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“Everything should be made as simple

as possible, but not one bit simpler.”

Albert Einstein





Summary

Metabolic reprogramming of the central carbon metabolism (CCM) is highly debated

during the last decade. It describes the rearrangement of nutrient consumption for pro-

viding energy and building blocks for cellular proliferation and maintenance. So far, only

sparse data are available for an in-depth analysis of metabolic reprogramming events. The

herein summarised projects address metabolic programming from different perspectives

and show the implementation of cell culture experiments, cutting-edge high-throughput

technologies, bioinformatics, and computational modelling into one workflow providing the

determination of metabolic flux maps of mammalian cells. The combination of GC-MS and

LC-MS-based methodologies enable the quantitative analysis of proteins and metabolites

of the CCM. Pulsed stable isotope-resolved metabolomics (pSIRM) experiments allow

monitoring the fate of nutrients within the network of the CCM. The time-dependent

and position-specific incorporation of carbon-13 leads to an indirect measurement of the

metabolic flux, the only one functional readout of a cell.

High-throughput technologieses were applied in four projects to gain insights in metabolic

reprogramming in cancer cell lines, human embryonic stem cells (hESCs), induced pluripo-

tent stem (iPS) cells and their derived fibroblasts. A global principal component analysis

demonstrated the discrimination of phenotypes by different classes of quantitative data.

The comparison of metabolic and protein profiles confirms the presence of the Warburg

effect in both cell types. Though, the executing enzymes vary regarding their isoenzyme

identity and expression levels.

Methodological improvements provided the implementation of GC-MS derived data for

INST-MFA. The mapping of GC-MS derived fragments to the molecule structure enables



an extension of the CCM network. Robustness of the input data has been improved by

the development of a R-scripting based quality control tool (MTXQC).





Zusammenfassung

Die Entstehung von Tumoren und damit einhergehenden Veränderungen wurden insbeson-

dere im letzten Jahrzehnt kontrovers diskutiert. Bisher standen nur wenige Datensätze

mit ausreichender Datendichte zur Verfügung um eine umfassende Untersuchung der Reg-

ulation des Stoffwechsels durchzuführen. Die in dieser Arbeit zusammengefassten Pro-

jekte adressieren verschiedene Aspekte der Stoffwechselregulation und beschreiben die

Verknüpfung von Zellkulturexperimenten mit innovativen Hochdurchsatz-Technologien,

komplexer Datenanalyse und Computer-basierter Modellierung zur Bestimmung der Stof-

fwechselflüsse in eukaryotischen Zellen.

Die Kombination von GC-MS und LC-MS basierten Technologien ermöglicht die quanti-

tative Analyse des zentralen Kohlenstoffwechsels. Markierungsexperimente mit stabilen

Isotopen (pSIRM) erlauben die dynamische Analyse der Stoffwechselaktivität. In vier

Projekten wurden das Proteom und Metabolom von Krebszellen, humanen Stammzellen

(hESCs), induzierten pluripotenten Stammzellen (iPS) und deren dazugehörigen differen-

zierten Vorläufer- oder Nachfolgerzellen bestimmt.

Die multivariate, statistische Analyse der Daten ermöglichte die Differenzierung verschiedener

Zelltypen basierend auf der Kombination aller quantitativen Daten. Die Anwendung sta-

biler Isotope die Detektion der Substrat-spezifischen Verwendung von Nährstoffen im zen-

tralen Kohlenstoffwechsel. Quantitative Bestimmungen der Poolgrössen, Isotopeninkor-

porationen, sowie der extrazellulären Raten in neuronalen, pluripotenten Vorläuferzellen

(Luhmes d0) und Neuronen (Luhmes d6) ermöglichte die Bestimmung der Stoffwech-

selflusskarte beider Zelltypen unter Verwendung der instationären metabolischenen Flus-

sanalyse (INST-MFA).



Die Etablierung einer Qualitätskontrolle für GC-MS basierte Daten (MTXQC), sowie die

Zuordnung der GC-MS Fragmente zur Molekülstruktur, ermöglichten den Ausbau des

Netzwerkes des zentralen Kohlenstoffwechsels und die Implementierung der Daten für die

metabolische Flussanalyse.
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bFGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic fibroblastic growth factor
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cytosolic
CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cinnamic acid
CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central carbon metabolism
DDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data-dependent analysis
DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differentiation medium
DMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dulbeccos modified eagle medium
DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Deoxyribonucleic acid
EI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electron impact
ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Estrogen receptor
er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Endoplasmic reticulum
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fibroblast
FA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatty acid
FBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flux balance analysis
FBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fetal bovine serum
FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fold change
GC-MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas chromatography - mass spectrometry
GO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gene ontology
GOBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gene ontology biological process
hESC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Human embryonic stem cell
hESC-DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .hESC-derived fibroblast
HIF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hypoxia-inducible factor 1
IDMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isotope dilution mass spectrometry
INST-MFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In-stationary metabolic flux analysis
iPS cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Induced pluripotent stem cell
iPS-DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iPS-derived fibroblast
LC-MS . . . . . . . . . . . . . . . . . . . . . . . . . . Liquid chromatography - mass spectrometry
LFQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Label-free quantification
LI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Label incorporation
Luhmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lund human mesencephalic cell lines
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mitochondrial



MCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monocarboxylate transporter
MEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mouse embryonic fibroblasts
MeOH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Methanol
MeOx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Methoxamine
MFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Metabolic flux analysis
MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Mass spectrometry
MSTFA . . . . . . . . . . . . . . . . . . . . . . . . N-Methyl-N-(trimethylsilyl) trifluoroacetamide
mTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mammalian Target of rapamycin
NAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nicotinamide adenine dinucleotide
NEAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Non-essential amino acids
NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Nuclear magnetic resonance
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Principal component
PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Principal component analysis
PI3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phosphoinositide-3-kinase
PLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poly-L-ornithine
PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proliferation medium
PPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pentose phosphate pathway
PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Progesterone receptor
pSIRM . . . . . . . . . . . . . . . . . . . . . . . . . . pulsed Stable isotope resolved metabolomics
RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ribonucleic acid
ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Reactive oxygen species
TCA-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tricarboxylic acid cycle
Tet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tetracycline
ToF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Time-of-flight

Metabolites of CCM

3PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-Phosphoglyceric acid
6PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-Phosphogluconic acid
aCoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . acetyl-CoA
αKG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . αketoglutaric acid
Ala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Alanine
Cit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citric acid
DHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dihydroxyacetone phosphate
F26P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fructose-2,6-bisphosphate
FBP, F16P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fructose-1,6-bisphosphate
Frc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fructose
Frc1P, F1P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fructose-1-phosphate
Frc6P, F6P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frutose-6-phosphate
Fum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fumaric acid
GA3P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glyceraldehyde-3-phosphate
Glc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Glucose
Glc6P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glucose-6-phosphate
Gln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glutamine
Glu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glutamic acid
Gly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glycine
Glyc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glycerol



Glyc3P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glycerol-3-phosphate
Lac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lactic acid
Leu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leucine
Mal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Malic acid
OAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxaloacetic acid
PEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phosphoenolpyruvic acid
Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proline
Pyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyruvic acid
Ser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serine
Suc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Succinic acid
Thr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Threonine

Enzymes of the CCM

ACLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ATP-citrate synthase
ALDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aldolase
ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Argininsuccinate lyase
ASS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Argininosuccinate synthase
BCAT . . . . . . . . . . . . . . . . . . . . . . . . . . Branched-chain-amino-acid aminotransferase
CCBL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cysteine-S-conjugate β-lyase
ENO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Enolase
FASN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatty acid synthase
FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fumarate hydratase
GLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glutaminase
GOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aspartate aminotransferase
GS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Glutamine synthetase
HK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hexokinase
IDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isocitrate dehydrogenase
LDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lactate dehydrogenase
MDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Malate dehydrogenase
ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Malic enzyme
MTHFDL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1-Tetrahydrofolate synthase
OGDH . . . . . . . . . . . . . . . . . . . . . . . . . . 2-oxoglutarate dehydrogenase, mitochondrial
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyruvate carboxylase
PDHc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyruvate dehydrogenase complex
PFKP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phosphofructokinase
PGK1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phosphoglycerate kinase
PHGDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-3-phosphoglycerate dehydrogenase
PKM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pyruvate kinase isoenzyme M
PSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phosphoserine aminotransferase
TALDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transaldolase
TKT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transketolase
TPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Triosephosphate isomerase





1 Introduction

1.1. Metabolic reprogramming in cancer and stem cells

Metabolic reprogramming describes the rearrangement of nutrient consumption for pro-

viding energy and building blocks for cellular proliferation and maintenance occurring

during tumorigenesis and cell differentiation (Ito and Suda, 2014b). The oncogenic trans-

formation of a cell results not only in a switch of isoenzyme expression and cell growth,

but also in the adjustment of metabolic pathway activities to meet the modified metabolic

demands. Metabolic reprogramming occurs also during differentiation of stem and pluripo-

tent cells. The loss of pluripotency results in an increased energy production by oxidative

phosphorylation in the mitochondria.

The metabolism is a highly coordinated network and maintains four major goals: (i)

the generation of chemical energy by degradation of energy-rich molecules, (ii) the conver-

sion of nutrients into their basic molecules, (iii) the synthesis of macromolecules (proteins,

nucleic acid, polysaccharides) and (iv) the generation and breakdown of biomolecules for

cellular functions, e.g., membrane lipids or intracellular messengers (Nelson et al., 2009).

The arrangement of these reactions in metabolic pathways — in series of enzyme-catalysed

reactions — provides the controlled uptake, conversion and production of required nutri-

ents, precursors and macromolecules. Each step within a pathway results in specific, but

small chemical modifications of a molecule, e.g., the removal, transfer or addition of a

functional group or even a single atom (Nelson et al., 2009).

The core of the central carbon metabolism (CCM) is highly conserved among organ-

ism and consists of the pathways: Glycolysis, Tricarboxylic acid cycle (TCA-cycle), the
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pentose phosphate pathway (PPP), and the synthesis and degradation of amino and fatty

acids. These pathways maintain the uptake of nutrients in form of sugars, amino acids

and lipids and their breakdown into smaller compounds (catabolism). The converging

catabolic reactions provide the synthesis of precursors in form of two or three-carbon

molecules that are used to generate macromolecules (anabolism) for the biosynthesis.

The compartmentation in eukaryotic cell provides a separation of biosynthetic and degrada-

tive pathways and their independent regulation, e.g., the degradation of fatty acids solely

occurs in mitochondria, whereas the synthesis is taking place in the cytosol.

The interdependent nature of metabolic pathways provides the fine-tuning of the central

carbon metabolism. The accumulation of metabolites modifies upstream pathway activi-

ties to control their own synthesis rate, e.g., citric acid regulates the rate-limiting glycolytic

enzyme phosphofructokinase-1 (PFK-1, cytosolic).

1.1.1. Metabolic pathways — a short introduction

Glycolysis Glucose accounts for more than 50% of the daily uptake of nutrients. It is the

major contributor to biosynthetic reactions and the generation of adenosine triphosphate

(ATP). Glycolysis, a series of ten reactions, processes the highest flux of carbons in the

cell. One molecule of glucose is converted into two molecules of pyruvic acid (Pyr) and re-

sults in the concomitant generation of two molecules of ATP and NADH/H+ (Figure 1.1).

The pathway contains of two phases, five reactions each: (i) the preparatory phase,

followed by a (ii) pay-off phase. The first phase contains the lysis of glucose — the

separation of the six-carbon glucose into two three-carbons molecules glyceraldehyde-3-

phosphate (GA3P). Two molecules of ATP are paid for the phosphorylation of glucose-

6-phosphate (G6P) and fructose-1,6-bisphosphate (F16P2) in advance of the production

of the energy in the second phase. In the pay-off phase the conversion of GA3P into

Pyr yields in the synthesis of four molecules of ATP and two molecules of NADH. In the

presence of oxygen glycolysis is only the first part of glucose degradation. The subsequent

processing of carbons within the mitochondria provides the synthesis of ATP.

The anaerobic breakdown of pyruvic acid into lactic acid, mostly occurring in skele-

2
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Figure 1.1.: Reaction scheme of glycolysis including regulating intermediates. The break-
down of one molecule glucose into two molecules of glyceraldehyde-3-phosphate (GA3P)
requires the investment of two molecules of ATP. In the pay-off phase four molecules of
ATP are generated by the synthesis of pyruvic acid (Pyr). The graphic has been taken
and modified from Löffler and Schölmerich (2008).

tal muscle, is probably the most conserved reaction of glycolysis. In ancient times living

organisms had to cope with an oxygen-depleted environment and were in need of an anaer-

obic pathway for energy synthesis. The synthesis of Lac replenishes the pool of nicoti-

namide adenine dinucleotide (NAD+) that is required for the conversion of glyceraldehyde-

3-phosphate (GA3P) into 1,3-bisphosphoglycerate (13BPG) the 5th reaction of the glycoly-
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sis. Erythrocytes, renal medulla, the brain and sperm cells completely rely on this pathway

because its their only source of energy.

Interestingly, the amino acid sequence and the structure of glycolytic enzymes are closely

related to vertebrates, spinach and yeast. Only the regulation and the subsequent direction

of pyruvic acid occurs in a organism-specific manner (Nelson et al., 2009).

The enzyme phosphofructokinase-1 (PFK-1, c) catalyses the committed step of gly-

colysis and represents at the same time the most regulated point of the pathway. It

adds the second phospho-group to fructose-6-phosphate (Frc6P) generating fructose-1,6-

bisphosphate (F16P). The activity of the rate-limiting enzyme is allosterically inhibited

by increasing product levels of ATP and citric acid (Cit) resulting in a deceleration of

the glycolysis. The other way around — the accumulation of AMP activates the enzyme,

sensing the demand for ATP synthesis. Fructose-2,6-bisphosphate (F26P2) is the most

important regulator of PFK-1 activity. Elevated levels of F26P2 results in an increased

affinity of PFK-1 for fructose-6-phosphate (F6P) promoting glycolysis.

Glycolytic intermediates link the central carbon metabolism with adjacent pathways.

Glucose-6-phosphate (G6P) fuels the pentose phosphate pathway providing precursors for

nucleotide synthesis and the the generation of NADPH.

Dihydroxyacetone phosphate (DHAP) is further metabolised into glycerol-3-phosphate

(Glyc3P), an intermediate of lipid synthesis. The de novo synthesis of the amino acid serine

is formed by the conversion of the glycolytic intermediate 3-phosphoglycerate (3PGA).

Serine is an important precursor of the one-carbon metabolism, that has been shown to

maintain the methylation status of DNA and histones (Locasale, 2013).

TCA-cycle The citric acid or TCA-cycle is one of the few amphibolic pathways combining

catabolic and anabolic reactions. Carbohydrates, fatty acids and proteins enter the TCA-

cycle in the form of three to five-carbon molecules; the majority as Pyr derived from

the glycolysis. The pyruvate dehydrogenase complex (PDHc) facilitates the conversion

of mitochondrial imported Pyr into acetyl coenzyme A (acetyl-CoA) that subsequently

enters the TCA-cycle (Figure 1.2).

The first enzyme of the cycle — citrate synthase (CS, mitochondrial) — catalyses the
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Figure 1.2.: The reactions of the TCA-cycle including linked pathways, activating and
inhibiting intermediates. The carbon backbone of the acetyl-group is oxidised into CO2

and oxaloacetate (OAA) converted into succinic acid in the first phase. Subsequently the
consumed OAA is reproduced by the conversion of succinate (Suc), a sequence of three
reactions similar to the oxidation of fatty acids. The graphic has been taken and modified
from Löffler and Schölmerich (2008).

oxidation of oxaloacetic acid (OAA) and acetyl-CoA into citric acid (Cit). Within seven re-

actions, including two decarboxylation steps, the acetyl-group of Cit is completely oxidised

into CO2; the OAA-derived carbon backbone is converted into succinic acid (Suc). The

second phase covers the reproduction of the consumed molecule of OAA, closing the TCA-

cycle. Interestingly the last phase shares similarities with the β-oxidation of fatty acids.
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One turn of the TCA-cycle produces almost 15× of free energy (∆G◦ = −2881 kJ/mol) as

much as glycolysis. The conversion of one molecule of acetyl-CoA yields in the generation

of three molecules of NADH/H+ and one molecule of FADH2 and GTP. Nine molecules

of ATP are produced by one turn of the TCA-cycle in close interaction with respiratory

chain.

Though the pool sizes of TCA-cycle intermediates are low abundant, a few metabolites

are important precursors for the synthesis of: (i) glucose (oxaloacetic acid, malic acid),

(ii) amino acids (oxaloacetic acid, αketoglutaric acid), (iii) fatty acids and sterols (Cit) or

(iv) porphyrins (succinyl-CoA).

An extensive usage of these metabolites would impair the TCA-cycle and the ATP syn-

thesis. Therefore anaplerotic reactions prevent the depletion of the cycle. Most important

reactions are the direct conversion of Pyr into OAA by the pyruvate carboxylase (PC, m)

and the entry of glutamine in form of αketoglutaric acid (αKG) facilitated by glutaminol-

ysis.

In addition, a complex system of shuttles connects cytosolic and mitochondrial metabolism

to ensure the functioning of the TCA-cycle. In particular the export of citric acid and its

conversion into its precursors is important to provide cytosolic acetyl-CoA for the synthe-

sis of fatty acids.

Partially the reactions of the TCA-cycle are mirrored in the cytosol. The sequences (i)

from Cit to αKG and (ii) from fumaric acid (Fum) to OAA provide the availability of

intermediates in case of a decreased export of these intermediates.

The activity of the TCA-cycle is regulated by the demand of cellular energy and the

availability of acetyl-CoA provided by the decarboxylation of Pyr or the degradation of

fatty acids. Enzymes of the TCA-cycle are activated and inhibited by their products to

sensor the conversion of carbons in the TCA-cycle, e.g., an increase of NADH signals that

the rate of the respiratory chain, defined by the availability of ATP, is not sufficient to

consume the produced reducing equivalent.

Therefore accumulating NADH slows down the TCA-cycle activity. In the same way

raised levels of ATP result in a deceleration of the cycle, whereas an increasing pool of ADP

6



Metabolic reprogramming in cells Chapter 1: Introduction

activates the enzymes isocitrate dehydrogenase (IDH) and PDHc. In general accumulating

products of a reaction inhibit their own synthesis by feedback regulation, respectively

substrates activate their conversion as shown in Figure 1.2. The regulation occurs even

beyond the borders of the pathway, e.g., increasing levels of cytosolic Cit inhibits the

rate-limiting enzyme PFK-1 and thus the synthesis of pyruvic acid.

1.1.2. Key players of the CCM

The metabolic pathways are interconnected by a few important intermediates. Their

abundance and the availability of reducing electrons regulates and defines the fate of

the intermediates. The following paragraph summarises the fates of glucose-6-phosphate

(Glc6P), pyruvic acid (Pyr) and acetyl-CoA, the main key players of the CCM. Because of

their essential roles these intermediates are often targeted by metabolic reprogramming.

Glucose-6-phosphate The first product of glycolysis is a key player of the central carbon

metabolism. Although the majority of the intermediates is metabolised into Pyr, G6P is

also a substrate of the pentose phosphate pathway (PPP) and used for glycogen synthe-
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Figure 1.3.: Key players of the CCM, their fate and their regulators: (A) Glucose-6-
phosphate (Glc6P), (B) Pyruvic acid (Pyr) and (C) acetyl-coenzyme A (acetyl-CoA).
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sis (Figure 1.3-A).

The production of pyruvic acid is coupled to the requirement of ATP and carbons. The

pentose phosphate pathway provides the generation of NADPH, required for reductive

biosynthesis, and ribose-5-phosphate for the synthesis of nucleotides. Up-regulated en-

zymes levels of TKT1 and TALDO, rate-limiting enzymes of the PPP, have been detected

in cancer cells (Wang et al., 2011a; Xu et al., 2009). Only at high intracellular levels of

ATP glucose is stored into glycogen.

G6P is synthesised from its product pyruvic acid by the reversed pathway of glycolysis

— the gluconeogenesis. Pyruvic acid enters mitochondria and is converted into OAA and

subsequently into Mal. The exported Mal enters glycolysis in form of phosphoenol pyru-

vate (PEP) and is further processed into Glc6P bypasses the irreversible reaction reactions

of the glycolysis.

Pyruvic acid Pyruvic acid links cytosolic and mitochondrial metabolism (Figure 1.3-B).

Primarily produced from glucose Pyr is either (i) converted into lactic acid, (ii) transami-

nated into alanine or (iii) enters the mitochondrial metabolism via pyruvate dehydrogenase

complex (PDHc) or pyruvate carboxylase (PC). The conversion into Lac restores NADH

that is required for the phosphorylation of GA3P.

The decarboxylation by the PDHc complex catalyses the irreversible synthesis of acetyl-

CoA in the mitochondria. Multiple allosteric interactions regulate the activity of the

complex and fine-tune the usage of mitochondrial imported pyruvic acid. The enzyme PC

requires an obligatory activator — acetyl-CoA, another key player of the CCM. Only in

the presence of acetyl-CoA the carboxylation of pyruvate is allowed and replenishes the

TCA-cycle in form of OAA. This reaction is also part of the gluconeogenesis providing the

synthesis of glucose via the conversion of OAA into malic acid (Mal).

Acetyl-CoA The two-carbon unit is the major fuel of the citric acid cycle (Figure 1.3-

C). It’s condensation with oxalic acid (OAA) into citric acid is the first reaction of the

TCA-cycle.

Main source of acetyl-CoA is the import of glycolysis-derived pyruvic acid and the β-
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oxidation of fatty acids. The synthesis from Pyr by the PDH complex is a rate-limiting

step allosterically regulated. The interplay of pyruvate complex kinases and phosphatases

regulates the activity of the PDHc to adjust the import of Pyr into the mitochondria.

Besides the complete oxidation of acetyl-CoA into CO2, the intermediate is used for the

synthesis of ketone bodies and cholesterol. The export of Cit derived from acetyl-CoA

provides carbons for fuelling fatty acid synthesis as described before.

1.1.3. Regulatory events in metabolic reprogramming

Metabolic reprogramming during tumorigenesis The reprogramming of the metabolism

in cancer cells gained increased attention during the last decade. Already in the early

1930s Otto Warburg focused on the biochemical analysis how glycolysis and respiration

contributes to the “unstructured cell growth” (Warburg et al., 1924). Those days Otto

Warburg postulated that the increased and oxygen-independent conversion of glucose into

lactic acid occurs due to impaired mitochondria (Warburg et al., 1927).

Although the Warburg effect is not caused by dysfunctional mitochondria as described by

Warburg, but rather an effect of the optimisation of nutrient consumption, still the term

is associated with cancer metabolism and describes the elevated synthesis of lactic acid

even in the presence of oxygen (Vander Heiden, 2011).

In 2011 Hanahan and Weinberg included the readjustment of energy metabolism occurring

during tumorigenesis to their famous hallmarks of cancer (Hanahan and Weinberg, 2011).

Pavlova and colleagues defined six categories of metabolic reprogramming during the

development of cancer: (i) the deregulated uptake of main carbon-sources, (ii) the ac-

tivation of alternative ways to maintain nutrient supply, (iii) the usage of CCM inter-

mediates for NADPH synthesis, (iv) the elevated demand of nitrogen for biosynthesis,

(v) the metabolite-driven gene regulation and (vi) metabolic interaction with the tumor

environment (Pavlova and Thompson, 2016).

Tumorigenesis results in the modulation of intra- and extracellular metabolite levels, af-

fects the tumor-microenvironment and induces alterations in gene expression levels. The

constitutive activation of the nutrient uptake at a maximum rate maintains the limitless
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Figure 1.4.: Central carbon metabolism contributing to the macromolecule synthesis and
energetic homeostasis. Enzymes are shown in bold. Targets of HIF-1 are marked with an
asterisk. Figure has been adapted from Schulze and Harris (2012b).

supply of precursors for tumor cell growth independently from the extracellular environ-

ment. The alteration of growth-factor regulated pathway of phosphoinositide 3-kinase

(PI3K)/Akt (protein kinase B) and the mammalian target of rapamycin (mTOR) are

mostly induced by oncogenic mutations in cancer cells. It has been shown that in cancer

cells the PI3-K/AKT pathway leads to an up-regulation of hexokinase 2 (HK2). Increased

activity of HK2 traps glucose in form of Glc6P and prevents the efflux of carbons. Sub-

sequently, Glc6P that is not directed towards the synthesis of Pyr and mitochondrial

oxidation, is used to generate reducing equivalents (NADPH) and building blocks, e.g.,

nucleotides and lipids (Deprez et al., 1997; Gottlob et al., 2001).

Central metabolic pathways, their cofactors and known regulators are summarised

in Figure 1.4, adapted from Schulze and Harris (2012a). Almost every single enzyme

of the central carbon metabolism is a known target of an oncogene, transcription factor

or tumor-suppressor. Most prominent regulators of the central carbon metabolism are the

oncogene c-myc, the transcription factor HIF-1 or the tumor-suppressor p53.
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The oncogene c-myc is a known regulator of a multitude of cellular processes in addition to

the regulation of glycolysis and glutaminolysis. Modulated gene expression of glutaminase

(GLS-1), the CAD protein and increased levels of the glutamine transporter ASCT2 and

SN2 have been detected in broad range of c-myc affected tumor cells (Wang et al., 2011b;

Wise et al., 2008). The up-regulated uptake of glutamine, its conversion into glutamic

acid replenishes the pools of the TCA-cycle intermediates and contributes to anaplerotic

reactions.

Tumor growth results in the temporary deprivation of major nutrients, especially O2,

due to insufficient vascularisation of the tumor (Vaupel et al., 1989). A hypoxic en-

vironment leads to the stabilisation of the transcription factor hypoxia-inducible factor

(HIF1) by dimerisation of the O2-sensitive subunit HIF1-α and constitutively expressed

subunit HIF1-β. In the presence of O2 HIF1-α is directed by prolyl hydroxylation for

proteasomal degradation and prevents the activation of glycolysis promoting HIF1. The

abundance of the glycolytic enzymes, e.g., PFK2, LDHA, and monocarboxylate transport

proteins (MCT) are up-regulated by HIF1 activity and provide a sufficient generation of

ATP (Schulze and Harris, 2012a).

Cancer cells prevent a lack of carbons or nitrogen by the development of alternative

ways of nutrient acquisition (Schulze and Harris, 2012a). Macropinocytosis, entosis or

phagocytosis provide the access to normally unaccessible nutrient sources, e.g., extracel-

lular proteins (Kerr and Teasdale, 2009; Krajcovic et al., 2013). Though nutrient and

growth-factor deprived cells do not proliferate, they survive in cell culture for weeks as

shown by Lum and colleagues (Lum et al., 2005).

Metabolic reprogramming during differentiation A unique feature of pluripotent cells

is their dual ability of self-renewal and differentiation into any tissue of the three germ

layers. Also induced pluripotent stem (iPS) cells are in the focus of different fields of

sciences since the introduction of the stemness cocktail by Takahashi in 2006 (Takahashi

and Yamanaka, 2006). The application of Sox2, Oct4, Nanog and Kfl4 transforms somatic

cells into pluripotent cells. Originally, Kfl4 replaced the transcription factor and oncogene

c-Myc. Due to its increased tumorigenic potential it has been replaced to increase the
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applicability of iPS cells in medical therapy.

In their natural environment of the stem cell niche human embryonic stem cells (hESCs)

remain in a quiescent state under hypoxic conditions and solely rely on anaerobic glycolysis

to produce energy. Reducing equivalents and ATP are solely produced by the conversion

of glucose into pyruvic acid and subsequently into lactic acid.

The activation of HIF1, induced by the stabilisation of HIF1-α in the O2-deprived environ-

ment, leads to the up-regulation of glycolytic enzymes, e.g., HK2, PFK1 and LDHA (Folmes

et al., 2011; Panopoulos and Izpisua Belmonte, 2011; Varum et al., 2011). At the same

time HIF1 prevents the entry of glucose-derived pyruvic acid into the mitochondria by

the induction of pyruvate dehydrogenase kinase (PDK) inactivating PDHc (Ito and Suda,

2014a). The increased glycolytic activity provides the routing of carbons into the pen-

tose phosphate pathway producing NADPH and thus preventing oxidative stress by an

increased production of reactive oxygen species (ROS). The up-regulated activity of the

PPP contributes to the synthesis of nucleotides and supports biosynthesis in proliferating

stem cells.

Differentiation of stem cells induces a tremendous reprogramming of the CCM. It ad-

justs the mitochondrial dynamics to meet the elevated demand of energy to sustain the

specialised functions of differentiated cells. At the same time the cell proliferation deceler-

ates and minimises anabolic requirements (Folmes et al., 2012). The loss of pluripotency

is accompanied by a complex remodelling of mitochondria. Whereas in stem cells mito-

chondria are functional immature, poorly crystallised and globularly shaped, differentiated

cells increase their number of mitochondria with well-developed cristae, dense matrix and

branched morphology (Folmes et al., 2012; Varum et al., 2011; Prigione et al., 2010; Suhr

et al., 2010). Thus, mitochondrial mass in relation to total cell mass shows equal ra-

tios in pluripotent and differentiated cells. Despite the morphological differences, stem

cell mitochondria are functional organelles and able to possess a similar mitochondrial

capacity (Birket et al., 2011; Zhang et al., 2011).

The differentiation of hESC and iPS cells results in an increased production of ATP

by the electron transport chain, elevated levels of ROS and reduced expression of gly-
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Figure 1.5.: Metabolic modes of different cell phenotypes. (A) Comparison of the
metabolic mode of differentiated, stem and cancer cells. (B) Structure and regulation
of the pyruvate kinase M (PKM), key regulatory enzyme of glycolysis.

colytic enzymes (Armstrong et al., 2010; Prigione et al., 2010). It has been shown that

the stimulation of glycolysis or the inhibition of mitochondrial respiration promotes repro-

gramming efficiency (Ezashi et al., 2005; Varum et al., 2009), and the other way around —

inhibition of glycolysis and induction of respiration impairs the reprogramming of pluripo-

tency (Kondoh et al., 2007). Interestingly, the inhibition of acetyl-carboxylase 1 (ACACA,

ACC1) and fatty acid synthase (FASN), enzymes of the fatty acid synthesis results in the

repression of pluripotency induction. High levels of both enzymes have been detected in

iPS cells.

The metabolic mode of proliferative cells At the first glance stem and cancer cells are

opposite cell models. Cell proliferation is tightly regulated in stem cells and is in marked

contrast to the highly proliferative phenotype of cancer cells.

Thus the metabolic modes of both phenotypes have many characteristics in common as

summarised in Figure 1.5-A. Cancer and pluripotent cells require the sufficient generation

of energy and building blocks in form of ATP, lipids, fatty acids and other reducing equiv-

alents. At the same time both cell types have to prevent induced oxidative stress damage.
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The increased routing of glucose-derived carbons into lactic acid has been detected in both

cell types. The enzyme pyruvate kinase (PK) drives the final reaction and actual energy

producing step of the glycolysis. Cancer cells preferentially express the isoenzyme PKM2.

The distinct regulation of the enzyme provides to adjust the directing of nutrients towards

biosynthesis processes or the generation of energy in form of ATP (Figure 1.5-B).

The inactive dimeric form of PKM2 blocks the synthesis of Pyr and concomitant gener-

ation of ATP. Although at the first glance counterintuitive, the inactive state of PKM2

provides precursors for cell proliferation. The accumulating glycolytic intermediates are

directed into adjacent pathways connected to the synthesis of precursors, e.g., glycerol-3-

phosphate synthesis.

The elevated levels of F16P2 induce the tetramerisation and activation of PKM2. The gen-

erated Pyr is subsequently directed into the previously described pathways to maintain

cellular redox homeostasis and energy synthesis. Also the pool sizes of amino acids (Ser,

Ala, Thr and Pro) affect the catalytic state of PKM2. The common roles of the oncogene c-

Myc and the transcription factor HIF1 have been described previously. Both key-players

elevate the activity of the glycolysis by increasing the transcription of glycolytic isoen-

zymes, e.g., HK2, PFK-1 or LDHA. Furthermore it has been shown that the regulation

of the epigenetic state is highly connected with the metabolic mode of cells (Ryall et al.,

2015). Acetyl-CoA and the amino acids serine and glycine are important precursors for

histone and DNA acetylation, respectively methylation. Pluripotency is associated with

specific histone marks, e.g., histone 3 lysine 27 trimethylation (H3K27me3), and also in

cancer cells an distinct regulation of epigenetic modifications has been published (Carey

et al., 2014; Jones and Baylin, 2002). Despite all the recent insight, it still remains un-

clear, how the described similarities in gene regulation and protein expression result in

two distinct modes of cell proliferation. The comprehensive analysis of the metabolism

in a dynamic and quantitative manner may contribute to the identification of distinct

characteristics of both cell types.
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1.2. High-throughput mass-spectrometry approaches for the

quantification of CCM intermediates

The following part of the introduction is partially modified from a recent publication of

the thesis author herself and her supervisor Dr. Stefan Kempa (Zasada and Kempa, 2016).

1.2.1. Quantification of enzyme expression levels

In 1940s Beadle and Tatum postulated the “one gene, one polypeptide” hypothesis (Beadle

and Tatum, 1941). Since then the view on the proteome changed tremendously. Alterna-

tive splicing and post-translational modifications (PTMs) provide a complex regulation of

isoenzyme expression and enzyme activity in a cell.

The development of liquid chromatography coupled with mass spectrometry (LC-MS) ap-

proaches enables the comprehensive high-throughput analysis of the cellular proteome.

Three different approaches have been established to aim the quantification of high and

medium abundant proteins in a cell: direct, targeted and shotgun proteomics (Domon

and Aebersold, 2010). Shotgun-proteomics, also called discovery proteomics, has been

widely applied in large-scale studies to create protein inventories (Beausoleil et al., 2006;

de Godoy et al., 2008). It is an data-dependent analysis (DDA) methodology and pro-

vides the measurement of expressed proteins only. The presence of a protein in a sample

is defined by the cellular state, tissue type and organism.

Shotgun-proteomics aims to detect a maximum number of peptides per sample. Tryptic

and in silico derived peptides are compared for the identification of the proteins. The

exclusion of high abundant peptides from fragmentation for a defined time window during

the measurement increases the detection of lower abundant ones.

Still low abundant proteins, e.g., transcription factors, are rarely detectable by this ap-

proach. A targeted analysis of complex samples complements the proteome determined

by shotgun proteomics. Targeted LC-MS based studies require the definition of the amino

sequence of proteins and peptides of interest. The selective detection and fragmentation

is most frequently operated on LC-MS coupled triple quadrupole instruments. Targeted
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LC-MS setups enable the measurement of low abundant proteins with high selectivity and

reproducibility in complex cell extracts.

Different strategies have been developed for the quantitative analysis of the proteome dur-

ing the last decade. Stable isotope labelling of amino acids in cell culture (SILAC) and

isotope-coded affinity tag (ICAT) are most commonly applied for LC-MS based proteome

quantification.

SILAC and ICAT are designated as metabolic labelling approaches and provide the relative

quantification of proteins (Ong et al., 2002; Gygi et al., 1999). Cells utilise the supple-

mented isotopes in form of modified amino acids in the cell culture media (e.g., Lys-8

instead of Lys-6) and incorporate these into proteins actively synthesised by the cell. The

comparison of the coeluting light and heavy peptides at the MS/MS levels provides the

relative quantification of isoenzymes.

The absolute quantification of proteins involve the application of isobaric tags for relative

and absolute quantification (iTRAQ) or internal isotopic-labeled standards (Wiese et al.,

2007; Ross, 2004). The absolute quantification provides the machine-independent and

lab-wide comparability of proteome analysis.

Though internal standards are the gold standard regarding accuracy, the application is

limited to a defined number of peptides. Standards have to be synthesised and “spiked in”

the sample prior the measurement. Label-free quantification approaches, e.g., “spectral

counting” and “XICs” are less accurate, but worth to try due to their reduced experimental

time and costs (Ono et al., 2006; Old et al., 2005; Ishihama et al., 2005).

1.2.2. Quantification of intra- and extracellular metabolite levels

The determination of the complete metabolome of a cell is challenging due to the huge

variety of molecules, e.g., such as hexoses, phosphates, amino acids, and lipids. Different

molecular sizes, chemical properties and abundance of intermediates require the applica-

tion of different methodologies.

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are most

commonly applied in the field. Both approaches own complimentary experimental advan-
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Figure 1.6.: Gas-chromatography coupled mass spectrometry provides the quantification
of CCM intermediates. (A) A representative GC-MS selected ion chromatogram obtained
from a cell culture sample using temperature-controlled and split injection. Due to the
method, the peaks of pyruvate and lactate are baseline separated, detected, and quanti-
fied. The majority of phosphates are distinguishable by their retention behaviour. (B)
Distribution of the coefficient of variation (CoV) of the measured metabolite quantities
derived from five biological replicates. (C) Comparison of single samples and spike-in ex-
periment in order to test recovery of metabolites. (D) Absolute quantities in T98G cells
ranked by their concentrations. The graphic has been published in Pietzke et al. (2014).

tages and disadvantages. High sensitivity, broad detection spectra of compounds and the

availability of well curated data bases for compound identification are the main benefits

of MS-based methodologies (Pietzke and Kempa, 2014).

Though GC-MS based approaches demand the chemical modification of the sample prior

the analysis. The process of derivatisation increases the volatility of the compounds and

provide the detectability of a broad range of CCM intermediates (Figure 1.6-A). The

advantages of NMR analysis are the high precision of metabolite quantification and the

analysis of liquid, or even intact, samples, but at the cost of lower sensitivity (Pan and

Raftery, 2007).

In general metabolomics studies are based on the relative analysis of peak areas or
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intensity levels in the chromatography comparing biological conditions. These studies

gain reliable results in the evaluation of clearly impaired metabolic pathways, e.g., inac-

tivation of a specific enzyme, but lack the analysis of minor quantifiable changes of the

metabolism (Zasada and Kempa, 2016). Thus, only absolute quantities provide machine-

and lab-independent studies.

Absolute quantification of metabolites has been carried out by the application of isotope

dilution mass spectrometry (IDMS), introduced by Heumann (1992). Known amounts of

isotope compounds are spiked-in the sample. The simultaneously detection allows the ab-

solute quantification, but is limited to a number of available compounds. Furthermore this

approach suffers from technical deprivation and matrix effects (Fassett and Paul, 1989).

The determination of external calibration curves overcome these limitations. The mea-

surement of a quantification standard composed of 60 intermediates is measured in eight

dilutions prior or subsequent of a batch of samples. The comparison of five biological repli-

cates of a cell extract showed a high reproducibility for the major metabolite classes (Fig-

ure 1.6-B). Individual calibration curves for each metabolite and detectable derivate are

constituted and provide an estimate of absolute quantities (Figure 1.6-C). An exemplary

quantitative profile of T98G cells shows the distribution of metabolic intermediates cov-

ering, e.g., glycolytic intermediates, amino acids and phosphate (Figure 1.6-D).

1.2.3. Tracing the dynamics of the central carbon metabolism

Glycolysis, TCA cycle, and pentose phosphate pathway link the uptake of nutrients with

neighbouring parts of metabolism, resulting in facilitation of lipid, amino acid, and nu-

cleotide synthesis. In the late 1960s, the first studies were carried out with radioactive

isotopes to track the routing within the CCM (Wenzel et al., 1966). Nowadays, appli-

cation of stable isotope-labeled substrates provides a more robust monitoring of nutrient

utilisation. Stable isotopes substrates are applied as tracers, either supplemented in cell

culture media or directly injected into tissues (Fan et al., 2009).

Depending on the substrate (e.g., glucose, glutamine and essential amino acids) and the

kind of isotopic label (e.g., carbon-13, nitrogen-15), the turnover changes the atomic com-
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position of intermediates and allows to trace the routing of single atoms along the pathway

within the CCM (Pietzke and Kempa, 2014).

Intermediates located closer to the source show higher isotope incorporation than distant

ones. GC-MS measurements provide the simultaneous analysis of isotopic incorporation

and metabolite abundance in the same measurement (Kempa et al., 2009). The modifica-

tion of nutrient supplementation or mechanical stress interrupts the metabolic equilibrium

of a cell. Within few seconds the central carbon metabolism reacts and readjust the nutri-

ent uptake and utilisation to any kind of perturbation. The developed workflow of pulsed

stable isotope resolved metabolomics (pSIRM) studies has been optimised to minimise ex-

ternal stress factors and to shorten the sampling time in cell culture experiments (Pietzke

et al., 2014).

Subsequently of the isotopic labelling cells are washed for just a few seconds with a wash-

ing buffer containing salts to maintain osmolality and the main nutrients, but lack amino

acids and other supplements. These steps provide the continuous fuelling of the main

pathways and reduce the carryover of extracellular metabolites in the measurement.

Directly after discarding the washing buffer cells are quenched with ice-cold, 50% methanol,

disrupting all cellular processes and initiates the extraction process. The procedure allows

a fast handling during the cell harvest and the determination of isotopic incorporation

after short incubation times (Pietzke et al., 2014). Only in that way distinct dynamics of

isotope incorporation are assignable in the network of the CCM. The evaluation of isotope

incorporation in specific branching points of the CCM highlights differences in pathway

activities and reveals distinct modes how carbons are incorporated in glycolytic and TCA

cycle intermediates.

1.3. Computational modelling approaches

The nature of the CCM does not allow a determination of metabolic fluxes without the

application of computational tools. Cyclic pathway structures, e.g., the TCA-cycle, and

the reversibility of reactions do not provide a correct estimate of absolute fluxes based

only on the incorporation of stable isotopes in metabolites.

19



Chapter 1: Introduction Computational modelling approaches

During the last decade a number of approaches, including and excluding the application

of stable isotopes, have been developed to overcome this limitation. The required input of

information depends on the method of choice and varies regarding extend and complexity.

Flux balance analysis (FBA) and 13C-metabolic flux analysis (MFA) are the most com-

monly applied approaches. Genome-scale kinetic models of the CCM are rarely used due

its high complexity and to the lack of knowledge about isoform resolved enzyme kinetics.

Therefore kinetic models often cover only a smaller subnetwork of the CCM (Niedenführ

et al., 2015).

The development of FBA and 13C-MFA approaches were mainly driven by the optimi-

sation of prokaryotic-based product synthesis in the field of white biotechnology (Varma

and Palsson, 1994; Wiechert, 2001). The adaption of existing models to account for the

compartment-separated nature of the CCM in eukaryotic cells represents the main chal-

lenge across science disciplines (Buescher et al., 2015).

1.3.1. Flux balance analysis (FBA)

FBA is a constraint-based approach that provides the determination of steady-state metabolic

fluxes in genome-scale models. Constraints are cellular limitations, e.g., physicochemical

properties (Raman and Chandra, 2009). FBA allows to predict growth rates or the pro-

duction of a specific metabolite considering pre-defined constraints (Orth et al., 2010).

The first step of FBA, and common ground for all approaches, is the translation of the

biochemical network into a stoichiometric matrix N (m x v). Reactants (m, rows) are

assigned as biochemically specified to their molar ratios for each reaction (v, columns).

The stoichiometric matrix N describes the topology of the network and is independent

from time, enzyme kinetics and metabolite concentrations (Niedenführ et al., 2015).

Metabolic fluxes are determined based on the stoichiometric matrix and a biological rele-

vant objective function by linear optimisation, e.g., the maximisation of growth, biomass

or ATP-production, the most common objective functions (Raman and Chandra, 2009).

According to the applied constraints, a stationary metabolic flux distribution is deter-

mined based on the topology of the network (Joyce and Palsson, 2006).
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Figure 1.7.: Network construction and mathematical transformations for MFA. (A) Sin-
gle reaction of the glycolysis showing the dephosphorylation of 1,3-bisphosphoglycerate
(13PGA) into 3-phosphoglycerate (3PGA). (B) Conversion of the previous reaction into
a scheme of metabolic fluxes. (C) The topology of the simple network in form of the
stoichiometric matrix summarising the molarities of substrates and products of each flux.
(D) Differential equation for the introduced reaction transforms into a linear equation
system at steady-state conditions. (E) 13C-MFA analysis requires the tracking of carbon
introduction and loss within the defined network, here shown for the decarboxylation of
succinyl-CoA into succinate (Suc) in the TCA-cycle. (F) Carbon transitions have to be
defined for each reaction in the network prior the MFA analysis based on stable isotope
incorporation.

Further constraints, e.g., balancing input and output fluxes and the definition of exchange

rates, have to be defined prior the determination of metabolic fluxes and reduce the num-

ber of feasible flux solutions. Dependent on the optimisation functions FBA empowers to

analyse the capabilities and limitations of a network.

The reconstruction of the metabolic network and the selection of bounding criteria are

essential steps in the FBA analysis. FBA provides only useful metabolic flux distributions

in the case of a well fitting optimisation function. Metabolic gaps in the annotation of

proteins reduce the feasibility of FBA. The most commonly applied optimisation function

of maximum cell growth is only applicable in few cell systems, e.g., bacterial cells or to an

limited extend to cancer cells.
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1.3.2. Metabolic flux analysis (MFA)

Stationary metabolic flux analysis Classical 13C-MFA is the most frequently applied

method in fluxomics targeting stationary metabolic fluxes. MFA approaches use the

topology defined in a stoichiometric matrix, similar to FBA. The incorporation of stable

isotopes, e.g., 13C-glucose, is a time-dependent process and provides an indirect measure-

ment of the metabolic fluxes.

The application of isotopic tracers for more than several hours allows the determination

of steady state metabolic fluxes by the measurement of macromolecular compounds, such

as DNA, RNA, and proteins (Wiechert et al., 2001; Szyperski, 1995). The assumption of

constant metabolite pool sizes and steady-state of metabolic fluxes simplifies the mathe-

matical problem into a system of linear equations.

The implementation of carbon transitions for each reaction, describing the transport

of carbons through the network, a defined carbon balance and extracellular rates provide

the determination of metabolic fluxes. The iterative fitting of experimental-derived and

simulation-derived isotopomer distributions for each metabolite results ideally in one, in

reality in a number of feasible flux maps for a single network of biochemical reactions.

In 2007, Henry and colleagues introduced thermodynamics- based metabolic flux analy-

sis (TMFA). The feasibility of metabolic fluxes is determined based on the concentration

levels of metabolites and the change of free Gibbs energy ∆G◦. The reversibility of reac-

tions becomes restricted with regard to their likeliness and reduces the number of possible

flux maps (Henry et al., 2007).

However, the duration of labelling experiments and the accompanied high experimental

cost are two major disadvantages of the classical, stationary 13C-MFA approach. Re-

cent developments providing the absolute quantification of intracellular metabolites and

the improvement of computation power pave the way for non-stationary MFA approaches

(INST-MFA) (Nöh and Wiechert, 2011; Young et al., 2007).

Non-stationary metabolic flux analysis (INST-MFA) Similar to the stationary approach

the experimental system has to fulfil the metabolic steady-state assumption. Intracellular
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pool sizes and metabolic fluxes remain constant during the entire experiment. The only

time-variant component is the stable isotope incorporation that has to be monitored by

extensive sampling in time series experiments (Nöh et al., 2007).

The implementation of absolutely quantified pool sizes complements the information of

isotope incorporation and exchange rates. The determination of backward and forward

fluxes and an estimate of non-measurable pool sizes of intermediates are the reward of the

increased mathematical complexity of INST-MFA (Wahl et al., 2008).

Still, a few challenges remain, e.g., the implementation of sub-cellular compartments, the

complex formula of the media, and slow labelling dynamics in the INST-MFA frame-

work (Zamboni, 2011).

Driven by the improvements of bioanalytical techniques and computational methods

to analyse the dynamics of metabolism, detailed analyses of cellular metabolism became

possible. Todays challenge is to develop tools that enable affordable, simple, rapid, but

also detailed analyses of the metabolism to broaden our understanding at a mechanistic

level (Zasada and Kempa, 2016).

For example, the combination of pulsed stable isotope resolved metabolomics and math-

ematical approaches, as non-stationary metabolic flux analysis may be a possible way to

streamline dynamic and quantitative metabolomics analyses of cancer, both in vitro and

in vivo. The combination of these approaches may provide the identification of key regu-

latory steps in cancer or stem cell metabolism and allow to interfere with the metabolic

reprogramming (Zasada and Kempa, 2016).
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2 Materials and Methods

2.1. Cell cultivation

All chemicals used for the cultivation of cells are listed in Suppl.A.

Cells were cultivated in Dulbeccos modified Eagle Medium (DMEM / Invitrogen) supple-

mented with 2.5 g/L glucose and 2 mM glutamine at 21% O2 and 5% CO2 for routine cell

cultivation. Stable cell lines has been passaged in appropriate split every 2-3 days using

Tryp L/E for cell detachment. Viability was checked by Trypan blue staining on a regular

basis.

Cell number quantification Calcein-AM staining, labeling live cells, was performed with

1 uM Calcein-AM / 1 ug/mL H-33342 for 30 min at 37 ◦C. Images were collected in

two different fluorescent channels using an automated microscope (Array-Scan VTI HCS

Reader (Thermo Fisher, PA). The imaging software (vHCS SCAN, Thermo Fisher, PA)

identified nuclei in channel 1 (36550/46115nm) as objects according to their size, area,

shape, and intensity.

Chanel 2 detected the calcein signal (47540/52515nm). An algorithm quantified all calcein

positive cells as viable and only H-33342 positive nuclei as not viable cells. Viable cells

per well were calculated from area covered by pictures in relation to well area.
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2.2. Proteomics

2.2.1. Sample preparation

Cells were directly harvested from the plate by adding 8 M Urea buffer (Suppl. Table A.2)

in appropriate volumes - Nalgene 6-well plate: 250 uL; Nalgene 10 cm dish: 1-2 mL. Pro-

tein content were determined by BCA protocol in 96 well-plate format and plate reader.

100–200 ug of protein sample were digested following standard protocol using Trypsin

(1:80 w/w, 4 hrs, 30◦C) and Lys-C (1:40 w/w, over night. 30◦C) . Denaturation and

alkylation of the proteins were sustained by adding Ditiothreitol (DTT, 11 mM) and Io-

dacetamine (IAA, 200 mM). Samples were diluted with ammonium bicarbonate between

Lys-C and tryptic digestion. After the incubation digestion was stopped through acidifi-

cation by addition trifluoracetic acid (TFA, 5-10 uL). Samples were desalted and purified

by stage tipping for LC-MS analysis. Therefore Empore disc C18 (3M) were mounted

three times in a common 200 uL pipette tip. Membranes were activated with 50 uL pure

methanol, washed with 50 uL of buffer B (see TABLE) and equilibrated by adding 50 uL

of buffer A. Each step was performed on a vacuum system. Per stage tip 18 ug of sample

were loaded and desalted by adding buffer A. Stage tips were stored at 4◦C until proceed-

ing for LC-MS measurement. Peptides were eluted with 50 uL of buffer B. Eluates were

dried for 20 min under vacuum and samples resolved in 20 uL of buffer A.

2.2.2. LC-MS analysis

Peptides eluted from StageTips were separated by reverse-phase chromatography on a in-

house made 25 cm columns C18-Reprosil-Saphir (Dr. Maisch, inner diameter: 75 um, par-

ticle diameter: 1.8 um) using nanoflow high-performance liquid chromatography (HPLC)

system (Agilent 1200). This system was coupled directly via nano-electrospray ion source

(Proxeon) to LTQ Orbitrap Velos (Thermo Fisher Scientific). Peptides were loaded on

the column with a flow rate 200 nL/min. Elution was performed with 220 min gradient of

buffer B (2 - 50%) at a flow rate of 250 nl/min. Column was washed with 90% buffer B for

10 min and re-equilibrated with buffer A between the runs. Mass spectra were acquired
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in a positive mode applying a data-dependent analysis (DDA) switch between survey MS

scan (m/z 300-1700m, resolution R=60’000) and MS/MS spectra acquisition. The 20 most

intense ions (Top20) of each survey MS scan were selected for fragmentation and MS/MS

spectra acquisition. Fragmentation was induced by collision-induced dissociation (CID)

with a target value of 3000 ions. Lock mass calibration at m/z+445.12 enabled the im-

provement of precursor ion accuracy. Mono-charged ions, ”potential” contaminants, were

excluded fro MS analysis. Fragmented ions were banned for further re-measurement for

30 seconds improving detection of middle-abundant ions. Samples were measured in two

technical and at least two biological replicates.

2.2.3. Data analysis

Raw files were analysed using MaxQuant (1.4.1.2) - software tool for proteomic analy-

sis developed in the lab of Matthias Mann (Cox and Mann, 2008). MaxQuant provides

the identification and label-free quantification of proteins, applying a decoy-International

Protein Index (IPI)-human database. Following parameter were set: Proteases - Trypsin

(cleavage behind lysine (K) and arginine (R) with restriction after proline (P). Ion masses

were searched with a maximum of mass deviation of 7ppm. Variable modifications of

methionine oxidation and N-terminal acetylation as well as fixed modification of cysteine

carbamidomethylation were set for protein identification. Peptides with at least six amino

acids and a maximum of two missed cleavages were selected for analysis. The false dis-

covery rate was fixed for 1%.
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2.3. pSIRM Methods

2.3.1. Cell culture and pSIRM harvest

The number of cells for plating was determined to avoid contact inhibitory effects during

the experiment for each cell line and nutrient condition separately. After seeding, the

cells were cultured for 2 or 3 days. During that time, cell culture media was replaced 24

and 4 hrs prior to harvest. The adherent growth behavior of the used cell lines allowed

the labeling with 13C-substrates directly on the cell culture dish. Therefore, the cell

culture medium was replaced with pre-warmed full label medium containing all carbon

sources and supplements like standard cell culture for a defined time range. One carbon

source was substituted with its carbon-13 variant according to the setup of the experiment.

Hereafter, the cells were quickly flushed with label buffer (140 mM NaCl, 5 mM HEPES

(Roth, Karlsruhe, Germany) with pH 7.4, major carbon sources according full label media)

to remove extracellular metabolites. Immediately, the cells were quenched with 5 mL 20◦C

cold 50% methanol (containing cinnamic acid (2 ug/mL)). The cells were scratched from

the culture dish in the solvent, transferred into a 15 mL falcon, and stored on ice or at

25◦C until proceeding with metabolite extraction. In the pSIRM experiments with an

application of 13C-substrates for less than 5 min, the cells were incubated in label buffer

directly.

2.3.2. Intracellular metabolite extraction

Methanol-chloroform-water extraction provides an effective extraction and subsequent sep-

aration of lipid and polar intermediates. One milliliter chloroform was added to 5 mL of

methanol cell extracts, shaken for 30 min at 4◦C, and centrifuged at maximum speed

for 15 min for phase separation. Both phases were collected separately and dried under

vacuum. The extracts were stored at 25◦C.
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2.3.3. Extracellular metabolite extraction

Fifty microliters per each media sample were extracted in 1 mL of methanol-chlorofom-

water (5:2:1 v/v/v, cinnamic acid standard 2 ug/mL) for 30 min overhead shaking at 4◦C.

Phase separation was done by adding 0.5 mL of H2O and centrifugation. A volume of

750 ul per polar phase were dried for GC-MS analysis. Samples were stored at -25◦C until

preparation for GC-MS measurement.

2.3.4. GC-MS analysis

Derivatization was carried out as described with modifications in Kempa et al. (2007).

The dried cell extracts were dissolved in 20 uL of methoxyamine hydrochloride solution

(Sigma, 40 mg/mL in pyridine (Roth)) and incubated for 90 min at 30◦C with constant

shaking followed by the addition of 80 uL of N-methyl-N-[trimethylsilyl]trifluoroacetamide

(MSTFA; Machery-Nagel, Dueren, Germany) and incubation at 37◦C for 45 min. The ex-

tracts were centrifuged for 10 min at 10,000 ×g, and aliquots of 30 uL were transferred

into glass vials (Th. Geyer, Berlin, Germany) for gas chromatography-mass spectrometry

(GC-MS) measurement.

Retention index standard: Nine alkanes (n-decane, n-dodecane, n-pentadecane, n-oc-

tadecane, n-nonadecane, n-docosane, n-octacosane, n-dotriacontane, and n-hexatriacontane)

were dissolved in hexane, combined at a final concentration of 2 mg/mL and stored at 4◦C.

Retention index standard was added to the solvent (MSTFA) at a final concentration of

2% (v/v) during derivatization.

2.3.5. Quantification standard

The quantification mixture was composed of 63 compounds (stock concentration 1 mg/mL,

20% MeOH). A dilution series from 1:1, 1:2, 1:5, 1:10, 1:20, 1:50, 1:100, and 1:200 was

prepared, portioned, dried under vacuum, and stored at 20◦C. One set of quantification

standard was treated in parallel with cell extracts during derivatization and measured in

technical replicates within an experiment.
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2.3.6. GC-MS measurement

Metabolite analysis was performed on a gas chromatography coupled to time of flight

mass spectrometer (Pegasus III- TOF-MS-System, LECO Corp., St. Joseph,MI, USA),

complemented with an auto-sampler (MultiPurpose Sampler 2 XL, Gerstel, Mülheim an

der Ruhr, Germany). The samples and quantification standards were injected in split

mode (split 1:5, injection volume 1 uL) in a temperature-controlled injector (CAS4, Ger-

stel) with a baffled glass liner (Gerstel). The following temperature program was applied

during sample injection: initial temperature of 80◦C for 30 s followed by a ramp with

12◦C/min to 120◦C and a second ramp with 7◦C/min to 300◦C and final hold for 2 min.

Gas chromatographic separation was performed on an Agilent 6890 N (Agilent, Santa

Clara, CA, USA), equipped with a VF-5 ms column of 30 m length, 250 um inner di-

ameter, and 0.25-um film thickness (Varian, Palo Alto, CA, USA). Helium was used as

carrier gas with a flow rate of 1.2 ml/min. Gas chromatography was performed with the

following temperature gradient: 2 min heating at 67.5◦C, first temperature gradient with

5◦C/min up to 120◦C; subsequently, a second temperature increase of 7◦C/min up to

200◦C, 12◦C/min up to 320◦C and a hold of 6 min. The spectra were recorded in a mass

range of 60 to 600 mass units with 10 spectra/s at a detector voltage of 1650 V.

2.3.7. Data analysis

The vendor software ChromaTOF (Leco) was used for pre-processing of GC-MS derived

files: (1) resampling and (2) export of the mass spectra and peak list files. Metabolite

identification and quantification are performed with in-house developed software MAUI-

SILVIA. Details of algorithms and computational framework are described in Kuich et al.

(2014).

Absolute quantities are determined based on external calibration by the measurement of

the previously described quantification standards. Known concentrations are correlated

with the peak area of top 5 abundant ions m/z of the individual metabolite mass spectra.

Fragment masses dependent on the isotope carbon composition and affected by the incor-

poration of stable isotopes are complemented with corresponding masses (pTop5).
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Table 2.1.: GC-MS fragments for determination of stable isotope incorporation.

Metabolite
Mass fragment m/z

Derivate Abbr. Carbon-12 complete labeled 13C-Glucose 13C-Gln

3-Phoshphoglyceric acid 4TMS 3PGA 357 359 359 /
Alanine 3TMS Ala 188 190 190 /
Aspartic acid 3TMS Asp 232 235 235 (a) /
Citric acid 4TMS Cit 273 278 275-277 277-278
Citric acid 4TMS Cit 375 381 375-380 380-381
Dihydroxyacetonephosphate 1MeOX 3TMS DHAP 400 403 403 /
Fructose 1MeOX 5TMS Fru 217 220 220 /
Fructose-1,6-bisphosphate 1MeOX 7TMS F1,6-BP 217 220 220 /
Fructose-6-phosphate 1MeOX 6TMS F6P 217 220 220 /
Fumaric acid 2TMS Fum 245 249 247 249
Glucose 1MeCX 5TMS Glc 319 323 323 /
Glucose-6-phosphate 1MeOX 6TMS G6P 217 220 220 /
Gluconic acid-6-phosphate 7TMS PG6 217 220 220 /
Glutamic acid 3TMS Glt 246 250 / 250
Glutamine 3TMS Gln 156 160 / 160
Glutaric acid 2TMS Glut 261 266 / 266
Glutaric acid, 2-hydroxy 3TMS Glut-OH 247 251 / 251
Glutaric acid, 2-oxo 1MeOX 2TMS aKG 198 203 200 203
Glycerol 3TMS Glyc 218 221 221 /
Glycerol-3-phosphate 4TMS Glyc3P 357 359 359 /
Glycine 3TMS Gly 276 277 277 /
Lactic acid 2TMS Lac 117 119 119 /
Malic acid 3TMS Mal 233 236 235 236
Phosphoenolpyruvic acid 3TMS PEP 369 372 372 /
Pyruvic acid 1MeOX 1TMS Pyr 174 177 177 /
Ribose-5-P 1MeOX 5TMS R5P 217 220 220 /
Serine 3TMS Ser 204 206 206 /
Succinic acid 2TMS Succ 247 251 249 251

An integrated module enabled the targeted evaluation of stable isotope incorporation in

GC-MS derived data. Mathematical background is described in detail in Pietzke et al.

(2014). Metabolite-specifc mass fragments used for the calculation of isotope incorpora-

tion is listed in the Table 2.1. Mass isotopomer distributions of unlabeled metabolites

were used for the correction of natural isotope abundance and were automatically selected

from measurements of quantification standards or manually defined.

MTXQC, a R-script based tool developed in the frame of this PhD thesis, enabled the

assessment of GC-MS derived data quality. Section 3.3.3.2 summarises a detailed descrip-

tion of MTXQC for pSIRM time course experiments, an exemplary output file including

the R code is shown in Suppl. Material E.
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2.4. Experimental setups

2.4.1. Fibroblasts, cancer cells, hESCs, iPS cells and their differentiated

derivates

Cancer cell lines MDA-MB231, MMCF-7, HT-29, RKO, and SW480 were obtained from

ATCC, hESC H1 and H9 from WiCell. Somatic cell lines HFF1, NFH2, and BJ1 and

the generation of iPS and iPS-DF cells were kindly provided or generated by Alessandro

Prigione, formerly at MPI Berlin and currently at the MDC-Berlin, Germany.

Cancer cells and fibroblasts were cultivated in DMEM media supplemented with 10% fetal

bovine serum, non-essential amino acids (NEAA), L-glutamine, Penicillin/Streptomycin,

and sodium-pyruvate. Experiments were performed with cell culture passages 2–6.

Human embryonic and iPS cells were cultivated in ko-DMEM media supplemented with

20% ko-serum replacement, NEAA, L-glutamine, Penicillin/Streptomycin, Sodium-Pyruvate,

β-Mercaptoethanol and 8 ng/mL bFGF. Cells were maintained on MEFs and splitted using

the cut and paste technique. For experiments cell cultures were transfered to feeder-free

conditions on matrigel-coated plates. Experiments were performed between passages 14

and 28. All cell cultures were cultivated at 5% CO2 and ambient oxygen level. Two days

prior the experiment cells were seeded for pSIRM labeling experiment in DMEM media

supplemented with 2.5 g/L glucose, 0.365 g/L glutamine, and 0.055 g/L pyruvic acid (Ta-

ble 2.2). Seeding densities were adjusted to maintain maximum of 80% confluency in a

petri dish (diameter 10 cm). A media change has been performed four hours prior the

labeling to adjust cell culture and nutrient conditions.

Stable isotope labeling and cell harvest were performed as described in the pSIRM meth-

ods. 13C-Glc and 13C-Pyr were applied for 7 min, 13C-Gln for 15 min each. For each

substrate three (13C-Glc), respectively two (13C-Gln, -Pyr) biological replicates were har-

vested and processed for GC-MS measurement as described. A single petri dish has been

harvested and prepared for shotgun proteomics analysis as described before.
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2.4.2. Early differentiation in hESCs H1

Human embryonic stem cells H1 were cultivated in serum-free culture to maintain pluripo-

tency. For detailed information of media composition see Supplement Table B.10. Replace-

ment of the media lacking bFGF and chiemera induced the spontaneous cell differentiation.

The parallel replacement of glucose and glutamine by their stable isotopic counterparts

provided to monitor the fate of the main carbon-sources within the CCM. 13C-substrates

were applied prior and at 24 hrs and 48 hrs of differentiation. Considering the nutrient

turnover cells were labeled with 13C-Glc for 15 min, 13C-glutamine has been applied for

60 min.

Cell extracts of two 6-wells were pooled per biological replicate and condition according to

the pSIRM protocol. Three biological replicates were prepared for each time point and 13C-

substrate. Quantities of metabolites (pmol/1 ×106 cells) were calculated based on protein

content determined of the interphase and related to a protein content of 900 ug/1 × 106

cells.

Proteome samples were prepared in two biological replicates according to the proteomics

protocol. All experimental parameters are summarised in Table 2.3.

2.4.3. Neuronal differentiation of Luhmes cells

Experiments were performed in collaboration with Simon Gutbier and Johannes Delp,

PhD students of the Leist-Lab. Luhmes d0 and d6 cells were cultivated and differentiated

according to the standard protocol in the Leist lab at the University of Konstanz. Briefly,

conditionally-immortalized cells (Luhmes d0, tet-off system v-myc transgene) were culti-

Table 2.2.: Human ESCs, iPS cells and their derivates — experimental parameter.

hESC and derivates

Cell lines 2x breast cancer cell lines
3x colon cancer cell lines

2x hESC cell lines
3x fibroblast cell lines

13C-Substr. Glc / Gln / Pyr
Labelling Time (min) 7 / 15 / 7
Nb. of biological replicates 3 / 2 / 2
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Table 2.3.: Early differentiation — experimental parameter.

Early differentiation

Cell lines hESC H1
Time points (hrs of differentiation) 0, 24, 48
13C-Substr. Glc / Gln
Labelling Time (min) 15 / 60
Nb. of pooled 6-wells 2

vated in proliferation media (PM). 8 ×106 Luhmes d0 cells were seeded in a Nunclon T175

tissue flask for differentiation in PM. After 24 h, medium was replaced with differentiation

medium (DM).

Pre-differentiated cells were trypsinised after 48 hrs, and seeded in a density of 1.5 ×

105 cells/cm2 in precoated 6-well plates with 50 ug/ml poly-L-ornithine (PLO) and 1 ug/ml

bronectin in DM. Differentiated cell culture was maintained in DM for additional four days.

Isotopic labeled media (13C-Glucose and -Glutamine) were prepared as described before.

Initially two experiments were performed to analyse the general nutrient consumption

of Luhmes d0 and d6 cells (Exp 1). Therefore Luhmes cells were incubated for 30 min

with labelling media and harvested according to the pSIRM protocol for adherent cells

in 6-well plates. Every biological replicate consists of two pooled wells of independent

differentiations. Cell extracts were stored in 50%-Methanol and shipped on dry-ice for

further sample processing at the MDC Berlin-Buch.

50 ul of media sample were collected for each harvested well according to the pSIRM pro-

cocol - plain media, prior labelling, and after 13C-substrate incubation.

In addition time course experiments were conducted for each 13C-substrate for MFA. Time

points, experimental conditions, and additional parameters are listed for each experiment

in Table 2.4. Cell counts for each experiment and cell line have been determined by nuclei

Table 2.4.: Neuronal differentiation of Luhmes cells: Experimental conditions and param-
eter. * Time course experiments have been performed for up to 24 hrs.

Exp 1 Exp 2 Exp MPP+ Exp 2 add-on

Cell lines d0, d6 d6 d6 d0
13C-Substr. Glc, Gln Glc, Gln Glc, Gln Glc, Gln
Treatment no no 5 uM MPP+ no
Labelling Time 30 min time course* time course* time course*

34



Experimental setups Chapter 2: Materials and Methods

Table 2.5.: Applied isotopes for the identification of GC-MS derived fragments

Substrate Applied Isotopes

Glucose u-12C,u-13C, 13C1,
13C1,2,

13C1,2,3,
13C4,5,

13C4,5,6,
13C6

Glutamine u-12C, u-13C
other u-13C-Pyr, u-13C-αKG

staining in the Leist-Lab as described in Material & Methods 2.1

Multiple wells of each cell line were harvested for shotgun proteome analysis. 8 M Urea

buffer has been added directly into the well. Plates have been sealed, stored at -80◦C and

shipped on dry-ice for further sample preparation at the MDC Berlin-Buch.

2.4.4. Mapping of GC-MS fragments

HEK293 and HCT116 cells were labeled with various substrates for the mapping of GC-MS

derived fragments to the molecule structure (Table 2.5). Cells were cultivated under stan-

dard conditions as described before and labeled for 6 hours with isotopes of glucose and

pyruvic acid or over night in the case of the application of glutamine and αketoglutaric acid

isotopes. Experiments were performed with DMEM media supplemented with 2.5 g/L glu-

cose and 2 mM glutamine. Cell harvest and metabolite extraction was performed as de-

scribed in detail in Section 2.3.
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2.5. Computational methods for omics data analysis

Volcano plot Volcano plots are used for the comparison of two proteoms at the same

time. Fold changes are calculated related to the primary state; iPS to fibroblast; derived

fibroblast to iPS. T-test statistics (α = 0.05, two-sided) calculates the significance of the

difference of mean values for each protein.

Filled dots (red, blue) represent significant differentially expressed CCM-proteins. Proteins

with an absolute log2FC > 2 are shown with gene name tag only. Individual clones derived

from the same progenitor are summarised as biological replicates for the determination of

fold change and t-test.

Hierachical clustering Data processing was done with the MaxQuant-related software

Perseus 1.4.0.201. LFQ intensities from the MaxQuant output file proteinGroups.txt has

been imported into Perseus. Contaminants and reverse proteins were removed prior the

analysis.

LFQ intensities were log2-transformed. File annotation has been done in Perseus, thereby

samples were grouped regarding experimental setup, cellular status (pluripotent, differ-

entiated) and technical replicate. Data matrix has been filtered for at least three valid

values per experimental setup and two technical replicates.

Averaged values of log2 LFQ intensities were transformed into row-wise z-scores. Anno-

tation of GOBP slim and KEGG names were added prior the hierarchical cluster analysis

(euclidean distance, average, 300 cluster). Enzymes associated with the central carbon

metabolism are mentioned regarding to their expression next to their cluster. Enrichment

of GOBP and KEGG pathways are done by Perseus internal algorithms.

Principal component analysis Principal component analysis has been carried out com-

plete data matrices without imputation of values. Quantitative data, either metabolite

quantities, stable isotope incorporation or protein expression has been log2-transformed

prior the analysis. Rank-dependent PCA has been applied in the frame of the combined

1http://coxdocs.org/doku.php?id=perseus:start
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analysis of all three mentioned kind of data.

Metabolic profiles Metabolic profiles were determined based on the absolute quantifi-

cation of all identified metabolites in a cell line. Only data points fullfiling the qual-

ity requirements (described in 3.3.3.2) are taken into account for the calculation of the

metabolic profile. Multiple derivates of a metabolite are averaged to a single quantity per

metabolite (pmol/106 cells).

The metabolite abundance is calculated (i) within all quantified metabolites of the corre-

sponding pathway class (x-axis) and (ii) to the total metabolite content (y-axis).

The log2-transformation of the x-axis improves visibility of the metabolite distribution

within the pathway. The absolute quantity is reflected in the area of the circle for each

metabolite. Metabolites with a fraction less than 1 % within a pathway are excluded from

the visualisation. Metabolic profile quantities are shown in the supplement for each cell

line. Metabolite-pathway associations are listed in Table 2.6.

2.6. Tools and software used for data analysis

• ChromaToF v.4.42 and v.5.2 (Leco); GC-MS derived data processing and annotation

• Illustrator 5.6 (Adobe); data visualisation and general graphical illustration

• MAUI-SILVIA; In-house developed software for GC-MS data annotation and processing.

Basic framework is described in Kuich et al. (2014)

• MaxQuant v.1.4.1.2; Protein LFQ quantification of LC-MS derived data (Cox and Mann,

2008)

• MTXQC v.1.6; In-house developed tool for determination of data quality of GC-MS datasets

Table 2.6.: Metabolite-pathway association for the determination of metabolic profiles

Pathway Metabolite

Amino acids Ala, Asp, Gly, Iso, Leu, Lys, Met, Phe, Pro, Ser, Thr, Val
Glutaminolysis 2HG, Glu, Glut
Glycolysis 3PGA, DHAP, FBP, Frc1P, Frc6P, Glc6P, Lac, PEP, Pyr
Other Adenosine, Creatinine, Cytosine, Ery, Frc, Glyc3P, myo-Ino, PanA, Putr, Uracil
PPP 6PGA
TCA-cycle aKG, Cit, Fum, Mal, Suc
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• Perseus; MaxQuant associated tool for LC-MS data analysis and visualisation (Tyanova

et al., 2016)

• PTXQC; In-house developed tool for the determination of data quality of LC-MS dataset (Bielow

et al., 2016)

• RStudio Desktop; a R for statistics computing working environment, www.rstudio.com

• R packages: dplyr, ggplot2, gplots, plyr, RColorBrewer, reshape2, scales. Please refer for

reference to R-project.org

• webgestalt.org (Netherlands); web tool for translating gene lists into biological insights

• bioinformatics.psb.ugent.be (IB, Belgium); generation of venn diagramm
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2.7. Instationary metabolic flux analysis

A biochemical reaction network of central carbon metabolism for mammalian cell lines

has been constructed based on Amaral et al. as well as from the KEGG database

(http://www.genome.jp/kegg) (Amaral et al., 2011). The construction of our model was

guided by (1) representing biosynthesis and degradation pathways by effluxes from the

system and excluding low-abundance biomass components; (2) pooling metabolites due to

limited measurement information, e.g., 2-phosphoglycerate and 3-phosphoglycerate, which

are represented by one lumped pool 3PGA while preserving the carbon atom transitions;

and (3) aggregating parallel fluxes, such as isoenzymes.

The model central carbon metabolism consists of glycolysis, pentose phosphate pathway,

TCA-cycle and amino acid synthesis and degradation. Glutaminolysis and de novo synthe-

sis of serine, glycine and alanine were incorporated because time-resolved measurements

were available for these pathways. The isotope incorporation information of 13C-glucose

and 13C-glutamine have been integrated in one network.

The biomass composition for mammalian cells was adopted from Sheikh et al. (2008) and

integrated as a set of constraints for the fluxes into building block synthesis. In total,

the model contains 67 metabolites and 97 reactions, each supplemented with carbon atom

transitions (D.1). We implemented around 1002, respectively 734 isotope patterns derived

from the measurement of isotope incorporation at 11 time points (Table 2.7).

The generation of isotopomer balances, the simulation of measurements, the flux estima-

tion, and the statistical assessment of resulting flux confidence intervals were performed

using the software tool 13CFLUX2 with an non-stationary extension for simulation of

transient labeling distributions (Weitzel et al., 2013).

Fluxes were calculated based on the minimisation of a weighted least squares objective

with randomly sampled starting values combined with a globalized optimisation strategy

to detect multiple equally good but essentially different flux solutions. Finally, the re-

sulting flux estimations are represented in the context of the metabolic network model by

manual illustration in Illustrator. Thickness (pt) of fluxes had been related to the highest
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Table 2.7.: Model parameter for INST-MFA in Luhmes d0 and d6 cells.

Parameter Luhmes d0 Luhmes d6

Measured intracell. pools 15 16
Extracellular rates (total) 23 23
Isotope pattern 1002 734
Time points 11 11
Metabolite pools (total / free) 67 / 33 67 / 33
luxes (total / free) 97 / 36 97 / 35

(3 pt) metabolic flux in the network for each flux map.

GC-MS derived data have been evaluated by the in-house developed quality control tool

MTXQC for time series experiments. The tool evaluates the GC-MS performance, abso-

lute quantification and MID quality using the output from MAUI-SILVA. Absolute pool

sizes were taken from the metabolic profile of the cells, considering all requirements re-

garding absolute quantification as described before.

The following procedure had been applied to achieve an acceptable fit: (1) each mass

isotopomer measurement sums up to one and so we used a minimum absolute standard

deviation of 0.01 to account for the noise of measurements close to the detection limit of

MS instruments, (2) we obtained the best fit by minimising the difference between simu-

lated and measured data, and (3) we excluded those measurements with low abundance

that have extraordinary large discrepancies.
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3 Results

All herein described projects aimed to get insights how metabolic reprogramming affects

the central carbon metabolism (CCM) during the induction of pluripotency or tumorige-

nesis. Quantitative high-throughput mass spectrometry approaches had been applied to

a panel of cancer, pluripotent and differentiated cell lines for a comprehensive analysis of

the CCM. The application of stable isotopic labeled substrates e.g., 13C-glucose, provided

the time-dependent and carbon-resolved tracing of nutrients within the metabolism and

gave an indirect measure of the metabolic flux. Metabolic fluxes are the total outcome

of the interaction of all regulatory layers of a cell and therefore the only one functional

read-out of a cell.

Four projects have been carried out to address metabolic reprogramming in the context

of cell differentiation, induction of pluripotency and tumorigenesis. The methodology has

been applied to human embryonic stem cells (hESCs), derived fibroblasts (hESC-DFs)

and cancer cell lines; two breast and three colon cancer cell lines. The comparison of pro-

teome and metabolome revealed common and distinct features of the aerobic glycolytic

phenotype of potent cells.

A second experiment addressed the reversibility of metabolic reprogramming. Three fi-

broblasts cell lines, their derived induced pluripotent (iPS) cells and their re-differentiated

fibroblasts (iPS-DFs) have been analysed in the same manner as the previous project. Both

experiments together allowed to examine similarities and differences of native (hESCs) and

reprogrammed (iPS) pluripotency.

In addition events occurring during the early steps of differentiation have been analysed

in a third experiments in hESCs H1 cells. At last the analysis of terminal neuronal differ-
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entiation of a pluripotent precursor cell lines complements the list of experimental setups.

At first an introduction of each project and an overview of the protein expression, the

metabolic profile and the incorporation of main nutrients are given for each project in

Section 3.1. The following Section 3.2 summarises the integration of all experimental

setups data to identify phenotype specific features of the CCM. Ultimately, the developed

workflow from cell culture experiments up to the determination of metabolic fluxes in

mammalian cells, including methodological developments, are summarised in Section 3.3.

3.1. Quantitative and dynamic analysis of CCM proteome and

metabolome during differentiation and reprogramming

pluripotency

3.1.1. Cancer, stem cells and stem cell derived fibroblasts: common and

distinct characteristics of proteome and metabolome

The Warburg effect is known as the main common metabolic characteristic of cancer and

stem cells. The shift from mitochondrial respiration towards aerobic glycolysis is a key

event occurring during tumorigenesis. The contrary switch is induced in hESCs during

differentiation. The metabolism switches from aerobic glycolysis towards an increased ac-

tivity of oxidative phosphorylation.

Shotgun proteomics and pSIRM experiments have been performed for a quantitative com-

parison of the CCM in five cancer cell lines (colon cancer: HT-29, RKO, SW480; breast

cancer: MCF7, MDA-MB231), two hESC cell lines (H1, H9) and their differentiated coun-

terparts (H1-DF, H9-DF) (Figure 3.1). Every cell line has been incubated with the fol-

lowing stable isotopes for the dynamic analysis of nutrient utilisation: 13C-glucose (Cam-

bridge isotopes, 7 min), 13C-glutamine (Cambridge isotopes, 15 min), and 13C-pyruvic

acid (Cambridge isotopes, 7 min). The experiments have been carried out under identical

conditions and supply of nutrients.
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3.1.1.1. Expression of CCM enzymes and their isoforms

The application of shotgun LC-MS proteomics approach and MaxQuant label-free quan-

tification provided the quantification of 5400 proteins. Duplicated cell lines (H9 and MDA-

MB231) are derived from an independent experiment and are included for data validation.

Enzymes and their isoforms are highlighted in the green box regarding their position in the

cluster, if detected (Figure 3.2). The blue box summarises the enrichment analysis of GO

“biological process” (GOBP) of each cluster. The number of proteins located within the

cluster are shown in brackets in comparison to the overall number of quantified proteins.

The hierarchical cluster analysis of the global proteome revealed similarities between pro-

teome profiles of cancer, stem and differentiated cells. The proteome of the colon cancer

cell line HT-29 grouped together with early and late stage breast cancer cell lines MCF7

and MDA-MB231. SW480 colon cancer cells shared a similar proteome profile with hESC

derived fibroblasts H1-DF and H9-DF, whereas the proteome of RKO cells showed a closer

relation to the proteome of hESCs H1 and H9.

Differentiation-induced changes of protein expression The differentiation of hESCs is

accompanied by a rearrangement of cell morphology and metabolism, e.g., the maturation

of mitochondria, the power plant of a cell running the production of ATP. Despite, a

number of TCA-cylce related enzymes showed up-regulated protein levels in pluripotent

13C-Glc tinc= 7 min

13C-Gln tinc= 15 min

13C-Pyr tinc= 7 min

Human embryonic
stem cell (hESC)

Derived �broblasts 
(hESC-DF)

DIFFERENTIATION

Cancer cell
(CC)

HT-29 (colon, BRAF*, PIK3CA*)
MCF7 (breast, ER+, PR+)

MDA-MB231 (breast, ER-, PR-)
RKO (colon, BRAF*)

SW480 (colon, KRAS*)

H1
H9

H1-DF
H9-DF

Figure 3.1.: Experimental setup for analysing the proteome and metabolome profile of
cancer, stem cells and derived fibroblasts. Isotope labeled substrates (13C-glucose, 13C-
glutamine, 13C-pyruvic acid) are applied to monitor the carbon routing within the CCM
in all cell types.
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Figure 3.2.: Hierarchical cluster analysis comparing LFQ protein expression of hESCs,
derived fibroblasts and cancer cell lines. CCM-associated proteins are shown regarding
to their position in the clustering in the green box. Blue box contains the enrichment
analysis of GOBP classes including number of proteins within the cluster and number of
proteins per GOBP class in total.

hESCs: isocitrate dehydrogenase 1 (IDH1,c), succinate dehydrogenase A (SHDA, m), and

both isoenzymes of malate dehydrogenase 1/2 (MDH1 (c)/ MDH2 (m)) (Figure 3.3-A).

The pyruvate dehydrogenase complex (PDHc, m) consists of multiple copies of the subunits

PDHA, PDHB and DLAT. This complex catalyses the conversion of cytosolic imported
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pyruvate into acetyl-CoA, that enters the TCA-cycle. Elevated protein levels have been

detected for all subunits in hESCs. Equally, the protein expression of the subunits of

the structural related 2-oxoglutarate dehydrogenase complex OGDHc, OGDH and DLST,

were increased in the pluripotent cells and decreased with differentiation. The reduced

expression of citrate synthase (CS, m), first enzyme of the TCA-cycle and solely expressed

in the mitochondria, in hESC-DFs is accompanied by decreased levels of fatty acid synthase

(FASN, c).

Differentiation induced a switch in isoenzyme expression of lactate dehydrogenase (LDH, c)

and malic enzyme (ME) in hESCs. The levels of LDHB and the NAD-dependent isoenzyme

ME2 (m) were increased in hESCs; whereas LDHA and NADP-dependent isoform ME1 (c)

were raised in hESC-DFs.

Protein levels of pyruvate kinase M2 (c), one of the rate limiting enzyme of glycoly-

sis, increased with differentiation of hESCs. The complementary isoform PKM1 has not

been detected in hESCs, but in hESC-DF cells. Differentiation of hESCs were accompa-

nied by the reduced expression of aspartate aminotransferases (GOT1 (c) / GOT2 (m)).

Proteins related to the one-carbon metabolism were highly abundant in hESCs, e.g., 3-

phosphoglycerate dehydrogenase (PHGDH, c), cystathionine β-synthase (CBS, c), and ser-

ine hydroxymethyltransferase (SHMT2, c). PHGDH is the first of three enzymes catalysing

the de novo synthesis of serine (Ser), a major substrate of the one-carbon metabolism. A

detailed analysis of the one-carbon metabolism has been summarised in Section 3.2.4.1.

Proteome similarities between hESC and cancer cell lines Proteins of the CCM are

highly conserved and exist in multiple isoforms. Transcription factors, e.g., c-myc, the

hypoxia-inducible factor 1 (HIF-1) and p53 regulate the expression of isoenzymes in the

CCM. The proteome profiles of cancer cell lines showed a huge variance of protein expres-

sion in general, and especially of proteins related to glycolysis and TCA-cycle, reflecting

the complex enzyme expression pattern of those key players in different type of cancer

cells.

A comprehensive analysis of CCM protein expression dependent on the cellular status is

summarised in Section 3.2. At this point the analysis focusses on the comparison of the
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Figure 3.3.: Isoenzyme expression of CCM proteins in hESCs, hESC-DFs and MDA-
MB231 cells. (A) Volcano plot comparing CCM related protein expression in hESC and
hESC-DF. (B) LFQ-quantities of selected isoenzymes are shown for hESC H9 and H9-DF
cells. (C) Volcano plot shows the comparison of expression levels of CCM-enzymes in
hESCs and MDA-MB231 cells. (D) LFQ-quantities of selected enzymes of the volcano
plot are shown comparing hESCs and MDA-MB231 cells. Coloured circles in the volcano
plots show proteins with a FC > 1 and p−value < 0.05; proteins with p−value > 0.05
are shown with name tags only.

proteome of hESCs and breast cancer cells MDA-MB231.

The isoenzymes of LDH were cell-type specifically expressed. MDA-MB231 cells showed

high levels of LDHA (Figure 3.3-B). LDHB, second isoform of the enzyme, was more

abundant in hESCs. High levels of PKM2, 6-phosphofructokinase (PFKP,c) and phos-

phoglycerate kinase 1 (PGK1, c) were determined in MDA-MB231 cells.

High abundant proteins in hESCs were mostly related to the one carbon metabolism

(MTHFD1L, PSAT1, CCBL2, all cytosolic), fatty acid synthesis (FASN, c) and aspartate

metabolism (ASL (c), ASS1 (c,m)). TCA-cycle protein IDH1 (c) showed increased protein

levels in hESCs in comparison to MDA-MB231 cells.
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A distinct expression of isoenzymes comparing hESCs and MDA-MB231 cells had been de-

tected for the protein branched-chain-amino-acid aminotransferase (BCAT). Pluripotent

cells solely expressed the isoenzyme BCAT1 (c), cancer cell lines BCAT2. The cellular

localisation of BCAT2 is dependent on the expressed isoform. The mitochondrial isoform

BCAT2B lacks the amino acids 9–100 of the cytosolic isoform BCAT2A. The performed

MaxQuant analysis did not distinguish between both isoforms based on the detected pep-

tides in that experiment.

3.1.1.2. Metabolic profile of cancer cells, hESCs and hESC-DFs

GC-MS based metabolomics analysis gave the resources for the identification of around

120 compounds of divergent biochemical classes, e.g., amino acids, hexoses and their phos-

phates. The measurement of a known standard mixture in eight dilutions in sequence with

cell extracts provided the estimate of absolute quantities of these compounds. The mixture

is composed of 60 metabolites of the pathways: glycolysis, TCA-cycle, pentose phosphate

pathway, amino acid metabolism and glutaminolysis. The composition of the standard

mixture for absolute quantification and applied quantities are summarised in Supp. Sec-

tion A.5.

The quantities are visualised in a plot called “metabolic profile” for each cell line. The

plot relates the quantities of every intermediate to their proportion within their path-

way (x-axis) and to the overall metabolic content (y-axis). The area of the circle of each

metabolite corresponds to its absolute pool size. The metabolic profiles of hESCs H9,

their derived fibroblasts H9-DF, and MDA-MB231 cells are shown in Figure 3.4.

In general, the comparison of differentiated and potent cells revealed overall lower pool

sizes in hESCs and cancer cells, independently from the pathway. Lactic and pyruvic acid

belonged to the most abundant intermediates in all cell lines, whereas in relation the pool

of Lac exceeded the Pyr pool in hESCs and MDA-MB231 cells. This ratio changed with

the differentiation of hESCs into hESC-DF cells.

Amino acids constituted the main class in all three cell types. Threonine, an essential

amino acid, is the most abundant amino acid in hESCs and their differentiated counter-
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parts. TCA-cycle intermediates accounted to the low abundant metabolites independently

from the cell type. The differentiation of hESCs induced a switch in TCA-cycle quantities.

The ratio of malic acid and citric acid, as well as fumaric and α-ketoglutaric acid (αKG)

reversed in hESC-DFs, pointing towards a change of metabolic demands of precursors

for biosynthesis processes. Citric, malic and α-ketoglutaric acid are important precursors

for adjacent pathways and are transported via a number of shuttles across the mitochon-

drial membrane. Low levels of citric acid may occur due to the increased demand of the

metabolite for the production of acetyl-CoA in the cytosol, a precursor for the synthesis

of fatty acids.
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Figure 3.5.: 13C-Glucose incorporation in human embryonic cells (hESCs), their derivates
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3.1.1.3. The routing of nutrient-derived carbons in cancer cells, hESCs and

hESC-DFs

13C-Glucose incorporation GC-MS measurements provides the quantitative determi-

nation of stable isotope incorporation in every compound. The incorporation of stable

isotopes, e.g., carbon-13, results in shift of intensities within the compounds mass spectra,

that is composed of all detected fragments of the metabolite. The shift correlates with

the number of incorporated isotopes. For each metabolite and derivate specific fragments

were selected for the quantitative analysis of isotope incorporation. A comparison of sta-

ble isotope incorporation between different cell lines or cellular states gain insights about

similarities and differences in the dynamics of nutrient uptake and utilisation.

The mathematical background and a list of metabolite specific fragments are introduced

in Section 2.3. The major claim of the Warburg effect is an increased shuttling of glucose-
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derived carbons into the synthesis of Lac. This effect occurs in stem and cancer cells even

in the presence of oxygen and therefore bypassing the more efficient synthesis of ATP via

mitochondrial respiration.

The levels of carbon-13 incorporation in Lac were similar in hESCs and the breast can-

cer cells MDA-MB231 and MCF7 (Figure 3.5). The differentiation of hESCs H1 and H9

cells resulted in a drop of incorporation in Lac that is similar to the incorporation rate in

colon cancer cell lines RKO, HT-29 and SW480. The same drop of isotope incorporation

occurred in Pyr with the differentiation of hESCs into fibroblasts. RKO colon cancer cells

showed the highest incorporation rate of 13C-Glc in Pyr.

The incorporation of two carbon-13 into citric acid (Cit) is an measurement of the en-

try of glucose-derived carbons via acetyl-CoA into the TCA-cycle. MCF7 and RKO cells

showed two times the incorporation rate of 13C-Glc in comparison to stem cells, HT-29,

MDA-MB231 and SW480 cancer cells. The incorporation of 13C-Glc into Cit decreased

with differentiation of hESCs.

The elevated incorporation of 13C-Glc in Cit observed in hESCs was not further processed

into subsequent TCA-cycle intermediates, e.g., fumaric acid (Fum). The data showed a

higher incorporation of carbon-13 into Fum in hESC-DF cells, despite their lower levels in

Cit, pointed towards an increased turnover of carbons through the TCA-cycle in hESC-

DFs in comparison to their pluripotent precursors.

This isotope labelling pattern showed a link of glucose-dependent citric acid production

linked to fatty acid synthesis via export of citric acid into the cytosol. In contrast MDA-

MB231 and hESC-DF cells cycled glucose-derived carbons through the TCA-cycle for

ATP-production.

Further, the differentiation of hESCs has been accompanied by a reduction of glucose-

derived carbon routing into serine synthesis. The amino acid represents the link between

central carbon and one-carbon metabolism. An increased one-carbon pathway activity

meets the raised demand of precursors for DNA and histone methylation, a prerequisite

for the maintenance of a pluripotent state. Cancer cell lines incorporated less glucose-

derived carbon routing into serine synthesis in comparison to hESCs.
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13C-Glutamine The amino acid glutamine (Gln) replenishes the TCA cycle as a sec-

ond provider of carbons apart from glucose. Glutamine enters the TCA-cycle in form

of α-ketoglutaric acid (aKG) after its conversion into glutamic acid (Glu) by the enzyme

glutaminase (GLS). The synthesis of glutaminase occurs in both compartments depending

on the expression of the isoenzyme GLS.

After 15 minutes of incubation the Glu pool has been replaced up to 20% by carbon-13 in

cancer cell lines (Figure 3.6-A). The incorporation rate in hESCs has been slightly lower

and decreased further with differentiation into hESC-DFs.

Proceeding clockwise the TCA-cycle the carbon-13 incorporation into succinic acid (Suc)

reached similar levels in hESCs and MDA-MB231, SW480, and HT-29. The incorporation

of 13C-glutamine in MCF7 and RKO cancer cells dropped to 10% and has been even not
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detectable in hESC-DF cells due to their low pool of succinic acid.

The incorporation of four carbon-13 into citric acid has been below 10% in all cell lines.

A comprehensive, phenotype-specific analysis of the incorporation of nutrients into Cit is

outlined in Section 3.2.

13C-Pyruvic acid Pyruvic acid (Pyr) is one of the most interesting metabolites due to its

central position linking cytosolic and mitochondrial metabolism. Pyr is converted either

into Lac by LDH, simultaneously providing reducing equivalents (NADH), or into the

amino acid alanine by alanine aminotransferase GPT1 (c) / GPT2 (m). The enzymes

pyruvate carboxylase (PC) and the PDH complex (PDHc) provide the entry of pyruvate-

derived carbons into the TCA-cycle either in form of oxaloacetic acid (OAA) or acetyl-

CoA.

The analysis of 13C-Pyr incorporation allows to monitor the activity of these different

pathways. A status dependent analysis summarising all projects derived data is shown in

Section 3.2.

The differentiation of hESCs resulted in an increased routing of 13CC-Pyr into alanine

synthesis, accompanied by a decreased incorporation via acetyl-CoA into Cit (Figure 3.6-

B). The rate of incorporation into Lac did not alter between hESCs and hESC-DFs,

opposing the distinct routing of glucose-derived carbons into Lac.

MDA-MB231 cells cancer cell lines shuttled only a minor fraction of 13C-Pyr into alanine.

MCF7, RKO and SW480 cells incorporated up to 25% into Cit and between 10% and 20%

into Lac.
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3.1.2. Rearrangements of proteome and metabolome during reprogramming

pluripotency and redifferentiation of somatic cells

A cocktail of four factors (Oct4, Sox2, Kfl4, and Myc) induces pluripotency in differ-

entiated cell. In particular c-myc, a intensively studied oncogene, is known to modify

metabolic enzyme expression and their activation, e.g., of the central glycolytic enzymes

hexokinase (HK) and pyruvate kinase (PK). The potential of myc is clearly connected

with oncogenic transformation and recently labs work on the replacement of c-Myc for the

generation of iPS cells to improve their clinical applicability. The ability to define the fate

of a iPS cells during differentiation e.g., opens the door towards patient-specific treatments.

Until today the literature contains little information about the similarity of the metabolome

and proteome of the differentiated precursor and re-differentiated cell after the induction

of pluripotency. Only little is known about the comparability of native and reprogrammed

pluripotent cells.

Prigione and colleagues showed the modulation of mitochondrial morphology, ATP produc-

tion, and secretion of lactic acid during the induction of pluripotency (Prigione et al., 2010,

2011). In co-work with Alessandro Prigione we conducted a comprehensive study to inves-

tigate the metabolic reprogramming of the CCM combining proteomics and metabolomics

Fibroblast 
(F)

Induced 
pluripotent
stem (iPS) cell

REPROGRAMMING

DIFFERENTIATION

Derived fibroblast 
(iPS-DF)

13C-Glc tinc= 7 min 13C-Gln tinc= 15 min 13C-Pyr tinc= 7 min

HFF1 BJ1 NFH2

iPS2 iPS4

iPS2-DF iPS4-DF

iB4 iB5 OiPS3 OiPS6

iB4-DF iB5-DF OiPS3-DF OiPS6-DF

Figure 3.7.: Experimental setup for monitoring metabolic rearrangements during repro-
gramming pluripotency and redifferentiation of fibroblasts (HFF1, NFH2, BJ1). Applica-
tion of stable labeled isotopes enable to track the fate of nutrients within the CCM.
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approaches. Therefore we reprogrammed three fibroblast cell lines — HFF1, BJ1, and

NFH2 — into iPS cells and re-differentiated these iPS cells into somatic cells (Figure 3.7).

HFF1 and BJ1 cell lines are derived from the foreskin of male newborns. NFH2 is a

dermal fibroblast cell lines, derived from a 84years old female. The comparison of nu-

trient utilisation in these three stages gained insights about the activity and reversibility

of reprogrammed metabolic pathways. We applied stable isotopes, u-13C-glucose, u-13C-

glutamine and u-13C-pyruvic acid, to track the fate of carbons in the CCM, and collected

samples for proteome and transcriptome analysis.

3.1.2.1. Proteome analysis of fibroblasts, iPS, and iPS-DF cells

LFQ quantities of around 4500 proteins were determined by shotgun proteomics analysis.

The different cell lines clustered regarding their cellular status, whereas iPS-DFs proteome

profiles were closer related to the iPS cell derived profiles (Figure 3.8). The protein expres-

sion of all three native fibroblast cell lines grouped together in a third cluster. Enzymes

of the CCM are shown regarding their occurrence in the row clustering in the green box

(GOBP enrichment analysis of GOBP class in the blue box).

Induction of pluripotency in fibroblasts reduced the protein expression in a number of gly-

colytic enzymes (LDHA, GAPDH, ALDOA, and PKM2) and proteins related to GOBP

classes cytoskeleton organisation, cell activation, carbohydrate metabolic processes and

cell communication. A specific regulation of isoenzyme expression has been shown for the

proteins LDHB and IDH. The expression of LDHA and IDH1 increased with induction

of pluripotency, whereas LDHB and IDH2/3 were predominantly expressed in native and

derived fibroblasts. The expressions levels of proteins related to one-carbon metabolism,

subunits of the mitochondrial PDH complex, and TCA-cycle enzymes raised in iPS cells,

e.g., CS, PDHB, or SHMT2 (Figure 3.9-A).

The up-regulated protein expression of ACLY and FASN, pointed towards the elevated

demand of citric acid for biosynthesis of cholesterol and fatty acids.

The protein carbonic anhydrase (CA2) was the only CCM enzyme significantly up-regulated

in iPS-DF cells in comparison to iPS cells (Figure 3.9-B). The protein drives the reversible
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Figure 3.9.: Proteome analysis of the BJ1 derived iPS and iPS-DF cells. (A) Volcano plot
comparing BJ1 and derived iPSCs protein expression. Expression levels of enzymes re-
lated to one-carbon metabolism and glycolytic enzymes increase with induction of pluripo-
tency. (B) Volcano plot comparing protein expression in iPS and iPS-DF cells. (C) LFQ
quantities of selected enzymes comparing native fibroblasts, iPS cells and re-differentiated
fibroblasts (iPS-DF) derived from BJ1 cell line.

hydration of carbon dioxide, and stimulates the chloride-bicarbonate exchange.

The expression of PKM2 increased in iPS-DF cells, but the data did not show a significant

up-regulated abundance in iPS-DF cells.

The comparison of enzyme levels between all three states indeed revealed a reversible pro-

tein expression. Enzymes of the one-carbon metabolism or amino acid synthesis returned

to their native level in iPS-DF cells, e.g., PHGDH and BCAT1 (Figure 3.9-C). Both en-

zyme levels increased in iPS cells and retained in iPS-DFs. Levels of GAPDH altered in

a reverse manner and decreased in pluripotent cells.
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3.1.2.2. Metabolic profile of fibroblasts, iPS, and iPS-DF cells

Quantities of CCM-intermediates have been determined by GC-MS analysis as described

before. Pool sizes are plotted regarding their abundance within the metabolic pathway

and the complete metabolic content for each cell line. A representative metabolic profile

is shown for the cell line HFF1, including iPS cells and derived fibroblasts (Figure 3.10).

In general the metabolic content decreased with reprogramming pluripotency and have

been restored after re-differentiation in iPS-DF cells. Amino acids constituted the major

metabolic content in all cell types. Threonine, glycine and serine were the main abun-

dant amino acids, independent from fibroblast origin and phenotype. Pyruvic and lactic

acid were highly abundant in pluripotent and differentiated cells. The ratio of both in-

termediates switched with induction of pluripotency; the pool of Lac exceeded Pyr in iPS

cells. Along with differentiation the ratio reversed again in iPS-DF cells. Quantities of

the TCA-cylce intermediates were low abundant in all cell lines.

3.1.2.3. Carbon-routing in fibroblasts, iPS and iPS-DF cells

13C-Glucose The analysis of 13C-glucose incorporation revealed a reversible reprogram-

ming of glucose routing in all three setups (Figure 3.11). Carbon-13 incorporation in

iPS-DF cells retained to the level in the fibroblasts (F) after the alteration of glucose

incorporation in iPS cells.

Pluripotency increased the routing of 13C-Glc through glycolysis towards lactic acid and

amino acid synthesis. The low incorporation rate in pyruvic acid pointed towards the

presence of a huge non-labeled pyruvic acid pool, e.g., caused by an extensive import of

extracellular pyruvic acid. The level of carbon-13 in lactic acid underlined the ‘aerobic

glycolytic’ phenotype of iPS cells and is similar to hESCs.

Pluripotent cells shuttled glucose-derived carbons into the synthesis of the amino acids

alanine and serine, in agreement with 13C-Glc routing in hESCs. The incorporation of

glucose-derived carbon into TCA-cycle intermediates has been similar between the three

cell types as shown for fumaric acid.
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Figure 3.11.: Comparison of 13C-glucose incorporation of selected metabolites in all three
setups HFF1, BJ1 and NFH2. The incorporation in a metabolite is summarised per
originating fibroblast line, comparing fibroblast (F), induced pluripotent cells (iPS) and
their derived fibroblast (iPS-DF). Data are shown for three biological replicates after 7 min
of u-13C-Glc incubation. Value of 1 represents 100% carbon-13 incorporation. Data are
shown in groups of each native fibroblast cell lines comparing the isotope incorporation
of fibroblasts and two iPS-clones and their derived iPS-DF cells. Sample groups: HFF1
(iPS2, iPS4), BJ1 (iB4, iB5), NFH2 (OiPS3, OiPS6).
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Figure 3.12.: Incorporation of 13C-glutamine in fibroblasts, iPS, and iPS-DF cells. The
carbon-13 incorporation is summarised per native fibroblast line, comparing fibroblast
(F), induced pluripotent cells (iPS) and their derived fibroblasts (iPS-DF). Cells were
incubated with u-13C-Gln for 15 min. Data are shown for two biological replicates and
a value of 1 represents 100% carbon-13 incorporation. Data are shown in groups of each
native fibroblast cell lines comparing the isotope incorporation of fibroblasts and two iPS-
clones and their derived iPS-DF cells. Sample groups: HFF1 (iPS2, iPS4), BJ1 (iB4, iB5),
NFH2 (OiPS3, OiPS6).

13C-Glutamine The conversion of 13C-glutamine into glutamic acid did not extent 30%

after 15 min of substrate incubation in all cell lines, pointing towards additional pathways

contributing to the synthesis of glutamic acid (Figure 3.12). The comparison of all three

setups did not show a cell status dependent pattern of glutamine uptake. The highest

turnover of glutamine into glutamic acid has been observed in native fibroblasts HFF1,

NFH2 and BJ1.

The low incorporation rate of 13C-Gln did not provide an explicit analysis of the oxidative

and reductive mode of glutamine usage. The canonical incorporation of 13C-Gln in Cit

increased with re-differentiation of HFF1 and NFH2 derived iPS cells and exceeded the

carbon-13 level in the native precursors. BJ1 derived iPS and iPS-DF cells utilised glu-
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Figure 3.13.: Incorporation of 13C-pyruvic acid routing during reprogramming and re-
differentiation. The isotope incorporation in a metabolite is summarised per originating
fibroblast line, comparing fibroblast (F), induced pluripotent cells (iPS) and their derived
fibroblasts (iPS-DF). Data is shown for two biological replicates and a value of 1 represents
100% carbon-13 incorporation. Cells were incubated with 13C-Pyr for 7 min. Data are
shown in groups of each native fibroblast cell lines comparing the isotope incorporation
of fibroblasts and two iPS-clones and their derived iPS-DF cells. Sample groups: HFF1
(iPS2, iPS4), BJ1 (iB4, iB5), NFH2 (OiPS3, OiPS6).

tamine in a different manner. BJ1 derived iPS cells showed the highest rate of carbon-13

incorporation in comparison to their differentiated precursors or progenitors.

13C-Pyruvate Tracing the fate of pyruvic acid gains insights about carbon routing at a

central point of the CCM. Pyruvate connects mitochondrial and cytosolic metabolism; it

fuels the TCA-cycle, as well as Lac and Ala synthesis. The pool of Pyr has been almost

completely replaced with its carbon-13 counterpart after 7 min of substrate incubation

in all cell types (Supp. Table B.9). The high import rate of extracellular pyruvic acid

explains the high level of intracellular 13C-Pyr and the low 13C-Glc incorporation in Pyr

at the same time.
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The incorporation rate of 13C-Pyr into Lac has been similar in all cell types, a difference

to the cell status specific routing of 13C-Glc into Lac as shown before (Figure 3.13).

HFF1, BJ1, and NFH2 and their corresponding derived fibroblasts showed an increased

transport of Pyr-derived carbons via acetyl-CoA into Cit up to 30%. Associated iPS cells

incorporated less 13C-Pyr into the TCA-cycle via PDH complex, with exception of NFH2-

derived iPS cells.

The conversion of Pyr into Ala has been individual in all setups. Only in BJ1-derived

cells we observed an reduction of 13C-Pyr in iPS cells in comparison to the somatic cells,

as shown during differentiation of hESCs.
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3.1.3. Early differentiation in human embryonic stem cells H1

Each cell is primed to run a distinct metabolic program to meet its special demand regard-

ing cellular maintenance, proliferation and energetic homeostasis. The herein described

project addresses the question which events of metabolic reprogramming occur during

early stem cell differentiation.

The hESC cell line H1 has been analysed at 0, 24, and 48 hours after the onset of spon-

taneous differentiation, induced by an exchange of cell culture media lacking the growth

factor bFGF. Human ESCs were labeled with u-13C-Glc (15 min) and u-13C-Gln (60 min)

to monitor changes of nutrient consumption during early differentiation, complementing

the quantitative analysis of protein expression and metabolite pool sizes (Figure 3.14).

3.1.3.1. Early events of proteome rearrangement during differentiation of hESCs H1

Global protein abundance has been determined by shotgun, label-free quantification pro-

teomics approach. In total 3300 proteins were quantified, isoenzymes are distinguished

based on unique peptides using MaxQuant software v 4.2.14.

Proteins, only identified in each sample, have been taken into account for the hierarchical

cluster analysis, shown in (Figure 3.15. CCM-related proteins are highlighted according

to their appearance in the cluster analysis. Enrichment analysis of GOBP and KEGG

pathway are shown in the blue box. The hierarchical cluster analysis did not reveal an

enriched expression of CCM enzymes in any of the identified cluster.

13C-Glc tinc= 15 min

13C-Gln tinc= 60 min0 hrs 24 hrs 48 hrs

Induction of differentiation
- bFGF

Time of
Differentiation 

hESC H1

Figure 3.14.: Experimental setup for the analysis of early events in metabolic reprogram-
ming during differentiation of hESC H1 cells. Spontaneous induction of differentiation has
been induced by the replacement of cell culture media lacking bFGF. H1 cells were labeled
after 0, 24, and 48 hrs with stable isotope substrates: u-13C-Glc (15 min) and u-13C-Gln
(60 min).
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ogy enrichment analysis of GOBP are shown in the blue box.

Enzymes involved in glycolysis, TCA-cycle and one-carbon metabolism remained con-

stantly expressed within early differentiation, e.g., ENO1, GPI, MDH2, MTHFD1, PSAT1

(Suppl. Figure B.1). At the same time ribosomal and glycolytic proteins (ALDOA,

GAPDH) were enriched in the top50 scoring of proteins with the highest variance of ex-

pression during the first 48 hours of early differentiation (Suppl. Table B.12).

The protein expression of glutathione S-transferase P (GSTP1), phoshoglycerate mutase
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(PGAM1), and succinate dehydrogenase A (SDHA) increased within the first 48 hours of

differentiation. PGAM1 and GSTP1 expression levels were early up-regulated and reached

their maximum level already after 24 hours. Protein levels of FASN, LDHB, and ornithine

aminotransferase (OAT, m) diminished with onset of differentiation (Figure 3.16-A). The

expression of FASN continuously decreased with proceeding differentiation (Figure 3.16-B

and C).

The TCA-cycle enzyme IDH1 (c) as well as DUT1 and NME12, two enzymes related to

nucleotide and nucleoside triphosphate metabolism, showed significantly increased protein

expression levels in hESC H1 before initiation of differentiation.

After 24 hours of differentiation enzyme level of glutaminase synthase raised (GLUL, c/m),

catalysing the production of glutamine or 4-aminobutanoate3 in the cytosol and mitochon-

dria (Figure 3.16-A and C). The quantities of the PDHc subunit PDHA1 and GFPTS4, a

protein regulating the flux of glucose into hexosamine pathway, increased within 48 hours

after induction of differentiation.

An intermediate maximum of protein expression has been detected for mitochondrial pro-

teins ACO2, DLD, and GOT2, as well as for PGD, PHGDH, and VDAC1/3 after 24 hours

of differentiation (Figure 3.15).

3.1.3.2. Metabolic profile of hESC H1

The hESC H1 metabolic profile has been determined based on GC-MS derived quantities

of nine biological replicates; three per 13C-substrate and experimental time point.

The profile shows a high abundance of amino acids, e.g. threonine, valine, glycine and

glutamate (Figure 3.17-A). The pool size of Lac exceeds the quantity of Pyr in hESC H1

cells. Glycolytic phosphates, DHAP and FBP are present in similar concentrations as Lac.

All intermediates of the TCA-cyle are low abundant, whereas quantities of Mal and Cit

are slightly higher in comparison to the pool sizes of Fum and Suc.

The pool sizes of hESC H1 cells of this setup are in agreement with the previous shown

1Deoxyuridine 5’-triphosphate nucleotidohydralase, mitochondrial
2Nucleoside diphosphate kinase A, cytoplasm / nucleus
3GABA: gamma-aminobutyric acid
4Glutamine-fructose-6-phosphate aminotransferase isoenzyme 2
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Figure 3.16.: Regulation of CCM-protein expression during early differentiation of hESC
H1 cells. (A) Volcano-plot of CCM-associated proteins up-regulated within 24 hrs after
induction of spontaneous differentiation of hESC H1 cells. (B) CCM protein expression in
native hESC H1 cells and 48 hrs after induction of spontaneous differentiation compared in
a volcano plot. (C) LFQ values of selected enzymes during early differentiation of hESCs.

metabolic profiles of pluripotent cells in Section 3.1.1.

3.1.3.3. Regulation of carbon-usage in early differentiation of hESC H1

13C-Glucose The onset of spontaneous differentiation results in a change of nutrient

consumption in hESCs H1. The incorporation of 13C-Glc remained constant in glycolytic

intermediates, e.g., Pyr (75%) and Lac (70%) (Figure 3.17-B).

The incorporation of 13C-Glc into amino acid and nucleotide synthesis has been reduced

within the 48 hours of differentiation. The routing of 13C-Glc diminished in gluconic

acid-6-phosphate (6PGA), and simultaneously increased in GA3P during differentiation

(Supp. Table B.14). At the same time the transport of 13C-Glc into the TCA-cycle

intermediates has been elevated with ongoing loss of pluripotency, here shown for Cit and

Fum (Figure 3.17-B).
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Figure 3.17.: Metabolic profile and nutrient consumption in hESCs H1. (A) Metabolite
pool sizes are averaged quantities over the experiment. The area of the circle correlates
with the absolute quantity of the metabolite. (B) The incorporation of 13C-Glc in Pyr
and Lac remain constant during the first 48 hours of differentiation. The incorporation
of glucose-derived carbons in amino acid synthesis decreases, whereas the import into
the TCA-cycle elevates. (C) Differentiation induces an increased import of 13C-Gln and
elevates the turn-over of the TCA-cycle.
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13C-Glutamine Side by side to the rearrangement of glycolysis the uptake and usage of

13C-Gln has been elevated within the first 48 hours of differentiation, shown by increased

incorporation into glutamic acid of 45%. The canonical incorporation of four carbons

raises in all TCA-cycle intermediates, shown for Cit and Mal, continuously from 22% to

35% (Figure 3.17-C). Simultaneously, the activity of the reductive TCA-cycle decreased.

The incorporation of five carbons derived from 13C-Gln diminished from 25% to 16% in

Cit (Supp. Table B.14). Altogether the induction of differentiation results in an early

rearrangement in mitochondrial metabolism characterised by a raise of carbon transport

towards oxidative phosphorylation.
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3.1.4. Neuronal differentiation induced changes in proteome and metabolome

In 2005 Lotharius and colleagues established the LUHMES line (Lund human mesen-

cephalic); a sub-clone of MESC2.10 to investigate dopamine related cell death mecha-

nisms (Lotharius et al., 2005). Experiments in cell cultures provide the molecular manip-

ulation and analysis of an almost homogenous cell population. The post-mitotic state of

neurones and thus the absence of proliferation constitute a bottleneck in the molecular

analysis of neurones.

The transformation of a proliferating, neuronal precursor cell with the myc oncogene allows

the generation of a reasonable number of cells for experiments (Hoshimaru et al., 1996).

The application of tetracycline (Tet) abolishes the expression of v-Myc and induces cell

differentiation (Scholz et al., 2011). Proliferating, multi-potent Luhmes d0 alter with high

conversion rate into post-mitotic neurones (Luhmes d6) (Figure 3.18-A). Within six days

of differentiation these cells express markers of A9 dopaminergic neurones, e.g., tyrosine

hydroxylase (TH), and dopamine transport (DAT). The loss of dopamine is associated

with the progression of Parkinson disease (Figure 3.18-B).
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Figure 3.18.: Experimental setup of terminal neuronal differentiation of Luhmes cells.
(A) Time line of cell cultivation for differentiation of Luhmes d0 cells into dopaminergic
neurons Luhmes d6. (B) Fluorescence microscopy of Luhmes d0 and d6 cells. Green:
giantin, blue: all nuclei, red: β-III-tubulin. Kindly provided by Simon Gutbier, Leist Lab
University Konstanz.
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Luhmes cells provide a cell culture based model to study the development, progression

and biological mechanisms in neuronal cells. In the frame of the thesis both cell type,

pluripotent precursor and mature neuronal progenitor, are studied to monitor metabolic

reprogramming during terminal, neuronal differentiation. In time course experiments we

collected quantitative information about protein expression, metabolite pool sizes and

13C-substrate incorporation of glucose and glutamine.

3.1.4.1. Neuronal differentiation induced alterations of protein expression

The application of shotgun LFQ proteomics provided the quantification of approx. 6,400

proteins in Luhmes d0 and d6 cells. The hierarchical cluster analysis of four biological

replicates revealed cell-line dependent expression of CCM proteins (Figure 3.19). Up-

regulated protein levels related to the CCM are shown in the green box for both cell lines.

The GOBP enrichment analysis of both cluster is summarised in the blue box.

As expected, expression of neuronal specific proteins associated with GOBP “Parkinson’s

disease” and “Alzheimer’s disease” increased with differentiation in Luhmes d6 cells.

Side to side expression levels of proteins involved in cell proliferation (cyclins, cycline-

dependent kinases, nucleotide synthesis) and one-carbon metabolism diminished with dif-

ferentiation due to the pruning of the cell cycle in non-proliferating neuronal progenitor

cells (Suppl. Figure B.2).

Proteins of GOBP classes “oxidative phosphorylation”, “decarboxylate and fatty acid

metabolism” were enriched in Luhmes d6 cells, e.g., IDH3G, MDH2, and subunits of the

PDH complex (PDHc).

The abundance of glycolytic enzymes, e.g., LDHA or GPI, decreased with the differenti-

ation of Luhmes d0 cells. The pluripotent precursor cells expressed high levels of ASNS

and ASS1, two enzymes involved in the synthesis of aspartic acid.

Neuronal differentiation induced a switch of isoenzyme expression. Luhmes d0 cells showed

high levels of hexokinase 2 (HK2, c), enolase 1 (ENO1, c) and aldolase A (ALDOA, c).

With differentiation Luhmes cells acquired an increased protein expression of HK1, ENO2

and ENO3, as well as ALDOC (Figure 3.20-A and B).
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Figure 3.20.: Proteome analysis of CCM-related enzymes in Luhmes d0 and d6 cells. (A)
Volcano plot of CCM-related proteins in Luhmes d0 and d6 cells. Protein names are shown
for proteins with an absolute fold change FC >= 2 and p − value < 0.05. (B) LFQ
values for selected CCM enzymes comparing protein expression in Luhmes d0 and d6 cells.

The expression of the transporter proteins SLC25A11 and SLC25A22 (mitochondrial glu-

tamate carrier 1) increased in Luhmes d6 cells. SLC25A11 is part of the malate/aspartate

shuttle and facilitates the exchange of reducing equivalents between the cytoplasm and

mitochondria. Concurrently, levels of MDH1 and MDH2, driving the conversion of malate

to oxaloacetate in both cellular compartments, raised with the loss of pluripotency in

Luhmes d6 cells.

3.1.4.2. Metabolic profiles of Luhmes d0 and d6 cells

The metabolic profile has been determined as described before. GC-MS derived quanti-

tative measurements are summarised from a time course pSIRM experiment in both cell

lines, assuming the metabolic steady state during the experiment. Pool sizes of central

carbon metabolism metabolites slightly increased during differentiation from precursor

cells into mature neurones (Figure 3.21). Glutamic acid is the most abundant metabolite

independently from the cell type.

The metabolic reprogramming has been accompanied by switch in pool sizes of Lac and

Pyr. In differentiated cells the pool of Pyr exceeded the quantity of Lac.

Intermediates of the TCA-cylce were low-abundant in precursor and progenitor cells. Their

quantitative distribution has not been affected by differentiation, similarly to the compo-
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Figure 3.21.: Metabolic profiles of Luhmes d0 and d6 cells. Pool sizes of all metabolite
classes slightly increased with differentiation. Metabolic priming reversed the ratio of Pyr
and Lac quantities.

sition of amino acids. Threonine, leucine and glycine remained constant with the loss of

pluripotency.

3.1.4.3. Routing of carbons in neuronal precursor cells and mature neurones

13C-Glucose The differentiation of Luhmes d0 cells resulted in a reprogramming of sub-

strate uptake. Herein the 13C-Glc incorporation is compared in both cell types after 30

min of incubation time.

The incorporation of 13C-Glc in Lac decreased from 20% to 3% with differentiation in

Luhmes d6 cells (Figure 3.22-A). At the same time 13C-Glc incorporation dropped in Pyr

and the amino acids Ala and Ser. Also the transport of glucose-derived carbons into mi-

tochondria reduced with the loss of pluripotency, reflected by the decreased of level of two

carbon-13 incorporated in citric acid.

The low incorporation levels of 13C-Glc in Fum did not provide clear information about

the turnover of carbons in the TCA-cycle.
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Figure 3.22.: Incorporation of u-13C-substrates in Luhmes d0 and d6 cells. (A) The
routing of u-13C-Glc dropped in intermediates of the glycolysis and TCA-cycle with the
acquisition of neuronal characteristics. (B) The utilisation of u-13C-Gln decreased with
differentiation of Luhmes cells.

13C-Glutamine Data are shown for 13C-Gln incubation of 60 min in both cell lines. The

uptake rate of glutamine in Luhmes d0 cells was almost twice as high as in Luhmes d6

cells (Figure 3.22-B).

The further canonical processing of 13C-Gln within the TCA-cylce decreased with differ-

entiation, as shown for succinic and citric acid. Concurrently, the reductive incorporation

of glutamine-derived carbons into Cit was reduced in Luhmes d6 cells.
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3.2. Phenotype specific features of proteome and metabolome

of pluripotent, cancer and differentiated cells

The previous section introduced the single projects and their results regarding protein

expression, metabolite pool sizes and nutrient consumption. Every project focuses on an

aspect of metabolic reprogramming induced by the gain or loss of pluripotency and how

this transition affects the central carbon metabolism and its intermediates.

The following section summarises all obtained data. Cell lines are categorised regarding

their phenotypic state into cancer cells, hESCs, iPS cells, fibroblasts and derived fibrob-

lasts (DF). The integration of all data creates a powerful data matrix to identify cell status

specific patterns in the proteome and metabolome. It also provides a comparison of native

and reprogrammed CCM: hESCs vs. iPSCs, and fibroblasts vs. derived fibroblasts.

The separate analysis of protein expression (Section 3.2.1) and metabolite abundance

(Section 3.2.2) follows the comparison of carbon routing into pyruvic acid and citric acid

in Section 3.2.3. Both metabolites represent a hub of multiple pathways in the CCM.

Ultimately, two aspects of pluripotent metabolism — one-carbon metabolism and the

metabolite 2-hydroxyglutaric acid (2HG) — are summarised in Section 3.2.4.

3.2.1. Phenotype-dependent protein expression in cancer, hESCs, iPS cells

and their derivates

Project-specific analysis of protein expression showed a phenotype dependent expression

of enzymes and their isoforms. LFQ protein quantities were summarised regarding their

phenotype for the identification of phenotype-specific expression of isoenzymes of cancer

cells, hESCs, iPS cells, fibroblasts or derived fibroblasts (Supp. Table C.1). Therefore

protein quantification derived from all introduced projects were summarised in a single

matrix and z-score transformed within the experiments as described in Section 2.5.

Expression levels were classified regarding their z-score in up-regulated (z− score > 0.5)

and down-regulated (z−score > −0.5) proteins. Individual and common proteins within
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Figure 3.23.: Venn diagram of protein expression comparing the data regarding the phe-
notype. LFQ data were normalised within each setup and combined after z-score trans-
formation. The diagram shows the number of proteins with increased expression levels
(z− score > 0.5) shared between the cell types. KEGG pathway analysis of intersections
has been performed at www.webgestalt.org.

the five classes are shown in a Venn diagram5 (Figure 3.23 and Suppl. Figure C.1). KEGG

pathway analysis has been performed for each intersection6.

The most notable overlaps are: (i) Cancer, hESCs and iPS cells share 117 proteins involved

in cellular biosynthesis, e.g., proteins associated with RNA transport (17), spliceosome

(12), cell cycle (5) and purine metabolism (13).

Furthermore, (ii) the intersection of hESCs and iPS cells is composed of 283 proteins that

are related to, e.g., ribosome (35), spliceosome (26), metabolic pathways (34) and cell

proliferation. The individual sections of both classes contain fewer proteins in comparison

to their joint sections.

In contrast (iii) native and derived fibroblasts share less enzymes (76) indicating an in-

5VIB, www.bioinformatics.psb.ugent.be, Belgium
6www.webgestalt.org, Netherlands
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dividual, phenotype specific protein expression. Shared proteins are related to protein

processing in the endoplasmatic reticulum (11), focal adhesion (8), and regulation of actin

cytoskeleton (6). Interestingly, whereas the intersections of hESCs and iPS cells or cancer

and iPS cells share proteins associated with metabolic pathways, cancer and hESCs do

not have proteins of this KEGG pathway in common.

Cancer, hESCs, and iPS cells grouped together in the hierarchical clustering of CCM-

related proteins as well (Figure 3.24-A). The second cluster is composed of native fibroblast

and derived fibroblasts. A list of proteins considered as CCM-specific, including details

regarding pathway association, localisation and Uniprot ID, is provided in the supplemen-

tal material (Supp. Table B.1). The clustering has been performed on the basis of z-scores

as described previously.

The expression in hESCs dominates the row clustering. The top cluster contains CCM

isoenzymes that showed a reciprocal protein expression in pluripotent (hESCs, iPS cells)

and differentiated cells (F, DF). The expression of glycolytic enzymes (LDHB, PFKM,

ENO1, MDH1, GOT1, PGAM1), proteins of the TCA-cycle (IDH3A, ME2, OGDH,

GOT2, DLAT and IDH1), and one-carbon metabolism associated enzymes (PHGDH,

MTHFDL, PSAT1) were elevated in hESCs and iPS cells and reduced in native and de-

rived fibroblasts.

The most distant cluster contains CCM proteins with increased levels in cancer cells, fi-

broblasts and reduced expression in hESCs and iPS cells, e.g., ALDOA, PKM1, ME1, and

pentose phosphate pathway related protein G6PD. Also the isoform LDHA is part of this

cluster; in contrast to the expression of the isoform LDHB (Figure 3.24-B).

A similar switch of isoenzyme expression has been shown for PKM1, PKM2 and for the

isoenzymes MDH1 and MDH2. Pluripotent cells did not express a specific isoenzyme of

PKM. Increased levels of PKM1 were detected in differentiated cell lines, whereas PKM2

levels were elevated across all cancer cell lines.

The mitochondrial enzyme MDH2 has been associated with a cluster of proteins that are

up-regulated in iPS and cancer cells, but less expressed in hESCs and fibroblasts. Fur-

ther TCA-cycle enzymes are located in this cluster, e.g., CS, SUCLA1, SUCLG1, ACO2,
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Figure 3.24.: Integrative analysis of cell-state specific protein expression and metabolite
abundance. Continued on next page.
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Figure 3.24.: Continued from previous page. (A) Hierarchical clustering of CCM protein
expression averaged for cell states: cancer cells, human embryonic stem cells (hESCs), in-
duced pluripotent (iPS) cells, fibroblasts (F), and derived fibroblasts (DF). Italic written
protein names refers to proteins mentioned in the text. (B) Z-scores of selected proteins
derived from the cluster analysis. (C) Phenotypes are distinguishable by principal compo-
nent analysis (PCA) of 22 absolute quantified metabolite pools. (D) Quantities of selected
metabolites that are contributing to the clustering in the PCA.

PDHA1, and FH. Also the levels of the mitochondrial associated isoenzyme HK2 and

TALDO1 were increased in cancer and iPS cells only. A more detailed analysis of related

reactions may gain new insights how to interfere with tumorigenesis.

3.2.2. Quantification of CCM metabolites

The integrative analysis of the proteomics data showed a clear separation between potent

and differentiated cells. In a similar manner quantitative information of 27 metabolites

have been combined for the integrative analysis of 24 cell lines. Absolute pool sizes were

derived from the metabolic profile of each cell line and summarised multiple compound

derivates. Only metabolites detected in every cell line have been considered and rank-

normalised within all samples prior the analysis (Suppl. Tables C.2 and C.3).

The principal component analysis provided a clear separation of the samples according

to their phenotype (Figure 3.24-C). The first principal component PC1 separates potent

(cancer, hESCs, iPS cells) and differentiated cells (F, DF), and explains 68% the variance

in the data. Only the Luhmes d6 cell line, the terminal dopaminergic neuronal cells, is

not member of that cluster in the PCA.

Pool sizes of Lac, Ala and Val are responsible for the separation on the PC1, as shown in

the loadings plot (Supp. Figure C.2). Cancer, hESCs and iPS cells are characterized by

high levels of Lac and Ala, and differentiated cells contain high levels of Val, in relation

to their general metabolic content (Figure 3.24-D).

Mainly the high levels of Ser and Glu in cancer cells cause the division of pluripotent cells

and cancer cell on the second principal component PC2 and accounts for 10% of the data

variance. The breast cancer cell line MDA-MB231 and Luhmes d0 cell line are located

close to the border of the “pluripotent” and “cancer sector” in the PCA, indicating shared
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features of both cells metabolic profile.

3.2.3. Regulation of hubs in the central carbon metabolism

3.2.3.1. Routing of 13C-pyruvic acid — gluconeogenesis versus oxidative

phosphorylation

Pyruvic acid (Pyr) is the end product and most “energy expensive” metabolite of glycoly-

sis. It is either converted into lactic acid (LDH, c), transaminated into alanine (GPT, c),

or transported into mitochondria. Two complexes facilitate the import of Pyr across the

mitochondrial membrane (Figure 3.25-A). The voltage-dependent porin complex (VDAC1)

transfers Pyr through the outer mitochondrial membrane (OMM); the heterotetrameric

complex of mitochondrial pyruvate carrier (MPC1 / MPC2) enables the import across the

A B

Lac

Cit
Mal

Ala

OAA
acetyl-CoA

Pyr

Mal

PEP

OAA

MDH1

MDH2

PEPCK

PC
PDHchigh

low

energy charge SLC25A11

MPC1/2obligate activator

PDH
E2 E3

PDH
E2 E3

P P P

PDK1-4: Ser-232
PDK1-4: Ser-293
PDK1: Ser-300

PDK1-4

PDP1-2

ADP ATP

ADP ATP

acetyl-CoA+
NADH +
H+ + CO2

Pyr+
CoASH +
NAD+

C

−2

−1

0

1

cancer hESC iPS F DF

Z-
sc

or
e 

(L
FQ

) i
n 

(-)

PDHA1
PDHB
PDHX
DLAT
DLD

Figure 3.25.: Fate of pyruvic acid in central carbon metabolism. (A) Pyruvate enters
the TCA-cycle via acetyl-CoA, facilitated by pyruvate dehydrogenase complex (PDHc).
At high energy charge states Pyr fuels gluconeogenesis driven by pyruvate carboxylase
(PC). (B) Regulation of the PDH complex by pyruvate dehydrogenase kinases (PDK)
and phosphates (PDP). Accumulation of PDHc substrates inhibit the phosphorylation of
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inner mitochondrial matrix (IMM).

In the mitochondria Pyr is either directed into gluconeogenesis or enters the TCA-cycle

depending on the energy charge of the cell. At high cellular energy charges the enzyme

pyruvate carboxylase (PC) converts Pyr into oxaloacetate (OAA), respectively malic acid

(Mal) that is transported into the cytoplasm by SLC25A11 and fuels gluconeogenesis. PC

is a member of ABC proteins and requires ATP, Biotin, and CO2 as cofactors for the

synthesis of OAA. It is also one of two enzymes that requires an obligate activator —

acetyl-CoA. Low energy charges, reflected in low acetyl-CoA levels, inactivate PC and Pyr

is solely converted into acetyl-CoA by the Pyruvate dehydrogenase complex (PDHc) and

subsequently into Cit by Citrate synthase (CS).

The regulation of the PDHc defines the transport of carbons in glycolysis, gluconeogenesis,

fatty acid oxidation, and the TCA-cycle. The complex itself consists of multiple copies

of three enzymes: Pyruvate dehydrogenase (PDH, E1, 30 subunits), Dihydrolipoyllysine-

residue acetyltransferase (DLAT, E2, 60 subunits) and Dihydrolipoyl dehydrogenase (DLD,

E3, 12 subunits). The synthesis of acetyl-CoA catalysed by PDHc requires the cofac-

tors CoA, NAD+, FAD+, lipoic acid and thiamine pyrophosphate (TPP). Substrate and

product level influence the activity of PDHc by the regulation of Pyruvate dehydrogenase

kinases (PDK1–4).

High levels of NADH, ATP and acetyl-CoA activate PDKs, and decrease the PDHc ac-

tivity by sustaining the phosphorylation at Ser-232, Ser-292, and Ser-300. Although the

phosphorylation of a single residue results in the deactivation of PDHc, only the complete

dephosphorylated protein resumes its catalytic activity. Substrate and products pools of

PDHc allosterically inhibit or activate PDKs (Figure 3.25-B).

Shotgun proteomics provides quantitative information about PDHC subunits: PDHA,

PDHB, PDHX, DLAT, and DLD. Native and derived fibroblasts express lower levels of

all subunits in comparison to cancer, hESCs and iPS cells (Figure 3.25-C). Regulators of

PDHc activity, i.e., PDKs and PDPs, were not detectable in the measurements. Solely,

PDK1 has been detected in Luhmes d0 and d6 cells; with reduced levels in the neuronal

progenitor cells after cell differentiation.
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Figure 3.26.: Routing of pyruvate-derived carbons in central carbon metabolism. (A) Iso-
tope pattern in TCA-cycle intermediates. (B) Pool sizes of intermediates derived from
pyruvic acid. (C) Incorporation pattern of carbon-13 in malic acid reflects enzyme activ-
ities of PDHc and PC.

The application of stable isotope labeled substrates provided an indirect measurement

of the metabolic flux. Depending on enzyme activities different numbers of carbons were

directed into down-stream intermediates. The GC-MS based metabolomics approach en-

abled the carbon-resolved analysis and thereby the monitoring of carbon routing within

the CCM (Figure 3.26-A).

The incubation of cell cultures with 13C-Glc and 13C-Pyr, itself a product of glucose break-

down, induces identical mass shifts in the GC-MS spectra of Lac, Ala, Mal, and Cit. An

individual incorporation rate in these metabolites would point towards a nutrient-specific

usage of carbons. The pattern of isotope incorporation gain first insights about enzyme

activities contributing to the synthesis of malic acid (Figure 3.26-C).

As described before, metabolite pool sizes were cell type depend. Quantities of Ala, Cit,

and Mal in differentiated cells were larger than in iPS, hES and cancer cells, although the

data display a huge variance in all four intermediates in derived fibroblasts (Figure 3.26-

B). Levels of Ala and Lac were lower in cancer cells in comparison to pluripotent cells,

whereas the pool of Mal exceeded stem- and iPS cell quantities.

Radarcharts provide the visual comparison of fractions between different samples, i.e.,
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different cell lines. Figure 3.27 summarises the 13C-incorporation in cancer vs. pluripo-

tent cells, respectively native and derived fibroblasts vs. iPS cells. Each axis of the radar

shows the fraction of 13C-Glc (Figure 3.27-A) or 13C-Pyr (Figure 3.27-B) incorporation

per metabolite. Cross braces are equidistant and represent an increase of 0.1, respectively

0.02 units, while a value of 1 corresponds to 100% carbon-13 incorporation.

The incorporation of different numbers of carbon-13 in Mal reflects enzyme activities of

PC and PDHc, giving a measure of the carbon routing towards TCA-cycle and gluconeo-

genesis (Figure 3.27-C).

The incorporation patterns have been almost overlapping in either hESCs and iPSCs, or

fibroblasts and derived fibroblasts; independently from the 13C-substrate. Each cell type

showed a specific routing of glucose- and pyruvate-derived carbons. The majority of both

substrates were directed into the synthesis of lactic acid in pluripotent and cancer cells.

Also differentiated cells directed the bulk of 13C-Pyr into lactic acid, whereas glucose-

derived carbons fueled equally the aerobic glycolysis, alanine synthesis and mitochondrial

metabolism. Cancer cells incorporated similar levels of 13C-Glc into citric acid, as well as

of 13C-Pyr in Mal and Cit, to differentiated cells.

The comparison of 13C-Glc and 13C-Pyr labeled quantities demonstrated the nutrient-

dependent contribution to the synthesis of down-stream intermediates (Figure 3.27-C).

Especially the labeled quantities derived from 13C-Pyr increased in differentiated cells.

3.2.3.2. Citric acid — integrating carbon routing in the mitochondria

The condensation of acetyl-CoA and oxaloacetic acid (OAA) to citric acid (Cit) by citrate

synthase (CS, m) represents the first reaction of the TCA-cycle and is responsible for the

strong forward orientation (clockwise) of the cycle (standard free energy -8 kcal/mol). The

enzymes PDHc and PC are highly regulated as described in the Section (Section 3.2.3.1).

Depending on the cell energy status either the gluconeogenic PC or the PDH complex

shuttles carbons derived from pyruvic acid into citric acid (Figure 3.28-A). Two carbon-13

C#4–5 are incorporated in citric acid by the PDHc. Active PC transports four carbon-13

into citric acid — C#1–3,6 (Figure 3.28-C).
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Figure 3.27.: Comparison of 13C-Glc and 13C-Pyr incorporation at the hub of glycolysis,
TCA-cycle, and amino acid synthesis. (A) 13C-Glc incorporation is similar in native
and their reprogrammed pluripotent or differentiated counterparts. Cancer cells show
an increased incorporation of glucose-derived carbons into citric acid. (B) Conversion
of 13C-Pyr is different in comparison to glucose incorporation in all cell types, but also
reprogrammable. (C) 13C-Glc and 13C-Pyr contributed in a different manner to the
synthesis of alanine, citric acid, lactic acid, and malic acid.

Besides glucose glutamine is used to replenish oxidative phosphorylation. After the

conversion of glutamine into glutamic acid (Glu) carbons enter the TCA-cycle in form

of alpha-ketoglutaric acid (aKG). Subsequently aKG is either further converted via the

canonical oxidative way into succinic acid and fumaric acid or carboxylated into citric acid

by the reverse action of isocitrate dehydrogenase (IDH) (Figure 3.28-B). The canonical

way results in the incorporation of four carbon-13 (C#1–3,6) into citric acid, analogous to

glucose-derived carbons via PC activity. The reductive synthesis of citric acid is accom-
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acid. (A) Incorporation of glucose- or pyruvate-derived carbons in TCA-cylce intermedi-
ates via pyruvate carboxylase (PC) and pyruvate dehydrogenase complex (PDHc). (B) Ox-
idative and reductive incorporation of 13C-Glu. (C) Substrates of citric acid and their
precursors. (D) Isotope pattern in citric acid after labelling with 13C-substrates and their
corresponding mass shifts in the fragment m/z 273.

panied by the incorporation of five carbon-13 (C#1–5) in the carbon backbone.

The detectable isotope pattern in citric acid depends on the applied 13C-substrate and

enzyme activity. Fragment information, mass shifts and corresponding enzymes are sum-

marised in Figure 3.28-D.

The fragment m/z 273 of citric acid has been used for the determination of carbon-13

incorporation. The fragment contains the carbon C#1–5 and lacks C#6 as shown in the

fragment analysis in Section 3.3. Therefore the observed mass shift differs from the actual

incorporated carbons as shown in Figure 3.28.

The variety of pathways providing the synthesis of citric acid enables diverse regulatory

85



Chapter 3: Results Phenotype specific features of proteome and metabolome

cancer hESC iPS F DF

m+2 m+4 m+5

0.0

0.1

0.2

0.3

0.4

0.00

0.02

0.04

0.06

Can
ce

r
hE

SC iPS F DF

R
el

. 13
C

-G
lc

 in
c.

Can
ce

r
hE

SC iPS F DF

Cit

Cit

A

B

13C-Glc

13C-Gln

R
el

. 13
C

-G
ln

 in
c.

Figure 3.29.: Incorporation of 13C-substrates in citric acid in pluripotent, cancer and dif-
ferentiated cells. Incorporation values are determined based on the intensities of fragment
m/z 273, lacking the C6 of the carbon backbone. (A) Cancer cells show an increased rout-
ing of glucose-derived carbons via PDH complex (m+2) and a high turnover of carbons
(m+4) within the TCA-cycle. In addition PC shuttles carbons into the cycle, reflected
in the increased incorporation at m/z 273 (m+5). (B) Human ESCs and derived fibrob-
lasts use glutamine to replenish the TCA-cycle in canonical (m+4) and reductive (m+5)
manner.

mechanisms. Next to its role in the TCA-cylce citric acid is an important precursor for

the synthesis of fatty acids. The citrate-malate shuttle (SLC25A1) transports citric acid

across the mitochondrial membrane into the cytoplasm, where it is converted by the en-

zyme ATP-citrate synthase (ACLY) into OAA and acetyl-CoA. Increasing cytosolic pools

of citric acid activates acetyl-CoA carboxylase (ACC) that produces manolyl-CoA, a re-

quired substrate of lipid synthesis. At the same time high cytosolic levels of citric acid

inhibit the rate-limiting enzyme of glycolysis — phosphofructokinase (PFKM / PFKL).

The import of glucose-derived carbons via acetyl CoA into the mitochondria has been

slightly higher in cancer and the pluripotent cells in comparison to differentiated cells

(Figure 3.29-A). Although the incorporation at m/z 273 m+ 2 did not distinguish OAA-

and acetyl-CoA-derived carbons per se. In the previous section it has been shown, that

both cell types prefer to direct carbons into citric acid synthesis via PDHc. In additional
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the PC reaction is only active on top of an active PDHc, due to obligatory acetyl-CoA

level that activate PC. The cycling within the TCA-cycle has been elevated in cancer cells

in comparison to hESCs, iPS cells and fibroblast (m+4). The simultaneous activity of

PDHc and PC resulted in an increased incorporation of five carbon-13 (m+5), present in

cancer cells and more variable in derived fibroblasts.

The consumption of glutamine and its oxidative conversion have been elevated in hESC

cells and derived fibroblasts (Figure 3.29-B). Interestingly, the reductive routing of 13C-Gln

has been low in cancer cells, and increased in hESCs, and as well as in native and derived

fibroblasts. Though the incorporation rate in all cells was below 10%. The expansion of

13C-Gln labelling in further experiments may help to gain more insights how glutamine

replenished the TCA-cycle.
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3.2.4. Pluripotency specific aspects

3.2.4.1. One-carbon metabolism

The central carbon metabolism provides in the first place building blocks for biosynthesis

and cellular maintenance. Glycolysis, TCA-cycle and pentose phosphate pathway synthe-

sise the majority of those precursors. The revival of the Warburg effect and the impact of

tumour suppressors and oncogenes on metabolic enzymes provoked also a re-evaluation of

the one-carbon metabolism.

Three interconnected cycles — folate, methionine, and transulfuration cycle — integrate

the cellular nutrient status into the production of several compounds that are required

for macromolecule synthesis, e.g., for the synthesis of proteins, lipids, nucleic acids and

co-factors.

Serine, glycine and threonine provide the majority of carbons for the reactions based on

chemical conversion of folate compounds that are highly available in western diets. The
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donation of single carbon units from one amino acid to another is the principle of the

one-carbon metabolism, shown in Figure 3.30.

The imported folate is reduced to tetrahydrofolate (THF) and converted by serine hy-

droxymethyl transferases (SHMT) into me-THF. Subsequently me-THF7 is either utilised

by methylenetetrahydrofolate reductase (MTHFR) for the synthesis of mTHF8, or trans-

formed into F-THF9, a precursor required for purine synthesis.

The demethylation of mTHF donates the carbon to the methionine cycle that starts with

the condensation of homocysteine and mTHF into methionine. Methionine adenyltrans-

ferase (MAT) produces S-adenosylmethionine (SAM) that is subsequently demethylated

by methyltransferases providing methyl-groups for the epigenetic modification of histones,

DNA, and RNA. The third cycle, the transsulfuration pathway, is connected by the fusion

of homocysteine and serine into cystathionine that can be converted by cystathionine lyase

(CGL) to α-ketobutyrate (KB) and cysteine. Latter one is an important substrate for the

synthesis of glutathionine and taurine.

The de novo synthesis of serine derived from 3PGA connects glycolysis and the one-carbon

metabolism. Three enzymes facilitate the conversion of 3PGA into serine — PHGDH,

PSAT1, and PSPH. Studies have shown, that up to 10% of the 3PGA pool is used for

the generation of serine in cancer cells (Amelio et al., 2014). The expression of PHGDH

is up-regulated in triple-negative breast cancer cell lines and melanoma cells. The second

enzyme PSAT1 requires glutamate as a cofactor and produces aKG, that replenishes the

TCA-cycle. It has been shown that the synthesis of serine from 3PGA might be responsible

for up to 50% of TCA-cycle intermediates (Amelio et al., 2014).

A one-step conversion from glycine into serine is facilitated by the enzyme serine hy-

droxymethyl transferase (SHMT). Two isoenzymes exist in mammalian cells: SHMT1 is

located in the cytoplasm, SHMT2 in the mitochondria. A splice variant of SHMT2 lacking

the peptide for the mitochondrial import remains in the cytoplasm and is capable to com-

pensate SHMT1-deficiency. Imported glycine could also enter the one-carbon metabolism

75,10-methylene-tetrahydrofolate
85-methyltetrahydrofolate
910-Formyltetrahydrofolate
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Figure 3.31.: Expression of one-carbon metabolism associates proteins and phenotype-
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by glycine decarboxylase (GLDC). Threonine as a substrate for glycine synthesis has been

shown in mammals including mice. The corresponding protein in human has not been

identified so far. The fused proteomics data set of all projects has been filtered for en-

zymes related to the one-carbon metabolism. The hierarchical clustering identifies a main

cluster with up-regulated expression levels covering almost exclusively all native and re-

programmed pluripotent cell lines (Figure 3.31-A). This cluster includes all enzymes of

the de novo serine synthesis pathway — PHGDH, PSAT1, and PSPH — as well as the

mitochondrial isoform SHMT2, and isoenzymes of MTHFD. A small subset of proteins

show increased expression levels specifically in cancer cells, e.g., adenosylhomocysteinase

(AHCY, c/er10), the subunit MAT2A (c) of the MAT complex, and purine nucleoside

phosphorylase (PNP). In comparison to pluripotent and cancer cells, protein levels are

decreased in native and derived fibroblasts.

The phenotype-specific clustering of one-carbon proteins shows the same dendrogram clus-

tering as determined for the complete proteome (Figure 3.31-B).

The up-regulated protein expression of the de novo serine pathway is accompanied by an

increased routing of glucose-derived carbons into serine in pluripotent cells in comparison

to cancer and differentiated cells (Figure 3.31-C).

Glycine and threonine are two of the most abundant amino acids independent from the

phenotype as shown in the metabolic profiles in Section 3.1. The high pool sizes of serine

in cancer and differentiated cells point towards an increased uptake of extracellular serine,

whereas hESCs and iPS cells rely on the de novo synthesis (Figure 3.31-D).

10endoplasmic reticulum
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3.2.4.2. 2HG – oncometabolite and driver of pluripotency

The metabolite 2-hydroxyglutaric acid (2HG) has been described in E. coli for the first

time in 1968 (Wegener et al., 1968). A decade later Gregersen et al. identified the im-

portant role of 2HG in newborn urine (Gregersen et al., 1977). Since then the knowledge

about the role and function of 2HG within the CCM is still incomplete.

Every cell produces small quantities of 2HG. The enzymes D- and L-hydroxyglutarate

dehydrogenase (D2HGDH / L2HGDH) facilitate the oxidation of 2HG into αKG and pre-

vent the accumulation of the metabolite. Enzyme dysfunction results in 2HG aciduaries

and is ongoing with the the development of severe pathological phenotypes and premature

death (Struys, 2005).

In 2009 Dang et al proofed that a point mutation causing a gain-of-function mutation

in the enzymes IDH1 and IDH2. Mutated IDH (mIDH) acquires the ability to produce

2HG from αKG in glioblastoma cells, resulting in oxidative stress and reduced competitive

inhibition of aKG-dependent enzymes (Dang et al., 2009). It was the first study claiming

an oncogenic potential to a metabolite. Recently, it has been shown that mIDH is only

responsible for the synthesis of the R-enantiomer D-2HG (Dang et al., 2009). The enzymes

MDH1/2 and LDHA promiscuously catalyse the conversion of αKG to L-2HG in different

cell types (Figure3.32-A). A hypoxic environment even increases the production of L-2HG,

independently from the activation of HIF1 (Oldham et al., 2015; Intlekofer et al., 2015).

Both enantiomers act on different downstream targets. D-2HG contributes to cancer

pathology via the inhibition of dioxygenases TET1/2. At the same time D-2HG acti-

vates PHD2 and thereby prevents the stabilisation of HIF1-α. L-2HG suppresses TET1/2

and PHD2, and modifies the regulation downstream of HIF-1. L-2HG also influences

the regulation of chromatin formation by inhibiting the activity of histone demethylase

KDM4C (Oldham et al., 2015). The regulation of chromatin accessibility by histone

methylation is the key for the maintenance of pluripotency.

2HG levels have been determined in all previously introduced projects. An absolute

quantification of 2HG could not be performed due to the low levels of the metabolite. In-

stead of peak areas have been determined manually from the chromatograms. 2HG levels
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Figure 3.32.: 2HG levels in hESCs, iPS cells and their derivates. (A) The conversion of
aKG into 2HG driven by CCM enzymes. (B) Levels of 2HG in hESCs, iPS cells, fibroblasts
and cancer cells. 2HG levels are shown in the following order for each fibroblast cell lines:
fibroblast, iPS cells, and iPS-DFs. (C) Differentiation of hESCs H1 results in a reduction
of 2HG levels in H1-DFs. (D) 2HG levels drop in hESCs H1 cells during the first 48 hours
of early differentiation.

have been normalised to the total peak area within each setup to provide comparability

between the experiments. The GC-MS based metabolomics approach did not provide the

differentiation of D- and L-enantiomer of 2HG. Determined quantities reflect the cumu-

lated abundance of both enantiomer (Figure 3.32 - B). 2HG levels have been reduced

with the differentiation of hESCs (Figure 3.32-C). The synthesis of 2HG has been also

reversibly affected during reprogramming and re-differentiation of fibroblasts. 2HG levels

increased in iPS cells after reprogramming pluripotency and diminished in iPS-DF cells.

Its production has been also affected early during differentiation. We observed a depletion

of 2HG in hESCs after 24 hrs of induction of differentiation (Figure 3.32-D).
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The enzymes D- or L2HGDH have not been detected by shotgun LC-MS in any of the

data sets. As shown before protein levels of cytosolic MDH1 were increased in hESCs and

iPS cells, whereas the expression of mitochondrial MDH2 was up-regulated in cancer and

iPS cells (Figure 3.24-B). High levels of LDHA has been detected in cancer and native

fibroblasts only, whereas LDHB quantities has been elevated in pluripotent cell types.

So far, the additional ability to convert L-2HG has only be shown for LDHA, not for

LDHB. Summarising, MDH1 might be the responsible enzyme converting aKG into the

pluripotency-driving L-2HG; LDHA and MDH2 the oncometabolite L-2HG.
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3.3. From pSIRM to INST-MFA – methodical developments for

the metabolic flux analysis in mammalian cells

The herein summarised work is a group effort achieved in the frame of the BMBF financed

project “Dynametox”. Experiments were conducted in the Kempa lab and performed in

cooperation with Simon Gutbier, Leist Lab at the University of Konstanz. The processing

and measurement of samples and data analysis has been performed in the Kempa lab. The

mathematical modelling including the establishment of the network and data integration

has been performed in co-work with Sebastian Niedenführ and Martin Cerff of the lab of

Katharina Nöh at Forschungszentrum Jülich.

The metabolic flux of a cell is the readout of the interaction of metabolites and proteins.

It mirrors the cellular function and describes all rates contributing to cellular maintenance

and cell growth. During the last decade different approaches have been developed to de-

termine absolute metabolic fluxes in cellular systems. Mainly this development was driven

by the white biotechnology aiming to optimise the yield of small substances in bacteria

and fungi. In their latest review Niedenführ and colleagues compare the required input

parameter and the gain of knowledge of different MFA approaches (Niedenführ et al.,

2015).

The herein applied approach of in-stationary metabolic flux (INST-MFA) analysis strictly

assumes the metabolic steady state of the cell system. The only time-variant component is

the incorporation of stable isotopes, e.g., 13C-glucose. In comparison to other approaches

the INST-MFA requires a high number of input parameters. INST-MFA demands absolute

pool sizes, extracellular rates and sufficient sampling to detect the dynamics of isotope

incorporation, besides the definition of atom transitions and carbon balancing. The out-

come of INST-MFA are the absolute quantification of forward and backward fluxes as well

as the estimation of unknown pool sizes, energy and reducing equivalents characterising

the functional status of a cell.

One of the aims of the present work here has been the establishment of a workflow start-
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ing from cell culture tracing experiments and resulting in a metabolic flux map comparing

pluripotent and differentiated cell metabolism.

This chapter summarises the flux maps of pluripotent Luhmes d0 and terminal differenti-

ated, neuronal Luhmes d6 cell. Such a complex data analysis could have been carried out

mainly by the introduction of a semi-automated quality control tool for GC-MS derived

data (MTXQC, summarised in Section 3.3.3.2) and the further development of GC-MS

fragment mapping (Section 3.3.3.1).

3.3.1. Mathematical model of the central carbon metabolism for INST-MFA

Absolute pool sizes of metabolites do not explain the contribution of nutrients to synthe-

sise building blocks and energy equivalents. A model of the central carbon metabolism

covering the main pathways has to be created for the metabolic flux analysis (Figure 3.33-

A). The network covers the pathways of the central carbon metabolism contributing to

biosynthesis and energy production: Glycolysis, TCA-cycle, pentose phosphate pathway,

amino acid synthesis and degradation as well as glutaminolysis. In total the network in-

cludes 60 metabolites, 66 reactions, 32 intracellular fluxes (15 net, 17 exchange fluxes).

Each reaction is defined with its substrates, products and required cofactors. Omix vi-

sualisation provides the creation of the network and its export for 13CFlux (Nöh et al.,

2015).

The compartmentalisation of metabolic pathways is the main difference between prokary-

otic and eukaryotic cells and increases the complexity for MFA. GC-MS determined ab-

solute quantities reflect the total abundance of the intermediate in the cell only. So far

methods providing a compartment specific quantification of metabolites are not avail-

able. Any manipulation or disconnection of compartments would immediately result in a

change of the metabolic state. Shared pool sizes between compartments, e.g., of pyruvic

acid, are incorporated as two separate pools but defined as a lump pool and balanced in

the mathematical network. Uptake and export rates are defined for each substrate and

exported product, e.g., glucose uptake, and lactic acid secretion. The quantification of the

supernatant intermediates provides the determination of extracellular rates.
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Figure 3.33.: Network of the central carbon metabolism for in-stationary metabolic flux
analysis. (A) 60 metabolites, 66 reactions and 5 rates are integrated in the network created
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reaction as carbon transition, e.g., between pyruvic and lactic acid. (C) The mass spectra
of a molecule summarises all molecule derived fragments and functions as a fingerprint.
The evaluation of the mass isotopomer distribution (MID) of different fragments provides
the determination of isotope incorporation, shown here for lactic acid comparing 13C6-Glc
labeled (red) and the natural, 12C6-Glc labeled (black), mass spectra. (D) Mapping of
GC-MS derived fragments to the molecule structure is required for the integration of MIDs
in the mathematical framework for MFA. The fragments m/z 117, 191, 219 of lactic acid
cover different parts of the molecule and differ in their atomic composition. Section 3.3.3.1
summarises the applied approaches for the mapping of GC-MS fragments.

Intracellular fluxes, meaning in vivo reaction rates, are the result of the interaction

between the catalytic protein and its substrate(s). These fluxes are fine-tuned by “regula-

tory interactions at the genetic, protein modification, allosteric, and kinetic level” (Sauer,

2006). Tracing the fate of stable isotopes provides an indirect measurement of intracellular

97



Chapter 3: Results From pSIRM to INST-MFA

fluxes. The exchange of carbons of each reaction in the network has to be defined prior

the MFA. For each reaction carbon transitions have been defined between substrates and

products, an example is shown for pyruvic and lactic acid in Figure 3.33-B.

Electron impact (EI) ionisation during GC-MS measurement induces the robust fragmen-

tation of the molecule and enables detection in the mass spectrometer. The “breaking

points” are mainly defined by the molecule structure, and thereby highly reproducible

and unique for each compound. The incorporation of stable isotopes, like 13C-Glc, in-

duces mass shifts in the mass isotopomer distribution (MID) in each fragment depending

on the number of replaced carbon-12. Each fragment represents only a segment of the

molecule and differs regarding its atomic composition. The derivatisation procedure in-

troduces functional groups to increase the volatility and detectability of compounds in

GC-MS measurements. These groups introduce molecule-independent atoms, e.g., each

TMS group (Si(CH3)3) introduces three carbons, that are not affected by the incorpora-

tion of stable isotopes.

Lactic acid fragments m/z 117, 191, and 219 cover different molecule-related and TMS-

derived carbons as shown in Figure 3.33-D. Fragment m/z 117 and 191 contain two carbons

derived from the molecule backbone of lactic acid: m/z 117 — Lac[2,3] and m/z 191 —

Lac[1,2], whereas m/z 219 recovers the complete carbon backbone. Each metabolic inter-

mediate of the network has been implemented with at least one fragment and its detailed

measurement specifications. Only the complete knowledge about the atomic composition

of each fragment provides the correction for the natural abundance of each molecule and

the correct interpretation of the MIDs for MFA. So far only a low number of GC-MS

derived fragments are identified and classified in the literature. Section 3.3.3.1 outlines

the experimental and theoretical approaches to further develop and refine the mapping of

GC-MS derived fragments.

3.3.2. pSIRM time series experiments in Luhmes cells

Extensive time course pSIRM experiments have been performed for the generation of the

metabolic flux map in Luhmes d0 and d6 cells. Comprehensive summaries about protein
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expression and the metabolic profiles are outlined in Section 3.1.4.

The INST-MFA strictly requires the metabolic steady state; meaning constant pool sizes of

metabolites throughout the labelling experiment. The only time-variant component is the

incorporation of the stable isotopes in the intermediates of the CCM. The developed pro-

tocol of pSIRM experiments (see 2.3) fulfills the experimental criteria of MFA. According

to the pSIRM protocol cells were seeded in appropriate manner to avoid contact induced

growth inhibition during the experiment. The cell culture media has been replaced 24 and

4 hours prior the labelling experiment to prevent the deprivation of nutrients. Luhmes

d0 and d6 cells were incubated for up to 24 hours with 13C-glucose and 13C-glutamine

at 37 ◦ C, ambient oxygen level and 5% CO2. Independent 6-well plates were harvested

at 2, 3, 4, 6, 8, 12, and 30 minutes, as well as 1, 6 and 24 hours after the application

of labelling media, containing either 13C-Glc or 13C-Gln. The tight sampling in the first

experimental period covers the detection of the incorporation dynamics of both isotopic

labeled substrates in CCM intermediates (Figure 3.34-A). Sampling of supernatant prior
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Figure 3.34.: Sampling scheme for INST-MFA in Luhmes cells. (A) Extensive sampling
scheme of 13C-substrate labelling to monitor the different dynamics of isotope incorpora-
tion. (B) Time scheme and sampling procedure of a pSIRM time course experiment. The
collection of media samples at different time points during the pSIRM labelling experi-
ment provides the determination of extracellular rates and of the incorporation of stable
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and throughout the experiment enables the determination of extracellular uptake and pro-

duction rates (Figure 3.34- B).

The comparison of metabolite pool sizes of the plain cultivation media (m0) and after

four hours of cultivation ms result in a rough estimation of metabolite import and export.

The quantification of extracellular metabolites in the supernatant during the labelling

experiment at different time points (mli) allows the determination of production and con-

sumption rates, complementing the intracellular pool sizes determined in cell extract (CEi)

samples.

3.3.3. Methodical developments

3.3.3.1. GC-MS fragmentation mapping

The preprocessing of biological samples for GC-MS measurement includes the derivati-

sation. The chemical replacement of active hydrogens by functional groups improves

the chromatographic behaviour, thermal and chemical stability, volatility, tailing and de-

tectability of compounds, but also introduces molecule-independent carbons in the mass

spectra. The choice of derivatisation reagents depends on the compounds of interest.

Three groups of derivatisation reagents are classified upon their chemical modification:

acylation, alkylation or methylation, and silylation. The latter two are applied in the lab

routine for metabolomics analysis and result in the introduction of trimethylsilyl (TMS,

Si(CH3)3) groups, thereby the addition of three molecule-independent carbons.

The exact mapping of GC-MS derived fragments to the molecule structure is important

because of two reasons: (i) Only carbons related to the molecule itself provide information

about the metabolic flux by incorporation stable isotopes and (ii) the correction of nat-

ural isotopes has to be performed based on fragment atomic composition, including the

molecule-independent atoms introduced by derivatisation.

Therefore the mapping of the molecule structure and GC-MS derived fragments is a pre-

requisite for the reliable determination of metabolic fluxes. Misaligned atoms would result

in an incorrect correction for the natural abundance of all atom isotopes, and thus to

incorrect fluxes.
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Figure 3.35.: Strategies for the structural analysis of GC-MS derived fragments. (A) The
correct mapping of the fragment affects the correction for natural abundance of isotopes.
(B) Measurement specifications have to be included for each compound including the car-
bon composition in the mathematical network. (C) (I) Position-specific labelling with
isotopes provides the identification of molecule-specific carbons. (II) High-resolution mass
spectrometry give an exact mass of each GC-MS fragment. (III) The consistency of frag-
ment mapping is checked by the application of the mathematical model of the CCM.
Figures are adapted from S. Niedenführ, former member of the Nöh lab.

We combined three approaches for the structural mapping of GC-MS fragments of CCM-

related metabolites (Figure 3.35 C). The application of position-specific labeled substrates,

e.g., 13C12-Glc provides the structural identification of molecule-dependent fragments and

the analysis of their carbon atom composition. High-resolution GC-ToF-MS measurements

provide the determination of an exact mass for each fragment. The measurements were

performed at the Forschungszentrum Jülich, Germany. At long least a carbon-resolved

mathematical model of the central carbon metabolism has been applied checking the con-

sistency of theoretical and experimental derived carbon mappings.

A number of position-specific labeled variants of glucose and glutamine were applied for

the structural analysis of GC-MS derived fragments in a cell culture experiment (Supp. Ta-
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Figure 3.36.: GC-MS fragment analysis by the application of differently isotopic labeled
glutamine species. (A) Mass isotopomer distributions (MIDs) of selected metabolite-
specific fragments after the application of different labeled species of glutamine. (B) Map-
ping of GC-MS fragment to the molecule structure based on the combination of high-
resolution GC-ToF-MS, application of stable isotopes and computational validation.
Chemical compositions of the fragments are summarised in Table E.6.

ble 2.4.4). Samples were collected, processed and annotated as described before. The plu-

gin “SpectraExport” in MAUI-SILVA enables the export of MIDs for predefined fragments

in GC-MS measurements. Metabolite-specific fragments are selected based on insights

from previous pSIRM experiments and complemented with additional high-abundant,

metabolite-specific fragments (Pietzke et al., 2014).

Isotope incorporation induces a shift in MIDs regarding the number of replaced atoms.

Figure 3.36-A summarises the MIDs in two selected fragments of aspartic, malic and α–

ketoglutaric acid after the application of glutamine isotopes. In combination with an

exact mass of the fragments we are able to map the GC-MS fragment to the structure of
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the metabolite (Figure 3.36-B). In the general run of things fragments cover only a part

of the molecules carbon backbone. Often the symmetrical nature of the molecule does

not provide an exact determination of the carbons that are mirrored in the fragment, i.e.,

Asp 2TMS: m/z 160 or Mal 3TMS: m/z 233. Smaller, but positionally defined (Asp 2TMS

m/z 130), fragments should be included in the analysis to increase the robustness of the

interpretation of the incorporation dynamics.

Fragments containing the complete carbon backbone of the molecule but suit due to the

symmetry of the molecule to more than one combination are useful and should be imple-

mented, e.g., Mal 3TMS m/z 245. Not the position but the exact composition of these

kind of fragments are required for a correct consideration of natural isotope abundance.

We determined the exact mass, the carbon-body or c-body and its atomic composition for

each metabolite including different derivates and fragments. The results are summarised

in the Table E.6. An extended summary of fragment mapping and a graphical illustration

are shown in the Supplement E. The extension of fragment mappings enables the imple-

mentation of multiple isotope information for several metabolites or even its consideration

in MFA for the first time.

Table 3.1.: GC-MS derived fragment mapping.

Metabolite Derivate m+0 Exact mass C-body Carbons Formula

Ala (2TMS) 116 116.0890 C2 [2,3] C5H14NSi

Ala (3TMS) 188 188.1285 C2 [2,3] C8H22NSi2

Ala (3TMS) 262 262.1473 C2 [1,2] C10H28NOSi3

Asp (2TMS) 130 130.0319 C2 [1,2] C4H8NO2Si

Asp (2TMS) 160 160.0788 C3 [1-3]/[2-4] C6H14NO2Si

Asp (3TMS) 218 218.1027 C2 [1,2] C8H20NO2Si2

Asp (3TMS) 232 232.1184 C3 [2,3,4] C9H22NO2Si2

Cit (4TMS) 273 273.0973 C5 [1,2,3,4,5] C11H21O4Si2

Cit (4TMS) 347 347.1161 C4 symmetry C13H27O5Si3

Cit (4TMS) 465 465.1611 C6 [1-6] C17H37O7Si4

DHAP (1MEOX)(3TMS) 400 400.1191 C3 [1-3] C12H31NO6PSi3

Fru (1MEOX)(5TMS) 205 205.1075 C2 [5,6] C8H21O2Si2

Fru (1MEOX)(5TMS) 217 217.1075 C3 [4,5,6] C9H21O2Si2

Continued on next page
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Table 3.1 – continued from previous page

Metabolite Derivate m+0 Exact mass C-body Carbons Formula

FBP (1MEOX)(7TMS) 217 217.1075 C3 [4,5,6] C9H21O2Si2

F6P (1MEOX)(6TMS) 217 217.1075 C3 symmetry C9H21O2Si2

Fum (2TMS) 245 245.0660 C4 [1-4] C9H17O4Si2

PG6 (7TMS) 217 217.1075 C3 C9H21O2Si2

Glc (1MEOX)(5TMS) 160 160.27 C2 [1,2] C6H14NO2Si

Glc (1MEOX)(5TMS) 205 205.1075 C2 [5,6] C8H21O2Si2

Glc (1MEOX)(5TMS) 217 217.1075 C3 [4,5,6] C9H21O2Si2

G1/6P (1MEOX)(6TMS) 217 217.1075 C3 [4,5,6] C9H21O2Si2

G1/6P (1MEOX)(6TMS) 357 357.1133 C2 C11H30O5PSi3

Glu (2TMS) 230 230.1027 C3 [1-3] C9H20NO2Si2

Glu (2TMS) 276 276.1082 C5 [1-5] C10H22NO4Si2

Glu (3TMS) 230 230.1027 C3 [1-3] C9H20NO2Si2

Glu (3TMS) 246 246.1340 C4 [1,2,3,5] C10H24NO2Si2

Glu (3TMS) 348 348.1477 C5 [1-5] C13H30NO4Si3

Gln (3TMS) 156 156.0839 C4 [2,3,4,5] C7H14NOSi

Gln (3TMS) 245 245.1500 C4 [1-4] C10H25N2OSi2

2HG (3TMS) 231 231.0867 C3 [1-3] C9H19O3Si2

2HG (3TMS) 247 247.1180 C4 symmetry C10H23O3Si2

2HG (3TMS) 349 349.1317 C5 [1-5] C13H29O5Si3

aKG (1MEOX)(2TMS) 156 156.0475 C3 [3-5] C6H10NO2Si

aKG (1MEOX)(2TMS) 198 198.0581 C5 symmetry C8H12NO3Si

aKG (1MEOX)(2TMS) 288 288.1082 C5 [1-5] C11H22NO4Si2

GA3P (1MEOX)(3TMS) 217 217.1075 C3 [1-3] C9H21O2Si2

3PGA (4TMS) 357 357.1133 C2 [2,3] C11H30O5PSi3

Glyc (3TMS) 218 218.1153 C3 [1-3] C9H22O2Si2

Glyc (3TMS) 293 293.1419 C3 [1-3] C11H29O3Si3

Glyc3P (4TMS) 357 357.1133 C2 [2,3] C11H30O5PSi3

Gly (2TMS) 204 204.0871 C2 [1,2] C7H18NO2Si2

Gly (3TMS) 276 276.1266 C2 [1,2] C10H26NO2Si3

Lac (2TMS) 117 117.0730 C2 [2,3] C5H13OSi

Lac (2TMS) 191 191.0918 C2 [1,2] C7H19O2Si2

Lac (2TMS) 219 219.0867 C3 [1-3] C8H19O3Si2

Mal (3TMS) 233 233.1024 C3 symmetry C9H21O3Si2

Continued on next page
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Table 3.1 – continued from previous page

Metabolite Derivate m+0 Exact mass C-body Carbons Formula

Mal (3TMS) 245 245.0660 C4 [1-4] C9H17O4Si2

Mal (3TMS) 335 335.1161 C4 [1-4] C12H27O5Si3

PEP (3TMS) 369 369.0769 C3 [1-3] C11H26O6PSi3

Pyr (1MEOX)(1TMS) 158 158.0632 C3 [1-3] C6H12NO2Si

Pyr (1MEOX)(1TMS) 174 174.0581 C3 [1-3] C6H12NO3Si

Pyr (1MEOX)(1TMS) 189 189.0816 C3 [1-3] C7H15NO3Si

R5P (1MEOX)(5TMS) 217 217.1075 C3 C9H21O2Si2

R5P (1MEOX)(5TMS) 357 357.1133 C2 C11H30O5PSi3

Ser (2TMS) 116 116.0526 C2 [2,3] C4H10NOSi

Ser (2TMS) 132 132.0839 C2 [2,3] C5H14NOSi

Ser (3TMS) 188 188.0921 C2 [2,3] C7H18NOSi2

Ser (3TMS) 204 204.1234 C2 [2,3] C8H22NOSi2

Ser (3TMS) 218 218.1027 C2 [1,2] C8H20NO2Si2

Suc (2TMS) 172 172.0550 C4 C7H12O3Si

Suc (2TMS) 247 247.0816 C4 all C9H19O4Si2
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3.3.3.2. MTXQC — A quality control tool for GC-MS derived metabolomics data

Manual data processing and analysis still represent the major bottlenecks of high-throughput

omics-technologies. The in-house developed software MAUI-SILVIA improves GC-MS de-

rived metabolomics data analysis regarding the handling of large-scale data sets and time

requirements. It simplifies the complexity of data analysis. But a reduction on the one

hand always comes along with a loss of insights on the other hand - in particular the chro-

matography providing the information about the peak shape and therefore the reliability

of compound quantification.

The metabolomics quality control (MTXQC) has been developed to redeem this informa-

tion. MTXQC is a R-script based tool which is optimised to use the output of MAUI-

SILVIA. In total the tool uses 14 criteria for assessing the data quality regarding (i) GC-MS

performance, (ii) absolute quantification and (iii) stable isotope incorporation (Table 3.2).

Outcomes of each metric are visualised in heat-maps for all annotated CCM-intermediates

and their derivates (Figure 3.37). Every score is determined in a way that a scoring of 1

reflects the perfect, a scoring of zero the worse outcome.

Furthermore MTXQC includes first steps of data post-processing. It performs the ab-

solute quantification and combines all data outcomes into one spreadsheet-file that can be

filtered regarding individual quality requirements in a subsequent independent analysis.

R code, generated statistics and graphical outputs are reported in a PDF-file and serves

as data analysis documentation.

The herein described version of MTXQC evaluates GC-MS data derived from a pSIRM

Table 3.2.: Metrics for the metabolomics data quality control (MTXQC)
Class Criteria Description

GC-performance G.1 Alkane profile
G.2 Derivatisation efficiency
G.3 Internal extraction standard: cinnamic acid
G.4 Total peak detection

Quantification Q.1, Q.2 Calibration curve (linearity, number of data points)
Q.3 Experimental data points within linear range of calibration
Q.4, Q.5 Metabolite pool Qss (number of data points, sd(Qss))
Q.6 Correlation of cinnamic acid and total peak area normalisation

Isotope incorporation I.1, I.2 Quality of MID (count of missing values, low intensity)
I.3 Natural isotopic incorporation at t = 0
I.4 Variance of isotope incorporation between biological replicates within the experiment
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time series experiment. A shortened version of MTXQC is available for solely absolute

quantification, excluding the evaluation of isotope incorporation.

The commented R code, an overview of input- and output-files, and generated figures are

shown exemplarily for one experiment in the Supplement E.

QC GC-MS performance A consistent GC-MS performance is essential for a reliable

identification and quantification of metabolites. Even sample extraction, uniform injection,

and a homogenous derivatisation are mirrored in the four scores of GC-MS performance

metric. The scores are determined for the entire experimental setup.

G.1 – Alkane profile Kováts et al. introduced the application of alkane mixtures

for the determination of the retention indices (Kováts, 1958). A mixture of nine alkanes
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Figure 3.38.: Profile of retention index standard alkanes c10 – c36. (A) The distribution
of the intensities of the characteristic ions (m/z: 71, 85, 99) for each alkane is compared
within the setup. (B) Derivatisation increases volatility of each compound by chemically
modification, e.g., addition of TMS-groups (m/z 73). (C) The profile of the internal
extraction standard cinnamic acid is shown for one experimental batch.

(c10 - c36) is supplemented during derivatisation to each sample. The number of carbons

defines the retention time of each alkane within the chromatogram (Figure 3.38 - A). The

retention times and intensities of the alkanes remain constant over the entire batch.

MTXQC summarises the intensities for each alkane per file and determines the total

variance within the experimental setup. An increase of variance between measurements

results in a reduction of the G.1 scoring.

G.2 – Derivatisation efficiency A sufficient derivatisation is a prerequisite for GC-MS

based metabolomics. The chemical modification of the compounds by the substitution of

hydrogen bonds by oxamination (MeOx) or trimethylsilyation (TMS,−[Si(CH3)3],m/z =

73) increases the volatility and enables the detection by GC-MS. Minimum requirement

for compound detectability is the addition of at least one TMS-group.

The Electron-Impact (EI) ionisation induces the molecule-dependent fragmentation and
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leads to a fingerprint-like, compound specific mass spectra. Every mass spectra contains

the ion m/z = 73 because of its ubiquitous presence in each compound (Figure 3.38 - B). A

drop of the total intensity of m/z = 73 per file points towards an inefficient derivatisation.

The G.2 scoring is calculated based on the total variance of the TMS-specific ion abundance

within the setup. Variations due to a reduced number of identified peaks are taken into

account by the normalisation of the score to the sum of total peak intensities per file.

G.3 – Internal standard cinnamic acid The metabolite extraction is an essential step

during the sample preparation. Fluctuations of extraction solvent introduce quantity

changes of intermediates, that may incorrectly be connected to the biological phenotype.

The quantification of the internal standard cinnamic acid, supplemented to the solvent

prior to the extraction, corrects for sampling inaccuracies.

The correction factor ρ considers the quantity of cinnamic acid in a single measurement

normalised to the average of all cinnamic acid quantities of the setup. Files with a cinnamic

acid factor beyond ρ ε[0.65; 1.45] should be excluded from the analysis, due to enormous

errors in sample preparation, injection and derivatisation.

G.4 – Total peak detection The normalisation according to the total intensity of a

file is yet another data normalisation strategy. The sum of all peak intensities persists

independently from the biological variation and may occur due to a variance of extraction,

derivatisation or injection.

The corresponding normalisation factor η is an analogue to the internal extraction factor

ρ. It is defined as the ratio of the sum of all peak areas per file, and normalised to the

average of all peak areas within the experimental batch. Out of scope are experiments

targeting central pathways of the metabolism, e.g., inhibition of a glycolytic enzyme that

may lead to an extreme reduction of detectable compounds. In that case the applicability

of the normalisation strategy has to be evaluated by the experimentalist.

QC Absolute quantification Absolute quantification of compounds provides a batch and

machine independent evaluation of a metabolomic experiment. The measurement of an
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Figure 3.39.: Absolute metabolite quantification by external calibration. (A) The Top5
intense masses are depicted from the detected mass spectra, here shown for lactic acid, for
the determination of the calibration curve. (B) In pSIRM experiments carbon-dependent
masses are supplemented with mass-shift induced counterparts, called (pTop5) approach.
Peak areas of those masses are summed up and correlated with the known amount of the
corresponding dilution of the quantification mixture. (C) Visualisation of experimental
data within the range of the calibration curve for lactic acid, including data of calibration
curve considering pTop5-quantification approach.

in-house developed quantification mixture enables the absolute quantification of around 50

intermediates by external calibration. MTXQC calls six parameters evaluating the quality

of the calibration curve and resulting absolute quantities (Figure 3.39 - A, B).

Q.1 – Linearity of calibration curve Reliable absolute quantification is only facilitated

within the linear range of the calibration curve. Extrapolation outside this range may lead

to an over- or underestimation of the quantity due to the unpredictable relation of quantity
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and detector response. The regression coefficient R2 mirrors the linearity of the calibration

curve.

Q.2 – Data points of calibration curve In an optimal case, the calibration curve

summarises the information of eight data points according to the dilutions of the quantifi-

cation mixture. A reduction of data points at the upper and lower border results in the

limitation of the quantification range of the samples.

Q.3 – Range of experimental data points according to calibration curve Experi-

mental data points have to be evaluated regarding their position within the linear range

of the calibration as explained before (Figure 3.39 - C).

Data points out of the range of the calibration curve should be neglected from absolute

quantification, but still may be analysed in a relative manner using peak areas within the

experimental setup.

Q.4 – Metabolite pool size Qss The quasi-stationary metabolic state is a unalterable

requirement for non-stationary MFA. Pool sizes remain constant within the experiment.

The only time-variant of the system is the isotope incorporation. All pool measurements

over the time course are summarised into one stationary pool Qss per metabolite and

derivate.

The Q.4 criteria reflects the number of data points contributing to Qss and matching the

quality requirements in relation to the total number of available measurements per each

metabolite.

Q.5 – Variation of Qss The certainty of Qss is reflected by the variation of the metabo-

lite pool size within the complete setup.

Q.6 – Correlation between normalisation factors ρ and η This parameter describes

the correlation of the quantities normalised with the cinnamic acid factor ρ and quantities

corrected for cinnamic acid and the total peak intensity. It has been shown, that in partic-

ular quantities determined in a sample with a cinnamic acid factor beyond the predefined
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Figure 3.40.: Influence of metabolite abundance on peak shape shown for 2-
Hydroxyglutaric acid - (A) ultimate peak shape and mass isotopomer distribution (MID)
and (B) low abundant peak and misleading MID.

range do not correlate with total peak normalised quantities.

QC Stable isotope incorporation The incorporation of stable labeled isotopes leads to a

shift of intensity in the mass spectra in every fragment that contains an atom of the car-

bon backbone of the molecule. The incorporation of carbon-13 therefore affects the mass

isotopomer distribution (MID) of the fragment. Low peak abundances and an insufficient

chromatography leads to noisy data and has to be evaluated prior to the MFA analy-

sis. MAUI-SILVIA provides a tool for the automated export of all MIDs for pre-defined

fragments for each metabolite. MIDs that require manual validation are highlighted with

“low quality” regarding the scores of the metrics for isotope incorporation. MIDs have

to be corrected also for the natural abundance of carbon-13. Therefore it is necessary to

know which part of the molecule is covered in the actual fragment. The outcomes of the

combined approaches of fragment mapping are summarised in Section 3.3.3.1.

I.1 – NA count in mass isotopomer distribution (MID) Overlapping peaks in the

chromatography or low peak intensities often introduce missing values in the MID. Gaps

in the MID may introduce misleading isotopomer patterns and a false determination of

metabolic fluxes.

The first criteria of isotope QC compares the MID of a sample to a non-labeled refer-
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Figure 3.41.: Evaluation of the mass isotopomer distribution. (A) RTop3 and sample STop3

are calculated based on the top3 intensities within a defined fragment. (B) Relative and
rational comparison of the parameters enable the classification in low and good quality
MIDs.

ence distribution, that is either selected from a measurement of a quantification mixture

matching the intensity range of sample, or if not possible, from a manually defined backup

reference.

I.2 – MID quality Minor increases of intensities within the MID may lead to an

overestimation of isotope incorporation in low abundant peaks as shown exemplarily for

2-hydroxy glutaric acid in Figure 3.40.

A combination of absolute (I.2.a) and relative comparison (I.2.b) of the summation of the

top3 intensities of a sample to a reference MID provides a distinct identification of good

and low quality MIDs (Figure 3.41).

The absolute comparison of STop3 and RTop3 evaluates the general intensity range between

sample and reference. The ratio of STop3 : RTop3 pinpoints MIDs that have to be evaluated

manually. Ratios ε[0; 1] are classified as “low quality” MID. The score calculates the

fraction of good quality MIDs per metabolite.

I.3 – Isotope incorporation LI(t = 0) The measurement of a non-labeled control sam-

ple is included in every pSIRM time course experiment. MAUI-SILVIA itself calculates the
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13C-incorporation in each metabolite based on the targeted approach published by Pietzke

et al. (2014). The isotopic incorporation of all metabolites in the control sample should be

close to the natural abundance of carbon-13. Low peak abundance may lead to a higher

isotope incorporation rate as described before. The I.3 scoring decreases with increasing

isotope incorporation.

I.4 – Variance of isotope incorporation LI The final score tests the variance of

isotope incorporation between biological replicates at each time point within the pSIRM

experiment. A huge variation decreases the value of I.4 and indicates the need of manual

validation of the data. Misaligned peaks may lead to a imprecise determination of isotope

incorporation and cause big variation between biological replicates.
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3.3.4. Metabolic flux maps of pluripotent and neuronal Luhmes cells

The differentiation of Luhmes d0 into mature neurons Luhmes d6 is accompanied by a

rearrangement of the CCM. The metabolic reprogramming is reflected in the distinct rout-

ing of 13C-glucose and 13C-glutamine derived carbons to fuel pathways providing reducing

equivalents or building blocks for biosynthesis, as outlined in Section 3.1.4.

The herein presented flux maps for both cell lines illustrate the readout of the interaction

of proteins and metabolites. The applied mathematical technology of 13CFlux is well

documented in numerous publication of the lab (Nöh et al., 2006, 2007; Weitzel et al.,

2013). At this point the description of the results is limited to the biology, processing and

integration of the data, and the description of the resulting flux maps for Luhmes d0 and

d6 cells.
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Figure 3.42.: Instationary metabolic flux analysis in Luhmes cells. (A) Metabolic flux map
of Luhmes d0, neuronal precursor cells. (B) Metabolic flux map of terminal, neuronal
Luhmes d6 cells. Absolute flux values are shown in nmol/(106 cells x h). Thickness
of pathway lines corresponds to the metabolic flux and is normalised to the highest flux
within each cell line.
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In comprehensive time course pSIRM experiments (0–24 hrs) we determined absolute in-

tracellular and extracellular metabolite pool sizes as well as the incorporation of both

stable isotopes 13C-Glc and 13C-Gln in Luhmes d0 and d6 cells. The substrate uptake

and production rates are examined in an independent experiment covering a longer time

frame than the pSIRM time course. Input for the modelling the dynamics of isotope in-

corporation are mass isotopomer distributions (MIDs) of metabolite specific fragments. A

pSIRM-experiment specific plug-in in MAUI-SILVIA provides the export of MIDs for pre-

defined fragments from each measurement. The quality of the exported MIDs is validated

regarding multiple parameters in MTXQC, as described in Section 3.3.3.2. The correction

of natural isotope abundance of the MIDs has been performed following the published

method by Wahl et al. (2004) in the Nöh lab (Jülich). Additional material complementing

the INST-MFA are collected in Supplemental D.

The absolute fluxes in Luhmes d0 and d6 cells are illustrated in a simplified network in

Figure 3.42. The thickness of each pathway is normalised to the highest absolute flux

within one cell line. Absolute fluxes are stated in nmol/(106 cell x h) and are shown next

to the pathway.

In the following the metabolic activities are characterized by comparing ratios of abso-

lute fluxes, summarised in Table 3.3.

As shown before both cell types differ regarding their nutrient consumption and carbon-

routing in the CCM. Luhmes d0 cells utilise 2.6-times more glucose, and 10-times more

Table 3.3.: Comparison of CCM pathway activity by flux ratio analysis in Luhmes d0 and
d6 cells. Ratios are calculated based on absolute flux values in nmol/(106 cells x h).

Nb. Description Flux ratios d0 d6 FC d6 / d0

FR1 Aerobic glycolysis Lacout : Glcin 1.87 3.42 1.8
FR2 Contribution of Pyr to W Pyrglyc : Pyrin 2.7 1.03 0.38
FR3 Mitochondrial Import of Pyr PyrPDHc : PyrPC 5.4 2.7 0.5
FR4 Mitochondr. Respr. vs. WE Cit : Lac 0.25 1.3 5.2
FR5 Fate of citric acid Citc : Citm 1.2 0 n.def.
FR6 α-ketoglutaric acid synthesis aKGCit : aKGGlu 1.17 6.4 5.47
FR7 ETC activity Fum : (aCoA+ aKG) 0.55 1.36 2.47
FR8 Malic acid production MalMDH : MalME 500 1.6 0
FR9 Serine synthesis Ser : 3PGA 0.05 0.02 0.4
FR10 Alanine synthesis Ala : Pyr 0.18 0.1 0.55
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glutamine in comparison to their neuronal counterparts.

Almost all glucose-derived carbons are shuttled into the synthesis of lactic acid in the

precursor cell line. One molecule of glucose is converted into two molecules of Lac based

on the stoichiometry of the glycolysis. The ratio of Lacout : Glcin = 1.87 reflects the

predominant conversion of Glc into Lac (Table 3.3-FR1). In mature neurons the ratio

exceeds this limit, pointing towards an additional source of carbon that contributes to the

production of Lac.

In Luhmes d6 cells the uptake of extracellular Pyr is almost in the same proportion of

the glycolytic flux into the Pyr pool; whereas in the pluripotent precursor cells this flux

only contributes to one-third to the intracellular pool (Table 3.3-FR2). In general the

metabolic flux into Lac is the dominating pathway of both cell lines. The routing of Pyr

into mitochondria is facilitated by two enzymes — the pyruvate dehydrogenase complex

(PDHc) and pyruvate carboxylase (PC). The regulation of this central hub has been de-

scribed in Section 3.2.3.1. In Luhmes d0 cells the mitochondrial import of Pyr is mainly

driven by the PDHc (Table 3.3-FR3). With differentiation the activity of PC increases

and facilitates one-third of the mitochondrial import of Pyr in Luhmes d6 cells.

The enzyme citrate synthase (CS), first enzyme of the TCA-cycle and solely expressed in

the mitochondria, catalyses the fusion of oxalic acid (OAA) and acetyl-CoA (AcCoA) in

citric acid (Cit). This intermediate either fuels mitochondrial oxidative phosphorylation

or the synthesis of fatty acids in the cytosol by its export via the citrate/malate-pyruvate

shuttle. Latter pathway shows an high metabolic flux in Luhmes d0 cells that almost

vanishes with neuronal differentiation (Table 3.3-FR5).

Glutamine (Gln) is an alternative carbon source to replenish the TCA-cycle. Converted

into glutamic acid (Glu) the nutrient enters in form of α-ketoglutaric acid (aKG) the TCA-

cylce. In Luhmes d0 cells glucose and glutamine contribute in an equal manner carbons

for the synthesis of the aKG (Table 3.3-FR6). The differentiation in Luhmes d6 results in

a reduced uptake of glutamine and mainly glycolysis-derived carbons are shuttled into the

TCA-cycle and aKG. The comparison of the sum of metabolic influxes in the mitochondria

(Glc: aCoA, Gln: aKG) to the metabolic flux into fumaric acid (Fum) reveals the impact
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of mitochondrial oxidation in Luhmes d6 cells (Table 3.3-FR7). The activity of the ETC

increases up to 2.5-fold in mature neurons. The metabolic flux further diverges at the

following metabolite malic acid (Mal) that is converted into OAA by MDH or into Pyr by

the mitochondrial or cytosolic variant of malic enzyme (ME). Herein the metabolic flux

via the ME increases with neuronal differentiation in Luhmes d6 cells (Table 3.3-FR8).

Luhmes d0 cells solely use malic acid for the synthesis of OAA, closing the TCA-cylce.

The metabolic pathways glycolysis, TCA-cycle and glutaminolysis maintain cellular home-

ostasis and provide the majority of reducing equivalents, substrates for adjacent pathways

and building blocks. The pentose phosphate pathway could not been evaluated due to

an inefficient quantification of its intermediates. Lower pathway activities but present in

both cell lines are the routing of carbons into the synthesis of serine (Ser), alanine (Ala),

and glycerol-3-phosphate (Glyc3P).
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4.1. The Warburg effect in cancer and stem cells

Cancer cells represent an extreme cellular phenotype — resistance to cell death signals

and activation of invasion and metastasis are only two of the main characteristics that

have been summarised by Hanahan and Weinberg (Hanahan and Weinberg, 2000, 2011).

The events causing genomic aberrations and leading to oncogene activation or tumor

suppressor inhibition, and subsequently inducing tumorigenesis, are complex, random and

rarely shared among different cancer types, or even among patients suffering from the

same disease.

Quite in contrary is the phenotype of stem cells. Each single event, e.g., cell duplication,

is tightly controlled by a complex interaction of check-points that are defined right from

the “beginning” and are not acquired during a complex process like tumorigenesis. The

restrictive fate of a stem cell is in direct contrast to the random nature of cancer cells.

Despite their divergent phenotype both cell systems share the metabolic modus named

Warburg effect or aerobic glycolysis postulated by Otto Warburg in the early 1930s. Since

then a number of studies have been published proposing explanations how the alteration

of glycolysis outperforms the supply of energy equivalents by mitochondrial respiration in

cancer cells (Vander Heiden et al., 2009; Hsu and Sabatini, 2008). It has been demonstrated

that glycolytic enzymes are targeted by transcription factors and oncogenes, e.g., HIF-1α

or c-Myc (Yeung et al., 2008; Albihn et al., 2010). The latter one is also required for the

reprogramming of pluripotency. The combined application of Kfl4, Sox2, Oct4 and c-Myc

induces the gain of pluripotency in somatic cells; a finding that has been decorated with
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the Nobel price of medicine in 2012 (Takahashi and Yamanaka, 2006). The work presented

here provides data to compare both cell types glycolysis on the level of the proteome and

metabolome and to identify common and cell type specific aspects of the Warburg effect.

Quantitative proteomics and metabolomics approaches have been applied in the frame

of four experiments addressing the metabolic reprogramming in cancer, stem and repro-

grammed iPS cells, as well as in native and derived fibroblasts. The integrative analysis

of all these projects confirms the increased routing of glucose-derived carbons into lactic

acid in pluripotent and cancerous cell types in comparison to somatic cells as described in

the literature (Zhang et al., 2012).

The Warburg effect, namely the increased routing of glucose into lactic acid, is reversible

and programmable as shown during the induction of pluripotency in fibroblast cell lines,

resulting in an increased transport of carbon-13 into the synthesis of lactic acid in iPS cells

(Figure 4.1). With differentiation into iPS-DFs the rate of 13C-Glc incorporation in Lac

decreases to a similar level as seen in the native fibroblasts before. Also the differentiation

of pluripotent Luhmes d0 cells into mature, dopaminergic neurons (Luhmes d6) induces a

reduction of 13C-Glc incorporation in Lac and goes along with an elevated trafficking of

carbons into the TCA-cycle.

The rearrangement of carbon routing is not an event during the early differentiation of
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stem cells. The incorporation of 13C-Glc remains constant during the first 48 hours of

differentiation in hESC H1 cells.

The integrative illustration of protein levels, metabolite quantities and 13C-Glc incorpora-

tion demonstrates a huge variance of isoenzyme expression and carbon routing (Figure 4.2).

The box for each metabolite merges the information of the pool sizes (box height) and the

incorporation rate of 13C - Glc (scaled, coloured bar within the box). Protein expression

levels are shown as averaged z-scores in the heatmap separating stem cell and cancer cell

derived data.

The comparison reveals that hESCs contain almost twice the amount of Lac in compari-

son to the analysed cancer cell lines. As shown earlier, Lac discriminants the quantitative

metabolic profiles of cancer and stem cells in the principal component analysis (see Fig-

ure 3.24-C and Supp. Figure C.2). The quantities of 13C-Lac are within the range from

8 − 35 nmol/1 × 106 cells in both cell types; whereas markedly higher levels have been

determined in late stage breast cancer MDA-MB231 and hESCs H1 cells.

Interestingly, the levels of LDH isoforms, the enzyme catalysing the conversion from pyru-

vic into lactic acid, differ between both cell types. The enzyme is composed of two dimeric

subunits of its isoenzymes LDHA and LDHB.

The first-mentioned one is a known target of oncogenes and in the focus in studies ad-

dressing the regulation of the glycolytic enzymes in cancer. In comparison little is known

about LDHB. It has been shown that the loss of LDHB alter cell growth of triple negative

breast cancer cells in vitro and reduce tumor growth in vivo (McCleland et al., 2012).

Pluripotent cells, hESC as well as iPS cells, are characterised by high levels of LDHB,

whereas cancer cells predominantly express LDHA (Figure 4.1 and Figure 4.2).

The abundance of LDHB drops significantly after 24 hrs of stem cell differentiation in

contrast to the constant carbon-13 incorporation in Lac.

Lactic acid is only one product of glycolysis. Upstream intermediates link glycolysis

with amino acid and lipid synthesis, the pentose phosphate pathway, and the one-carbon

metabolism providing precursors and building blocks for biosynthesis. Though the ex-

pression of enzymes is quite different, hESCs and cancer cells incorporate glucose-derived
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carbons in a similar manner. Variations between both phenotypes are shown in glycolytic

products, e.g., serine (Figure 4.2). The amino acid links the CCM and the one-carbon

metabolism providing functional groups that are required for histone and DNA methy-

lation, a prerequisite to maintain cellular pluripotency. Expression levels of proteins as-

sociated with the one-carbon metabolism are raised in hESCs and reprogrammed iPS

cells. Also the transport of glucose-derived carbons into the serine synthesis is elevated

in pluripotent cells and, analogue to carbon-routing into lactic acid, reversible during the

induction of pluripotency and re-differentiation.

Though the incorporation rate of 13C-Glc is lower in cancer cells, the 13C-labeled quanti-

ties of serine is within a range of 1.2 − 2 nmol/1 × 106 cells in both cell types.

In the literature the predominantly usage of glucose for the synthesis of lactic acid is

described as a metabolic phenomenon in proliferating cells like cancer cells (Vander Heiden

et al., 2009). Recently, we showed that this metabolic mode also occurs in senescent lym-

phoma cells. In co-operation with Jan Doerr (C.A. Schmitt lab, Charité, Germany) we con-

tributed to the investigation of metabolic reprogramming in senescent lymphoma cells (Do-

err et al., 2013). The experiments demonstrated that the metabolic phenomenon “Warburg

effect” is not an exclusive property of dividing cells. Primary Eµ−myc lymphoma mice are

an established mouse model to study therapy-induced senescence (TIS), a terminal growth

arrest of viable cells caused by histone 3 lysine 9 trimethylation (H3K9me3) blocking the

entry into cell cycle S-phase (Narita et al., 2003; Braig et al., 2005; Schmitt et al., 2002).

These cells lack any apoptotic response due to the transduction with the apoptosis regulat-

ing protein Bcl2. The induction of TIS in Eµ−myc; Bcl2 cells depends on the expression

of SUV39h1, a H3K9 histone methyltransferase. The application of the chemotherapeutic

agent adriamycin (ADR) results in a terminal growth arrest in SUV39h1 proficient (con-

trol) lymphoma cells. In contrast Eµ−myc;Bcl2 SUV39h1-deficient (SUV-) cells maintain

their cell proliferation independently from the ADR treatment (Figure 4.3-A).

Interestingly, the senescent control cells show an increased uptake of glucose in the FDG-

PET scan. SUV- lymphoma cells are not affected by the treatment with ADR and do not

alter the consumption rate of glucose. Tracing the fate of glucose reveals that the induc-
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lymphoma cells. (A) Adriamycin (ADR) treatment induces senescence (TIS) in SUV39h1-
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acid accumulates in the media after ADR treatment in control cells. Shown are mean
values of three biological replicates.

tion of senescence in control cells is accompanied by the reprogramming of metabolism.

The incorporation of 13C-Glc in Lac and the extracellular export of Lac increases after

ADR treatment in control cells; two main characteristics of aerobic glycolysis (Figure 4.3-

B and C). At the same time these cells also accelerate their TCA-cycle activity and fatty

acid synthesis. This hyper-metabolic mode creates the possibility to drive Eµ − myc

mouse lymphoma cells into synthetic lethality. An additional block of glycolysis induced

by the inhibition of the glucose transporter (phloretin), a stable knockdown of HK2, or

the inhibition of LDH (sodium oxamate) results in decreased viability of lymphoma cells.

In summary, cancer and stem cells share the metabolic mode of an increased transport

of glucose-derived carbons into lactic acid, described as aerobic glycolysis or Warburg

effect. This metabolic mode is reversible as shown in reprogrammed iPS cells and their

derived fibroblasts. Nevertheless the executing proteins are different in stem and cancer

cells. A multitude of alterations in glycolytic isoenzyme expression lead to the increased

routing of glucose into the synthesis of lactic acid. The integrative analysis of proteomics

and metabolomics data has demonstrated, that only the measurement of the intracellular

intermediates provides information to decipher how cells meet their phenotype-specific

demands regarding cellular maintenance and proliferation.
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4.2. Global analysis of cancer, pluripotent cells and fibroblasts.

The quantitative characterisation of protein expression, metabolite abundance and carbon

routing in the CCM have been performed in a panel of pluripotent, cancer and differen-

tiated cell lines. Phenotype-specific characteristics have been identified in the integrative

analysis in Section 3.2. For this purpose cell lines were grouped regarding their phenotype

into cancer, pluripotent, iPS cells, native and derived fibroblasts. Protein levels, metabo-

lite quantities and isotopic incorporation rates were averaged across all cell lines for each

phenotype. Similarities in protein expression have been detected in cancer, stem and iPS

cells, and respectively for native and derived fibroblasts. The phenotype specific mean val-

ues of protein levels are suprisingly consistent and show a low variance, e.g., isoenzymes

of LDH and MDH.

Proteins with raised expression levels in cancer and iPS cells, but not in hESCs cells, are

of special interest. These enzymes are not affected by the natural pluripotency machinery,

but vulnerable for external stimuli leading to an acquired, potent cell state.

Eighteen out of ninety-eight shared proteins between cancer and iPS cells are associated

with metabolic pathways and in particular related to the TCA-cycle, e.g., SDHA, MDH2,

FH (Figure 3.23). Protein levels of these enzymes are shown in Figure 3.24-A and B.

The isoenzymes SDHA and FH have been described as tumor suppressor genes involved

in familiar paraganglioma, leiomyoma and renal cancer (Burnichon et al., 2010; Levine

and Puzio-Kuter, 2012). The role of both proteins in reprogramming pluripotency has not

been addressed so far.

Protein levels, metabolite quantities and isotope incorporation rates are combined for

each cell line in a global, multi-omics profile. For the integrative analysis all global pro-

files have been merged into a comprehensive data matrix summarising the quantities of

41 isoenzymes, 41 absolute pool sizes and in total 68 isotope incorporation rates derived

from three 13C-substrates and resolved regarding the number of incorporated carbons.

Data derived from the neuronal differentiation of Luhmes cells and the analysis of early

differentiation have been excluded due to the missing application 13C-Pyr in those setups.
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The principal component analysis ascertains a separation of the global cell profiles re-

garding their phenotype based on the quantitative information of 150 intermediates (Fig-

ure 4.4-A).

The principal components PC1 and PC2 describe approximately 50% of the variance of

the data and provide the distinction of three clusters covering almost exclusively a specific

cellular phenotype. PC1 discriminates cancer, pluripotent and differentiated cells, whereas

PC2 distinguishes further between the pluripotent cells from cancer and fibroblasts. With

few exceptions the global profile of reprogrammed iPS cells or derived fibroblasts cluster

together with their native equivalents hESCs or fibroblasts. The late breast cancer cell

line MDA-MB231 and hESCs H9 show differences in the global profile in comparison to

their counterparts.

Most influential loadings are coloured regarding their corresponding phenotype in the

scoring plot (Figure 4.4-B). Interestingly, each cluster is defined by a specific kind of data

of the global profile. The incorporation of 13C-Glc in lactic acid, serine, alanine and

glycerol and of 13C-Pyr in succinic acid distinguish hESCs and iPS cells from cancer cells

and fibroblasts. The expression levels of CCM-related isoenzymes determine the clustering

of cancer cell lines. Contributing loading vectors are central enzymes e.g., GAPDH, GPI,

LDHA, PFKM, ACO1, IDH2 and G6PD1. All these enzymes are known to be affected

by oncogenic activation and as targets of transcription factors that are altered during

tumorigenesis. Indeed, high and medium increased levels of GPI and G6PD have been

detected in breast and colorectal cancer cell lines (Uhlén et al., 2015). Furthermore the

enzyme GAPDH is involved prostate cancer, mutated IDH2 acquire the ability to produce

2HG in glioblastoma cells and LDHA in general os known as target of oncogenes, e.g.,

c-Myc (Sirover, 1999; Dang et al., 2009; Qing et al., 2010).

Absolute pool sizes of CCM intermediates specify differentiated cells, e.g., αKG, Glc6P,

Pyr, as well as amino acid levels of Iso, Met, and Pro. The somatic cells shows an

unique incorporation of 13C-Glc into TCA-cycle intermediates citric and malic acid. Both

metabolites render important hubs in the CCM. The isotopic pattern in citric acid gives

1Glucose-6-phosphate-1-dehydrogenase, cytoplasm
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Figure 4.5.: Luhmes d0 and d6 cells confirm phenotype-specific features derived from
the global profile analysis. (A) Phenotype-defining parameters for pluripotent and differ-
entiated cells. (B) Pluripotent Luhmes d0 cells show increased 13C-Glc incorporation in
comparison to differentiated counterparts. (C) Pool sizes of CCM-intermediates are raised
in differentiated Luhmes d6 cells.

an indirect measure of the cycling of carbons through the TCA-cycle. Differentiated cells

shows an increased turnover of carbons in the TCA-cycle fueling ATP-synthesis. In cancer

and pluripotent cells the elevated incorporation of 13C-Glc in citric acid is not further

processed towards subsequent downstream intermediates pointing towards an increased

export of citric acid into the cytosol. Cytosolic citric acid provides precursors for fatty

acid synthesis and post-translational modification of proteins. The acetyl-CoA-dependent

acetylation of proteins provides the crosstalk regulating transcription and translation,

nutrient sensing, control cell cycle and cell fate (Folmes et al., 2012). Glutaminolysis

provides carbon to replenish the oxidative and reductive part of the TCA-cycle driving

the synthesis of ATP and provides nitrogen for nucleotide synthesis in hESCs and cancer

cells.

Not only the routing within the TCA-cycle, also the entry of carbons into the TCA-cycle is

specifically regulated. The isotope pattern in malic acid emphasises the entry of pyruvate

at the point of OAA into the TCA-cylce via OAA in differentiated cells. The reaction is

catalysed by the pyruvate carboxylase (PC) that requires an obligatory activator: acetyl-
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CoA. Carbons entering the cycle via PC are transported anticlockwise within the TCA-

cycle into malic acid, that is exported into the cytosol fueling gluconeogenesis.

Indeed, the clustering analysis of the solitary omics-data revealed the cell phenotype spe-

cific regulated of protein expression, the abundance of metabolite pools or nutrient uptake.

The comparison of the global profiles enables the identification of the essential features of

the CCM characterising a cellular phenotype. Protein levels describe cancer cells, carbon

routing into glycolysis pluripotent cells and metabolite pool sizes and incorporation rates

in mitochondrial metabolites characterise differentiated cells. The experimental setup ad-

dressing terminal, neuronal differentiation in Luhmes cells has been excluded from the

global profile analysis, due to missing application of 13C-Pyr. The comparison of pool

sizes and 13C-Glc incorporation in pluripotent Luhmes d0 cells and their differentiated

counterparts is in agreement with the defined phenotype-specific features (Figure 4.5).

The routing of glucose-derived carbons is increased in lactic acid, alanine and serine in

Luhmes d0 cells. On the other hand pool sizes of amino acids are raised in terminal

differentiated neurons Luhmes d6.
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4.3. INST-MFA cells shows rearrangement of mitochondrial

metabolism after terminal, neuronal differentiation in

Luhmes cells

The analysis of metabolic fluxes complements the molecular characterisation of a cell.

Though expression profiles of genes, proteins and metabolite pool sizes gain worthwhile in-

sights, only the determination of metabolic fluxes provides a functional readout (Niedenführ

et al., 2015; Weindl et al., 2015). The distribution of metabolic fluxes reflect the summary

of post-transcriptional and post-translational regulation.

In the 1970s established concepts of MFA have been revised and further refined during

the last decade. Most commonly, metabolic flux rates have been determined to unravel

the structure of genetic modified organisms to optimise the yield of a bacterial-derived

products (Nocon et al., 2014; Coze et al., 2013).

Recently, eukaryotic cells gain a greater visibility in metabolic flux analysis, e.g., mon-

itoring the regulation of cancer metabolism (Murphy et al., 2013). The determination

of metabolic fluxes in eukaryotic cells is challenging due to compartment-separated path-

ways, the complex cell cultivation media containing several carbon-sources and the aim

for genome-wide networks (Zamboni, 2011). The interpretation of enzyme activities based

solely on isotope incorporation are limited when it comes to complex pivots in biochemi-

cal networks, e.g., the conversion of pyruvate inside the mitochondria combining reversible

reactions. Only the determination of absolute fluxes using computational power allows a

proper analysis of the direction and therefore the activity of enzymes.

Non-stationary MFA (INST-MFA) approaches overcome the limitations of stationary

MFA and can provide the investigation of transient processes. Major advantages are the

independence of the analysis from cofactor balance, reduced amount of required substrates,

an improved information of flux identification and estimation of intracellular metabolite

levels, that are not possible to measure (Amaral, 2011). But with the gain of knowledge

the complexity of the required input data increases. INST-MFA requires (i) a model
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of the metabolic network, (ii) a closed carbon-balance given by substrate uptake and

products export, and (iii) isotope incorporation pattern and (iv) the absolute pool sizes of

intermediates located in the metabolic network (Zamboni, 2011; Niedenführ et al., 2015).

The neuronal cell model Luhmes has been used to determine and compare the metabolic

flux maps of pluripotent and differentiated cells. The deactivation of v-myc initiates the

differentiation of Luhmes d0 cells into neuronal cells within six days (Luhmes d6). The

quantitative profiles of the metabolome and proteome, as well as the individual flux maps of

both cell types have been described in Section 3.1.4 and Section 3.3.4. Herein the combined

analysis of transcriptome, proteome and fluxome data of the CCM illustrates a multi-omix

perspective of metabolic reprogramming during terminal, neuronal differentiation.

The terminal, neuronal differentiation induces a rearrangement of fluxome, proteome

and transcriptome as shown in the comparison of Luhmes d6 relatively to Luhmes d0 cells

(Figure 4.6).

With the loss of pluripotency Luhmes d6 cells reduce the uptake of nutrients and their

turnover within the CCM. Notably, neuronal cells maintain a high metabolic flux into

lactic acid, independently from the low glycolytic rate. Differentiation induces a switch

of carbon sources contributing to the synthesis of Lac. Whereas Luhmes d0 cells pre-

dominantly use glucose-derived carbons to fuel Lac synthesis, differentiated Luhmes d6

cells maintain their high synthesis rate by the uptake of extracellular pyruvic acid that is

supplemented in the cell culture media.

Also mitochondria fluxes are affected by the loss of pluripotency. The uptake of glutamine

and the metabolic flux of glutaminolysis into the TCA-cycle decreases with differentia-

tion. It is known that glutaminolysis is under the direct control of the oncogene myc and

a reduction of the metabolic flux has been expected due to the induction of differentiation

by the deactivation of v-myc (Dang, 2010; Gao et al., 2009).

Luhmes d6 cells solely uses glycolysis and pyruvic acid derived carbons to fuel mitochon-

drial respiration. The activity of pyruvate carboxylase (PC) raises in Luhmes d6 cells

and provides an alternative pathway to replenish the TCA-cycle, a phenomenon that has

been described by Duarte et al. (2011), in one of the few INST-MFA studies in mam-
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Figure 4.6.: Terminal, neurone differentiation induces a rearrangement of metabolic fluxes
in Luhmes cells. The flux maps shows flux ratios of Luhmes d6 / d0 cells in glycolysis,
TCA-cycle and amino acid synthesis. Ratios of absolute fluxes are shown next to the
reactions. Thickness of pathways is scaled regarding the fluxes with the exception of the
flux of Mal into Pyr. This reaction has to be scaled separately because of the absence
of any flux in Luhmes d0 cells. Transcriptome and protein levels are integrated for cen-
tral enzymes in form of heatmaps showing log2 fold changes Luhmes d6 / d0 cells. Not
determined transcript and protein levels or not quantified metabolite pools are shown in
grey.
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Table 4.1.: Key parameters of published INST-MFA studies in mammalian cells. Pool
sizes are distinguished in measures / assumed ones.
n.s. — not shown; * — questionable, no exact statements
Reference Organism Cell type Comp. Substrate Intracell. Pools Reactions Technology

Luhmes model human Luhmes 2 Glc, Gln 22/60 66 GC-MS
Bagga et al. (2014) mice neurons 3 Gln 2/10 13 NMR
Shlomi et al. (2014) human fibrosarcoma 1 Met 6/8 9 LC-MS
Jeffrey et al. (2013) rat neurons 2 Glc 3/5 7 NMR
Murphy et al. (2013) human B-cells 2 Glc n.s./35 54 GC-MS
Duarte and Gruetter (2013) rat neurons 3 Glc 8/12 24 NMR
Duarte et al. (2011) rat neurons 2 Glc 3/12 16 NMR
Amaral (2011) mice neurons 1 Glc 2/32 47 GC-MS
Ahn and Antoniewicz (2011) hamster ovary cells Glc 2 n.s./77* 73 GC-MS
Maier et al. (2009) rat hepatocytes Gln 3 11/47 73 GC-MS
Hofmann et al. (2008) human hepatocytes Glc 2 14/25 40 GC/LC-MS
Munger et al. (2008) human lung fibroblasts Glc 4/17 12 LC-MS

malian, neuronal cells. Furthermore the export of mitochondrial malic acid and citric acid

is adjusted to the metabolic needs of neuronal cells. The export of malic acid increases,

whereas the export of citric acid decreases in differentiated cells.

Luhmes d0 cells show a nutrient-specific fuelling of metabolic pathways. While pyruvate-

derived carbons fuel the oxygen-independent part of the TCA-cycle providing citric acid for

the synthesis of fatty acids and precursors for protein-acetylation in the cytosol, glutamine

is used to run the oxygen-dependent reactions and the synthesis of ATP. Interestingly, the

alterations of the metabolic fluxes are not predictable by the quantification of either the

transcriptome, nor the proteome. Transcript and protein expression levels of the main

enzymes are not affected by the differentiation in Luhmes cells. In particular the protein

expression of TCA-cycle isoenzymes remain constant and do not mirror any alterations

of the metabolic fluxes. Only the low expression levels of ACLY, the enzyme converting

citric acid into its precursors acetyl-CoA and OAA in the cytosol, indicate a reduction of

the metabolic flux.

The complexity of INST-MFA requires an extensive sampling, an increased demand of

measurement and data analysis time. So far only few studies have been published per-

forming INST-MFA in mammalian cells, predominantly in neuronal cells, as summarised

by Niedenführ et al. (2015). Main parameters of published INST-MFA studies are collected

in Table 4.1. The majority of studies have been performed in neuronal cells to understand

the metabolic fluxes between glial and neuronal cells. These studies have been limited to
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small subnetworks and include only a few absolutely quantified pool sizes (Bagga et al.,

2014; Jeffrey et al., 2013; Duarte and Gruetter, 2013; Duarte et al., 2011). Maier et al.

(2009) and Ahn and Antoniewicz (2011) set up the first networks covering the central car-

bon metabolism including glycolysis, TCA-cylce and amino acid synthesis. Murphy and

colleagues performed a comparison of different MFA strategies in B-cells. They concluded

that INST-MFA provides the most robust approach to determine metabolic fluxes (Mur-

phy et al., 2013). The integration of multiple time points of isotope incorporation and the

least restrictive modelling assumptions results in a highly precise flux determination free

from bias introduced e.g., by isotopic steady-state assumptions.

In a novel approach the INST-MFA analysis in Luhmes cells incorporates simultaneously

the isotope incorporation of two 13C-substrates and covers several pathways of the central

carbon metabolism. The majority of pool sizes have been supplemented with absolute val-

ues determined in both cell types. The determination of metabolic fluxes in the pentose

phosphate pathway are limited by the inefficient detection of its intermediates.

In summary, the herein established workflow — starting from the cell culture and ending

at the development of computational tools — results in the determination of metabolic

flux maps providing the evaluation of metabolic reprogramming in pluripotent and dif-

ferentiated cells. Further time course experiments in hESCs, iPS and cancer cells can be

implemented in the present framework. The experimental handling as well as the data

analysis strategies are setup and ready for further developments.

Though the work provides only a partial comparison of the metabolic flux maps of two

phenotypes in the context of all determined data it provides novel insights in metabolic

reprogramming. Similarties in isotope incorporation, metabolite abundance and protein

expression levels between pluripotent Luhmes d0 cells and hESCs or iPS cells, or respec-

tively Luhmes d6 and somatic cells, might point towards a related metabolic flux map.

Applying the criteria defining a pluripotent state based on a global cell profile as outlined

in the section before, Luhmes d0 cells full-fill the determined characteristics of a pluripo-

tent cell. In that way the conclusions might be drawn also the other way around — from

shared phenotype-specific characteristics towards similarities in metabolic flux maps.
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The herein presented workflow — starting with the cell culture dish and ending at the

metabolic flux maps — provides new targets to interfere with metabolic reprogramming in

cancer and stem cells. Only INST-MFA allows to monitor the short-term effects of applied

small molecules, e.g., protein kinase inhibitors or toxins, on the level of the metabolome.

In the frame of the cooperation project between Jülich, Konstanz and Berlin (BMBF Dy-

nametox) we analysed the different affects of toxins to neuronal Luhmes d6 cells. The

mode of operation of a toxin can be defined in three phases: early, adaptive and terminal.

We applied isotopic-labeled nutrients (13C-Glc, 13C-Gln) in extensive time course exper-

iments to monitor the dynamics of stable isotope incorporation in each phase after the

application of a toxin.

The implementation of the data in the established INST-MFA network for Luhmes d6

cells may result in metabolic flux maps reflecting the metabolic mode of action of the

compound. Determining the point of action may help to identify new targets addressing

metabolic disorders.

So far, INST-MFA requires a dense sampling and the generation of high numbers of

samples during a time course application of stable isotopes, resulting in an increased de-

mand of measurement and data analysis time. Isotope incorporation data, as well as

intra- and extracellular metabolite levels have to be evaluated and incorporated into the

complex computational framework. In addition, for the determination of substrate uptake

and production rates, a different time window of sampling has to be chosen. Whereas

intracellular dynamics have to be determined within seconds up to minutes or an hour,

the accumulation or uptake of metabolites in the media requires a sampling up to several
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hours.

The limitation of the analysis to a few key points mirroring specific pathways activity

may provide the adaption of the present workflow and to focus on the screening of small

molecules in cell culture experiments. Though the absolute quantification of metabolic

fluxes may result in the determination of exact numbers, e.g., produced reducing equiva-

lents, a rather rough readout, e.g., pathway on or off, may be sufficient enough to develop

new strategies to interfere with a specific pathway.

Based on the present data, particularly the evaluation of the function of the metabolite

2HG in cancer and stem cells will be in the focus of follow-up experiments. The identi-

fication of the catalysing enzymes as well as the quantification of both stereoisomers are

challenging tasks for the future. The confirmation of the mixed blessing of 2HG would

provide an interesting target to balance the metabolic characteristics of cancer and stem

cells.

At the same time the introduced tool for GC-MS derived data analysis (MTXQC) is

going to be implemented in a R package, providing the platform-independent evaluation

of data quality. Although the field of metabolomics is still in its infancy, an increasing

number of labs implement their metabolomics platforms and contribute to the analysis of

different cell system. An interchangeable evaluation of metabolomics data may nourish

the fruitful exchange and interaction between laboratories.

136



6 Publication list

6.1. Publication

Published

Zasada, Christin, and Stefan Kempa. 2016. Quantitative Analysis of Cancer Metabolism: From

pSIRM to MFA. Inbook. In Metabolism in Cancer, edited by Thorsten Cramer and Clemens A.

Schmitt, 20720. Cham: Springer International Publishing. doi:10.1007/978-3-319-42118-6-9.

Pietzke, Matthias*, Christin Zasada*, Susann Mudrich, and Stefan Kempa. 2014. Decoding the

Dynamics of Cellular Metabolism and the Action of 3-Bromopyruvate and 2-Deoxyglucose Using

Pulsed Stable Isotope-Resolved Metabolomics. Cancer & Metabolism 2 (1): 9. doi:10.1186/2049-

3002-2-9. *First authors with equal contribution

Mastrobuoni, Guido, Christin Zasada, Fabian Bindel, Lukas Aeberhard, and Stefan Kempa.

2014. Rapid Peptide in-Solution Isoelectric Focusing Fractionation for Deep Proteome Analysis.

Journal of Chromatography Separation Techniques 5 (5). OMICS International. doi:10.4172/2157-

7064.1000240.

Doerr, Jan R, Yong Yu, Maja Milanovic, Gregor Beuster, Christin Zasada, J Henry M Däbritz,
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U. Sauer, G. Stephanopoulos, J. St-Pierre, D. a. Tennant, C. Wittmann, M. G. Vander Heiden,

A. Vazquez, K. Vousden, J. D. Young, N. Zamboni, and S.-M. Fendt. A roadmap for interpreting

13C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 34:189–201, 2015.

ISSN 09581669. doi: 10.1016/j.copbio.2015.02.003. URL http://linkinghub.elsevier.com/

retrieve/pii/S0958166915000221.

N. Burnichon, J.-j. Brie, R. Libe, L. Vescovo, J. Riviere, F. Tissier, E. Jouanno, X. Jeunemaitre,

P. Benit, A. Tzagoloff, P. Rustin, J. Bertherat, J. Favier, and A.-P. Gimenez-Roqueplo. SDHA

is a tumor suppressor gene causing paraganglioma. 19(15):3011–3020, 2010. doi: 10.1093/hmg/

ddq206.

B. W. Carey, L. W. S. Finley, J. R. Cross, C. D. Allis, and C. B. Thompson. Intracellular α-

ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, dec 2014. ISSN

1476-4687. doi: 10.1038/nature13981. URL http://www.nature.com/nature/journal/vaop/

ncurrent/full/nature13981.html?WT.ec{_}id=NATURE-20141211.

J. Cox and M. Mann. MaxQuant enables high peptide identification rates, individualized p.p.b.-

range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12):

1367–1372, dec 2008. ISSN 1087-0156. doi: 10.1038/nbt.1511. URL http://www.nature.com/

doifinder/10.1038/nbt.1511.

http://www.ncbi.nlm.nih.gov/pubmed/16964243
http://www.ncbi.nlm.nih.gov/pubmed/16964243
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00780
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00780
http://jcs.biologists.org/cgi/doi/10.1242/jcs.072272
http://www.ncbi.nlm.nih.gov/pubmed/16079837
http://linkinghub.elsevier.com/retrieve/pii/S0958166915000221
http://linkinghub.elsevier.com/retrieve/pii/S0958166915000221
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13981.html?WT.ec{_}id=NATURE-20141211
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13981.html?WT.ec{_}id=NATURE-20141211
http://www.nature.com/doifinder/10.1038/nbt.1511
http://www.nature.com/doifinder/10.1038/nbt.1511


F. Coze, F. Gilard, G. Tcherkez, M.-J. Virolle, A. Guyonvarch, G. Mahajan, L. Balachandran,
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A Supplementary: Chemicals, solutions

and equipment

Table A.1.: Chemicals

Name Formula Supplier

13C-Glucose 13C5H12O6 Campro Scientific, D - Berlin
13C-Glutamine 13C4H10N2O3 Campro Scientific, D - Berlin

β-Mercaptoethanol C2H6OS Sigma-Aldrich, D - München

Chloroform CHC13 Sigma-Aldrich, D - München

Cinnamic acid C9H8O2 Sigma-Aldrich, D - München

DMEM w/o Glc, Gln, Pyr, Phenolred Life Technologies, D - Darmstadt

FBS - Life Technologies, D - Darmstadt

Glucose C6H12O6 Sigma-Aldrich, D - München

Glutamine C5H10N2O3 Life Technologies, D - Darmstadt

Glycerol C3H8O3 Life Technologies, D - Darmstadt

Glycine C2H5NO2 Life Technologies, D - Darmstadt

HEPES C8H18N2O4S Carl Roth, D - Karlsruhe

Isopropanol C3H8O Carl Roth, D - Karlsruhe

Kaliumchlorid KCl Carl Roth, D - Karlsruhe

MeOH CH4O Merck, D - Darmstadt

MeOx C11H17NO3 * HCl Sigma-Aldrich, D - München

MSTFA CF3CON(CH3)Si(CH3)3 VWR, USA - Radnor

PenStrep - Life Technologies, D - Darmstadt

Pyridine C5H5N Sigma-Aldrich, D - München

Sodium chloride NaCl Carl Roth, D - Karlsruhe

Sodium hydroxide NaOH Carl Roth, D - Karlsruhe

Sodium phosphate dibasic Na2HPO4 CARL ROTH, D - Karlsruhe

Tris Base C4H11NO3 Carl Roth, D - Karlsruhe

Tris-HCl C4H11NO3 * HCl Carl Roth, D - Karlsruhe

Trypan blue - Life Technologies, D - Darmstadt

TrypLE Express - Life Technologies, D - Darmstadt

Urea CH4N2O Carl Roth, D - Karlsruhe
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Table A.2.: Solutions

Solution Composition

Dissolver 40 mg MeOx

+ 1 mL Pyridine

Labelling buffer 140 mM NaCl

+ 5 mM HEPES

+ x g/L 12/13C-Glc

+ x g/L 12/13C-Gln

in bi-dest. H2O

pH 7.4

MCW 50 mL MEOH

+ 20 mL Chloroform

+ 2 ug/ml cinnamic acid

+ 10 mL bi-dest. H2O

MeOH (50 %) 100 mL MeOH

+ 2 ug/ml cinnamic acid

adjust volume to 200 mL with bi-dest. H2O

MSTFA 1 mL MSTFA

+ 10 ug/ml alkane standard

Urea buffer (8 M) 2.4 g Urea

+ 3.2 mL 100 mM Tris

Table A.3.: Consumables

Name Supplier

Gas liner, CI34 Gerstel, D - Mühlheim an der Ruhr
Petridish, 10 cm Greiner, D - Frickenhausen
Cell lifter Sarstedt, D - Nümbrecht
Counting slides Biorad, D - München
Safe-lock Tubes Eppendorf, D - Hamburg
96-well plate Greiner, D - Frickenhausen
Falcon tubes (15 mL) Greiner, D - Frickenhausen
Falcon tubes (50 mL) Greiner, D - Frickenhausen
Filter paper Biorad, D - München
Nitrocellulose membrane (0.2 um) Biorad, D - München
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Table A.4.: Equipment

Name Manufacturer

Autosampler, MPS2XL-Twister Gerstel, D - Mühlheim an der Ruhr

Balance, CP2202S Satorius, D - Göttigen

Blotting device, TransBlot Turbo Biorad, D - München

Cell culture incubator, CB 210 Binder, D - Tuttlingen

Cellcounter, TC10 automated Biorad, D - München

Centrifuge, 5417R Eppendorf, D - Hamburg

Centrifuges, 5430 Eppendorf, D - Hamburg

Electrophoresis system, Protean Tetra cell Biorad, D - München

Gas chromatograph, Agilent 6890N Leco, USA - St. Joseph

Infrared Imaging System, Odyssey Licor, USA - Lincoln

Microplate reader, Infinite M200 Tecan, CH - Männedorf

pH meter, VMS C7 VWR, USA- Radnor

Power supply, PowerPac Universal Biorad, D - München

Rotational-Vacuum-Concentrator, 2-33 CD plus Christ, D - Osterode

Sonicator, Sonorex Digitech Bandelin electronic, D - Berlin

Thermomixer, comfort Eppendorf, D - Hamburg

MS-TOF, Pegasus IV Leco, USA - St. Joseph

Tube roller, SRT6D Stuart, UK - Staffordshire

Tube rotator, SB2 Stuart, UK - Staffordshire

Vacuum chamber, Alpha L-4 LD plus Christ, D - Osterode

Table A.5.: Range of quantification standard in pmol. Maximum

value corresponds to quantification standard 1:1

Compound min(Quantity) max(Quantity)

Adenine 37 7400

Adenosine 94 18709

Alanine 673 134695

Alanine, beta 56 11225

Arginine 57 11481

Asparagine 114 22707

Aspartic acid 75 15025

Butyric acid, 3-hydroxy 144 28818

Butyric acid, 4-amino 48 9697

Citric acid 260 52051

Creatinine 221 44201

Cysteine 41 8254

Cytosine 45 9001

Dihydroxyacetone phosphate 441 88183

Erythritol, meso 409 81887

Continued on next page
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Table A.5 – continued from previous page

Compound min(Quantity) max(Quantity)

Fructose 416 83259

Fructose-1,6-bisphosphate 271 54288

Fructose-6-phosphate 66 13154

Fumaric acid 172 34462

Gluconic acid-6-phosphate 73 14616

Glucosamine 23 4638

Glucose 1943 388544

Glucose 1-phosphate 59 11894

Glucose-6-phosphate 164 32884

Glutamic acid 680 135934

Glutamine 684 136855

Glutaric acid 151 30278

Glutaric acid, 2-hydroxy 286 57268

Glutaric acid, 2-oxo 171 34223

Glyceraldehyde-3-phosphate 323 64668

Glyceric acid 80 15987

Glyceric acid-3-phosphate 217 43478

Glycerol 326 65154

Glycerol-3-phosphate 135 26996

Glycine 333 66605

GMP 101 20113

Hypotaurine 92 18323

Inosine 56 11184

Inositol, myo 278 55506

Isoleucine 191 38116

Lactic Acid 2231 446190

Leucine 457 91484

Lysine 103 20531

Malic acid 224 44746

Methionine 34 6702

Pantothenic acid 84 16788

Phenylalanine 242 48429

Phosphoenolpyruvic acid 75 15036

Proline 304 60801

Putrescine 31 6208

Pyroglutamic acid 465 92937

Pyruvate 1454 290803

Ribose 100 19983

Ribose, 2-deoxy 37 7455

Ribose 5-phosphate 456 91208

Serine 571 114188

Continued on next page
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Table A.5 – continued from previous page

Compound min(Quantity) max(Quantity)

Succinic acid 212 42341

Threonine 839 167898

Tryptophan 49 9793

Tyrosine 55 11038

Uracil 134 26764

Uridine 5-monophosphate 407 81489

Valine 213 42680
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Chapter B: Supplementary: Project-related data
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Chapter B: Supplementary: Project-related data

hESCs, hESC-DFs and cancer cells

Additional tables summarising the metabolic profiles of the analysed cells can be found on the

attached CD.

Table B.2.: Stable isotope incorporation of 13C-glucose glucose in

cancer cells, hESCs and hESC-DF cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Ala 3TMS RKO Cancer 1 0.03 NA

Ala 3TMS SW480 Cancer 2 0.02 0.00

Ala 3TMS HT29 Cancer 2 0.03 0.00

Ala 3TMS MCF Cancer 2 0.02 0.00

Ala 3TMS MDA Cancer 1 0.24 NA

Ala 3TMS H9 DF 3 0.08 0.03

Ala 3TMS H1 DF 3 0.11 0.04

Ala 3TMS H1 hESC 3 0.14 0.01

Ala 3TMS H9 hESC 3 0.10 0.01

Cit MCF Cancer 3 0.42 0.08

Cit HT29 Cancer 3 0.19 0.08

Cit SW480 Cancer 3 0.20 0.01

Cit MDA Cancer 3 0.24 0.01

Cit RKO Cancer 3 0.40 0.14

Cit H9 DF 2 0.14 0.01

Cit H1 DF 1 0.16 NA

Cit H9 hESC 3 0.21 0.00

Cit H1 hESC 3 0.23 0.02

Lac HT29 Cancer 3 0.13 0.00

Lac MCF Cancer 2 0.20 0.02

Lac MDA Cancer 3 0.40 0.03

Lac RKO Cancer 3 0.14 0.01

Lac SW480 Cancer 3 0.10 0.02

Lac H1 DF 3 0.15 0.00

Lac H9 DF 3 0.13 0.02

Lac H1 hESC 3 0.29 0.01

Lac H9 hESC 3 0.30 0.00

Pyr HT29 Cancer 3 0.05 0.01

Pyr MCF Cancer 2 0.04 0.02

Pyr MDA Cancer 3 0.02 0.00

Pyr RKO Cancer 3 0.16 0.07

Pyr SW480 Cancer 3 0.04 0.01

Pyr H1 DF 3 0.01 0.00

Pyr H9 DF 3 0.01 0.00

Pyr H1 hESC 3 0.06 0.01

Pyr H9 hESC 3 0.07 0.01

Continued on next page
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Chapter B: Supplementary: Project-related data

Table B.2 – continued from previous page

Metabolite SubGroup State N Inc.mean Inc.sd

Ser 3TMS HT29 Cancer 3 0.03 0.00

Ser 3TMS MCF Cancer 2 0.02 0.00

Ser 3TMS RKO Cancer 3 0.02 0.00

Ser 3TMS SW480 Cancer 3 0.02 0.00

Ser 3TMS H1 DF 3 0.02 0.00

Ser 3TMS H9 DF 3 0.05 0.01

Ser 3TMS H1 hESC 3 0.09 0.00

Ser 3TMS H9 hESC 3 0.12 0.00

Table B.3.: Stable isotope incorporation of 13C-glutamine in cancer

cells, hESCs and hESC-DF cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Cit RKO Cancer 3 0.05 0.01

Cit SW480 Cancer 3 0.07 0.01

Cit HT29 Cancer 3 0.09 0.01

Cit MCF Cancer 3 0.03 0.00

Cit MDA Cancer 2 0.02 0.00

Cit H1 DF 1 0.02 NA

Cit H1 hESC 2 0.05 0.01

Cit H9 DF 2 0.06 0.01

Cit H9 hESC 2 0.06 0.01

Glu 3TMS H1 DF 2 0.13 0.01

Glu 3TMS H1 hESC 2 0.15 0.01

Glu 3TMS H9 DF 2 0.13 0.00

Glu 3TMS H9 hESC 2 0.15 0.00

Glu 3TMS HT29 Cancer 3 0.34 0.03

Glu 3TMS MCF Cancer 3 0.13 0.03

Glu 3TMS MDA Cancer 2 0.15 0.02

Glu 3TMS RKO Cancer 3 0.20 0.01

Glu 3TMS SW480 Cancer 3 0.37 0.01

Suc H1 hESC 2 0.09 0.02

Suc H9 hESC 2 0.17 0.02

Suc HT29 Cancer 2 0.01 0.00

Suc MCF Cancer 3 0.09 0.00

Suc MDA Cancer 1 0.09 NA

Suc RKO Cancer 1 0.02 NA

Suc SW480 Cancer 3 0.08 0.01

Suc H1 hESC 2 0.20 0.01

Suc H9 hESC 2 0.18 0.02

Suc HT29 Cancer 3 0.15 0.03

Suc MCF Cancer 3 0.08 0.00

Continued on next page
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Chapter B: Supplementary: Project-related data

Table B.3 – continued from previous page

Metabolite SubGroup State N Inc.mean Inc.sd

Suc MDA Cancer 2 0.21 0.11

Suc RKO Cancer 3 0.07 0.01

Suc SW480 Cancer 3 0.19 0.01

Table B.4.: Stable isotope incorporation of 13C-pyruvic acid in

cancer cells, hESCs and hESC-DF cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Ala 3TMS H1 DF 2 0.27 0.02

Ala 3TMS H1 hESC 2 0.10 0.01

Ala 3TMS H9 hESC 2 0.11 0.00

Ala 3TMS H9 DF 2 0.28 0.02

Ala 3TMS HT29 Cancer 2 0.01 0.00

Ala 3TMS MCF Cancer 1 0.02 NA

Ala 3TMS MDA Cancer 2 0.17 0.09

Ala 3TMS RKO Cancer 2 0.01 0.00

Ala 3TMS SW480 Cancer 2 0.01 0.00

Cit H1 DF 2 0.06 0.01

Cit H1 hESC 2 0.11 0.01

Cit H9 hESC 2 0.10 0.01

Cit H9 DF 2 0.05 0.02

Cit HT29 Cancer 1 0.36 NA

Cit MCF Cancer 2 0.17 0.05

Cit MDA Cancer 2 0.01 0.00

Cit RKO Cancer 2 0.18 0.06

Cit SW480 Cancer 2 0.25 0.01

Lac H1 DF 2 0.25 0.01

Lac H1 hESC 2 0.26 0.00

Lac H9 DF 2 0.30 0.03

Lac H9 hESC 2 0.25 0.02

Lac HT29 Cancer 2 0.12 0.00

Lac MCF Cancer 2 0.13 0.07

Lac MDA Cancer 2 0.19 0.01

Lac RKO Cancer 2 0.09 0.01

Lac SW480 Cancer 2 0.16 0.01
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Chapter B: Supplementary: Project-related data

Reprogramming pluripotency in fibroblasts and re-differentiation

Additional tables summarising the metabolic profiles of the analysed cells can be found on the

attached CD.
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Chapter B: Supplementary: Project-related data

Table B.5.: Stable isotope incorporation of 13C-glucose in HFF1 and derived iPS and
iPS-DF cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Alanine (3TMS) MP HFF1 F 3 0.07 0.02
Alanine (3TMS) MP iPS2 DF 3 0.07 0.00
Alanine (3TMS) MP iPS2 iPS 3 0.14 0.00
Alanine (3TMS) MP iPS4 DF 3 0.08 0.00
Alanine (3TMS) MP iPS4 iPS 3 0.12 0.01
Citric acid 275 (4TMS) MP HFF1 F 3 0.08 0.01
Citric acid 275 (4TMS) MP iPS2 DF 3 0.08 0.02
Citric acid 275 (4TMS) MP iPS2 iPS 3 0.08 0.01
Citric acid 275 (4TMS) MP iPS4 DF 3 0.15 0.01
Citric acid 275 (4TMS) MP iPS4 iPS 3 0.07 0.02
Fumaric acid 247 (2TMS) MP HFF1 F 3 0.12 0.03
Fumaric acid 247 (2TMS) MP iPS2 DF 3 0.08 0.02
Fumaric acid 247 (2TMS) MP iPS2 iPS 3 0.09 0.01
Fumaric acid 247 (2TMS) MP iPS4 DF 3 0.12 0.03
Fumaric acid 247 (2TMS) MP iPS4 iPS 3 0.09 0.02
Lactic acid (2TMS) MP HFF1 F 3 0.13 0.02
Lactic acid (2TMS) MP iPS2 DF 3 0.06 0.01
Lactic acid (2TMS) MP iPS2 iPS 3 0.13 0.02
Lactic acid (2TMS) MP iPS4 DF 3 0.09 0.03
Lactic acid (2TMS) MP iPS4 iPS 3 0.17 0.00
Pyruvic acid (1MEOX)(1TMS) MP HFF1 F 3 0.01 0.00
Pyruvic acid (1MEOX)(1TMS) MP iPS2 DF 3 0.01 0.00
Pyruvic acid (1MEOX)(1TMS) MP iPS2 iPS 3 0.04 0.00
Pyruvic acid (1MEOX)(1TMS) MP iPS4 DF 3 0.01 0.00
Pyruvic acid (1MEOX)(1TMS) MP iPS4 iPS 3 0.04 0.00
Serine (3TMS) MP HFF1 F 3 0.03 0.01
Serine (3TMS) MP iPS2 DF 3 0.02 0.00
Serine (3TMS) MP iPS2 iPS 3 0.06 0.00
Serine (3TMS) MP iPS4 DF 3 0.01 0.00
Serine (3TMS) MP iPS4 iPS 3 0.05 0.00
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Chapter B: Supplementary: Project-related data

Table B.6.: Stable isotope incorporation of 13C-glucose in BJ1 and derived iPS and iPS-DF
cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Alanine (3TMS) MP BJ F 3 0.08 0.02
Alanine (3TMS) MP iB4 DF 3 0.00 0.00
Alanine (3TMS) MP iB4 iPS 3 0.12 0.01
Alanine (3TMS) MP iB5 DF 3 0.09 0.03
Alanine (3TMS) MP iB5 iPS 2 0.11 0.00
Citric acid 275 (4TMS) MP BJ F 3 0.14 0.01
Citric acid 275 (4TMS) MP iB4 DF 3 0.04 0.04
Citric acid 275 (4TMS) MP iB4 iPS 3 0.21 0.01
Citric acid 275 (4TMS) MP iB5 DF 3 0.19 0.04
Citric acid 275 (4TMS) MP iB5 iPS 2 0.22 0.00
Fumaric acid 247 (2TMS) MP BJ F 3 0.15 0.03
Fumaric acid 247 (2TMS) MP iB4 DF 3 0.00 0.00
Fumaric acid 247 (2TMS) MP iB4 iPS 3 0.09 0.02
Fumaric acid 247 (2TMS) MP iB5 DF 3 0.00 0.00
Fumaric acid 247 (2TMS) MP iB5 iPS 2 0.11 0.01
Lactic acid (2TMS) MP BJ F 3 0.14 0.02
Lactic acid (2TMS) MP iB4 DF 3 0.08 0.01
Lactic acid (2TMS) MP iB4 iPS 3 0.30 0.01
Lactic acid (2TMS) MP iB5 DF 3 0.20 0.07
Lactic acid (2TMS) MP iB5 iPS 2 0.30 0.02
Pyruvic acid (1MEOX)(1TMS) MP BJ F 3 0.00 0.00
Pyruvic acid (1MEOX)(1TMS) MP iB4 DF 3 0.01 0.00
Pyruvic acid (1MEOX)(1TMS) MP iB4 iPS 3 0.03 0.01
Pyruvic acid (1MEOX)(1TMS) MP iB5 DF 3 0.00 0.00
Pyruvic acid (1MEOX)(1TMS) MP iB5 iPS 2 0.03 0.00
Serine (3TMS) MP BJ F 3 0.02 0.00
Serine (3TMS) MP iB4 DF 3 0.01 0.00
Serine (3TMS) MP iB4 iPS 3 0.08 0.00
Serine (3TMS) MP iB5 DF 3 0.00 0.00
Serine (3TMS) MP iB5 iPS 2 0.08 0.01
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Table B.7.: Stable isotope incorporation of 13C-glucose in NFH2 and derived iPS and
iPS-DF cells of selected metabolites.

Metabolite SubGroup State N Inc.mean Inc.sd

Alanine (3TMS) MP NFH2 F 3 0.10 0.03
Alanine (3TMS) MP OiPS3 DF 3 0.04 0.01
Alanine (3TMS) MP OiPS3 iPS 3 0.15 0.02
Alanine (3TMS) MP OiPS6 DF 3 0.04 0.02
Alanine (3TMS) MP OiPS6 iPS 3 0.10 0.02
Citric acid 275 (4TMS) MP NFH2 F 3 0.19 0.01
Citric acid 275 (4TMS) MP OiPS3 DF 3 0.12 0.00
Citric acid 275 (4TMS) MP OiPS3 iPS 3 0.20 0.01
Citric acid 275 (4TMS) MP OiPS6 DF 3 0.18 0.02
Citric acid 275 (4TMS) MP OiPS6 iPS 3 0.21 0.01
Fumaric acid 247 (2TMS) MP NFH2 F 3 0.09 0.00
Fumaric acid 247 (2TMS) MP OiPS3 DF 3 0.09 0.01
Fumaric acid 247 (2TMS) MP OiPS3 iPS 3 0.01 0.00
Fumaric acid 247 (2TMS) MP OiPS6 DF 3 0.12 0.01
Fumaric acid 247 (2TMS) MP OiPS6 iPS 3 0.03 0.02
Lactic acid (2TMS) MP NFH2 F 3 0.17 0.02
Lactic acid (2TMS) MP OiPS3 DF 3 0.09 0.01
Lactic acid (2TMS) MP OiPS3 iPS 3 0.26 0.00
Lactic acid (2TMS) MP OiPS6 DF 3 0.12 0.01
Lactic acid (2TMS) MP OiPS6 iPS 3 0.26 0.00
Pyruvic acid (1MEOX)(1TMS) MP NFH2 F 3 0.00 0.00
Pyruvic acid (1MEOX)(1TMS) MP OiPS3 DF 3 0.01 0.00
Pyruvic acid (1MEOX)(1TMS) MP OiPS3 iPS 3 0.04 0.00
Pyruvic acid (1MEOX)(1TMS) MP OiPS6 DF 3 0.00 0.00
Pyruvic acid (1MEOX)(1TMS) MP OiPS6 iPS 3 0.02 0.00
Serine (3TMS) MP NFH2 F 3 0.01 0.00
Serine (3TMS) MP OiPS3 DF 3 0.00 0.00
Serine (3TMS) MP OiPS3 iPS 3 0.03 0.00
Serine (3TMS) MP OiPS6 DF 3 0.00 0.00
Serine (3TMS) MP OiPS6 iPS 3 0.01 0.00
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Table B.8.: Stable isotope incorporation of 13C-glutamine in all fi-

broblasts and derived iPS and iPS-DF cells of selected metabolites.
Metabolite SubGroup State N Inc.mean Inc.sd

Citric acid 276 (4TMS) MP BJ F 2 0.04 0.02

Citric acid 276 (4TMS) MP HFF1 F 2 0.01 0.01

Citric acid 276 (4TMS) MP iB5 F 1 0.02 NA

Citric acid 276 (4TMS) MP NFH2 F 2 0.02 0.00

Glutamic acid (3TMS) MP BJ F 2 0.32 0.03

Glutamic acid (3TMS) MP HFF1 F 2 0.16 0.00

Glutamic acid (3TMS) MP iB5 F 1 0.24 NA

Glutamic acid (3TMS) MP NFH2 F 2 0.22 0.03

Succinic acid 251 (2TMS) MP BJ F 2 0.56 0.22

Succinic acid 251 (2TMS) MP HFF1 F 2 0.53 0.11

Succinic acid 251 (2TMS) MP iB5 F 1 0.66 NA

Succinic acid 251 (2TMS) MP NFH2 F 2 0.55 0.01

Citric acid 276 (4TMS) MP iB4 iPS 2 0.06 0.02

Citric acid 276 (4TMS) MP iB5 iPS 2 0.04 0.00

Citric acid 276 (4TMS) MP iPS2 iPS 2 0.02 0.01

Citric acid 276 (4TMS) MP iPS4 iPS 2 0.01 0.01

Citric acid 276 (4TMS) MP OiPS3 iPS 2 0.01 0.01

Citric acid 276 (4TMS) MP OiPS6 iPS 2 0.01 0.01

Glutamic acid (3TMS) MP iB4 iPS 2 0.07 0.09

Glutamic acid (3TMS) MP iB5 iPS 2 0.14 0.01

Glutamic acid (3TMS) MP iPS2 iPS 2 0.14 0.00

Glutamic acid (3TMS) MP iPS4 iPS 2 0.11 0.02

Glutamic acid (3TMS) MP OiPS3 iPS 2 0.10 0.01

Glutamic acid (3TMS) MP OiPS6 iPS 2 0.13 0.00

Succinic acid 251 (2TMS) MP iB4 iPS 2 0.33 0.00

Succinic acid 251 (2TMS) MP iB5 iPS 2 0.45 0.09

Succinic acid 251 (2TMS) MP iPS2 iPS 2 0.46 0.01

Succinic acid 251 (2TMS) MP iPS4 iPS 2 0.47 0.11

Succinic acid 251 (2TMS) MP OiPS3 iPS 2 0.32 0.02

Succinic acid 251 (2TMS) MP OiPS6 iPS 2 0.36 0.10

Citric acid 276 (4TMS) MP iB4 DF 2 0.02 0.00

Citric acid 276 (4TMS) MP iPS2 DF 2 0.04 0.00

Citric acid 276 (4TMS) MP iPS4 DF 2 0.03 0.01

Citric acid 276 (4TMS) MP OiPS3 DF 2 0.07 0.00

Citric acid 276 (4TMS) MP OiPS6 DF 2 0.08 0.01

Glutamic acid (3TMS) MP iB4 DF 2 0.03 0.02

Glutamic acid (3TMS) MP iPS2 DF 2 0.09 0.01

Glutamic acid (3TMS) MP iPS4 DF 2 0.14 0.02

Glutamic acid (3TMS) MP OiPS3 DF 2 0.11 0.01

Glutamic acid (3TMS) MP OiPS6 DF 2 0.15 0.03

Continued on next page
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Table B.8 – continued from previous page

Metabolite SubGroup State N Inc.mean Inc.sd

Succinic acid 251 (2TMS) MP iB4 DF 2 0.30 0.01

Succinic acid 251 (2TMS) MP iPS2 DF 2 0.45 0.01

Succinic acid 251 (2TMS) MP iPS4 DF 2 0.35 0.05

Succinic acid 251 (2TMS) MP OiPS3 DF 2 0.34 0.06

Succinic acid 251 (2TMS) MP OiPS6 DF 2 0.50 0.01

Table B.9.: Stable isotope incorporation of 13C-pyruvic acid in all

fibroblasts and derived iPS and iPS-DF cells of selected metabo-

lites.
Metabolite SubGroup State N Inc.mean Inc.sd

Alanine (3TMS) MP HFF1 F 2 0.15 0.07

Alanine (3TMS) MP NFH2 F 2 0.12 0.03

Citric acid 275 (4TMS) MP BJ F 2 0.22 0.01

Citric acid 275 (4TMS) MP HFF1 F 2 0.29 0.00

Citric acid 275 (4TMS) MP NFH2 F 2 0.37 0.01

Lactic acid (2TMS) MP BJ F 2 0.23 0.01

Lactic acid (2TMS) MP HFF1 F 2 0.32 0.04

Lactic acid (2TMS) MP NFH2 F 2 0.25 0.07

Lactic acid (2TMS) MP iB4 DF 2 0.36 0.06

Lactic acid (2TMS) MP iPS2 DF 2 0.23 0.10

Lactic acid (2TMS) MP iPS4 DF 2 0.35 0.04

Lactic acid (2TMS) MP OiPS3 DF 2 0.26 0.02

Lactic acid (2TMS) MP OiPS6 DF 2 0.21 0.09

Alanine (3TMS) MP iB4 iPS 2 0.09 0.11

Alanine (3TMS) MP iB5 iPS 2 0.17 0.01

Alanine (3TMS) MP iPS2 iPS 2 0.21 0.02

Alanine (3TMS) MP iPS4 iPS 2 0.26 0.02

Citric acid 275 (4TMS) MP iB4 iPS 2 0.15 0.03

Citric acid 275 (4TMS) MP iB5 iPS 2 0.19 0.01

Citric acid 275 (4TMS) MP iPS2 iPS 2 0.16 0.07

Citric acid 275 (4TMS) MP iPS4 iPS 2 0.15 0.03

Citric acid 275 (4TMS) MP OiPS3 iPS 2 0.19 0.01

Citric acid 275 (4TMS) MP OiPS6 iPS 2 0.24 0.01

Lactic acid (2TMS) MP iB4 iPS 2 0.14 0.14

Lactic acid (2TMS) MP iB5 iPS 2 0.23 0.00

Lactic acid (2TMS) MP iPS2 iPS 2 0.31 0.00

Lactic acid (2TMS) MP iPS4 iPS 2 0.36 0.00

Lactic acid (2TMS) MP OiPS3 iPS 2 0.23 0.01

Lactic acid (2TMS) MP OiPS6 iPS 2 0.24 0.01

Alanine (3TMS) MP iB4 DF 2 0.25 0.01

Alanine (3TMS) MP iPS2 DF 2 0.25 0.05

Continued on next page
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Table B.9 – continued from previous page

Metabolite SubGroup State N Inc.mean Inc.sd

Alanine (3TMS) MP iPS4 DF 2 0.28 0.01

Citric acid 275 (4TMS) MP iB4 DF 2 0.28 0.01

Citric acid 275 (4TMS) MP iPS2 DF 2 0.29 0.03

Citric acid 275 (4TMS) MP iPS4 DF 2 0.24 0.01

Citric acid 275 (4TMS) MP OiPS3 DF 2 0.16 0.02

Citric acid 275 (4TMS) MP OiPS6 DF 2 0.27 0.00
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Reprogramming in early differentiation of hESC H1

Table B.10.: Media composition for the cultivation of hESC H1 cells

Stem cell media Differentiation media
SM SpDiff

Basal media DMEM/F12 DMEM/F12
Glc (g/L) 4.5 4.5
Gln (mM) 2 2
Supplements 15 % KO-serum 15 % KO-serum

2-ME 2-ME
10 ng/ml bFGF
100 pg/ml IL6RIL6

ENO1 GPI MAT2A

MDH2 MTHFD1 PGLS

PKM PNP
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Figure B.1.: CCM related proteins with less than 5% variance of protein expression within
48 hrs of differentiation.

Table B.11.: Top50 proteins shown the highest variance within 48

hours of early differentiation in hESCs H1.

Gene names 0 hrs 24 hrs 48 hrs var(LFQ)

ALB 1.00E+04 3.88E+07 1.00E+04 2.24E+07

HIST1H4A 6.43E+07 9.27E+07 5.49E+07 1.97E+07

JMJD1C 1.00E+04 1.00E+04 3.42E+07 1.97E+07

Continued on next page
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Table B.11 – continued from previous page

Gene names 0 hrs 24 hrs 48 hrs var(LFQ)

FASN 4.36E+07 3.12E+07 2.14E+07 1.11E+07

TF 1.70E+07 7.25E+05 1.00E+04 9.60E+06

RBP4 1.00E+04 1.09E+07 1.48E+07 7.67E+06

EEF2 7.07E+07 5.80E+07 6.03E+07 6.77E+06

PPIA 5.19E+07 4.05E+07 4.04E+07 6.62E+06

PTMA 1.51E+07 2.43E+07 2.74E+07 6.38E+06

RPL29 1.87E+07 7.19E+06 9.07E+06 6.19E+06

LDHB 4.73E+07 3.66E+07 3.69E+07 6.06E+06

HSPD1 5.59E+07 5.42E+07 4.50E+07 5.90E+06

BPIFB1 1.00E+04 9.99E+06 1.00E+04 5.76E+06

RPL6 3.43E+07 2.86E+07 2.30E+07 5.65E+06

GAPDH 6.86E+07 6.83E+07 5.95E+07 5.18E+06

NPM1 4.98E+07 4.09E+07 4.14E+07 4.98E+06

HSPA8 5.18E+07 4.38E+07 4.29E+07 4.88E+06

VIM 7.87E+06 1.08E+07 1.68E+07 4.54E+06

FLNC 3.07E+05 4.28E+06 8.59E+06 4.14E+06

HMGCS1 1.06E+07 5.48E+06 2.50E+06 4.12E+06

C3orf56 1.00E+04 1.00E+04 6.77E+06 3.90E+06

EEF1A1;EEF1A1P5 3.18E+07 2.57E+07 2.47E+07 3.84E+06

INS 2.10E+07 1.34E+07 1.74E+07 3.81E+06

TAGLN 1.81E+06 4.34E+06 9.25E+06 3.78E+06

RPL8 2.01E+07 1.64E+07 1.27E+07 3.74E+06

KRT1 5.34E+05 7.26E+06 1.51E+06 3.63E+06

SPINT2 1.00E+04 5.94E+06 1.00E+04 3.42E+06

RPL3 2.11E+07 1.84E+07 1.44E+07 3.40E+06

FGF2 9.05E+06 5.44E+06 2.40E+06 3.33E+06

YWHAE 3.05E+07 2.57E+07 2.42E+07 3.30E+06

RPS14 1.74E+07 1.41E+07 1.09E+07 3.24E+06

UFL1 5.40E+06 5.47E+06 1.00E+04 3.13E+06

HSPA5 2.13E+07 2.34E+07 1.73E+07 3.09E+06

MUC5B 1.00E+04 5.32E+06 1.00E+04 3.07E+06

BPIFA1 3.92E+04 5.30E+06 1.00E+04 3.05E+06

KRT9 4.00E+05 5.16E+06 1.40E+05 2.83E+06

TPT1 7.33E+06 3.25E+06 2.07E+06 2.76E+06

KRT10 1.13E+05 5.50E+06 2.01E+06 2.73E+06

HSP90AB1 3.96E+07 3.61E+07 3.43E+07 2.68E+06

RPL28 1.62E+07 1.43E+07 1.09E+07 2.66E+06

GNB2L1 1.96E+07 1.47E+07 1.54E+07 2.64E+06

HSP90B1 2.54E+07 2.91E+07 2.40E+07 2.64E+06

NCL 3.90E+07 3.47E+07 3.44E+07 2.57E+06

PGAM1 2.04E+07 2.04E+07 2.48E+07 2.56E+06

Continued on next page
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Table B.11 – continued from previous page

Gene names 0 hrs 24 hrs 48 hrs var(LFQ)

ALDOA 3.98E+07 4.00E+07 3.55E+07 2.55E+06

RPS3A 1.63E+07 1.33E+07 1.13E+07 2.53E+06

CFL1 1.88E+07 1.45E+07 1.46E+07 2.43E+06

HIST1H1B 1.92E+07 1.87E+07 1.48E+07 2.42E+06

RPS18 1.66E+07 1.37E+07 1.20E+07 2.34E+06
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Table B.12.: KEGG pathway enrichment analysis of top50 varying proteins. Analysis has
been performed with WEBGESTALT

KEGG pathway adj. p-value Nb. of proteins

Ribosome 2.35e− 12 8
Glycolysis / Gluconeogenesis 7.72e-06 4
Protein processing in endoplasm. reticulum 0.0002 4
Antigen processing and presentation 0.0004 3
Prostate cancer 0.0006 3
Type I diabetes mellitus 0.003 2
NOD-like receptor signalling pathway 0.0035 2
Regulation of actin cytoskeleton 0.0035 3
Metabolic pathways 0.0035 6
MAPK signalling pathway 0.0056 3
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Table B.13.: Metabolic profile of hESC H1 cells. Quantities are shown in pmol/1e+6 cells

Metabolite Pathway Nb. of Derivates mean(Quantity) sd(Quantity)

2HG glut 1 163.05 56.75
3PGA glyc 1 188.61 95.1
Ala aa 2 125.3 51.55
Butanoic acid, 3-hydroxy other 1 896.14 1406.42
Butanoic acid, 4-amino other 1 367.31 336.5
Cit tca 1 228.7 117.5
DHAP glyc 2 2905.59 108.96
Ery other 1 176.18 59.38
FBP glyc 1 2933.9 1143.21
Frc other 1 42.23 21.31
Frc6P glyc 1 139.74 59.93
Fum tca 1 208.36 122.8
Glu glut 2 10741.67 1686.97
Glut glut 1 134.13 128.62
Gly aa 2 4805.46 802
Glyc aa 1 179.94 125.21
Glyc3P other 1 94.31 65.52
Iso aa 2 2282.17 730.1
Lac glyc 1 2677.45 948.31
Leu aa 2 3331.48 873.19
Mal tca 1 269.02 102.03
Met aa 1 454.08 196.87
myo-Ino other 1 700.42 213.87
Patho other 1 226.52 113.91
Phe aa 1 918.93 359.76
Pro aa 1 3677.95 2524.1
Putr other 1 243.51 170.52
Pyr glyc 1 404.81 199.84
Ser aa 2 3452.17 626.07
Suc tca 1 122.15 60.68
Thr aa 2 6459.83 714.39
Uracil other 1 283.39 131.06
Val aa 2 2305.78 27.22
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Table B.14.: 13C-substrate incorporation in hESC H1 during early differentiation (1 equals
to 100 %).

Metabolite 13C-Substrate
Time of differentiation
0 hrs textbf24 hrs textbf48 hrs

Alanine (3TMS) MP Glc 0.27 0.19 0.14
Citric acid, m+2 Glc 0.27 0.29 0.34
Citric acid, m+4 Gln 0.09 0.23 0.27
DHAP (1MEOX)(3TMS) BP Glc 0.22 0.53 0.29
DHAP (1MEOX)(3TMS) MP Glc 0.65 0.83 0.75
Fructose (1MEOX)(5TMS) BP Glc 0.74 0.84 0.79
Fructose (1MEOX)(5TMS) MP Glc 0.84 0.98 0.91
FBP (1MEOX)(7TMS) BP Glc 0.95 0.93 0.87
FBP (1MEOX)(7TMS) MP Glc 0.97 0.94 0.91
Frc6P (1MEOX)(6TMS) MP Glc 0.95 0.91 0.91
Fumaric acid (2TMS) MP, m+2 Glc 0.04 0.1 0.11
Fumaric acid (2TMS) MP, m+4 Gln 0.14 0.3 0.31
6PGA (7TMS) MP Glc 0.48 0.22 0.12
Glutamic acid (3TMS) MP Gln 0.35 0.45 0.46
Glutamine [-H2O] (3TMS) BP Gln 0.73 0.73 0.73
Glutaric acid, 2-oxo Glc 0.05 0.11 0.11
Glutaric acid, 2-oxo Gln 0.17 0.36 0.4
GA3P Glc 0.19 0.34 0.39
3PGA (4TMS) MP Glc 0.75 0.78 0.64
Glycerol (3TMS) MP Glc 0.15 0.12 0.17
Glyc3P (4TMS) MP Glc 0.13 0.15 0.06
Lactic acid (2TMS) MP Glc 0.67 0.59 0.66
Malic acid (3TMS) MP, m+2 Glc 0.03 0.07 0.08
Malic acid (3TMS) MP, m+4 Gln 0.15 0.35 0.36
Pyruvic acid (1MEOX)(1TMS) MP Glc 0.8 0.78 0.7
Serine (3TMS) MP Glc 0.04 0.02 0.02
Succinic acid, m+2 Glc 0.04 0.04 0.07
Succinic acid, m+4 Gln 0.15 0.29 0.35
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Terminal neuronal differentiation of LUHMES cells

Table B.15.: Composition of cell culture media for Luhmes d0 and d6 cells.

Proliferation media Differentiation media
PM DM

Basal media adv. DMEM/F12 adv. DMEM/F12
Glc
Gln 2 mM 2 mM
Supplements 1x N2 1x N2

40 ng/ml FGF-2 2.25 uM Tetracycline
1 mM cAMP
2 ng/ml GNDF
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Figure B.2.: Proteomics analysis of Luhmes d0 and d6 cells. (A) Fold changes of trans-
porter proteins comparing neuronal cells with their pluripotent progenitor cells. (B) Fold
changes of central carbon metabolism enzymes. (C) Fold changes of proteins associated
with cell cycle control. (D) Fold changes of proteins related to neuronal differentiation.
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Table B.16.: Metabolic profile of Luhmes d0 cells. Quantities are shown in pmol/1e+6
cells.

Metabolite Pathway Nb. of Derivates mean(Quantity) sd(Quantity)

2HG glut 1 570.35 222.6985517
aKG tca 1 1282.18 474.6242095
Ala aa 1 1054.893833 425.2620849
Asp aa 1 4849.848378 1816.495199
Cit tca 1 1733.893476 614.6390913
DHAP glyc 1 2519.353371 1176.545118
Frc other 1 117.0629086 NA
Fum tca 1 854.7557545 289.5679398
Glc6P glyc 1 0.018163991 0.006327474
Glu glut 1 47025.75569 27234.1175
Gly aa 2 18862.66187 10542.18186
Glyc aa 1 2308.640526 538.6346661
Glyc3P other 1 461.6339077 166.800206
Iso aa 2 3846.066929 1570.732905
Lac glyc 1 17372.94361 13927.79232
Leu aa 2 36795.79741 34850.6715
Mal tca 1 3486.391367 1303.390282
myo-Ino other 1 8468.120459 2713.062521
Patho other 1 2003.571872 715.9522992
PGA glyc 1 1031.394362 589.3240068
Phe aa 1 11319.39234 5479.049817
Pro aa 1 16060.98195 7181.314327
Putr other 1 1315.854294 1029.572037
Pyr glyc 1 14607.60072 5774.892468
Ser aa 2 11730.70935 2762.655108
Suc tca 1 609.7753253 216.4348563
Thr aa 2 23772.10598 1182.478843
Uracil other 1 1026.993724 369.1737849
Val aa 2 8157.068954 1799.16568
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Table B.17.: Metabolic profile of Luhmes d6 cells

Metabolite Pathway Nb. of Derivates mean(Quantity) sd(Quantity)

2HG glut 1 1709.57091 292.2885356
Adenosine nucleobase 1 2485.625354 899.2015617
aKG tca 1 2724.368988 933.1704082
Ala aa 2 2069.509732 1642.613415
Cit tca 1 3220.424837 980.5661789
DHAP glyc 1 3812.587898 610.5648773
FBP glyc 1 6226.411252 NA
Frc other 1 319.6138291 118.8464703
Fum tca 1 1298.84658 410.340008
Glc6P glyc 1 0.04810577 0.014104223
Glu glut 1 82428.89493 26172.16618
Gly aa 2 42757.2963 4825.85418
Glyc aa 1 1953.297761 530.8118958
Glyc3P other 1 1324.740365 402.6150715
Iso aa 2 18784.33659 6746.228249
Lac glyc 1 16006.84151 4574.118745
Leu aa 2 37061.49277 9196.222485
Mal tca 1 3264.116351 1027.152832
myo-Ino other 1 21474.28349 2373.354192
Patho other 1 2284.790664 533.8188468
PGA glyc 1 2101.58651 466.6203702
PGA6 ppp 1 1379.512056 NA
Phe aa 1 9017.038791 2512.286758
Pro aa 1 11722.08673 2657.259621
Pyr glyc 1 27849.17691 6920.896252
Ser aa 2 25941.02329 7060.67849
Suc tca 1 973.1476566 275.1102318
Thr aa 2 58244.65947 13243.28567
Uracil other 1 1355.098635 731.2035675
Val aa 2 22599.5992 1176.72557

XXXIX
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C Supplementary: Integrative analysis

Table C.1.: Classification of cell lines for the integrative analysis of omics-data.

Phenotype Cell lines

Cancer cells HT-29, MCF-7, MDA-MB231, RKO, SW480
hESCs H1, H9, Luhmes d0
iPSCs iPS2, iPS4, OiPS3, OiPS6, iB4, iB5
Fibroblast (F) HFF1, NFH2, BJ1
Derived fibroblast (DF) H1-DF, H9-DF, iPS2-DF, iPS4-DF, OiPS3-DF, OiPS6-DF,

iB4-DF, iB5-DF, Luhmes d6



Chapter C: Supplementary: Integrative analysis
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Figure C.2.: Loadings of rank-normalised PCA of quantitative pool sizes in cancer, hESCs,
iPS cells, and their associated fibroblasts.
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D Supplementary: From pSIRM to MFA

Table D.1.: Conversion table for the metabolic flux map of LUHMES cells d0 and d6

Substrate Product
LUHMES d0 LUHMES d6

flux mult total flux pt d6 mult total flux pt

Glc GA3P 240.00 1 240 1.4 76.5 1 76.5 1.5
DHAP GA3P 238.00 1 238 1.4 76.5 1 76.5 1.5
GA3P Pyr 464.00 1 464 2.8 153 1 153 3.0
Pyr Pyr mit 124.00 1 124 0.7 44.7 1 44.7 0.9
Pyr Lac 500.00 1 500 3.0 149 1 149 2.9
Pyr Ala 80.60 1 80.6 0.5 11.1 1 11.1 0.2
Pyr ex Pyr im 150.00 1 150 0.9 51.2 1 51.2 1.0
Ala Ala exp 71.00 1 71 0.4 11.1 1 11.1 0.2
Lac Lac exp 500.00 1 500 3.0 149 1 149 2.9
Pyr acetylCoA 124.00 1 124 0.7 57.4 1 57.4 1.1
Pyr OAA 23.30 1 23.3 0.1 40 1 40 0.8
OAA aCoA Cit 63.60 1 63.6 0.4 62.4 1 62.4 1.2
Cit aKG 63.60 1 63.6 0.4 62.4 1 62.4 1.2
aKG Sucu 31.30 4 125.2 0.8 18.6 4 74.4 1.5
Suc Mal 39.10 4 156.4 0.9 18.8 4 75.2 1.5
Mal OAA 52.50 1 52.5 0.3 22.5 1 22.5 0.4
OAA Asp 10.40 1 10.4 0.1 0.02 1 0.02 0.0
Mal Pyr 104.00 1 104 0.6 52.6 1 52.6 1.0
Gln im Gln 87.00 1 87 0.5 14.7 1 14.7 0.3
Gln Glu 81.80 1 81.8 0.5 14.7 1 14.7 0.3
Glu aKG 75.10 1 75.1 0.5 12.1 1 12.1 0.2
G6P R5P 0.00 1 0 0.0 15.3 1 15.3 0.3
Ser Gly 19.60 1 19.6 0.1 5.8 1 5.8 0.1
Ser ex Ser im 17.00 1 17 0.1 1.1 1 1.1 0.0
DHAP Glyc3P 190.00 1 190 1.1 0.003 1 0.003 0.0
3PGA Ser 11.10 1 11.1 0.1 4.72 1 4.72 0.1
Glu ex Glu 10.00 1 10 0.1 0 1 0 0.0

PPP 0.00 1 0 0.0 5.1 1 5.1 0.1



E Supplementary: MTXQC

Exemplary MTXQC output

The herein presented pdf-file represents theexemplary MTXQC output file of a pSIRM time course

experiment in Luhmes cells, labeled with u-13C)-Glucose for up to 24 hours. The details of bio-

logical question of the experiment is addressed in Section 3.1.4. The pdf-file includes the project-

specific R-code. The pdf-file has been saved on the attached CD.

Input and output files

Table E.1.: Input files for metQC pSIRM-TS v.7
Part Input Information

general ann-native-glc.csv annotation of files
conversion-metabolite.csv Metabolite renaming list
letter-pathway.csv Annotation of metabolites and pathways
letter-pathway-profile.csv Annotation of metabolites and derivates

per pathway

GC Alcane-Intensities.csv Areas of alcanes in all samples; including
RT and RI information

CinAcid.csv Areas of internal extraction standard cin-
namic acid

MassSum-73.csv Exported summed up areas for m/Z 73
for each file and scan; including RI infor-
mation

quantMassAreasMatrix-pTop5.csv Areas based on Top5-Quantification of
all annotated metabolites

Inc 13C-Inc.csv Calculated 13C-incorporation for each
metabolite and file

pSIRM-SpectraData.csv Export of MIDs for each metabolite and
file

Quant ManualQuantTable-top5.csv Table containing areas and concentration
values for determination of calibration
curves

quantMassAreasMatrix-pTop5.csv Areas based on Top5-Quantification of
all annotated metabolites



Chapter E: Supplementary: MTXQC

Table E.2.: Output files for metQC pSIRM-TS v.7 - HeatMap data
general HM-GC QC-factors regarding GC-MS mea-

surement
HM-Incorporation.csv QC-factors regarding isotopic incor-

poration
HM-Quant-pTop5.csv QC-factors regarding top5 mass

quantification

Table E.3.: Output files for metQC pSIRM-TS v.7
Part Output Information

GC alcane-statistics.csv Per file - mean and sd of all nine alkanes
per file

AreaSum-normFac.csv Per file - N, sumArea and Area.fac for
area
nomalization of all annotated metabo-
lites

CinAcid-normFactor.csv Per file CinAcid - area, correction fac-
tor and evaluation if factor is within
defined range (0.65; 1.45)

mz-73-statistics.csv Per file N - mean.73, sd.73, max.73 and
ratio of summed up areas of m/z73

Table E.4.: Output files for metQC pSIRM-TS v.7- Inc
Inc 13C-statistics.csv Per metabolite Mass.Pos and Time - t

N, m.li and sd.li
13C-stats-zeros.csv Per metabolite incorporation at t = 0
SE-calculation-Nascore.csv Per metabolite - calculated number and

fraction of spectra containing specific
number of NA in comparison to backup
MID - na.frac.r, N, fracr.prop

SE-classification.csv Per metabolite and file calculated sum
of sample and backup MID, ist ratio
(low3a.ratio), and the evaluation

SE-validation.csv Per metabolite statistics of goodQ and
lowQ, calculated proportion
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Table E.5.: Output files for metQC pSIRM-TS v.7 - Quant pTop5
pTop5 pTop5-CalculationFileData.tsv Per metabolite and file - all normal-

ization values, cell count to final con-
centration per 1e+6 cells (Top5 Quan-
tification)

pTop5-Calibration-Samples-
lincheck.tsv

Per metabolite – counting entities
within, below and above linear range
and proportion of entities within the
linear range (Top5 Quantification)

top5-CalibrationInfo-unique.tsv Per metabolite - Rsquared, intercept,
slope and number of data points of cal-
ibration curve (Top5 Quantification)

top5-QMQcurveInfo.tsv Per metabolite - dilution, concentra-
tion and intensity vales for calculation
of calibration curve (Top5 Quantifica-
tion)

pTop5-Quantities-steadystate-times-
linear.csv

Per metabolite and Time - mean and
sd value and average and sd overall
time range (Top5 Quantification)

pTop5-Quantities-steadystate-
linear.csv

Per metabolite - pool sizes (N,mean,
sd) - Top5 Quantification; only linear
range

Metabolic-profile-calc.csv Data summary for the determination
of the metabolic profile

Metabolite-profile-summary.csv Values of metabolic profile plot
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Chapter E: Supplementary: MTXQC

GC-MS fragmentation analysis

Table E.6.: GC-fragments for determination of stable isotope in-

corporation

Metabolite Derivate m+0 Exact mass C-body Carbons

Ala (2TMS) 116 116.089 C2 not unique

Ala (2TMS) 190 190.1078 C2

Ala (3TMS) 188 188.1285 C2 [2,3]

Ala (3TMS) 262 262.1473

Asp (2TMS) 130 130.0319 C2

Asp (2TMS) 160 160.0788 C3

Asp (3TMS) 218 218.1027 C2 [1,2]

Asp (3TMS) 232 232.1184 C3 [2,3,4]

Asp (3TMS) 306 306.1371 C3

Cit (4TMS) 273 273.0973 C5 [1,2,3,4,5]

Cit (4TMS) 347 347.1161 C4

Cit (4TMS) 375 375.111 C6 all

Cit (4TMS) 465 465.1611 C6 all

DHAP (1MEOX)(3TMS) 400 400.1191 C3 all

Frc (1MEOX)(5TMS) 205 205.1075 C2 [5,6]

Frc (1MEOX)(5TMS) 217 217.1075 C3 [4,5,6]

Frc (1MEOX)(5TMS) 307 307.1576 C3

FBP (1MEOX)(7TMS) 217 217.1075 C3 [4,5,6]

FBP (1MEOX)(7TMS) 387 387.1423

F6P (1MEOX)(6TMS) 217 217.1075 C3

F6P (1MEOX)(6TMS) 387 387.1423

Fum (2TMS) 217 217.0711 C3

Fuma (2TMS) 245 245.066 C4 all

6PGA (7TMS) 217 217.1075 C3

6PGA (7TMS) 387 387.1423

Glc (1MEOX)(5TMS) 160 160.27 C2 [1,2]

Glc (1MEOX)(5TMS) 205 205.1075 C2 [5,6]

Glc (1MEOX)(5TMS) 217 217.1075 C3 [4,5,6]

G1/6P (1MEOX)(6TMS) 217 217.1075 C3 [4,5,6]

G1/6P (1MEOX)(6TMS) 357 357.1133 C2

G6P (1MEOX)(6TMS) 217 217.1075 C3 [4,5,6]

G6P (1MEOX)(6TMS) 357 357.1133 C2

Glu (2TMS) 186 186.0581 C4?

Glu (2TMS) 230 230.1027 C3?

Glu (2TMS) 276 276.1082 C5 all

Glu (3TMS) 230 230.1027 C3?

Glu (3TMS) 246 246.134 C4 [1,2,3,5] * or 4?

Continued on next page
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Table E.6 – continued from previous page

Metabolite Derivate m+0 Exact mass C-body Carbons

Glu (3TMS) 348 348.1477 C4

Gln (3TMS) 156 156.0839 C4 [2,3,4,5]

Gln (3TMS) 245 245.15 C4

2HG (3TMS) 185 n.d. C4

2HG (3TMS) 231 231.0867 C3

2HG (3TMS) 247 247.118 C4 symmetry

2HG (3TMS) 349 349.1317 — sec. structure

aKG (1MEOX)(2TMS) 156 156.0475 C3

aKG (1MEOX)(2TMS) 198 198.0581 C5 symmetry

aKG (1MEOX)(2TMS) 288 288.1082 C5 all

GA3P (1MEOX)(3TMS) 217 n.d. C3 all

3PGA (4TMS) 357 357.1133 C2 [2,3]

3PGA (4TMS) 387 387.1423

Glyc (3TMS) 218 218.1153 C3 all

Glyc (3TMS) 293 293.1419

Glyc3P (4TMS) 315 315.1028 — sec. structure

Glyc3P (4TMS) 357 357.1133 C2 [2,3]

Glyc3P (4TMS) 387 387.1423 — sec. structure

Gly (2TMS) 176 176.0921

Gly (2TMS) 204 204.0871

Gly (3TMS) 276 276.1266 C2 all

Gly (3TMS) 248 248.1317

Lac (2TMS) 117 117.073 C2 [2,3]

Lac (2TMS) 191 191.0918 C2

Lac (2TMS) 219 219.0867 C3 all

Mal (3TMS) 233 233.1024 C3 symmetry*

Mal (3TMS) 245 245.066 C4 all

Mal (3TMS) 335 335.1161 C4 all

PEP (3TMS) 369 369.0769 C3 all

Pyr (1MEOX)(1TMS) 158 158.0632 C3

Pyr (1MEOX)(1TMS) 174 174.0581 C3 all

Pyr (1MEOX)(1TMS) 189 189.0816 C3

R5P (1MEOX)(5TMS) 217 217.1075 C3

R5P (1MEOX)(5TMS) 357 357.1133 C2

Ser (2TMS) 116 116.0526 C2 not unique

Ser (2TMS) 132 132.0839 C2

Ser (3TMS) 188 188.0921 C2

Ser (3TMS) 204 204.1234 C2 [2,3]

Ser (3TMS) 218 218.1027 C2 [1,2]

Suc (2TMS) 172 172.055 C3 symmetry

Suc (2TMS) 247 247.0816 C4 all
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Figure E.1.: GC-MS fragment analysis applying different isotopes 13C-glucose in cell cul-
ture experiment.
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Figure E.2.: GC-MS fragment analysis applying different isotopes of 13C-glutamine in cell
culture experiment.
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