of the pulse sequence and a high number of transients during the NOESY

experiment.

4.3.1 Chemical shift analysis

The assignment was achieved by standard methods [19,213] that were already described

for 13merHCF and 13mer6HQ. In Figure 4.35 both NOE walks are shown. The walk

of the 4AP strand (red) is interrupted at the 4AP site (like the HCF strand), while

the complementary strand resembles the 6HQ strand with shifted signals at the DAP
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Figure 4.36: CSD comparison between 13mer4AP-DAP and different reference strands,
which contain either GC or AT as central base pair. Chemical shift differ-
ences of all protons belonging to a single residue but different DNA samples
were summed and are given as absolute values.

modification. The interruption may indicate deviations from B-DNA stacking at the

4AP site, although the chromophore is linked to a conventional DNA backbone and its

H5 resembles the H6 of pyrimidine bases, whereas the interruptions in 13merHCF were

caused by the α-glycosidic bond.

In Fig. 4.34 the artificial base pair was depicted with three hydrogen bonds. Even

without knowing the structure, it is possible to analyze the hydrogen bonding pattern.

Imino proton signals in DNA double strands are usually observed at 12 ppm or higher,

when the proton is part of a hydrogen bond. Otherwise they are shifted high-field to

values around 10 ppm [213]. In case of 13mer4AP-DAP, a sole signal was observed in the
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latter region which indicates that a base pair is not correctly hydrogen bonded. Moreover,

4AP contains the only new imino hydrogen and its principle design differs from purines in

the sense that the five- and six-membered ring switched positions, so 4AP was suspected

to lack a hydrogen bond. It should be noted that a missing hydrogen bond in the center

of 4AP-DAP (see Fig. 4.34) also questions the existence of the other desired hydrogen

bonds.

The chemical shift deviations of 13mer4AP-DAP were calculated in comparison to native

strands (Fig. 4.36), which contain either GC or AT as central base pair. It must be

considered that the spectra were measured at 10 ℃ instead of 25 ℃ , therefore an overall

shift in all residues is observed, due to stronger stacking at lower temperature. A prominent

example is cytosine at position 26 (C26), which shows the largest CSD among all residues

far from modification sites. As stated in the end of section 4.2.2 of 13mer6HQ, C26 is

sensitive to fraying at the helix end, which is in case of 13mer4AP-DAP reduced, due

to the lower sample temperature. The deviations around DAP (20) are higher than the

average inside the double strand, but among all nucleobase analogues in this work they

seem rather small and this maybe related to the fact that DAP is also a pyrimidine like

thymine and cytosine. In contrast to this, 4AP shows the largest CSD to which all its

hydrogens contribute, especially the aforementioned H1. So it seems more and more likely

that 4AP will not take the desired position inside the helix.

106



4.3 4-Aminophthalimide and 2,4-Diaminopyrimidine - 13mer4AP-DAP

Figure 4.37: Assignment of two imino signal sets in 13mer4AP-DAP. Cross-peaks with the
same assignment are circled either yellow or blue. Top and bottom picture
represent the two conformations.

4.3.2 NMR solution structure

Two solution structures were found for 13mer4AP-DAP. In Figure 4.37 the reason for

this is depicted. Two sets of imino proton signals can be assigned for the central AT

base pairs. The region of the signals indicate correct hydrogen bonding pattern of these

base pairs in both conformations. Furthermore, both pairs are adjacent to the 4AP-DAP

pair, so that the conformational change should be found here. Two conformations with
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Figure 4.38: Averaged structures of 13mer4AP-DAP. The 4AP is marked red and the
DAP green, while the corresponding colors for A, G, C and T are blue,
yellow, orange and violet. The conformations were named after the number
of hydrogen bonds for the 4AP-DAP base pair. Therefore is on the left the
“1H-bond” conformer and on the right the “2H-bond”, respectively. RMSD
among all hydrogens besides methyl protons is for 1H-bond 0.52 Å and 2H-
bond 0.85 Å, respectively. The white arrows indicate the point of view in
Fig. 4.40.

different assignment patterns raise the complexity of the structure determination, since the

intensity of all NOEs around the central base pairs depends, in addition to the distance, in

such a case on the relation between both conformations. All details about the Simulated

Annealing simulations can be found in sections 3.1.9 and 3.3.5.

None of the conformers shown in Fig. 4.38 comprises the three desired hydrogen bonds.

However, they were named in accordance to the number of observed hydrogen bonds in

the 4AP-DAP base pair, therefore is on the left the “1H-bond” conformer and on the right
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Figure 4.39: Overlay of the 10 minimum-energy, violation-free structures. The left side
corresponds to the 1H-bond orientation of the average structures (left in
Fig. 4.38) and the right to 2H-bond. The deviations alongside the back-
bone, especially for the 2H-bond, are larger than in comparison to the other
structures (13merHCF, 13mer6HQ). The problem which arises here is that
without RDCs only short distance information from base to base is available.
So a weakly bent helix can be described with the same NOEs as a straight
helix.

the corresponding “2H-bond” structure. Therein, the 1H-bond conformer is characterized

by a straight well-defined B-DNA , while 2H-bond is wider in the center and starts to

bend above the 4AP chromophore. The problem with a bent structure is that there is

no evidence for it in the NOE data, since they only provide information from one residue

to the next residue, thus limiting the quality of the structure. RDC measurements could

validate or falsify the bending, since they provide long range information which describes
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Figure 4.40: Close view on the three central base pairs of 13mer4AP-DAP. The 1H-bond
orientation is again at left and 2H-bond at right. Interestingly, the 1H-bond
4AP (left) only stacks to adenine A8, while the five-membered ring faces to
the minor groove instead of the center of the helix. Also worth to mention,
the six-membered ring in the 2H-bond conformation is stacked to C1’-N9
bond of adenine A6.

the orientation of the bases in relation to the helical axis, but cannot be measured due 

to the low concentration of the sample. As a consequence, a second set of structures was 

calculated, which take advantage of the way restraints are used in Molecular Dynamics. 

The background and the results will be discussed in the next section (4.3.3).

The overlay of the 10 minimum-energy, violation-free structures in Fig. 4.39 shows

more variation along the backbone than the previous structures (13merHCF, 13mer6HQ).

Especially the 2H-bond overlay varies at the helical ends, which is usually compensated

by the aforementioned RDCs. It should be noted that the RMSD value can also indicate

high flexibility in parts of the structure or the presence of different conformers like in

13merHCF.

In Figure 4.40 the three central base pairs are shown as indicated by the white arrows

in Fig. 4.38. The 1H-bond orientation is again at left and 2H-bond at right. One can

see that the 4AP-DAP base pair fits into the helical structure for both conformations.

Interestingly, the 1H-bond 4AP (left) only stacks to adenine A8, while the five-membered

ring faces to the minor groove instead of the center of the helix. Remember, in case of

13mer6HQ the glycerol linker placed 6HQ in a position where stacking with both adjacent
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Figure 4.41: Close view on the central base pair of 13mer4AP-DAP. In the 1H-bond con-
formation (top), the 4AP forms a base pair with DAP that clearly resembles
the 6HQ-C pair in Fig. 4.18. Reason for this is that both chromophores, 4AP
and 6HQ, were linked via the same atom position in their six-membered ring
to the backbone. In the bottom picture the 2H-bond conformer is shown.
Although at first sight the bases seem to be in the right position for triple
hydrogen bonding, the distances clearly indicate the presence of only two
bonds.

adenines was possible. Also worth mentioning is that the six-membered ring in the 2H-

bond conformation is stacked to C1’-N9 bond of adenine A6. So both conformations are

somewhat displaced inside the the helix, which might affect the stacking interactions.

Figure 4.18 provides a close view to the central base pairs of both conformations. In the

1H-bond conformation (top), the 4AP forms a base pair with DAP that clearly resembles
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2H-bond
conformation

1H-bond conformation

Figure 4.42: NOESY back-calculations of both conformers overlaid with experimental
data. The 1H-bond spectrum is colored red, the 2H-bond spectrum green,
and the experimental spectrum black. The circles depict the same cross-
peaks as in Fig. 4.37.

the 6HQ-C pair in Fig. 4.18. Reason for this is that both chromophores, 4AP and 6HQ,

were linked via the same atom position in their six-membered ring to the backbone. The

only difference is that the hydrogen bond faces to the minor groove, while the bond in

13mer6HQ faces the major groove, due to the changed perspective indicated in Fig 4.16.

In the bottom picture the 2H-bond conformer is shown. Although at first sight the bases

seem to be in the right position for triple hydrogen bonding, the distances clearly indicate

the presence of only two bonds. Furthermore, the different placement of 4AP is handled by

the 2’-deoxyribose by switching between 2’-endo conformation (top) and 3’-endo (bottom).

The latter is typical for A-DNA, thereby explaining the wider center, the interruption of

the NOE-walk and the chemical shift deviations of the backbone in the previous section.

Also interesting , the backbone of DAP has also changed in the bottom picture to an

intermediate state between C2’-exo and C3’-endo.

As last point of this section the back-calculation of the NOESY spectrum will illustrate

the two conformations for the spectral region in Fig. 4.37. In order to cover all cross-peaks

in the experimental spectrum, both back-calculated spectra are needed.
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4.3.3 What if RDCs were included?

In this section it is argued that the lack of RDC information can be overcome by a single

assumption. First of all, some important information will be given, how Xplor-NIH [245]

handles restrained Molecular Dynamics. The theoretical background introduced the total

potential energy Vtot in equation 2.25, which is composed of an effective Veff and an

empirical energy term Vemp. All experimental restraints are part of the effective energy,

while the empirical term contains force field components like Coulomb or Van-der-Waals

interaction.

When a structure calculation has found a supposed global minimum then the total

potential energy Vtot only contains Vemp, since the contributions of all restraints in Veff

are zero as long as the structure is free of violations. It is important to understand that

the restraints do not define the structure in the minimum, instead they limit the possible

pathways on the potential energy surface in order to find a reasonable minimum and hence

a possible solution structure. The great advantage of this concept is that faulty restraints

cannot affect the structure as long as a pathway to a minimum in energy is described.

In this case they show up as violated restraints and one has to check the restraint and

the structure for the reason of the difference. Usually one has to exclude NOE restraints

which are heavily overlapped or near the limit of detection. Other reasons include errors

in the assignment or that the structure, when everything else is ruled out, is only in a local

minimum and therefore not correct. The latter is the reason, why so many calculations

have to be performed and so much time invested to find the solution structure. Additional

validity checks like back-calculation of NOESY spectra, Pales plots and RMSD values are

helpful in the decision.

In the end, structure determination via restrained Molecular Dynamics means to find the

best way to the potential energy minimum. At this point one could ask if the bent H2-bond

conformation is stuck in a local minimum, since the 1H-bond conformer and also the other

structures (13merHCF, 13mer6HQ) were rod shaped. The next question is then, how to

describe a rod shape as a route on the potential energy surface, which can be scanned for

a minimum. The headline of this section has already answered the last question. RDCs
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5'

3'

5'

3'

Figure 4.43: Averaged structures of 13mer4AP-DAP with RDCs of 13merHCF. The 4AP
is marked red and the DAP green, while the corresponding colors for A, G,
C and T are blue, yellow, orange and violet. Still on the left side is the
“1H-bond” conformer and on the right the “2H-bond”, respectively. RMSD
among all hydrogens besides methyl protons is for 1H-bond 0.26Å and 2H-
bond 0.28Å, respectively. The white arrows indicate the point of view in
Fig. 4.45.

can provide the long range information that is necessary to describe a straight double

strand, but measured RDCs are not available for 13mer4AP-DAP. However, the required

information can be taken from set of RDCs that have proven to describe a straight strand,

in this case from 13merHCF. The only necessary modification prior to their application

is that all values that belong to the HCF chromophore will be omitted, since all double

strands of this work differ only in their central base pair.
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5'

3'

5'

3'

Figure 4.44: Overlay of the 10 minimum-energy, violation-free structures of 13mer4AP-
DAP with RDCs of 13merHCF. The left side corresponds to the 1H-bond
orientation of the average structures (left in Fig. 4.38) and the right to
2H-bond.

Figure 4.43 presents the averaged structures of 13mer4AP-DAP that were obtained by

simply adding RDCs from 13merHCF (Tab. 3.1) to the simulations described in section

3.3.5. Two straight double strands were obtained. It is now easy to see, how the change of

the 4AP backbone to C3’-endo affects the 2H-bond structure (right panel). The enlarged

distance between the adenines A6 and A8, which surround the 4AP chromophore , appears

as an uplift of A6 (located above 4AP). The effect of the 4AP-DAP introduction is now

limited to the next two base pairs in both directions.

A closer look on the central base pair in Figure 4.45 reveals that the relative positions
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1.81 Å

1.81 Å

1.82 Å

2.50 Å

Figure 4.45: Close view on the central base pair of 13mer4AP-DAP with RDCs of 13mer-
HCF. The only notable difference to the previous picture of the central base
pair conformations (Fig. 4.18) is the distance of the missing hydrogen bond
(red), which is raised by 0.41Å , a value below the error margin of the
involved NOE distances. Neither the number of hydrogen bonds nor the
relative positions of 4AP and DAP have changed. The deviating conforma-
tions of the 2’-deoxyribose in the 2H-bond structure (bottom), for example
C3’-endo for 4AP, were also retained.

of 4AP and DAP to each other did not change, which is not surprising. As outlined in the

beginning of the section, the RDCs affect mainly the overall shape of the double strand.

The only notable difference to the previous picture of the central base pair conformations

(Fig. 4.18) is the distance of the missing hydrogen bond (red), which is raised by 0.41Å

, a value below the error margin of the involved NOE distances. The reason for the rise
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Figure 4.46: Pales [268] plots of experimental 13merHCF RDCs against predicted values
of the of 13mer4AP-DAP structures (1H-bond, 2H-bond right). It is easy to
see that the RDC values of 13merHCF work as well with 13mer4AP-DAP.

is the induced propeller twist between 4AP and DAP in contrast to the nearly planar

arrangement of the NOE only structure. A base pair twist is not special, in fact planarity

is, since it was a side effect of the first crystal structures that offered only averaged values

for the helix parameters and was later revised by the first single crystal structures [2,14] .

Note that the backbone conformation of 4AP in the 2H-bond structure is still C3’-endo

and that DAP also retained its intermediate state between C2’-exo and C3’-endo.

Pales plots for both RDC structures will prove that 13mer4AP-DAP is as compatible

as 13merHCF to the RDC data (Fig. 4.46).

Finally for this section, it can be summarized that the solution structures, which were

found under the assumption of linear double strands, exhibit better RMSD values and

less perturbations. So it seems very likely that the RDC structures are closer to the

real structures, even though the RDCs came from 13merHCF. At this point it should

be repeated that restraints were used to find a way to the minimum in potential energy,

where the structures are defined by the effective energy Veff and the restraints sum to zero.

This clearly shows, how important the RDC measurement for structure determination is.

Moreover, it was demonstrated that it is possible to benefit from RDC data of other double

strands.
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4.3.4 Duplex melting experiments
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Figure 4.47: Absorption change of ds13mer4AP-DAP upon melting, when raising tem-
perature from 20 ℃ (blue) to 85 ℃ (red line; cT = 20.5 μM). Data from the
1 and 10 mm cuvettes are labelled “1x” and “10x”, respectively. A ten-times
magnification of the latter is labelled “100x”.

A sample of double-stranded 13mer4AP-DAP was prepared in a water/phosphate buffer

(10 mM NaH2PO4, pH = 6.35) with 150 mM sodium chloride (see sec. 3.3). Measurements

were performed in a double cuvette (closed but not evacuated) with 1 and 10 mm optical

path length. A total concentration cT = 20.5 μM of single strands was estimated from

maximum absorption around 260 nm at 85 ℃. A set of 14 spectra between 20 and 85 ℃

were recorded and corrected for density change. Results are shown in Fig. 4.47, where

the data from the 1 and 10 mm cuvettes are labelled “1x” and “10x”, respectively. A

ten-times magnification of the latter is labelled “100x”.
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Analysis of the 13mer4AP-DAP DNA band
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Figure 4.48: The UV part of the spectrum was used for SVD of the DNA absorption peak.
The first spectrum is blue (20 ℃) and the last one is orange (80 ℃). The 85
℃ measurement (1 mm cuvette for DNA peak) had to be omitted due to an
error in the cuvette holder while heating the sample.

The strategy here starts similar to the one in 13mer6HQ by separate examination of

the DNA absorption band. The changes of the DNA peak with increasing temperature

(20 - 80 ℃) were quantified in a spectral window from 300 to 220 nm (see Fig. 4.48). The

UV absorption spectra in this range were analyzed for principal components via Singular

Value Decomposition (SVD). Two components are needed to describe the hyperchromism.

Fig. 4.49 shows the basic spectra on the left and the corresponding thermodynamic curves

on the right. The first component (red) was set to be the 80 ℃ spectrum. As before, the

thermodynamic curves were multiplied with a scale factor so that the amplitudes fall into

the range from 0 to 1 (the corresponding basic spectra were scaled with the inverse factor.)
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Figure 4.49: Basic spectra are shown left. The first component (red) was set to be the
80 ℃ spectrum, i.e. it represents the fully separated single strands. The
right part shows the thermodynamic curves related to the basic spectra.
Upon hybridization, the amplitude of the first-component spectrum (red)
decreases from 1 to 0.8 while that of the second component increases from 0
to 0.2.

Upon duplex formation, the red one shows an amplitude decrease of 0.2. By design, the

blue curve shows the same amount as amplitude increase (Fig. 4.49).

Again, the two-state model with stacking interactions was applied to the thermodynamic

data shown in figure 4.50. When comparing the basic spectra of 13mer4AP-DAP in figure

4.49 with the DNA part of 13merHCF (Fig. 4.11) or 13mer6HQ (Fig. 4.24 one can see

that they all look the same. Assuming the same assignment, introduced with 13merHCF,

the red line is related to the whole strand, while the blue line describes the basepairs

around the two artificial nucleobases in the center. In contrast to 13merHCF, the order of

the melting points in the right (two-state only) part of figure 4.50 (grey vertical lines) has

changed. The blue one comes first at 59.1 ± 0.1 ℃ and the whole strand (red) follows at

59.5 ± 0.1 ℃. In principle, this indicates a weak local melting or bubble formation in the

center of the duplex, but when taking the other parameters into account (red: ΔH◦ =

-330 ± 20 kJ/mol, ΔS◦ = -880 ± 50 J/(K mol) and blue: ΔH◦ = -340 ± 20 kJ/mol, ΔS◦

= -930 ± 60 J/(K mol), they are possibly equal within the margin of errors. In order to

clarify whether or not there is evidence of local melting, the analysis of the 4AP part of

the absorption spectrum is necessary. A lower estimated melting point would support this
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Figure 4.50: Thermodynamic curves, scaled to the measured amplitude change of 0.2.
The left panel shows SVD data (points) and fits with a two-state model
including stacking (lines). The two-state model part is plotted separately
(right panel), representing a melting curve of hyperchromism without the
influence of stacking. The grey vertical lines indicate the melting points
(derived from the right panel), therein the whole strand (red) melts at 59.5
℃ and the center (blue) at 59.1 ℃.

theory. A second possible cause, why the blue line has a lower melting point, would be the

absorption of 2,4-diaminopyrimidine around 270 nm, but then the effect on the lineshape

of the DNA peak is rather small, since there is no evidence of alteration (additional hidden

peak) in the basic spectra (Fig. 4.49) and in the end, the theory of local melting would

still remain.

Dissection of the 4-Aminophthalimide band

The same procedure was then performed on the spectral window of 4-Aminophthalimide

(λ > 480 nm). Two components are needed in the SVD to describe the hyperchromism

in figure 4.52. The red component describes the rising amplitude of hyperchromism, but

compared to the other molecules it has a rather small amplitude change of 0.1, less than a

half of the usually observed value. In addition, it is the only sample with linear lineshape

of the blue shift over the full temperature range (blue component). Both observations

indicate weaker base-stacking for the 4AP chromophore.

While the red curve was fitted with equation 2.33, representing the two-state model with
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Figure 4.51: Spectrum was used for SVD of the 4AP absorption band. The first spectrum
is blue (20 ℃) and the last one is red (85 ℃).

linear stacking, the blue line was fitted by a simple linear least-squares fit, which describes

a linear blue shift from 385 nm at 20 ℃ down to 379 nm at 85 ℃. Best fit parameters for

the melting curve are ΔH◦ = -360 ± 40 kJ/mol and ΔS◦ = -1000 ± 100 J/(K mol) upon

hybridization. Interestingly, when looking closely on the duplex part of figure 4.53, we

notice an initial decrease of absorption up to 45 ℃. This observation suggests that stacking

first increases, even though the hypsochromic effect is small (< 2 %). This finding can be

explained when taking the NMR solution structures into account. At low temperatures

the weakly stacked 1H-bond conformer dominates which changes with rising temperature.

Shortly before the melting point more and more molecules are in the 2H-bond state, which

shows a better stacking interaction (see Fig. 4.40) and therefore would explain the initial

absorption decrease. From the right panel (Fig. 4.53) a melting point of 56.9 ℃ was

estimated, which is as supposed lower than the 59.5 ℃ (red component) or 59.1 ℃ (blue)
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Figure 4.52: Basic spectra are shown left. The first component (red) was set to be the
85 ℃ spectrum, i.e. it represents the fully separated single strands. The
right part shows the thermodynamic curves related to the basic spectra.
Upon hybridization, the amplitude of the first-component spectrum (red)
decreases from 1 to 0.9.

obtained for the DNA peak. In summary, the theory of local melting in the center of the

duplex is supported by its lower melting point, the two melting points of the DNA peak, the

linear blue shift and the weak base-stacking of the 4AP chromophore. Additional evidence

comes from NMR, where the signal of the 4AP proton H1 was assigned in the region of

non-hydrogen-bonded imino protons around 10 ppm (see sec. 4.3.2). Moreover, the 1H-

bond conformation supports the findings of the melting experiments, due to the placing

of the five-membered ring into the minor groove region. In case of 2-aminopurine, which

contains an amino group facing towards the minor groove, it has been demonstrated that

the base pair dynamics is much faster and thereby lowering the melting temperature [129]

in comparison to an adenine containing reference strand (13merRef). It should be noted

that both double strands only differed in the position of a single amino group in the center.
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Figure 4.53: Melting curve (red), scaled to the measured amplitude change of 0.1. The
left panel shows SVD data (points) and fit with a two-state model including
stacking (red line) for the red component and, in addition, the peak shift
(blue) with a separate axis to allow a direct reading of wavenumbers. The
right panel shows the red component alone and without stacking, since it
is the only one with melting behaviour. The grey vertical line indicates the
melting point of the 4AP at 56.9 ℃. Best fit parameters are ΔH◦ = -360 ±
40 kJ/mol and ΔS◦ = -1000 ± 100 J/(K mol) for the hybridization.
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5 Summary

The same basic sequence of 13 base pairs with chemical modifications only in the mid-

dle position was investigated by NMR structure determination. With this conservative

approach it becomes possible to study perturbations which are induced by the artificial

nucleobase. Especially the influence of base stacking and of the linker can be detailed.

Structural differences are also associated with thermodynamic variations. The latter are

observed with the help of entire UV/Vis-spectra as function of temperature. In this way

the duplex melting process is characterized in local and global terms.

UV/Vis-spectra upon melting were analyzed in their entirety by Singular Value Decom-

position (SVD). Thus the spectral shift of the probe absorption band is followed, being

caused by the solvatochromicity of the incorporated chromophore. The band is located

in the visible range of the spectrum and provides direct information about local melting.

In contrast, the strong absorption of the native nucleobases is located in the UV region

and contains two kinds of information. One refers to the usually observed global melting

of the double strand, the other gives indirect information on local melting, as seen by the

nucleobases in the immediate neighborhood of the modification. Altogether three melting

points Tm are obtained as specified in Tab. 5.1. Melting can now be understood in terms

of global and local processes. The latter describe effects near the modified center, like

bulge formation upon temperature rise.

NMR structure determination in solution is a valuable instrument to investigate struc-

tural perturbations, base stacking, and linker effects. Three chemical modifications were

studied in the center of the basic 13mer sequence, representing different types of pertur-

bations. These are (i) the large 2-hydroxy-7-carboxyfluorene (HCF) replacing a full base
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pair, (ii) the betaine 6-Hydroxyquinolinium (6HQ) incorporated as glycol nucleic acid

(GNA), and (iii) 4-aminophthalimide (4AP) together with 2,4-diaminopyrimidine (DAP)

forming an artificial base pair. The NOESY spectra of the HCF and 4AP-DAP double

strands gave in each case evidence for the presence of a second conformer. Instead of

three structures, two additional conformations were required to fully describe the found

cross-peak patterns. As a result, altogether five structures were determined in the course

of this study.

Table 5.1: Global and local melting points of the three investigated DNA double strands.
13mer denoted by central base pair HCF 6HQ 4AP-DAP Ref [129]

Global Tm of DNA (℃) 59.7 53 59.5 63.3
Local Tm of DNA (℃) 61.1 53 59.1
Local Tm of Chromophore (℃) 61.1 53.1 56.1

The HCF chromophore is the largest of all fluorescent base analogues in this work and

was placed opposite an abasic site, thus making it a full base pair surrogate. HCF adopts

two conformations inside the double helix which are distinguished by the methylene group,

in the sense that this group faces either towards the major groove or towards the minor

groove. The HCF moiety fits well into the helical fold for both conformations. The unusual

α-glycosidic linkage of HCF is compensated by small deformations of the 2’-deoxyribose

moiety. The sugar switches to conformations other than C2’-endo of B-DNA to allow

optimal chromophore incorporation. Because of the sugar flexibility, an equal distribution

for both conformations is observed. The abasic site has no effect on HCF, but the lack

of a nucleobase raises the flexibility in the center of the counterstrand, since its position

is no longer restricted by the stacking of an attached nucleobase. On the other hand,

stacking interactions of HCF to the neighboring adenines are accompanied by additional

interactions with thymine T21 (and partly T19) of the opposite strand (see Fig. 4.6).

The local melting points of the chromophore and of the DNA (61.1 ℃, in Tab. 5.1) agree,

and they are 1.4 ℃ higher than the global melting point of the double strand (59.7 ℃).

Even though the local melting indicates a stabilizing effect of HCF, the global melting is

lower than for the native double strand 13merRef with AT in the center (63.3 ℃). Both
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findings agree well with earlier results of Matray and Kool [97], who used pyrene as base

pair surrogate.

The second base analogue, 6HQ , was placed opposite cytosine with which it forms a

single hydrogen bond. The unique feature of this double strand is the incorporation of

6HQ as GNA. Up to now, structures of nucleic acids with full GNA backbone are known

only from X-ray diffraction of crystals [274,275], therefore the solution structure is of general

interest. Our linker R-Glycerol is small compared to 2’-deoxyribofuranose. For insertion

of the chromophore into the helix one C-C bond length is missing, and another C-C bond

length is missing for spacing the adjacent adenines. The first deficiency is compensated by

the size of 6HQ and its linkage to R-glycerol via N1, allowing a more diagonal placement

of 6HQ relative to cytosine to reach the distance needed for hydrogen bonding (Fig. 4.13).

A side effect of this placement is strong π-π-stacking interaction to adenines A6 and A8

(Fig. 4.17), leading to a huge chemical shift of the H8 hydrogen in adenine A8. The

need to compensate the second missing bond length causes structural perturbations. In

order to minimize the distance between 3’-end of adenine A6 and the 5’-end of A8, both

bases are inclined towards the major groove; thus, the backbone distance is shortened by

1.2 Å in comparison to 13merRef. As a consequence, a stacking axis of A6-6HQ-A8 is

observed that leans towards the major groove, stabilized by strong stacking interactions

in between. For the melting analysis of 13mer6HQ it was necessary to develop a variant

of the new method for UV/vis spectral analysis, to treat adequately the complex behavior

of the 6HQ chromophore. The double SVD assisted two-state model revealed that 6HQ

not only undergoes a blue shift and hyperchromism upon melting like HCF, but also

a change of the absorption spectrum that resembles the alteration from the protonated

to the deprotonated state. A closer look on global and local melting shows that only

a single melting point within error margins (± 0.1 ℃) is observed (Tab. 5.1), which is

otherwise only found for pure native strands. However this does not prove the native

melting character of 13mer6HQ, since it has the lowest melting point of all double strands.

The differing stacking axis of the three central bases destabilizes the 6HQ strand, but the

strong stacking interactions also prevent bulge formation. Stability of the duplex is only
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maintained by the remaining base pairs far from the center. This competes with the

fraying at the helix ends upon temperature rise. Altogether this double strand shows the

melting behavior of a shorter duplex.

The last double strand introduces an artificial base pair composed of 4AP and DAP.

First evidence that refuted the desired pattern of three hydrogen bonds was found in

the NOESY spectrum. There the chemical shift of the H1 proton (in 4AP) was assigned

in the non-hydrogen bonded region of the spectrum. In addition, the H2O-NOESY also

proved the presence of the protonated form of DAP (Fig. 4.34). Instead of a structure

with three hydrogen bonds, two conformations were found that comprise either a single

hydrogen bond or two hydrogen bonds. The single-bonded form is similar to the structure

of 13mer6HQ, with a diagonal placement of the 4AP moiety so that its long side faces

towards DAP. The reason for this is the linkage via C6 which corresponds to N1 in 6HQ

and is well-known from pyrimidine bases. However, 6HQ and 4AP are in size and shape

more comparable to purines which are linked via the five-membered ring, resulting in a

different angle of the nucleobase to its counterpart in the opposite strand. The conformer

that comprises two hydrogen bonds tries to overcome this by switching the sugar of 4AP to

the C3’-endo conformation of A-DNA. Although at first sight all sites which are capable of

hydrogen bonding now face each other, distance measurements revealed (in Fig. 4.18) that

only two bonds are possible. Interestingly, the melting experiments show that the second

form, which exhibits better π-π-stacking interactions, is favored upon rising temperature,

causing an initial decrease in absorption. But finally, when comparing local and global

melting in 13mer4AP-DAP (Tab. 5.1), bulge formation caused by premelting of the central

4AP-DAP pair is clearly indicated. The melting point of the adjacent base pairs is also

lower than the global one, supporting the bulge formation in the center. On the other

hand the difference is only 0.4 ℃, so the bulge seems to be mostly limited to the 4AP-DAP

base pair.

In summary, all investigated double strands suffer from structural perturbations, either

caused by the linker or by the chromophore itself. Further development of base analogues

and their linkage is clearly needed in future; some general lessons can be already learned
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from the set of structures in this work. From 13merHCF it can be concluded that a α-

glycosidic linkage can be balanced by the 2’-deoxyribofuranose, and that a large aromatic

surface can replace a complete base pair, but at the price of increased flexibility. 13mer6HQ

demonstrates that R-glycerol is too small in comparison to 2’-deoxyribofuranose. A pos-

sible solution is the addition of at least one bond length in order to connect the 3’-end

of adenine A6 with the 5’-end of A8, but this would raise flexibility. The problem of

high flexibility inside the double strand is faster base pair dynamics and hence a lowered

duplex stability. Moreover, this effect propagates to the surrounding base pairs in both

directions [129]. From this point of view the 4AP-DAP base pair linked via the native 2’-

deoxyribofuranose looks more promising. However, the weak point of this design is the

linkage of 4AP to the backbone. The connection to the sugar moiety should be changed

from the current C6 atom of 4AP to the neighboring C5. This should enable 4AP to form

a triple hydrogen bonded base pair with DAP. In such a case one can expect the triple

form to be the only present conformer, since both actual conformers require the connection

via C6.

The SVD analysis of UV/Vis spectra in their entirety revealed measurable local melting

in the DNA absorption band. The local melting is induced by perturbations of the double

strand and is only reported by native bases in close proximity to the modification. Native

bases as simultaneous detector of global and local melting offer the possibility to study

modifications that do not contain separate absorption bands like the chromophores which

were studied here. A second possibility could be melting experiments of native double

strands comprising an intercalator, for example the groove binding Hoechst 33258. In that

case, perturbations of the melting process will be reported by the strand and can then be

compared to the signal of the Hoechst dye. The absence of a local melting component in

native strands like 13merRef can serve as indicator of undisturbed melting, when observed

in modified double strands. Finally, it should be noted that the method can be automated

experimentally and analytically. The fully automated variant would allow application as

a replacement for the conventional DNA melting experiment at a single wavelength.
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6 Zusammenfassung

Die gleiche Grundsequenz von 13 Basenpaaren mit chemischen Modifikationen nur in der

mittleren Position wurde mittels NMR Strukturbestimmung untersucht. Mit diesem kon-

servativen Ansatz ist es möglich strukturelle Störungen zu studieren, welche durch die

künstliche Nukleobase verursacht wurden. Insbesondere der Einfluss der Basenstapelung

sowie des Linkers kann so genau beschrieben werden. Strukturelle Unterschiede gehen

auch mit thermodynamischen Änderungen einher. Letztere wurden mit Hilfe vollständi-

ger UV/Vis-Spektren als Funktion der Temperatur erfasst. Auf diese Weise kann der

Schmelzprozess des Duplex lokal und global beschrieben werden.

UV/Vis-Spektren beim Schmelzen wurden in ihrer Gesamtheit mittels Singularwertzer-

legung (SVD) analysiert. Somit kann die spektrale Verschiebung der Sonden-Absorptions-

bande verfolgt werden, welche durch die Solvatochromie des eingebauten Chromophors

verursacht wird. Die Bande befindet sich im sichtbaren Bereich des Spektrums und liefert

direkt Informationen über das lokale Schmelzen. Im Gegensatz dazu absorbieren die

natürlichen Nukleobasen stark im UV-Bereich und enthalten zwei Arten von Informa-

tionen. Eine gehört zum normalerweise beobachteten globalen Schmelzen des Doppel-

stranges, die andere liefert indirekte Informationen über das lokale Schmelzen, wie es von

den Nukleobasen in unmittelbarer Umgebung der Modifikation gesehen wird. Insgesamt

drei Schmelzpunkte Tm wurden erhalten, so wie in Tab. 6.1 angegeben. Das Schmelzen

kann nun als globaler und lokaler Prozess verstanden werden. Letzteres beschreibt Ef-

fekte in der Nähe des modifizierten Zentrums, beispielsweise Blasenbildung bei steigender

Temperatur.

NMR Strukturbestimmung in Lösung ist ein wertvolles Instrument um strukturelle
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6 Zusammenfassung

Störungen, Basenstapelung und Linker-Effekte zu untersuchen. Drei chemische Modi-

fikationen, welche unterschiedliche Störungen verursachen, wurden hierfür im Zentrum

der 13mer Grundsequenz studiert. Diese sind (i) das große 2-Hydroxy-7-carboxyfluoren

(HCF), welches ein komplettes Basenpaar ersetzt, (ii) das Betain 6-Hydroxychinolinium

(6HQ), welches als Glykolnukleinsäure (GNA) eingebaut wurde, und (iii) 4-Aminophthal-

imid (4AP) zusammen mit 2,4-Diaminopyrimidin (DAP), welche ein künstliches Basen-

paar bilden. Die NOESY-Spektren der HCF und 4AP-DAP Doppelstränge geben in bei-

den Fällen Hinweise auf das Vorhandensein einer zweiten Konformation. Anstelle von drei

Strukturen, waren zwei zusätzliche Konformationen notwendig, um die gefundenen Kreuz-

signal-Muster vollständig zu beschreiben. Im Ergebnis wurden insgesamt fünf Strukturen

während der Untersuchung bestimmt.

Table 6.1: Globale und lokale Schmelzpunkte der drei untersuchten DNA Doppelstränge.
13mer benannt nach HCF 6HQ 4AP-DAP Ref [129]

zentralem Basenpaar
Globaler Tm der DNA (℃) 59.7 53 59.5 63.3
Lokaler Tm der DNA (℃) 61.1 53 59.1
Lokaler Tm des Chromophors (℃) 61.1 53.1 56.1

Das HCF Chromophor ist das größte von allen fluoreszierenden Basenanaloga in dieser

Arbeit und wurde gegenüber einer abasischen Stelle eingebaut, was es zu einem vollen

Basenpaar-Ersatz macht. HCF nimmt zwei Konformationen innerhalb des Doppelstranges

ein, welche durch die Methylengruppe unterschieden werden, in dem Sinne, dass diese

Gruppe entweder in Richtung der großen Furche oder der kleinen Furche zeigt. Das HCF-

Gerüst passt für beide Konformere sehr gut in die helikale Faltung. Die ungewöhnliche

α-glykosidische Bindung des HCFs wird kompensiert durch kleine Deformationen des 2’-

Deoxyribose-Teils. Der Zucker geht dabei zu Konformationen über, die von C2’-endo für B-

DNA abweichen, um einen optimalen Einbau des Chromophors zu ermöglichen. Aufgrund

der Flexibilität des Zuckers wird eine Gleichverteilung beider Konformere beobachtet.

Die abasische Stelle hat keinen Effekt auf das HCF, aber das Fehlen einer Nukleobase

erhöht die Flexibilität im Zentrum des Gegenstranges, da dessen Position nicht durch
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die Stapelung einer angehängten Nukleobase eingeschränkt wird. Auf der anderen Seite

werden Stapelwechselwirkungen des HCF zu den benachbarten Adeninen begleitet von

zusätzlichen Wechselwirkungen mit Thymin T21 (und teilweise T19) des Gegenstranges

(siehe Fig. 4.6). Der lokale Schmelzpunkt des Chromophors und der DNA (61.1 ℃, in

Tab. 6.1) stimmen überein, und sie sind 1,4 ℃ höher als der globale Schmelzpunkt des

Doppelstranges (59,7 ℃). Obwohl das lokale Schmelzen einen stabilisierenden Effekt des

HCFs anzeigt, ist der globale Schmelzpunkt niedriger als der des natürlichen Doppel-

stranges 13merRef mit AT im Zentrum (63,3 ℃). Beide Ergebnisse stimmen sehr gut mit

früheren Resultaten von Matray und Kool [97] überein, welche Pyren als Basenpaar-Ersatz

verwendeten.

Das zweite Basenanalog, 6HQ, wurde gegenüber Cytosin platziert, mit dem es eine

einzelne Wasserstoffbrücke bildet. Die einzigartige Eigenschaft dieses Doppelstranges

ist der Einbau von 6HQ als GNA. Bisher sind nur Röntgen-Kristallstrukturen [274,275]

von Nukleinsäuren mit vollem GNA-Rückgrat bekannt, daher ist die Struktur in Lö-

sung von generellem Interesse. Unser Linker R-Glycerol ist klein im Vergleich zu 2’-

Deoxyribofuranose. Eine C-C-Bindungslänge fehlt für den Einbau des Chromophors in

die Helix und eine andere C-C-Bindung fehlt im Raum zwischen den Adeninen. Das er-

ste Manko wird durch die Größe des 6HQ und dessen Bindung via N1 ausgeglichen, diese

erlaubt eine mehr diagonale Positionierung von 6HQ relativ zu Cytosin, um die nötige Dis-

tanz für die Wasserstoffbrücke zu erreichen (Fig. 4.13). Ein Nebeneffekt dieser Position-

ierung ist eine starke π-π-Stapelwechselwirkung zu den Adeninen A6 und A8 (Fig. 4.17),

welche zu einer starken chemischen Verschiebung des H8 Wasserstoffs in Adenin A8 führen.

Die Notwendigkeit die zweite fehlende Bindungslänge auszugleichen verursacht strukturelle

Störungen. Um die Distanz zwischen dem 3’-Ende von Adenin A6 und dem 5’-Ende von

A8 zu minimieren, neigen sich beide Basen in Richtung der großen Furche, wodurch

der Abstand im Vergleich zu 13merRef um 1,2 Å kürzer ist. Infolgedessen wird eine

Stapelachse für A6-6HQ-A8 beobachtet, die sich zur großen Furche hin neigt, stabilisiert

durch starke Stapelwechselwirkungen dazwischen. Für die Schmelzanalyse von 13mer6HQ

war es notwendig eine Variation der neuen Methode zur UV/Vis-Spektralanalyse zu en-

133



6 Zusammenfassung

twickeln, um das komplexe Verhalten des 6HQ Chromophors angemessen zu berück-

sichtigen. Das doppelt SVD gestützte Zwei-Zustände-Modell offenbarte, dass 6HQ beim

Schmelzen nicht nur eine Blauverschiebung und Hyperchromie erfährt, sondern auch eine

Änderung des Absorptionsspektrums, welche dem Übergang von der protonierten zur de-

protonierten Form ähnelt. Ein genauer Blick auf das globale und lokale Schmelzen zeigt,

dass innerhalb der Fehlergrenzen (± 0,1 ℃) nur ein Schmelzpunkt beobachtet wird, welcher

sonst nur in reinen natürlichen Strängen vorkommt. Dennoch beweist dies nicht, dass

13mer6HQ auf natürliche Weise schmilzt, da es von allen Doppelsträngen den niedrigsten

Schmelzpunkt besitzt. Die abweichende Stapelachse destabilisiert den 6HQ-Strang, aber

die starken Stapelwechselwirkungen verhindern auch eine Blasenbildung. Die Stabilität im

Duplex wird nur durch die verbliebenen Basenpaare fern vom Zentrum gewährleistet. Dies

konkurriert wiederum mit dem Ausfransen an den Helix-Enden bei steigender Temperatur.

Insgesamt zeigt dieser Doppelstrang das Schmelzverhalten eines kürzeren Duplexes.

Der letzte Doppelstrang führt ein künstliches Basenpaar bestehend aus 4AP und DAP

ein. Das erste Anzeichen, welches den drei gewünschten Wasserstoffbrücken widersprach,

wurde im NOESY-Spektrum gefunden. Darin wurde die chemische Verschiebung des

H1 Wasserstoffs (in 4AP) in der nicht über Wasserstoffbrücken gebundenen Region des

NOESY-Spektrums zugeordnet. Außerdem bewies das H2O-NOESY das Vorhandensein

der protonierten Form von DAP (Fig. 4.34). Anstelle einer Struktur mit drei Wasserstoff-

brücken wurden zwei Konformere gefunden, die entweder eine einzelne oder zwei Wasser-

stoffbrücken enthalten. Die Form mit einer Brücke ähnelt der Struktur von 13mer6HQ, bei

der 4AP-Teil diagonal liegt, so dass dessen lange Seite in Richtung DAP zeigt. Der Grund

dafür ist die Bindung über C6, welche dem N1 in 6HQ entspricht und wohlbekannt ist von

den Pyrimidin-Basen. Jedoch sind 6HQ und 4AP in Größe und Form eher vergleichbar

mit den Purinen, welche über den Fünfring angebunden sind, was wiederum zu einem

anderen Winkel zwischen Nukleobase und dem Gegenstück im gegenüberliegenden Strang

führt. Das Konformer, welches zwei Wasserstoffbrücken trägt, versucht dies zu umgehen

indem der Zucker von 4AP zur C3’-endo Konformation von A-DNA wechselt. Obwohl

sich auf den ersten Blick nun alle zu Wasserstoffbrücken fähigen Stellen gegenüberstehen,
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zeigen Abstandsmessungen (in Fig. 4.18), dass nur zwei Bindungen möglich sind. Inter-

essanterweise zeigen die Schmelzexperimente, dass die zweite Form, welche bessere π-π-

Stapelwechselwirkungen aufweist, mit steigender Temperatur bevorzugt wird, wodurch die

Absorption zu Beginn sinkt. Letztlich aber zeigt sich, wenn man das globale und lokale

Schmelzen von 13mer4AP-DAP miteinander vergleicht (Tab. 6.1), dass sich eine Blase

durch vorzeitiges Schmelzen des zentralen 4AP-DAP-Paares bildet. Der Schmelzpunkt

der benachbarten Basenpaare ist ebenfalls niedriger als der globale, was die Blasenbildung

im Zentrum unterstützt. Andererseits beträgt der Unterschied nur 0,4 ℃, somit scheint

die Blase hauptsächlich auf das 4AP-DAP Basenpaar limitiert zu sein.

Zusammengefasst leiden alle untersuchten Doppelstränge unter strukturellen Störungen,

welche entweder durch den Linker oder das Chromophor selbst verursacht werden. Die

weitere Entwicklung von Basenanaloga und ihrer Anbindung ist daher auch in Zukunft

zwingend notwendig. Jedoch lassen sich einige allgemeine Lehren aus der Auswahl an

Strukturen in dieser Arbeit ziehen. Aus dem 13merHCF kann geschlussfolgert werden,

dass eine α-glykosidische Bindung durch die 2’-Deoxyribofuranose ausgeglichen werden

kann, und dass eine große aromatische Oberfläche ein komplettes Basenpaar ersetzen kann,

aber zum Preis erhöhter Flexibilität. 13mer6HQ zeigt, dass R-Glycerol im Vergleich zu 2’-

Deoxyribofuranose zu klein ist. Eine potentielle Lösung wäre der Einbau wenigstens einer

zusätzlichen Bindungslänge, um das 3’-Ende von Adenin A6 mit dem 5’-Ende von A8 zu

verbinden, aber das würde die Flexibilität erhöhen. Das Problem erhöhter Flexibilität in-

nerhalb des Doppelstranges ist eine schnellere Basenpaardynamik und somit eine geringere

Duplexstabilität. Außerdem pflanzt sich dieser Effekt über die umliegenden Basenpaare

in beide Richtungen fort [129]. Aus dieser Perspektive sieht das 4AP-DAP Basenpaar ange-

bunden über die natürliche 2’-Deoxyribofuranose vielversprechender aus. Jedoch ist der

Schwachpunkt dieses Designs die Anbindung von 4AP an das Rückgrat. Die Verbindung

zum Zucker-Teil sollte geändert werden vom aktuellen C6-Atom in 4AP zum benachbarten

C5. Das sollte es 4AP erlauben ein dreifach wasserstoffverbrücktes Basenpaar mit DAP zu

bilden. In diesem Fall kann man erwarten, dass die Dreifach-Form das einzig vorhandene

Konformer sein wird, da die beiden gegenwärtigen Konformere die Anbindung über C6
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6 Zusammenfassung

benötigen.

Die SVD-Analyse der UV/Vis-Spektren in ihrer Gesamtheit offenbarte ein messbares

lokales Schmelzen in der DNA-Absorptionsbande. Das lokale Schmelzen wird durch

Störungen in den Doppelsträngen verursacht und wird nur durch die natürlichen Basen

in unmittelbarer Umgebung der Modifikation wiedergegeben. Natürliche Nukleobasen als

simultaner Detektor für globales und lokales Schmelzen ermöglichen es Modifikationen

zu untersuchen, welche im Gegensatz zu den hier genutzten Chromophoren keine sepa-

rate Absorptionsbande enthalten. Eine zweite Möglichkeit könnten Schmelzexperimente

natürlicher Doppelstränge sein, denen ein Interkalator hinzugefügt wurde, wie z.B. der

Furchenbinder Hoechst 33258. In jenem Fall würden Störungen des Schmelzprozesses

vom Strang angezeigt werden und könnten anschließend mit dem Signal des Hoechst-

Farbstoffs verglichen werden. Die Abwesenheit der lokalen Schmelzkomponente in natür-

lichen Strängen wie 13merRef kann wiederum als Indikator für ungestörtes Schmelzen in

modifizierten Doppelsträngen dienen. Schließlich sollte noch angemerkt werden, dass die

Methode sowohl experimentell als auch analytisch automatisiert werden kann. Die voll

automatisierte Variante würde es erlauben das konventionelle DNA-Schmelzexperiment

bei einer Wellenlänge zu ersetzen.
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Appendix

1 Chemical shift tables

1.1 13merHCF shift tables

Table 1: 1H chemical shifts of the nucleobases in 13merHCF. Reference [277] is the signal
of HOD at 4.77 pm (298 K).

Res H1 H2 H3 H4 H41 H42 H5 H6 H7 H8
1 - - - - - - - - - 7.946
2 - - - - 8.269 6.56 5.334 7.51 - -
3 - - 13.937 - - - - 7.316 1.62 -
4 12.688 - - - - - - - - 7.668
5 - - - - 8.189 6.351 5.402 7.344 - -
6 - 7.105 - - - - - - - 8.313
7 5.851 - 5.905 6.662 - - 6.94 7.124 - 7.273
8 - 7.346 - - - - - - - 8.018
9 - - - - 7.967 6.373 5.091 7.148 - -

10 12.705 - - - - - - - - 7.802
11 - - 13.747 - - - - 7.266 1.38 -
12 - - - - 8.591 7.002 5.695 7.485 - -
13 - - - - - - - - - 7.932
14 - - - - 8.16 6.947 5.857 7.578 - -
15 12.893 - - - - - - - - 7.934
16 - 7.882 - - - - - - - 8.203
17 - - - - 8.07 6.413 5.201 7.168 - -
18 12.546 - - - - - - - - 7.792
19 - - 13.213 - - - - 7.191 1.438 -
20 - - - - - - - - - -
21 - - - - - - - 7.209 1.512 -
22 12.545 - - - - - - - - 7.811
23 - - - - 8.253 6.334 5.351 7.328 - -
24 - 7.654 - - - - - - - 8.161
25 12.908 - - - - - - - - 7.653
26 - - - - 8.095 6.446 5.201 7.303 - -

In addition to the tabulated spins HCF contains a H91 and H92 at 3.140 and 2.770

ppm, respectively. The corresponding carbon atom is C9 at 39.3 ppm.
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1 Chemical shift tables

Table 2: 1H chemical shifts of the backbone in 13merHCF
Res H1’ H1” H2’ H2” H3’ H4’ H5’ H5”

1 5.971 - 2.641 2.766 4.837 4.262 - -
2 6.074 - 2.115 2.514 4.834 4.252 - -
3 5.727 - 2.113 2.427 4.868 4.095 - -
4 5.813 - 2.619 2.654 4.978 4.355 - -
5 5.429 - 1.937 2.275 4.794 4.130 - -
6 6.317 - 2.755 2.805 5.036 4.377 4.123 4.044
7 - 5.238 2.269 2.352 4.846 4.591 - -
8 6.092 - 2.51 2.793 4.955 4.394 4.228 4.161
9 5.487 - 2.001 2.32 4.799 4.129 - -

10 5.94 - 2.587 2.762 4.922 4.349 - -
11 6.031 - 2.072 2.451 4.856 4.214 - -
12 5.695 - 2.015 2.359 4.835 4.116 - -
13 6.152 - 2.62 2.384 4.685 4.181 - -
14 5.695 - 1.834 2.338 4.673 4.047 3.71 3.692
15 5.435 - 2.71 2.786 4.993 4.303 - -
16 6.25 - 2.699 2.909 5.056 4.476 - -
17 5.559 - 1.934 2.306 4.800 4.14 - -
18 5.918 - 2.575 2.736 4.94 4.342 - -
19 6.104 - 2.318 2.500 4.902 4.231 - -
20 4.133 4.109 2.212 2.231 4.761 4.127 - -
21 5.771 - 1.967 2.406 4.855 4.289 - -
22 5.746 - 2.586 2.76 4.948 4.316 - -
23 5.431 - 1.947 2.288 4.798 4.130 - -
24 5.990 - 2.722 2.876 5.026 4.370 - -
25 5.798 - 2.454 2.634 4.948 4.339 4.178 4.215
26 6.075 - 2.129 2.196 4.443 4.023 - -
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Table 3: 13C chemical shifts of 13merHCF
Res C1’ C2’ C3’ C4’ C1 C2 C3 C4 C5 C6 C8

1 82.1 - 76.6 - - - - - - - 135.8
2 83.7 - 74.0 - - - - - 95.7 140.1 -
3 82.7 - 75.0 - - - - - - 136.6 -
4 81.4 - 76.6 - - - - - - - 135.4
5 83.6 - 73.6 - - - - - 95.4 139.7 -
6 82.4 - 76.7 - - 151.5 - - - - 139.1
7 102.0 - 76.4 85.9 109.7 - 112.8 120.3 118.0 125.6 122.3
8 83.1 - 75.0 - - 150.8 - - - - 138.3
9 83.3 - 73.7 - - - - - 95.1 139.2 -

10 82.1 - 76.3 - - - - - - - 135.4
11 82.7 - 75.2 - - - - - - 135.8 -
12 83.7 - 75.2 - - - - - 96.0 141.0 -
13 81.9 - 70.5 - - - - - - - 136.5
14 85.0 - 75.0 - - - - - 96.7 140.3 -
15 81.2 - 76.6 - - - - - - - 135.5
16 82.2 - 76.9 - - 152.4 - - - - 138.3
17 83.1 - 73.7 - - - - - 95.1 139.1 -
18 81.9 - 76.4 - - - - - - - 135.3
19 82.7 - 74.6 - - - - - - 135.9 -
20 67.3 32.9 77.3 - - - - - - - -
21 83.7 - 74.8 - - - - - - 135.8 -
22 81.2 - 76.3 - - - - - - - 135.2
23 83.5 - 73.9 - - - - - 95.4 139.7 -
24 82.3 - 76.9 - - 151.5 - - - - 138.7
25 81.1 - 76.2 - - - - - - - 134.4
26 84.0 - 68.5 - - - - - 95.4 140.3 -
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1.2 13mer6HQ shift tables

Table 4: 1H chemical shifts of the nucleobases in 13mer6HQ. Reference [277] is the signal
of HOD at 4.77 pm (298 K).

Res H1 H2 H3 H4 H41 H42 H5 H6 H7 H8
1 - - - - - - - - - 7.94
2 - - - - 8.296 6.593 5.329 7.511 - -
3 - - 13.93 - - - - 7.323 1.626 -
4 12.683 - - - - - - - - 7.87
5 - - - - 8.27 6.372 5.36 7.234 - -
6 - 6.717 - - - - - - - 8.327
7 - 8.82 7.623 8.242 - - 7.009 - 6.596 7.403
8 - 7.68 - - - - - - - 7.64
9 - - - - 8.045 6.422 5.071 7.097 - -

10 12.722 - - - - - - - - 7.803
11 - - 13.758 - - - - 7.265 1.38 -
12 - - - - 8.607 7.011 5.691 7.481 - -
13 - - - - - - - - - 7.926
14 - - - - 8.149 6.979 5.845 7.57 - -
15 12.937 - - - - - - - - 7.945
16 - 7.889 - - - - - - - 8.216
17 - - - - 8.113 6.445 5.229 7.19 - -
18 12.684 - - - - - - - - 7.832
19 - - - - - - - 7.246 1.442 -
20 - - - - - - 5.663 7.559 - -
21 - - - - - - - 7.419 1.619 -
22 12.5 - - - - - - - - 7.868
23 - - - - 8.296 6.339 5.361 7.333 - -
24 - 7.645 - - - - - - - 8.151
25 12.911 - - - - - - - - 7.645
26 - - - - 8.108 6.527 5.166 7.282 - -
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Table 5: 1H chemical shifts of the backbone in 13mer6HQ
Res H1’ H1” H2’ H2” H3’ H4’ H5’ H5”

1 5.96 - 2.639 2.76 4.836 4.267 3.736 3.728
2 6.067 - 2.118 2.512 4.838 4.161 4.135 4.093
3 5.721 - 2.116 2.435 4.873 4.137 4.091 4.05
4 5.808 - 2.606 2.666 4.974 4.353 4.132 4.058
5 5.528 - 1.803 2.279 4.846 4.117 - -
6 5.876 - 2.706 2.802 5.028 4.364 4.111 4.043
7 4.993 4.833 4.299 - 4.199 - - -
8 5.82 - 2.365 2.681 4.719 4.161 3.899 3.524
9 5.454 - 1.959 2.297 - - - -

10 5.952 - 2.586 2.762 4.927 4.351 4.112 4.053
11 6.041 - 2.077 2.451 4.86 4.219 4.128 4.115
12 5.693 - 2.013 2.358 4.837 4.217 4.12 4.068
13 6.147 - 2.623 2.383 4.683 4.18 4.117 4.083
14 5.681 - 1.821 2.33 4.669 4.047 3.713 3.689
15 5.436 - 2.714 2.791 4.998 4.309 4.081 3.962
16 6.257 - 2.714 2.917 5.067 4.482 4.225 4.153
17 5.575 - 1.939 2.314 4.816 4.483 4.266 4.151
18 5.938 - 2.597 2.74 4.939 4.359 4.142 4.066
19 6.055 - 2.152 2.512 4.848 4.256 4.207 4.124
20 5.951 - 2.019 2.471 4.843 4.216 4.125 4.096
21 5.724 - 2.163 2.403 4.873 4.239 4.122 4.089
22 5.788 - 2.608 2.648 4.972 4.348 4.126 4.044
23 5.433 - 1.966 2.294 4.815 4.137 4.109 4.083
24 5.978 - 2.711 2.864 5.022 4.357 4.109 3.967
25 5.787 - 2.444 2.624 4.944 4.337 4.17 4.127
26 6.061 - 2.121 2.193 4.436 4.261 4.018 4.021
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Table 6: 13C chemical shifts of 13mer6HQ
Res C1’ C2’ C3’ C4’ C1 C2 C3 C4 C5 C6 C8

1 82.1 - 76.5 86.2 - - - - - - 135.5
2 84.0 - 74.0 - - - - - 95.7 140.2 -
3 83.0 - 75.3 - - - - - - 136.5 -
4 81.4 37.6 76.6 - - - - - - - 135.4
5 83.3 - - - - - - - 95.5 139.7 -
6 81.5 - 76.9 - - 151.1 - - - - 138.9
7 - - - - - 144.1 121.3 145.3 110.6 - 117.4
8 82.3 36.4 - - - 151.6 - - - - 137.9
9 83.3 36.9 76.3 - - - - - 95.2 139.3 -

10 82.1 - 76.6 - - - - - - - 135.5
11 82.8 36.4 75.2 - - - - - - 135.8 -
12 83.7 36.5 75.2 - - - - - 96.1 140.9 -
13 82.0 39.1 70.6 85.1 - - - - - - 136.4
14 85.2 37.1 75.1 85.5 - - - - 96.7 140.3 -
15 81.4 - 76.8 - - - - - - - 135.5
16 82.2 - 77.0 84.8 - 152.5 - - - - 138.3
17 83.2 37.0 74.1 - - - - - 95.5 139.1 -
18 82.0 37.6 76.6 - - - - - - - 135.5
19 82.7 36.3 - - - - - - - 135.8 -
20 84.3 37.4 - - - - - - 95.1 141.3 -
21 82.9 - - 83.3 - - - - - 136.6 -
22 81.3 - 76.8 - - - - - - - 135.5
23 83.4 36.9 74.2 - - - - - 95.5 139.7 -
24 82.2 37.6 76.9 84.5 - 151.9 - - - - 138.9
25 81.5 39.0 75.2 - - - - - - - 134.5
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1.3 13mer4AP-DAP shift tables

Table 7: 1H chemical shifts of the nucleobases in 13mer4AP-DAP. Reference [277] is the
signal of HOD at 4.94 pm (283 K).

Res H1 H2 H3 H41 H42 H5 H6 H7 H8
1 12.697 - - - - - - - 7.904
2 - - - 8.255 6.585 5.251 7.462 - -
3 - - 13.952 - - - 7.293 1.569 -
4 12.704 - - - - - - - 7.846
5 - - - 8.231 6.365 5.324 7.234 - -
6 - 7.424 - - - - - - 8.001

7.502
7 11.228 - - - - 6.452 - - -
8 - 7.347 - - - - - - 8.079

7.760 -
9 - - - 7.974 6.459 5.128 7.185 - -

10 12.675 - - - - - - - 7.79
11 - - 13.789 - - - 7.241 1.324 -
12 - - - 8.587 7.06 5.636 7.448 - -
13 - - - - - - - - 7.888
14 - - - 8.212 6.972 5.782 7.528 - -
15 12.92 - - - - - - - 7.911
16 - 7.831 - - - - - - 8.172
17 - - - 8.084 6.486 5.153 7.144 - -
18 12.697 - - - - - - - 7.781

12.682 -
19 - - 14.179 - - - 7.239 1.425 -

13.791
20 6.795 - - - - - 7.598 - -
21 - - 13.443 - - - 7.361 1.565 -

13.670
22 12.56 - - - - - - - 7.831
23 - - - 8.271 6.374 5.332 7.321 - -
24 - 7.591 - - - - - - 8.12
25 12.885 - - - - - - - 7.615
26 - - - 8.086 6.469 5.046 7.198 - -
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Table 8: 1H chemical shifts of the backbone in 13mer4AP-DAP
Res H1’ H2’ H2” H3’ H4’ H5’ H5”

1 5.903 2.607 2.712 4.785 4.233 3.692 3.667
2 6.015 2.073 2.454 4.787 4.191 4.107 4.054
3 5.647 2.089 2.399 4.807 4.189 4.086 4.014
4 5.77 2.57 2.603 4.941 4.314 4.083 4.004
5 5.418 1.844 2.203 4.732 4.181 4.089 4.045
6 5.987 2.549 2.89 4.788 4.285 4.066 3.962
7 6.241 1.534 2.004 4.605 4.191 3.964 -
8 6.033 2.622 2.739 4.824 4.318 4.045 3.967
9 5.469 1.99 2.286 4.732 4.117 - -

10 5.927 2.558 2.735 4.92 4.323 4.098 4.024
11 6.002 2.05 2.412 4.764 4.184 4.073 3.965
12 5.589 1.981 2.312 4.785 4.147 4.074 3.997
13 6.094 2.594 2.327 4.644 4.143 4.05 4.024
14 5.597 1.787 2.287 4.621 3.998 3.67 3.65
15 5.366 2.67 2.726 4.958 4.26 4.028 4.001
16 6.21 2.663 2.868 5.01 4.443 4.176 4.1
17 5.517 1.928 2.279 4.774 - 4.11 4.211
18 5.888 2.572 2.706 4.905 4.314 4.101 4.033
19 5.952 2.074 2.446 4.806 4.319 4.182 4.085
20 4.676 1.955 2.294 4.723 4.186 4.083 4.015
21 5.709 2.116 2.387 4.832 4.149 4.082 4.04
22 5.771 2.575 2.617 4.923 4.305 4.08 3.986
23 5.348 1.956 2.263 4.765 4.084 - -
24 5.943 2.669 2.834 4.982 4.327 4.078 3.936
25 5.726 2.392 2.579 4.925 4.298 3.998 3.961
26 5.981 2.095 2.144 4.389 4.227 3.967 3.956
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2 Input files for Molecular Dynamics calculations

In this chapter the protocols of the MD simulations are given using 13merHCF as example.

All samples were using the same set of protocols, so they are not shown explicitly for each

one. In case of 13mer4AP-DAP, a modification was necessary for the final MD script. All

parts that are necessary to implement RDC values were commented, since they were not

measured for this duplex.

2.1 Input file to generate extended strands

This file is used to generate extended single strands of the duplexes that were used as

input to calculate the start-structure.

remarks file lars_13merHC-.inp

remarks Sequence 13merHC-,lars 5/2011

topology @lars_nucleic.top {*Read topology file for chldna.*}

end

parameter

@lars_nucleic.par

hbonds

acce=true don=5.5 doff=6.5

dcut=7.5 aon=60.0 aoff=80.0

acut=100.0

end

nbonds

atom cdie shift eps=1.0 e14fac=0.4

cutnb=7.5 ctonnb=6.0 ctofnb=6.5

nbxmod=5 vswitch

end

end {*We are generating one strand*}

{*at a time. *}

segment

name="A " {*This name has to match the *}

{*four characters in columns 73-*}

{*76 in the coordinate *}

{*file; in XPLOR this name is *}

chain

LINK NUC HEAD - * TAIL + * END

LAST 3TER HEAD - * END
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FIRST 5TER TAIL + * END

Sequence GUA CYT THY GUA CYT ADE HC- ADE CYT GUA THY CYT GUA end

end

end

for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main

patch deox reference=nil=( resid $1 ) end

end loop main

{*at a time. *}

segment

name="B " {*This name has to match the *}

{*four characters in columns 73-*}

{*76 in the coordinate *}

{*file; in XPLOR this name is *}

chain

LINK NUC HEAD - * TAIL + * END

LAST 3TER HEAD - * END

FIRST 5TER TAIL + * END

Sequence CYT GUA ADE CYT GUA THY ABA THY GUA CYT ADE GUA CYT end

end

end

for $1 in ( 1 2 3 4 5 6 7 8 9 10 11 12 13) loop main

patch deox reference=nil=( segid b AND resid $1 ) end

end loop main

end

vector do ( resid = encode ( decode ( resid ) + 13 ) ) (segid "B ")

vector do (segid = " ") (segid "A " or segid "B ")

vector ident (x) ( all )

vector do (x=x/3.) ( all )

vector do (y=random(0.5) ) ( all )

vector do (z=random(0.5) ) ( all )
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vector do (fbeta=50) (all) {*Friction coefficient, in 1/ps.*}

vector do (mass=100) (all) {*Heavy masses, in amus.*}

parameter

nbonds

cutnb=5.5 rcon=20. nbxmod=-2 repel=0.9 wmin=1. tolerance=0.5

rexp=2 irexp=2 inhibit=0.25

end

end

flags exclude * include bond angle vdw end

minimize powell nstep=500 nprint=10 end

flags include impr dihedral end

minimize powell nstep=500 nprint=10 end

dynamics verlet

nstep=500 timestep=0.001 iasvel=maxwell firsttemp= 300.

tcoupling = true tbath = 300. nprint=50 iprfrq=0

end

parameter

nbonds

rcon=2. nbxmod=-3 repel=0.75

end

end

minimize powell nstep=100 nprint=25 end

dynamics verlet

nstep=1500 timestep=0.001 iasvel=maxwell firsttemp= 300.

tcoupling = true tbath = 300. nprint=100 iprfrq=0

end

flags exclude vdw elec end

hbuild selection=( hydrogen ) phistep=360 end

hbuild selection=( hydrogen ) phistep=4 end

flags include vdw elec end

minimize powell nstep=4000 nprint=50 end

{*Write coordinates.*}

write coordinates output=start_13merHC-.pdb end

write structure output=start_13merHC-.psf end

print threshold=0.02 bonds

print threshold=3.0 angles

print threshold=3.0 dihedrals

print threshold=3.0 impropers

stop
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2 Input files for Molecular Dynamics calculations

2.2 Input file to generate start-structure

This protocol is used to generate the start-structure and only uses NOE distance restraints.

remarks file nmr/sa.inp

remarks Simulated annealing protocol for NMR structure determination.

remarks The starting structure for this protocol can be any structure with

remarks a reasonable geometry, such as randomly assigned torsion angles or

remarks extended strands.

remarks Author: Michael Nilges

{====>}

evaluate ($init_t = 3000 ) {*Initial simulated annealing temperature.*}

{====>}

evaluate ($high_steps= 48000 ) {*Total number of steps at high temp.*}

{====>}

evaluate ($cool_steps = 6000 ) {*Total number of steps during cooling.*}

parameter {*Read the parameter file.*}

{====>}

@lars_nucleic.par

end

{====>}

structure @start_13merHC-.psf end {*Read the structure file.*}

{====>}

coordinates @start_13merHC-.pdb {*Read the coordinates.*}

noe

{====>}

nres=3000 {*Estimate greater than the actual number of NOEs.*}

class all

{====>}

@NOE_13merHCF_xplor.tbl {*Read NOE distance ranges.*}

@hbond_13mer_HCF.tbl

end

{====>}

restraints dihedral

nass = 1000

@dihedral_13mer_HCF_cut_ABDNA.tbl {*Read dihedral angle

restraints.*}

end

@plane_13mer_HCF.inp

{* Reduce the scaling factor on the force applied to disulfide *}

{* bonds and angles from 1000.0 to 100.0 in order to reduce computation instability. *}

parameter

bonds ( name SG ) ( name SG ) 100. TOKEN

angle ( name CB ) ( name SG ) ( name SG ) 50. TOKEN

end

flags exclude * include bonds angle impr vdw elec noe cdih plan end
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{*Friction coefficient for MD heatbath, in 1/ps. *}

vector do (fbeta=10) (all)

{*Uniform heavy masses to speed molecular dynamics.*}

vector do (mass=100) (all)

noe {*Parameters for NOE effective energy term.*}

ceiling=1000

averaging * cent

potential * soft

scale * 50.

sqoffset * 0.0

sqconstant * 1.0

sqexponent * 2

soexponent * 1

asymptote * 0.1 {*Initial value--modified later.*}

rswitch * 0.5

end

parameter {*Parameters for the repulsive energy term.*}

nbonds

repel=1. {*Initial value for repel--modified later.*}

rexp=2 irexp=2 rcon=1.

nbxmod=3

wmin=0.01

cutnb=4.5 ctonnb=2.99 ctofnb=3.

tolerance=0.5

end

end

restraints dihedral

scale=5.

end

{====>}

evaluate ($end_count=100) {*Loop through a family of 100 structures.*}

coor copy end

evaluate ($count = 0)

evaluate ($count2 = 0)

while ($count < $end_count ) loop main

evaluate ($count=$count+1)

evaluate ($count2=$count2+1)

coor swap end

coor copy end

{* ============================================= Initial minimization.*}

restraints dihedral scale=5. end

noe asymptote * 0.1 end

parameter nbonds repel=1. end end

constraints interaction

(all) (all) weights * 1 vdw 0.002 end end

minimize powell nstep=50 drop=10. nprint=25 end
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{* ======================================== High-temperature dynamics.*}

constraints interaction (all) (all)

weights * 1 angl 0.4 impr 0.1 vdw 0.002 end end

evaluate ($nstep1=int($high_steps * 2. / 3. ) )

evaluate ($nstep2=int($high_steps * 1. / 3. ) )

dynamics verlet

nstep=$nstep1 timestep=0.003 iasvel=maxwell firstt=$init_t

tcoupling=true tbath=$init_t nprint=50 iprfrq=0

end

{* ============== Tilt the asymptote and increase weights on geometry.*}

noe asymptote * 1.0 end

constraints interaction

(all) (all) weights * 1 vdw 0.002 end end

{* Bring scaling factor for S-S bonds back *}

parameter

bonds ( name SG ) ( name SG ) 1000. TOKEN

angle ( name CB ) ( name SG ) ( name SG ) 500. TOKEN

end

dynamics verlet

nstep=$nstep2 timestep=0.001 iasvel=current tcoupling=true

tbath=$init_t nprint=50 iprfrq=0

end

{* ================================================== Cool the system.*}

restraints dihedral scale=200. end

evaluate ($final_t = 100) { K }

evaluate ($tempstep = 50) { K }

evaluate ($ncycle = ($init_t-$final_t)/$tempstep)

evaluate ($nstep = int($cool_steps/$ncycle))

evaluate ($ini_rad = 0.9) evaluate ($fin_rad = 0.75)

evaluate ($ini_con= 0.003) evaluate ($fin_con= 4.0)

evaluate ($bath = $init_t)

evaluate ($k_vdw = $ini_con)

evaluate ($k_vdwfact = ($fin_con/$ini_con)^(1/$ncycle))

evaluate ($radius= $ini_rad)

evaluate ($radfact = ($fin_rad/$ini_rad)^(1/$ncycle))

evaluate ($i_cool = 0)

while ($i_cool < $ncycle) loop cool

evaluate ($i_cool=$i_cool+1)

evaluate ($bath = $bath - $tempstep)
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evaluate ($k_vdw=min($fin_con,$k_vdw*$k_vdwfact))

evaluate ($radius=max($fin_rad,$radius*$radfact))

parameter nbonds repel=$radius end end

constraints interaction (all) (all)

weights * 1. vdw $k_vdw end end

dynamics verlet

nstep=$nstep time=0.001 iasvel=current firstt=$bath

tcoup=true tbath=$bath nprint=$nstep iprfrq=0

end

{====>} {*Abort condition.*}

evaluate ($critical=$temp/$bath)

if ($critical > 10. ) then

display ****&&&& rerun job with smaller timestep (i.e., 0.003)

stop

end if

end loop cool

{* ================================================= Final minimization.*}

constraints interaction (all) (all) weights * 1. vdw 1. end end

parameter {*Parameters for the repulsive energy term.*}

nbonds

repel=0. {*Initial value for repel--modified later.*}

SWITCH

VSWITCH

RDIE

cutnb=11.5

nbxmod=5

wmin=0.01

ctofnb=10.5

ctonnb=9.5

tolerance=0.5

end

end

flags exclude * include bonds angle impr vdw elec noe cdih plan end

minimize powell nstep=5000 drop=10.0 nprint=25 end

{* =================================== Write out the final structure(s).*}

print threshold=0.5 noe

evaluate ($rms_noe=$result)

evaluate ($violations_noe=$violations)

print threshold=5. cdih

evaluate ($rms_cdih=$result)

evaluate ($violations_cdih=$violations)

print thres=0.05 bonds

evaluate ($rms_bonds=$result)

print thres=5. angles

evaluate ($rms_angles=$result)

print thres=5. impropers

evaluate ($rms_impropers=$result)
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remarks ===============================================================

remarks overall,bonds,angles,improper,vdw,noe,cdih,elec

remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih, $elec

remarks ===============================================================

remarks bonds,angles,impropers,noe,cdih

remarks rms-d: $rms_bonds,$rms_angles,$rms_impropers,$rms_noe,$rms_cdih

remarks ===============================================================

remarks noe, cdih

remarks violations.: $violations_noe, $violations_cdih

remarks ===============================================================

remarks enviol: $ener $$violations_noe $violations_cdih

remarks ===============================================================

{====>} {*Name(s) of the family of final structures.*}

evaluate ($filename="z13merHC-"+encode($count)+".pdb")

write coordinates output =$filename end

evaluate ($filename2="z13merHC-"+encode($count2)+".noe")

set display=$filename2 end

@@picktbl_13merHCF

close $filename2 end

set display=OUTPUT end

end loop main

stop

2.3 Input file to finally calculate the NMR solution structure

The final MD protocol uses the start-structure, NOE distance restraints and RDC values to

calculate the NMR solution structure. In case of 13mer4AP-DAP all lines that implement

RDC values were set as comments to omit them in the calculation.

# Das ist das zur Zeit gueltige Skript mit allen Neuerungen!

# Hier wird das modifizierte python-file protocol.py benutzt!

seed = 10

numberOfStructures = 100

startStructure = 1

# User-specific which has to be adjusted for each new sample

lsdSampleName = "13merHC-" # specify sample name

outFilename = lsdSampleName+"_STRUCTURE.pdb" # pdb output filename

lsdNOEexp = "NOE_13merHCF_xplor.tbl" # file for reading in experimental NOE constraints

lsdDipoInp = "RDC_13merHCF.inp.xplor"

# file for reading in experimental RDC constraints

lsdDipoInpMe = "RDC_13merHCF_Me.inp.xplor"
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# file for reading in experimental Me-RDC constraints

lsdInitCoord = "start_"+lsdSampleName+".pdb"

# file created with initial extended structure coordinates

lsdInitPSF = "start_"+lsdSampleName+".psf" # file created with initial extended structure

lsdPlan = "plane_13merHCF.inp" # file for reading in planar constraints

lsdHbond = "hbond_13merHCF.tbl" # file for reading in Hbond constraints

lsdDihe = "dihedral_13mer_HCF_cut_ABDNA.tbl"

# file for reading in ideal dihedral constraints

lsdNOEthresh = 0.5 # threshold for NOE error reports

lsdRDCthresh = 2.5 # threshold for RDC error reports

lsdRDCscale = 5.0 # scaling factor for RDCs

lsdMeRDCscale = 0.5

# scaling factor for methyl RDCs (should usually be 0.1*lsdRDCscale)

lsdFixedRDC = 1

# if lsdFixedRDC is 0, fixed values are used, else floating ones

lsdDaRDC = -22.43 # Da-value when using fixed values

lsdRhRDC = 0.2174 # Rhombicity when using fixed values

####################### end of lsd mod ########################

xplor.parseArguments() # check for typos on the command-line

simWorld.setRandomSeed(seed)

#

# Create the PSF and initial PDB files as an extended structure

import protocol

protocol.initParams("lsd_old_nucleic")

protocol.initTopology("lsd_old_nucleic")

protocol.initStruct(lsdInitPSF)

#

# starting coords

#

protocol.initCoords(lsdInitCoord)

# list of potential terms used in refinement

from potList import PotList

potList = PotList()

crossTerms=PotList(’cross terms’) # can add some pot terms which are not

# refined against- but included in analysis

# parameters to ramp up during the simulated annealing protocol

#

from simulationTools import MultRamp, StaticRamp, InitialParams

rampedParams=[]

highTempParams=[]

from varTensorTools import create_VarTensor, calcTensor

media={}

for medium in [’pf1’]:

media[medium] = create_VarTensor(medium)

pass
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from xplorPot import XplorPot

#planarity restraints

xplor.command("@%s" % lsdPlan)

potList.append(XplorPot("plan",xplor.simulation))

#NOE potentials

from noePotTools import create_NOEPot

noePots = PotList("noe")

noe = create_NOEPot("noeAll",lsdNOEexp)

noe.setPotType("hard")

noe.setThreshold(lsdNOEthresh)

noePots.append(noe)

# need to be satisfied by all structures

noeHB = create_NOEPot("noeNH",lsdHbond)

noeHB.setPotType("hard")

noeHB.setScale(1000)

noeHB.setThreshold( 0.1 )

noePots.append(noeHB)

potList.append(noePots)

rampedParams.append( StaticRamp("noePots.setScale( 50 )") )

protocol.initDihedrals(lsdDihe)

potList.append(XplorPot("CDIH"))

highTempParams.append( StaticRamp("potList[’CDIH’].setScale(200)") )

rampedParams.append( StaticRamp("potList[’CDIH’].setScale(200)") )

#rampedParams.append( MultRamp(10,200,"potList[’CDIH’].setScale(VALUE)") )

from rdcPotTools import Da_prefactor, create_RDCPot, scale_toCH

rdcPots = PotList(’rdcs’)

# weight is the relative weighting of expts, as determined by expt. error

for (name,medium,weight,files) in [

(’JCH’ ,’pf1’,lsdRDCscale,lsdDipoInp),(’methyl’ ,’pf1’,lsdMeRDCscale,lsdDipoInpMe)

]:

term = create_RDCPot(name,oTensor=media[medium],defThreshold=lsdRDCthresh)

if type(files)==type(’string’):

files=(files,)

pass

for file in files:

term.addRestraints( open(file).read() )

pass

term.setShowAllRestraints(1)

term.setScale(weight)

#term.setAveType("average")

term.setAveType("sum")

print name

scale_toCH(term) #also sets useDistance

print term.info()

print term.gyroA()

rdcPots.append(term)

pass
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potList.append(rdcPots)

rampedParams.append( MultRamp(0.01,1,"rdcPots.setScale( VALUE )") )

from rdcPotTools import Da_prefactor

print "factor:", Da_prefactor[’CH’] / Da_prefactor["NH"]

for medium in media.values():

calcTensor(medium)

print "medium: ", medium.instanceName(), \

"Da: ",medium.Da(), "Rh: ",medium.Rh()

pass

#let’s try fixing Da, Rh:

print medium

for (medium,Da,Rh) in ((’pf1’,lsdDaRDC,lsdRhRDC),):

medium = media[medium]

medium.setDa(Da)

medium.setRh(Rh)

pass

potList.append( XplorPot("VDW") )

potList.append( XplorPot("elec") )

rampedParams.append( StaticRamp("""xplor.command(’’’param nbonds

atom

repel=0

wmin=0.01

nbxmod=5

cutnb=58.5

ctonnb=56.5

ctofnb=57.5

tolerance=0.5

rdie

vswitch

switch

end end’’’)""") )

for name in ("bond","angl","impr"):

potList.append( XplorPot(name) )

pass

rampedParams.append( MultRamp(0.4,1.0,"potList[’ANGL’].setScale(VALUE)"))

rampedParams.append( MultRamp(0.1,1.0,"potList[’IMPR’].setScale(VALUE)"))

from ivm import IVM

import varTensorTools

mini = IVM() #initial alignment of orientation tensor axes

for medium in ((’pf1’),): media[medium].setFreedom("fixDa, fixRh")

varTensorTools.topologySetup(mini,media.values())

protocol.initMinimize(mini,

numSteps=20)

mini.fix("not resname ANI")

mini.run() #this initial minimization is not strictly necessary
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#uncomment to allow Da, Rh to vary

if lsdFixedRDC==0:

pass

else:

for medium in ((’pf1’),): media[medium].setFreedom("varyDa, varyRh")

dyn = IVM()

protocol.initDynamics(dyn,potList=potList)

varTensorTools.topologySetup(dyn,media.values())

protocol.torsionTopology(dyn)

# Give atoms uniform weights, except for the anisotropy axis

from atomAction import SetProperty

AtomSel("not resname ANI").apply( SetProperty("mass",100.) )

varTensorTools.massSetup(media.values(),300)

AtomSel("all ").apply( SetProperty("fric",10.) )

##

## minc used for final cartesian minimization

##

from selectTools import IVM_groupRigidSidechain

minc = IVM()

protocol.initMinimize(minc,potList=potList)

IVM_groupRigidSidechain(minc)

protocol.cartesianTopology(minc,"not resname ANI")

varTensorTools.topologySetup(minc,media.values())

init_t1 = 200000

init_t2 = 20000

init_t3 = 3000

from simulationTools import AnnealIVM

anneal2= AnnealIVM(initTemp =init_t2,

finalTemp=init_t3,

tempStep =500,

ivm=dyn,

rampedParams = rampedParams)

anneal3= AnnealIVM(initTemp =init_t3,

finalTemp=25,

tempStep =25,

ivm=dyn,

rampedParams = rampedParams)

# initialize parameters for initial minimization.

InitialParams( rampedParams )

# high-temp dynamics setup - only need to specify parameters which

# differfrom initial values in rampedParams

InitialParams( highTempParams )

# initial minimization

protocol.initMinimize(dyn,

potList=[potList[’CDIH’],potList[’IMPR’]],
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numSteps=50)

dyn.run()

# initial minimization

protocol.initMinimize(dyn,

potList=potList,

numSteps=1000)

minc.run()

def calcOneStructure(loopInfo):

# mod by lsd: second annealing loop, actual annealing

# initialize parameters for high temp dynamics.

InitialParams( rampedParams )

# high-temp dynamics setup - only need to specify parameters which

# differfrom initial values in rampedParams

InitialParams( highTempParams )

protocol.initDynamics(dyn,

initVelocities=1,

bathTemp=init_t2,

potList=potList,

finalTime=50)

dyn.setETolerance( init_t2/100 ) #used to det. stepsize. default: t/1000

dyn.run()

# initialize parameters for cooling loop

InitialParams( rampedParams )

# perform simulated annealing

#

protocol.initDynamics(dyn,

finalTime=0.5, #time to integrate at a given temp.

numSteps=0, # take as many steps as necessary

#eTol_minimum=0.001 # cutoff for auto-TS det.

)

anneal2.run()

anneal3.run()

#

# torsion angle minimization

#

protocol.initMinimize(dyn,numSteps=5000)

dyn.run()

##

##all atom minimization

##

protocol.initMinimize(minc,potList=potList,numSteps=3000)

minc.run()

#

# perform analysis and write structure

loopInfo.writeStructure(potList,crossTerms)

pass
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from simulationTools import StructureLoop

StructureLoop(numStructures=numberOfStructures,

startStructure=startStructure,

structLoopAction=calcOneStructure,

pdbTemplate=outFilename,

genViolationStats=1,

averageFilename="average_min.pdb",

averageFitSel="not resname ANI and not (name H71 or name H72 or name H73)",

averageRefineSteps=15,

averageTopFraction=0.1,

averagePotList=potList).run()

2.4 Parameter file used by Xplor-NIH

!RNA PARAMETER FILE ’FRAMEOWRK’ FROM PARALLHDG.DNA AND ATOM NAMES

! AND HEAVY ATOM PARAMETERS FROM DNA-RNA.PARAM

!INCLUDES ALL NONEXCHANGEABLE HYDROGEN TERMS FOR BOND, ANGLE, AND

!IMPROPERS WITH ENERGY CONSTANT VARIABLES: $kchbond, $kchangle, AND $kchimpr.

!BOND, ANGLE, AND IMPROPERS WERE ESTIMATED FROM VALUES FROM THE STANDARD

!NUCLEOTIDES OF INSIGHTII 95.0 (BIOSYM/MOLECULAR SIMULATIONS).

!CREATED 2/24/96-- JASON P. RIFE AND PETER B. MOORE

! DNA-RNA-ALLATOM.PARAM

set echo=off message=off end

! checkversion 1.0

evaluate ($kchbond = 2000)

evaluate ($kchangle = 1000)

evaluate ($kchimpr = 1000)

!******************* change by lsd - DAP **********************

{ Note: edit if necessary }

BOND OY1 CY2 1000.0 1.426 ! Nobs = 1

BOND OY1 HY29 1000.0 0.963 ! Nobs = 1

BOND CY2 HY3 1000.0 1.096 ! Nobs = 1

BOND CY2 HY4 1000.0 1.097 ! Nobs = 1

BOND CY2 CY5 1000.0 1.517 ! Nobs = 1

BOND CY5 HY6 1000.0 1.094 ! Nobs = 1

BOND CY5 OY7 1000.0 1.450 ! Nobs = 1

BOND CY5 CY18 1000.0 1.543 ! Nobs = 1

BOND OY7 CY8 1000.0 1.441 ! Nobs = 1

BOND CY8 HY9 1000.0 1.098 ! Nobs = 1

BOND CY8 CY20 1000.0 1.527 ! Nobs = 1

BOND C1D CY25 1000.0 1.509 ! modded by lsd

BOND CY10 HY11 1000.0 1.079 ! Nobs = 1

BOND CY10 NY24 1000.0 1.374 ! Nobs = 1
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BOND CY10 CY25 1000.0 1.351 ! Nobs = 1

BOND CY12 NY13 1000.0 1.339 ! Nobs = 1

BOND CY12 NY16 1000.0 1.314 ! Nobs = 1

BOND CY12 NY24 1000.0 1.366 ! Nobs = 1

BOND NY13 HY14 1000.0 1.008 ! Nobs = 1

BOND NY13 HY15 1000.0 1.006 ! Nobs = 1

BOND NY16 CY17 1000.0 1.342 ! Nobs = 1

BOND CY17 CY25 1000.0 1.450 ! Nobs = 1

BOND CY17 NY26 1000.0 1.326 ! Nobs = 1

BOND CY18 HY19 1000.0 1.092 ! Nobs = 1

BOND CY18 CY20 1000.0 1.527 ! Nobs = 1

BOND CY18 OY23 1000.0 1.425 ! Nobs = 1

BOND CY20 HY21 1000.0 1.089 ! Nobs = 1

BOND CY20 HY22 1000.0 1.089 ! Nobs = 1

BOND OY23 HY30 1000.0 0.963 ! Nobs = 1

BOND NY24 HY31 1000.0 1.010 ! Nobs = 1

BOND NY26 HY27 1000.0 1.014 ! Nobs = 1

BOND NY26 HY28 1000.0 1.008 ! Nobs = 1

{ Note: edit if necessary }

ANGLe CY2 OY1 HY29 500.0 108.93 ! Nobs = 1

ANGLe OY1 CY2 HY3 500.0 111.24 ! Nobs = 1

ANGLe OY1 CY2 HY4 500.0 111.10 ! Nobs = 1

ANGLe OY1 CY2 CY5 500.0 109.30 ! Nobs = 1

ANGLe HY3 CY2 HY4 500.0 108.20 ! Nobs = 1

ANGLe HY3 CY2 CY5 500.0 108.77 ! Nobs = 1

ANGLe HY4 CY2 CY5 500.0 108.14 ! Nobs = 1

ANGLe CY2 CY5 HY6 500.0 108.20 ! Nobs = 1

ANGLe CY2 CY5 OY7 500.0 110.08 ! Nobs = 1

ANGLe CY2 CY5 CY18 500.0 115.10 ! Nobs = 1

ANGLe HY6 CY5 OY7 500.0 107.82 ! Nobs = 1

ANGLe HY6 CY5 CY18 500.0 109.84 ! Nobs = 1

ANGLe OY7 CY5 CY18 500.0 105.57 ! Nobs = 1

ANGLe CY5 OY7 CY8 500.0 110.21 ! Nobs = 1

ANGLe OY7 CY8 HY9 500.0 108.09 ! Nobs = 1

ANGLe OY7 CY8 CY20 500.0 105.09 ! Nobs = 1

ANGLe O4D C1D CY25 500.0 109.05 ! modded by lsd

ANGLe HY9 CY8 CY20 500.0 109.22 ! Nobs = 1

ANGLe H C1D CY25 500.0 107.80 ! modded by lsd

ANGLe C2D C1D CY25 500.0 117.27 ! modded by lsd

ANGLe HY11 CY10 NY24 500.0 115.49 ! Nobs = 1

ANGLe HY11 CY10 CY25 500.0 123.38 ! Nobs = 1

ANGLe NY24 CY10 CY25 500.0 121.13 ! Nobs = 1

ANGLe NY13 CY12 NY16 500.0 119.62 ! Nobs = 1

ANGLe NY13 CY12 NY24 500.0 119.02 ! Nobs = 1

ANGLe NY16 CY12 NY24 500.0 121.36 ! Nobs = 1

ANGLe CY12 NY13 HY14 500.0 117.80 ! Nobs = 1

ANGLe CY12 NY13 HY15 500.0 123.59 ! Nobs = 1

ANGLe HY14 NY13 HY15 500.0 118.59 ! Nobs = 1

ANGLe CY12 NY16 CY17 500.0 119.65 ! Nobs = 1

ANGLe NY16 CY17 CY25 500.0 121.96 ! Nobs = 1

ANGLe NY16 CY17 NY26 500.0 117.38 ! Nobs = 1

ANGLe CY25 CY17 NY26 500.0 120.65 ! Nobs = 1

ANGLe CY5 CY18 HY19 500.0 111.68 ! Nobs = 1

ANGLe CY5 CY18 CY20 500.0 102.81 ! Nobs = 1

ANGLe CY5 CY18 OY23 500.0 111.93 ! Nobs = 1
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ANGLe HY19 CY18 CY20 500.0 111.73 ! Nobs = 1

ANGLe HY19 CY18 OY23 500.0 111.35 ! Nobs = 1

ANGLe CY20 CY18 OY23 500.0 106.94 ! Nobs = 1

ANGLe CY8 CY20 CY18 500.0 101.56 ! Nobs = 1

ANGLe CY8 CY20 HY21 500.0 110.76 ! Nobs = 1

ANGLe CY8 CY20 HY22 500.0 113.50 ! Nobs = 1

ANGLe CY18 CY20 HY21 500.0 108.80 ! Nobs = 1

ANGLe CY18 CY20 HY22 500.0 110.87 ! Nobs = 1

ANGLe HY21 CY20 HY22 500.0 110.92 ! Nobs = 1

ANGLe CY18 OY23 HY30 500.0 109.89 ! Nobs = 1

ANGLe CY10 NY24 CY12 500.0 120.27 ! Nobs = 1

ANGLe CY10 NY24 HY31 500.0 119.01 ! Nobs = 1

ANGLe CY12 NY24 HY31 500.0 120.70 ! Nobs = 1

ANGLe C1D CY25 CY10 500.0 122.92 ! modded by lsd

ANGLe C1D CY25 CY17 500.0 121.43 ! modded by lsd

ANGLe CY10 CY25 CY17 500.0 115.50 ! Nobs = 1

ANGLe CY17 NY26 HY27 500.0 119.25 ! Nobs = 1

ANGLe CY17 NY26 HY28 500.0 118.79 ! Nobs = 1

ANGLe HY27 NY26 HY28 500.0 120.67 ! Nobs = 1

{ Note: edit if necessary }

DIHEdral HY29 OY1 CY2 HY3 750.0 0 60.00 ! Nobs = 1 ... Value = 60.14

DIHEdral HY29 OY1 CY2 HY4 750.0 0 -60.00 ! Nobs = 1 ... Value = -60.46

DIHEdral HY29 OY1 CY2 CY5 750.0 0 180.00 ! Nobs = 1 ... Value = -179.72

DIHEdral OY1 CY2 CY5 HY6 750.0 0 180.00 ! Nobs = 1 ... Value = 172.91

DIHEdral OY1 CY2 CY5 OY7 750.0 0 -60.00 ! Nobs = 1 ... Value = -69.50

DIHEdral HY3 CY2 CY5 HY6 750.0 0 -60.00 ! Nobs = 1 ... Value = -65.45

DIHEdral HY3 CY2 CY5 OY7 750.0 0 60.00 ! Nobs = 1 ... Value = 52.14

DIHEdral HY3 CY2 CY5 CY18 750.0 0 180.00 ! Nobs = 1 ... Value = 171.28

DIHEdral HY4 CY2 CY5 HY6 750.0 0 60.00 ! Nobs = 1 ... Value = 51.84

DIHEdral CY2 CY5 OY7 CY8 750.0 0 120.00 ! Nobs = 1 ... Value = 122.24

DIHEdral HY6 CY5 OY7 CY8 750.0 0 -120.00 ! Nobs = 1 ... Value = -119.94

DIHEdral CY18 CY5 OY7 CY8 750.0 0 0.00 ! Nobs = 1 ... Value = -2.57

DIHEdral CY2 CY5 CY18 CY20 750.0 0 -90.00 ! Nobs = 1 ... Value = -96.57

DIHEdral HY6 CY5 CY18 HY19 750.0 0 -90.00 ! Nobs = 1 ... Value = -99.03

DIHEdral OY7 CY5 CY18 OY23 750.0 0 -90.00 ! Nobs = 1 ... Value = -89.40

DIHEdral CY5 OY7 CY8 HY9 750.0 0 90.00 ! Nobs = 1 ... Value = 95.37

DIHEdral CY25 CY8 CY20 HY22 750.0 0 -90.00 ! Nobs = 1 ... Value = -83.70

DIHEdral HY11 CY10 NY24 CY12 750.0 0 180.00 ! Nobs = 1 ... Value = 177.39

DIHEdral HY11 CY10 NY24 HY31 750.0 0 0.00 ! Nobs = 1 ... Value = -1.13

DIHEdral CY25 CY10 NY24 CY12 750.0 0 0.00 ! Nobs = 1 ... Value = -1.67

DIHEdral CY25 CY10 NY24 HY31 750.0 0 180.00 ! Nobs = 1 ... Value = 179.81

DIHEdral HY11 CY10 CY25 CY8 750.0 0 0.00 ! Nobs = 1 ... Value = -4.80

DIHEdral HY11 CY10 CY25 CY17 750.0 0 180.00 ! Nobs = 1 ... Value = 179.53

DIHEdral NY24 CY10 CY25 CY8 750.0 0 180.00 ! Nobs = 1 ... Value = 174.19

DIHEdral NY24 CY10 CY25 CY17 750.0 0 0.00 ! Nobs = 1 ... Value = -1.49

DIHEdral NY16 CY12 NY13 HY14 750.0 0 0.00 ! Nobs = 1 ... Value = -0.22

DIHEdral NY16 CY12 NY13 HY15 750.0 0 180.00 ! Nobs = 1 ... Value = -178.44

DIHEdral NY24 CY12 NY13 HY14 750.0 0 180.00 ! Nobs = 1 ... Value = -179.63

DIHEdral NY24 CY12 NY13 HY15 750.0 0 0.00 ! Nobs = 1 ... Value = 2.16

DIHEdral NY13 CY12 NY16 CY17 750.0 0 180.00 ! Nobs = 1 ... Value = 179.93

DIHEdral NY24 CY12 NY16 CY17 750.0 0 0.00 ! Nobs = 1 ... Value = -0.68

DIHEdral NY13 CY12 NY24 CY10 750.0 0 180.00 ! Nobs = 1 ... Value = -177.69

DIHEdral NY13 CY12 NY24 HY31 750.0 0 0.00 ! Nobs = 1 ... Value = 0.81

DIHEdral NY16 CY12 NY24 CY10 750.0 0 0.00 ! Nobs = 1 ... Value = 2.91

DIHEdral NY16 CY12 NY24 HY31 750.0 0 180.00 ! Nobs = 1 ... Value = -178.58
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DIHEdral CY12 NY16 CY17 CY25 750.0 0 0.00 ! Nobs = 1 ... Value = -2.69

DIHEdral CY12 NY16 CY17 NY26 750.0 0 180.00 ! Nobs = 1 ... Value = 178.27

DIHEdral NY16 CY17 CY25 CY8 750.0 0 180.00 ! Nobs = 1 ... Value = -172.01

DIHEdral NY16 CY17 CY25 CY10 750.0 0 0.00 ! Nobs = 1 ... Value = 3.74

DIHEdral NY26 CY17 CY25 CY8 750.0 0 0.00 ! Nobs = 1 ... Value = 7.00

DIHEdral NY26 CY17 CY25 CY10 750.0 0 180.00 ! Nobs = 1 ... Value = -177.26

DIHEdral NY16 CY17 NY26 HY28 750.0 0 0.00 ! Nobs = 1 ... Value = -1.69

DIHEdral CY25 CY17 NY26 HY28 750.0 0 180.00 ! Nobs = 1 ... Value = 179.27

DIHEdral CY5 CY18 CY20 HY21 750.0 0 90.00 ! Nobs = 1 ... Value = 80.22

DIHEdral HY19 CY18 CY20 HY22 750.0 0 90.00 ! Nobs = 1 ... Value = 82.56

DIHEdral OY23 CY18 CY20 CY8 750.0 0 90.00 ! Nobs = 1 ... Value = 81.38

DIHEdral CY20 CY18 OY23 HY30 750.0 0 180.00 ! Nobs = 1 ... Value = 170.64

{ Note: edit if necessary }

IMPRoper CY2 OY1 HY3 HY4 750.0 0 35.000 ! Nobs = 1 ... Value = 33.228

IMPRoper CY5 CY2 HY6 OY7 750.0 0 -35.000 ! Nobs = 1 ... Value = -38.195

! >>> NOTE - unusual value for following improper : 41.37 reset to +35.0

IMPRoper CY8 OY7 HY9 CY20 750.0 0 35.000 ! Nobs = 1 ... Value = 41.369

IMPRoper CY10 HY11 NY24 CY25 750.0 0 0.000 ! Nobs = 1 ... Value = -0.545

IMPRoper CY12 NY13 NY16 NY24 750.0 0 0.000 ! Nobs = 1 ... Value = 0.351

IMPRoper NY13 CY12 HY14 HY15 750.0 0 0.000 ! Nobs = 1 ... Value = 0.940

IMPRoper CY17 NY16 CY25 NY26 750.0 0 0.000 ! Nobs = 1 ... Value = 0.570

! >>> NOTE - unusual value for following improper : 40.17 reset to +35.0

IMPRoper CY18 CY5 HY19 CY20 750.0 0 35.000 ! Nobs = 1 ... Value = 40.170

IMPRoper CY20 CY8 CY18 HY21 750.0 0 35.000 ! Nobs = 1 ... Value = 30.715

IMPRoper NY24 CY10 CY12 HY31 750.0 0 0.000 ! Nobs = 1 ... Value = 0.769

IMPRoper CY25 C1D CY10 CY17 750.0 0 0.000 ! Nobs = 1 ... Value = -2.663 mod by lsd

! >>> NOTE - unusual value for following improper : -7.15 reset to 0.0

IMPRoper NY26 CY17 HY27 HY28 750.0 0 0.000 ! Nobs = 1 ... Value = -7.146

!add IMPRoper for chirality around C1’

IMPRoper H C2D O4D CY25 $kchimpr 0 -65.280

{ Note: edit if necessary }

NONBonded OY1 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CY2 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY3 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY4 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CY5 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY6 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OY7 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CY8 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY9 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CY10 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY11 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CY12 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded NY13 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded HY14 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY15 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded NY16 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded CY17 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CY18 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY19 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CY20 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HY21 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY22 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OY23 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen
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NONBonded NY24 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded CY25 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded NY26 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded HY27 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY28 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY29 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY30 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HY31 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

!**************end of change by lsd - DAP *********************

!******************* change by lsd - 4AP **********************

{ Note: edit if necessary }

BOND OX1 CX2 1000.0 1.428 ! Nobs = 1

BOND OX1 HX21 1000.0 0.962 ! Nobs = 1

BOND CX2 HX3 1000.0 1.096 ! Nobs = 1

BOND CX2 HX4 1000.0 1.099 ! Nobs = 1

BOND CX2 CX5 1000.0 1.518 ! Nobs = 1

BOND CX5 HX6 1000.0 1.098 ! Nobs = 1

BOND CX5 OX7 1000.0 1.430 ! Nobs = 1

BOND CX5 CX14 1000.0 1.551 ! Nobs = 1

BOND OX7 CX8 1000.0 1.435 ! Nobs = 1

BOND CX8 HX9 1000.0 1.094 ! Nobs = 1

BOND CX8 CX16 1000.0 1.536 ! Nobs = 1

BOND C1D CX20 1000.0 1.509 ! modded by lsd

BOND CX10 HX11 1000.0 1.082 ! Nobs = 1

BOND CX10 CX20 1000.0 1.391 ! Nobs = 1

BOND CX10 CX23 1000.0 1.406 ! Nobs = 1

BOND CX12 CX23 1000.0 1.407 ! Nobs = 1

BOND CX12 CX24 1000.0 1.374 ! Nobs = 1

BOND CX12 HX34 1000.0 1.083 ! Nobs = 1

BOND CX13 CX20 1000.0 1.398 ! Nobs = 1

BOND CX13 CX24 1000.0 1.396 ! Nobs = 1

BOND CX13 CX30 1000.0 1.482 ! Nobs = 1

BOND CX14 HX15 1000.0 1.093 ! Nobs = 1

BOND CX14 CX16 1000.0 1.524 ! Nobs = 1

BOND CX14 OX19 1000.0 1.430 ! Nobs = 1

BOND CX16 HX17 1000.0 1.090 ! Nobs = 1

BOND CX16 HX18 1000.0 1.088 ! Nobs = 1

BOND OX19 HX22 1000.0 0.963 ! Nobs = 1

BOND CX23 NX25 1000.0 1.381 ! Nobs = 1

BOND CX24 CX29 1000.0 1.497 ! Nobs = 1

BOND NX25 HX26 1000.0 1.007 ! Nobs = 1

BOND NX25 HX27 1000.0 1.006 ! Nobs = 1

BOND NX28 CX29 1000.0 1.393 ! Nobs = 1

BOND NX28 CX30 1000.0 1.408 ! Nobs = 1

BOND NX28 HX33 1000.0 1.009 ! Nobs = 1

BOND CX29 OX32 1000.0 1.208 ! Nobs = 1

BOND CX30 OX31 1000.0 1.210 ! Nobs = 1

{ Note: edit if necessary }

ANGLe CX2 OX1 HX21 500.0 108.71 ! Nobs = 1

ANGLe OX1 CX2 HX3 500.0 111.02 ! Nobs = 1

ANGLe OX1 CX2 HX4 500.0 110.85 ! Nobs = 1
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ANGLe OX1 CX2 CX5 500.0 109.55 ! Nobs = 1

ANGLe HX3 CX2 HX4 500.0 108.36 ! Nobs = 1

ANGLe HX3 CX2 CX5 500.0 108.57 ! Nobs = 1

ANGLe HX4 CX2 CX5 500.0 108.42 ! Nobs = 1

ANGLe CX2 CX5 HX6 500.0 107.54 ! Nobs = 1

ANGLe CX2 CX5 OX7 500.0 109.63 ! Nobs = 1

ANGLe CX2 CX5 CX14 500.0 114.88 ! Nobs = 1

ANGLe HX6 CX5 OX7 500.0 108.82 ! Nobs = 1

ANGLe HX6 CX5 CX14 500.0 108.72 ! Nobs = 1

ANGLe OX7 CX5 CX14 500.0 107.12 ! Nobs = 1

ANGLe CX5 OX7 CX8 500.0 109.83 ! Nobs = 1

ANGLe OX7 CX8 HX9 500.0 109.62 ! Nobs = 1

ANGLe OX7 CX8 CX16 500.0 104.20 ! Nobs = 1

ANGLe O4D C1D CX20 500.0 109.88 ! modded by lsd

ANGLe HX9 CX8 CX16 500.0 109.16 ! Nobs = 1

ANGLe H C1D CX20 500.0 109.27 ! modded by lsd

ANGLe C2D C1D CX20 500.0 114.55 ! modded by lsd

ANGLe HX11 CX10 CX20 500.0 118.07 ! Nobs = 1

ANGLe HX11 CX10 CX23 500.0 119.45 ! Nobs = 1

ANGLe CX20 CX10 CX23 500.0 122.48 ! Nobs = 1

ANGLe CX23 CX12 CX24 500.0 117.51 ! Nobs = 1

ANGLe CX23 CX12 HX34 500.0 121.57 ! Nobs = 1

ANGLe CX24 CX12 HX34 500.0 120.92 ! Nobs = 1

ANGLe CX20 CX13 CX24 500.0 120.33 ! Nobs = 1

ANGLe CX20 CX13 CX30 500.0 131.38 ! Nobs = 1

ANGLe CX24 CX13 CX30 500.0 108.28 ! Nobs = 1

ANGLe CX5 CX14 HX15 500.0 111.38 ! Nobs = 1

ANGLe CX5 CX14 CX16 500.0 103.02 ! Nobs = 1

ANGLe CX5 CX14 OX19 500.0 112.03 ! Nobs = 1

ANGLe HX15 CX14 CX16 500.0 111.74 ! Nobs = 1

ANGLe HX15 CX14 OX19 500.0 110.45 ! Nobs = 1

ANGLe CX16 CX14 OX19 500.0 107.98 ! Nobs = 1

ANGLe CX8 CX16 CX14 500.0 102.58 ! Nobs = 1

ANGLe CX8 CX16 HX17 500.0 109.82 ! Nobs = 1

ANGLe CX8 CX16 HX18 500.0 112.71 ! Nobs = 1

ANGLe CX14 CX16 HX17 500.0 109.59 ! Nobs = 1

ANGLe CX14 CX16 HX18 500.0 111.72 ! Nobs = 1

ANGLe HX17 CX16 HX18 500.0 110.18 ! Nobs = 1

ANGLe CX14 OX19 HX22 500.0 108.93 ! Nobs = 1

ANGLe C1D CX20 CX10 500.0 120.99 ! modded by lsd

ANGLe C1D CX20 CX13 500.0 121.86 ! modded by lsd

ANGLe CX10 CX20 CX13 500.0 117.13 ! Nobs = 1

ANGLe CX10 CX23 CX12 500.0 119.62 ! Nobs = 1

ANGLe CX10 CX23 NX25 500.0 120.09 ! Nobs = 1

ANGLe CX12 CX23 NX25 500.0 120.24 ! Nobs = 1

ANGLe CX12 CX24 CX13 500.0 122.92 ! Nobs = 1

ANGLe CX12 CX24 CX29 500.0 128.41 ! Nobs = 1

ANGLe CX13 CX24 CX29 500.0 108.67 ! Nobs = 1

ANGLe CX23 NX25 HX26 500.0 117.56 ! Nobs = 1

ANGLe CX23 NX25 HX27 500.0 117.77 ! Nobs = 1

ANGLe HX26 NX25 HX27 500.0 114.53 ! Nobs = 1

ANGLe CX29 NX28 CX30 500.0 113.29 ! Nobs = 1

ANGLe CX29 NX28 HX33 500.0 123.64 ! Nobs = 1

ANGLe CX30 NX28 HX33 500.0 123.04 ! Nobs = 1

ANGLe CX24 CX29 NX28 500.0 104.62 ! Nobs = 1

ANGLe CX24 CX29 OX32 500.0 129.17 ! Nobs = 1
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ANGLe NX28 CX29 OX32 500.0 126.21 ! Nobs = 1

ANGLe CX13 CX30 NX28 500.0 105.13 ! Nobs = 1

ANGLe CX13 CX30 OX31 500.0 130.41 ! Nobs = 1

ANGLe NX28 CX30 OX31 500.0 124.46 ! Nobs = 1

{ Note: edit if necessary }

DIHEdral HX21 OX1 CX2 HX3 750.0 0 60.00 ! Nobs = 1 ... Value = 59.00

DIHEdral HX21 OX1 CX2 HX4 750.0 0 -60.00 ! Nobs = 1 ... Value = -61.50

DIHEdral HX21 OX1 CX2 CX5 750.0 0 180.00 ! Nobs = 1 ... Value = 178.90

DIHEdral OX1 CX2 CX5 HX6 750.0 0 180.00 ! Nobs = 1 ... Value = 171.53

DIHEdral OX1 CX2 CX5 CX14 750.0 0 60.00 ! Nobs = 1 ... Value = 50.36

DIHEdral HX3 CX2 CX5 HX6 750.0 0 -60.00 ! Nobs = 1 ... Value = -67.09

DIHEdral HX3 CX2 CX5 OX7 750.0 0 60.00 ! Nobs = 1 ... Value = 51.08

DIHEdral HX3 CX2 CX5 CX14 750.0 0 180.00 ! Nobs = 1 ... Value = 171.74

DIHEdral HX4 CX2 CX5 HX6 750.0 0 60.00 ! Nobs = 1 ... Value = 50.44

DIHEdral CX14 CX5 OX7 CX8 750.0 0 0.00 ! Nobs = 1 ... Value = 9.07

DIHEdral CX5 OX7 CX8 HX9 750.0 0 90.00 ! Nobs = 1 ... Value = 87.96

DIHEdral HX9 CX8 CX16 CX14 750.0 0 -90.00 ! Nobs = 1 ... Value = -80.38

DIHEdral CX20 CX8 CX16 HX18 750.0 0 -90.00 ! Nobs = 1 ... Value = -82.97

DIHEdral CX16 CX8 CX20 CX10 750.0 0 -90.00 ! Nobs = 1 ... Value = -96.73

DIHEdral CX16 CX8 CX20 CX13 750.0 0 90.00 ! Nobs = 1 ... Value = 81.66

DIHEdral HX11 CX10 CX20 CX8 750.0 0 0.00 ! Nobs = 1 ... Value = -2.07

DIHEdral HX11 CX10 CX20 CX13 750.0 0 180.00 ! Nobs = 1 ... Value = 179.46

DIHEdral CX23 CX10 CX20 CX8 750.0 0 180.00 ! Nobs = 1 ... Value = 178.46

DIHEdral CX23 CX10 CX20 CX13 750.0 0 0.00 ! Nobs = 1 ... Value = 0.00

DIHEdral HX11 CX10 CX23 CX12 750.0 0 180.00 ! Nobs = 1 ... Value = -179.04

DIHEdral HX11 CX10 CX23 NX25 750.0 0 0.00 ! Nobs = 1 ... Value = -1.73

DIHEdral CX20 CX10 CX23 CX12 750.0 0 0.00 ! Nobs = 1 ... Value = 0.42

DIHEdral CX20 CX10 CX23 NX25 750.0 0 180.00 ! Nobs = 1 ... Value = 177.73

DIHEdral CX24 CX12 CX23 CX10 750.0 0 0.00 ! Nobs = 1 ... Value = -0.40

DIHEdral CX24 CX12 CX23 NX25 750.0 0 180.00 ! Nobs = 1 ... Value = -177.71

DIHEdral HX34 CX12 CX23 CX10 750.0 0 180.00 ! Nobs = 1 ... Value = 179.18

DIHEdral HX34 CX12 CX23 NX25 750.0 0 0.00 ! Nobs = 1 ... Value = 1.86

DIHEdral CX23 CX12 CX24 CX13 750.0 0 0.00 ! Nobs = 1 ... Value = -0.02

DIHEdral CX23 CX12 CX24 CX29 750.0 0 180.00 ! Nobs = 1 ... Value = 179.67

DIHEdral HX34 CX12 CX24 CX13 750.0 0 180.00 ! Nobs = 1 ... Value = -179.59

DIHEdral HX34 CX12 CX24 CX29 750.0 0 0.00 ! Nobs = 1 ... Value = 0.10

DIHEdral CX24 CX13 CX20 CX8 750.0 0 180.00 ! Nobs = 1 ... Value = -178.86

DIHEdral CX24 CX13 CX20 CX10 750.0 0 0.00 ! Nobs = 1 ... Value = -0.41

DIHEdral CX30 CX13 CX20 CX8 750.0 0 0.00 ! Nobs = 1 ... Value = 2.05

DIHEdral CX30 CX13 CX20 CX10 750.0 0 180.00 ! Nobs = 1 ... Value = -179.49

DIHEdral CX20 CX13 CX24 CX12 750.0 0 0.00 ! Nobs = 1 ... Value = 0.43

DIHEdral CX20 CX13 CX24 CX29 750.0 0 180.00 ! Nobs = 1 ... Value = -179.31

DIHEdral CX30 CX13 CX24 CX12 750.0 0 180.00 ! Nobs = 1 ... Value = 179.71

DIHEdral CX30 CX13 CX24 CX29 750.0 0 0.00 ! Nobs = 1 ... Value = -0.03

DIHEdral CX20 CX13 CX30 NX28 750.0 0 180.00 ! Nobs = 1 ... Value = 178.75

DIHEdral CX20 CX13 CX30 OX31 750.0 0 0.00 ! Nobs = 1 ... Value = -1.46

DIHEdral CX24 CX13 CX30 NX28 750.0 0 0.00 ! Nobs = 1 ... Value = -0.42

DIHEdral CX24 CX13 CX30 OX31 750.0 0 180.00 ! Nobs = 1 ... Value = 179.37

DIHEdral CX5 CX14 CX16 HX17 750.0 0 90.00 ! Nobs = 1 ... Value = 86.21

DIHEdral HX15 CX14 CX16 HX18 750.0 0 90.00 ! Nobs = 1 ... Value = 88.94

DIHEdral OX19 CX14 CX16 CX8 750.0 0 90.00 ! Nobs = 1 ... Value = 88.25

DIHEdral CX5 CX14 OX19 HX22 750.0 0 -60.00 ! Nobs = 1 ... Value = -67.94

DIHEdral HX15 CX14 OX19 HX22 750.0 0 60.00 ! Nobs = 1 ... Value = 56.85

DIHEdral CX16 CX14 OX19 HX22 750.0 0 180.00 ! Nobs = 1 ... Value = 179.31

DIHEdral CX12 CX24 CX29 NX28 750.0 0 180.00 ! Nobs = 1 ... Value = -179.25

165



Appendix

DIHEdral CX12 CX24 CX29 OX32 750.0 0 0.00 ! Nobs = 1 ... Value = 0.74

DIHEdral CX13 CX24 CX29 NX28 750.0 0 0.00 ! Nobs = 1 ... Value = 0.48

DIHEdral CX13 CX24 CX29 OX32 750.0 0 180.00 ! Nobs = 1 ... Value = -179.54

DIHEdral CX30 NX28 CX29 CX24 750.0 0 0.00 ! Nobs = 1 ... Value = -0.78

DIHEdral CX30 NX28 CX29 OX32 750.0 0 180.00 ! Nobs = 1 ... Value = 179.24

DIHEdral HX33 NX28 CX29 CX24 750.0 0 180.00 ! Nobs = 1 ... Value = -179.19

DIHEdral HX33 NX28 CX29 OX32 750.0 0 0.00 ! Nobs = 1 ... Value = 0.82

DIHEdral CX29 NX28 CX30 CX13 750.0 0 0.00 ! Nobs = 1 ... Value = 0.77

DIHEdral CX29 NX28 CX30 OX31 750.0 0 180.00 ! Nobs = 1 ... Value = -179.04

DIHEdral HX33 NX28 CX30 CX13 750.0 0 180.00 ! Nobs = 1 ... Value = 179.19

DIHEdral HX33 NX28 CX30 OX31 750.0 0 0.00 ! Nobs = 1 ... Value = -0.62

{ Note: edit if necessary }

IMPRoper CX2 OX1 HX3 HX4 750.0 0 35.000 ! Nobs = 1 ... Value = 33.335

IMPRoper CX5 CX2 HX6 OX7 750.0 0 -35.000 ! Nobs = 1 ... Value = -37.677

! >>> NOTE - unusual value for following improper : 41.94 reset to +35.0

IMPRoper CX8 OX7 HX9 CX16 750.0 0 35.000 ! Nobs = 1 ... Value = 41.939

IMPRoper CX10 HX11 CX20 CX23 750.0 0 0.000 ! Nobs = 1 ... Value = -0.313

IMPRoper CX12 CX23 CX24 HX34 750.0 0 0.000 ! Nobs = 1 ... Value = -0.218

IMPRoper CX13 CX20 CX24 CX30 750.0 0 0.000 ! Nobs = 1 ... Value = 0.475

! >>> NOTE - unusual value for following improper : 40.01 reset to +35.0

IMPRoper CX14 CX5 HX15 CX16 750.0 0 35.000 ! Nobs = 1 ... Value = 40.005

IMPRoper CX16 CX8 CX14 HX17 750.0 0 35.000 ! Nobs = 1 ... Value = 30.720

IMPRoper CX20 CX8 CX10 CX13 750.0 0 0.000 ! Nobs = 1 ... Value = -0.905

IMPRoper CX23 CX10 CX12 NX25 750.0 0 0.000 ! Nobs = 1 ... Value = -1.535

IMPRoper CX24 CX12 CX13 CX29 750.0 0 0.000 ! Nobs = 1 ... Value = -0.171

! >>> NOTE - unusual value for following improper : -20.06 reset to -35.0

IMPRoper NX25 CX23 HX26 HX27 750.0 0 0.000 ! Nobs = 1 ... Value = -20.059

IMPRoper NX28 CX29 CX30 HX33 750.0 0 0.000 ! Nobs = 1 ... Value = 0.749

IMPRoper CX29 CX24 NX28 OX32 750.0 0 0.000 ! Nobs = 1 ... Value = -0.008

IMPRoper CX30 CX13 NX28 OX31 750.0 0 0.000 ! Nobs = 1 ... Value = -0.091

!Improper to keep both rings parallel

IMPRoper NX28 CX24 CX13 CX10 750.0 0 0.000

IMPRoper NX28 CX24 CX13 CX23 750.0 0 0.000

IMPRoper CX29 CX24 CX13 CX20 750.0 0 0.000

IMPRoper CX12 CX24 CX13 CX30 750.0 0 0.000

!secure chirality

IMPRoper H C2D O4D CX20 $kchimpr 0 -65.280

IMPRoper CX10 NX25 CX23 HX26 750.0 0 0.000

{ Note: edit if necessary }

NONBonded OX1 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CX2 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX3 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HX4 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CX5 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX6 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OX7 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CX8 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX9 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CX10 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX11 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CX12 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CX13 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CX14 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX15 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen
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NONBonded CX16 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX17 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HX18 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OX19 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CX20 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HX21 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HX22 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CX23 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CX24 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded NX25 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded HX26 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HX27 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded NX28 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded CX29 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CX30 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OX31 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded OX32 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded HX33 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HX34 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

set echo=true end

!***************** end of change by lsd - 4AP *****************

!******************* change by lsd - 6HQ **********************

{ Note: edit if necessary }

BOND P OQ21 3350.720 1.593 ! added bond by lsd

BOND P OQ19 2326.889 1.607 ! added bond by lsd

BOND CQ1 NQ2 1000.0 1.495 ! Nobs = 1

BOND CQ1 CQ20 1000.0 1.522 ! Nobs = 1

BOND CQ1 HQ26 1000.0 1.086 ! Nobs = 1

BOND CQ1 HQ27 1000.0 1.091 ! Nobs = 1

BOND NQ2 CQ3 1000.0 1.389 ! Nobs = 1

BOND NQ2 CQ7 1000.0 1.337 ! Nobs = 1

BOND CQ3 CQ4 1000.0 1.428 ! Nobs = 1

BOND CQ3 CQ9 1000.0 1.411 ! Nobs = 1

BOND CQ4 CQ5 1000.0 1.410 ! Nobs = 1

BOND CQ4 CQ12 1000.0 1.411 ! Nobs = 1

BOND CQ5 CQ6 1000.0 1.371 ! Nobs = 1

BOND CQ5 HQ14 1000.0 1.083 ! Nobs = 1

BOND CQ6 CQ7 1000.0 1.393 ! Nobs = 1

BOND CQ6 HQ15 1000.0 1.081 ! Nobs = 1

BOND CQ7 HQ8 1000.0 1.080 ! Nobs = 1

BOND CQ9 CQ10 1000.0 1.370 ! Nobs = 1

BOND CQ9 HQ16 1000.0 1.077 ! Nobs = 1

BOND CQ10 CQ11 1000.0 1.416 ! Nobs = 1

BOND CQ10 HQ17 1000.0 1.082 ! Nobs = 1

BOND CQ11 CQ12 1000.0 1.376 ! Nobs = 1

BOND CQ11 OQ13 1000.0 1.346 ! Nobs = 1

BOND CQ12 HQ18 1000.0 1.083 ! Nobs = 1

BOND OQ13 HQ30 1000.0 0.966 ! Nobs = 1

BOND OQ19 CQ20 1000.0 1.424 ! Nobs = 1
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BOND OQ19 HQ29 1000.0 0.966 ! Nobs = 1

BOND CQ20 CQ22 1000.0 1.532 ! Nobs = 1

BOND CQ20 HQ25 1000.0 1.097 ! Nobs = 1

BOND OQ21 CQ22 1000.0 1.420 ! Nobs = 1

BOND OQ21 HQ28 1000.0 0.964 ! Nobs = 1

BOND CQ22 HQ23 1000.0 1.096 ! Nobs = 1

BOND CQ22 HQ24 1000.0 1.096 ! Nobs = 1

{ Note: edit if necessary }

ANGLe CQ22 OQ21 P 1175.163 120.900 ! data taken from normal dna by lsd

ANGLe O1P P OQ21 357.719 108.100 !again modded by lsd

ANGLe O2P P OQ21 412.677 108.300 !again modded by lsd

ANGLe O3R P OQ21 833.356 104.000 !again modded by lsd

ANGLe O1P P OQ19 357.719 108.100 !again modded by lsd

ANGLe O2P P OQ19 412.677 108.300 !again modded by lsd

ANGLe O5R P OQ19 833.356 104.000 !again modded by lsd

ANGLe NQ2 CQ1 CQ20 500.0 116.04 ! Nobs = 1

ANGLe NQ2 CQ1 HQ26 500.0 107.23 ! Nobs = 1

ANGLe NQ2 CQ1 HQ27 500.0 107.76 ! Nobs = 1

ANGLe CQ20 CQ1 HQ26 500.0 106.40 ! Nobs = 1

ANGLe CQ20 CQ1 HQ27 500.0 109.68 ! Nobs = 1

ANGLe HQ26 CQ1 HQ27 500.0 109.59 ! Nobs = 1

ANGLe CQ1 NQ2 CQ3 500.0 118.99 ! Nobs = 1

ANGLe CQ1 NQ2 CQ7 500.0 119.88 ! Nobs = 1

ANGLe CQ3 NQ2 CQ7 500.0 121.11 ! Nobs = 1

ANGLe NQ2 CQ3 CQ4 500.0 118.64 ! Nobs = 1

ANGLe NQ2 CQ3 CQ9 500.0 122.50 ! Nobs = 1

ANGLe CQ4 CQ3 CQ9 500.0 118.86 ! Nobs = 1

ANGLe CQ3 CQ4 CQ5 500.0 118.72 ! Nobs = 1

ANGLe CQ3 CQ4 CQ12 500.0 119.66 ! Nobs = 1

ANGLe CQ5 CQ4 CQ12 500.0 121.62 ! Nobs = 1

ANGLe CQ4 CQ5 CQ6 500.0 120.23 ! Nobs = 1

ANGLe CQ4 CQ5 HQ14 500.0 119.26 ! Nobs = 1

ANGLe CQ6 CQ5 HQ14 500.0 120.50 ! Nobs = 1

ANGLe CQ5 CQ6 CQ7 500.0 119.49 ! Nobs = 1

ANGLe CQ5 CQ6 HQ15 500.0 121.80 ! Nobs = 1

ANGLe CQ7 CQ6 HQ15 500.0 118.71 ! Nobs = 1

ANGLe NQ2 CQ7 CQ6 500.0 121.77 ! Nobs = 1

ANGLe NQ2 CQ7 HQ8 500.0 116.11 ! Nobs = 1

ANGLe CQ6 CQ7 HQ8 500.0 122.11 ! Nobs = 1

ANGLe CQ3 CQ9 CQ10 500.0 120.12 ! Nobs = 1

ANGLe CQ3 CQ9 HQ16 500.0 121.44 ! Nobs = 1

ANGLe CQ10 CQ9 HQ16 500.0 118.43 ! Nobs = 1

ANGLe CQ9 CQ10 CQ11 500.0 121.41 ! Nobs = 1

ANGLe CQ9 CQ10 HQ17 500.0 120.46 ! Nobs = 1

ANGLe CQ11 CQ10 HQ17 500.0 118.14 ! Nobs = 1

ANGLe CQ10 CQ11 CQ12 500.0 119.52 ! Nobs = 1

ANGLe CQ10 CQ11 OQ13 500.0 115.70 ! Nobs = 1

ANGLe CQ12 CQ11 OQ13 500.0 124.78 ! Nobs = 1

ANGLe CQ4 CQ12 CQ11 500.0 120.42 ! Nobs = 1

ANGLe CQ4 CQ12 HQ18 500.0 118.69 ! Nobs = 1

ANGLe CQ11 CQ12 HQ18 500.0 120.90 ! Nobs = 1

ANGLe CQ11 OQ13 HQ30 500.0 111.90 ! Nobs = 1

ANGLe CQ20 OQ19 HQ29 500.0 109.90 ! Nobs = 1
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ANGLe CQ1 CQ20 OQ19 500.0 108.46 ! Nobs = 1

ANGLe CQ1 CQ20 CQ22 500.0 108.93 ! Nobs = 1

ANGLe CQ1 CQ20 HQ25 500.0 109.41 ! Nobs = 1

ANGLe OQ19 CQ20 CQ22 500.0 110.93 ! Nobs = 1

ANGLe OQ19 CQ20 HQ25 500.0 111.16 ! Nobs = 1

ANGLe CQ22 CQ20 HQ25 500.0 107.91 ! Nobs = 1

ANGLe CQ22 OQ21 HQ28 500.0 109.93 ! Nobs = 1

ANGLe CQ20 CQ22 OQ21 500.0 107.25 ! Nobs = 1

ANGLe CQ20 CQ22 HQ23 500.0 109.58 ! Nobs = 1

ANGLe CQ20 CQ22 HQ24 500.0 108.15 ! Nobs = 1

ANGLe OQ21 CQ22 HQ23 500.0 112.04 ! Nobs = 1

ANGLe OQ21 CQ22 HQ24 500.0 111.52 ! Nobs = 1

ANGLe HQ23 CQ22 HQ24 500.0 108.22 ! Nobs = 1

{ Note: edit if necessary }

DIHEdral HQ27 CQ1 NQ2 CQ7 750.0 0 90.00 ! Nobs = 1 ... Value = 99.41

DIHEdral HQ27 CQ1 CQ20 HQ25 750.0 0 180.00 ! Nobs = 1 ... Value = -170.45

DIHEdral CQ1 NQ2 CQ3 CQ4 750.0 0 180.00 ! Nobs = 1 ... Value = -179.29

DIHEdral CQ1 NQ2 CQ3 CQ9 750.0 0 0.00 ! Nobs = 1 ... Value = 1.29

DIHEdral CQ7 NQ2 CQ3 CQ4 750.0 0 0.00 ! Nobs = 1 ... Value = 2.40

DIHEdral CQ7 NQ2 CQ3 CQ9 750.0 0 180.00 ! Nobs = 1 ... Value = -177.02

DIHEdral CQ1 NQ2 CQ7 CQ6 750.0 0 180.00 ! Nobs = 1 ... Value = 179.55

DIHEdral CQ1 NQ2 CQ7 HQ8 750.0 0 0.00 ! Nobs = 1 ... Value = -1.94

DIHEdral CQ3 NQ2 CQ7 CQ6 750.0 0 0.00 ! Nobs = 1 ... Value = -2.15

DIHEdral CQ3 NQ2 CQ7 HQ8 750.0 0 180.00 ! Nobs = 1 ... Value = 176.35

DIHEdral NQ2 CQ3 CQ4 CQ5 750.0 0 0.00 ! Nobs = 1 ... Value = -1.07

DIHEdral NQ2 CQ3 CQ4 CQ12 750.0 0 180.00 ! Nobs = 1 ... Value = 179.45

DIHEdral CQ9 CQ3 CQ4 CQ5 750.0 0 180.00 ! Nobs = 1 ... Value = 178.37

DIHEdral CQ9 CQ3 CQ4 CQ12 750.0 0 0.00 ! Nobs = 1 ... Value = -1.11

DIHEdral NQ2 CQ3 CQ9 CQ10 750.0 0 180.00 ! Nobs = 1 ... Value = -179.89

DIHEdral NQ2 CQ3 CQ9 HQ16 750.0 0 0.00 ! Nobs = 1 ... Value = 1.05

DIHEdral CQ4 CQ3 CQ9 CQ10 750.0 0 0.00 ! Nobs = 1 ... Value = 0.70

DIHEdral CQ4 CQ3 CQ9 HQ16 750.0 0 180.00 ! Nobs = 1 ... Value = -178.36

DIHEdral CQ3 CQ4 CQ5 CQ6 750.0 0 0.00 ! Nobs = 1 ... Value = -0.51

DIHEdral CQ3 CQ4 CQ5 HQ14 750.0 0 180.00 ! Nobs = 1 ... Value = -179.88

DIHEdral CQ12 CQ4 CQ5 CQ6 750.0 0 180.00 ! Nobs = 1 ... Value = 178.97

DIHEdral CQ12 CQ4 CQ5 HQ14 750.0 0 0.00 ! Nobs = 1 ... Value = -0.41

DIHEdral CQ3 CQ4 CQ12 CQ11 750.0 0 0.00 ! Nobs = 1 ... Value = 0.57

DIHEdral CQ3 CQ4 CQ12 HQ18 750.0 0 180.00 ! Nobs = 1 ... Value = -179.72

DIHEdral CQ5 CQ4 CQ12 CQ11 750.0 0 180.00 ! Nobs = 1 ... Value = -178.90

DIHEdral CQ5 CQ4 CQ12 HQ18 750.0 0 0.00 ! Nobs = 1 ... Value = 0.81

DIHEdral CQ4 CQ5 CQ6 CQ7 750.0 0 0.00 ! Nobs = 1 ... Value = 0.82

DIHEdral CQ4 CQ5 CQ6 HQ15 750.0 0 180.00 ! Nobs = 1 ... Value = -178.93

DIHEdral HQ14 CQ5 CQ6 CQ7 750.0 0 180.00 ! Nobs = 1 ... Value = -179.81

DIHEdral HQ14 CQ5 CQ6 HQ15 750.0 0 0.00 ! Nobs = 1 ... Value = 0.44

DIHEdral CQ5 CQ6 CQ7 NQ2 750.0 0 0.00 ! Nobs = 1 ... Value = 0.50

DIHEdral CQ5 CQ6 CQ7 HQ8 750.0 0 180.00 ! Nobs = 1 ... Value = -177.91

DIHEdral HQ15 CQ6 CQ7 NQ2 750.0 0 180.00 ! Nobs = 1 ... Value = -179.74

DIHEdral HQ15 CQ6 CQ7 HQ8 750.0 0 0.00 ! Nobs = 1 ... Value = 1.84

DIHEdral CQ3 CQ9 CQ10 CQ11 750.0 0 0.00 ! Nobs = 1 ... Value = 0.26

DIHEdral CQ3 CQ9 CQ10 HQ17 750.0 0 180.00 ! Nobs = 1 ... Value = -179.76

DIHEdral HQ16 CQ9 CQ10 CQ11 750.0 0 180.00 ! Nobs = 1 ... Value = 179.35

DIHEdral HQ16 CQ9 CQ10 HQ17 750.0 0 0.00 ! Nobs = 1 ... Value = -0.67

DIHEdral CQ9 CQ10 CQ11 CQ12 750.0 0 0.00 ! Nobs = 1 ... Value = -0.82

DIHEdral CQ9 CQ10 CQ11 OQ13 750.0 0 180.00 ! Nobs = 1 ... Value = 179.56

DIHEdral HQ17 CQ10 CQ11 CQ12 750.0 0 180.00 ! Nobs = 1 ... Value = 179.20
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DIHEdral HQ17 CQ10 CQ11 OQ13 750.0 0 0.00 ! Nobs = 1 ... Value = -0.42

DIHEdral CQ10 CQ11 CQ12 CQ4 750.0 0 0.00 ! Nobs = 1 ... Value = 0.38

DIHEdral CQ10 CQ11 CQ12 HQ18 750.0 0 180.00 ! Nobs = 1 ... Value = -179.31

DIHEdral OQ13 CQ11 CQ12 CQ4 750.0 0 180.00 ! Nobs = 1 ... Value = 179.97

DIHEdral OQ13 CQ11 CQ12 HQ18 750.0 0 0.00 ! Nobs = 1 ... Value = 0.27

DIHEdral CQ10 CQ11 OQ13 HQ30 750.0 0 180.00 ! Nobs = 1 ... Value = 179.93

DIHEdral CQ12 CQ11 OQ13 HQ30 750.0 0 0.00 ! Nobs = 1 ... Value = 0.33

DIHEdral HQ29 OQ19 CQ20 CQ1 750.0 0 180.00 ! Nobs = 1 ... Value = 175.20

DIHEdral HQ29 OQ19 CQ20 CQ22 750.0 0 60.00 ! Nobs = 1 ... Value = 55.60

DIHEdral HQ29 OQ19 CQ20 HQ25 750.0 0 -60.00 ! Nobs = 1 ... Value = -64.48

DIHEdral CQ1 CQ20 CQ22 OQ21 750.0 0 60.00 ! Nobs = 1 ... Value = 60.68

DIHEdral CQ1 CQ20 CQ22 HQ23 750.0 0 -60.00 ! Nobs = 1 ... Value = -61.16

DIHEdral CQ1 CQ20 CQ22 HQ24 750.0 0 180.00 ! Nobs = 1 ... Value = -178.92

DIHEdral OQ19 CQ20 CQ22 OQ21 750.0 0 180.00 ! Nobs = 1 ... Value = 180.00

DIHEdral OQ19 CQ20 CQ22 HQ23 750.0 0 60.00 ! Nobs = 1 ... Value = 58.16

DIHEdral OQ19 CQ20 CQ22 HQ24 750.0 0 -60.00 ! Nobs = 1 ... Value = -59.60

DIHEdral HQ25 CQ20 CQ22 OQ21 750.0 0 -60.00 ! Nobs = 1 ... Value = -58.01

DIHEdral HQ25 CQ20 CQ22 HQ23 750.0 0 180.00 ! Nobs = 1 ... Value = -179.85

DIHEdral HQ25 CQ20 CQ22 HQ24 750.0 0 60.00 ! Nobs = 1 ... Value = 62.39

DIHEdral HQ28 OQ21 CQ22 CQ20 750.0 0 180.00 ! Nobs = 1 ... Value = 172.83

DIHEdral HQ28 OQ21 CQ22 HQ23 750.0 0 -60.00 ! Nobs = 1 ... Value = -66.89

DIHEdral HQ28 OQ21 CQ22 HQ24 750.0 0 60.00 ! Nobs = 1 ... Value = 54.59

{ Note: edit if necessary }

IMPRoper CQ1 NQ2 CQ20 HQ26 750.0 0 35.000 ! Nobs = 1 ... Value = 33.167

IMPRoper NQ2 CQ1 CQ3 CQ7 750.0 0 0.000 ! Nobs = 1 ... Value = -0.935

IMPRoper CQ3 NQ2 CQ4 CQ9 750.0 0 0.000 ! Nobs = 1 ... Value = 0.328

IMPRoper CQ4 CQ3 CQ5 CQ12 750.0 0 0.000 ! Nobs = 1 ... Value = 0.298

IMPRoper CQ5 CQ4 CQ6 HQ14 750.0 0 0.000 ! Nobs = 1 ... Value = 0.330

IMPRoper CQ6 CQ5 CQ7 HQ15 750.0 0 0.000 ! Nobs = 1 ... Value = 0.130

IMPRoper CQ7 NQ2 CQ6 HQ8 750.0 0 0.000 ! Nobs = 1 ... Value = -0.832

IMPRoper CQ9 CQ3 CQ10 HQ16 750.0 0 0.000 ! Nobs = 1 ... Value = 0.489

IMPRoper CQ10 CQ9 CQ11 HQ17 750.0 0 0.000 ! Nobs = 1 ... Value = -0.011

IMPRoper CQ11 CQ10 CQ12 OQ13 750.0 0 0.000 ! Nobs = 1 ... Value = 0.224

IMPRoper CQ12 CQ4 CQ11 HQ18 750.0 0 0.000 ! Nobs = 1 ... Value = -0.158

IMPRoper CQ20 CQ1 OQ19 CQ22 750.0 0 -35.000 ! Nobs = 1 ... Value = -35.348

! >>> NOTE - unusual value for following improper : 29.83 reset to +35.0

IMPRoper CQ22 CQ20 OQ21 HQ23 750.0 0 35.000 ! Nobs = 1 ... Value = 29.826

{ Note: edit if necessary }

NONBonded CQ1 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded NQ2 0.2384 2.8509 0.2384 2.8509 ! assuming Nitrogen

NONBonded CQ3 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ4 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ5 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ6 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ7 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HQ8 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CQ9 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ10 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ11 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CQ12 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OQ13 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded HQ14 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ15 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ16 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen
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NONBonded HQ17 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ18 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OQ19 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CQ20 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OQ21 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CQ22 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HQ23 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ24 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ25 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ26 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ27 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ28 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ29 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HQ30 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

set echo=true end

!***************end of change by lsd - 6HQ ********************

!******************* change by lsd - HCF **********************

{ Note: edit if necessary }

BOND C1D HZ29 1000.0 1.092 ! Nobs = 1 !added bond C1’-H1’’ by lsd

BOND C1D OZ14 1000.0 1.435 ! Nobs = 1 !added bond C1’-O2 by lsd

BOND CZ1 CZ2 1500.0 1.402 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ1 CZ6 1500.0 1.402 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ1 OZ14 1000.0 1.362 ! Nobs = 1

BOND CZ2 CZ3 1500.0 1.393 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ2 HZ25 1000.0 1.080 ! Nobs = 1

BOND CZ3 CZ4 1500.0 1.388 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ3 HZ18 1000.0 1.084 ! Nobs = 1

BOND CZ4 CZ5 1500.0 1.410 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ4 CZ7 1500.0 1.462 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ5 CZ6 1500.0 1.379 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ5 CZ9 1500.0 1.512 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ6 HZ19 1000.0 1.083 ! Nobs = 1

BOND CZ7 CZ8 1500.0 1.409 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ7 CZ10 1500.0 1.394 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ8 CZ9 1500.0 1.513 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ8 CZ13 1500.0 1.380 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ9 HZ21 1000.0 1.095 ! Nobs = 1

BOND CZ9 HZ22 1000.0 1.095 ! Nobs = 1

BOND CZ10 CZ11 1500.0 1.389 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ10 HZ23 1000.0 1.083 ! Nobs = 1

BOND CZ11 CZ12 1500.0 1.401 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ11 HZ24 1000.0 1.081 ! Nobs = 1

BOND CZ12 CZ13 1500.0 1.403 ! Nobs = 1 !mod. to 1500 from 1000 by lsd

BOND CZ12 CZ15 1000.0 1.480 ! Nobs = 1

BOND CZ13 HZ20 1000.0 1.083 ! Nobs = 1

BOND CZ15 OZ16 1000.0 1.211 ! Nobs = 1

BOND CZ15 OZ17 1000.0 1.361 ! Nobs = 1

BOND OZ17 HZ43 1000.0 0.969 ! Nobs = 1

BOND CZ26 OZ27 1000.0 1.396 ! Nobs = 1

BOND CZ26 CZ28 1000.0 1.543 ! Nobs = 1

BOND OZ27 CZ30 1000.0 1.436 ! Nobs = 1
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BOND CZ28 CZ31 1000.0 1.535 ! Nobs = 1

BOND CZ28 HZ32 1000.0 1.090 ! Nobs = 1

BOND CZ28 HZ33 1000.0 1.090 ! Nobs = 1

BOND CZ30 CZ31 1000.0 1.539 ! Nobs = 1

BOND CZ30 HZ34 1000.0 1.096 ! Nobs = 1

BOND CZ30 CZ36 1000.0 1.509 ! Nobs = 1

BOND CZ31 HZ35 1000.0 1.098 ! Nobs = 1

BOND CZ31 OZ39 1000.0 1.422 ! Nobs = 1

BOND CZ36 HZ37 1000.0 1.101 ! Nobs = 1

BOND CZ36 HZ38 1000.0 1.097 ! Nobs = 1

BOND CZ36 OZ41 1000.0 1.421 ! Nobs = 1

{ Note: edit if necessary }

ANGLe CZ2 CZ1 CZ6 500.0 120.21 ! Nobs = 1

ANGLe CZ2 CZ1 OZ14 500.0 124.48 ! Nobs = 1

ANGLe CZ6 CZ1 OZ14 500.0 115.30 ! Nobs = 1

ANGLe CZ1 CZ2 CZ3 500.0 120.19 ! Nobs = 1

ANGLe CZ1 CZ2 HZ25 500.0 120.77 ! Nobs = 1

ANGLe CZ3 CZ2 HZ25 500.0 119.04 ! Nobs = 1

ANGLe CZ2 CZ3 CZ4 500.0 119.74 ! Nobs = 1

ANGLe CZ2 CZ3 HZ18 500.0 119.21 ! Nobs = 1

ANGLe CZ4 CZ3 HZ18 500.0 121.04 ! Nobs = 1

ANGLe CZ3 CZ4 CZ5 500.0 119.77 ! Nobs = 1

ANGLe CZ3 CZ4 CZ7 500.0 131.57 ! Nobs = 1

ANGLe CZ5 CZ4 CZ7 500.0 108.67 ! Nobs = 1

ANGLe CZ4 CZ5 CZ6 500.0 120.93 ! Nobs = 1

ANGLe CZ4 CZ5 CZ9 500.0 109.97 ! Nobs = 1

ANGLe CZ6 CZ5 CZ9 500.0 129.10 ! Nobs = 1

ANGLe CZ1 CZ6 CZ5 500.0 119.15 ! Nobs = 1

ANGLe CZ1 CZ6 HZ19 500.0 118.53 ! Nobs = 1

ANGLe CZ5 CZ6 HZ19 500.0 122.32 ! Nobs = 1

ANGLe CZ4 CZ7 CZ8 500.0 108.63 ! Nobs = 1

ANGLe CZ4 CZ7 CZ10 500.0 131.15 ! Nobs = 1

ANGLe CZ8 CZ7 CZ10 500.0 120.22 ! Nobs = 1

ANGLe CZ7 CZ8 CZ9 500.0 109.98 ! Nobs = 1

ANGLe CZ7 CZ8 CZ13 500.0 120.64 ! Nobs = 1

ANGLe CZ9 CZ8 CZ13 500.0 129.38 ! Nobs = 1

ANGLe CZ5 CZ9 CZ8 500.0 102.76 ! Nobs = 1

ANGLe CZ5 CZ9 HZ21 500.0 111.76 ! Nobs = 1

ANGLe CZ5 CZ9 HZ22 500.0 111.84 ! Nobs = 1

ANGLe CZ8 CZ9 HZ21 500.0 111.92 ! Nobs = 1

ANGLe CZ8 CZ9 HZ22 500.0 111.91 ! Nobs = 1

ANGLe HZ21 CZ9 HZ22 500.0 106.76 ! Nobs = 1

ANGLe CZ7 CZ10 CZ11 500.0 119.12 ! Nobs = 1

ANGLe CZ7 CZ10 HZ23 500.0 120.97 ! Nobs = 1

ANGLe CZ11 CZ10 HZ23 500.0 119.91 ! Nobs = 1

ANGLe CZ10 CZ11 CZ12 500.0 120.68 ! Nobs = 1

ANGLe CZ10 CZ11 HZ24 500.0 120.08 ! Nobs = 1

ANGLe CZ12 CZ11 HZ24 500.0 119.24 ! Nobs = 1

ANGLe CZ11 CZ12 CZ13 500.0 120.14 ! Nobs = 1

ANGLe CZ11 CZ12 CZ15 500.0 122.01 ! Nobs = 1

ANGLe CZ13 CZ12 CZ15 500.0 117.85 ! Nobs = 1

ANGLe CZ8 CZ13 CZ12 500.0 119.19 ! Nobs = 1

ANGLe CZ8 CZ13 HZ20 500.0 121.95 ! Nobs = 1

ANGLe CZ12 CZ13 HZ20 500.0 118.86 ! Nobs = 1

ANGLe CZ1 OZ14 C1D 500.0 120.09 ! Nobs = 1 !modded by lsd
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ANGLe CZ12 CZ15 OZ16 500.0 125.17 ! Nobs = 1

ANGLe CZ12 CZ15 OZ17 500.0 113.31 ! Nobs = 1

ANGLe OZ16 CZ15 OZ17 500.0 121.52 ! Nobs = 1

ANGLe CZ15 OZ17 HZ43 500.0 106.35 ! Nobs = 1

ANGLe OZ14 C1D O4D 500.0 107.07 ! Nobs = 1 !modded by lsd

ANGLe OZ14 C1D C2D 500.0 111.77 ! Nobs = 1 !modded by lsd

ANGLe OZ14 C1D HZ29 500.0 108.68 ! Nobs = 1 !modded by lsd

ANGLe OZ27 CZ26 CZ28 500.0 106.71 ! Nobs = 1

ANGLe O4D C1D HZ29 500.0 107.49 ! Nobs = 1 !modded by lsd

ANGLe C2D C1D HZ29 500.0 114.73 ! Nobs = 1 !modded by lsd

ANGLe CZ26 OZ27 CZ30 500.0 108.21 ! Nobs = 1

ANGLe CZ26 CZ28 CZ31 500.0 104.34 ! Nobs = 1

ANGLe CZ26 CZ28 HZ32 500.0 111.89 ! Nobs = 1

ANGLe CZ26 CZ28 HZ33 500.0 110.79 ! Nobs = 1

ANGLe CZ31 CZ28 HZ32 500.0 112.22 ! Nobs = 1

ANGLe CZ31 CZ28 HZ33 500.0 109.17 ! Nobs = 1

ANGLe HZ32 CZ28 HZ33 500.0 108.39 ! Nobs = 1

ANGLe OZ27 CZ30 CZ31 500.0 103.43 ! Nobs = 1

ANGLe OZ27 CZ30 HZ34 500.0 110.34 ! Nobs = 1

ANGLe OZ27 CZ30 CZ36 500.0 109.80 ! Nobs = 1

ANGLe CZ31 CZ30 HZ34 500.0 109.13 ! Nobs = 1

ANGLe CZ31 CZ30 CZ36 500.0 114.51 ! Nobs = 1

ANGLe HZ34 CZ30 CZ36 500.0 109.47 ! Nobs = 1

ANGLe CZ28 CZ31 CZ30 500.0 102.79 ! Nobs = 1

ANGLe CZ28 CZ31 HZ35 500.0 110.28 ! Nobs = 1

ANGLe CZ28 CZ31 OZ39 500.0 109.69 ! Nobs = 1

ANGLe CZ30 CZ31 HZ35 500.0 109.23 ! Nobs = 1

ANGLe CZ30 CZ31 OZ39 500.0 114.42 ! Nobs = 1

ANGLe HZ35 CZ31 OZ39 500.0 110.18 ! Nobs = 1

ANGLe CZ30 CZ36 HZ37 500.0 108.31 ! Nobs = 1

ANGLe CZ30 CZ36 HZ38 500.0 108.62 ! Nobs = 1

ANGLe CZ30 CZ36 OZ41 500.0 109.34 ! Nobs = 1

ANGLe HZ37 CZ36 HZ38 500.0 108.31 ! Nobs = 1

ANGLe HZ37 CZ36 OZ41 500.0 110.48 ! Nobs = 1

ANGLe HZ38 CZ36 OZ41 500.0 111.71 ! Nobs = 1

{ Note: edit if necessary }

IMPRoper CZ1 CZ2 CZ6 OZ14 750.0 0 0.000 ! Nobs = 1 ... Value = -0.175

IMPRoper CZ2 CZ1 CZ3 HZ25 750.0 0 0.000 ! Nobs = 1 ... Value = 0.334

IMPRoper CZ3 CZ2 CZ4 HZ18 750.0 0 0.000 ! Nobs = 1 ... Value = 0.234

IMPRoper CZ4 CZ3 CZ5 CZ7 750.0 0 0.000 ! Nobs = 1 ... Value = 0.070

IMPRoper CZ5 CZ4 CZ6 CZ9 750.0 0 0.000 ! Nobs = 1 ... Value = -0.069

IMPRoper CZ6 CZ1 CZ5 HZ19 750.0 0 0.000 ! Nobs = 1 ... Value = 0.230

IMPRoper CZ7 CZ4 CZ8 CZ10 750.0 0 0.000 ! Nobs = 1 ... Value = -0.008

IMPRoper CZ8 CZ7 CZ9 CZ13 750.0 0 0.000 ! Nobs = 1 ... Value = -0.011

! >>> NOTE - unusual value for following improper : -28.83 reset to -35.0

IMPRoper CZ9 CZ5 CZ8 HZ21 750.0 0 28.835 ! Nobs = 1 ... Value = -28.835 !default par-file value

! IMPRoper CZ9 CZ5 CZ8 HZ21 94.5 0 28.808 ! mod by lsd, copied from HNF

IMPRoper CZ10 CZ7 CZ11 HZ23 750.0 0 0.000 ! Nobs = 1 ... Value = 0.013

IMPRoper CZ11 CZ10 CZ12 HZ24 750.0 0 0.000 ! Nobs = 1 ... Value = -0.040

IMPRoper CZ12 CZ11 CZ13 CZ15 750.0 0 0.000 ! Nobs = 1 ... Value = -0.027

IMPRoper CZ13 CZ8 CZ12 HZ20 750.0 0 0.000 ! Nobs = 1 ... Value = -0.016

IMPRoper CZ15 CZ12 OZ16 OZ17 750.0 0 0.000 ! Nobs = 1 ... Value = -0.002

IMPRoper CZ26 OZ14 OZ27 CZ28 750.0 0 -35.000 ! Nobs = 1 ... Value = -37.104

! >>> NOTE - unusual value for following improper : 28.14 reset to +35.0

IMPRoper CZ28 CZ26 CZ31 HZ32 750.0 0 35.000 ! Nobs = 1 ... Value = 28.137
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IMPRoper CZ30 OZ27 CZ31 HZ34 750.0 0 35.000 ! Nobs = 1 ... Value = 31.191

IMPRoper CZ31 CZ28 CZ30 HZ35 750.0 0 35.000 ! Nobs = 1 ... Value = 30.698

IMPRoper CZ36 CZ30 HZ37 HZ38 750.0 0 -35.000 ! Nobs = 1 ... Value = -34.749

IMPRoper OZ14 C2D O4D HZ29 $kchimpr 0 -65.280 !modded by lsd

{ Note: edit if necessary }

NONBonded CZ1 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ2 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ3 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ4 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ5 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ6 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ7 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ8 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ9 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ10 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ11 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ12 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ13 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OZ14 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CZ15 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OZ16 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded OZ17 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded HZ18 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ19 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ20 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ21 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ22 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ23 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ24 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ25 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CZ26 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded OZ27 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded CZ28 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HZ29 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CZ30 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded CZ31 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HZ32 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ33 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ34 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ35 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded CZ36 0.1200 3.7418 0.1000 3.3854 ! assuming Carbon

NONBonded HZ37 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded HZ38 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

NONBonded OZ39 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded OZ41 0.1591 2.8509 0.1591 2.8509 ! assuming Oxygen

NONBonded HZ43 0.0498 1.4254 0.0498 1.4254 ! assuming Hydrogen

!************** end of change by lsd - HCF ********************

!the generic bonds were taken from param11.dna with 3*kq

BOND C5R OH 876.000 1.4300 ! 5’ end

BOND C5D OH 876.000 1.4300 ! 5’ end

BOND C3R OH 876.000 1.4300 ! 3’ end

BOND C3D OH 876.000 1.4300 ! 3’ end

BOND O2R HO 1350.000 0.9572
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!Phos. - combined RNA/DNA statistics used

! kq x_eq sigma

BOND P O1P 1489.209 1.485 ! 0.015 Phos

BOND P O2P 1489.209 1.485 ! 0.015 P

BOND P O5R 3350.720 1.593 ! 0.010 P

BOND P OH 3350.720 1.593 ! 0.010 P ! For 5pho patch

BOND P O3R 2326.889 1.607 ! 0.012 P

BOND P OX17 2326.889 1.607 ! 0.012 P ! mod by anda

BOND PX1 O3R 2326.889 1.607 ! 0.012 P ! mod by anda

!Sugars

!RNA statistics

BOND O5R C5R 1709.551 1.425 ! 0.014 Sugar

BOND C5R C4R 1982.674 1.510 ! 0.013 S

BOND C4R C3R 2769.190 1.524 ! 0.011 S

BOND C3R C2R 2769.190 1.525 ! 0.011 S

BOND C2R C1R 3350.720 1.528 ! 0.010 S

BOND O4R C1R 2326.888 1.414 ! 0.012 S

BOND O4R C4R 2326.888 1.453 ! 0.012 S

BOND O3R C3R 1982.674 1.423 ! 0.013 S

BOND C2R O2R 1982.674 1.413 ! 0.013 S

!DNA statistics

BOND O5R C5D 1709.551 1.427 ! 0.014 Sugar

BOND C5D C4D 5235.500 1.511 ! 0.008 S

BOND C4D C3D 3350.720 1.528 ! 0.010 S

BOND C3D C2D 3350.720 1.518 ! 0.010 S

BOND C2D C1D 1709.551 1.521 ! 0.014 S

BOND O4D C1D 1982.674 1.420 ! 0.013 S

BOND O4D C4D 2769.190 1.446 ! 0.011 S

BOND O3R C3D 1982.674 1.431 ! 0.013 S

!hydrogen/carbon

BOND C4R H $kchbond 1.09

BOND C3R H $kchbond 1.09

BOND C2R H $kchbond 1.09

BOND C1R H $kchbond 1.09

BOND C5R H $kchbond 1.09

BOND C4D H $kchbond 1.09

BOND C3D H $kchbond 1.09

BOND C2D H $kchbond 1.09

BOND C1D H $kchbond 1.09

BOND C5D H $kchbond 1.09

!Bases

!base specific bonds taken from param11.dna , 3*kq

BOND O2U HO 1350.000 0.957 ! UR

BOND HN NNA 1416.000 1.010 ! URA

BOND HN N1T 1416.000 1.010 ! Infer.

BOND HN N1C 1416.000 1.010

BOND HN N9G 1416.000 1.010

BOND HN N9A 1416.000 1.010

BOND HN N9P 1416.000 1.010
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BOND HN N3U 1416.000 1.010

BOND HN N3T 1416.000 1.010

BOND H2 N2 1416.000 1.010

BOND H2 N4C 1416.000 1.010

BOND H2 N2G 1416.000 1.010

BOND H2 N6A 1416.000 1.010

BOND HO OH 1350.000 0.960 ! PARAM7 (IR stretch 3400 cm-1)

!Base sugar joint bonds (scale from sugar)

! kq x_eq sigma

BOND C1R N1T 1709.551 1.473 ! 0.014 Base

BOND C1R N1U 4136.691 1.469 ! 0.009 B

BOND C1R N1C 2326.889 1.470 ! 0.012 B

BOND C1R N9G 4136.691 1.459 ! 0.009 B

BOND C1R N9A 3350.720 1.462 ! 0.010 B

BOND C1R N9P 3350.720 1.462 ! 0.010 B

BOND C1D N1T 1709.551 1.473 ! 0.014 B !DNA

BOND C1D N1U 4136.691 1.469 ! 0.009 B

BOND C1D N1C 2326.889 1.470 ! 0.012 B

BOND C1D N9G 4136.691 1.459 ! 0.009 B

BOND C1D N9A 3350.720 1.462 ! 0.010 B

BOND C1D N9P 3350.720 1.462 ! 0.010 B

!cytosine kq x_eq sigma

BOND C2C ON 1370.370 1.240 !0.009 B

BOND C4C N4C 1370.370 1.335 !0.009 B

BOND N1C C2C 1110.000 1.397 !0.010 B

BOND N1C C6C 3083.333 1.367 !0.006 B

BOND C2C NC 1734.375 1.353 !0.008 B

BOND NC C4C 2265.306 1.335 !0.007 B

BOND C4C C5C 1734.375 1.425 !0.008 B

BOND C5C C6C 1734.375 1.339 !0.008 B

BOND C5C H $kchbond 1.09

BOND C6C H $kchbond 1.09

!thymine

BOND N1T C2T 1734.375 1.376 !0.008 B

BOND C2T N3T 1734.375 1.373 !0.008 B

BOND N3T C4T 1734.375 1.382 !0.008 B

BOND C4T C5T 1370.370 1.445 !0.009 B

BOND C5T C6T 2265.306 1.339 !0.007 B

BOND C6T N1T 2265.306 1.378 !0.007 B

BOND C2T ON 1734.375 1.220 !0.008 B

BOND C4T ON 1370.370 1.228 !0.009 B

BOND C5T CC3E 3083.333 1.496 !0.006 B

BOND C6T H $kchbond 1.09

BOND CC3E H $kchbond 1.09

!adenine

BOND NC C2A 1370.370 1.339 !0.009 B

BOND C2A N3A 1370.370 1.331 !0.009 B

BOND N3A C4A 3083.333 1.344 !0.006 B

BOND C4A C5A 2265.306 1.383 !0.007 B

BOND C5A C6A 1370.370 1.406 !0.009 B
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BOND C6A NC 2265.306 1.351 !0.007 B

BOND C5A N7A 3083.333 1.388 !0.006 B

BOND N7A C8A 2265.306 1.311 !0.007 B

BOND C8A N9A 1734.375 1.373 !0.008 B

BOND N9A C4A 3083.333 1.374 !0.006 B

BOND C6A N6A 1734.375 1.335 !0.008 B

BOND C8A H $kchbond 1.08

BOND C2A H $kchbond 1.09

!purine

BOND NC C2P 1370.370 1.339 !0.009 B

BOND C2P N3P 1370.370 1.331 !0.009 B

BOND N3P C4P 3083.333 1.344 !0.006 B

BOND C4P C5P 2265.306 1.383 !0.007 B

BOND C5P C6P 1370.370 1.406 !0.009 B

BOND C6P NC 2265.306 1.351 !0.007 B

BOND C5P N7P 3083.333 1.388 !0.006 B

BOND N7P C8P 2265.306 1.311 !0.007 B

BOND C8P N9P 1734.375 1.373 !0.008 B

BOND N9P C4P 3083.333 1.374 !0.006 B

BOND C6P H $kchbond 1.09 !0.008 B

BOND C8P H $kchbond 1.08

BOND C2P H $kchbond 1.09

!guanine

BOND NNA C2G 1734.375 1.373 !0.008 B

BOND C2G N3G 1734.375 1.323 !0.008 B

BOND N3G C4G 2265.306 1.350 !0.007 B

BOND C4G C5G 2265.306 1.379 !0.007 B

BOND C5G C6G 1110.000 1.419 !0.010 B

BOND C6G NNA 2265.306 1.391 !0.007 B

BOND C5G N7G 3083.333 1.388 !0.006 B

BOND N7G C8G 3083.333 1.305 !0.006 B

BOND C8G N9G 2265.306 1.374 !0.007 B

BOND N9G C4G 1734.375 1.375 !0.008 B

BOND C2G N2G 1110.000 1.341 !0.010 B

BOND C6G O6G 1370.370 1.237 !0.009 B

BOND C8G H $kchbond 1.08

!uracil

BOND C2U ON 1370.370 1.219 !0.009 B

BOND C4U ON 1734.375 1.232 !0.008 B

BOND N1U C2U 1370.370 1.381 !0.009 B

BOND N1U C6U 1370.370 1.375 !0.009 B

BOND C2U N3U 2265.306 1.373 !0.007 B

BOND N3U C4U 1370.370 1.380 !0.009 B

BOND C4U C5U 1370.370 1.431 !0.009 B

BOND C5U C6U 1370.370 1.337 !0.009 B

BOND C5U H $kchbond 1.09

BOND C6U H $kchbond 1.09

BOND C2D NX29 2265.306 1.479 !check param, added for pyr

!Phos.

!the ANGLe s were taken from param11.dna with 3*kq

ANGLe HO OH C5R 139.500 107.300
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ANGLe HO O5R C5R 139.500 107.300

ANGLe HO OH C5D 139.500 107.300

ANGLe HO O5R C5D 139.500 107.300

ANGLe HO O3R P 139.500 107.300

ANGLe HO OH P 139.500 107.300 ! For 5pho patch

ANGLe HO O2R C2R 139.500 107.300

ANGLe OH P O3R 144.300 102.600 !

ANGLe OH P O5R 144.300 102.600 !

ANGLe OH P O1P 296.700 108.230 !

ANGLe OH P O2P 296.700 108.230 !

ANGLe OH C5R C4R 210.000 112.000 !

ANGLe OH C5D C4D 210.000 112.000 !

ANGLe C4D C3D OH 139.500 111.000 !

ANGLe C4R C3R OH 139.500 111.000 !

ANGLe C2D C3D OH 139.500 111.000 !

ANGLe C2R C3R OH 139.500 111.000 !

ANGLe C3R OH HO 139.500 107.300 !

ANGLe C3D OH HO 139.500 107.300 !

!Phos. - combined RNA/DNA statistics used

! kq x_eq sigma

ANGLe O1P P O2P 1337.074 119.600 !1.5 P

ANGLe O5R P O1P 357.719 108.100 !2.9 P

ANGLe O5R P O2P 412.677 108.300 !2.7 P

ANGLe O3R P O5R 833.356 104.000 !1.9 P

ANGLe OX17 P O5R 833.356 104.000 !1.9 P !mod by anda

ANGLe O3R PX1 OX4 833.356 104.000 !1.9 P !mod by anda

ANGLe O2P P O3R 293.791 108.300 !3.2 P

ANGLe O1P P O3R 293.791 107.400 !3.2 P

ANGLe OX3 PX1 O3R 293.791 108.300 !3.2 P !mod by anda

ANGLe OX2 PX1 O3R 293.791 107.400 !3.2 P !mod by anda

ANGLe O2P P OX17 293.791 108.300 !3.2 P !mod by anda

ANGLe O1P P OX17 293.791 107.400 !3.2 P !mod by anda

ANGLe O5R C5R C4R 1534.906 110.200 !1.4 P

ANGLe P O5R C5R 1175.163 120.900 !1.6 P

ANGLe P O3R C3R 2089.178 119.700 !1.2 P

ANGLe O5R C5D C4D 1534.906 110.200 !1.4 P !DNA

ANGLe P O5R C5D 1175.163 120.900 !1.6 P

ANGLe P O3R C3D 2089.178 119.700 !1.2 P

ANGLe PX1 O3R C3D 2089.178 119.700 !1.2 P !mod by anda

ANGLe P OX17 CX12 2089.178 119.700 !1.2 P !mod by anda

!Sugars

!RNA statistics

! kq x_eq sigma

ANGLe O4R C4R C3R 561.212 105.500 !1.4 S

ANGLe C5R C4R C3R 488.878 115.500 !1.5 S

ANGLe C5R C4R O4R 561.212 109.200 !1.4 S

ANGLe C1R O4R C4R 1357.996 109.600 !0.9 S

ANGLe C4R C3R C2R 1099.976 102.700 !1.0 S

ANGLe C3R C2R C1R 1357.996 101.500 !0.9 S

ANGLe O4R C1R C2R 561.212 106.400 !1.4 S
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ANGLe N1T C1R C2R 429.678 113.400 !1.6 S

ANGLe N1C C1R C2R 429.678 113.400 !1.6 S

ANGLe N1U C1R C2R 429.678 113.400 !1.6 S

ANGLe N9G C1R C2R 429.678 113.400 !1.6 S

ANGLe N9A C1R C2R 429.678 113.400 !1.6 S

ANGLe N9P C1R C2R 429.678 113.400 !1.6 S

ANGLe O4R C1R N1T 1099.976 108.200 !1.0 S

ANGLe O4R C1R N1C 1099.976 108.200 !1.0 S

ANGLe O4R C1R N1U 1099.976 108.200 !1.0 S

ANGLe O4R C1R N9A 1099.976 108.200 !1.0 S

ANGLe O4R C1R N9P 1099.976 108.200 !1.0 S

ANGLe O4R C1R N9G 1099.976 108.200 !1.0 S

ANGLe C1R C2R O2R 357.719 110.600 !2.9 S scale from phos.

ANGLe C3R C2R O2R 357.719 113.300 !2.9 S scale from phos.

ANGLe C4R C3R O3R 445.032 110.500 !2.6 S scale from phos.

ANGLe C2R C3R O3R 383.726 111.000 !2.8 S scale from phos.

!DNA statistics

ANGLe O4D C4D C3D 1099.976 105.600 !1.0 S

ANGLe C5D C4D C3D 488.878 114.700 !1.5 S

ANGLe C5D C4D O4D 429.678 109.400 !1.6 S

ANGLe C1D O4D C4D 650.874 109.700 !1.3 S

ANGLe C4D C3D C2D 1099.976 103.200 !1.0 S

ANGLe C3D C2D C1D 650.874 102.700 !1.3 S

ANGLe O4D C1D C2D 909.071 106.100 !1.1 S

ANGLe N1T C1D C2D 488.878 114.200 !1.5 S

ANGLe N1C C1D C2D 488.878 114.200 !1.5 S

ANGLe N1U C1D C2D 488.878 114.200 !1.5 S

ANGLe N9G C1D C2D 488.878 114.200 !1.5 S

ANGLe N9A C1D C2D 488.878 114.200 !1.5 S

ANGLe N9P C1D C2D 488.878 114.200 !1.5 S

ANGLe O4D C1D N1T 1357.996 107.800 !0.9 S

ANGLe O4D C1D N1C 1357.996 107.800 !0.9 S

ANGLe O4D C1D N1U 1357.996 107.800 !0.9 S

ANGLe O4D C1D N9A 1357.996 107.800 !0.9 S

ANGLe O4D C1D N9P 1357.996 107.800 !0.9 S

ANGLe O4D C1D N9G 1357.996 107.800 !0.9 S

ANGLe C4D C3D O3R 621.574 110.300 !2.2 S scale from phos.

ANGLe C2D C3D O3R 412.677 110.600 !2.7 S scale from phos.

!Ribose terms involving non-exchageables

ANGLe OH C5R H $kchangle 109.83

ANGLe O5R C5R H $kchangle 109.83

ANGLe H C5R H $kchangle 109.11

ANGLe C4R C5R H $kchangle 109.11

ANGLe C5R C4R H $kchangle 107.93

ANGLe H C4R C3R $kchangle 107.13

ANGLe H C4R O4R $kchangle 113.74

ANGLe H C3R C4R $kchangle 111.35

ANGLe H C3R O3R $kchangle 105.87

ANGLe H C3R OH $kchangle 105.87

ANGLe H C3R C2R $kchangle 112.27

ANGLe H C2R C3R $kchangle 111.41

ANGLe H C2R O2R $kchangle 113.07

ANGLe H C2R C1R $kchangle 112.38

ANGLe H C1R C2R $kchangle 111.95
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ANGLe H C1R N1C $kchangle 107.70

ANGLe H C1R N1U $kchangle 107.70

ANGLe H C1R N1T $kchangle 107.70

ANGLe H C1R N9A $kchangle 107.70

ANGLe H C1R N9P $kchangle 107.70

ANGLe H C1R N9G $kchangle 107.70

ANGLe H C1R O4R $kchangle 106.86

!Deoxyribose terms involving non-exchageables

!

ANGLe OH C5D H $kchangle 109.70

ANGLe O5R C5D H $kchangle 109.70

ANGLe H C5D H $kchangle 109.17

ANGLe C4D C5D H $kchangle 109.17

ANGLe C5D C4D H $kchangle 107.78

ANGLe H C4D C3D $kchangle 106.91

ANGLe H C4D O4D $kchangle 112.98

ANGLe H C3D C4D $kchangle 111.16

ANGLe H C3D O3R $kchangle 109.34

ANGLe H C3D OH $kchangle 109.34

ANGLe H C3D C2D $kchangle 111.98

ANGLe H C2D C3D $kchangle 111.36

ANGLe H C2D H $kchangle 107.52

ANGLe H C1D H $kchangle 107.52 !mod by anda

ANGLe H C2D C1D $kchangle 112.29

ANGLe H C1D C2D $kchangle 110.94

ANGLe H C1D N1C $kchangle 108.25

ANGLe H C1D N1U $kchangle 108.25

ANGLe H C1D N1T $kchangle 108.25

ANGLe H C1D N9A $kchangle 108.25

ANGLe H C1D N9P $kchangle 108.25

ANGLe H C1D N9G $kchangle 108.25

ANGLe H C1D O4D $kchangle 107.95

!Bases

!cytosine kq x_eq sigma

ANGLe C6C N1C C2C 2277.447 120.300 !0.40 B

ANGLe N1C C2C NC 743.656 119.200 !0.70 B

ANGLe C2C NC C4C 1457.566 119.900 !0.50 B

ANGLe NC C4C C5C 2277.447 121.900 !0.40 B

ANGLe C4C C5C C6C 1457.566 117.400 !0.50 B

ANGLe C5C C6C N1C 1457.566 121.000 !0.50 B

ANGLe N1C C2C ON 1012.199 118.900 !0.60 B

ANGLe NC C2C ON 743.656 121.900 !0.70 B

ANGLe NC C4C N4C 743.656 118.000 !0.70 B

ANGLe C5C C4C N4C 743.656 120.200 !0.70 B

ANGLe C6C N1C C1R 763.873 120.800 !1.20 B scale from sugar

ANGLe C2C N1C C1R 909.071 118.800 !1.10 B scale from sugar

ANGLe C6C N1C C1D 763.873 120.800 !1.20 B !DNA

ANGLe C2C N1C C1D 909.071 118.800 !1.10 B

ANGLe C4C N4C H2 105.000 120.000 !from param11.dna, 3*keq

ANGLe H2 N4C H2 105.000 120.000

ANGLe N1C C6C H $kchangle 119.63

ANGLe C5C C6C H $kchangle 119.36

ANGLe C4C C5C H $kchangle 121.54

ANGLe C6C C5C H $kchangle 121.54
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!thymine kq x_eq sigma

ANGLe C6T N1T C2T 1457.566 121.300 !0.50 B

ANGLe N1T C2T N3T 1012.199 114.600 !0.60 B

ANGLe C2T N3T C4T 1012.199 127.200 !0.60 B

ANGLe N3T C4T C5T 1012.199 115.200 !0.60 B

ANGLe C4T C5T C6T 1012.199 118.000 !0.60 B

ANGLe C5T C6T N1T 1012.199 123.700 !0.60 B

ANGLe N1T C2T ON 569.362 123.100 !0.80 B

ANGLe N3T C2T ON 1012.199 122.300 !0.60 B

ANGLe N3T C4T ON 1012.199 119.900 !0.60 B

ANGLe C5T C4T ON 743.656 124.900 !0.70 B

ANGLe C4T C5T CC3E 1012.199 119.000 !0.60 B

ANGLe C6T C5T CC3E 1012.199 122.900 !0.60 B

ANGLe C6T N1T C1R 488.878 120.400 !1.50 B scale from sugar

ANGLe C2T N1T C1R 429.678 118.200 !1.60 B scale from sugar

ANGLe C6T N1T C1D 488.878 120.400 !1.50 B !DNA

ANGLe C2T N1T C1D 429.678 118.200 !1.60 B

ANGLe C2T N3T HN 105.000 116.500 !from param11.dna, 3*keq

ANGLe C4T N3T HN 105.000 116.500

ANGLe C5T CC3E H $kchangle 109.50

ANGLe H CC3E H $kchangle 109.44

ANGLe N1T C6T H $kchangle 119.52

ANGLe C5T C6T H $kchangle 119.52

!adenine kq x_eq sigma

ANGLe C6A NC C2A 1012.199 118.600 !0.60 B

ANGLe NC C2A N3A 1457.566 129.300 !0.50 B

ANGLe C2A N3A C4A 1457.566 110.600 !0.50 B

ANGLe N3A C4A C5A 743.656 126.800 !0.70 B

ANGLe C4A C5A C6A 1457.566 117.000 !0.50 B

ANGLe C5A C6A NC 1457.566 117.700 !0.50 B

ANGLe C4A C5A N7A 1457.566 110.700 !0.50 B

ANGLe C5A N7A C8A 1457.566 103.900 !0.50 B

ANGLe N7A C8A N9A 1457.566 113.800 !0.50 B

ANGLe C8A N9A C4A 2277.447 105.800 !0.40 B

ANGLe N9A C4A C5A 2277.447 105.800 !0.40 B

ANGLe N3A C4A N9A 569.362 127.400 !0.80 B

ANGLe C6A C5A N7A 743.656 132.300 !0.70 B

ANGLe NC C6A N6A 1012.199 118.600 !0.60 B

ANGLe C5A C6A N6A 569.362 123.700 !0.80 B

ANGLe C8A N9A C1R 339.499 127.700 !1.80 B scale from sugar

ANGLe C4A N9A C1R 339.499 126.300 !1.80 B scale from sugar

ANGLe C8A N9A C1D 339.499 127.700 !1.80 B !DNA

ANGLe C4A N9A C1D 339.499 126.300 !1.80 B

ANGLe C6A N6A H2 105.000 120.000 !from param11.dna, 3*keq

ANGLe H2 N6A H2 105.000 120.000

ANGLe N7A C8A H $kchangle 123.16

ANGLe N9A C8A H $kchangle 123.16

ANGLe NC C2A H $kchangle 115.54

ANGLe N3A C2A H $kchangle 115.54

!purine kq x_eq sigma

ANGLe C6P NC C2P 1012.199 118.600 !0.60 B

ANGLe NC C2P N3P 1457.566 129.300 !0.50 B

ANGLe C2P N3P C4P 1457.566 110.600 !0.50 B
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ANGLe N3P C4P C5P 743.656 126.800 !0.70 B

ANGLe C4P C5P C6P 1457.566 117.000 !0.50 B

ANGLe C5P C6P NC 1457.566 117.700 !0.50 B

ANGLe C4P C5P N7P 1457.566 110.700 !0.50 B

ANGLe C5P N7P C8P 1457.566 103.900 !0.50 B

ANGLe N7P C8P N9P 1457.566 113.800 !0.50 B

ANGLe C8P N9P C4P 2277.447 105.800 !0.40 B

ANGLe N9P C4P C5P 2277.447 105.800 !0.40 B

ANGLe N3P C4P N9P 569.362 127.400 !0.80 B

ANGLe C6P C5P N7P 743.656 132.300 !0.70 B

ANGLe NC C6P H $kchangle 120.164 !0.60 B !modified by anda

ANGLe C5P C6P H $kchangle 120.164 !0.80 B !modified by anda

ANGLe C8P N9P C1R 339.499 127.700 !1.80 B scale from sugar

ANGLe C4P N9P C1R 339.499 126.300 !1.80 B scale from sugar

ANGLe C8P N9P C1D 339.499 127.700 !1.80 B !DNA

ANGLe C4P N9P C1D 339.499 126.300 !1.80 B

ANGLe N7P C8P H $kchangle 123.16

ANGLe N9P C8P H $kchangle 123.16

ANGLe NC C2P H $kchangle 115.54

ANGLe N3P C2P H $kchangle 115.54

!guanine kq x_eq sigma

ANGLe C6G NNA C2G 1012.199 125.100 !0.60 B

ANGLe NNA C2G N3G 1012.199 123.900 !0.60 B

ANGLe C2G N3G C4G 1457.566 111.900 !0.50 B

ANGLe N3G C4G C5G 1457.566 128.600 !0.50 B

ANGLe C4G C5G C6G 1012.199 118.800 !0.60 B

ANGLe C5G C6G NNA 1457.566 111.500 !0.50 B

ANGLe C4G C5G N7G 2277.447 110.800 !0.40 B

ANGLe C5G N7G C8G 1457.566 104.300 !0.50 B

ANGLe N7G C8G N9G 1457.566 113.100 !0.50 B

ANGLe C8G N9G C4G 2277.447 106.400 !0.40 B

ANGLe N9G C4G C5G 2277.447 105.400 !0.40 B

ANGLe N3G C4G N9G 1012.199 126.000 !0.60 B

ANGLe C6G C5G N7G 1012.199 130.400 !0.60 B

ANGLe NNA C2G N2G 449.866 116.20 !0.90 B

ANGLe N3G C2G N2G 743.656 119.900 !0.70 B

ANGLe NNA C6G O6G 1012.199 119.900 !0.60 B

ANGLe C5G C6G O6G 1012.199 128.600 !0.60 B

ANGLe C8G N9G C1R 650.874 127.000 !1.30 B scale from sugar

ANGLe C4G N9G C1R 650.874 126.500 !1.30 B scale from sugar

ANGLe C8G N9G C1D 650.874 127.000 !1.30 B !DNA

ANGLe C4G N9G C1D 650.874 126.500 !1.30 B

ANGLe C2G N2G H2 105.000 120.000 !from param11.dna, 3*keq

ANGLe H2 N2G H2 105.000 120.000

ANGLe C2G NNA HN 105.000 119.300

ANGLe C6G NNA HN 105.000 119.300

ANGLe N7G C8G H $kchangle 122.91

ANGLe N9G C8G H $kchangle 122.91

!uracile kq x_eq sigma

ANGLe C6U N1U C2U 1012.199 121.000 !0.60 B

ANGLe N1U C2U N3U 1012.199 114.900 !0.60 B

ANGLe C2U N3U C4U 1012.199 127.000 !0.60 B

ANGLe N3U C4U C5U 1012.199 114.600 !0.60 B

ANGLe C4U C5U C6U 1012.199 119.700 !0.60 B

182



2 Input files for Molecular Dynamics calculations

ANGLe C5U C6U N1U 1457.566 122.700 !0.50 B

ANGLe N1U C2U ON 743.656 122.800 !0.70 B

ANGLe N3U C2U ON 743.656 122.200 !0.70 B

ANGLe N3U C4U ON 743.656 119.400 !0.70 B

ANGLe C5U C4U ON 1012.199 125.900 !0.60 B

ANGLe C6U N1U C1R 561.212 121.200 !1.40 B

ANGLe C2U N1U C1R 763.872 117.700 !1.20 B

ANGLe C6U N1U C1D 561.212 121.200 !1.40 B !DNA

ANGLe C2U N1U C1D 763.872 117.700 !1.20 B

ANGLe C4U ON HO 105.000 120.000 !from param11.dna, 3*keq

ANGLe C2U N3U HN 105.000 116.500

ANGLe C4U N3U HN 105.000 116.500

ANGLe N1U C6U H $kchangle 119.38

ANGLe C5U C6U H $kchangle 119.38

ANGLe C4U C5U H $kchangle 119.56

ANGLe C6U C5U H $kchangle 119.56

ANGLe C3D C2D NX29 1457.566 110.00 !check param, added fpr pyr

ANGLe H C2D NX29 500.00 109.51 !check param, added fpr pyr

{

!Dihedrals from param11.dna (included for terminal residues)

!DIHEdral X C2R C3R X 4.50 3 0.000

!DIHEdral X C4R C3R X 4.50 3 0.000

!DIHEdral X C2R C1R X 4.50 3 0.000

!DIHEdral X C5R O5R X 1.50 3 0.000

!DIHEdral X C3R O3R X 1.50 3 0.000

DIHEdral X C3R OH X 1.50 3 0.000

DIHEdral X C5R OH X 1.50 3 0.000

!DIHEdral X C2R O2R X 1.50 3 0.000

!DIHEdral X O5R P X 2.25 3 0.000

DIHEdral X OH P X 2.25 3 0.000

!DIHEdral OH C5R C4R O4R 4.50 3 0.000

!DIHEdral OH C5R C4R C3R 4.50 3 0.000 ! gamma

!DIHEdral C3R O3R P OH 2.25 3 0.000 ! added by infer

!DIHEdral C3R O3R P OH 2.25 2 0.000 ! ATB, 7-SEP-84

DIHEdral C5R O5R P OH 2.25 3 0.000 ! added by infer

!DIHEdral C5R O5R P OH 2.25 2 0.000 ! ATB, 7-SEP-84

!DIHEdral X C2D C3D X 4.50 3 0.000

!DIHEdral X C4D C3D X 4.50 3 0.000 !DNA

!DIHEdral X C2D C1D X 4.50 3 0.000

!DIHEdral X C5D O5R X 1.50 3 0.000

!DIHEdral X C3D O3R X 1.50 3 0.000

DIHEdral X C3D OH X 1.50 3 0.000

DIHEdral X C5D OH X 1.50 3 0.000

!DIHEdral OH C5D C4D O4D 4.50 3 0.000

!DIHEdral OH C5D C4D C3D 4.50 3 0.000

!DIHEdral C3D O3R P OH 2.25 3 0.000

!DIHEdral C3D O3R P OH 2.25 2 0.000

DIHEdral C5D O5R P OH 2.25 3 0.000

!DIHEdral C5D O5R P OH 2.25 2 0.000

}{

!Base hydrogen DIHEdrals taken from param11.dna
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DIHEdral X C2G N2G X 18.0 2 180.000

DIHEdral X C6A N6A X 18.0 2 180.000

!DIHEdral X C6A N4C X 18.00 2 180.000

DIHEdral X C4C N4C X 18.00 2 180.000

}

!IMPRopers to keep the two purine rings parallel:

!guanine

IMPRoper C8G C4G C5G NNA 250.0 2 180.000

IMPRoper C8G C5G C4G C2G 250.0 2 180.000

IMPRoper N3G C4G C5G N7G 250.0 2 180.000

IMPRoper C6G C5G C4G N9G 250.0 2 180.000

!adenine

IMPRoper C8A C4A C5A N9A 250.0 2 180.000 ! WYE AND PATCHED RESIDUES

IMPRoper C8A C5A C4A C2A 250.0 2 180.000

IMPRoper C8A C4A C5A NC 250.0 2 180.000

IMPRoper N3A C4A C5A N7A 250.0 2 180.000

IMPRoper C6A C5A C4A N9A 250.0 2 180.000

!purine

IMPRoper C8P C4P C5P N9P 250.0 2 180.000 ! WYE AND PATCHED RESIDUES

IMPRoper C8P C5P C4P C2P 250.0 2 180.000

IMPRoper C8P C4P C5P NC 250.0 2 180.000

IMPRoper N3P C4P C5P N7P 250.0 2 180.000

IMPRoper C6P C5P C4P N9P 250.0 2 180.000

!other base specific non-exch hydrogen IMPRopers

IMPRoper H C4C C6C C5C $kchimpr 0 0.000

IMPRoper H N1C C5C C6C $kchimpr 0 0.000

IMPRoper H C4U C6U C5U $kchimpr 0 0.000

IMPRoper H N1U C5U C6U $kchimpr 0 0.000

IMPRoper H N1T C5T C6T $kchimpr 0 0.000

IMPRoper H N7A N9A C8A $kchimpr 0 0.000

IMPRoper H NC N3A C2A $kchimpr 0 0.000

IMPRoper H N7P N9P C8P $kchimpr 0 0.000

IMPRoper H NC N3P C2P $kchimpr 0 0.000

IMPRoper H NC C5P C6P $kchimpr 0 0.000

IMPRoper H N7G N9G C8G $kchimpr 0 0.000

!Impropers for ribose chirality

IMPRoper H C2R O4R N9A $kchimpr 0 -65.000!C1R

IMPRoper H C2R O4R N9P $kchimpr 0 -65.000!C1R

IMPRoper H C2R O4R N9G $kchimpr 0 -65.000!C1R

IMPRoper H C2R O4R N1C $kchimpr 0 -65.000!C1R

IMPRoper H C2R O4R N1U $kchimpr 0 -65.000!C1R

IMPRoper H C2R O4R N1T $kchimpr 0 -65.000!C1R

IMPRoper H C3R C1R O2R $kchimpr 0 65.000!C2R

IMPRoper H C4R C2R O3R $kchimpr 0 60.300!C3R

IMPRoper H C4R C2R OH $kchimpr 0 60.300!C3R; TERMINAL RES

IMPRoper H C5R C3R O4R $kchimpr 0 70.300!C4R

IMPRoper H O5R H C4R $kchimpr 0 72.000!C5R;

IMPRoper H OH H C4R $kchimpr 0 72.000!C5R; TERMINAL RES

!Impropers for deoxyribose chirality

IMPRoper H C2D O4D N9A $kchimpr 0 -65.280!C1D
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IMPRoper H C2D O4D N9P $kchimpr 0 -65.280!C1D

IMPRoper H C2D O4D N9G $kchimpr 0 -65.280!C1D

IMPRoper H C2D O4D N1C $kchimpr 0 -65.280!C1D

IMPRoper H C2D O4D N1T $kchimpr 0 -65.280!C1D

IMPRoper H C2D O4D N1U $kchimpr 0 -65.280!C1D

IMPRoper H C2D O4D H $kchimpr 0 -65.280!C1D !mod by anda (ABA)

IMPRoper H C3D H C1D $kchimpr 0 -73.500!C2D

IMPRoper H C4D C2D O3R $kchimpr 0 62.660!C3D

IMPRoper H C4D C2D OH $kchimpr 0 62.660!C3D; TERMINAL RES

IMPRoper H C5D C3D O4D $kchimpr 0 70.220!C4D

IMPRoper H O5R H C4D $kchimpr 0 71.430!C5D;

IMPRoper H OH H C4D $kchimpr 0 71.430!C5D; TERMINAL RES

{

!Phos. - periodical potentials from combined RNA/DNA statistics

! kq x_eq (sigma in parenthesis)

DIHEdral O3R P O5R C5R 1.41 3 24 ! alpha !P (20.3)

DIHEdral P O5R C5R C4R 3.45 0 178 ! beta !P (13.0)

DIHEdral O5R C5R C4R C3R 12.24 3 18 ! gamma !S (6.9)

DIHEdral O5R C5R C4R O4R 24.28 3 14.1 ! !S (4.9)

DIHEdral C4R C3R O3R P 7.88 0 -153 ! eps !P (8.6)

DIHEdral C3R O3R P O5R 1.75 3 33 ! zeta !P (18.3)

DIHEdral O3R P O5R C5D 1.41 3 6.0 !DNA

DIHEdral P O5R C5D C4D 3.45 0 183.5

DIHEdral O5R C5D C4D C3D 12.42 3 18.3

DIHEdral O5R C5D C4D O4D 24.28 3 14.1

DIHEdral C4D C3D O3R P 7.88 0 214.0

DIHEdral C3D O3R P O5R 1.75 3 0.3

!Phos. - discrete values from combined RNA/DNA statistics

! kq x_eq (sigma in parenthesis)

!DIHEdral O3R P O5R C5R 6.07 0 285.3 ! (9.8) alpha1 !P

!DIHEdral O3R P O5R C5R 3.98 0 81.1 ! (12.1) alpha2;alpha3=180.

!DIHEdral P O5R C5R C4R 3.44 0 183.5 ! (13.0) beta !P

!DIHEdral O5R C5R C4R C3R 17.94 0 52.5 ! (5.7) gamma1 !S

!DIHEdral O5R C5R C4R C3R 14.23 0 179.4 ! (6.4) gamma2 !S

!DIHEdral O5R C5R C4R C3R 3.85 0 292.9 ! (12.3) gamma3 !S

!DIHEdral C4R C3R O3R P 7.88 0 214.0 ! (8.6) eps !P

!DIHEdral C3R O3R P O5R 25.30 0 289.2 ! (4.8) zeta1 !P

!DIHEdral C3R O3R P O5R 2.85 0 80.7 ! (14.3) zeta2;zeta3=180.

}{

!Sugars

! c3’-endo conformation as the default for for RNA, c2’-endo for DNA,

!RNA statistics, C3’-endo

DIHEdral C5R C4R C3R O3R 30.12 0 81.1 ! delta ! c3’-endo S (4.4)

DIHEdral O4R C4R C3R O3R 33.10 0 201.8 ! 4.2 ! c3’-endo S

DIHEdral O4R C1R C2R C3R 24.28 0 335.4 ! 4.9 ! c3’-endo S

DIHEdral C1R C2R C3R C4R 74.36 0 35.9 ! 2.8 ! c3’-endo S

DIHEdral C2R C3R C4R O4R 60.67 0 324.7 ! 3.1 ! c3’-endo S

DIHEdral C3R C4R O4R C1R 22.42 0 20.5 ! 5.1 ! c3’-endo S

DIHEdral C4R O4R C1R C2R 15.67 0 2.8 ! 6.1 ! c3’-endo S

DIHEdral C5R C4R C3R C2R 60.67 0 204.0 ! 3.1 ! c3’-endo S

DIHEdral O3R C3R C2R O2R 28.79 0 44.3 ! 4.5 ! c3’-endo S

DIHEdral C4R O4R C1R N1T 13.80 0 241.4 ! 6.5 ! c3’-endo S
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DIHEdral C4R O4R C1R N1C 13.80 0 241.4 ! 6.5 ! c3’-endo S

DIHEdral C4R O4R C1R N1U 13.80 0 241.4 ! 6.5 ! c3’-endo S

DIHEdral C4R O4R C1R N9G 13.80 0 241.4 ! 6.5 ! c3’-endo S

DIHEdral C4R O4R C1R N9A 13.80 0 241.4 ! 6.5 ! c3’-endo S

DIHEdral C4R O4R C1R N9P 13.80 0 241.4 ! 6.5 ! c3’-endo S

!RNA c3’-endo sugar base joint torsions (combined RNA/DNA statistics used)

DIHEdral O4R C1R N1T C2T 13.38 0 195.7 ! 6.6 ! c3’-endo S

DIHEdral O4R C1R N1C C2C 13.38 0 195.7 ! 6.6 ! c3’-endo S

DIHEdral O4R C1R N1U C2U 13.38 0 195.7 ! 6.6 ! c3’-endo S

DIHEdral O4R C1R N9A C4A 2.97 0 193.3 ! 14.0 ! c3’-endo S

DIHEdral O4R C1R N9P C4P 2.97 0 193.3 ! 14.0 ! c3’-endo S

DIHEdral O4R C1R N9G C4G 2.97 0 193.3 ! 14.0 ! c3’-endo S

!DNA statistics (c2’-endo)

DIHEdral C5D C4D C3D O3R 36.44 0 145.2 ! delta ! c2’-endo S (4.0)

DIHEdral O4D C1D C2D C3D 24.28 0 32.8 ! 4.9 ! c2’-endo S

DIHEdral O4D C4D C3D O3R 31.53 0 265.8 ! 4.3 ! c2’-endo S

DIHEdral C1D C2D C3D C4D 44.99 0 326.9 ! 3.6 ! c2’-endo S

DIHEdral C2D C3D C4D O4D 28.79 0 22.6 ! 4.5 ! c2’-endo S

DIHEdral C3D C4D O4D C1D 15.67 0 357.7 ! 6.1 ! c2’-endo S

DIHEdral C4D O4D C1D C2D 14.69 0 340.7 ! 6.3 ! c2’-endo S

DIHEdral C5D C4D C3D C2D 34.68 0 262.0 ! 4.1 ! c2’-endo S

DIHEdral C4D O4D C1D N1T 12.99 0 217.7 ! 6.7 ! c2’-endo S

DIHEdral C4D O4D C1D N1C 12.99 0 217.7 ! 6.7 ! c2’-endo S

DIHEdral C4D O4D C1D N1U 12.99 0 217.7 ! 6.7 ! c2’-endo S

DIHEdral C4D O4D C1D N9G 12.99 0 217.7 ! 6.7 ! c2’-endo S

DIHEdral C4D O4D C1D N9A 12.99 0 217.7 ! 6.7 ! c2’-endo S

DIHEdral C4D O4D C1D N9P 12.99 0 217.7 ! 6.7 ! c2’-endo S

!DNA c2’-endo sugar base joint torsions (combined RNA/DNA statistics used)

DIHEdral O4D C1D N1T C2T 1.72 0 229.8 ! 18.4 ! c2’-endo S

DIHEdral O4D C1D N1C C2C 1.72 0 229.8 ! 18.4 ! c2’-endo S

DIHEdral O4D C1D N1U C2U 1.72 0 229.8 ! 18.4 ! c2’-endo S

DIHEdral O4D C1D N9A C4A 1.00 0 237.0 ! 24.3 ! c2’-endo S

DIHEdral O4D C1D N9P C4P 1.00 0 237.0 ! 24.3 ! c2’-endo S

DIHEdral O4D C1D N9G C4G 1.00 0 237.0 ! 24.3 ! c2’-endo S

!---------------------------------------------------------------------------

!In the case of c3’-endo conformation, the following DIHEdrals are provided

!to overwrite the c2’-endo DIHEdrals

!RNA statistics (c2’-endo)

!DIHEdral C5R C4R C3R O3R 24.28 0 147.3 ! delta ! c2’-endo S (4.9)

!DIHEdral O4R C1R C2R C3R 50.43 0 35.2 ! 3.4 ! c2’-endo S

!DIHEdral O4R C4R C3R O3R 20.75 0 268.1 ! 5.3 ! c2’-endo S

!DIHEdral C1R C2R C3R C4R 74.36 0 324.6 ! 2.8 ! c2’-endo S

!DIHEdral C2R C3R C4R O4R 31.53 0 24.2 ! 4.3 ! c2’-endo S

!DIHEdral C3R C4R O4R C1R 17.94 0 357.7 ! 5.7 ! c2’-endo S

!DIHEdral C4R O4R C1R C2R 21.56 0 339.2 ! 5.2 ! c2’-endo S

!DIHEdral C5R C4R C3R C2R 34.68 0 263.4 ! 4.1 ! c2’-endo S

!DIHEdral O3R C3R C2R O2R 33.05 0 319.7 ! 4.2 ! c2’-endo S

!DIHEdral C4R O4R C1R N1T 19.27 0 216.6 ! 5.5 ! c2’-endo S

!DIHEdral C4R O4R C1R N1C 19.27 0 216.6 ! 5.5 ! c2’-endo S

!DIHEdral C4R O4R C1R N1U 19.27 0 216.6 ! 5.5 ! c2’-endo S

!DIHEdral C4R O4R C1R N9G 19.27 0 216.6 ! 5.5 ! c2’-endo S
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!DIHEdral C4R O4R C1R N9A 19.27 0 216.6 ! 5.5 ! c2’-endo S

!RNA c2’-endo sugar base joint torsions (combined RNA/DNA statistics used)

!DIHEdral O4R C1R N1T C2T 1.72 0 229.8 ! 18.4 ! c2’-endo S

!DIHEdral O4R C1R N1C C2C 1.72 0 229.8 ! 18.4 ! c2’-endo S

!DIHEdral O4R C1R N1U C2U 1.72 0 229.8 ! 18.4 ! c2’-endo S

!DIHEdral O4R C1R N9A C4A 1.00 0 237.0 ! 24.3 ! c2’-endo S

!DIHEdral O4R C1R N9G C4G 1.00 0 237.0 ! 24.3 ! c2’-endo S

!DNA statistics, c3’-endo (insuficient data, RNA values used)

!DIHEdral C5D C4D C3D O3R 30.12 0 81.1 ! delta ! c3’-endo S (4.4)

!DIHEdral O4D C4D C3D O3R 33.10 0 201.8 ! 4.2 ! c3’-endo S

!DIHEdral O4D C1D C2D C3D 24.28 0 335.4 ! 4.9 ! c3’-endo S

!DIHEdral C1D C2D C3D C4D 74.36 0 35.9 ! 2.8 ! c3’-endo S

!DIHEdral C2D C3D C4D O4D 60.67 0 324.7 ! 3.1 ! c3’-endo S

!DIHEdral C3D C4D O4D C1D 22.42 0 20.5 ! 5.1 ! c3’-endo S

!DIHEdral C4D O4D C1D C2D 15.67 0 2.8 ! 6.1 ! c3’-endo S

!DIHEdral C5D C4D C3D C2D 60.67 0 204.0 ! 3.1 ! c3’-endo S

!DIHEdral C4D O4D C1D N1T 13.80 0 241.4 ! 6.5 ! c3’-endo S

!DIHEdral C4D O4D C1D N1C 13.80 0 241.4 ! 6.5 ! c3’-endo S

!DIHEdral C4D O4D C1D N1U 13.80 0 241.4 ! 6.5 ! c3’-endo S

!DIHEdral C4D O4D C1D N9G 13.80 0 241.4 ! 6.5 ! c3’-endo S

!DIHEdral C4D O4D C1D N9A 13.80 0 241.4 ! 6.5 ! c3’-endo S

!DNA c3’-endo sugar base joint torsions (combined RNA/DNA statistics used)

!DIHEdral O4D C1D N1T C2T 13.38 0 195.7 ! 6.6 ! c3’-endo S

!DIHEdral O4D C1D N1C C2C 13.38 0 195.7 ! 6.6 ! c3’-endo S

!DIHEdral O4D C1D N1U C2U 13.38 0 195.7 ! 6.6 ! c3’-endo S

!DIHEdral O4D C1D N9A C4A 2.97 0 193.3 ! 14.0 ! c3’-endo S

!DIHEdral O4D C1D N9G C4G 2.97 0 193.3 ! 14.0 ! c3’-endo S

!---------------------------------------------------------------------------

!---------------------------------------------------------------------------

}

!Impropers taken from param11.dna , 3*kq

IMPRoper C5R X X C2R 94.5 0 35.260

IMPRoper C5R X X C1R 94.5 0 35.260

IMPRoper OH X X C3R 94.5 0 35.260

IMPRoper OH X X C4R 94.5 0 35.260

IMPRoper OH X X C1R 94.5 0 35.260

IMPRoper O3R X X C3R 94.5 0 35.260

IMPRoper O5R X X C1R 94.5 0 35.260

IMPRoper O2R X X C2R 94.5 0 35.260

IMPRoper C4R O5R C1R N1T 94.5 0 35.260

IMPRoper C4R O5R C1R N1C 94.5 0 35.260

IMPRoper C4R O5R C1R N9G 94.5 0 35.260

IMPRoper C4R O5R C1R N9A 94.5 0 35.260

IMPRoper C4R O5R C1R N9P 94.5 0 35.260

IMPRoper C5R O4R C3R C4R 94.5 0 35.260

IMPRoper N1T C2R O4R C1R 94.5 0 35.260

IMPRoper N1C C2R O4R C1R 94.5 0 35.260

IMPRoper N9A C2R O4R C1R 94.5 0 35.260

IMPRoper N9P C2R O4R C1R 94.5 0 35.260

IMPRoper N9G C2R O4R C1R 94.5 0 35.260
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IMPRoper C4R O5R C1R N1U 94.5 0 35.260

IMPRoper N1U C2R O4R C1R 94.5 0 35.260

IMPRoper C5D X X C2D 94.5 0 35.260 !DNA

IMPRoper C5D X X C1D 94.5 0 35.260

IMPRoper OH X X C3D 94.5 0 35.260

IMPRoper OH X X C4D 94.5 0 35.260

IMPRoper OH X X C1D 94.5 0 35.260

IMPRoper O3R X X C3D 94.5 0 35.260

IMPRoper O5R X X C1D 94.5 0 35.260

IMPRoper C4D O5R C1D N1T 94.5 0 35.260

IMPRoper C4D O5R C1D N1C 94.5 0 35.260

IMPRoper C4D O5R C1D N9G 94.5 0 35.260

IMPRoper C4D O5R C1D N9A 94.5 0 35.260

IMPRoper C4D O5R C1D N9P 94.5 0 35.260

IMPRoper C5D O4D C3D C4D 94.5 0 35.260

IMPRoper N1T C2D O4D C1D 94.5 0 35.260

IMPRoper N1C C2D O4D C1D 94.5 0 35.260

IMPRoper N9A C2D O4D C1D 94.5 0 35.260

IMPRoper N9P C2D O4D C1D 94.5 0 35.260

IMPRoper N9G C2D O4D C1D 94.5 0 35.260

IMPRoper C4D O5R C1D N1U 94.5 0 35.260

IMPRoper N1U C2D O4D C1D 94.5 0 35.260

!the following impropers were taken from param11x.dna

!the higher kq was used to enforce the ring planarity

!cytosine

IMPRoper C4C X X ON 2400.0 0 0.000

IMPRoper C4C X X N1C 250.0 0 0.000

IMPRoper C6C X X NC 250.0 0 0.000

IMPRoper C4C X X N2 2400.0 0 0.000

IMPRoper C2C X X ON 2400.0 0 0.000

!infer

IMPRoper C1R C2C C6C N1C 2400.0 0 0.000

IMPRoper C1D C2C C6C N1C 2400.0 0 0.000

IMPRoper N4C NC C5C C4C 2400.0 0 0.000

IMPRoper C2C NC C4C C5C 250.0 0 0.000

IMPRoper C5C C6C N1C C2C 250.0 0 0.000

IMPRoper H2 C4C H2 N4C 250.0 0 0.000

IMPRoper C5C C4C N4C H2 2000.0 0 0.000

!uracil

IMPRoper C4U X X ON 2400.0 0 0.000

IMPRoper C4U X X N1U 250.0 0 0.000

IMPRoper C6U X X N3U 250.0 0 0.000

IMPRoper C4U X X N2 2400.0 0 0.000

IMPRoper C2U X X ON 2400.0 0 0.000

IMPRoper C1R C2U C6U N1U 2400.0 0 0.000

IMPRoper C1D C2U C6U N1U 2400.0 0 0.000

IMPRoper ON N3U C5U C4U 250.0 0 0.000

IMPRoper C2U N3U C4U C5U 250.0 0 0.000

IMPRoper C5U C6U N1U C2U 250.0 0 0.000

IMPRoper H2 C4U H2 ON 250.0 0 0.000

IMPRoper HN C2U C4U N3U 250.0 0 0.000

IMPRoper H C3D NX29 C1D 500.0 0 -73.5 !added for pyr, jt
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!thymidine

IMPRoper C4T X X ON 2400.0 0 0.000

IMPRoper C4T X X N1T 250.0 0 0.000

IMPRoper C6T X X N3T 250.0 0 0.000

IMPRoper C4T X X N2 2400.0 0 0.000

IMPRoper C2T X X ON 2400.0 0 0.000

IMPRoper C1R C2T C6T N1T 2400.0 0 0.000

IMPRoper C1D C2T C6T N1T 2400.0 0 0.000

IMPRoper ON N3T C5T C4T 250.0 0 0.000

IMPRoper C2T N3T C4T C5T 250.0 0 0.000

IMPRoper C5T C6T N1T C2T 250.0 0 0.000

IMPRoper H2 C4T H2 ON 250.0 0 0.000

IMPRoper CC3E C4T C6T C5T 2400.0 0 0.000

!infer

IMPRoper HN C2T C4T N3T 250.0 0 0.000

! The ring-spanning impropers have been left out.

!adenine

IMPRoper N2A N3A NC C2A 250.0 0 0.000

IMPRoper H2 C2A H2 N2A 250.0 0 0.000

IMPRoper C4A C5A N7A C8A 250.0 0 0.000

IMPRoper C5A C4A N9A C8A 250.0 0 0.000

IMPRoper C4A X X NC 250.0 0 0.000

IMPRoper C2A X X N9A 250.0 0 0.000

IMPRoper C2A X X C5A 250.0 0 0.000

IMPRoper C6A C5A C4A N3A 250.0 0 0.000

IMPRoper C5A X X N9A 250.0 0 0.000

IMPRoper C6A X X N6A 2400.0 0 0.000

IMPRoper H2 X X N6A 250.0 0 0.000

!infer

IMPRoper C1R C4A C8A N9A 2400.0 0 0.000

IMPRoper C1D C4A C8A N9A 2400.0 0 0.000

IMPRoper N9A C4A C5A N7A 250.0 0 0.000

IMPRoper N7A C8A N9A C4A 250.0 0 0.000

IMPRoper N3A C2A NC C6A 250.0 0 0.000

IMPRoper C5A C6A N6A H2 2000.0 0 0.000

! The ring-spanning impropers have been left out.

!purine

IMPRoper N2P N3P NC C2P 250.0 0 0.000

IMPRoper C4P C5P N7P C8P 250.0 0 0.000

IMPRoper C5P C4P N9P C8P 250.0 0 0.000

IMPRoper C4P X X NC 250.0 0 0.000

IMPRoper C2P X X N9P 250.0 0 0.000

IMPRoper C2P X X C5P 250.0 0 0.000

IMPRoper C6P C5P C4P N3P 250.0 0 0.000

IMPRoper C5P X X N9P 250.0 0 0.000

!infer

IMPRoper C1R C4P C8P N9P 2400.0 0 0.000

IMPRoper C1D C4P C8P N9P 2400.0 0 0.000

IMPRoper N9P C4P C5P N7P 250.0 0 0.000

IMPRoper N7P C8P N9P C4P 250.0 0 0.000

IMPRoper N3P C2P NC C6P 250.0 0 0.000
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! The ring-spanning impropers have been left out.

!guanine

IMPRoper C4G C5G N7G C8G 250.0 0 0.000

IMPRoper C5G C4G N9G C8G 250.0 0 0.000

IMPRoper C4G X X NNA 250.0 0 0.000

IMPRoper C2G X X N9G 250.0 0 0.000

IMPRoper C2G X X C5G 250.0 0 0.000

IMPRoper C6G C5G C4G N3G 250.0 0 0.000

IMPRoper C5G X X N9G 250.0 0 0.000

IMPRoper C6G X X O6G 2400.0 0 0.000

IMPRoper C2G X X N2G 2400.0 0 0.000

!infer

IMPRoper C1R C4G C8G N9G 2400.0 0 0.000

IMPRoper C1D C4G C8G N9G 2400.0 0 0.000

IMPRoper N9G C4G C5G N7G 250.0 0 0.000

IMPRoper N7G C8G N9G C4G 250.0 0 0.000

IMPRoper N3G C2G NNA C6G 250.0 0 0.000

IMPRoper H2 H2 C2G N2G 250.0 0 0.000

IMPRoper HN C2G C6G NNA 2000.0 0 0.000

IMPRoper N3G C2G N2G H2 2000.0 0 0.000

! Lennard-Jones parameters

! ------1-4-------

! epsilon sigma epsilon sigma

! (Kcal/mol) (A) (Kcal/mol) (A)

! Taken from Rossky Karplus and Rahman BIOPOLY (1979)

! 0.05 ADDED TO RADII TO IMPRoperOVE ON NUCL.ACID STACKING/LN

!

! eps sigma eps(1:4) sigma(1:4)

NONBonded C5R 0.0900 3.2970 0.0900 3.2970

NONBonded C1R 0.0900 3.2970 0.0900 3.2970

NONBonded C2R 0.0900 3.2970 0.0900 3.2970

NONBonded C3R 0.0900 3.2970 0.0900 3.2970

NONBonded C4R 0.0900 3.2970 0.0900 3.2970

NONBonded C5D 0.0900 3.2970 0.0900 3.2970 !DNA

NONBonded C1D 0.0900 3.2970 0.0900 3.2970

NONBonded C2D 0.0900 3.2970 0.0900 3.2970

NONBonded C3D 0.0900 3.2970 0.0900 3.2970

NONBonded C4D 0.0900 3.2970 0.0900 3.2970

NONBonded HN 0.0045 2.6160 0.0045 2.6160

NONBonded H2 0.0045 1.6040 0.0045 1.6040

NONBonded H 0.0045 2.6160 0.0045 2.6160

!

! give it the same as th Hn from RKR

NONBonded HO 0.0045 1.6040 0.0045 1.6040

!

! THIS STILL IS AN EXTENDED ATOM

NONBonded O3R 0.2304 2.7290 0.2304 2.7290

NONBonded O4R 0.2304 2.7290 0.2304 2.7290
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NONBonded O4D 0.2304 2.7290 0.2304 2.7290

NONBonded O5R 0.2304 2.7290 0.2304 2.7290

NONBonded O1P 0.2304 2.7290 0.2304 2.7290

NONBonded O2P 0.2304 2.7290 0.2304 2.7290

NONBonded P 0.5849 3.3854 0.5849 3.3854

!bases

NONBonded C2 0.0900 3.2970 0.0900 3.2970

NONBonded C3 0.0900 3.2970 0.0900 3.2970

NONBonded CB 0.0900 3.2970 0.0900 3.2970

NONBonded CE 0.0900 3.2970 0.0900 3.2970

NONBonded CH 0.0900 3.2970 0.0900 3.2970

NONBonded N2 0.1600 2.8591 0.1600 2.8591

NONBonded N3U 0.1600 2.8591 0.1600 2.8591

NONBonded N3T 0.1600 2.8591 0.1600 2.8591

NONBonded NNA 0.1600 2.8591 0.1600 2.8591

NONBonded NB 0.1600 2.8591 0.1600 2.8591

NONBonded NC 0.1600 2.8591 0.1600 2.8591

NONBonded NH2E 0.1600 3.0291 0.1600 3.0291

NONBonded NS 0.1600 2.8591 0.1600 2.8591

NONBonded N1T 0.1600 2.8591 0.1600 2.8591

NONBonded N1C 0.1600 2.8591 0.1600 2.8591

NONBonded N9A 0.1600 2.8591 0.1600 2.8591

NONBonded N9P 0.1600 2.8591 0.1600 2.8591

NONBonded N9G 0.1600 2.8591 0.1600 2.8591

NONBonded N1U 0.1600 2.8591 0.1600 2.8591

NONBonded ON 0.2304 2.7290 0.2304 2.7290

NONBonded O2R 0.2304 2.7290 0.2304 2.7290

NONBonded OH 0.2304 2.5508 0.2304 2.5508

NONBonded SD 0.3515 2.6727 0.3515 2.6727 ! G U E S S

NONBonded O2 0.2304 2.7290 0.2304 2.7290

! NEW

NONBonded C6C 0.0900 3.2970 0.0900 3.2970

NONBonded C5C 0.0900 3.2970 0.0900 3.2970

NONBonded C4C 0.0900 3.2970 0.0900 3.2970

NONBonded C2C 0.0900 3.2970 0.0900 3.2970

NONBonded C6U 0.0900 3.2970 0.0900 3.2970

NONBonded C5U 0.0900 3.2970 0.0900 3.2970

NONBonded C4U 0.0900 3.2970 0.0900 3.2970

NONBonded C2U 0.0900 3.2970 0.0900 3.2970

NONBonded C8A 0.0900 3.2970 0.0900 3.2970

NONBonded C6A 0.0900 3.2970 0.0900 3.2970

NONBonded C5A 0.0900 3.2970 0.0900 3.2970

NONBonded C4A 0.0900 3.2970 0.0900 3.2970

NONBonded C2A 0.0900 3.2970 0.0900 3.2970

NONBonded C8P 0.0900 3.2970 0.0900 3.2970

NONBonded C6P 0.0900 3.2970 0.0900 3.2970

NONBonded C5P 0.0900 3.2970 0.0900 3.2970

NONBonded C4P 0.0900 3.2970 0.0900 3.2970

NONBonded C2P 0.0900 3.2970 0.0900 3.2970

NONBonded C8G 0.0900 3.2970 0.0900 3.2970

NONBonded C6G 0.0900 3.2970 0.0900 3.2970

NONBonded C5G 0.0900 3.2970 0.0900 3.2970
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NONBonded C4G 0.0900 3.2970 0.0900 3.2970

NONBonded C2G 0.0900 3.2970 0.0900 3.2970

NONBonded C6T 0.0900 3.2970 0.0900 3.2970

NONBonded C5T 0.0900 3.2970 0.0900 3.2970

NONBonded C4T 0.0900 3.2970 0.0900 3.2970

NONBonded C2T 0.0900 3.2970 0.0900 3.2970

NONBonded N4C 0.1600 2.8591 0.1600 2.8591

NONBonded O4U 0.2304 2.7290 0.2304 2.7290

NONBonded N7G 0.1600 2.8591 0.1600 2.8591

NONBonded N3G 0.1600 2.8591 0.1600 2.8591

NONBonded N2G 0.1600 2.8591 0.1600 2.8591

NONBonded N3A 0.1600 2.8591 0.1600 2.8591

NONBonded N7A 0.1600 2.8591 0.1600 2.8591

NONBonded N6A 0.1600 2.8591 0.1600 2.8591

NONBonded O6G 0.2304 2.7290 0.2304 2.7290

NONBonded CC3E 0.0900 3.2970 0.0900 3.2970

NONBonded N2A 0.1600 2.8591 0.1600 2.8591

NONBonded N2P 0.1600 2.8591 0.1600 2.8591

NONBonded N3P 0.1600 2.8591 0.1600 2.8591

NONBonded N7P 0.1600 2.8591 0.1600 2.8591

! special solute-solute hydrogen bonding potential parameters

!AEXP 4

!REXP 6

!HAEX 4

!AAEX 2

! "all" possible combinations of HB-pairs in nucleic acids:

! WELL DEPTHS DEEPENED BY 0.5 KCAL TO IMPROVE BASEPAIR ENERGIES /LN

! AND DISTANCES INCREASED BY 0.05

! Emin Rmin

! (Kcal/mol) (A)

!hbond N* O* -14.0 2.95

!hbond N* N* -14.5 3.05

!hbond O* O* -15.75 2.80

!hbond O* N* -15.50 2.90

! the following NBFIXes are for DNA-DNA hydrogen bonding

! terms

! ------1-4------

! A B A B

! [Kcal/(mol A^12)] [Kcal/(mol A^6)]

!

nbfix HO ON 0.05 0.1 0.05 0.1

nbfix HO O3R 0.05 0.1 0.05 0.1

nbfix HO O5R 0.05 0.1 0.05 0.1

nbfix HO OH 0.05 0.1 0.05 0.1

nbfix HO O2R 0.05 0.1 0.05 0.1

nbfix HO NC 0.05 0.1 0.05 0.1

nbfix H ON 0.05 0.1 0.05 0.1

nbfix H O2 0.05 0.1 0.05 0.1

nbfix H O5R 0.05 0.1 0.05 0.1
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nbfix H O4R 0.05 0.1 0.05 0.1

nbfix H O4D 0.05 0.1 0.05 0.1

nbfix H O3R 0.05 0.1 0.05 0.1

nbfix H O2R 0.05 0.1 0.05 0.1

nbfix H OH 0.05 0.1 0.05 0.1

nbfix H N7A 0.05 0.1 0.05 0.1

nbfix H N7P 0.05 0.1 0.05 0.1

nbfix H N7G 0.05 0.1 0.05 0.1

nbfix H N3A 0.05 0.1 0.05 0.1

nbfix H N3P 0.05 0.1 0.05 0.1

nbfix H N3G 0.05 0.1 0.05 0.1

nbfix HN ON 0.05 0.1 0.05 0.1

nbfix HN O2R 0.05 0.1 0.05 0.1

nbfix HN OH 0.05 0.1 0.05 0.1

nbfix HN NC 0.05 0.1 0.05 0.1

nbfix H2 ON 0.05 0.1 0.05 0.1

nbfix H2 O2R 0.05 0.1 0.05 0.1

nbfix H2 OH 0.05 0.1 0.05 0.1

nbfix H2 NC 0.05 0.1 0.05 0.1

set echo=on message=on end

2.5 Topology file used by Xplor-NIH

!RNA TOPOLOGY FILE ’FRAMEWORK’ FROM TOPALLHDG.DNA AND ATOM NAMES

! FROM DNA-RNA.PARAM

!INCLUDES ALL NONEXCHANGEABLE HYDROGENS AND TERMS FOR BOND, ANGLE, AND

!IMPROPERS. NONEXCHANGEABLE HYDROGEN CHARGES WERE ASSIGNED 0.035.

!CARBON CHARGES WERE REDUCED 0.035 FOR EACH ATTACHED HYDROGEN.

!CREATED 2/24/96-- JASON P. RIFE AND PETER B. MOORE

! DNA-RNA-ALLATOM.TOP

set echo=false end

! checkversion 1.0

AUTOGENERATE ANGLES=TRUE END

{*==========================*}

!************************* change by lsd - DAP ************************

{ Note: edit masses if necessary }

MASS OY1 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CY2 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY3 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)
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MASS HY4 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CY5 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY6 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OY7 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CY8 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY9 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CY10 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY11 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CY12 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS NY13 14.00700 ! assuming N -> 14.00700 + 1.008 * 0 (Hs)

MASS HY14 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY15 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS NY16 15.01500 ! assuming N -> 14.00700 + 1.008 * 1 (Hs)

MASS CY17 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CY18 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY19 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CY20 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HY21 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY22 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OY23 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS NY24 15.01500 ! assuming N -> 14.00700 + 1.008 * 1 (Hs)

MASS CY25 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS NY26 14.00700 ! assuming N -> 14.00700 + 1.008 * 0 (Hs)

MASS HY27 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY28 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY29 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY30 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HY31 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

!********************** end of change by lsd - DAP ********************

!************************* change by lsd - 4AP ************************

{ Note: edit masses if necessary }

MASS OX1 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CX2 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX3 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX4 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CX5 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX6 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OX7 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CX8 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX9 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CX10 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX11 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CX12 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CX13 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CX14 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX15 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CX16 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX17 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX18 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OX19 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CX20 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HX21 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX22 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)
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MASS CX23 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CX24 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS NX25 14.00700 ! assuming N -> 14.00700 + 1.008 * 0 (Hs)

MASS HX26 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX27 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS NX28 14.00700 ! assuming N -> 14.00700 + 1.008 * 0 (Hs)

MASS CX29 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CX30 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OX31 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS OX32 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS HX33 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HX34 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

autogenerate angles=true end

!****************** end of change by lsd - 4AP ************************

!************************* change by lsd - 6HQ ************************

{ Note: edit masses if necessary }

MASS CQ1 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS NQ2 14.00700 ! assuming N -> 14.00700 + 1.008 * 0 (Hs)

MASS CQ3 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ4 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ5 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ6 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ7 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HQ8 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CQ9 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ10 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ11 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CQ12 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OQ13 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS HQ14 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ15 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ16 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ17 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ18 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OQ19 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CQ20 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OQ21 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CQ22 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HQ23 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ24 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ25 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ26 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ27 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ28 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ29 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HQ30 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

!******************** end of change by lsd - 6HQ **********************

!************************* change by lsd - HCF ************************
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{ Note: edit masses if necessary }

MASS PZ1 30.97400 ! assuming P -> 30.97400 + 1.008 * 0 (Hs)

MASS OZ2 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS OZ3 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CZ1 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ2 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ3 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ4 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ5 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ6 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ7 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ8 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ9 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ10 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ11 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ12 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ13 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OZ14 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CZ15 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OZ16 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS OZ17 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS HZ18 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ19 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ20 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ21 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ22 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ23 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ24 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ25 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CZ26 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS OZ27 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS CZ28 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HZ29 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CZ30 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS CZ31 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HZ32 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ33 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ34 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ35 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS CZ36 12.01100 ! assuming C -> 12.01100 + 1.008 * 0 (Hs)

MASS HZ37 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS HZ38 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

MASS OZ39 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS OZ41 15.99900 ! assuming O -> 15.99900 + 1.008 * 0 (Hs)

MASS HZ43 1.00800 ! assuming H -> 1.00800 + 1.008 * 0 (Hs)

!********************* end of change by lsd - HCF *********************

{* DNA/RNA default masses *}

MASS P 30.97400! phosphorus

MASS O1P 15.99940! O in phosphate

MASS O2P 15.99940! O in phosphate

MASS O5R 15.99940! ester -P-O-C-

MASS C5R 12.011! corresp. to CH2E
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MASS C4R 12.011! corresp. to CH1E

MASS C3R 12.011! corresp. to CH1E

MASS C2R 12.011! corresp. to CH1E

MASS C1R 12.011! corresp. to CH1E

MASS O4R 15.99940! ester -P-O-C-

MASS O3R 15.99940! ester -P-O-C-

MASS O2R 15.99940! ester -P-O-C-

MASS OH 15.99940! corresp. to OH1

!DEOXY SUGAR

MASS C5D 14.02700! corresp. to CH2E

MASS C4D 13.01900! corresp. to CH1E

MASS C3D 13.01900! corresp. to CH1E

MASS C2D 13.01900! corresp. to CH1E

MASS C1D 13.01900! corresp. to CH1E

MASS O4D 15.99940! ester -P-O-C-

MASS O5D 15.99940!

MASS O3D 15.99940!

! Insert Bases

! Generic

MASS N2 14.00670! nitrogen in -NH2

MASS NNA 14.00670! corresp. to NH1

MASS ON 15.99940! corresp. to O

MASS NC 14.00670! corresp. to NR

MASS NS 14.00670! nitrogen in ring >N-

! Insert 4 Bases

! GUA

MASS N9G 14.00670! nitrogen in ring >N-

MASS C2G 12.011! (prev CE)

MASS N3G 14.00670! (prev NC)

MASS C4G 12.01100! (prev CB)

MASS C5G 12.01100! (prev CB)

MASS C6G 12.01100! (prev CN)

MASS N7G 14.00670! (prev NB)

MASS C8G 12.011! (prev CE)

MASS O6G 15.99940! (prev CE)

MASS N2G 14.00670! nitrogen in -NH2

! ADE

MASS N9A 14.00670! nitrogen in ring >N-

MASS C2A 12.011! (prev CE)

MASS N3A 14.00670! (prev NC)

MASS C4A 12.01100! (prev CB)

MASS C5A 12.01100! (prev CB)

MASS C6A 12.01100! (prev CA)

MASS N7A 14.00670! (prev NB)

MASS C8A 12.011! (prev CE)

MASS N6A 14.00670! nitrogen in -NH2

! PUR

MASS N9P 14.00670! nitrogen in ring >N-

MASS C2P 12.011! (prev CE)

MASS N3P 14.00670! (prev NC)

MASS C4P 12.01100! (prev CB)
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MASS C5P 12.01100! (prev CB)

MASS C6P 12.01100! (prev CA)

MASS N7P 14.00670! (prev NB)

MASS C8P 12.011! (prev CE)

! CYT

MASS N1C 14.00670! nitrogen in ring >N-

MASS C2C 12.01100! (prev CN)

MASS C4C 12.01100! (prev CA)

MASS C5C 12.011! (prev CF)

MASS C6C 12.011! (prev CF)

MASS N4C 14.00670! nitrogen in -NH2

! THY

MASS N1T 14.00670! nitrogen in ring >N-

MASS N3T 14.00670! nitrogen in ring >N-

MASS C2T 12.01100! (prev CN)

MASS C4T 12.01100! (prev CN)

MASS C5T 12.011! (prev CS)

MASS C6T 12.011! (prev CF)

MASS CC3E 12.01100! (prev CF)

! END

MASS H 1.00800! non-exchangeable Hydrogens

MASS HN 1.00800! corresp. to H

MASS H2 1.00800! hydrogen in -NH2

MASS HO 1.00800! hydroxy hydrogen

! URI

MASS N1U 14.00670! nitrogen in ring >N-

MASS C2U 12.01100! (prev CN)

MASS C4U 12.01100! (prev CA)

MASS C5U 12.011! (prev CF)

MASS C6U 12.011! (prev CF)

MASS N3U 14.00670!

!------------------------------------------------------------------

!------------------------------------------------------------------

RESIdue DAP

{ Note: electrostatics should normally not be used in }

{ crystallographic refinement since it can produce }

{ artefacts. For this reason, all charges are set to }

{ zero by default. Edit them if necessary }

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

!Charge of the group: 0.04

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

198



2 Input files for Molecular Dynamics calculations

ATOM H5’’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.00

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.412 END !increased from 0.386 by lsd

ATOM H1’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.247 sums up to +1 with DAP

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

!Charge of the group: 0.00

GROUp

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.00

GROUp

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

!Charge of the group: -0.36

!DAP-base

GROUp

ATOM C6 TYPE CY10 CHARge 0.215 END ! Nr of Hs = 0

ATOM H6 TYPE HY11 CHARge 0.123 END ! Nr of Hs = 0

ATOM C2 TYPE CY12 CHARge 1.034 END ! Nr of Hs = 0

ATOM N2 TYPE NY13 CHARge -1.028 END ! Nr of Hs = 0

ATOM H22 TYPE HY14 CHARge 0.478 END ! Nr of Hs = 0

ATOM H21 TYPE HY15 CHARge 0.457 END ! Nr of Hs = 0

ATOM N3 TYPE NY16 CHARge -0.799 END ! Nr of Hs = 1

ATOM C4 TYPE CY17 CHARge 0.907 END ! Nr of Hs = 0

ATOM N1 TYPE NY24 CHARge -0.610 END ! Nr of Hs = 1

ATOM C5 TYPE CY25 CHARge -0.403 END ! Nr of Hs = 0

ATOM N4 TYPE NY26 CHARge -0.863 END ! Nr of Hs = 0

ATOM H41 TYPE HY27 CHARge 0.403 END ! Nr of Hs = 0

ATOM H42 TYPE HY28 CHARge 0.440 END ! Nr of Hs = 0

ATOM H1 TYPE HY31 CHARge 0.399 END ! Nr of Hs = 0

!Charge of the group: 0.753

BOND C6 H6 BOND C6 N1 BOND C6 C5 BOND C2 N2

BOND C2 N3 BOND C2 N1 BOND N2 H22 BOND N2 H21

BOND N3 C4 BOND C4 C5 BOND C4 N4 BOND N1 H1

BOND N4 H41 BOND C1’ C5 BOND N4 H42

!Ribose

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’

BOND C1’ C2’ BOND C2’ C3’ BOND C3’ O3’

BOND C2’ O2’ BOND O2’ HO2’ BOND C5’ H5’

BOND C5’ H5’’ BOND C3’ H3’ BOND C2’ H2’

BOND C1’ H1’ BOND C4’ H4’

{ Note: edit these DIHEdrals if necessary }
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DIHEdral N3 C2 N2 H22 ! flat ? (0 degrees = cis) -0.22

DIHEdral N3 C2 N2 H21 ! flat ? (180 degrees = trans) 181.56

DIHEdral N1 C2 N2 H22 ! flat ? (180 degrees = trans) 180.37

DIHEdral N1 C2 N2 H21 ! flat ? (0 degrees = cis) 2.16

DIHEdral N3 C4 N4 H42 ! flat ? (0 degrees = cis) -1.69

DIHEdral C5 C4 N4 H42 ! flat ? (180 degrees = trans) 179.27

{ Note: edit these IMPRopers if necessary }

IMPRoper C6 H6 N1 C5 ! chirality or flatness improper -0.54

IMPRoper C2 N2 N3 N1 ! chirality or flatness improper 0.35

IMPRoper N2 C2 H22 H21 ! chirality or flatness improper 0.94

IMPRoper C4 N3 C5 N4 ! chirality or flatness improper 0.57

IMPRoper N1 C6 C2 H1 ! chirality or flatness improper 0.77

IMPRoper C5 C1’ C6 C4 ! chirality or flatness improper -2.66

IMPRoper N4 C4 H41 H42 ! chirality or flatness improper -7.15

!Ribose

IMPRoper H1’ C2’ O4’ C5 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END { RESIdue DAP }

RESIdue 4AP

{ Note: electrostatics should normally not be used in }

{ crystallographic refinement since it can produce }

{ artefacts. For this reason, all charges are set to }

{ zero by default. Edit them if necessary }

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

!Charge of the group: 0.04

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.00

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.238 END !increased from 0.165 by lsd

ATOM H1’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.073 is complmentary to -0.073 of 4AP

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

!Charge of the group: 0.00

GROUp

ATOM C3’ TYPE=C3R CHARGE=-0.035 END
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ATOM H3’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.00

GROUp

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

!Charge of the group: -0.36

!4AP-base

GROUp

ATOM C5 TYPE CX10 CHARge -0.267 END ! Nr of Hs = 0

ATOM H5 TYPE HX11 CHARge 0.161 END ! Nr of Hs = 0

ATOM C3 TYPE CX12 CHARge -0.269 END ! Nr of Hs = 0

ATOM C6a TYPE CX13 CHARge -0.239 END ! Nr of Hs = 0

ATOM C6 TYPE CX20 CHARge 0.095 END ! Nr of Hs = 0

ATOM C4 TYPE CX23 CHARge 0.434 END ! Nr of Hs = 0

ATOM C2a TYPE CX24 CHARge -0.038 END ! Nr of Hs = 0

ATOM N4 TYPE NX25 CHARge -0.824 END ! Nr of Hs = 0

ATOM H41 TYPE HX26 CHARge 0.348 END ! Nr of Hs = 0

ATOM H42 TYPE HX27 CHARge 0.362 END ! Nr of Hs = 0

ATOM N1 TYPE NX28 CHARge -0.642 END ! Nr of Hs = 0

ATOM C2 TYPE CX29 CHARge 0.702 END ! Nr of Hs = 0

ATOM C7 TYPE CX30 CHARge 0.663 END ! Nr of Hs = 0

ATOM O7 TYPE OX31 CHARge -0.523 END ! Nr of Hs = 0

ATOM O2 TYPE OX32 CHARge -0.551 END ! Nr of Hs = 0

ATOM H1 TYPE HX33 CHARge 0.367 END ! Nr of Hs = 0

ATOM H3 TYPE HX34 CHARge 0.148 END ! Nr of Hs = 0

BOND C1’ C6

BOND C5 H5 BOND C5 C6 BOND C5 C4 BOND C3 C4

BOND C3 C2a BOND C3 H3 BOND C6a C6 BOND C6a C2a

BOND C6a C7 BOND C4 N4 BOND C2a C2 BOND N4 H41

BOND N4 H42 BOND N1 C2 BOND N1 C7 BOND N1 H1

BOND C2 O2 BOND C7 O7

!Ribose

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’

BOND C1’ C2’ BOND C2’ C3’ BOND C3’ O3’

BOND C2’ O2’ BOND O2’ HO2’ BOND C5’ H5’

BOND C5’ H5’’ BOND C3’ H3’ BOND C2’ H2’

BOND C1’ H1’ BOND C4’ H4’

{ Note: edit these IMPRopers if necessary }

IMPRoper C5 H5 C6 C4 ! chirality or flatness improper -0.31

IMPRoper C3 C4 C2a H3 ! chirality or flatness improper -0.22

IMPRoper C6a C6 C2a C7 ! chirality or flatness improper 0.47

IMPRoper C4 C5 C3 N4 ! chirality or flatness improper -1.53

IMPRoper C2a C3 C6a C2 ! chirality or flatness improper -0.17

IMPRoper N4 C4 H41 H42 ! chirality or flatness improper -20.06

IMPRoper C5 N4 C4 H41

IMPRoper N1 C2 C7 H1 ! chirality or flatness improper 0.75

IMPRoper C2 C2a N1 O2 ! chirality or flatness improper -0.01

IMPRoper C7 C6a N1 O7 ! chirality or flatness improper -0.09

!Improper to keep both rings parallel

! IMPRoper N1 C2a C6a C5
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! IMPRoper N1 C2a C6a C4

! IMPRoper C2 C2a C6a C6

! IMPRoper C3 C2a C6a C7

!Ribose

IMPRoper H1’ C2’ O4’ C6 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END { RESIdue 4AP }

RESIdue 6HQ

{ Note: electrostatics should normally not be used in }

{ crystallographic refinement since it can produce }

{ artefacts. For this reason, all charges are set to }

{ zero by default. Edit them if necessary }

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O3g TYPE OQ21 CHARGE=0.40 END

GROUp

ATOM C1g TYPE CQ1 CHARGE= 0.365 END ! inc. from 0.095 by lsd

ATOM N1 TYPE NQ2 CHARGE=-0.05 END ! inc. from -0.102 by lsd

ATOM C8a TYPE CQ3 CHARGE= 0.167 END

ATOM C4a TYPE CQ4 CHARGE= 0.162 END

ATOM C4 TYPE CQ5 CHARGE=-0.015 END

ATOM C3 TYPE CQ6 CHARGE=-0.207 END

ATOM C2 TYPE CQ7 CHARGE= 0.151 END

ATOM H2 TYPE HQ8 CHARGE= 0.134 END

ATOM C8 TYPE CQ9 CHARGE=-0.195 END

ATOM C7 TYPE CQ10 CHARGE=-0.120 END

ATOM C6 TYPE CQ11 CHARGE= 0.472 END

ATOM C5 TYPE CQ12 CHARGE=-0.421 END

ATOM O6 TYPE OQ13 CHARGE=-0.586 END

ATOM H4 TYPE HQ14 CHARGE= 0.142 END

ATOM H3 TYPE HQ15 CHARGE= 0.161 END

ATOM H8 TYPE HQ16 CHARGE= 0.139 END

ATOM H7 TYPE HQ17 CHARGE= 0.176 END

ATOM H5 TYPE HQ18 CHARGE= 0.175 END

ATOM C2g TYPE CQ20 CHARGE= 0.271 END

ATOM C3g TYPE CQ22 CHARGE= 0.213 END

ATOM H3’’ TYPE HQ23 CHARGE= 0.008 END

ATOM H3’ TYPE HQ24 CHARGE= 0.028 END

ATOM H2’ TYPE HQ25 CHARGE= 0.010 END

ATOM H1’’ TYPE HQ26 CHARGE= 0.077 END

ATOM H1’ TYPE HQ27 CHARGE= 0.085 END

ATOM H6 TYPE HQ30 CHARGE= 0.457 END

ATOM O2g TYPE OQ19 CHARGE=-0.400 END ! inc. from -0.674 by lsd
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BOND C1g N1 BOND C1g C2g BOND C1g H1’’ BOND C1g H1’

BOND N1 C8a BOND N1 C2 BOND C8a C4a BOND C8a C8

BOND C4a C4 BOND C4a C5 BOND C4 C3 BOND C4 H4

BOND C3 C2 BOND C3 H3 BOND C2 H2 BOND C8 C7

BOND C8 H8 BOND C7 C6 BOND C7 H7 BOND C6 C5

BOND C6 O6 BOND C5 H5 BOND O6 H6 BOND O2g C2g

BOND C2g C3g BOND C2g H2’ BOND O3g C3g

BOND C3g H3’’ BOND C3g H3’

BOND P O1P BOND P O2P BOND P O3g

{ Note: edit these DIHEdrals if necessary }

! DIHEdral H1’ C1g N1 C2 ! flexible dihedral ??? 99.41

! DIHEdral H1’ C1g C2g H2’ ! flat ? (180 degrees = trans) 189.55

! DIHEdral C1g N1 C8a C4a ! flat ? (180 degrees = trans) 180.71

! DIHEdral C1g N1 C8a C8 ! flat ? (0 degrees = cis) 1.29

DIHEdral C2 N1 C8a C4a ! flat ? (0 degrees = cis) 2.40

DIHEdral C2 N1 C8a C8 ! flat ? (180 degrees = trans) 182.98

! DIHEdral C1g N1 C2 C3 ! flat ? (180 degrees = trans) 179.55

! DIHEdral C1g N1 C2 H2 ! flat ? (0 degrees = cis) -1.94

DIHEdral C8a N1 C2 C3 ! flat ? (0 degrees = cis) -2.15

DIHEdral C8a N1 C2 H2 ! flat ? (180 degrees = trans) 176.35

DIHEdral N1 C8a C4a C4 ! flat ? (0 degrees = cis) -1.07

DIHEdral N1 C8a C4a C5 ! flat ? (180 degrees = trans) 179.45

DIHEdral C8 C8a C4a C4 ! flat ? (180 degrees = trans) 178.37

DIHEdral C8 C8a C4a C5 ! flat ? (0 degrees = cis) -1.11

DIHEdral N1 C8a C8 C7 ! flat ? (180 degrees = trans) 180.11

DIHEdral N1 C8a C8 H8 ! flat ? (0 degrees = cis) 1.05

DIHEdral C4a C8a C8 C7 ! flat ? (0 degrees = cis) 0.70

DIHEdral C4a C8a C8 H8 ! flat ? (180 degrees = trans) 181.64

DIHEdral C8a C4a C4 C3 ! flat ? (0 degrees = cis) -0.51

DIHEdral C8a C4a C4 H4 ! flat ? (180 degrees = trans) 180.12

DIHEdral C5 C4a C4 C3 ! flat ? (180 degrees = trans) 178.97

DIHEdral C5 C4a C4 H4 ! flat ? (0 degrees = cis) -0.41

DIHEdral C8a C4a C5 C6 ! flat ? (0 degrees = cis) 0.57

DIHEdral C8a C4a C5 H5 ! flat ? (180 degrees = trans) 180.28

DIHEdral C4 C4a C5 C6 ! flat ? (180 degrees = trans) 181.10

DIHEdral C4 C4a C5 H5 ! flat ? (0 degrees = cis) 0.81

DIHEdral C4a C4 C3 C2 ! flat ? (0 degrees = cis) 0.82

DIHEdral C4a C4 C3 H3 ! flat ? (180 degrees = trans) 181.07

DIHEdral H4 C4 C3 C2 ! flat ? (180 degrees = trans) 180.19

DIHEdral H4 C4 C3 H3 ! flat ? (0 degrees = cis) 0.44

DIHEdral C4 C3 C2 N1 ! flat ? (0 degrees = cis) 0.50

DIHEdral C4 C3 C2 H2 ! flat ? (180 degrees = trans) 182.09

DIHEdral H3 C3 C2 N1 ! flat ? (180 degrees = trans) 180.26

DIHEdral H3 C3 C2 H2 ! flat ? (0 degrees = cis) 1.84

DIHEdral C8a C8 C7 C6 ! flat ? (0 degrees = cis) 0.26

DIHEdral C8a C8 C7 H7 ! flat ? (180 degrees = trans) 180.24

DIHEdral H8 C8 C7 C6 ! flat ? (180 degrees = trans) 179.35

DIHEdral H8 C8 C7 H7 ! flat ? (0 degrees = cis) -0.67

DIHEdral C8 C7 C6 C5 ! flat ? (0 degrees = cis) -0.82

DIHEdral C8 C7 C6 O6 ! flat ? (180 degrees = trans) 179.56

DIHEdral H7 C7 C6 C5 ! flat ? (180 degrees = trans) 179.20

DIHEdral H7 C7 C6 O6 ! flat ? (0 degrees = cis) -0.42

DIHEdral C7 C6 C5 C4a ! flat ? (0 degrees = cis) 0.38

DIHEdral C7 C6 C5 H5 ! flat ? (180 degrees = trans) 180.69
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DIHEdral O6 C6 C5 C4a ! flat ? (180 degrees = trans) 179.97

DIHEdral O6 C6 C5 H5 ! flat ? (0 degrees = cis) 0.27

DIHEdral C7 C6 O6 H6 ! flat ? (180 degrees = trans) 179.93

DIHEdral C5 C6 O6 H6 ! flat ? (0 degrees = cis) 0.33

! DIHEdral C1g C2g C3g O3g ! flexible dihedral ??? 60.68

! DIHEdral C1g C2g C3g H3’’ ! flexible dihedral ??? -61.16

DIHEdral C1g C2g C3g H3’ ! flat ? (180 degrees = trans) 181.08

DIHEdral O2g C2g C3g O3g ! flat ? (180 degrees = trans) 180.00

! DIHEdral O2g C2g C3g H3’’ ! flexible dihedral ??? 58.16

! DIHEdral O2g C2g C3g H3’ ! flexible dihedral ??? -59.60

! DIHEdral H2’ C2g C3g O3g ! flexible dihedral ??? -58.01

DIHEdral H2’ C2g C3g H3’’ ! flat ? (180 degrees = trans) 180.15

! DIHEdral H2’ C2g C3g H3’ ! flexible dihedral ??? 62.39

{ Note: edit these IMPRopers if necessary }

! IMPRoper C1g N1 C2g H1’’ ! chirality or flatness improper 33.17

! IMPRoper N1 C1g C8a C2 ! chirality or flatness improper -0.94

IMPRoper C8a N1 C4a C8 ! chirality or flatness improper 0.33

IMPRoper C4a C8a C4 C5 ! chirality or flatness improper 0.30

IMPRoper C4 C4a C3 H4 ! chirality or flatness improper 0.33

IMPRoper C3 C4 C2 H3 ! chirality or flatness improper 0.13

IMPRoper C2 N1 C3 H2 ! chirality or flatness improper -0.83

IMPRoper C8 C8a C7 H8 ! chirality or flatness improper 0.49

IMPRoper C7 C8 C6 H7 ! chirality or flatness improper -0.01

IMPRoper C6 C7 C5 O6 ! chirality or flatness improper 0.22

IMPRoper C5 C4a C6 H5 ! chirality or flatness improper -0.16

IMPRoper C2g C1g O2g C3g ! chirality or flatness improper -35.35

IMPRoper C3g C2g O3g H3’’ ! chirality or flatness improper 29.83

END { RESIdue 6HQ }

RESIdue HCF

{ Note: electrostatics should normally not be used in }

{ crystallographic refinement since it can produce }

{ artefacts. For this reason, all charges are set to }

{ zero by default. Edit them if necessary }

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.390 END !increased from 0.165 by lsd
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ATOM H1’’ TYPE=HZ29 CHARGE=0.022 END !changed from 0.035 by lsd

!Charge of the group: 0.212

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

!Charge of the group: 0.00

GROUp

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

!Charge of the group: 0.00

GROUp

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

!Charge of the group: -0.36

!HCF-Base

GROUp

ATOM C2 TYPE=CZ1 CHARge= 0.390 END ! Nr of Hs = 0

ATOM C3 TYPE=CZ2 CHARge= -0.262 END ! Nr of Hs = 0

ATOM C4 TYPE=CZ3 CHARge= -0.101 END ! Nr of Hs = 0

ATOM C10 TYPE=CZ4 CHARge= -0.065 END ! Nr of Hs = 0

ATOM C11 TYPE=CZ5 CHARge= 0.066 END ! Nr of Hs = 0

ATOM C1 TYPE=CZ6 CHARge= -0.308 END ! Nr of Hs = 0

ATOM C13 TYPE=CZ7 CHARge= 0.096 END ! Nr of Hs = 0

ATOM C12 TYPE=CZ8 CHARge= -0.025 END ! Nr of Hs = 0

ATOM C9 TYPE=CZ9 CHARge= 0.122 END ! Nr of Hs = 0

ATOM C5 TYPE=CZ10 CHARge= -0.154 END ! Nr of Hs = 0

ATOM C6 TYPE=CZ11 CHARge= -0.108 END ! Nr of Hs = 0

ATOM C7 TYPE=CZ12 CHARge= -0.032 END ! Nr of Hs = 0

ATOM C8 TYPE=CZ13 CHARge= -0.157 END ! Nr of Hs = 0

ATOM O2 TYPE=OZ14 CHARge= -0.343 END ! reduced charge from -0.361 to zero charge of HCF-base + C1’-C4’-group

ATOM C14 TYPE=CZ15 CHARge= 0.707 END ! Nr of Hs = 0

ATOM O142 TYPE=OZ16 CHARge= -0.575 END ! Nr of Hs = 0

ATOM O141 TYPE=OZ17 CHARge= -0.625 END ! Nr of Hs = 0

ATOM H4 TYPE=HZ18 CHARge= 0.117 END ! Nr of Hs = 0

ATOM H1 TYPE=HZ19 CHARge= 0.141 END ! Nr of Hs = 0

ATOM H8 TYPE=HZ20 CHARge= 0.124 END ! Nr of Hs = 0

ATOM H91 TYPE=HZ21 CHARge= 0.009 END ! Nr of Hs = 0

ATOM H92 TYPE=HZ22 CHARge= 0.010 END ! Nr of Hs = 0

ATOM H5 TYPE=HZ23 CHARge= 0.103 END ! Nr of Hs = 0

ATOM H6 TYPE=HZ24 CHARge= 0.119 END ! Nr of Hs = 0

ATOM H3 TYPE=HZ25 CHARge= 0.110 END ! Nr of Hs = 0

ATOM H141 TYPE=HZ43 CHARge= 0.429 END ! Nr of Hs = 0

!HCF-Base

BOND C2 C3 BOND C2 C1 BOND C2 O2 BOND C3 C4

BOND C3 H3 BOND C4 C10 BOND C4 H4 BOND C10 C11

BOND C10 C13 BOND C11 C1 BOND C11 C9 BOND C1 H1

BOND C13 C12 BOND C13 C5 BOND C12 C9 BOND C12 C8

BOND C9 H91 BOND C9 H92 BOND C5 C6 BOND C5 H5

BOND C6 C7 BOND C6 H6 BOND C7 C8 BOND C7 C14

BOND C8 H8 BOND C14 O142 BOND C14 O141 BOND O141 H141

!Ribose

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’
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BOND C4’ C3’ BOND O4’ C1’ BOND C1’ O2

BOND C1’ C2’ BOND C2’ C3’ BOND C3’ O3’

BOND C2’ O2’ BOND O2’ HO2’ BOND C5’ H5’

BOND C5’ H5’’ BOND C3’ H3’ BOND C2’ H2’

BOND C1’ H1’’ BOND C4’ H4’

{ Note: edit these IMPRopers if necessary }

!HCF-Base

IMPRoper C2 C3 C1 O2 ! chirality or flatness improper -0.17

IMPRoper C3 C2 C4 H3 ! chirality or flatness improper 0.33

IMPRoper C4 C3 C10 H4 ! chirality or flatness improper 0.23

IMPRoper C10 C4 C11 C13 ! chirality or flatness improper 0.07

IMPRoper C11 C10 C1 C9 ! chirality or flatness improper -0.07

IMPRoper C1 C2 C11 H1 ! chirality or flatness improper 0.23

IMPRoper C13 C10 C12 C5 ! chirality or flatness improper -0.01

IMPRoper C12 C13 C9 C8 ! chirality or flatness improper -0.01

IMPRoper C9 C11 C12 H91 ! chirality or flatness improper -28.83

IMPRoper C5 C13 C6 H5 ! chirality or flatness improper 0.01

IMPRoper C6 C5 C7 H6 ! chirality or flatness improper -0.04

IMPRoper C7 C6 C8 C14 ! chirality or flatness improper -0.03

IMPRoper C8 C12 C7 H8 ! chirality or flatness improper -0.02

IMPRoper C14 C7 O142 O141 ! chirality or flatness improper 0.00

!Ribose

IMPRoper O2 C2’ O4’ H1’’!C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END { RESIdue HCF }

!********************* end of change by lsd - HCF *********************

RESIdue GUA

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END !JPR

ATOM H5’’ TYPE=H CHARGE=0.035 END !JPR

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END !JPR

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END !JPR

ATOM H1’ TYPE=H CHARGE=0.035 END !JPR

! Insert Base

GROUp

ATOM N9 TYPE=N9G CHARGE=-0.19 END

ATOM C4 TYPE=C4G CHARGE=0.19 EXCLusion=( N1 ) END
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GROUp

ATOM N3 TYPE=N3G CHARGE=-0.35 EXCLusion=( C6 ) END

ATOM C2 TYPE=C2G CHARGE=0.35 EXCLusion=( C5 ) END

GROUp

ATOM N2 TYPE=N2G CHARGE=-0.42 END

ATOM H21 TYPE=H2 CHARGE=0.21 END

ATOM H22 TYPE=H2 CHARGE=0.21 END

GROUp

ATOM N1 TYPE=NNA CHARGE=-0.26 END

ATOM H1 TYPE=HN CHARGE=0.26 END

GROUp

ATOM C6 TYPE=C6G CHARGE=0.30 END

ATOM O6 TYPE=O6G CHARGE=-0.30 END

GROUp

ATOM C5 TYPE=C5G CHARGE=0.02 END

ATOM N7 TYPE=N7G CHARGE=-0.25 END

ATOM C8 TYPE=C8G CHARGE=0.145 END

ATOM H8 TYPE=H CHARGE=0.035 END

!

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N9

BOND C1’ C2’ BOND N9 C4 BOND N9 C8

BOND C4 N3 BOND C4 C5 BOND N3 C2

BOND C2 N2 BOND C2 N1 BOND N2 H21

BOND N2 H22 BOND N1 H1 BOND N1 C6

BOND C6 O6 BOND C6 C5 BOND C5 N7

BOND N7 C8 BOND C2’ C3’ BOND C3’ O3’

BOND C2’ O2’ BOND C8 H8

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’
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DIHEdral C5’ C4’ C3’ C2’ DIHEdral O3’ C3’ C2’ O2’

DIHEdral O4’ C1’ N9 C4

DIHEdral C3’ C2’ O2’ H2’

}

!

IMPRoper N3 C2 N2 H21 IMPRoper C1’ C4 C8 N9

IMPRoper N9 C4 C5 N7 IMPRoper C4 C5 N7 C8

IMPRoper C5 N7 C8 N9 IMPRoper N7 C8 N9 C4

IMPRoper C8 N9 C4 C5 IMPRoper N2 N3 N1 C2

IMPRoper H1 C2 C6 N1 IMPRoper O6 N1 C5 C6

IMPRoper C4 N3 C2 N1 IMPRoper N3 C2 N1 C6

IMPRoper C2 N1 C6 C5 IMPRoper N1 C6 C5 C4

IMPRoper C6 C5 C4 N3 IMPRoper C5 C4 N3 C2

IMPRoper H22 H21 C2 N2

IMPRoper H8 N7 N9 C8

!IMPRoper to keep the two purine rings parallel:

IMPRoper C8 C4 C5 N1 IMPRoper C8 C5 C4 C2

IMPRoper N3 C4 C5 N7 IMPRoper C6 C5 C4 N9

!RIBOSE IMPROPERS

IMPRoper H1’ C2’ O4’ N9 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {GUA}

! ---------------------------------------------------------------------

RESIdue ADE

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END

ATOM H1’ TYPE=H CHARGE=0.035 END

! Insert Base

GROUp

ATOM N9 TYPE=N9A CHARGE=-0.19 END
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ATOM C4 TYPE=C4A CHARGE=0.19 EXCLusion=( N1 ) END

GROUp

ATOM N3 TYPE=N3A CHARGE=-0.26 EXCLusion=( C6 ) END

ATOM C2 TYPE=C2A CHARGE=0.225 EXCLusion=( C5 ) END

ATOM H2 TYPE=H CHARGE=0.035 END

GROUp

ATOM N1 TYPE=NC CHARGE=-0.28 END

ATOM C6 TYPE=C6A CHARGE=0.28 END

GROUp

ATOM N6 TYPE=N6A CHARGE=-0.42 END

ATOM H61 TYPE=H2 CHARGE=0.21 END

ATOM H62 TYPE=H2 CHARGE=0.21 END

GROUp

ATOM C5 TYPE=C5A CHARGE=0.02 END

ATOM N7 TYPE=N7A CHARGE=-0.25 END

ATOM C8 TYPE=C8A CHARGE=0.195 END

ATOM H8 TYPE=H CHARGE=0.035 END

! END

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N9

BOND C1’ C2’ BOND N9 C4 BOND N9 C8

BOND C4 N3 BOND C4 C5 BOND N3 C2

BOND C2 N1 BOND N1 C6 BOND C6 N6

BOND N6 H61 BOND N6 H62 BOND C6 C5

BOND C5 N7 BOND N7 C8 BOND C2’ C3’

BOND C2’ O2’ BOND C3’ O3’

BOND C8 H8 BOND C2 H2

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ N9 C4

DIHEdral C3’ C2’ O2’ H2’
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}

!

IMPRoper C5 C6 N6 H61 IMPRoper C1’ C4 C8 N9

IMPRoper N9 C4 C5 N7 IMPRoper C4 C5 N7 C8

IMPRoper C5 N7 C8 N9 IMPRoper N7 C8 N9 C4

IMPRoper C8 N9 C4 C5 IMPRoper N6 N1 C5 C6

IMPRoper H62 C6 H61 N6 IMPRoper C4 N3 C2 N1

IMPRoper N3 C2 N1 C6 IMPRoper C2 N1 C6 C5

IMPRoper N1 C6 C5 C4 IMPRoper C6 C5 C4 N3

IMPRoper C5 C4 N3 C2

IMPRoper H2 N1 N3 C2 IMPRoper H8 N7 N9 C8

! IMPRoper to keep the two purine rings parallel:

IMPRoper C8 C4 C5 N1 IMPRoper C8 C5 C4 C2

IMPRoper N3 C4 C5 N7 IMPRoper C6 C5 C4 N9

!RIBOSE IMPROPERS

IMPRoper H1’ C2’ O4’ N9 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {ADE}

! ---------------------------------------------------------------------

RESIdue PUR

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END

ATOM H1’ TYPE=H CHARGE=0.035 END

! Insert Base

GROUp

ATOM N9 TYPE=N9P CHARGE=-0.19 END

ATOM C4 TYPE=C4P CHARGE=0.19 EXCLusion=( N1 ) END

GROUp

ATOM N3 TYPE=N3P CHARGE=-0.26 EXCLusion=( C6 ) END

ATOM C2 TYPE=C2P CHARGE=0.225 EXCLusion=( C5 ) END

ATOM H2 TYPE=H CHARGE=0.035 END

GROUp
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ATOM N1 TYPE=NC CHARGE=-0.28 END

ATOM C6 TYPE=C6P CHARGE=0.28 END

ATOM H6 TYPE=H CHARge= 0.035 END

GROUp

ATOM C5 TYPE=C5P CHARGE=0.02 END

ATOM N7 TYPE=N7P CHARGE=-0.25 END

ATOM C8 TYPE=C8P CHARGE=0.195 END

ATOM H8 TYPE=H CHARGE=0.035 END

! END

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N9

BOND C1’ C2’ BOND N9 C4 BOND N9 C8

BOND C4 N3 BOND C4 C5 BOND N3 C2

BOND C2 N1 BOND N1 C6 BOND C6 H6

BOND C6 C5

BOND C5 N7 BOND N7 C8 BOND C2’ C3’

BOND C2’ O2’ BOND C3’ O3’

BOND C8 H8 BOND C2 H2

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ N9 C4

DIHEdral C3’ C2’ O2’ H2’

}

!

IMPRoper H6 N1 C5 C6 IMPRoper C1’ C4 C8 N9

IMPRoper N9 C4 C5 N7 IMPRoper C4 C5 N7 C8

IMPRoper C5 N7 C8 N9 IMPRoper N7 C8 N9 C4

IMPRoper C8 N9 C4 C5 IMPRoper N6 N1 C5 C6

IMPRoper C4 N3 C2 N1

IMPRoper N3 C2 N1 C6 IMPRoper C2 N1 C6 C5

211



Appendix

IMPRoper N1 C6 C5 C4 IMPRoper C6 C5 C4 N3

IMPRoper C5 C4 N3 C2

IMPRoper H2 N1 N3 C2 IMPRoper H8 N7 N9 C8

! IMPRoper to keep the two purine rings parallel:

IMPRoper C8 C4 C5 N1 IMPRoper C8 C5 C4 C2

IMPRoper N3 C4 C5 N7 IMPRoper C6 C5 C4 N9

!RIBOSE IMPROPERS

IMPRoper C2’ C3’ C1’ O2’

IMPRoper H1’ C2’ O4’ N9 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {PUR}

! ---------------------------------------------------------------------

RESIdue ABA

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END

ATOM H1’ TYPE=H CHARGE=0.018 END

ATOM H1’’ TYPE=H CHARGE=0.017 END

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’

BOND C1’ C2’ BOND C2’ C3’

BOND C3’ O3’ BOND C2’ O2’
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BOND O2’ HO2’ BOND C1’ H1’’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ H1’’ C2

DIHEdral C3’ C2’ O2’ H2’

! New dihedrals

DIHEdral C5’ C4’ C3’ O3’ DIHEdral C4’ O4’ C1’ H1’’

}

!RIBOSE IMPROPERS

!IMPRoper H1’ C2’ O4’ H1’’ !C1’ !mod by anda

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {ABA}

! ---------------------------------------------------------------------

RESIdue CYT

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END

ATOM H1’ TYPE=H CHARGE=0.035 END

! Insert Base

GROUp

ATOM N1 TYPE=N1C CHARGE=-0.19 EXCLUSION=( C4 ) END

ATOM C6 TYPE=C6C CHARGE=0.155 EXCLUSION=( N3 ) END
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ATOM H6 TYPE=H CHARGE=0.035 END

GROUp

ATOM C2 TYPE=C2C CHARGE=0.30 EXCLUSION=( C5 ) END

ATOM O2 TYPE=ON CHARGE=-0.30 END

GROUp

ATOM N3 TYPE=NC CHARGE=-0.28 END

ATOM C4 TYPE=C4C CHARGE=0.28 END

GROUp

ATOM N4 TYPE=N4C CHARGE=-0.42 END

ATOM H41 TYPE=H2 CHARGE=0.21 END

ATOM H42 TYPE=H2 CHARGE=0.21 END

GROUp

ATOM C5 TYPE=C5C CHARGE=-0.035 END !CHRG

ATOM H5 TYPE=H CHARGE=0.035 END

GROUp

! END

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N1

BOND C1’ C2’ BOND N1 C2 BOND N1 C6

BOND C2 N3 BOND N3 C4

BOND C4 N4 BOND N4 H41 BOND N4 H42

BOND C2 O2

BOND C4 C5 BOND C5 C6 BOND C2’ C3’

BOND C3’ O3’ BOND C2’ O2’

BOND C6 H6 BOND C5 H5

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ N1 C2

DIHEdral C3’ C2’ O2’ H2’
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! New dihedrals

DIHEdral C5’ C4’ C3’ O3’ DIHEdral C4’ O4’ C1’ N1

}

IMPRoper C5 C4 N4 H41 IMPRoper C1’ C2 C6 N1

IMPRoper O2 N1 N3 C2 IMPRoper N4 N3 C5 C4

IMPRoper N1 C2 N3 C4 IMPRoper C2 N3 C4 C5

IMPRoper N3 C4 C5 C6 IMPRoper C4 C5 C6 N1

IMPRoper C5 C6 N1 C2 IMPRoper C6 N1 C2 N3

IMPRoper H42 C4 H41 N4

IMPRoper H5 C4 C6 C5 IMPRoper H6 N1 C5 C6

!RIBOSE IMPROPERS

IMPRoper H1’ C2’ O4’ N1 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {CYT}

! ---------------------------------------------------------------------

RESIdue THY

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.20 END

ATOM H1’ TYPE=H CHARGE=0.165 END

! Insert Base

GROUp

ATOM N1 TYPE=N1T CHARGE=-0.19 EXCLUSION=( C4 ) END

ATOM C6 TYPE=C6T CHARGE=0.155 EXCLUSION=( N3 ) END

ATOM H6 TYPE=H CHARGE=0.035 END

GROUp

ATOM C2 TYPE=C2T CHARGE=0.35 EXCLUSION=( C5 ) END

ATOM O2 TYPE=ON CHARGE=-0.35 END

GROUp

ATOM N3 TYPE=N3T CHARGE=-0.26 END

ATOM H3 TYPE=HN CHARGE=0.26 END

GROUp

ATOM C4 TYPE=C4T CHARGE=0.30 END

ATOM O4 TYPE=ON CHARGE=-0.30 END
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GROUp

ATOM C5 TYPE=C5T CHARGE=-0.035 END

ATOM C7 TYPE=CC3E CHARGE=-0.070 END ! name per IUPAC-IUB recomm.

ATOM H71 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm.

ATOM H72 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm.

ATOM H73 TYPE=H CHARGE=0.035 END ! name per IUPAC-IUB recomm.

GROUp

! END

GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N1

BOND C1’ C2’ BOND N1 C2 BOND N1 C6

BOND C2 O2 BOND C2 N3 BOND N3 H3

BOND N3 C4 BOND C4 O4 BOND C4 C5

BOND C5 C7 BOND C5 C6 BOND C2’ C3’

BOND C3’ O3’ BOND C2’ O2’

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

BOND C4’ H4’ BOND C7 H71 BOND C7 H72

BOND C7 H73 BOND C6 H6

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ N1 C2

DIHEdral C3’ C2’ O2’ H2’

! New dihedrals

DIHEdral C5’ C4’ C3’ O3’ DIHEdral C4’ O4’ C1’ N1

}

IMPRoper O4 N3 C5 C4 IMPRoper C1’ C2 C6 N1
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IMPRoper O2 N1 N3 C2 IMPRoper C4 C5 C6 N1

IMPRoper N1 C2 N3 C4 IMPRoper C2 N3 C4 C5

IMPRoper N3 C4 C5 C6

IMPRoper C5 C6 N1 C2 IMPRoper C6 N1 C2 N3

IMPRoper H3 C2 C4 N3

IMPRoper C7 C4 C6 C5 IMPRoper H6 N1 C5 C6

!RIBOSE IMPROPERS

IMPRoper H1’ C2’ O4’ N1 ! C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’

END {THY}

!------------------------------------------------------------------

RESIdue URI

GROUp

ATOM P TYPE=P CHARGE=1.20 END

ATOM O1P TYPE=O1P CHARGE=-0.40 END

ATOM O2P TYPE=O2P CHARGE=-0.40 END

ATOM O5’ TYPE=O5R CHARGE=-0.36 END

GROUp

ATOM C5’ TYPE=C5R CHARGE=-0.070 END

ATOM H5’ TYPE=H CHARGE=0.035 END

ATOM H5’’ TYPE=H CHARGE=0.035 END

GROUp

ATOM C4’ TYPE=C4R CHARGE=0.065 END

ATOM H4’ TYPE=H CHARGE=0.035 END

ATOM O4’ TYPE=O4R CHARGE=-0.30 END

ATOM C1’ TYPE=C1R CHARGE=0.165 END

ATOM H1’ TYPE=H CHARGE=0.035 END

GROUp

ATOM N1 TYPE=N1U CHARGE=-0.19 EXCLUSION=( C4 ) END

ATOM C6 TYPE=C6U CHARGE=0.155 EXCLUSION=( N3 ) END

ATOM H6 TYPE=H CHARGE=0.035 END

GROUp

ATOM C2 TYPE=C2U CHARGE=0.30 EXCLUSION=( C5 ) END

ATOM O2 TYPE=ON CHARGE=-0.30 END

GROUp

ATOM N3 TYPE=N3U CHARGE=-0.28 END

ATOM H3 TYPE=HN CHARGE=0.26 END

GROUp

ATOM C4 TYPE=C4U CHARGE=0.28 END

ATOM O4 TYPE=ON CHARGE=-0.30 END

GROUp

ATOM C5 TYPE=C5U CHARGE=-0.035 END !JPR

ATOM H5 TYPE=H CHARGE=0.035 END !JPR
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GROUP

ATOM C2’ TYPE=C2R CHARGE=0.115 END

ATOM H2’ TYPE=H CHARGE=0.035 END !

ATOM O2’ TYPE=O2R CHARGE=-0.40 END

ATOM HO2’ TYPE=HO CHARGE=0.25 END

GROUP

ATOM C3’ TYPE=C3R CHARGE=-0.035 END

ATOM H3’ TYPE=H CHARGE=0.035 END

GROUP

ATOM O3’ TYPE=O3R CHARGE=-0.36 END

BOND P O1P BOND P O2P BOND P O5’

BOND O5’ C5’ BOND C5’ C4’ BOND C4’ O4’

BOND C4’ C3’ BOND O4’ C1’ BOND C1’ N1

BOND C1’ C2’ BOND N1 C2 BOND N1 C6

BOND C2 O2 BOND C2 N3 BOND N3 H3

BOND N3 C4 BOND C4 O4 BOND C4 C5

BOND C5 C6 BOND C2’ C3’ BOND C3’ O3’

BOND C2’ O2’

BOND C5 H5 BOND C6 H6

BOND O2’ HO2’

BOND C5’ H5’ BOND C5’ H5’’ BOND C4’ H4’

BOND C3’ H3’ BOND C2’ H2’ BOND C1’ H1’

{

DIHEdral P O5’ C5’ C4’ DIHEdral O5’ C5’ C4’ O4’

DIHEdral O5’ C5’ C4’ C3’

}{

DIHEdral C3’ C4’ O4’ C1’

DIHEdral C4’ O4’ C1’ C2’ DIHEdral O4’ C1’ C2’ C3’

DIHEdral C1’ C2’ C3’ C4’ DIHEdral O4’ C4’ C3’ O3’

DIHEdral C5’ C4’ C3’ C2’ DIHEdral O2’ C2’ C3’ O3’

DIHEdral O4’ C1’ N1 C2

DIHEdral C3’ C2’ O2’ H2’

DIHEdral P O3’ C3’ C2’ DIHEdral P O3’ C3’ C4’

! New dihedrals

DIHEdral C5’ C4’ C3’ O3’ DIHEdral C4’ O4’ C1’ N1

}

IMPRoper C1’ C2 C6 N1

IMPRoper O2 N1 N3 C2 IMPRoper H3 C2 C4 N3

IMPRoper O4 N3 C5 C4 IMPRoper N1 C2 N3 C4

IMPRoper C2 N3 C4 C5 IMPRoper N3 C4 C5 C6

IMPRoper C4 C5 C6 N1 IMPRoper C5 C6 N1 C2

IMPRoper C6 N1 C2 N3

IMPRoper H5 C4 C6 C5 IMPRoper H6 N1 C5 C6

!GENERAL RIBOSE IMPROPERS

IMPRoper H1’ C2’ O4’ N1 !C1’

IMPRoper H2’ C3’ C1’ O2’ !C2’

IMPRoper H3’ C4’ C2’ O3’ !C3’

IMPRoper H4’ C5’ C3’ O4’ !C4’

IMPRoper H5’ O5’ H5’’ C4’ !C5’
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END {URI}

!------------------------------------------------------------------

PRESidue DEOX ! Patch to make DEOXYribose of the ribose

DELETE ATOM O2’ END

DELETE ATOM HO2’ END

GROUP

MODIFY ATOM C2’ TYPE=C2D CHARGE=-0.07 END

MODIFY ATOM C5’ TYPE=C5D CHARGE=-0.07 END

MODIFY ATOM C4’ TYPE=C4D CHARGE=0.065 END

MODIFY ATOM O4’ TYPE=O4D CHARGE=-0.30 END

MODIFY ATOM C1’ TYPE=C1D CHARGE=0.165 END

MODIFY ATOM C3’ TYPE=C3D CHARGE=-0.035 END

ADD ATOM H2’’ TYPE=H CHARGE=0.035 END

ADD BOND C2’ H2’’

ADD ANGLE C1’ C2’ H2’

ADD ANGLE C3’ C2’ H2’’

ADD ANGLE H2’ C2’ H2’’

ADD IMPRoper H2’ C3’ H2’’ C1’! C2’ chirality term

END {DEOX}

!------------------------------------------------------------------

PRESidue HCFDEOX ! Patch to make DEOXYribose of the ribose

MODIFY ATOM C1’ TYPE=C1D CHARGE=0.390 END

END {DEOX}

!------------------------------------------------------------------

PRESidue 3TER ! 3-terminus (without phosphate)

! should be used as "LAST 3TER HEAD - * END"

GROUp ! i.e. to be patched to the last RNA residue

MODIFY ATOM -C3’ TYPE=C3R CHARGE=0.15 END

MODIFY ATOM -O3’ TYPE=OH CHARGE=-0.40 END

ADD ATOM -H3T TYPE=HO CHARGE=0.25 END

!

ADD BOND -O3’ -H3T

ADD ANGLe -C3’ -O3’ -H3T

! ADD DIHEdral -C4’ -C3’ -O3’ -H3T

END {3TER}

! ---------------------------------------------------------------------

PRESidue 5TER ! 5-terminus (without phosphate)

! ! should be used as "FIRST 5TER TAIL + * END"

GROUp ! i.e. to be patched to the first RNA residue

ADD ATOM +H5T TYPE=HO CHARGE=0.25 END

MODIFY ATOM +O5’ TYPE=OH CHARGE=-0.40 END

MODIFY ATOM +C5’ TYPE=C5R CHARGE=0.15 END

219



Appendix

DELETE ATOM +P END

DELETE ATOM +O1P END

DELETE ATOM +O2P END

!

ADD BOND +H5T +O5’

ADD ANGLe +H5T +O5’ +C5’

! ADD DIHEdral +H5T +O5’ +C5’ +C4’

END {5TER}

!------------------------------------------------------------------

PRESidue NUC ! patch for nucleic acid backbone

! should be used as "LINK NUC HEAD - * TAIL + * END"

! i.e. it links the previous RNA residue (-) with

! the current one (+)

GROUp

MODIFY ATOM -O3’ END !

MODIFY ATOM +P END !

MODIFY ATOM +O1P END ! this should correctly define the electrostatic

MODIFY ATOM +O2P END ! group boundary

MODIFY ATOM +O5’ END !

ADD BOND -O3’ +P

ADD ANGLE -C3’ -O3’ +P

ADD ANGLE -O3’ +P +O1P

ADD ANGLE -O3’ +P +O2P

ADD ANGLE -O3’ +P +O5’

!ADD DIHEdral -O3’ +P +O5’ +C5’

! ADD DIHEdral -C4’ -C3’ -O3’ +P

! ADD DIHEdral -C3’ -O3’ +P +O5’

END {NUC}

!------------------------------------------------------------------

!-----------------------6HQ mod by lsd-----------------------------

PRESidue N6HQ ! patch for nucleic acid backbone of Glycerol-6HQ

! should be used as "LINK NUC HEAD - * TAIL + * END"

! i.e. it links the previous RNA residue (-) with

! the current one (+)

GROUp

MODIFY ATOM -O3’ END !

MODIFY ATOM +P END !

MODIFY ATOM +O1P END ! this should correctly define the electrostatic

MODIFY ATOM +O2P END ! group boundary

MODIFY ATOM +O3g END !

ADD BOND -O3’ +P

ADD ANGLE -C3’ -O3’ +P

ADD ANGLE -O3’ +P +O1P

220



3 Script Code

ADD ANGLE -O3’ +P +O2P

ADD ANGLE -O3’ +P +O3g

END {N6HQ}

PRESidue S6HQ ! patch for nucleic acid backbone of Glycerol-6HQ

! should be used as "LINK NUC HEAD - * TAIL + * END"

! i.e. it links the previous RNA residue (-) with

! the current one (+)

GROUp

MODIFY ATOM -O2g END !

MODIFY ATOM +P END !

MODIFY ATOM +O1P END ! this should correctly define the electrostatic

MODIFY ATOM +O2P END ! group boundary

MODIFY ATOM +O5’ END !

ADD BOND -O2g +P

ADD ANGLE -C2g -O3’ +P

ADD ANGLE -O2g +P +O1P

ADD ANGLE -O2g +P +O2P

ADD ANGLE -O2g +P +O5’

END {S6HQ}

!-------------------end of mod by lsd------------------------------

set echo=true end

3 Script Code

3.1 Script to export distances from Cara to XPLOR-NIH
-- First part: Script to output all chosen and integrated peaks from one project

-- and combine them in one peaklist.

-- Second part: Choose the best integrated peak among same ones or average over

-- equivalently rated peaks

-- Third part: Convert peak volumes to distances. Tricky is here the

-- differentiation of d2o and h2o and methyl peaks (all have different

-- reference peaks)!

-- Fourth part: An XPLOR-inputfile is generated where the distance information

-- and some predefined upper and lower limits (deduced from the maximum

-- deviation of the standard peaks) are used

-- written by Andre Dallmann April-05-2007

--------------------------------------------------------------------------------

--FIRST PART --

221



Appendix

--------------------------------------------------------------------------------

------------------------------ PREPARATIONS ------------------------------------

t = {} -- table for all the variables used in the script

-- choosing one project

local ProjectNames = {}

i = 0

for a,b in pairs(cara:getProjects()) do

i = i + 1

ProjectNames[ i ] = b:getName()

end

t.ProjectName=dlg.getSymbol("Select Project","", unpack( ProjectNames ) )

t.project = cara:getProject( t.ProjectName )

-- Get Output Filename

t.Filename = dlg.getText("Enter the output filename", "", t.ProjectName)

-- open outfile

outfile = io.output( t.Filename.."_all.peaks" )

-- Write header to peaklist

label = string.format ("%25.25s", "Peaklabel")

id = string.format ("%9.9s", "PeakID")

assx = string.format ("%9.9s", "ID(X)")

assy = string.format ("%9.9s", "ID(Y)")

posx = string.format ("%9.9s", "PPM(X)")

posy = string.format ("%9.9s", "PPM(Y)")

ampl = string.format ("%7.7s", "Ampl")

grade = string.format ("%9.9s", "Grade")

vol = string.format ("%15.15s", "VolumeInt")

outfile:write("IDnew"..id..label..assx..assy..posx..posy..ampl..vol..grade.."\n")

-- generate tables for information

count = 0

i = 0

t.label = {}

t.id_old = {}

t.assx = {}

t.assy = {}

t.posx = {}

t.posy = {}

t.ampl = {}

t.grade = {}

t.vol = {}

--------------------------------------------------------------------------------

------------------------------ Main Body -----------------------------------

--------------------------------------------------------------------------------

-- generate list of all peaks graded abc of all peaklists in specified project

for peaklistid, peaklist in pairs(t.project:getPeakLists()) do

--cycle through all peaklists

222



3 Script Code

t.peaklist = t.project:getPeakList(peaklistid)

for peakid,peak in pairs(t.peaklist:getPeaks()) do --cycle through all peaks

t.peak = t.peaklist:getPeak(peakid)

if ((t.peak:getAttr("grade")== "a") or (t.peak:getAttr("grade")== "b") or

(t.peak:getAttr("grade")== "c")) then

-- choose only peaks with grade abc

i = i + 1 -- this is the index for all the tables, corresponds to new peakid

t.label[i] = string.format ("%25.25s", t.peak:getLabel())

t.id_old[i] = string.format ("%9.0f", t.peak:getId())

t.ass = {t.peak:getAssig()}

t.assx[i] = string.format ("%9.0f", t.ass[1])

t.assy[i] = string.format ("%9.0f", t.ass[2])

t.pos = {t.peak:getPos()}

t.posx[i] = string.format ("%9.3f", t.pos[1])

t.posy[i] = string.format ("%9.3f", t.pos[2])

t.ampl[i] = string.format ("%7.0f", t.peak:getAmp())

t.grade[i] = string.format ("%7.7s", t.peak:getAttr("grade"))

t.vol[i] = string.format ("%15.3f", t.peak:getVol())

outfile:write(i.." "..t.id_old[i]..t.label[i]..t.assx[i]..t.assy[i]..t.posx[i]

..t.posy[i]..t.ampl[i]..t.vol[i]..t.grade[i].."\n")

end --of if loop

end -- of second for loop

end -- of first for loop

--------------------------- End of Main Body -----------------------------

--------------------------------------------------------------------------------

-- close outfile

outfile:close()

--------------------------------------------------------------------------------

-------------------------- End of FIRST PART ----------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

-- SECOND PART --

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

----------------------------- PREPARATIONS -----------------------------

-- open outfile

outfile = io.output( t.Filename.."_combo.peaks" )

-- initialize variables

x = 0

counter = 1

a = string.format ("%7.7s","a")

b = string.format ("%7.7s","b")

c = string.format ("%7.7s","c")
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--------------------------------------------------------------------------------

------------------------------ Main Body -----------------------------------

--------------------------------------------------------------------------------

------------------------- Preparing combination ------------------------

for i,assx in pairs (t.assx) do

for j,assy in pairs (t.assy) do

if ((((t.assx[i] == t.assx[j]) and (t.assy[i] == t.assy[j])) or ((t.assx[i] == t.assy[j]) and

(t.assy[i] == t.assx[j]))) and (j~=i)) then

-- select all peaks that have the same assignment (including cross-diagonal peaks)

counter = counter + 1

if (t.grade[i]==t.grade[j]) then

t.vol[i] = string.format ("%15.3f",(t.vol[i] + t.vol[j])) -- average volumes, rest stays

t.label[j] = nil -- set jth peak to nil

t.assx[j] = nil

t.assy[j] = nil

t.posx[j] = nil

t.posy[j] = nil

t.ampl[j] = nil

t.grade[j] = nil

t.vol[j] = nil

t.id_old[j] = nil

end

if (((a==t.grade[i]) and ((t.grade[j]==b) or (t.grade[j]==b))) or ((b==t.grade[i]) and

(t.grade[j]==c))) then

counter = 1

t.label[j] = nil -- set jth peak to nil

t.assx[j] = nil

t.assy[j] = nil

t.posx[j] = nil

t.posy[j] = nil

t.ampl[j] = nil

t.grade[j] = nil

t.vol[j] = nil

t.id_old[j] = nil

end

if (((a==t.grade[j]) and ((t.grade[i]==b) or (t.grade[i]==b))) or ((b==t.grade[j]) and

(t.grade[i]==c))) then

counter = 1

t.vol[i] = t.vol[j] --transfer volume and grade of better integrated peak (j)

t.grade[i] = t.grade[j]

t.label[j] = nil -- set jth peak to nil

t.assx[j] = nil

t.assy[j] = nil

t.posx[j] = nil

t.posy[j] = nil

t.ampl[j] = nil

t.grade[j] = nil

t.vol[j] = nil

t.id_old[j] = nil

end

end -- if loop
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end -- second for loop

if (counter > 1) then -- only valid if grades are the same and averaging is needed

t.vol[i] = string.format ("%15.3f",(t.vol[i]/counter))

end

counter = 1

end -- first for loop

--------------------------------------------------------------------------------

---------------------- Generating new combined peaklist ------------------------

-- initiliaize new tables for the combined peaklist

t.labelnew = {}

t.assxnew = {}

t.assynew = {}

t.assxlabel = {}

t.assylabel = {}

t.assxresid = {}

t.assyresid = {}

t.gradenew= {}

t.volnew = {}

for i,assx in pairs (t.assx) do -- generate new table with combined peaks

x = x + 1

t.labelnew[x] = t.label[i]

t.assxnew[x] = t.assx[i]

t.assynew[x] = t.assy[i]

t.assxlabel[x] = string.format ("%7.7s", t.project:getSpin(t.assx[i]):getLabel())

-- get Peaklabel

t.assylabel[x] = string.format ("%7.7s", t.project:getSpin(t.assy[i]):getLabel())

-- get Peaklabel

t.assxresid[x] = string.format ("%5.5s", t.project:getSpin(t.assx[i]):getSystem():getId())

-- get residue id, works only if SpinsystemId equal to residue number !!

t.assyresid[x] = string.format ("%5.5s", t.project:getSpin(t.assy[i]):getSystem():getId())

-- get residue id, works only if SpinsystemId equal to residue number !!

t.gradenew[x] = t.grade[i]

t.volnew[x] = t.vol[i]

outfile:write (x.." "..t.labelnew[x]..t.assxlabel[x]..t.assylabel[x]..t.gradenew[x]..t.volnew[x].."\n")

end

-- loop to correct for base rectangle sum method error

-- for peaks with grade c or b divide volume by 2 or 1.5 respectively

-- this is a very rough approximation!!!

for i,vol in pairs (t.volnew) do

if (t.gradenew[i]==c) then

t.volnew[i]=string.format("%15.3f",vol/2)

elseif (t.gradenew[i]==b) then

t.volnew[i]=string.format("%15.3f",vol/1.5)

end

end

--------------------------- End of Main Body -----------------------------

--------------------------------------------------------------------------------

-- close outfile

outfile:close()
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i = 0

--------------------------------------------------------------------------------

-------------------------- End of SECOND PART ------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

-- THIRD PART --

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

----------------------------- PREPARATIONS -------------------------------

-- open outfile

outfile = io.output( t.Filename.."_dist.peaks" )

-- initialize variables

sumcyt = 0

summet = 0

sumcytamino = 0

sumcyth42h5 = 0

countcyt = 0

countmet = 0

countcytamino = 0

countcyth42h5 = 0

--------------------------------------------------------------------------------

------------------------------ Main Body ----------------------------------

--------------------------------------------------------------------------------

----------------- Setting up Reference Volumes and Distances ------

-- sum up reference peaks

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do

-- establish reference for d2o peaks

countcyt = countcyt + 1

sumcyt = sumcyt + t.volnew[j]

end

for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do

-- establish reference for methyl peaks

countmet = countmet + 1

summet = summet + t.volnew[j]

end

for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable peaks

countcytamino = countcytamino + 1

sumcytamino = sumcytamino + t.volnew[j]

end

for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable-non-exchangeable peaks
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countcyth42h5 = countcyth42h5 + 1

sumcyth42h5 = sumcyth42h5 + t.volnew[j]

end

for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable-non-exchangeable peaks

countcyth42h5 = countcyth42h5 + 1

sumcyth42h5 = sumcyth42h5 + t.volnew[j]

end

end

refvolcyt = string.format ("%13.3f", sumcyt / countcyt)

-- average volume of CYT H5-H6

refdistcyt = 2.48 -- distance of CYT H5-H6

refvolmet = string.format ("%13.3f", summet / countmet)

-- average volume of THY H6-H7

refdistmet = 3.09 -- distance of THY H6-H7

refvolcytamino = string.format ("%13.3f", sumcytamino / countcytamino)

-- average volume of CYT H41-H42

refdistcytamino = 1.70 -- distance of CYT H41-H42

refvolcyth42h5 = string.format ("%13.3f", sumcyth42h5 / countcyth42h5)

-- average volume of CYT H42-H5

refdistcyth42h5 = 2.40 -- distance of CYT H42-H5

----------------- Prepare standard deviations for references -------------------

-- initialize variables

stddevsumcyt = 0

stddevsummet = 0

stddevsumcytamino = 0

stddevsumcyth42h5 = 0

maxdev1 = 0

maxdev2 = 0

maxdev3 = 0

maxdev4 = 0

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do

stddevsumcyt = stddevsumcyt + (t.volnew[j]-refvolcyt)^2 -- standard deviation

dummy1 = math.abs(t.volnew[j]-refvolcyt) -- dummy for maximum deviation

if (dummy1 > maxdev1)then

maxdev1 = dummy1

end

end

for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do

-- establish reference for methyl peaks

stddevsummet = stddevsummet + (t.volnew[j]-refvolmet)^2 -- standard deviation

dummy2 = math.abs(t.volnew[j]-refvolmet) -- dummy for maximum deviation

if (dummy2 > maxdev2) then

maxdev2 = dummy2

end

end

for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable peaks

stddevsumcytamino = stddevsumcytamino + (t.volnew[j]-refvolcytamino)^2

-- standard deviation
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dummy3 = math.abs(t.volnew[j]-refvolcytamino) -- dummy for maximum deviation

if (dummy3 > maxdev3) then

maxdev3 = dummy3

end

end

for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable-non-exchangeable peaks

--(appears twice because of selection reasons)

stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5)^2

-- standard deviation

dummy4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation

if (dummy4 > maxdev4) then

maxdev4 = dummy4

end

end

for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do

-- establish reference for h2o exchangeable-non-exchangeable peaks

stddevsumcyth42h5 = stddevsumcyth42h5 + (t.volnew[j]-refvolcyth42h5)^2

-- standard deviation

dummy4 = math.abs(t.volnew[j]-refvolcyth42h5) -- dummy for maximum deviation

if (dummy4 > maxdev4) then

maxdev4 = dummy4

end

end

end

---------------- Calculate standard deviations for references ------------------

stddevcyt = string.format ("%13.3f", (stddevsumcyt / countcyt)^(1/2))

stddevmet = string.format ("%13.3f", (stddevsummet / countmet)^(1/2))

stddevcytamino = string.format ("%13.3f", (stddevsumcytamino / countcytamino)^(1/2))

stddevcyth42h5 = string.format ("%13.3f", (stddevsumcyth42h5 / countcyth42h5)^(1/2))

------------ Prepare maximum deviations in percent for references --------------

if (maxdev1==nil) then

maxdevcyt = string.format ("%13.3f", dummy1/refvolcyt)

else

maxdevcyt = string.format ("%13.3f", maxdev1/refvolcyt)

end

if (maxdev2==nil) then

maxdevmet = string.format ("%13.3f", dummy2/refvolmet)

else

maxdevmet = string.format ("%13.3f", maxdev2/refvolmet)

end

if (maxdev3==nil) then

maxdevcytamino = string.format ("%13.3f", dummy3/refvolcytamino)

else

maxdevcytamino = string.format ("%13.3f", maxdev3/refvolcytamino)

end

if (maxdev4==nil) then

maxdevcyth42h5 = string.format ("%13.3f", dummy4/refvolcyth42h5)

else

maxdevcyth42h5 = string.format ("%13.3f", maxdev4/refvolcyth42h5)

end
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---------------------- Prepare for distance calculation ------------------------

function f ( String ) -- function to format the atomlabels

FormattedString = string.format( "%7.7s", String )

return FormattedString

end

function f2 ( String ) -- function to format the atomlabels

FormattedString = string.format( "%9.9s", String )

return FormattedString

end

-- initialize new tables for distance and the lower and upper limit (same)

t.distance = {}

t.limit = {}

i = nil

assx = nil

----------------------- Distance and Limit calculation -------------------------

-- select atom pairs corresponding to references and calculate distances and

-- limits and write out new peaklist to file

-- limits are calculated by taking the maximum deviation of the corresponding

--reference peak times the distance

for i,assx in pairs (t.assxlabel) do

print(t.label[i])

if (((assx==f("H5")) or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1’")) or

(assx==f("H2")) or (assx==f("H2’")) or

(assx==f("H2’’")) or (assx==f("H3’")) or (assx==f("H4’")) or (assx==f("H5’")) or

(assx==f("H5’’"))) and

((t.assylabel[i]==f("H5")) or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))

or (t.assylabel[i]==f("H1’")) or

(t.assylabel[i]==f("H2")) or (t.assylabel[i]==f("H2’")) or (t.assylabel[i]==f("H2’’"))

or (t.assylabel[i]==f("H3’")) or

(t.assylabel[i]==f("H4’")) or (t.assylabel[i]==f("H5’")) or (t.assylabel[i]==f("H5’’"))))

then

t.distance[i] = string.format ("%7.2f", refdistcyt*(refvolcyt/t.volnew[i])^(1/6))

print(t.label[i])

print(t.distance[i])

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyt)

else

if (t.gradenew[i]==b) then

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyt*1.2)

else

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyt*1.4)

end

end

outfile:write (f2("d2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]

..t.volnew[i]..t.distance[i]..t.limit[i].."\n")

end

if ((assx==f("H7")) or (t.assylabel[i]==f("H7"))) then

t.distance[i] = string.format ("%7.2f", refdistmet*(refvolmet/t.volnew[i])^(1/6))

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration
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t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet)

else

if (t.gradenew[i]==b) then

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet*1.2)

else

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevmet*1.4)

end

end

outfile:write (f2("methyl: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]

..t.volnew[i]..t.distance[i]..t.limit[i].."\n")

end

if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))

and ((t.assylabel[i]==f("H1")) or

(t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42"))))

then

t.distance[i] = string.format ("%7.2f", refdistcytamino*(refvolcytamino/t.volnew[i])^(1/6))

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino)

else

if (t.gradenew[i]==b) then

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino*1.2)

else

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcytamino*1.4)

end

end

outfile:write (f2("h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]..t.gradenew[i]

..t.volnew[i]..t.distance[i]..t.limit[i].."\n")

end

if ((((assx==f("H5")) or (assx==f("H6")) or (assx==f("H8")) or (assx==f("H1’")) or

(assx==f("H2")) or (assx==f("H2’")) or (assx==f("H2’’")) or (assx==f("H3’")) or

(assx==f("H4’")) or (assx==f("H5’")) or (assx==f("H5’’")))) and ((t.assylabel[i]==f("H1"))

or (t.assylabel[i]==f("H3")) or (t.assylabel[i]==f("H41")) or (t.assylabel[i]==f("H42")))) then

t.distance[i] = string.format ("%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i])^(1/6))

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5)

else

if (t.gradenew[i]==b) then

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.2)

else

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.4)

end

end

outfile:write (f2("d2o_h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]

..t.gradenew[i]..t.volnew[i]..t.distance[i]..t.limit[i].."\n")

end

if (((assx==f("H1")) or (assx==f("H3")) or (assx==f("H41")) or (assx==f("H42")))

and ((t.assylabel[i]==f("H5")) or (t.assylabel[i]==f("H6")) or (t.assylabel[i]==f("H8"))

or (t.assylabel[i]==f("H1’")) or (t.assylabel[i]==f("H2")) or (t.assylabel[i]==f("H2’"))

or (t.assylabel[i]==f("H2’’")) or (t.assylabel[i]==f("H3’")) or (t.assylabel[i]==f("H4’")) or

(t.assylabel[i]==f("H5’")) or (t.assylabel[i]==f("H5’’")))) then

t.distance[i] = string.format ("%7.2f", refdistcyth42h5*(refvolcyth42h5/t.volnew[i])^(1/6))

if (t.gradenew[i]==a) then -- error bounds scaled by grading of integration

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5)

else

if (t.gradenew[i]==b) then

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.2)
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else

t.limit[i] = string.format ("%7.1f", t.distance[i]*maxdevcyth42h5*1.4)

end

end

outfile:write (f2("d2o_h2o: ")..f(i)..t.labelnew[i]..assx..t.assylabel[i]

..t.gradenew[i]..t.volnew[i]..t.distance[i]..t.limit[i].."\n")

end

end

--------------------------- End of Main Body -----------------------------

--------------------------------------------------------------------------------

-- close outfile

outfile:close()

i = 0

--------------------------------------------------------------------------------

--------------------------- End of THIRD PART -------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

-- FOURTH PART --

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

----------------------------- PREPARATIONS ------------------------------

-- open outfile

outfile = io.output( t.Filename.."_reference.peaks" )

function f ( String ) -- function to format the atomlabels

FormattedString = string.format( "%7.2f", String )

return FormattedString

end

--------------------------------------------------------------------------------

------------------------------ Main Body -----------------------------------

--------------------------------------------------------------------------------

outfile:write ("\n----------------------------------------------------------------------------------\n\nReference

for non-exchangeable proton cross-peaks: CYT H5-H6\n\nreference_vol ref_dist standard_dev

maximum_dev(%)\n"..refvolcyt..f(refdistcyt)..stddevcyt..maxdevcyt.."\n\n

Peaklabel Volume Dist Dev\n")

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H[56]/H[56] [0-9]:C[0-9]+") do -- reference for d2o peaks

outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyt).."\n")

end

end

outfile:write ("\n----------------------------------------------------------------------------------\n\nReference

for methyl proton cross-peaks: MET H6-H7\n\nreference_vol ref_dist standard_dev
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maximum_dev(%)\n"..refvolmet..f(refdistmet)..stddevmet..maxdevmet.."\n\n

Peaklabel Volume Dist Dev\n")

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H[67]/H[67] [0-9]:T[0-9]+") do -- reference for methyl peaks

outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistmet).."\n")

end

end

outfile:write ("\n----------------------------------------------------------------------------------\n\nReference

for exchangeable proton cross-peaks: CYT H41-H42\n\nreference_vol ref_dist standard_dev

maximum_dev(%)\n"..refvolcytamino..f(refdistcytamino)..stddevcytamino..maxdevcytamino.."\n\n

Peaklabel Volume Dist Dev\n")

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H4[12]/H4[12] [0-9]:C[0-9]+") do

-- reference for h2o exchangeable peaks

outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcytamino).."\n")

end

end

outfile:write ("\n----------------------------------------------------------------------------------\n\nReference

for non-exchangeable/exchangeable proton cross-peaks: CYT H42-H5\n\nreference_vol

ref_dist standard_dev

maximum_dev(%)\n"..refvolcyth42h5..f(refdistcyth42h5)..stddevcyth42h5..maxdevcyth42h5.."\n\n

Peaklabel Volume Dist Dev\n")

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H42/H5 [0-9]:C[0-9]+") do

-- reference for h2o exchangeable-non-exchangeable peaks

--(appears twice because of selection reasons)

outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5).."\n")

end

end

for j,assx in pairs (t.assxnew) do

for y in string.gfind (t.labelnew[j],"H5/H42 [0-9]:C[0-9]+") do

-- reference for h2o exchangeable-non-exchangeable peaks

outfile:write (t.labelnew[j]..t.volnew[j]..t.distance[j]..f(t.distance[j]-refdistcyth42h5).."\n")

end

end

--------------------------- End of Main Body -----------------------------------

--------------------------------------------------------------------------------

-- close outfile

outfile:close()

i = 0

--------------------------------------------------------------------------------

-------------------------- End of FOURTH PART ------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

-- FIFTH PART --

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

----------------------------- PREPARATIONS ------------------------------
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outfile = io.output( t.Filename.."_xplor.list" )

outfile2 = io.output( t.Filename.."_xplor_all.list" )

outfile3 = io.output( "picktbl_"..t.Filename)

outfile4 = io.output( t.Filename.."_xplor.noe" )

outfile5 = io.output( t.Filename.."_xplor_all.noe" )

function find (index) -- function to format the atomlabels

local Boolean = false

local Booleanx = false

local Booleany = false

for x in string.gfind(t.assxlabel[index],"H[2345]’[’]*") do

Booleanx=true

end

for y in string.gfind(t.assylabel[index],"H[2345]’[’]*") do

Booleany=true

end

if (Booleanx==true) and (Booleany==true) then

Boolean=true

else

Boolean=false

end

return Boolean

end

function find_h1 (index) -- function to format the atomlabels

local Boolean2 = false

local Boolean2x = false

local Boolean2y = false

for x in string.gfind(t.assxlabel[index],"H[12345]’[’]*") do

Boolean2x=true

end

for y in string.gfind(t.assylabel[index],"H[12345]’[’]*") do

Boolean2y=true

end

if (Boolean2x==true) and (Boolean2y==true) then

Boolean2=false

else

return Boolean2

end

end

for i,assx in pairs (t.assxnew) do -- iterate over all peaks

if (t.distance[i]) and (find(i)==false) then -- filter out negative volume peaks

if (find_h1(i)==false) and ((t.distance[i]/1) < 4.5) then

outfile:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")

(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")

outfile2:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")

(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]..t.limit[i]..t.limit[i].."\n")

outfile3:write ("pick bond (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")

(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")".." geometry\ndisplay \$result".."\n")

outfile4:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]

..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")

outfile5:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]

..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")

else

outfile2:write ("assign (resid"..t.assxresid[i].." and name"..t.assxlabel[i]..")
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(resid"..t.assyresid[i].." and name"..t.assylabel[i]..")"..t.distance[i]

..t.limit[i]..t.limit[i].." !added!\n")

outfile5:write (t.assxresid[i].. t.assxlabel[i]..t.assyresid[i]..t.assylabel[i]

..t.labelnew[i]..t.gradenew[i]..t.distance[i].."\n")

end

end

end

--------------------------- End of Main Body -----------------------------

--------------------------------------------------------------------------------

-- close outfile

outfile:close()

outfile2:close()

outfile3:close()

outfile4:close()

outfile5:close()

i = 0

t = nil

--------------------------------------------------------------------------------

-------------------------- End of FIFTH PART ----------------------------

--------------------------------------------------------------------------------

print ( "\ngenerateinput_byanda is done." )

print ( "Have a nice day!" )

------------------------- End generateinput ----------------------------

3.2 Mathematica script to visualize NOESY back-calculation

NOESY - spectra back-calculation

Read data

SetDirectory["D:\\Lars\\Promotion\\13merHCF\\Fertige Strukturen\\HC-_diss\\198_face-down\\gifa"]

ppm - file containing chemical shifts

ppmfile=Import["13merHCF_gifa.ppm","Table"];

Dimensions[ppmfile]

TableForm[Sort[ppmfile,#1[[3]]<#2[[3]]&]]; (* Can be used for inspection of data *)

ppmscanlist=Table[{ToString[ppmfile[[m,3]]+ppmfile[[m,4]]],ppmfile[[m,5]]},{m,1,Length[ppmfile]}];

Dimensions[ppmscanlist]

Read xplor-intensities calculated from Full Matrix Relaxation Approach

Choose between GIFA or XPLOR file, the latter is recommended.

GIFA

(*Intfile=Import["13merHCF_gifa.spect","Table"];*)

(*Intlist=Table[{ToString[Intfile[[m,3]]+Intfile[[m,4]]],ToString[Intfile[[m,6]]+Intfile[[m,7]]],

234



3 Script Code

Intfile[[m,8]]},{m,1,Length[Intfile]}];*)

XPLOR

rawIntfile=Import["13merHCF.spect","Table"];

Intfile=Table[rawIntfile[[2*n]],{n,2,Length[rawIntfile]/2}];

Intlist=Table[{ToString[Intfile[[m,1]]+Intfile[[m,3]]],ToString[Intfile[[m,4]]+Intfile[[m,6]]],

Intfile[[m,7]]},{m,1,Length[Intfile]}];

Dimensions[Intlist]

TableForm[Sort[Intlist,#1[[1]]<#2[[1]]&]]; (* Can be used for inspection of data *)

Build a peaklist that uses the data of both input files

peaklist={}; (* Enthält dann (x,y,Int) *)

Do[

xvar=false;

yvar=false;

Do[

If[Intlist[[mInt,1]]==ppmscanlist[[mppm,1]],

xcoord=ppmscanlist[[mppm,2]];xvar=true];

If[Intlist[[mInt,2]]==ppmscanlist[[mppm,1]],ycoord=ppmscanlist[[mppm,2]];yvar=true];,

{mppm,1,Length[ppmscanlist]}];

tmp={xcoord,ycoord,Intlist[[mInt,3]]};

If[xvar==true&&yvar==true,peaklist=Append[peaklist,tmp]];

(*Second round to add missing symmetry around diagonal axis to peaklist *)

xvar=false;

yvar=false;

Do[

If[Intlist[[mInt,1]]==ppmscanlist[[mppm,1]],ycoord=ppmscanlist[[mppm,2]];yvar=true];

If[Intlist[[mInt,2]]==ppmscanlist[[mppm,1]],xcoord=ppmscanlist[[mppm,2]];xvar=true];

If[Intlist[[mInt,2]]==Intlist[[mInt,1]],xvar=false;yvar=false;],{mppm,1,Length[ppmscanlist]}];

tmp={xcoord,ycoord,Intlist[[mInt,3]]};

If[xvar==true&&yvar==true,peaklist=Append[peaklist,tmp]];

,{mInt,1,Length[Intlist]}]

Dimensions[peaklist]

TableForm[Sort[peaklist,#1[[1]]<#2[[1]]&]]; (* Can be used for inspection of data *)

Use peaklist to build NOESY spectrum

Define peaks with different lineshapes. First is Lorenz-type, second Gaussian lineshape.

scale=1; (* Parameters that effect lineshape *)

w=0.015;

alpha=0.9;

peakL[peaknummer_,x_,y_]:=

1/(1+((x-peaklist[[peaknummer,1]])/(0.5w))^2)*1/(1+((y-peaklist[[peaknummer,2]])/(0.5w))^2);

peakG[peaknummer_,x_,y_]:=

Exp[-Log[2]((x-peaklist[[peaknummer,1]])/(0.5w))^2]*Exp[-Log[2]((y-peaklist[[peaknummer,2]])/(0.5w))^2];

peakfun[peaknummer_,x_,y_]:=

10^6*peaklist[[peaknummer,3]]*scale*(alpha*peakG[peaknummer,x,y]+(1-alpha)peakL[peaknummer,x,y])

Define intensity for a single set of coordinates in the spectrum

Intensity[x_,y_]:=Sum[peakfun[peaknummer,x,y],{peaknummer,1,Length[peaklist]}]

Intensity[5,6]

Plot[peakfun[5,x,6],{x,6,10},PlotRange->All]

Build a selected region of the spectrum using a targetfunction that is automatically composed

Choose spectral region
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xrange={6.925,8.14}; (* This is H6/H8 region *)

yrange={5.1,6.2};(* This is H1’ region *)

Targetfunction=0;

Do[

xvar=false;

yvar=false;

If[peaklist[[mInt,1]]>=xrange[[1]]-0.1&&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true];

If[peaklist[[mInt,2]]>=yrange[[1]]-0.1&&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true];

If[xvar==true&&yvar==true,Targetfunction=Targetfunction+peakfun[mInt,x,y]];

,{mInt,1,Length[peaklist]}]

Build spectrum

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},

PlotPoints->20,Contours->Table[10^k,{k,4,8,0.5}],PlotRange->All,

FrameLabel->{ppm,ppm},ImageSize->600,ColorFunction->"Aquamarine",

AspectRatio->1/2]

Build for export

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},

PlotPoints->20,Contours->Table[10^k,{k,4,8,0.5}],PlotRange->All,

FrameLabel->{ppm,ppm},ImageSize->900,ContourShading->None,

ContourStyle->Hue[0],AspectRatio->1/2,Frame->False]

HCF H1’’ - H1/H3 region

Choose spectral region for H1/H3 to H1’’ of HCF

xrange={5.5,5.8};

yrange={4.9,5.1};

Targetfunction=0;

Do[

xvar=false;

yvar=false;

If[peaklist[[mInt,1]]>=xrange[[1]]-0.1&&peaklist[[mInt,1]]<=xrange[[2]]+0.1,xvar=true];

If[peaklist[[mInt,2]]>=yrange[[1]]-0.1&&peaklist[[mInt,2]]<=yrange[[2]]+0.1,yvar=true];

If[xvar==true&&yvar==true,Targetfunction=Targetfunction+peakfun[mInt,x,y]];

,{mInt,1,Length[peaklist]}]

Build spectrum

ContourPlot[Targetfunction,{x,xrange[[1]],xrange[[2]]},{y,yrange[[1]],yrange[[2]]},PlotPoints->20,

Contours->Table[10^k,{k,5,9,0.5}],PlotRange->All,FrameLabel->{ppm,ppm},ImageSize->600,

ColorFunction->"Aquamarine",AspectRatio->1/2]
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13mer4AP-DAP 13mer DNA double strand incorporating 4AP and DAP

13mer6HQ 13mer DNA double strand incorporating 6HQ

13merHCF 13mer DNA double strand incorporating HCF

13merHNF 13mer DNA double strand incorporating HNF

13merRef 13mer DNA double strand as reference with central AT pair

13merRef(GC) 13mer DNA double strand as reference with central GC pair

ACMA 9-Amino-6-chloro-2-methoxyacridine

A Adenine

B3LYP Becke, 3-parameter, Lee-Yang-Parr, a DFT method

CARA Computer Aided Resonance Assignment

C Cytosine

CPG Controlled Pore Glass

CSD Chemical Shift Deviation

DQF-COSY Double Quantum Filtered Correlated Spectroscopy

DAP 2,4-Diaminopyrimidine

DETEQ Detection by Electron Transfer-controlled Emission Quenching

DFT Density Functional Theory

DNA Deoxyribose Nucleic Acid

ddNTPs di-deoxyNucleotideTriphosphates

FID Free Induction Decay
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FIT Forced Intercalation TO-PNA probes

FRET Fluorescence Resonance Energy Transfer
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G Guanine
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HMQC Heteronuclear Multiple Quantum Coherence

HNF 2-Hydroxy-7-Nitrof luorene

HOD Hydrogen Oxygen Deuterium, half deuterated water

ISPA Isolated Spin Pair Approximation

LNA Locked Nucleic Acid

MD Molecular Dynamics

MQ N-methyl-6-quinolone

NMR Nuclear Magnetic Resonance

NOESY Nuclear Overhauser Enhancement (Effect) Spectroscopy

qPCR Real-time quantitative Polymerase Chain Reaction

PAS Principal Axis System

PCA Principal Component Analysis

PCR Polymerase Chain Reaction

PELDOR Pulsed Electron-electron Double Resonance

Pf1 Phage f1, a filamentous bacteriophage

PNA Peptide Nucleic Acid

RDC Residual Dipolar Coupling

RNA Ribose Nucleic Acid

RMSD Root-Mean-Square Deviation

SBW Spectral Bandwidth

SA Simulated Annealing

SNP Single Nucleotide Polymorphism

SVD Singular Value Decomposition
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T Thymine

TNA Threose Nucleic Acid

TO Thiazole Orange

TR Thiazole Red

TOCSY Total Correlation Spectroscopy

TZVP Triple Zeta Valence plus Polarisation

UV/Vis Ultraviolet and visible range
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