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Introduction

Di�erential algebraic equations (DAEs) are implicit ordinary di�erential equa-

tions (ODEs) of the form

f(x0(t); x(t); t) = 0; (1)

f : Gf ! IRn; Gf � IRn � IRn � IR, where the partial Jacobian f 0y(y; x; t)

is singular. In fact, this means that (1) consists of coupled systems of di�er-

ential equations and constraints. DAEs arise in various �elds of applications

such as the simulation of electric circuits, chemical reactions, vehicle dynam-

ics and optimal control problems. In this thesis, we restrict ourselves to

initial value problems (IVP).

The analytical and numerical solutions of (1) depend strongly on its struc-

ture and index. Roughly speaking, the index of a DAE is the measure of

the deviation of a DAE from regular ODEs, i.e., from equations (1) with

nonsingular f 0y(y; x; t). DAEs have, among other things, the following two

important properties (see e.g. [5],[25],[31]):

(i) Some components of the solution are determined by constraints. For

IVPs, these constraints restrict the choice of initial values, since there

is not a solution through every given initial value.

(ii) Higher index (� 2) DAEs do not only represent integration problems,

but di�erentiation problems, too. This implies that some parts of the

DAE must be di�erentiable suÆciently often. Moreover, depending on

the structure, both di�erentiations and integrations may be intertwined

in a complex manner.

As a consequence, only speci�c numerical methods should be used to approx-

imate the solutions of DAEs. However, these numerical methods may fail in

1



2 INTRODUCTION

dependence of the structure of the DAEs, particularly if the index is greater

than 2. Thus it is important to recognize the classes of problems for which

numerical methods will work. Therefore, various (structural) forms of DAEs,

as e.g. the Hessenberg form1, have been considered.

Property (i) implicates that one of the diÆcult parts in solving DAEs numer-

ically is to determine a consistent set of initial conditions in order to start the

integration. We formulate the problem of computing consistent initial values

as follows: Given some user de�ned guesses about initial values for the DAE,

determine values for the variables and the derivatives of variables appearing

in the DAE, in such a way that there exists a solution passing through them.

In this connection, it has to be emphasized that initialization is important

not only for beginning the integration but also for understanding how to

handle the solution discontinuities that frequently occur in applications.

For the higher-index cases, the so-called hidden constraints appear if we de-

rive a part of the equations of the DAE. This implies that the consistent

values have to be chosen in such a way that not only the explicit equations

of the DAE, but additionally these hidden constraints have to be ful�lled.

Hence, the task is particularly diÆcult, since a proper characterization of the

hidden constraints becomes necessary.

Up to now, the approaches from the literature to compute consistent initial

values require either index or structural assumptions (e.g. the mentioned

Hessenberg form), which are not always given in practice, or do not ex-

plicitly suppose any assumptions on the index and the structure, trying to

cope with a very complex problem. In contrast, here we restrict ourselves

to index-2 DAEs and analyse carefully the consequences of some weak struc-

tural assumptions. By doing so, we take advantage of the speci�c index-2

properties. As a consequence, the results are geared to the index-2 DAEs

from applications in which we are interested. At this point it has to be em-

phasized that the mentioned weak structural assumptions comprise a class

of DAEs that is much more general than the DAEs in Hessenberg form.

One current application, which is also a motivation for our study of systems

of DAEs, is the circuit simulation. Due to the fact that the models contain

1For a de�nition see Section 2.6.
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functions that are not very smooth, the tractability index, which requires only

weak smoothness assumptions on the variables and on the input functions,

becomes specially adequate. Another characteristic of circuit simulation is

that the equations are generated automatically, because the dimensions are

often very large. Since it has turned out that these equations are not in

Hessenberg form, hitherto it has not been clear how to identify the pieces

of information and model structures that are valuable for the mathematical

characterization. In the preliminary work to this thesis [15],[12],[11], it was

shown that the nonlinear DAEs obtained by modi�ed nodal analysis (MNA)

in circuit simulation present some new interesting structural properties of

index-2 DAEs that permit a relatively easy computation of consistent ini-

tial values. In practice these results are of special interest, since they allow

the location of the mathematically critical model elements by analyzing the

network graph. Consequently, in spite of the large dimensions, the relevant

properties of the equations can be checked very fast.

In this thesis, a general description of weak and yet helpful structural prop-

erties will be given in terms of the spaces and projectors associated with the

tractability-index. Starting from these structural properties, a speci�cation

of how to take advantage of them for consistent initialization will be pre-

sented. In order to achieve a rounded form of the exposition, some of the

results for circuit simulation developed in [15],[12],[11] will be reconsidered

in connection with the general description.

This thesis is organized as follows:

� Chapter 1 gives a short introduction to DAEs and the notion of their

index. Some index concepts from literature are introduced.

� In Chapter 2 some speci�c structural properties are analysed. Sub-

sequently, an expression for the hidden constraints of index-2 DAEs

is deduced, showing that substituting them for a part of the original

equations gives place to an index reduction. Based on this expression,

it is indicated how to set up a nonlinear system whose solution provides

a consistent initial value. Referring to this, careful attention is paid to

the simpli�cations arising from additional structural assumptions.

� Chapter 3 deals with the application of the results from Chapter 2

to circuit simulation (cf. [11]). Thus, a recapitulation of the results



4 INTRODUCTION

that partly have been developed in [15] previously is given. Moreover,

a graph-theoretical description of the critical parts of the model (cf.

[12]) is presented and some realization speci�cs are discussed.

� Finally, in the Appendix we state some well-known facts, provide the

equations and details of the example discussed in Chapter 2, and give

an overview of the assumptions from the Chapters 1 and 2 as well as

of some notations from Chapter 3.



Notations and conventions

ODE � Ordinary Di�erential Equation

DAE � Di�erential Algebraic Equation

IVP � Initial Value Problem

MNA � Modi�ed Nodal Analysis

im A � image space of the operator A

kerA � kernel of the operator A

Q projects onto R � Q2 = Q; im Q = R

W projects along R � W 2 =W; kerW = R

f : X ! Y is smooth � f is continuously di�erentiable

5
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Chapter 1

The Index of Di�erential

Algebraic Equations

Di�erential algebraic equations (DAEs) di�er in several aspects from regular

ODEs. All the index concepts from the literature precisely give a kind of

measure of the deviation of a DAE from regular ODEs. Indeed, the index, in

all its variants, measures in some sense how the solution of the DAE depends

on the describing equations, initial data, and forcing functions. Moreover,

most of these variants coincide when considering linear time-independent

DAEs and trace back to the Kronecker canonical form [18].

We briey introduce two well-known index concepts from the literature, the

di�erential index and the perturbation index, before de�ning the tractability

index, which will be considered in the forthcoming chapters1.

1.1 The Di�erential Index

Roughly speaking, the di�erential index (see e.g. [21],[19],[22],[5],[20],[9],[2])2

of a DAE is the number of di�erentiations that are necessary to transform the

1Another important index concept is the geometrical index, which describes the be-

haviour of DAEs as the behaviour of regular ODEs on a constraint manifold (see e.g.

[53],[50]).
2Actually, there are several slightly di�erent variants of the de�nition of the di�erential

index.

7



8 CHAPTER 1. THE INDEX OF DAES

DAE into a regular ODE. This index concept is often used in the literature.

De�nition 1.1.1 (cf. e.g. [5]) The di�erential index � of the general non-
linear, suÆciently smooth DAE

f(x0; x; t) = 0 (1.1)

is the smallest � such that

f(x0; x; t) = 0;

d

dt
f(x0; x; t) = 0;

...
d�

dt�
f(x0; x; t) = 0

uniquely determines the variable x0 as a continuous function of (x, t).

Fortunately, the structure of the DAEs is frequently such that it will not be

necessary to derive the whole function f . Often it suÆces to derive the obvi-

ous constraints3 in the index 1 case and, additionally, the hidden constraints

in the index 2 case.

The following example illustrates that for nonlinear DAEs the index is a local

property.

Example 1.1.2 [2] Consider

x01 = x3; (1.2)

0 = x2(1� x2); (1.3)

0 = x1x2 + x3(1� x2)� t; (1.4)

xi : If ! IR. Obviously, (1.3) has two solutions x2 = 0 and x2 = 1.

1. Considering x2 = 0, the third equation leads to x3 = t, and it is easy
to see that the di�erential index is 1.

2. Considering x2 = 1, the third equation leads to x1 = t. Then the system
has index 2.

3More will be said about constraints in Chapter 2.
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1.2 The Perturbation Index

The perturbation index, which was introduced in [30],[31], interprets the

index as a measure of sensitivity of the solution with respect to perturbations

of the given problem.

De�nition 1.2.1 [30] The equation

f(x0; x; t) = 0

has perturbation index m along a solution x�(t) on a closed interval I = [a; b],
if m is the smallest integer such that, for all functions x(t) having a defect

f(x0; x; t) = q(t);

there exists on I = [a; b] an estimate

k x(t)� x�(t) k� C

�
k x(a)� x�(a) k + max

a���t
k q(�) k + : : :

+ max
a���t

k q(m�1)(�) k
�

whenever the expression on the right-hand side is suÆciently small.

Note that the perturbation index concept requires information about the

solution of the DAE. The following example illustrates that the perturbation

index may di�er from the di�erential index.

Example 1.2.2 [30] Consider

x01 � x3x
0

2 + x2x
0

3 = 0;

x2 = 0;

x3 = 0;

xi : If ! IR. If we look at the perturbed system

x01 � x3x
0
2 + x2x

0
3 = 0; (1.5)

x2 = � sin!t; (1.6)

x3 = � cos!t; (1.7)

we observe that inserting (1.6) and (1.7) into (1.5) leads to x01 = �2!, i.e.,
the perturbation index is 2, whereas the di�erential index is 1.
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1.3 The Tractability Index

The tractability index (see e.g. [25],[39],[40],[41],[44]) orientates on the lin-

earization of a DAE and requires only weak smoothness conditions. Hence,

when considering this index, the required smoothness assumptions are spec-

i�ed.

Concretely, we focus on DAEs4

f(x0(t); x(t); t) = 0; f : IRn �Df � If ! IRn; (1.8)

where If is an open interval of IR, and Df is an open subset of IRn. The par-

tial derivative f 0y(y; x; t) is singular and has constant rank for all the triples

(y; x; t) of its de�nition domain Gf := IRn �Df � If .

For linear time varying DAEs

A(t)x0(t) +B(t)x(t) = q(t)

with continuous matrix functions A(�), B(�), and continuous functions q(�),
the tractability-index is de�ned considering a matrix chain based on the

matrix pencil (A(�); B(�)). For nonlinear systems its de�nition is based on

linearization. Roughly speaking, the aim is (cf. [44])

"The DAE (1.8) has index � if the linearized DAE has it, and vice versa".

In fact, it can be shown that the de�nition we introduce below for nonlinear

systems satis�es this claim (cf. [41]). For a better understanding, we will

consider �rst the de�nition for linear systems and introduce, afterwards, the

de�nition for nonlinear systems of index 1 and 2. For higher index nonlinear

DAEs, many questions concerning an adequate de�nition remain open.

4In the following, we will explicitly write the argument t for x0(t) and x(t) when con-

sidering the variables of the DAE, in order to distinguish them from points y and x. For

simplicity reasons, this distinction will not be maintained when considering examples and

the applications in Chapter 3.
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1.3.1 Linear DAEs

We consider linear time-dependent di�erential-algebraic equations, i.e. , equa-

tions of the form

A(t)x0(t) +B(t)x(t) = q(t); t 2 If ; x(t) 2 IRn; (1.9)

where A(t) is singular and has constant rank on If .
Observe that, if N(t) := kerA(t) depends smoothly5 on t, Q(t) is a smooth

projector onto N(t) and P (t) := I �Q(t), then it holds

A(t)x0(t) = A(t)f(Px)0(t)� P 0(t)x(t)g; (1.10)

i.e., (1.9) involves the derivative of (Px)(t) := P (t)x(t), but the derivative of

the nullspace component (Qx)(t) is not involved at all. Therefore, solutions

of (1.9) lie in

C1
N (If ; IRn) :=

�
x 2 C(If ; IRn) : Px 2 C1(If ; IRn)

�
: (1.11)

Notice that, if W0(t) denotes a projector along im A(t), then all solutions of

(1.9) lie in

M0(t) := fx 2 IRn : W0(t)(B(t)x� q(t)) = 0g:
Hence, let us introduce the space

S(t) := fz 2 IRn : W0(t)B(t)z = 0g;

i.e., each solution of the homogeneous equation satis�es x(t) 2 S(t), t 2 If .
De�nition 1.3.1 If A(t) is singular and has constant rank in I � If , then
(1.9) is index-1 tractable on I

() N(t) \ S(t) = f0g;
() N(t)� S(t) = IRn;

() G1(t) := A(t) +B(t)Q(t) is nonsingular,

() A1(t) := G1(t)(I � P (t)P 0(t)Q(t)) is nonsingular,

for all t 2 I.
5cf. De�nition 4.1.4, Appendix.
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Suppose now that the DAE we consider is not index-1 tractable. Then let

W1(t) be a projector along im G1(t) = im A1(t). The relevant spaces on this

level are

S1(t) := fz 2 IRn : W1(t)B(t)P (t)z = 0g
and

N1(t) := kerA1(t):

We denote by Q1(t) a projector onto N1(t) and P1(t) := I �Q1(t).

De�nition 1.3.2 If (1.9) is not index-1 tractable, N1(t) is smooth and
dimN(t) \ S(t) is constant on I � If , then (1.9) is index-2 tractable on I

() N1(t) \ S1(t) = f0g;
() N1(t)� S1(t) = IRn;

() G2(t) := A1(t) +B(t)P (t)Q1(t) is nonsingular,

() A2(t) := G2(t) (I � P1(t)(PP1)
0(t)P (t)Q1(t)) is nonsingular,

for all t 2 I.

Remark 1.3.3 Note that the index de�nitions introduced above do not de-
pend on the special choice of the di�erent projectors and that the equivalences
hold due to Lemma 4.1.3 from the Appendix.

For index-2 DAEs, N1(t) � S1(t) = IRn implies that there exists a projec-

tor Q1S(t) ful�lling im Q1S(t) = N1(t) and kerQ1S(t) = S1(t), called the

canonical projector. Recall further that this projector is given by Q1S(t) :=

Q1(t)G
�1
2 (t)B(t)P (t) if Q1(t) is an arbitrary projector onto N1(t). In the fol-

lowing, we will always consider that Q1(t) is the canonical projector. Thus,

due to N(t) � S1(t) it always holds that

Q1(t)Q(t) = 0: (1.12)

In order to illustrate the spaces and projectors introduced above, let us con-

sider the following example.
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Example 1.3.4 Consider

x01 + x1 + x2 = q1;

x02 + x3 + x4 = q2;

x2 = q3;

x4 = q4;

xi; qi : If ! IR. Straight forward computation shows:

N = im Q = im

0
BB@
0

0

1

1

1
CCA ; im A = kerW0 = ker

0
BB@
0

0

1

1

1
CCA ;

N \ S = im

0
BB@
0

0

1

0

1
CCA ; PQ1 =

0
BB@
0

1

0

0

1
CCA ; PP1 =

0
BB@
1

0

0

0

1
CCA :

Thus, we recognize that PP1x, corresponding to x1, represents the variable
that is determined by the inherent regular ODE. PQ1x, corresponding to x2,
represents the component that appears in dynamic form but is determined by
a derivative-free equation. The N \ S-component, corresponding to x3, is
determined by an inherent di�erentiation. Finally, x4 is simply determined
by a derivative-free equation, whereas it does not appear in dynamic form.

Let us observe that the de�nitions can be continued for higher index DAEs.

In [39],[41] the following matrix chain is introduced in order to characterize

the index of the DAE (1.9):

A0 := A;

B0 := B � AP 0

0;

Ai+1 := Ai +BiQi;

Bi+1 := (Bi � Ai+1(P0P1 : : : Pi+1)
0P0P1 : : : Pi�1)Pi;

where Qi is de�ned to be a projector onto Ni := kerAi, and Pi := I�Qi and

the arguments are dropped for the sake of simplicity6. Further, the projec-

tors Qi are chosen in such a way that QjQi = 0 is true for j > i.

6Note that this de�nition means Q0 = Q and P0 = P .



14 CHAPTER 1. THE INDEX OF DAES

De�nition 1.3.5 The DAE (1.9) is said to be index-� tractable on I if all
matrices Aj(t), t 2 I, j = 0; : : : ; � � 1, within the above chain are singular
with smooth null spaces, and A�(t) remains nonsingular on I.

1.3.2 Nonlinear DAEs

The de�nition of the tractability-index for nonlinear systems

f(x0(t); x(t); t) = 0 (1.13)

is based on an analogous chain of subspaces, projectors and matrices, using

the Jacobians f 0y(y; x; t) and f
0
x(y; x; t) point-wise instead of A(t) and B(t) (cf.

[25],[41],[44]). To this end, we suppose that f : Gf ! IRn, Gf = IRn�Df�If ,
is a continuous function and that f 0y(y; x; t), f

0
x(y; x; t) 2 L(IRn) exist for all

(y; x; t) 2 Gf , and f 0y, f
0
x 2 C(Gf ; IRn).

We focus on the quasilinear DAEs7

A(x(t); t)x0(t) + b(x(t); t) = 0: (1.14)

Note that if the coeÆcient matrix A(x; t) is nonsingular, (1.14) represents an

implicitly regular ODE. But we are interested in the case of A(x; t) remaining

singular and assume that8

A1 : N(t) := kerA(x; t); im A(x; t) depend smoothly on t;

and do not depend on x for (x; t) 2 Df � If . For a proper analysis of these

systems we de�ne the smooth projectors9 Q(t) onto N(t), P (t) := I �Q(t),

and W0(t) along im A(x; t).

Since

A(x; t) = A(x; t)P (t); (x; t) 2 Df � If ; (1.15)

7Note that index-1 tractable DAEs can also be de�ned even if they do not present a

quasilinear structure [25]. Since we will restrict our considerations to quasilinear DAEs in

the following, for reasons of uniformity we preferred to introduce the index-1 concept also

for quasilinear DAEs only.
8Observe that, by this assumption, we precisely exclude Example 1.2.2. To consider

problems of this kind, see Remark 1.3.8, 4.
9cf. De�nition 4.1.4, Appendix.
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(1.14) may be rewritten as

A(x(t); t)((Px)0(t)� P 0(t)x(t)) + b(x(t); t) = 0; (1.16)

and hence, the function space which the solution of (1.14) should belong to

again appears to be C1
N (see (1.11)).

Because of (1.14) f 0y = A(x; t) holds, and for B := f 0x we have

B(y; x; t) = [A(x; t)y]0x + b0x(x; t):

Notice now that all solutions of (1.14) lie in

M0(t) := fx 2 Df : W0(t)b(x; t) = 0g: (1.17)

Moreover, the space S, which is closely related to the tangent space ofM0(t),

is given by

S(x; t) := fz 2 IRn : W0(t)B(y; x; t)z = 0g =
(A1)

fz 2 IRn : W0(t)b
0
x(x; t)z = 0g:

De�nition 1.3.6 If A(x; t) is singular and has constant rank, then (1.14)
is said to be index-1 tractable on open G � Gf if

() N(t) \ S(x; t) = f0g;
() N(t)� S(x; t) = IRn;

() G1(y; x; t) := A(x; t) +B(y; x; t)Q(t) is nonsingular ,

() A1(y; x; t) := G1(y; x; t)(I � P (t)P 0(t)Q(t)) is nonsingular ,

is true for all values for (y; x; t) 2 G.
Let us focus on the index-2 case. Suppose that A1(y; x; t) is singular and let

W1(y; x; t) be a projector along im G1(y; x; t) = im A1(y; x; t). The relevant

spaces on this level are

S1(y; x; t) := fz 2 IRn : W1(y; x; t)B(y; x; t)P (t)z = 0g

and

N1(y; x; t) := kerA1(y; x; t):

Denote, analogously as in the linear case, by Q1(y; x; t) a projector onto

N1(y; x; t) and P1(y; x; t) := I �Q1(y; x; t).
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De�nition 1.3.7 (1.14) is said to be index-2 tractable on open G � Gf if
G1(y; x; t) is singular on G, dimN(t) \ S(x; t) is constant on G, and

() N1(y; x; t) \ S1(y; x; t) = f0g;
() N1(y; x; t)� S1(y; x; t) = IRn;

() G2(y; x; t) := A1(y; x; t) +B(y; x; t)P (t)Q1(y; x; t) is nonsingular

for all (y; x; t) 2 G.

Remark 1.3.8 1. Note again that the index de�nitions introduced above
do not depend on the special choice of the di�erent projectors and that
the equivalences hold due to Lemma 4.1.3 from the Appendix.

2. Observe that the smoothness assumptions from De�nition 1.3.2 and
from De�nition 1.3.7 for linear DAEs do not coincide, since for the
latter we did not make assumptions on the smoothness of N1. In fact,
the proper smoothness requirements are still a current matter of re-
search [45].

3. In practice, since for nonlinear DAEs P1 may depend on the solution,
we do not consider the corresponding expression for A2, because it would
involve the term d

dt
(P (t)P1(y; x; t)), which is diÆcult to handle. This

fact also leads to diÆculties for a de�nition of a tractability index higher
than 2. Indeed, for arbitrary nonlinear DAEs, many questions remain
open concerning how to take into account the di�erent rotating sub-
spaces appropriately.

4. If kerA(x; t) depends on x (i.e., A1 is not ful�lled), then the tractability-
index should be de�ned considering the enlarged system (cf. [42],[44]),
which contains 2n equations:

x0(t)� y(t) = 0; (1.18)

f(y(t); x(t); t) = 0: (1.19)

This system has semi-explicit form and a constant leading nullspace.
Observe that the enlarged system corresponding to Example 1.2.2 is
index-2 tractable.
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Analogously as for linear DAEs, consider the canonical projector Q1S(y; x; t)

ful�lling im Q1S(y; x; t) = N1(y; x; t) and kerQ1S(y; x; t) = S1(y; x; t). Recall

that this projector is given by

Q1S(y; x; t) := Q1(y; x; t)G
�1
2 (y; x; t)B(y; x; t)P (t);

if Q1(y; x; t) is an arbitrary projector onto N1(y; x; t). In the following, we

will always assume that Q1(y; x; t) is the canonical projector and that again

due to N(t) � S1(y; x; t) it always holds that

Q1(y; x; t)Q(t) = 0: (1.20)

Let us emphasize now the importance of the assumption of (y; x; t) 2 G, G
open, in the above de�nitions. This assumption is supposed to be given,

since we aim at numerical computations. On the one hand, for the solution

of DAEs it is important to study the behaviour of a solution of a perturbed

IVP in comparison to a solution of the original IVP. With the help of the

tractability-concept, a detailed analysis of perturbed IVP leads to results

concerning the numerical solvability of DAEs. In fact, for � = 1; 2 it turned

out that a DAE satisfying certain structural conditions has the perturba-

tion index � if it is index-� tractable. For a detailed discussion see e.g.

[41],[57],[44]. On the other hand, algorithms for computing a consistent ini-

tialization that involve expressions of projectors (e.g. the one presented in

[14] and the one from Chapter 2) are based on the assumption that these

expressions hold in a neighbourhood of the values we are interested in. If

this is not the case, the equations should better be reformulated by means

of analytical transformations before starting numerical computations. We

illustrate the problem by means of the following two examples.

Example 1.3.9 Consider

x01 + x02 + x3 = 1;

x2x3 = 1;

x1 + (x22 + x2)x3 = 0;
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xi : If ! IR. The relevant elements of the matrix chain read

A =

0
@1 1 0

0 0 0

0 0 0

1
A ; Q =

0
@ 1 0 0

�1 0 0

0 0 1

1
A ;

B(x; t) =

0
@0 0 1

0 x3 x2
1 (2x2 + 1)x3 x22 + x2

1
A ;

A1(x; t) =

0
@ 1 1 1

�x3 0 x2
1� (2x2 + 1)x3 0 x22 + x2

1
A :

Observe that the matrix A1 is singular for (y; x; t) ful�lling x2x3 = 1, but
nonsingular at points from an arbitrary small neighbourhood of a solution.
Note that in such a case the tractability-index is not de�ned, since we cannot
�nd an open G. Observe further, that this example has di�erential index 2,
but that if we slightly perturb the second equation, then the di�erential index
becomes 1.

Indeed, a numerical approach to compute consistent initial values may fail
when considering such an example. For this example, the algorithm described
in [14] fails in practice, since the index switches in the neighbourhood of the
solution.

Moreover, if we transform the equations analytically into

x01 + x02 + x3 = 1;

x2x3 = 1;

x1 + x2 + 1 = 0;

then an open G can be found, the tractability-index is de�ned and is 2, and
also the algorithm from [14] works.

Remark 1.3.10 Consider again example 1.1.2. In this case, we would ob-
tain

A1(x; t) =

0
@1 0 �1
0 1� 2x2 0

0 x1 � x3 1� x2

1
A :
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Hence, A1 is singular for x2 = 1 and nonsingular for x2 = 0. The tractability-
index is not de�ned in the �rst case, since we cannot �nd an open G.

1.3.3 Solvability Results

Under the exposed assumptions, the following existence and uniqueness the-

orem for index-1 tractable DAEs holds.

Theorem 1.3.11 If (1.14) is index-1 tractable on G � Gf , then for x0 2
M0(t0),

M0(t) := fx 2 D : W0(t)b(x; t) = 0g;
t0 2 I, there exists a locally unique solution x(�) : I ! IRn in C1

N with
x(t0) = x0.

Proof: (cf.[25],[41]). Note that

M0(t) = fx 2 D : 9y A(x; t)y + b(x; t) = 0g:

Consider (y; x; t) 2 G. Introducing the new variables

w := P (t)y +Q(t)x;

u := P (t)x;

we rewrite

A(x; t)y + b(x; t) = A(u+Q(t)w; t)w + b(u+Q(t)w; t)

and de�ne ~f by

~f(w; u; t) := A(u+Q(t)w; t)w + b(u+Q(t)w; t):

Observe that for ~f at w0 = P (t0)y0 + Q(t0)x0, u0 = P (t0)x0, while y0 is

chosen according to x0 2M0(t0), it holds

~f(w0; u0; t0) = 0 and ~f 0w(w0; u0; t0) = G1(y0; x0; t0);

i.e., ~f 0w(w0; u0; t0) is nonsingular. Due to the Implicit Function Theorem in

a small neighbourhood there exists a uniquely de�ned continuous function
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w(u; t) with continuous partial Jacobian w0
u(u; t) satisfying 0 = ~f(w; u; t) =

A(u+Q(t)w; t)w + b(u+Q(t)w; t).

Let now u be the locally unique solution of the regular initial value problem

u0(t)� P 0(t)u(t) = P (t)(I + P 0(t))w(u(t); t); (1.21)

u(t0) = P (t0)x0: (1.22)

Realize that for the solution of (1.21)-(1.22) it holds that Q(t)u(t) = 0. This

can be veri�ed considering the following regular initial value problem, which

results when multiplying (1.21) and (1.22) by Q:

Q(t)u0(t) +Q0(t)u(t)�Q0(t)Q(t)u(t) = 0;

Q(t0)u(t0) = 0:

Since for �(t) = Q(t)u(t) this implies �0(t) � Q0(t)�(t) = 0 and �(t0) = 0,

the function � vanishes identically, which implies u(t) = P (t)u(t).

Then, x(t) = u(t) + Q(t)w(u(t); t) belongs to C1
N because P (t)x(t) = u(t)

is continuously di�erentiable, whereas the part Q(t)w(u(t); t) depends only

continuously on t in general.

Hence, such an x(t) is the C1
N solution passing through (x0; t0) since

0 = ~f(w(u(t); t); u(t); t)

= A(u(t) +Q(t)w(u(t); t); t)w(u(t); t) + b(u(t) +Q(t)w(u(t); t); t)

=
(1:21)

A(u(t) +Q(t)w(u(t); t); t)[u0(t)� P 0(t)u(t)� P (t)P 0(t)w(u(t); t)]

+b(u(t) +Q(t)w(u(t); t); t)

=
PP 0P=0

A(u(t) +Q(t)w(u(t); t); t)[u0(t)� P 0(t)[u(t) +Q(t)w(u(t); t)]]

+b(u(t) +Q(t)w(u(t); t); t)

= A(x(t); t)((Px)0(t)� P 0(t)x(t)) + b(x(t); t):

q.e.d.

In Section 2.4 we will see how to obtain solvability results for index-2 tractable

DAEs applying Theorem 1.3.11 to a corresponding (reduced) index-1 tractable

DAE.



Chapter 2

Consistent Initial Values for

DAEs

2.1 Introduction

Roughly speaking, the problem of determining consistent initial values for

di�erential-algebraic equations (DAEs) can be described as follows. For or-

dinary di�erential equations, initial values have to be prescribed for all vari-

ables to determine a unique solution. However, di�erential-algebraic equa-

tions consist of di�erential equations coupled with derivative-free equations,

commonly referred to as constraints1. Hence, not all components appear in

dynamic form. Indeed, some of them are precisely determined by the con-

straints. Thus, no initial values can be prescribed for them.

According to ODE theory, we de�ne for DAEs:

De�nition 2.1.1 A vector x0 2 IRn is a consistent initial value of (1.14) if
there exists a solution of (1.14) that ful�ls x(t0) = x0.

In practice, we are also interested in the corresponding values of the deriva-

tives appearing in the DAE. Due to (1.15), the following de�nition will char-

acterize these values properly.

De�nition 2.1.2 A vector (x0; P (t0)y0) is a consistent initialization of (1.14)
ful�lling A1 if x0 is a consistent initial value and (x0; P (t0)y0) ful�ls the
equation A(x0; t0)P (t0)y0 + b(x0; t0) = 0.

1In the literature, they are often referred to as algebraic equations.

21
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Note that the singularity of A(x; t) implies that (1.14) contains some derivati-

ve-free equations, which we will denote by explicit constraints. A consistent

initialization has to ful�l precisely those equations. Moreover, the di�erentia-

tion of these explicit constraints may lead to further derivative-free equations,

called hidden constraints, which a consistent initialization has to ful�l, too.

This occurs for higher index (� 2) DAEs. Hence, in general, the computation

of consistent initial values may become a really hard task. We briey resume

some approaches from the literature in Section 2.2. In this thesis, we will

restrict ourselves to index-2 DAEs.

Remark 2.1.3 In the index-1 case, Theorem 1.3.11 implies that the set of
consistent initial values is given by M0(t).

For the index-2 case the consistent initial values have to lie in a subset

M1(t) � M0(t);

which is de�ned by the so-called hidden constraints and M0(t).

Let us consider the following index-2 example to get an idea of what explicit

and hidden constraints may look like.

Example 2.1.4 Consider

x01 � x1 = 0;

x02 �
x3

x2
= 0;

x21 + x22 � 1 = 0;
−1

0

1 −1

0

1

−1

−0.8

−0.6

−0.4

−0.2

0

x1

M1 ⊆ M0 ⊆  Df

   x2

x3

Df = D = (�1; 1) � (0; 1) � (�1; 0). It is easy to realize that the explicit
constraint is given by x21+x22�1 = 0, while the hidden constraint arises from
x3 = �x21. Consequently, consistent initial values have to ful�l both equations
and lie in Df due to M1 �M0 � Df :

M0 = fx 2 D : x21 + x22 � 1 = 0g;
M1 = fx 2 D : x21 + x22 � 1 = 0; x3 = �x21g:
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Since we will focus on index-2 DAEs, we are interested in a proper charac-

terization of the appearing hidden constraints. For the systems arising from

circuit simulation by MNA, their structural properties simplify the problems

related to consistent initialization considerably [11]. Here, we are aiming

at characterizing these structural properties when considering more general

index-2 DAEs. The spaces and projectors related to the tractability index

will precisely provide the description of the required structural conditions.

In Section 2.3 we will introduce some structural assumptions and properties

that make it possible to give the requested general description. This charac-

terization for a wide class of nonlinear DAEs will be presented in Section 2.4,

by considering an index reduction. By using this characterization, in Section

2.5 we propose an approach that permits, in many applications, a relatively

easy computation of a consistent initial value. In Section 2.6 we illustrate

how this approach applies to DAEs in Hessenberg form. Finally, in Section

2.7 we consider a special structure, and analyse the consequences of starting

up with the implicit Euler or the trapezoidal rule from an inconsistent initial

value that satis�es the original DAE equations.

2.2 PreviousWork on the Initialization Prob-

lem

For index-1 DAEs, the problem of determining consistent initial values is

quite well-understood, since no hidden constraints have to be taken into ac-

count.

In particular, the system

A(x0; t0)P (t0)y0 + b(x0; t0) = 0; (2.1)

P (t0)(x0 � �) +Q(t0)y0 = 0; (2.2)

� 2 IRn is helpful, if it is solvable [41]. The Jacobian of this system is

nonsingular because of the index-1 requirement and its solution is consistent

(cf. Theorem 1.3.11). Notice that Q(t0)y0 = 0 is introduced to guarantee

y0 = P (t0)y0, obtaining a quadratic system. Some remarks concerning the

implementation of this approach can be found in [35].

In practice, for index-1 DAEs a consistent initial value can be computed by

means of di�erent approaches. For instance, Brown et al.[7] describe how the
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computation is performed in the software package DASSL (cf. [49],[5]) and

an extension of it, DASPK (cf. [6]). Two possible approaches are considered:

1. For semi-explicit problems it is assumed that a value for the dynamic

component is given, i.e., for Px0, and that we have to compute the

corresponding values for Qx0 and Py0.

2. For DAEs with a nonsingular matrix f 0x it is discussed how to compute

x0 if y0 is given.

Moreover, in [7] an extension of the method for higher index Hessenberg2

DAEs is announced. Hessenberg systems are also considered by Amodio and

Mazzia [1], where consistent initial values are computed realizing the di�er-

entiation by special �nite di�erences.

For arbitrary unstructured higher index cases, the problem becomes much

more complicated. According to the de�nition of the di�erential index, we

can de�ne the derivative array equations

f �(x�+1; : : : ; x0; x; t) = 0 (2.3)

as the set of equations derived by di�erentiating the original DAE (1.1) �-

times, where � is the di�erential index. Consequently, most of the approaches

based on this consideration aim at computing a complete vector (x0; y0) ful-

�lling (2.3).

Leimkuhler et al. [38] considered numerical di�erentiation to approximate

the derivatives of the derivative array equations (2.3) together with a set

of user-speci�ed information on initial conditions. The resulting overdeter-

mined system was solved in a least square sense. This is complicated due

to the rank de�ciency of the Jacobian. Gopal and Biegler [23] considered

(2.3), supposed that a set of initial values was given, and minimized the de-

viation of the consistent values from the speci�ed ones by a successive linear

programming approach. Their algorithm provides good results also for small

examples of di�erential index 3.

Other authors consider the fact that, since (2.3) contains more equations

than really necessary for computing consistent initial values, a more detailed

2For a de�nition see Section 2.6.
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analysis of the equations is worthwhile.

Pantelides [48] constructed an algorithm using graph theory methods to dif-

ferentiate subsets of the system. By considering a bipartite graph, this algo-

rithm determines the so-called structural index3, a number of di�erentiations

to obtain consistent initial values and a selection of variables for which we

may prescribe suitable initial values. The approach bases on assignments

between equations and variables, locating subsets of equations for which the

number of new equations generated upon di�erentiation of the subset exceeds

the number of new variables appearing in them. However, if for instance, for

Q =

�
0

I

�
, the number of equations that should be di�erentiated is less

than or equal to the cardinality of the variables of (Px0; Qx) appearing in

these equations, then equations that ought to be di�erentiated may escape

detection. Example 2.4.2 is given to illustrate this limitation. Another sys-

tematically di�erent structural algorithm was developed by Unger et al. [59]

(see also Kr�oner et al.[33],[34]) by using a structural version of the symbolic

algorithm for the index reduction proposed by Gear [19]. For linear systems

an algorithm based on this idea was already presented in Bachmann et al. [3].

Here, we are aiming at computing consistent initial values for index-2 DAEs

by considering a characterization of necessary di�erentiations by means of

the projectors related to the tractability index. Referring to this, we also

build upon previous work. Assuming that the relevant projectors are only

time-dependent, Hansen [32] proposed an approach that applies index reduc-

tion and formula manipulation methods. Taking this idea up, Lamour [36]

used a similar description of the part of the solution we have to di�erentiate,

while the di�erentiated part was replaced by its �nite di�erences.

Due to the fact that, in practice, some necessary assumptions on the pro-

jectors were not given, Lamour then considered the possibility to obtain the

consistent initialization by di�erentiating (1.14) once. In this context, M�arz

[43],[46] introduced a characterization of those equations of (1.14) that re-

ally have to be di�erentiated by means of a suitable projector. In [14], a

modi�cation of this approach was incorporated to a method for computing

3This index is determined considering the zero pattern of the matrices and not their

actual values.
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a consistent initialization. To this end, an index-reduction technique analo-

gous to the one that will be presented in Section 2.4 was already carried out

under slightly di�erent assumptions. The di�erence between the algorithm

developed there and the one we present here will be extensively discussed in

Section 2.5.

2.3 Some Properties of the Spaces and Pro-

jectors

In contrast to the index-1 case, where M0(t) is �lled by solutions (see The-

orem 1.3.11), for the index-2 case the so-called hidden constraints de�ne a

subset

M1(t) � M0(t);

which ful�ls the requirement that for each point x0 2 M1(t) there exists a

solution through x0.

Another diÆculty for index-2 DAEs consists in describing the so-called index-

2 components, which belong to the space N(t) \ S(x; t). These components

are determined neither by a di�erential equation nor by a derivative-free

equation, but by inherent di�erentiation.

Later on, we will see that the hidden constraints can be described properly

using the projectorW1 introduced in Section 1.3 if we make some assumptions

on the space N(t)\ S(x; t) and suppose that suÆcient smoothness is given4.

Let us �rst consider some structural properties that are well-known from the

literature dealing with the tractability index. Thereupon, we will deduce

some new structural properties that result if we suppose that N(t) \ S(x; t)

depends only on t (cf. Assumption A2, pp. 29).

Lemma 2.3.1 [57],[43] If A1 is given, then for all (y; x; t) 2 Gf it holds:

1. W1(y; x; t)A(x; t) = 0, W1(y; x; t)B(y; x; t)Q(t) = 0,

2. W1(y; x; t) =W1(y; x; t)W0(t),

4In Section 2.4 the exact smoothness requirement will be introduced as the need arises.
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3. kerW1(y; x; t)B(y; x; t) = kerW1(y; x; t)b
0
x(x; t) = S1(y; x; t).

4. If (1.14) is index-2 tractable on G � Gf , then for all (y; x; t) 2 G the
following equations are valid:

(a) N(t) \ S(x; t) = im Q(t)Q1(y; x; t),

(b) kerW1(y; x; t)B(y; x; t) = kerQ1(y; x; t) = kerP (t)Q1(y; x; t),

(c) For G2(y; x; t) := A1(y; x; t)+B(y; x; t)P (t)Q1(y; x; t) it holds that

G�1
2 (y; x; t)A(x; t) = P1(y; x; t)P (t);

G�1
2 (y; x; t)B(y; x; t) = G�1

2 (y; x; t)B(y; x; t)P (t)P1(y; x; t)

+Q1(y; x; t) +Q(t)

+P1(y; x; t)P (t)P
0(t)Q(t):

Proof: For the sake of simplicity, we drop the arguments.

1) With 0 =W1G1 =W1(A+BQ) we obtain

W1G1P = W1A = 0 and W1G1Q = W1BQ = 0:

2) Note that im (I �W0) = kerW0 = im A � kerW1 and that, therefore,

W1(I �W0) = 0 or W1 =W1W0.

3), 4b) and 4c) follow by straightforward computation.

Let us consider 4a).

(�) For every z 2 im QQ1 � N we have z 2 N . Further, there exists a

w 2 IRn such that z = QQ1w. Thus,

Bz = BQQ1w = (A1 + AP 0Q� A)Q1w = A(P 0 � I)Q1w 2 im A

is satis�ed, i.e., z 2 S.

(�) For every z 2 N \S it holds that z = Qz and that we can �nd a v 2 IRn

such that Bz = Av is valid. Then de�ne ~v := Qv+Pv�PP 0z, which implies

Bz � AP 0z = A~v. For u := z � P ~v we thus obtain:

A1u = A1Qz � A~v = Bz � AP 0z � A~v = 0;

i.e., u 2 N1 = im Q1. This �nally implies z = Qz = Qu = QQ1u, i.e.,

z 2 im QQ1.

q.e.d.

Let us now develop some hitherto unexplored structural properties.
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Lemma 2.3.2 Suppose that A1 is given. Then, for all (y; x; t) 2 Gf it holds

N(t) \ S(x; t) = ker[A(x; t) +W0(t)b
0

x(x; t)]

= ker[A(x; t) +W0(t)b
0

x(x; t)Q(t)]; (2.4)

im A1(y; x; t) = im G1(y; x; t)

= im [A(x; t) +W0(t)b
0
x(x; t)Q(t)]

= im A(x; t)� im W0(t)b
0

x(x; t)Q(t): (2.5)

Proof: For simplicity, we drop the arguments of the matrices.

The equalities from (2.4) arise from A1, the de�nitions of N(t) and S(x; t),

and from

ker[A+W0b
0

x] = kerA \ kerW0b
0

x = kerA \ kerW0b
0

xQ = ker[A+W0b
0

xQ]:

Consider the equalities from (2.5). Since W0b
0
x = W0B is given by A1,

im W0BQ � im W0, and im W0\ im A = f0g, we only have to show im (A+

BQ) = im A+ im W0BQ.

(�) For any z 2 im (A+BQ) we �nd a v1 such that

z = (A+BQ)v1 = Av1 + (I �W0)BQv1 +W0BQv1:

Note that we have im (I �W0) = im A and, therefore, im (I �W0)BQ �
imA. Thus we �nd a v2 ful�lling

(I �W0)BQv1 = Av2:

Therefore, z = A(v1 + v2) +W0BQv1.

(�) For any z 2 (im A + im W0BQ) we �nd v1 2 im A and v2 2 im W0BQ

such that

z = Av1 +W0BQv2:

Moreover, since im (I�W0)BQ � imA, we �nd a v3 such that (I�W0)BQv2 =

Av3. Hence, we obtain

z = (A+BQ)(P (v1 � v3) +Qv2):

q.e.d.
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We have already noted that N(t) \ S(x; t) describes the so-called index-2

components, which are determined by inherent di�erentiation. Hence, it

seems to be reasonable that assumptions on this space may imply useful

structural properties of the DAE. A reasonably claimed assumption should

be given for linear DAEs and in the applications we are interested in. Thus,

we assume that

A2 : N(t) \ S(x; t) depends smoothly on t and does not depend

on x for (x; t) 2 Df � If :

De�ne the smooth projectors5 T (t) onto N(t) \ S(x; t) and U(t) := I � T (t)

correspondingly. Note further that this assumption can easily be checked

considering ker[A(x; t) +W0(t)b
0
x(x; t)] (cf. Lemma 2.3.2). This lemma also

allows a relatively easy computation of a projector T (t).

Remark 2.3.3 Note that by Lemma 2.3.2 it follows that

rank W1(x; t) = rank T (t) and rank G1(y; x; t) = rank U(t)

for all (y; x; t) 2 Gf .

Lemma 2.3.4 The Assumptions A1 and A2 yield the following structural
properties:

1. W0(t)B(y; x; t) =W0(t)B(y; x; t)U(t),

2. For (W0b)(x; t) :=W0(t)b(x; t) it holds that (W0b)(x; t) = (W0b)(U(t)x; t),

3. S(x; t) = S(U(t)x; t),

4. im G1(y; x; t) depends only on (U(t)x; t). Thus, we can choose W1 in
such a way that W1(x; t) =W1(U(t)x; t),

5. S1(y; x; t) = S1(U(t)x; t),

5cf. De�nition 4.1.4, Appendix.



30 CHAPTER 2. CONSISTENT INITIAL VALUES FOR DAES

6.

kerA(x; t) = ker

�
A(x; t) +W1(U(t)x; t)B(y; x; t)

�

= ker

�
A(x; t) +W1(U(t)x; t)b

0

x(U(t)x; t)

�
:

Proof:

(1) For every z 2 N(t) \ S(x; t) � S(x; t) := fz : W0(t)B(y; x; t)z = 0g it

trivially holds that W0(t)B(y; x; t)z = 0. Therefore, W0(t)B(y; x; t)T (t) = 0.

Notice that, in fact, we could write this for a projector onto S(x; t). Nev-

ertheless, since S(x; t) often depends on the solution, we will see that for

forthcoming considerations it is advantageous to consider T (t).

(2) From point (1) and A1 it follows that

0 = W0(t)B(y; x; t)T (t) = W0(t)b
0

x(x; t)T (t)

and, therefore,

(W0b)(x; t)� (W0b)(U(t)x; t) =

Z 1

0

(W0b)
0

x(sx+ (1� s)U(t)x; t)T (t)ds = 0:

(3) The equality (3) follows directly from (2):

S(x; t) = fz 2 IRn : W0(t)B(y; x; t)z = 0g
= fz 2 IRn : (W0b)

0

x(U(t)x; t)z = 0g = S(U(t)x; t):

(4) Taking into account the splitting from 2.3.2

im G1(y; x; t) = im A(x; t)� im W0(t)b
0

x(x; t)Q(t)

and the fact that imA depends only on t and that W0b
0
xQ depends only on

(U(t)x; t), it follows that im G1(y; x; t) depends only on (U(t)x; t).

(5) The relation (5) follows from

S1(y; x; t) = fz 2 IRn : W1(U(t)x; t)B(y; x; t)P (t)z = 0g
= fz 2 IRn : W1(U(t)x; t)b

0

x(U(t)x; t)P (t)z = 0g = S1(U(t)x; t):
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(6) Finally, we obtain (6) since from

A(x; t) +W1(U(t)x; t)B(y; x; t) = (I �W1(U(t)x; t))A(x; t)

+W1(U(t)x; t)B(y; x; t)

we can conclude

ker

�
A(x; t) +W1(U(t)x; t)B(y; x; t)

�
= kerA(x; t) \ kerW1(U(t)x; t)B(y; x; t)P (t)

= kerA(x; t) \ kerW1(U(t)x; t)b
0

x(U(t)x; t)P (t) = kerA(x; t):

q.e.d.

Remark 2.3.5 � Observe that, since (Tx) represents the index-2 compo-
nents, (W0b)(x; t) = (W0b)(U(t)x; t) means that these components can
not appear in the explicit constraints. This is obviously given, since
they precisely are determined by inherent di�erentiation.

� Note that if we have (W0b)(x; t) = (W0b)(U(t)x; t) it holds

(W0b)
0

x(x; t) = (W0b)
0

x(U(t)x; t)

but that, in general6,

(W0b)
0

t(x; t) 6= (W0b)
0

t(U(t)x; t):

Let us further suppose that there exists a time-depending, smooth space L(t)

such that

im G1(y; x; t)� L(t) = IRn;

and that thus it is possible to choose a projector W1(U(t)x; t) with a only

time-depending, smooth im W1(U(t)x; t). Indeed this assumption is given for

Hessenberg systems, because W1 is constant itself (see Section 2.6), and for

the equations arising from Modi�ed Nodal Analysis (cf. Chapter 3), where

a constant space L can be found. Moreover, for linear systems, the existence

of such a space is given if we assume that im G1(t) is smooth (cf. [43],[46]).

Note further that, for general nonlinear systems, an even constant space L

6Observe that, if U is constant, then it also holds (W0b)
0

t(x; t) = (W0b)
0

t(Ux; t).
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can always be found locally. Therefore, since the computation of consistent

initial values only requires local considerations, we do not state this as an

explicit assumption.

Since im A � im G1 and thus L \ im A = f0g, we can de�ne a smooth

projector Ŵ1(t) ful�lling:

im Ŵ1(t) = im W1(U(t)x; t) and ker Ŵ1(t) � im A(x; t); (2.6)

which will become important later on. For this projector it holds that7

Ŵ1(t)(I �W0(t)) = 0; (2.7)

W1(U(t)x; t)Ŵ1(t) = Ŵ1(t); and Ŵ1(t)W1(U(t)x; t) = W1(U(t)x; t):(2.8)

Note that by the same argumentation as in Lemma 2.3.4,2, for (Ŵ1b)(x; t) :=

Ŵ1(t)b(x; t) we have

(Ŵ1b)(x; t) = (Ŵ1b)(U(t)x; t): (2.9)

Let us �nally consider the relations between T (t) and Q(t). Since im T (t) =

N(t) \ S(x; t) � N(t) = im Q(t) = kerP (t), it holds that P (t)T (t) = 0.

Moreover, in the following we assume that for a �xed Q(t) we consider a

suitable projector T (t) in such a way that also T (t)P (t) = 0 is satis�ed.

Note that this can always be assumed due to

(im P (t)) \ (N(t) \ S(x; t)) = f0g:
Thus, in the following we can make use of the relations:

Q(t)T (t) = T (t) = T (t)Q(t) and P (t)U(t) = P (t) = U(t)P (t): (2.10)

By choosing the projectors such that they suit to each other, it becomes clear

that they are adequate to decouple x successively into the di�erent kinds of

components.

2.4 Index Reduction by Di�erentiation

It is well known that the di�erentiation of a DAE or of parts of it sometimes

reduces its index. For instance, if the considered equations are in Hessenberg

7cf. Lemma 4.1.2, Appendix.
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form8, this fact is well-understood. If not, this becomes much more com-

plicated and a suitable selection of the parts of the DAE that have to be

di�erentiated becomes necessary. A discussion of several well-known index

reduction methods from the literature can be found in [24].

Here we will follow up the technique of M�arz (cf. [46],[43]) to reduce the index

of index-2 tractable DAEs of the form (1.14). For a better understanding of

the approach we will present, we will �rst discuss linear systems, then give a

motivation for nonlinear systems, and afterwards demonstrate how an index

reduction can be reached for the nonlinear DAEs that ful�l the assumptions

from Section 2.3.

2.4.1 Linear DAEs

First of all, let us illustrate the announced index reduction by means of an

academic example.

Example 2.4.1 Let us consider the linear time-independent index-2 DAE

Ax0 +Bx� q :=

0
BB@
1 0 0 0

0 0 0

0 0

0

1
CCAx0 +

0
BB@
0 0 0 1

1 1 0 0

0 1 0 0

0 0 1 0

1
CCAx� q = 0

or, as single equations,

x01 + x4 = q1;

x1 + x2 = q2;

x2 = q3;

x3 = q4:

Obviously, we do not require the di�erentiation e.g. of the fourth equation to
obtain an explicit expression for the solution x1; x2; x3; x4. But the general
application of the di�erential index9 requires the computation of d

dt
(Ax0+Bx�

q). Using the given semi-explicit structure we would only di�erentiate all

8cf. Section 2.6.
9see De�nition 1.1.1.
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explicit constraints. With the projector W0 =

0
BB@
0

1

1

1

1
CCA along im A we

could write this in the form d
dt
(W0(Ax

0+Bx�q)) = d
dt
(W0(Bx�q)). However,

if, for Q =

0
BB@
0

1

1

1

1
CCA, we use a projector W1 along im G1 with G1 = A+

BQ =

0
BB@
1 0 0 1

0 1 0 0

0 1 0 0

0 0 1 0

1
CCA, which is given by W1 =

0
BB@
0

1 �1
0

0

1
CCA, we actually

di�erentiate only the necessary constraint by considering d
dt
(W1(Ax

0 +Bx�
q)) = d

dt
(W1(Bx� q)).

In general, for linear time-independent index-2 systems

Ax0(t) +Bx(t) = q(t); (2.11)

it is quite easy to realize that, if we replace the part W1(Bx(t)� q(t)) by its

di�erentiated form, i.e., if we consider

Ax0(t) + (W1Bx)
0(t) + (I �W1)Bx(t) = (I �W1)q(t) + (W1q)

0(t);

which, in the form (1.9), reads�
A +W1B

�
x0(t) + (I �W1)Bx(t) = (I �W1)q(t) + (W1q)

0(t); (2.12)

then this DAE has index 1, that means, we obtain an index reduction. To this

end, let us consider the nullspace of the corresponding matrix ~A = A+W1B.

Due to Lemma 2.3.4, 6, we have ~N = ker ~A = kerA = N , i.e., the same

derivatives appear in the two DAEs, which is our objective.

Moreover, according to De�nition 1.3.2, we have to show that the correspond-

ing matrix

~G1 = A +W1B + (I �W1)BQ = A+BQ +W1B



2.4. INDEX REDUCTION BY DIFFERENTIATION 35

is nonsingular. This holds, since ~G1z = 0 yields (A+BQ)z = G1z = A1z = 0,

i.e., z = Q1z, and W1Bz = 0, i.e., Q1z = 0.

Observe that the solutions of (2.12) belong to the same class C1
N as (2.11).

As a consequence, this suggests the following representation for M1(t):

M1(t) := fx 2M0(t) : 9y Ay +Bx = q(t); W1By = (W1q)
0(t)g:

To verify this representation, we notice that every solution of (2.11) remains

also a solution of (2.12). Conversely, we have to show that if we start on M0,

then the whole solution of (2.12) lies there, too. Hence, let us suppose that

x?(t) is a solution of (2.12) with x?(t0) 2M0(t0), which impliesW1Bx?(t0) =

W1q(t0) and x?(t0) 2 ~M0(t0), where it holds that

~M0(t) = fx 2 D : 9y Ay + (I �W1)Bx = (I �W1)q(t); W1By = (W1q)
0(t)g:

By (2.12) we have

Ax0?(t) + (I �W1)Bx?(t) = (I �W1)q(t);

(W1Bx?)
0(t) = (W1q)

0(t):

Consider the function �(t) := W1(Bx?(t)�q(t)). Then �0(t) = (W1Bx?)
0(t)�

(W1q)
0(t) = 0, and since x?(t0) 2 M0(t0) implies �(t0) = 0, the function �

vanishes identically, which implies that

Ax0?(t) +Bx?(t) = q(t)

is satis�ed. Hence, Theorem 1.3.11 implies that, if (W1q)
0(t) exists and is

continuous, then, for each x0 2 M1(t0), there exists a C1
N solution passing

through it.

Example 2.4.2 [48] Let us consider the following example, which precisely
does not meet the assumptions from [48], to emphasize that the obtained
description is adequate, independent of the structure of (2.11):

x01 � (x1 + 2x2 + 3x3) = 0;

x1 + x2 + x3 + 1 = 0;

2x1 + x2 + x3 = 0:

The matrices A and B are given by

A =

0
@ 1 0 0

0 0 0

0 0 0

1
A ; B =

0
@ �1 �2 �3

1 1 1

2 1 1

1
A ;
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and the relevant projectors are Q =

0
@ 0 0 0

0 1 0

0 0 1

1
Aand W1 =

0
@ 0 0 0

0 0 0

0 �1 1

1
A.

Hence, it becomes clear that x1 � 1 = 0 has to be di�erentiated.

In contrast, the algorithm from [48] fails. This is due to the fact that, on
the one hand, the last two equations should be di�erentiated. On the other
hand, x2 and x3 appear in these two equations. Thus, the number of linearly
independent equations that should be di�erentiated is equal to the cardinality
of the variables of (Px0; Qx) appearing in these equations (cf. p. 25). As a
consequence, the algorithm terminates without detecting all equation subsets
that have to be di�erentiated.

For linear time-dependent index-2 systems

A(t)x0(t) +B(t)x(t) = q(t) (2.13)

with (W1B); (W1q) 2 C1 an index reduction can be achieved considering (cf.

[46])

A(t)x0(t) +W1(t)(W1Bx)
0(t) + (I �W1(t))B(t)x(t)

= (I �W1(t))q(t) +W1(t)(W1q)
0(t);

which, in the form (1.9), reads�
A(t) +W1(t)B(t)

�
x0(t) +W1(t)(W1B)

0(t)x(t) + (I �W1(t))B(t)x(t)

= (I �W1(t))q(t) +W1(t)(W1q)
0(t): (2.14)

Since we have again ~N(t) = N(t) (Lemma 2.3.4, 6), in this case, the corre-

sponding matrix ~G1(t) reads

~G1(t) = A(t) +W1(t)B(t) + (I �W1(t))B(t)Q(t) +W1(t)(W1B)
0(t)Q(t)

= A(t) +W1(t)B(t) +B(t)Q(t) +W1(t)(W1B)
0(t)Q(t):

Multiplying ~G1(t)z = 0 by (I �W1(t)) yields (A(t) + B(t)Q(t))z = 0, i.e.,

for ~z := ((I + P (t)P 0(t)Q(t))z, we obtain ~z = Q1(t)~z because of G1(t) =

A1(t)(I + P (t)P 0(t)Q(t)). Hence, it holds

0 =W1(t)B(t)z +W1(t)(W1B)
0(t)Q(t)z = W1(t)B(t)(I + P (t)P 0(t)Q(t))z;
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i.e., Q1(t)~z = 0, and thus ~z = 0, and z = 0. Hence, ~G1(t) is nonsingular, i.e.,

(2.14) has index 1 in fact.

For M1(t), this suggests the representation

M1(t) := fx 2M0(t) : 9y A(t)y + B(t)x = q(t);

W1(t)[B(t)y + (W1B)
0(t)x� (W1q)

0(t)] = 0g: (2.15)

At this point it has to be emphasized that again the same derivatives appear

in both DAEs, and, thus C1
N is the appropriate solution space for both of

them.

Let us now suppose that suÆcient smoothness is given and consider the DAE

A(t)x0(t) +W1(t)(W0Bx)
0(t) + (I �W1(t))B(t)x(t)

= (I �W1(t))q(t) +W1(t)(W0q)
0(t):

which, in the form (1.9), reads�
A(t) +W1(t)B(t)

�
x0(t) +W1(t)(W0B)

0(t)x(t) + (I �W1(t))B(t)x(t)

= (I �W1(t))q(t) +W1(t)(W0q)
0(t): (2.16)

Note that ~N(t) = N(t) is given again due to Lemma 2.3.4,6, and that (2.16)

has index 1, too. In this case, provided that (W0B); (W0q) 2 C1 is given, the

corresponding matrix ~G1(t) reads

~G1(t) = A(t) +W1(t)B(t) + (I �W1(t))B(t)Q(t) +W1(t)(W0B)
0(t)Q(t)

= A(t) +W1(t)B(t) +B(t)Q(t) +W1(t)(W0B)
0(t)Q(t):

Again, ~G1(t)z = 0 yields (A(t) + B(t)Q(t))z = 0, i.e., for ~z := (I +

P (t)P 0(t)Q(t))z, ~z = Q1(t)~z. Observe that the de�nition of ~z impliesQ(t)z =

Q(t)~z and that ~z = Q1(t)~z thus leads to Q(t)z = T (t)Q(t)z by Lemma

2.3.1,4a.

Thus, with Lemma 2.3.4,1, Lemma 2.3.1, and making use of PU = P , we

obtain

W1(t)(W0B)
0(t)Q(t)z = W1(t)(W0BU)

0(t)T (t)Q(t)z

= W1(t)B(t)P (t)U
0(t)T (t)Q(t)z

= W1(t)B(t)P (t)P
0(t)Q(t)z:
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Hence, (W1(t)B(t) +W1(t)(W0B)
0(t)Q(t))z = 0 implies

W1(t)B(t)(I + P (t)P 0(t)Q(t))z = 0;

i.e., Q1(t)~z = 0 and thus ~z = 0, which yields z = 0.

Consequently, M1(t) may be represented by

M1(t) := fx 2M0(t) : 9y A(t)y +B(t)x = q(t);

W1(t)[B(t)y + (W0B)
0(t)x� (W0q)

0(t)] = 0g: (2.17)

Observe that this de�nition coincides with the preceding (2.15), since for

x 2M0(t) we have

W1(t)[(W1B)
0(t)x� (W1q)

0(t)]

= W1(t)[(W1W0B)
0(t)x� (W1W0q)

0(t)]

= W1(t)W
0

1(t)[(W0(t)B(t))x� (W0(t)q(t))]

+W1(t)[(W0B)
0(t)x�W1(t)(W0q)

0(t)]

=
x2M0(t)

W1(t)[(W0B)
0(t)x� (W0q)

0(t)]: (2.18)

Note further that for both reductions the space N(t) corresponding to the

original index-2 DAE and the space ~N(t) corresponding to both reduced

index-1 DAEs coincide, i.e., that the same derivatives as in the original index-

2 DAE appear in the index-1 DAEs.

Let us now focus on the smoothness we require for the solution of (2.16). In

contrast to (2.12) and (2.14), where C1
N characterizes the required smooth-

ness properly, we need some more smoothness for (2.16), since we derive

W0(t)B(t)x. Observe that, due to the fact that W0(t)B(t) = W0(t)B(t)U(t)

holds, suÆcient smoothness is given if we suppose that the solution belongs

to the space

C1
N\S :=

�
x 2 C(If ; IRn);Ux 2 C1(If ; IRn)

�
: (2.19)

Note that C1
N\S � C1

N due to PU = P .
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Conversely, it can be shown that Ux 2 C1 if (W0B); (W0q) 2 C1, and

kerW0(t)B(t)Q(t) is supposed to have constant rank. Since U(t) = P (t) +

U(t)Q(t), we only have to ascertain that UQx 2 C1. To this end, observe

that kerU(t)Q(t) = kerW0(t)B(t)Q(t) is given, since

z 2 kerU(t)Q(t), Q(t)z = T (t)z , Q(t)z 2 S , z 2 kerW0(t)B(t)Q(t):

Consequently, W0(t)B(t)x(t) = W0(t)q(t) implies

UQx = UQ(W0BQ)
+W0BQx = UQ(W0BQ)

+

�
W0q �W0BPx

�
2 C1:

Nevertheless, for the time-independent Example 2.4.1 for instance, we have

U =

0
BB@
1

1

1

0

1
CCA and thus we suppose, unnecessarily, that x2 and x3 are

smooth. Thus, C1
N\S characterizes suÆcient smoothness, but not the really

necessary one.

This fact motivated the introduction of the diagonal matrix IW1
de�ned by

IW1;i;i =

�
1 if 9j 2 [1; n] : W1i;j 6� 0;

0 else:

Note that IW1
is a projector and that W1IW1

= W1. Making use of this

de�nition, instead of (2.16) we can consider the DAE�
A(t) +W1(t)(IW1

W0B)

�
x0(t) +W1(t)(IW1

W0B)
0(t)x(t)+

(I �W1(t))B(t)x(t) = (I �W1(t))q(t) +W1(t)(IW1
W0q)

0(t): (2.20)

Remark 2.4.3 Observe further that, instead of IW 1, we could write any
constant matrix KW 1 ful�lling W1(t)KW 1 � W1(t):

Unfortunately, the existence of (KW1
W0Bx)

0(t) is obviously not given in gen-

eral if we only assume x 2 C1
N for the solution. Thus, in the following we

may suppose that x 2 C1
N\S. For the applications in Chapter 3, this will be

discussed in more detail (Remark 3.2.9).
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The additional smoothness requirement seems to be a reason for considering

(2.20) less appropriately than (2.14). Nevertheless, we will see that the re-

sults obtained by (2.20) may be more convenient for nonlinear systems.

Observe that, for (2.13), we have only presented possible descriptions for

M1(t) so far. To verify them, we should prove, analogously as for the linear

DAEs with constant coeÆcients, that starting on M0(t), the solutions of

(2.14) and (2.16), respectively, remain in M0(t). For (2.14) this was done in

[46]. For (2.16), this will be a consequence of the results from Section 2.4.3.

2.4.2 Motivation for Nonlinear DAEs

Let us assume that the Assumptions A1 and A2 are given. Our aim is to ob-

tain an index-reduction for nonlinear DAEs by adapting the approach (2.20)

of the previous section to nonlinear systems.

At a �rst glance, the above discussion may suggest that, due to the required

smoothness, an adequate index reduction can always be obtained by consid-

ering the system

(I �W1(x(t); t))f(x
0(t); x(t); t)

+W1(x(t); t)
d

dt

�
W1(x(t); t)f(x

0(t); x(t); t)

�
= 0; (2.21)

which would correspond to (2.14). If the projectorW1 is constant or depends

on (P (t)x; t) only, then it can be shown that (2.21) certainly has index 1 [43].

Moreover, the index reduction can be carried out considering the appropriate

solution space C1
N , as expected.

In practice, we have noticed that W1 may also depend on the other parts

of the solution. For instance, the charge-oriented Modi�ed Nodal Analysis

presents this property (cf. Chapter 3). For such systems, new insights reveal

that the way to obtain a reasonable index reduction consists in considering

(I � Ŵ1(t))f(x
0(t); x(t); t)

+W1(x(t); t)
d

dt

�
IW1

W0(t)f(x
0(t); x(t); t)

�
= 0; (2.22)

where the term (I � Ŵ1(t))f(x
0(t); x(t); t) describes the equations that are

not replaced by derived ones and IW 1 is de�ned analogously as for the linear
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case. The choice of such a projector Ŵ1 becomes important in the nonlinear

case and is possible due to (2.6). Moreover, the roles of the projector W0 and

of the matrix IW1
are analogous as in (2.20).

One can get an idea of why the index reduction described by (2.21) is not

appropriate for general nonlinear DAEs by considering the following example.

Example 2.4.4 Consider the index-2 DAE

x01 + x4 = q1;

x1 + x2x3 = q2;

x2 = q3;

x3 = q4;

xi; qi : If ! IR. For the projector Q chosen as for Example 2.4.1, the

projectors W1 and Ŵ1 are given by

W1 =

0
BB@
0 0 0 0

0 1 �x3 �x2
0 0 0 0

0 0 0 0

1
CCA ; Ŵ1 =

0
BB@
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCA :

Let us consider the expression corresponding to (2.21):

x01 + x4 = q1;

x01 � (x3 � q4)x
0

2 � (x2 � q3)x
0

3 + q03x3 + q04x2 + 2x2x3 � q3x3 � q4x2 = q02;

x2 = q3;

x3 = q4:

This equation has the di�erential index 1, but:

1. Observe that in this case, kerA 6= ker ~A(x), i.e., there appear deriva-
tives di�ering from those in the original index-2 DAE.

2. Observe that ker ~A(x) depends on x. Hence, according to Remark
1.3.8,4 the tractability-index should be de�ned considering the corre-
sponding enlarged system (1.18)-(1.19), for which the index is 2.
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3. The perturbation index of this system is 2, as can be easily seen when
considering q1 = q2 = q3 = q4 = 0 and the following perturbation (cf.
Example 1.2.2):

x01 + x4 = 0;

x01 � x02x3 � x2x
0

3 + 2x2x3 = 0;

x2 = � sin t2;

x3 = � cos t2:

Straightforward computation leads to

x4 := ��22t cos(2t2) + 2�2(sin t2)(cos t2);

which implies that x4 grows with the derivative of the perturbation.

Let us now consider the expression corresponding to (2.22):

x01 + x4 = q1;

x01 + q03x3 + q04x2 = q02;

x2 = q3;

x3 = q4;

For this system, all indices are de�ned and coincide, they are 1.

The example illustrates that the projector W1 itself should not be di�eren-

tiated. This is due to the fact that W1 was de�ned considering the partial

derivatives, not the equations themselves. Indeed, W1 provides information

on how to combine the equations we have to di�erentiate.

2.4.3 Nonlinear DAEs

In this section we consider the approach (2.22) for quasilinear DAEs ful�lling

A1, A2 and some speci�c smoothness assumptions, which will be introduced

as the need arises.

Let us suppose that (1.14) is index-2 tractable. If we de�ne IW 1 analogously

as for the linear case, then due to Lemma 2.3.4,2 it holds for (IW1
W0b)(x; t) :=

IW1
W0(t)b(x; t) that

(IW1
W0b)(x; t) = (IW1

W0b)(U(t)x; t): (2.23)
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Motivated by our discussion in Section 2.4.2 and making use of (2.23) we

assume that

A3 :
d

dt

�
(IW1

W0b)(U(t)x; t)

�
exists for all (x; t) 2 Df � If :

Remark 2.4.5 Again10, instead of IW 1 we could write any constant matrix
KW 1 ful�lling W1(�)KW 1 � W1(�). Observe further that, if W1 is constant
itself, then we can set KW1

= W1. This will become important when consid-
ering the applications in Chapter 3.

Due to Lemma 2.3.4,4, and by the approach described in (2.22), let us con-

sider the DAE

(I � Ŵ1(t))

�
A(x(t); t)x0(t) + b(x(t); t)

�

+W1(U(t)x(t); t)
d

dt

�
(IW1

W0b)(U(t)x(t); t)

�
= 0:

Since we want to analyse this equation with regard to its index, let us assume

that

A4 : W1

@

@t

@

@x

�
(IW1

W0b)

�
=W1

@

@x

@

@t

�
(IW1

W0b)

�
;

(W1(IW1
W0b)

0

x)
0

x; and (W1(IW1
W0b)

0

t)
0

x exist

for all (x; t) 2 Df � If ;where
(W1(IW1

W0b)
0

x)
0

x; (W1(IW1
W0b)

0

t)
0

x 2 C(Df � If ; IRn):

Due to the quasilinear structure (1.14), to ker Ŵ1(t) � im A(x; t) (see (2.6)),

and because of (2.9) we thus consider the DAE�
A(x(t); t) +W1(U(t)x(t); t)(IW1

W0b)
0

x(U(t)x(t); t)

�
x0(t) + b(x(t); t)

� (Ŵ1b)(U(t)x(t); t) +W1(U(t)x(t); t)(IW1
W0b)

0

t(x(t); t) = 0: (2.24)

Moreover, analogously as it was done for linear DAEs with constant coef-

�cients in order to guarantee the equivalence of the solutions of (2.24) and

10cf. Remark 2.4.3.
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(1.14), we need the additional condition that the replaced equations are ful-

�lled at least at one point

(Ŵ1b)(U(t0)x(t0); t0) = 0: (2.25)

This approach suggests the following de�nition for M1(t)

M1(t) :=

�
x 2 M0(t) : 9y A(x; t)y + b(x; t) = 0;

W1(U(t)x; t)

�
(IW1

W0(t)b)
0
x(U(t)x; t)y + (IW1

W0b)
0
t(x; t)

�
= 0

�
: (2.26)

Let us �rst investigate the index of (2.24). The pencil matrices of (2.24) are

given by

~A(x; t) := A(x; t) +W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t)

~B(y; x; t) :=

��
A(x; t) +W1(U(t)x; t)(IW1

W0b)
0

x(U(t)x; t)

�
y

�0

x

+�
b(x; t)� (Ŵ1b)(U(t)x; t) +W1(U(t)x; t)(IW1

W0b)
0

t(x; t)

�0

x

:

By Lemma 2.3.1 we have

W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t) = W1(U(t)x; t)B(y; x; t): (2.27)

and

~A(x; t) = (A(x; t) +W1(U(t)x; t)B(y; x; t))P (t);

and from Lemma 2.3.4, (6) we conclude ker ~A(x; t) = kerA(x; t), i.e., anal-

ogously as for the linear case, the space N(t) corresponding to the original

index-2 DAE and the space ~N(t) corresponding to the reduced index-1 DAE

coincide.

According to De�nition 1.3.6, to prove that (2.24) has index 1, we check the
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non-singularity of

~G1(y; x; t) := ~A(x; t) + ~B(y; x; t)Q(t)

= A(x; t) +W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t)| {z }
3

+

��
A(x; t)| {z }

1

+W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t)

�
y

�0

x

Q(t)

+

�
b(x; t)| {z }

2

� (Ŵ1b)(U(t)x; t)

�0

x

Q(t)

+

�
W1(U(t)x; t)(IW1

W0b)
0

t(x; t)

�0

x

Q(t):

To this aim we consider an arbitrary z ful�lling ~G1(y; x; t)z = 0, i.e.,

0 = ~G1(y; x; t)z =
(2:6)

�
A(x; t) + (fA(x; t)P (t)yg0x| {z }

1

+ b0x(x; t)| {z }
2

)Q(t)

�
z

+W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t)P (t)| {z }
3

z

� Ŵ1(t)

�
(Ŵ1b)(U(t)x; t)

�0

x

Q(t)z

+ Ŵ1(t)

�
W1(U(t)x; t)(IW1

W0b)
0
x(U(t)x; t)y

�0

x

Q(t)z

+ Ŵ1(t)

�
W1(U(t)x; t)(IW1

W0b)
0
t(x; t)

�0

x

Q(t)z;

(2.28)

where we make use of W1(U(t)x; t) = Ŵ1(t)W1(U(t)x; t) (cf. (2.8)). We

split (2.28) by multiplying it by (I � W1(U(t)x; t)), and obtain, due to

W1(U(t)x; t)Ŵ1(t) = Ŵ1(t),

0 = (I�W1(U(t)x; t)) ~G1(y; x; t)z = (A(x; t)+B(y; x; t)Q(t))z = G1(y; x; t)z:

Since G1(y; x; t) = A1(y; x; t)(I + P (t)P 0(t)Q(t)), we have ~z 2 kerA1(y; x; t)

for ~z := (I + P (t)P 0(t)Q(t))z, i.e., ~z = Q1(y; x; t)~z. Hence, due to Q(t)~z =

Q(t)z, it holds

Q(t)z = T (t)Q(t)z: (2.29)
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Thus, we obtain�
(Ŵ1b)(U(t)x; t)

�0

x

Q(t)z =
(2:29)

�
(Ŵ1b)(U(t)x; t)

�0

x

T (t)Q(t)z = 0

and �
W1(U(t)x; t)(IW1

W0b)
0

x(U(t)x; t)y

�0

x

Q(t)z =
(2:29)�

W1(U(t)x; t)(IW1
W0b)

0

x(U(t)x; t)y

�0

x

T (t)Q(t)z = 0:

Let us now consider the expression�
W1(U(t)x; t)(IW1

W0b)
0

t(x; t)

�0

x

Q(t)z

=
(2:29)

W1(U(t)x; t)

�
(IW1

W0b)(x; t)

�00

tx

T (t)Q(t)z

= W1(U(t)x; t)

��
(IW1

W0b)(U(t)x; t)

�0

x

T (t)| {z }
=0

�0

t

Q(t)z

�W1(U(t)x; t)

�
(IW1

W0b)(U(t)x; t)

�0

x

T 0(t)Q(t)z

=
(2:27)

�W1(U(t)x; t)B(y; x; t)T
0(t)Q(t)z

= W1(U(t)x; t)B(y; x; t)P (t)P
0(t)Q(t)z:

Consequently, (2.28) yields

W1(U(t)x; t)B(y; x; t)

�
I + P (t)P 0(t)Q(t)

�
z = 0: (2.30)

Due to Lemma 2.3.1,4b equation (2.30) implies Q1(y; x; t)~z = 0, i.e., ~z = 0.

Thus we have z = 0. This means that the matrix ~G1(y; x; t) is nonsingular,

i.e., the DAE (2.24) has index 1.

What about the equivalence of the equations (1.14) and (2.24)? It seems

to be clear that, if suÆcient smoothness is given, every solution of (1.14)
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remains also a solution of (2.24). Conversely, we have to show that, if we

start on M0, then the whole solution of (2.24) lies there, too. Let x? be a

solution of (2.24) with x?(t0) 2 ~M0 ful�lling (2.25), where ~M0 corresponds

to this index-1 problem. Therefore, (2.24) is ful�lled particularly for x?(t).

Multiplying the corresponding equation (2.24) by Ŵ1(t) provides then

W1(U(t)x?(t); t)
d

dt

�
(IW1

W0b)(U(t)x?(t); t)

�
= 0: (2.31)

Using this result and multiplying the corresponding equation (2.24) byW0(t)

we thus obtain

(W0b)(U(t)x?(t); t)�W0(t)(Ŵ1b)(U(t)x?(t); t) = 0: (2.32)

Further, with (2.25) the condition (2.32) implies x?(t0) 2M0(t0). Let us now

suppose that11

A5 :
d

dt

�
(Ŵ1b)(U(t)x; t)

�
exists for all (x; t) 2 Df � If :

If x� is suÆciently smooth12 to guarantee the existence of the forthcoming

11This assumption seems to be reasonable, since if we replace some equations by derived

ones, and if we want to guarantee them by supposing only that they are ful�lled at one

point, their smoothness seems to be a necessary requirement. Observe that, nevertheless,

this is less than the assumption that d

dt

�
(W0b)(U(t)x; t)

�
exists.

12The required smoothness of the solution is given if, we have x? 2 C1
N\Sfor instance.
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expressions, then (2.8) implies

d

dt

�
(Ŵ1b)(U(t)x?(t); t)

�
=

d

dt

�
Ŵ1(t)(Ŵ1b)(U(t)x?(t); t)

�

= Ŵ1

0

(t)

�
(Ŵ1b)(U(t)x?(t); t)

�

+W1(U(t)x?(t); t)Ŵ1(t)
d

dt

�
(Ŵ1b)(U(t)x?(t); t)

�

= Ŵ1

0

(t)

�
(Ŵ1b)(U(t)x?(t); t)

�

+W1(U(t)x?(t); t)IW1
W0(t)Ŵ1(t)

d

dt

�
(Ŵ1b)(U(t)x?(t); t)

�

= Ŵ1

0

(t)

�
(Ŵ1b)(U(t)x?(t); t)

�

+W1(U(t)x?(t); t)
d

dt

�
IW1

W0(t)(Ŵ1b)(U(t)x?(t); t)

�
�W1(U(t)x?(t); t)(IW1

W0Ŵ1)
0(t)(Ŵ1b)(U(t)x?(t); t)

=
(2:32)

W1(U(t)x?(t); t)
d

dt

�
(IW1

W0b)(U(t)x?(t); t))

�

+

�
Ŵ1

0

(t)�W1(U(t)x?(t); t)(IW1
W0Ŵ1)

0(t)

�
(Ŵ1b)(U(t)x?(t); t)

=
(2:31)

�
Ŵ1

0

(t)�W1(U(t)x?(t); t)(IW1
W0Ŵ1)

0(t)

�
(Ŵ1b)(U(t)x?(t); t):

For �(t) = (Ŵ1b)(U(t)x?(t); t) we thus obtain

�0(t) =

�
Ŵ1

0

(t)�W1(U(t)x?(t); t)(IW1
W0Ŵ1)

0(t)

�
�(t);

and, because of x?(t0) 2 M0, �(t0) = 0. Hence, � vanishes identically, i.e.,

(Ŵ1b)(U(t)x?(t); t) = 0.

This proves the following:

Theorem 2.4.6 Suppose that (1.14) is index-2 tractable on G � Gf . If the
assumptions A1-A5 are given, then equation (2.24) has index-1 on G and the
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suÆciently smooth13 solutions of the index-2 equation (1.14) and the index-1
equation (2.24) ful�lling (2.25) are the same.

Remark 2.4.7 � Let us emphasize that for these solutions the space C1
N

may not characterize the required smoothness properly, since

d

dt

�
(IW1

W0b)((Ux)(t); t)

�
;

d

dt

�
(Ŵ1b)((Ux)(t); t)

�

may involve more derivatives than (Px)0(t). Nevertheless, the above
results imply that it is not necessary to assume (Tx)(t) to be di�eren-
tiable, i.e., the space C1

N\S characterizes suÆcient smoothness.

� A similar index-reduction was already carried out in [14]. Observe that
the assumptions made here slightly di�er from those in [14], where
kerA(x; t) and im A(x; t) were supposed to be constant, im A1(y; x; t)

and kerA1(y; x; t) were supposed to depend only on (x; t), and a rather
complicated structural condition was assumed, but no direct restrictions
on N \S(�) were made. Consequently, to obtain a result corresponding
to Theorem 2.4.6, it was necessary to consider C1-solutions.

Since the solutions are the same, the results described in Section 1.3.3 imply

that we can transfer the solvability results for index-1 tractable DAEs to the

considered index-2 tractable DAEs. In fact, if the DAE (1.14) is index-2

tractable on G � Gf , then for x0 2M1(t0), where

M1(t) :=

�
x 2 D : 9y A(x; t)y + b(x; t) = 0;

W1(U(t)x; t)

�
(IW1

W0b)
0

x(U(t)x; t)y + (IW1
W0b)

0
t(x; t)

�
= 0

�

holds, there exists a locally unique solution x(�) : I ! IRn of the correspond-

ing index-1 DAE ((2.24) ful�lling (2.25)) with x(t0) = x0. Hence, if it is

supposed that all the possible solutions are suÆciently smooth, then x(�) is
13If no better characterization is given, we can suppose that the solutions have to lie in

C1
N\S . For the applications in Chapter 3, see Remark 3.2.9.
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also a locally unique solution of the index-2 tractable DAE (1.14). Conse-

quently, in this case the above representation for M1(t) is appropriate. Of

course, in practice it is desirable to have assumptions that are easy to verify,

even if they are more restrictive than strictly necessary. Thus, we formulate

a simpli�ed result that follows directly from the above discussion.

Corollary 2.4.8 If the DAE

A(x(t); t)x0(t) + b(x(t); t) = 0

ful�lling A1, A2, A4 is index-2 tractable on G � Gf , and
A(x; t)y + b(x; t)

and

W1(U(t)x; t)

�
(IW1

W0(t)b)
0

x(U(t)x; t)y + (IW1
W0b)

0

t(x; t)

�

are continuously di�erentiable for all (y; x; t) 2 Gf , then for x0 2 M1(t0),
where

M1(t) :=

�
x 2 D : 9y A(x; t)y + b(x; t) = 0;

W1(U(t)x; t)

�
(W0b)

0

x(U(t)x; t)y + (W0b)
0

t(x; t)

�
= 0

�

holds, there exists a locally unique C1-solution x(�) : I ! IRn with x(t0) = x0.

Proof: Observe that on the one hand, the smoothness requirements are

stronger than A3 and A5. On the other hand, the assumptions imply that

the corresponding reduced index-1 DAE is continuously di�erentiable. Con-

sequently, for this index-1 DAE the Implicit Function Theorem implies that

we obtain a continuously di�erentiable function w(u; t) in the proof of The-

orem 1.3.11. Hence, for the obtained solution it holds that x 2 C1, and thus

suÆcient smoothness for Theorem 2.4.6 is given.

q.e.d.

However, we want to emphasize once again that these smoothness require-

ments are not necessary. In Chapter 3, we will see that these assumptions

are unnecessarily strong if we consider DAEs arising from circuit simulation.
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2.5 The Computation of Consistent Initial Val-

ues

In this section, we will develop a step-by-step method to compute consistent

initial values. For this approach, we assume suÆcient smoothness to be given

in order to guarantee that the expression for M1(t) presented in the above

section is appropriate. For more clarity, we �rst motivate the approach with

an example.

2.5.1 Motivation

Several approaches to compute consistent initial values (e.g. [48],[14],[12])

consist in performing the following steps:

1. Describe the hidden constraints.

2. Determine a selection of variables or a component for which we may

prescribe suitable initial values.

3. Construct a full rank system that provides the values for the remaining

ones.

Here, we want to show that, under certain structural properties, we can

compute a consistent initial value for index-2 DAEs as follows:

1. Describe the hidden constraints.

2. Compute a value x0 that satis�es the explicit equations of the DAE14,

x0 2M0(t).

3. Correct this value in order to ful�l the hidden constraints, where the

correction is also computed considering a full rank system, i.e., calculate

a value x0 2M1(t).

14Observe that for index-1 DAEs, all the values that ful�l the equations of the DAE are

consistent. Hence, this approach can be considered a step-by-step approach.
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Let us illustrate the di�erence between the approach from [14] and the one

we are aiming at here considering again Example 1.3.4.

x01 + x1 + x2 = q1;

x02 + x3 + x4 = q2;

x2 = q3;

x4 = q4:

Straightforward computation shows that im A1 = kerW1 = ker

0
BB@
0

0

1

0

1
CCA :

Thus, according to Section 2.4, the hidden constraint arises from x02 = q03(t).

The approach from [14] would identify x1 as the only variable for which we can

prescribe a value, assign x10 = �1 and compute, afterwards, the correspond-

ing consistent values x20 = q3(t0); x4 = q4(t0); x3 = q2(t0) � q03(t0) � q4(t0),

and the corresponding values for x010; x
0
20.

The idea of the approach pursued now is, in contrast, a step-by-step compu-

tation of the consistent initial value. To this end, we calculate �rst a value

(x01; x
0
2; x

0
3; x

0
4; x

0
1
0; x02

0) ful�lling

x01
0
+ x1

0 + x2
0 = q1(t0);

x02
0
+ x03 + x04 = q2(t0);

x02 = q3(t0);

x04 = q4(t0);

and correct then the value of the component that is determined by inherent

di�erentiation, i.e. x3, as well as the value of the derivative of the component

that appears in dynamic form, but is not really dynamic, i.e. x02, in order to

obtain consistent initial values. The resulting consistent values read then

(x10; x20; x30; x40; x
0

10; x
0

20) := (x01; x
0
2; x

0
3 + x02

0 � q03(t0); x
0
4; x

0

1
0
; q03(t0)):

For the sake of clarity, we again discuss �rst the approach for linear systems

and present after that the generalization for nonlinear systems.

2.5.2 Linear DAEs

For a better understanding of the approaches for computing consistent initial

values for index-2 DAEs, let us �rst divide linear DAEs into the di�erent
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parts:

(i) the inherent regular ODE,

(ii) the part describing the inherent di�erentiation problem,

(iii) the purely algebraic part, composed by

{ the algebraic part that contains the component that appears in

dynamic form in (ii),

{ the algebraic part that does not contain the component that ap-

pears in dynamic form in (ii).

Taking into account

I = P (t)(P1(t) +Q1(t)) +Q(t)(U(t) + T (t))

= P (t)P1(t) + T (t) + P (t)Q1(t) + U(t)Q(t)

if we multiply (1.9) by

P (t)P1(t)G
�1
2 (t); T (t)G�1

2 (t); P (t)Q1(t)G
�1
2 (t); and U(t)Q(t)G�1

2 (t);

we obtain, by Lemma 2.3.1, the system

P (t)P1(t)x
0(t) + P (t)P1(t)P

0(t)Qx(t)

+ P (t)P1(t)G
�1
2 (t)B(t)P (t)P1(t)x(t) = P (t)P1(t)G

�1
2 (t)q(t); (2.33)

�Q(t)Q1(t)P (t)Q1(t)x
0(t)

�Q(t)Q1(t)P
0(t)Q(t)x(t)

+ T (t)x(t) + T (t)Q1(t)P (t)Q1(t)x(t)

+ T (t)G�1
2 (t)B(t)P (t)P1(t)x(t) = T (t)G�1

2 (t)q(t); (2.34)

P (t)Q1(t)x(t) = P (t)Q1(t)G
�1
2 (t)q(t); (2.35)

U(t)Q(t)G�1
2 (t)B(t)P (t)P1(t)x(t)

+ U(t)Q(t)x(t) = U(t)Q(t)G�1
2 (t)q(t): (2.36)

With the denotations

u(t) := P (t)P1(t)x(t);

v(t) := P (t)Q1(t)x(t);

w(t) := T (t)x(t);

y(t) := U(t)Q(t)x(t) = Q(t)U(t)x(t);
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this system can be rewritten as15

u0(t)� (PP1)
0(t)(u(t) + v(t))

+ P (t)P1(t)G
�1
2 (t)B(t)u(t) = P (t)P1(t)G

�1
2 (t)q(t); (2.37)

�Q(t)Q1(t)v
0(t)

+Q(t)Q1(t)(PQ1)
0(t)(u(t) + v(t)) + w(t)

+ T (t)Q1(t)v(t) + T (t)G�1
2 (t)B(t)u(t) = T (t)G�1

2 (t)B(t)q(t); (2.38)

v(t) = P (t)Q1(t)G
�1
2 (t)q(t); (2.39)

U(t)Q(t)G�1
2 (t)B(t)u(t) + y(t) = U(t)Q(t)G�1

2 (t)q(t): (2.40)

Observe that (2.39) leads to an expression for the component v . Hence,

making use of this expression, (2.37) can be reformulated as a regular ODE

for u. From (2.40) we see that y represents the algebraic part that is not

concerned with the inherent di�erentiation. Finally, (2.38) represents the

equations that involve the inherent di�erentiation and determine the compo-

nent w, the so-called index-2 component. Note that we have to di�erentiate

PQ1G
�1
2 q.

Thus, an adequate formulation of initial value problems for linear index- 2

tractable DAEs reads

A(t)x0(t) +B(t)x(t) = q(t);

P (t0)P1(t0)(x0 � �) = 0;

for a given � 2 IRn. For a proof see [47].

Considering the expression (2.17) forM1(t), in order to compute a consistent

initialization it is suÆcient to solve the following system16

A(t0)y0 +B(t0)x0 = q(t0); (2.41)

P (t0)P1(t0)(x0 � �) = 0; (2.42)

W1(t0)[B(t0)y0 + (W0B)
0(t0)x0]�W1(t0)(W0q)

0(t0) = 0; (2.43)

15Here we suppose that the required smoothness of the projectors is given, cf. Remark

1.3.8.
16This corresponds to the approach described in [14]. There it was described also for

nonlinear systems with speci�c structural properties, but it was assumed that W 0

0 = 0,

Q0 = 0.
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for an arbitrary �. Note that (2.42) �xes the dynamic components and (2.43)

describes the hidden constraints.

Let us verify that the obtained system uniquely determines (P (t0)zy; zx). For

a solution (P (t0)zy; zx) of the homogeneous system, it holds that P (t0)P1(t0)zx =

0, and

A(t0)zy +B(t0)zx = 0; (2.44)

W1(t0)B(t0)zy +W1(t0)(W0B)
0(t0)zx = 0; (2.45)

multiplying (2.44) by G�1
2 (t0) leads to:

P1(t0)P (t0)zy +G�1
2 (t0)B(t0)P (t0)P1(t0)zx +Q1(t0)zx

+Q(t0)zx + P1(t0)P (t0)P
0(t0)Q(t0)zx = 0 (2.46)

making use of the relations from Lemma 2.3.1,4c. Multiplication by Q1(t0)

yields Q1(t0)zx = 0, which then implies P (t0)zx = 0, i.e., zx 2 N(t0).

Moreover, multiplying (2.44) by W0(t0) leads to W0(t0)B(t0)zx = 0, i.e.,

zx 2 S(t0), which implies zx = T (t0)zx.

Consequently, (2.46) provides

P1(t0)P (t0)zy +Q(t0)zx + P1(t0)P (t0)P
0(t0)Q(t0)zx = 0: (2.47)

Let us now consider (2.45) taking into account zx = T (t0)zx:

W1(t0)B(t0)zy +W1(t0)(W0B)
0(t0)T (t0)Q(t0)zx =

W1(t0)B(t0)zy +W1(t0)(W0BT| {z }
=0

)0(t0)Q(t0)zx

�W1(t0)W0(t0)B(t0)T
0(t0)Q(t0)zx =

W1(t0)B(t0)zy �W1(t0)B(t0)P (t0)T
0(t0)Q(t0)zx =

W1(t0)B(t0)zy +W1(t0)B(t0)P (t0)P
0(t0)Q(t0)zx = 0:

Due to Lemma 2.3.1,4b we obtain

Q1(t0)zy +Q1(t0)P (t0)P
0(t0)Q(t0)zx = 0:

Together with (2.47) this implies

P (t0)zy +Q(t0)zx + P (t0)P
0(t0)Q(t0)zx = 0; (2.48)
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which leads to Q(t0)zx = 0 by multiplication with Q(t0). Finally, this implies

P (t0)zy = 0.

Let us now consider the value we obtain solving the system

A(t0)y0 +B(t0)x0 = q(t0); (2.49)

U(t0)(x0 � x0) = 0; (2.50)

W1(t0)[B(t0)y0 + (W0B)
0(t0)x0] +W1(t0)(W0q)

0(t0) = 0 (2.51)

if x0 denotes a value ful�lling

A(t0)y
0 +B(t0)x

0 = q(t0) (2.52)

for a suitable P (t0)y
0.

Straightforward computation shows that no contradictions arise, since (2.50)

is consistent with (2.49) due to the special choice of x0. This consistency can

easily be veri�ed if we de�ne

x̂0 = x0 � x0; (2.53)

P (t0)ŷ0 = P (t0)y0 � P (t0)y
0; (2.54)

and compute (x̂0; P (t0)ŷ0) from the system that results from (2.49)-(2.51)

and (2.52) if (x0; P (t0)y
0) are considered as �xed values:

A(t0)ŷ0 +B(t0)x̂0 = 0; (2.55)

U(t0)x̂0 = 0; (2.56)

W1(t0)[B(t0)[y
0 + ŷ0] + (W0B)

0(t0)[x
0 + x̂0]]

�W1(t0)(W0q)
0(t0) = 0: (2.57)

Multiplying (2.56) by P (t0)P1(t0) we obtain P (t0)P1(t0)x̂0 = 0. Thus, decou-

pling (2.56) analogously as in (2.33)-(2.36), we can deduce P (t0)Q1(t0)x̂0 = 0

and U(t0)Q(t0)x̂0 = 0. Consequently, it becomes clear that U(t0)x̂0 = 0 actu-

ally �xes only additionally P (t0)P1(t0)x̂0 = 0, i.e., that (2.55)-(2.56) consist

only of n + rank PP1 linearly independent equations. Hence, (2.49) is con-

sistent with (2.50) due to the special choice of x0.
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Remark 2.5.1 This approach can be considered a step-by-step approach,
since we �rst calculate an x0 2 M0(t0) (and the corresponding P (t0)y

0),
and afterwards compute the correction in order to obtain a consistent value
x0 2M1(t0) (and the corresponding P (t0)y0).

Note that, due to

U(t) = U(t)(Q(t) + P (t)(P1(t) +Q1(t)) = U(t)Q(t) + P (t)P1(t) + P (t)Q1(t)

it becomes clear that (2.49)-(2.51) consists of more restrictions than (2.41)-

(2.43). However, on the one hand we recognize from the decoupling (2.33)-

(2.36) and (2.52) that, if we set P (t0)P1(t0)x0 = P (t0)P1(t0)x
0, then we

obtain

U(t0)x0 = U(t0)Q(t0)x0 + P (t0)P1(t0)x0 + P (t0)Q1(t0)x0

= U(t0)Q(t0)G
�1
2 (t0)q(t0)� U(t0)Q(t0)G

�1
2 (t0)B(t0)P (t0)P1(t0)x

0

+ P (t0)P1(t0)x
0 + P (t0)Q1(t0)G

�1
2 (t0)q(t0) = U(t0)x

0:

On the other hand, U(t0)x0 = U(t0)x
0 implies

P (t0)P1(t0)U(t0)x0 = P (t0)P1(t0)P (t0)U(t0)x
0 = P (t0)P1(t0)x0:

Consequently, for � = x0 the results from (2.49)-(2.51) and (2.41)-(2.43)

coincide.

Remark 2.5.2 At �rst glance, the second approach seems to be neither eas-
ier to realize nor of more practical relevance. The application will show that
it has some advantages:

� U(t) (and W1(t)) may be computed easier than P (t)P1(t) (and W1(t))
(cf. Lemma 2.3.2).

� The task of determining values for (x̂0; P (t0)ŷ0) by making use of (2.55)-
(2.57) may look very similar to the direct computation of (x0; P (t0)y0)
from (2.41) - (2.43). In fact, since (2.55)-(2.57) can be reformulated
as a system for (T (t0)x̂0; P (t0)ŷ0) , the dimension may be reduced con-
siderably. Moreover, in this way we take advantage of the fact that
sometimes the user of a simulation package uses � = x0 and wants to
preserve this values.
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� In Remark 2.5.3 we will discuss the advantages of considering the sys-
tem corresponding to (2.55)-(2.57) for nonlinear systems.

� In practice, the systems (2.41) - (2.43) and (2.55)-(2.57) can be en-
larged by Q(t0)y0 = 0 (analogously as in (2.2)) in order to obtain
a nonsingular system. Moreover, it has to be noted that for a spe-
cial choice of the projector W1, the system (2.49)-(2.51) together with
Q(t0)y0 = 0 can be reformulated as a quadratic system (cf. [47],[14]).

2.5.3 Nonlinear DAEs

Analogously as in the previous section, let us suppose that we know some

values (x0; P (t0)y
0) that ful�l the equations of the DAE i.e.,

A(x0; t0)y
0 + b(x0; t0) = 0:

Then the system

A(x0; t0)y0 + b(x0; t0) = 0; (2.58)

U(t0)x0 = U(t0)x
0; (2.59)

W1(U(t0)x0; t0)

�
(IW1

W0b)
0

x(U(t0)x0; t0)P (t0)y0

�

+W1(U(t0)x0; t0)

�
(IW1

W0b)
0

t(x0; t0)

�
= 0 (2.60)

will be helpful, if it is solvable, to obtain values (x0; P (t0)y0) ful�lling the

equations of the DAE as well as the hidden constraints. Let us consider the

Jacobian J(y0; x0; t0) and show that (Pzy; zx) 2 ker J implies (Pzy; zx) = 0.

For simplicity, we drop the arguments of the matrices:

J =

0
@ A B

0 U

W1B fW1(IW1
W0b)

0
xy0 +W1(IW1

W0b)
0
tg0x

1
A :

For (Pzy; zx) 2 ker J it holds that Azy+Bzx = 0, and multiplication by G�1
2

provides

P1Pzy +G�1
2 BPP1zx +Q1zx +Qzx + P1PP

0Qzx = 0: (2.61)
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Analogously as for the linear DAEs (cf. (2.46)) we obtain U(t0)zx = 0, and

from (2.61) we have:

P1Pzy +Qzx + P1PP
0Qzx = 0: (2.62)

Let us consider the expressions we obtain from the third row of (P (t0)zy; zx) 2
ker J in detail17. Firstly, observe that

fW1(IW 1W0b)
0
xy0g0xzx = 0

since T (t0)zx = zx andW1(IW 1W0b)
0
x(x; t) =W1(U(t)x; t)(IW 1W0b)

0
x(U(t)x; t).

Secondly, consider

fW1(IW 1W0b)
0
tg0x(x0; t0)zx

= W1(U(t0)x0; t0)(IW 1W0b)
00

xt(x0; t0)T (t0)zx

= �W1(U(t0)x0; t0)(IW 1W0b)
0

x(x0; t0)P (t0)T
0(t0)zx

= W1(U(t0)x0; t0)(IW 1W0b)
0

x(x0; t0)P (t0)P
0(t0)Q(t0)zx:

Therefore, the third row of (Pzy; zx) 2 ker J implies

W1Bzy +W1BPP
0Qzx = 0;

which is equivalent to

Q1Pzy +Q1PP
0Qzx = 0; (2.63)

and thus, analogously as in the linear case, (2.62) and (2.63) lead to

Pzy +Qzx + PP 0Qzx = 0;

which implies Qzx = 0 and, thus, zx = Tzx = TQzx = 0 and Pzy = 0.

Remark 2.5.3 � The nonlinear system (2.58)-(2.60) can be enlarged by
Q(t0)y0 = 0 (analogously as in (2.2)) in order to obtain a system with
full rank Jacobian in practice. The resulting nonlinear system may be
solved by the Gauss-Newton method (cf. e.g. [54]), where solutions
with defect zero provide consistent initial values.

17Here we consider the arguments explicitly, since they play an important role.
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� If we set �rst U(t0)x0 = U(t0)x
0, instead of (2.58)-(2.60), the lower-

dimensional system

A(U(t0)x0 + T (t0)x0; t0)y0 + b(U(t0)x0 + T (t0)x0; t0) = 0;

W1(U(t0)x0; t0)

�
(IW1

W0b)
0

x(U(t0)x0; t0)P (t0)y0

�

+W1(U(t0)x0; t0)

�
(IW1

W0b)
0

t(U(t0)x0 + T (t0)x0; t0)

�
= 0

will be helpful to obtain the additionally required values (T (t0)x0; P (t0)y0).

� In addition to the aspects discussed in Remark 2.5.2, the approach
(2.58)-(2.60) presents the following advantages:

{ For nonlinear systems from applications, Q1 and PP1 often de-
pend on (x; t), while U is constant. Consequently, some of the dif-
�culties that may appear for the generalization of (2.41) - (2.43)
for nonlinear systems (cf.[14]) can be avoided considering (2.58)-
(2.60). In fact, in [14] the full rank of the Jacobian of the obtained
system was veri�ed only for special cases.

{ For nonlinear systems, � cannot be chosen arbitrarily, and x0 may
be a reasonable guess. Moreover, for the special structure described
in Section 2.7, that is precisely given in circuit simulation, the
correction for x0 is relatively easy to compute, because it results
from a linear system.

Example 2.5.4 Let us consider again Example 2.1.4, which is in Hessenberg
form. For this system, the above approach means that if we choose values for
x1 and x2 on the cylinder, then the corresponding value for x3 is determined
by the equation describing the parabola, which is intuitively clear.

Let us �nally illustrate that if x0 is chosen arbitrarily, then the system (2.58)-

(2.60) may be unsolvable.

Example 2.5.5 Consider

x01 � x1 = 0;

x02 �
x23 � 0:5

x2
= 0;

x21 + x22 � 1 = 0;
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xi : If ! IR. It is easy to recognize that the explicit constraint is given by
x21 + x22 � 1 = 0, while the hidden constraint arises from x21 + x23 � 0:5 = 0.
Consequently, consistent initial values have to ful�l both equations. Let us
now consider the following two cases:

� x01 = 0, x02 = 1 ful�l the explicit constraint x21 + x22 � 1 = 0. By
considering the system (2.58)-(2.60) and supposing x3 > 0, we obtain
the corresponding consistent values (x10; x20; x30) = (0; 1;

p
0:5).

� x01 =
p
0:9, x02 =

p
0:1 also ful�l the explicit constraint x21+ x22� 1 = 0.

For these values, the system (2.58)-(2.60) is not solvable in IR.

In Section 2.7 we will focus on a special structure of DAEs that implies

that (2.58)-(2.60) can be formulated as a linear system and is, consequently,

uniquely solvable for all x0 2M0.

2.6 Application to DAEs in Hessenberg Form

Consider index-2 DAEs in Hessenberg form, i.e., systems

x01(t) = b1(x1(t); x2(t); t); (2.64)

0 = b2(x1(t); t); (2.65)

with B21(�)B12(�) nonsingular, for Bij(�) := @bi
@xj

(�), i; j = 1; 2. This structure

leads to

A =

�
I 0

0 0

�
; B(x1; x2; t) =

�
B11(x1; x2; t) B12(x1; x2; t)

B21(x1; t) 0

�
;

A1(x1; x2; t) =

�
I B12(x1; x2; t)

0 0

�
:

Since N = N \ S(�) is always constant, and

T = Q =

�
0 0

0 I

�
; W1 =W0 =

�
0 0

0 I

�
;

the assumptionsA1, A2 are ful�lled, whileA3, which coincides withA5 due

to the fact thatW1 is constant, is always supposed to be given. Moreover, we

realize that the Tx and the Qx components coincide, a fact that simpli�es
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the structure considerably.

Let us suppose that a value x01 ful�lling

0 = b2(x1
0; t0)

is given. According to (2.58)-(2.60), in order to compute a consistent initial-

ization for nonlinear index-2 Hessenberg systems, it would be adequate to

consider, if it is solvable, the nonlinear system

y10 = b1(x10; x20; t0); (2.66)

x10 = x01; (2.67)

0 = B21(x10; t0)y10 + [b2]
0

t(x10; t0); (2.68)

where (y10; x10; x20) are the unknowns.

Remark 2.6.1 Note that instead of solving (2.66)-(2.68) we can �x x10 = x01
and consider the system

y10 = b1(x10; x20; t0);

0 = B21(x10; t0)y10 + [b2]
0

t(x10; t0);

where (y10; x20) are the unknowns. This quadratic system may be solved by
the Newton method (cf., in contrast, Remark 2.5.3).

In particular, for Hessenberg systems of the special structure

x01(t) = ~b1(x1(t); t) + B1(x1(t); t)x2(t); (2.69)

0 = ~b2(x1(t); t); (2.70)

a consistent initialization can be computed by solving only a linear system.

In this case, (2.58)-(2.60) implies that, if we know values x1
0 ful�lling (2.70),

then we set x10 = x01 for computing a consistent initialization and solve then

the linear system that reads:

y10 = ~b1(x10; t) + B1(x10; t0)x20;

0 = ~B21(x10; t0)y10 + [~b2]
0

t(x10; t0);

where (y10; x20) are the unknowns.
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Example 2.6.2 The stabilized Euler-Lagrange equations described in [22]
present the structure (2.69)-(2.70). We write the equations in a form that
emphasizes their Hessenberg structure:

p0 = v �G(p)T�;

v0 = M(p)�1f(p; v)�M(p)�1G(p)T�;

0 = G(p)v;

0 = g(p);

where p; v 2 IRnp are position and velocity variables, � 2 IRn� are Lagrange
multipliers with n� � np, M(p) is the positive de�nite mass matrix, f(p; v)
are the applied outer forces, g(p) are the constraints, and G(p) := @

@p
g(p) is

the constraint matrix with full rank n�.

The hidden constraints arise from

0 = G(p)v0 +

�
d

dt
G(p)

�
v =: G(p)v0 + ~G(p; v)p0;

0 = G(p)p0:

Notice that for the above approach we suppose that we have values (v0; p0)

that ful�l:

0 = G(p0)v0;

0 = g(p0);

where x10 := x01 corresponds to

p0 = p0;

v0 = v0:

Moreover, accordingly to (2.69)-(2.70), to compute (x20; x
0
10) = (�0; �0; p

0
0; v

0
0)

we consider the system

p00 = v0 �G(p0)
T�0;

v00 = M(p0)
�1f(p0; v0)�M(p0)

�1G(p0)
T�0;

0 = G(p0)v
0

0 +
~G(p0; v0)p

0

0;

0 = G(p0)p
0

0:
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Hence, a consistent initialization can be obtained successively by means of:

p0 = p0;

v0 = v0;

�0 = 0;

p00 = v0;

�0 = (G(p0)M(p0)
�1G(p0)

T )�1(G(p0)M(p0)
�1f(p0; v0)

+ ~G(p0; v0)v0);

v00 = M(p0)
�1(f(p0; v0)�G(p0)

T�0):

Note that the correction we perform a�ects:

� the values of � that have to be 0 on the one hand,

� the values of � that are completely �xed by p0 and v0on the other hand,

� and, �nally, suitable values of the derivatives.

Example 2.6.3 For the index-2 formulation of the trajectory prescribed path
control problem (TPPC) discussed in [4],[5], x2 occurs nonlinearly. Thus, the
structure (2.69)-(2.70) is not given. Consequently, the corresponding consis-
tent value cannot be computed by solving only a linear system. Nevertheless,
the solution of the corresponding nonlinear system arising if x10 is prescribed,
is then exactly the one that can be found explicitly in [37].

2.7 Analyzing a Special Structure

In the following we will focus on a special structure that considerably sim-

pli�es the task of solving the over-determined system (2.58)-(2.60), but does

not correspond to the Hessenberg form. Indeed, we focus on a structure

that is given in the applications we are interested in (cf. Chapter 3). This

structure implies that (2.58)-(2.60) becomes a linear system with respect to

(T (t0)x0; P (t0)y0).

Let us assume that

A6 : im A(x; t); kerA(x; t) and N(t) \ S(x; t)

are constant for (x; t) 2 Df � If ;
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since this is given in the applications we are interested in. Observe that this

assumption precisely implies that Q;P; T; U;W0 are constant projectors.

Let us further suppose in the following that (1.14) has the structure

A7 : A(Ux(t); t)x0(t) + ~b(Ux(t); t) + B(Ux(t); t)Tx(t) = 0 (2.71)

for a matrix B, i.e., we suppose, that the N \ S-component occurs only

linearly.

Lemma 2.7.1 Due to A7, it holds that

W0B(Ux; t)T = 0 (2.72)

Proof: Note that because of the structure (2.71) it holds: B(�)T = B(�)T .
Therefore (see Lemma 2.3.4),

W0B(�)T = W0B(�)T = 0:

q.e.d.

2.7.1 Calculation of Consistent Initial Values by Solv-

ing a Linear Sytem

Analogously as in Section 2.5, we start from a value x0 that ful�ls the equa-

tions of the DAE, but is probably not consistent. This means, we suppose

we know values (x0; P y0) ful�lling

A(Ux0; t0)y
0 +~b(Ux0; t0) + B(Ux0; t0)Tx0 = 0: (2.73)

Actually, we are looking for a consistent value, i.e., a value x0 that ful�ls the

equations of the DAE

A(Ux0; t0)y0 +~b(Ux0; t0) + B(Ux0; t0)Tx0 = 0; (2.74)

as well as the hidden constraints18

W1(Ux0; t0)

�
(IW1

W0
~b)0x(Ux0; t0)Py0 + (IW1

W0
~b)0t(Ux0; t0)

�
= 0: (2.75)

18Observe that for a constant projector U we have (IW1
W0b)

0

t(x; t) = (IW1
W0b)

0

t(Ux; t)

due to (W0b)(x; t) = (W0b)(Ux; t). Therefore, in (2.60), this partial derivative with respect

to time corresponds to (IW1
W0

~b)0t(Ux0; t0).
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Let us now recall the notation (cf. (2.53),(2.54))

x̂0 = x0 � x0;

P ŷ0 = Py0 � Py0;

and establish a relation between x̂0 and ŷ0. If we set Ux0 = Ux0 and subtract

(2.73) from (2.74) we obtain:

A(Ux0; t0)ŷ0 + B(Ux0; t0)T x̂0 = 0: (2.76)

Moreover, due to (2.75), we know that (x̂0; P ŷ0) has to ful�l

W1(Ux0; t0)

�
(IW1

W0
~b)0x(Ux0; t0)P [y

0 + ŷ0]

+W1(Ux0; t0)

�
(IW1

W0
~b)0t(Ux0; t0)

�
= 0:

Theorem 2.7.2 Suppose thatA6, A7, A3 - A5 hold, and suÆcient smooth-
ness19 is given. Then we obtain consistent initial values (x0; P y0) starting
from the possibly inconsistent values (x0; P y0) setting Ux0 := Ux0, computing
the unique solution (x̂0; P ŷ0) of the linear system

A(Ux0; t0)ŷ0 + B(Ux0; t0)T x̂0 = 0; (2.77)

Ux̂0 = 0; (2.78)

W1(Ux0; t0)(IW1
W0

~b)0x(Ux0; t0)P [y
0 + ŷ0]

+W1(Ux0; t0)(IW1
W0

~b)0t(Ux0; t0) = 0 (2.79)

and setting

x0 = x0 + x̂0;

P y0 = Py0 + P ŷ0;

for which (2.74) and (2.75) are ful�lled.

Proof:

Note that on the one hand, Lemma 2.7.1 implies that (2.77) can be rewritten

as

A(Ux0; t0)ŷ0 + (I �W0(t0))B(Ux0; t0)T x̂0 = 0:

19cf. Section 2.4
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Hence, the row rank of (2.77)-(2.79) is less than or equal to

rank A+ rank U + rank W1 = rank P + rank U + rank T = n+ rank P

due to Remark 2.3.3.

On the other hand, if we suppose that (Pzy; zx) is a solution of the homoge-

neous system, then it can be deduced (Pzy; zx) = 0 analogously as in Section

2.5.3. Thus, the system is uniquely solvable.

q.e.d.

Speci�cs related to the realization in circuit simulation can be found in Chap-

ter 3.

In the following we analyse the di�erences between the numerical solutions we

obtain starting from values (x0; P y0) and from the corresponding consistent

values (x0; P y0).

2.7.2 Consequences for the Implicit Euler Method

Recall that when solving (1.14) numerically by means of an implicit Euler

method in the �rst step we solve the system:

A(x1; t1)
x1 � x0

h
+ b(x1; t1) = 0:

Making use of the above results, we note that the same systems have to be

solved starting at x0 or at x
0, because Ux0 = Ux0 implies Px0 = Px0.

Remark 2.7.3 � In practice, since the Jacobian required for the Newton
method may depend on Tx, the results we obtain starting with the initial
guess x0 may di�er from those achieved starting with the initial guess
x0. This applies, for instance, to the systems described in the Examples
2.6.2 and 2.6.3.

� If a system has the structure

A8 : A(Ux(t); t)x0(t) + b(Ux(t); t) + BTx(t) = 0 (2.80)

for a constant matrix B, then the same initial guess is used in both
cases to start the Newton iteration due to the fact that Ux0 = Ux0
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and because J = J(Ux; t) holds for the Jacobian. In this case exactly
the same results are obtained starting from x0 and x0. This applies,
for instance, to those systems that arise from circuit simulation (cf.
Chapter 3).

2.7.3 Consequences for the Trapezoidal Rule

We now focus on systems of the form :

A9 : Ax0(t) + ~b(Ux(t); t) + BTx(t) = 0;

where A;B; U; T are constant.

For ODEs

x0(t) = f(x(t); t)

the trapezoidal rule reads:

x1 � x0

h
=

f(x1; t1) + f(x0; t0)

2
:

Remark 2.7.4 Recall that the convergence and stability properties of the
trapezoidal rule are not desirable (cf. e.g. [31]). Thus, the trapezoidal rule
should be used only in combination with the Backward Di�erence Formulae
(BDF) [62], for instance.

There are several possibilities to adapt this method to DAEs. We will con-

sider the method presented in [62], which introduces the approximation20

A
dx

dt
(t1) = 2A

x1 � x0

h
� A

dx

dt
(t0)

in equations of the structure A9.

Lemma 2.7.5 The structure A9 implies the following properties for the ma-
trix chain of the tractability index we obtain:

� A is constant

20See also [25], where, more generally, Runge-Kutta methods are considered for DAEs,

in particular. These methods are denoted by IRK(DAE).
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� B = B(Ux; t).

� From the above we obtain:
G1 = G1(Ux; t), A1 = A1(Ux; t), Q1 = Q1(Ux; t) ,
G2 = G2(Ux; t) = G1(Ux; t)+B(Ux; t)PQ1(Ux; t) andW1 =W1(Ux; t).

Proof: The assertions follow by straightforward computation.

We will see that if we apply the trapezoidal rule for DAEs of this shape,

the systems we have to solve starting from (x0; P y0) or by (x0; P y0) are not

the same. Nevertheless, we will show that the obtained results are only dif-

ferent for Tx, i.e., the error that is introduced because we do not ful�l the

hidden constraint a�ects only the value of the N \ S-component of the next

step. The values for the remaining components are the same starting from

(x0; P y0) or (x
0; P y0).

To prove this phenomenon we consider the system we obtain starting from

the value (x0; P y0):

2 � Ax1 � x0

h
� Ay0 + ~b(Ux1; t1) + BTx1 = 0:

From the relation Aŷ0 + BT x̂0 = 0 (cf. (2.76)) we obtain

2 � Ax1 � x0

h
� Ay0 + BT x̂0 + ~b(Ux1; t1) + BTx1 = 0: (2.81)

With the aid of the projectors of the tractability index it is possible to rec-

ognize that the term BT x̂0, which is the only discrepancy with respect to

the corresponding system we obtain starting from (x0; P y0), a�ects precisely

Tx1. To this end, we split (cf. (2.33)-(2.36)) the equation (2.81) multiplying

it by

(PP1(�) + PQ1(�) + UQ)G�1
2 (�) and TG�1

2 (�);
evaluated at (Ux0; t0). Since we only use these terms to split the system,

this can be done considering them a constant expression, because we already

know Ux0 = Ux0. Further, this implies that we can use the same projectors

for the splitting of the system we obtain starting from the value (x0; P y0).

With Lemma 2.3.1,4c we obtain

2 � PP1

x1 � x0

h
� PP1y

0 + (PP1 + PQ1 + UQ)G�1
2
~b(Ux1; t1) = 0; (2.82)

� 2 �QQ1

x1 � x0

h
�QQ1y

0 + T x̂0 + Tx1 + TG�1
2
~b(Ux1; t1) = 0: (2.83)
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Observe that for calculating Ux1 we only have to consider (2.82). This can

easily be seen considering the range of the equations. Realize that (2.83)

contains as many linearly independent equations as rank T = rank QQ1.

Taking into account that Tx1 only appears in (2.83), these equations have

to �x Tx1, while Ux1 is �xed by (2.82). Furthermore, in the above system

we can notice that T x̂0 only appears in (2.83). Therefore, the same value for

Ux1 is obtained starting from (x0; P y0) or (x
0; P y0).

Remark 2.7.6 Notice further that we obtain

Tx1 = �T x̂0 + 2 �QQ1

x1 � x0

h
+QQ1y

0 � TP1G
�1
2
~b(Ux1; t1):

Thus, if further steps are undertaken, the error induced by the inconsistency
alternates the sign. For instance, if we suppose that the value calculated for
Ux1 is accurate, and denote by x1 the corresponding value obtained starting
from (x0; P y0), then the above discussion would imply

Ux1 = Ux1; Tx1 = �T x̂0 + Tx1:

Consequently, if x2 and x2 denote the values obtained starting from x1 and
x1, respectively, analogously as above it results

Ux2 = Ux2; Tx2 = �(Tx1 � Tx1) + Tx2 = T x̂0 + Tx2:

Remark 2.7.7 Let us �nally remark that if we consider systems of the struc-
ture

Ax0(t) + b(Ux(t); t) + B(t)Tx(t) = 0; (2.84)

for instance, the splitting (2.82) - (2.83) does not work any more, since the
matrices are evaluated at di�erent times. Consequently, it does not hold that
the error in the N \S-component cannot be transferred to other components.
In Section 3.6 we will give an example that illustrates this e�ect. Notice also
that the observation we made with respect to the implicit Euler method holds
analogously for the structure (2.84).
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2.8 Some Concluding Remarks

Let us consider in detail on the di�erences and advantages of the presented

approach with respect to some of those discussed in Section 2.2.

Since di�erentiations are numerically diÆcult, the approaches (e.g. [38],[23])

based on the consideration of the derivative array (2.3) have to cope with

the disadvantage of considering unnecessarily high derivatives. Indeed, for

index-2 DAEs, the derivative array involves second derivatives of the original

DAE. In contrast, the approach presented here di�erentiates a part of the

original DAE only once.

Recall that the algorithm from [48] also derives only suitable parts of the

original DAE, but, as mentioned before, some equations that have to be dif-

ferentiated may escape detection. However, for index-2 DAEs with structural

index 2 some parts of the original DAE are derived twice. Recently [52], it

was realized that the structural index may also exceed the di�erential index,

even for DAEs with constant coeÆcients. Indeed, this applies to simple ex-

amples from circuit simulation. Consequently, the structural determination

of the index and of the consistent initial values is not reliable.

With respect to the other approaches based on the tractability-index we

require relatively weak assumptions on the projectors. Concretely, the ap-

proaches from [32],[36] require that PQ1 = (PQ1)(t) is given, while in [43]

W1 = W1(P (t)x; t) was requested to hold. In this context it has to be

mentioned that, in contrast to A2, these assumptions are not given in the

applications of Chapter 321.

As mentioned before, the algorithms from [48] and [14] determine a selec-

tion of variables and a component, respectively, for which we may prescribe

suitable initial values. Both approaches base on the assumption that for non-

linear DAEs the obtained systems are solvable. Thus, even if the algorithm

from [48] works, the resulting system has to be solvable with respect to the

variables left unspeci�ed. Analogously, in [14] the system corresponding to

(2.41)-(2.43) has to be solvable for nonlinear DAEs. Thus, a further advan-

21These assumptions are not given for the equations arising from MNA, since for the

charge-oriented MNA, for example, the projectors PQ1 and W1 even depend on (Ux) (cf.

[15]).
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tage of (2.58)-(2.60) is that we always can enlarge it by Q(t0)y0 = 0 in order

to obtain a full column rank Jacobian and that, moreover, this system is

often linear in applications.

In contrast to the approach [23], which computes initial values minimizing

the deviation of the variables from a speci�ed guess, by (2.58)-(2.60) we com-

pute initial values for which the deviation a�ects only the so-called index-2

component (corresponding to N \S). Consequently, even if we start the dif-

ferent approaches with an x0 as the initial guess, they may lead to di�erent

consistent initial values. Since in practice, the user of a simulation package

knows Px0 sometimes and wants to preserve this values for Px0, this be-

comes another advantage of (2.58)-(2.60).

Finally, it has to be noticed that (2.58)-(2.60) can be considered to be added-

on certain algorithms that compute consistent initial values for index-1 vari-

ables. For instance, the computation of a value (x0; P (t0)y
0) may be carried

out analogously as consistent initial values for index-1 DAEs are computed

by the approach described in point 2 on p. 24.

An important and interesting matter of research resulting from the problems

related to the computation of consistent initial values are the numerical con-

sequences of starting an integration process with inconsistent values. For

instance, for index-1 DAEs of the form Ax0(t) + b(x(t); t) = 0 such consider-

ations were presented in [55]. There it was realized that a variety of implicit

Runge-Kutta methods converge at the same rate whether or not the initial

conditions are consistent. For systems arising in circuit simulation, in [61]

some considerations related to this were made for the implicit Euler method.

For investigations of this kind, the results presented in the Sections 2.7.2 and

2.7.3 become of special interest, since a better understanding of the proper-

ties of the index-2 components becomes possible.

Let us emphasize at last the following aspects:

� Since di�erentiation problems are ill-posed in the sense of Hadamard,

i.e., small perturbations in the input data can provide arbitrarily large

perturbations in the output data, it is advisable to perform as few

di�erentiations as possible in general. Thus, the approaches based on

the consideration of M1(t) (see Section 2.4) bene�t from the fact that
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they involve considerably less di�erentiations than those based on the

derivative array (2.3).

� The requested assumptions are more general and easier to verify than

those of other approaches based on projectors related to the tractabi-

lity-index.

� The approach (2.58)-(2.60) provides new insights for the understanding

of the e�ect that inconsistent initial values may have on numerical

solutions (cf. Section 2.7.2 and 2.7.3).

Consequently, it is intended to continue this work focusing on the following:

� (2.58)-(2.60) will be tested [60], while it has only been implemented for

systems arising from circuit simulation (see Chapter 3) so far.

� It would be interesting to investigate the e�ect that inconsistent initial

values may have on numerical solutions when considering further inte-

gration methods. Here we focus on the implicit Euler method and the

trapezoidal rule only, since these are commonly used in circuit simula-

tion.

At last, we want illustrate that if the structural assumptions from Section

2.3 are not met, there may not exist such a direct relation between a value

ful�lling the equations of the DAE and a consistent initial value.

Example 2.8.1 For t � 1, xi : If ! IR, x2; x3 > 0 consider:

x01 + x02 + x3 = 0;

x2x3 = 1 + ln t;

x1 + x2 + x2x3 = 0:

For this index-2 example N \ S(�) does not depend only on t:

N \ S(x; t) = fz 2 IR3 : z1 + z2 = 0; x3z2 + x2z3 = 0g:

Note that a consistent initial value is given by x3 = 1
t0
, x2 = t0(1 + ln t0),

x1 = �(1 + t0)(1 + ln t0), but that no linear relation exists between these
values and other values that ful�l the equations.
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2.9 An Example: The NAND-Gate

The NAND-gate is a logical gate that computes the elementary logical opera-

tion NAND (Not AND). It consists of two n-channel enhancement MOSFETs

(MEs), one n-channel depletion MOSFET (MD) and one load capacitance C

(cf. [28],[57]).

The drain voltage of MD is constant at VDD = 5V. The bulk voltages are not

at ground: VBB = -2.5 V. The source voltages of both MEs are at ground.

The gate voltages of both enhancement MOSFETs are controlled by two

voltage sources V1 and V2.

Roughly speaking, the MOSFETs act as a switch between drain and source:

they will close if the voltage between gate and source drops below a certain

threshold value. This means that as soon as V1 or V2 are low, the corre-

sponding MEs will lock. If V1 and V2 exceed a given threshold, then a drain

current will ow through both MEs and the voltage at node 1 will break

down. Hence, depending on the input voltages, a response is generated at

node 1, representing the Not AND-operation. The response at node 1 will

only be LOW (FALSE) if both V1 and V2 exceed a given threshold voltage

UT , i.e. both are HIGH (TRUE).

We consider the MOSFET- model22 from [16], that implies that the NAND-

gate equations are index-2 tractable [57]. The MOSFETs MD and ME di�er

only in parameter values.

The equations can be found in the Appendix. The vector of unknowns reads

(q; q1gd; q1gs; q1db; q1sb; q2gd; q2gs; q2db; q2sb; q3gd; q3gs; q3db; q3sb;

e1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; j1; j2; jBB ; jDD) :

Straightforward computation shows that a projector onto the space N \S(�)

22Note tat if we consider a di�erent model (e.g. from [56]), then the index of the

NAND-Gate becomes 1 (cf.[29]).
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Figure 2.1: NAND-Gate
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is given by

T =

0
BBB@

0 : : : 0

: : :

: : :

: : :

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0 0

1
CCCA:

This means that in order to obtain a consistent value it may be necessary to

correct the currents through V1; V2; VBB.

We focus on V1(t0) = V2(t0) = 0. Let us suppose that (x0; P (t0)y
0) = (x0; 0),

i.e., we consider the so-called DC-operating point. For V 0
1(t0) = 109, V 0

2(t0) =

V 0
BB = 0 the corrections (x̂0; P (t0)ŷ

0) computed by the algorithm described

in Section 3.5 read:

x̂0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

�7:40744E � 05

0

7:40744E � 05

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; y0 = ŷ0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

4:07947E � 05

3:32797E � 05

4:07947E � 05

3:32797E � 05

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The result shows that the di�erence between x0 and x0 consists in a current

that ows through V1, through the enhancement MOSFET that is incident

with node 5, and through VBB. Note that inside the MOSFET the current

is divided. Since we have V 0
2(t0) = V 0

BB = 0, it results that no additional
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current ows through V2.

The values for x0 and x0 can be found in the Appendix. The values for x0
correspond to those obtained in [14] for � = x0. The values obtained when

considering only linear capacitances (cf. [57]) can be found in [11].
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Chapter 3

Application to Circuit

Simulation

The index and the structure of the equations we obtain in electric circuit

simulation depend, among other things, on the scheme for setting up the

equations. We will restrict ourselves to one of the most frequently used

modelling techniques, the modi�ed nodal analysis (MNA). In Section 3.1 we

introduce the equations arising from two di�erent formulations, the conven-

tional MNA and the charge-oriented MNA, in order to analyse their special

structure afterwards. These equations consist of the nodal equations (given

by Kirchho�'s current law) and the characteristic equations of the voltage-

de�ning elements, i.e., inductances and voltage sources. In the case of the

charge-oriented MNA, the voltage-charge and current-ux equations are also

added to the system. Because of the large dimension of many circuits (often

105 circuit elements), it is diÆcult, in general, to determine their structural

properties. Nevertheless, if the positive de�niteness of the Jacobians of the

element-characterizing functions is assumed, the problem simpli�es consid-

erably. Beyond this, since Kirchho�'s laws describe linear relations, some of

the variables occur only linearly, even if the capacitances, inductances and

resistances are highly nonlinear. Indeed, in order to guarantee the structure

requested in Chapter 2, only the voltage-controlled voltage sources (VCVS),

current-controlled voltage sources (CCVS), voltage-controlled current sources

(VCCS), and current-controlled current sources (CCCS) have to be analyzed.

The class of controlled sources we will consider is exactly the one for which

the structure of the spaces associated to the DAE can be described anal-

ogously as for networks without controlled sources. In particular, Section

79
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3.2 is devoted to ascertaining that the MNA equations have the structural

properties presented in Section 2.7 if a network contains only the class of

controlled sources described in Section 3.1.3.

Insight in how to compute practically consistent initial values by applying

the technique from Section 2.7.1 is given in Section 3.3. Moreover, in Sec-

tion 3.4 it will be briey outlined how this computation can be considerably

simpli�ed. Concretely, we reduce the computational costs determining the

hidden constraints by means of a graph-theoretical approach that makes it

unnecessary to �gure out the corresponding projectors explicitly. Finally, in

Section 3.5 we will give some details about the realization and discuss, in

Section 3.6, an example that illustrates the e�ects described in the Sections

2.7.2 and 2.7.3.

The results presented in this chapter were partly developed in [15],[12],[11].

In particular, Section 3.1 and the �rst part of Section 3.2 have been taken

from [15], where the assumptions for the controlled current sources have been

slightly modi�ed in order to guarantee A2. Here, we aim at summarizing the

results from [15],[12],[11] in connection with the general theory developed in

the previous chapter. Since these articles contain more examples and details

concerning the realization, the interested reader is referred to them.

3.1 The Modi�ed Nodal Analysis (MNA)

In the following we discuss lumped electric circuits containing nonlinear and

possibly time-variant resistances, capacitances, inductances, voltage sources

and current sources. Usually, circuit simulation tools are based on these kinds

of network elements. For two-terminal (one-port) lumped elements, the cur-

rent through the element and the voltage across it are well-de�ned quantities.

For lumped elements with more than two terminals, the current entering any

terminal and the voltage across any pair of terminals are well de�ned at all

times (cf. [10]). Hence, general n-terminal elements are completely described

by (n � 1) currents entering the (n � 1) terminals and the (n � 1) branch

voltages across each of these (n� 1) terminals and the reference terminal n.
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...

654321

n (reference terminal)987

Figure 3.1: n-terminal circuit element

In particular, n-terminal resistances can be modelled by an equation system

of the form

jk = rek(u1; :::; un�1; t) for k = 1; :::; n� 1

if jk represents the current entering the terminal k and ul describes the

voltage across the pair of terminals fl; ng (for k; l = 1; :::; n� 1). Kirchho�'s

Current Law implies the current entering the terminal n to be given by

jn = �Pn�1

k=1 jk. The conductance matrix Ge(u1; :::; un�1; t) is then de�ned

by the Jacobian

Ge(u1; :::; un�1; t) :=

0
BB@

@re1
@u1

: : :
@re1

@un�1

...
. . .

...
@ren�1

@u1
: : :

@ren�1

@un�1

1
CCA :

The index e shall specify the correlation to a special element of a circuit.

Later on we will introduce the conductance matrixG(u; t) describing all resis-

tances of a circuit. Correspondingly, the capacitance matrixCe(u1; :::; un�1; t)

of a general n-terminal capacitance is given by

Ce(u1; :::; un�1; t) :=

0
BB@

@qe1
@u1

: : :
@qe1

@un�1

...
. . .

...
@qen�1

@u1
: : :

@qen�1

@un�1

1
CCA

if the voltage-current relation is de�ned by means of charges by

jk =
d

dt
qek(u1; :::; un�1; t) for k = 1; :::; n� 1:

In order to illustrate what the matrices Ce may look like, let us consider a

MOSFET-model as an example of a common n-terminal element.
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i(u     ,u     ,u     )

 Gate
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DrainSource

G

S

B

D

R
C

BS BD
C

C
GS GD

C

BS

 DS   GS BS

     
BD

d(u     ) d(u     )

Figure 3.2: MOSFET-model

Choosing the source node S as the reference node, we have the reference

voltages uGS, uDS, and uBS. For the currents we obtain

jG = CGS _uGS + CGD( _uGS � _uDS);

jD = � CGD( _uGS � _uDS)� CBD( _uBS � _uDS)

+ d(uBS � uDS) + i(uGS; uDS; uBS) +
1

R
uDS;

jB = CBS _uBS + CBD( _uBS � _uDS)� d(uBS)� d(uBS � uDS):

Note that jS is given by the formula jS = �jG � jD � jB due to Kircho�'s

Current Law. Now it is easy to verify that

Ce(uGS; uDS; uBS) =

0
@CGS + CGD � CGD 0

� CGD CGD + CBD � CBD

0 � CBD CBS + CBD

1
A

for the MOSFET-model from [16].

Inductances can be modelled by means of uxes by

uk =
d

dt
�ek(j1; :::; jn�1; t) for k = 1; :::; n� 1:

Then, the inductance matrix Le(j1; :::; jn�1; t) of a general n-terminal induc-

tance is given by the Jacobian

Le(j1; :::; jn�1; t) :=

0
BB@

@�e1
@j1

: : :
@�e1
@jn�1

...
. . .

...
@�en�1

@j1
: : :

@�en�1

@jn�1

1
CCA :
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A commonly used method for network analysis in circuit simulation pack-

ages like TITAN1 and SPICE2 is the Modi�ed Nodal Analysis (MNA). It

represents a systematic treatment of general circuits and is important when

computers perform the analysis of networks automatically. The scheme to

set up the MNA equations is:

1. Write node equations by applying Kirchho�'s Current Law (KCL) to

each node except for the datum node:

Aj = 0: (3.1)

The vector j represents the branch current vector. The matrix A is

called the (reduced) incidence matrix, which is de�ned by

aik :=

8<
:
+1 if branch k leaves node i

�1 if branch k enters node i

0 if branch k is not incident with node i

for all the nodes i but the datum node (cf. [10]).

Observe that the incidence matrix describes the network graph, the

branch-node relations.

2. Replace the currents jk of voltage-controlled elements by the voltage-

current relations of these elements in equation (3.1).

3. Add the current-voltage relations for all current-controlled elements.

Note that, in case of multi-terminal elements with n terminals, we speak of

branches if they represent a pair of terminals fl; ng with 1 � l � n� 1.

In general, the MNA leads to quasilinear DAEs. In order to obtain more de-

tailed information about the structure of these DAEs, we split the (reduced)

incidence matrix A into the element-related incidence matrices

A = (AC ; AL; AR; AV ; AI);

where AC , AL, AR, AV , and AI describe the branch-current relations for ca-

pacitive branches, inductive branches, resistive branches, branches of voltage

1In�neon Technologies (formerly SIEMENS AG).
2Developed in the 70s by the University of California, Berkeley.
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sources and branches of current sources, respectively. Denote by e the node

potentials (excepting the datum node) and by jL and jV the current vec-

tors of inductances and voltage sources. De�ning the vector of functions for

current and voltage sources by i and v, respectively, we obtain the following

quasilinear DAE-system from the MNA:

AC

dq(AT
Ce; t)

dt
+ ARr(A

T
Re; t) + ALjL + AV jV

+ AIi(A
T e;

dq(AT
Ce; t)

dt
; jL; jV ; t) = 0; (3.2)

d�(jL; t)

dt
� AT

Le = 0; (3.3)

AT
V e� v(AT e;

dq(AT
Ce; t)

dt
; jL; jV ; t) = 0: (3.4)

Note that the vectors AT
Ce, A

T
Le, A

T
Re and AT

V e describe the branch voltages

for the capacitive, inductive, resistive and voltage source branches, respec-

tively.

Remark 3.1.1 Due to the fact that the currents through resistances are
functions of the branch potentials, we do not include them separately as
controlling functions. Of course, if the network does not contain controlled
sources, then the source functions reduce to functions i(t) and v(t) that de-
pend on time only.

Nowadays, circuit simulation packages use two di�erent approaches for solv-

ing (3.2)-(3.4): the conventional and the charge-oriented one.

3.1.1 The Conventional MNA

For the conventional MNA the vector of unknowns consists of all node volt-

ages and all branch currents of current-controlled elements.

De�ning

C(u; t) :=
@q(u; t)

@u
; q0t(u; t) :=

@q(u; t)

@t
; L(j; t) :=

@�(j; t)

@j
; �0t(j; t) :=

@�(j; t)

@t
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we obtain3

ACC(A
T
Ce; t)A

T
C

de

dt
+ ACq

0

t(A
T
Ce; t) + ARr(A

T
Re; t)

+ ALjL + AV jV + AIi(A
T e; AT

C

de

dt
; jL; jV ; t) = 0; (3.5)

L(jL; t)
djL

dt
+ �0t(jL; t)� AT

Le = 0; (3.6)

AT
V e� v(AT e; AT

C

de

dt
; jL; jV ; t) = 0: (3.7)

Later on we will also need

G(u; t) :=
@r(u; t)

@u
; r0t(u; t) :=

@r(u; t)

@t
:

3.1.2 The Charge-oriented MNA

In comparison with the conventional MNA, the vector of unknowns consists

additionally of the charge of capacitances and the ux of inductances. More-

over, the original voltage-charge and current-ux equations are added to the

system. The resulting system is then of the form (cf. [26])

AC

dq

dt
+ ARr(A

T
Re; t) + ALjL + AV jV

+ AIi(A
T e;

dq

dt
; jL; jV ; t) = 0; (3.8)

d�

dt
� AT

Le = 0; (3.9)

AT
V e� v(AT e;

dq

dt
; jL; jV ; t) = 0; (3.10)

q � qC(A
T
Ce; t) = 0; (3.11)

�� �L(jL; t) = 0: (3.12)

3Note that we have

dq(AT
Ce; t)

dt
= C(AT

Ce; t)A
T
C

de

dt
+ q0t(A

T
Ce; t):

Therefore, i(AT e;
dq(AT

C
e;t)

dt
; jL; jV ; t) = i�(A

T e; AT
C
de

dt
; jL; jV ; t) for a suitable function i�.

An analogous relation is valid for the controlled voltage-sources. For simplicity, we drop

the index �.
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This formulation seems to be more convenient in practice. A detailed dis-

cussion of advantages of the charge-oriented MNA with respect to the con-

ventional MNA can be found in [26].

3.1.3 The Index of the MNA Equations

In the following we discuss the index and the structure of the equations

introduces above. For this purpose, some special cutsets4 and loops5 will be

important. Therefore we de�ne:

De�nition 3.1.2 [15]

1. An L-I cutset is a cutset consisting of inductances and/or current
sources only.

1

datum

i(t)

e2
R

L

e
Conventional MNA:

jL +
1

R
(e1 � e2) = 0;

� 1

R
(e1 � e2) + i(t) = 0;

Lj 0L � e1 = 0:

Figure 3.3: Example of an L-I cutset

2. A C-V loop is a loop consisting of capacitances and voltage sources
only.

4A set of branches of a connected graph is called a cutset if the removal af all the

branches of the set causes the remaining graph to have two separate parts and the removal

of all but any one of the branches of the set leaves the remaining graph connected (cf.

[10]).
5A subgraph of a graph is called a loop if it is connected and precisely two branches of

it are incident with each node (cf. [10]).
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e

datum

R2

21
v ( t )

1C C

e Conventional MNA:

C1e
0
1 + jV = 0;

�jV + C2e
0

2 +
1

R
e2 = 0;

e1 � e2 = v(t):

Figure 3.4: Example of a C-V loop

Theorem 3.1.3 [15] Consider lumped electric circuits containing resistances,
capacitances, inductances, and voltage and current sources. Let the capaci-
tance, inductance and conductance matrices of all capacitances, inductances,
and resistances, respectively, be positive de�nite.6 Furthermore, let the fol-
lowing conditions for the controlled sources7 be satis�ed:

1. The controlled voltage sources do not form a part of any C-V loop and
their controlling elements ful�l the conditions exposed in the Tables 3.1
and 3.2.

2. Each controlled current source ful�ls at least one of the following con-
ditions:

(a) It does not form a part of any L-I cutset and the controlling ele-
ments ful�l the conditions exposed in the Tables 3.3 and 3.4.

(b) There exists a path formed by capacitances that connects its inci-
dence nodes. The controlling elements ful�l the conditions exposed
in Table 3.6 for CCCS, and the VCCS are controlled by voltages
ful�lling the conditions from Table 3.5.

(c) There exists a path formed by capacitances and voltage sources
that connects its incidence nodes. The controlling elements ful�l

6For capacitances and inductances with aÆne characteristics the positive de�niteness

implies that they are strictly locally passive (cf. [17]).
7More precisely, we can permit controlling voltages and currents that can be expressed

in terms of the listed voltages and currents. For instance, the current through a resistance

that forms a loop with capacitances only can be expressed as a function of the voltage

across those capacitances and can thus be allowed. The interested reader is referred to

[15].
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the conditions exposed in Table 3.7 for CCCS, and the VCCS are
controlled by voltages ful�lling the conditions from Table 3.5.

Then, the conventional MNA leads to a DAE with index8 < 2 if and only
if the network contains neither L-I cutsets nor C-V loops. Otherwise, the
conventional MNA leads to an index-2 DAE.

The controlling voltages of a VCVS can be voltages of:

1. capacitances,

2. independent voltage sources.

Table 3.1: VCVS - condition (1)

The controlling currents of a CCVS can be currents of:

1. inductances,

2. independent current sources.

Table 3.2: CCVS - condition (1)

The controlling voltages of a VCCS can be voltages of:

1. capacitances,

2. voltage sources.

Table 3.3: VCCS - condition (2a)

Theorem 3.1.4 [15] The same conclusions as in Theorem 3.1.3 are valid
under the same assumptions if we consider the charge-oriented MNA instead
of the conventional MNA.

8For reasons of simplicity, we do not consider the index-0 cases, which correspond to

regular ODEs, and the index-1 cases, separately.
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The controlling currents of a CCCS can be currents of:

1. inductances,

2. independent current sources,

Table 3.4: CCCS - condition (2a)

The controlling voltages of a VCCS can be voltages of:

1. capacitances,

2. voltage sources,

3. resistances.

Table 3.5: VCCS - conditions (2b), (2c)

The reader who is not interested in details concerning the controlled sources

may suppose that the considered network contains only independent sources.

By doing so, the upcoming discussion can be considerably simpli�ed.

Remark 3.1.5 1. The presented criteria can be checked locally. It is nei-
ther necessary to �nd special trees nor to make additional assumptions
on the functions and parameters that de�ne the controlled sources. Usu-
ally, it is not diÆcult to check whether a model of a network element
including controlled sources satis�es these conditions or not.

2. If no assumptions on the controlled sources are made, di�erent prob-
lems arise. On the one hand, if arbitrary controlling elements for the
controlling sources are considered, then the index of the network equa-
tions may depend on the parameters de�ning them (cf. [51]). On the
other hand, if controlled sources are allowed to form part of L-I-cutsets
of C-V-loops, it is possible to be confronted with higher index (>2)
problems (cf. [27]).

Example 3.1.6 Consider again the MOSFET-model given in Figure 4.9.
The VCCS from source to drain is controlled by the branch voltages uGS,
uDS, and uBS. For these, the conditions (2a)-(2c) are satis�ed since there
are capacitive ways from gate to source, from drain to source as well as from
bulk to source, and there exists a capacitive way from source to drain.
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The controlling current of a CCCS can be the current of:

1. inductances,

2. independent current sources,

3. resistances,

4. voltage sources that do not form a part of a C-V loop.

Table 3.6: CCCS - condition (2b)

The controlling current of a CCCS can be the current of:

1. inductances,

2. resistances,

3. independent current sources.

Table 3.7: CCCS - condition (2c)

Corollary 3.1.7 [15] The assumption of Theorem 3.1.3 on the resistances
can be slightly reduced. In fact, only the positive de�niteness of the conduc-
tance matrix corresponding to those resistances that do not form a loop with
capacitances and/or voltage sources is required.

This statement follows immediately from Theorem 3.1.3 if we consider the

resistances as VCCS.

The rather extensive proofs of the Theorems 3.1.3 and 3.1.4 are given in [15]

for the di�erential and the tractability index. For nonlinear time-independent

circuits without controlled sources, a proof can be found in [58]. The proofs

are based, among others, on the structural properties discussed below. In [15]

there can also be found a detailed discussion of these results in comparison

with other results from the literature devoted to circuit theory.

Here, we will focus only on the structural properties that are relevant with

respect to the assumptions of the preceding chapters9.

9Note that for stability, for instance, some other structural properties become relevant

[46].
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3.2 Some Structural Properties of the MNA

Equations

In this section we introduce some projectors onto the spaces de�ned by the

element-related incidence-matrices. These projectors will permit a proper

description of the conditions we impose on the controlled sources. Moreover,

they will precisely enable us to reveal the structural properties of the MNA

equations.

Theorem 3.2.1 [58] In practice, the following relations are satis�ed for the
(reduced) incidence matrix A = (ACALARAVAI).

1. The matrix (ACALARAV ) has full row rank, because cutsets of current
sources are forbidden.

2. The matrix AV has full column rank, because loops of voltage sources
are forbidden.

3. The matrix (ACARAV ) has full row rank if and only if the circuit does
not contain a cutset consisting of inductances and/or current sources
only.

4. Let QC be any projector onto kerAT
C. Then, the matrix Q

T
CAV has full

column rank if and only if the circuit does not contain a loop consisting
of capacitances and voltage sources only.

Note that loops containing only capacitances are excluded in point 4, whereas

cutsets containing only inductances are included in point 3 of Theorem 3.2.1.

For a complete proof of Theorem 3.2.1 we refer to [58].

We denote by QC , QV�C , QR�CV , �QC , and �QV�C a projector onto kerAT
C ,

kerAT
VQC , kerA

T
RQCQV�C , kerAC , and kerQT

CAV , respectively. The com-

plementary projectors will be denoted by P := I�Q, with the corresponding
subindex. We observe that

im PC � kerPV�C ; im PV�C � kerPR�CV and im PC � kerPR�CV ;

and that thus QCQV�C is a projector onto ker(AC AV )
T , andQCQV�CQR�V C

is a projector onto ker(AC ARAV )
T . To shorten denotations, we use the

abbreviationQCRV := QCQV�CQR�CV . Moreover, without loss of generality,
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these projectors are supposed to ful�l QCRVQC = QCRV . Remark that the

projector PCRV does not coincide with the projector PR�CV in general.

Using the introduced projections we obtain the following corollary from The-

orem 3.2.1.

Corollary 3.2.2 [15] Theorem 3.2.1 implies that

1. QCRV = 0 if and only if the network does not contain L-I cutsets,

2. �QV�C = 0 if and only if the network does not contain C-V loops.

In order to obtain a description of assumption (1) of Theorem 3.1.3 by means

of projectors, we split the incidence matrix AV into (AV tAV co) for indepen-

dent and controlled sources, respectively.

Lemma 3.2.3 [15] The condition that controlled voltage sources do not form

a part of a C-V loop is equivalent to �QV�C =

�
( �QV�C)t

0

�
. Here, ( �QV�C)t

denotes the upper part of �QV�C corresponding to AV t.

For a proof see [15].

Hence, assumption (1) of Theorem 3.1.3 implies that

�QT
V�Cv(A

T e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = �QT

V�Cvt(t); (3.13)

v(AT e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = v�(A

T
Ce; jL; t) (3.14)

is given for a suitable function v� and for a vector vt(t) that contains the

functions of independent voltage sources and zeros instead of the functions

of controlled voltage sources. In the following we will drop the index *.

In order to transcribe the assumptions made for controlled current sources, we

split the incidence matrix AI into (AIt; AIa; AIb; AIc) and the current vector

i correspondingly for the independent current sources and the controlled

current sources that ful�l (2a), (2b) and (2c), respectively. If a controlled

current source ful�ls more than one of the conditions (2a), (2b) and (2c), the

corresponding column of AI should be assigned to only one of the matrices

AIa, AIb, and AIc.
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Lemma 3.2.4 [15] The condition that controlled current sources do not form
a part of an L-I cutset is equivalent to the relation QT

CRVAI = (QT
CRVAIt 0).

For a proof see [15].

Thus, assumption (2a) of Theorem 3.1.3 implies that

QT
CRVAIi(A

T e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = QT

CRVAItit(t); (3.15)

i(AT e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = ia((ACAV )

T e; jL; t) (3.16)

for a suitable function ia.

Furthermore, assumption (2b) of Theorem 3.1.3 implies by de�nition that

QT
CAIb = 0; (3.17)

i(AT e;
dq(AT e; t)

dt
; jL; jV ; t) = ib((ACARAV )

T e; jL; �PV�CjV ; t) (3.18)

for a suitable function ib.

Finally, assumption (2c) of Theorem 3.1.3 implies that

QT
V�CQ

T
CAIc = 0; (3.19)

i(AT e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = ic((ACARAV )

T e; jL; t) (3.20)

holds for a suitable function ic.

Regarding (3.15), (3.17), and (3.19), the assumptions imply that

QT
CRVAIi(A

T e;
dq(AT

Ce; t)

dt
; jL; jV ; t) = QT

CRVAItit (3.21)

is always ful�lled.

In the forthcoming sections we will show that the conventional and the charge

oriented MNA lead to DAEs that ful�l the structural assumptions from the

Chapters 1 and 2 if the premises from Theorem 3.1.3 are given.
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3.2.1 The Conventional MNA

For shorter expressions, we drop the arguments of the matrices in the fol-

lowing if they are clear from the context. In order to distinguish between

constant and non-constant terms, we will use a dot as an argument for non-

constant terms.

Writing the system (3.5)-(3.7) as a nonlinear DAE (1.13) with A(y; x; t) :=

f 0y(y; x; t) and B(y; x; t) := f 0x(y; x; t), we obtain that

A(�) =
�
ACC(�)A

T
C

0 0

0 L(�) 0

0 0 0

�

and, using (3.14), (3.16), (3.18) and (3.20),

B(�) =
 
AC

�C(�)AT
C + ARG(�)A

T
R + AI

di(�)

de
(ACARAV )

T AL + AI
di(�)

djL
AV + AIb

dib(�)

djV
�PV�C

�AT
L

�L(�) 0

AT
V �

dv(�)

de
AT
C �

dv(�)

djL
0

!

with

�C(u0; u; t) =
d

du
C(u; t)u0 +

d

du
q0t(u; t)

and

�L(j 0L; jL; t) =
d

djL
L(jL; t)j

0

L +
d

djL
�0t(jL; t):

With regard to the positive de�niteness assumption we may choose the fol-

lowing constant projectors onto N = kerA(�) and along im A(�):

Q =

0
@QC 0 0

0 0 0

0 0 I

1
A ; W0 =

0
@QT

C 0 0

0 0 0

0 0 I

1
A :

Observe that A1 is ful�lled, since kerA(�) and im A(�) are constant.

Moreover, using (3.17), we obtain

S(�) = fz : QT
C(ARG(�)AT

R + AI

di(�)
de

(ACARAV )
T ze

+QT
C(AL + AI

di(�)
djL

)zL +QT
CAV zV = 0;

(AT
V �

dv(�)
de

AT
C)ze �

dv(�)
djL

zL = 0g:
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Lemma 3.2.5 [15] For this Q we may choose

T =

�
QCRV 0 0

0 0 0

0 0 �QV�C

�
; U =

�
PCRV 0 0

0 I 0

0 0 �PV�C

�
;

and

W1 = Ŵ1 =

�
QT
CRV 0 0

0 0 0

0 0 �QT
V�C

�
:

Proof: To prove the expression given for T , we ascertain that

N \ S(�) = im QCRV � f0g � im �QV�C :

Firstly, we show that the relation \�" is true. Assuming z 2 N \ S(�) we
know that ze = QCze, zL = 0 and z 2 S(�). Hence, we have

QT
CARG(�)AT

RQCze +QT
CAI

di(�)
de

(ACARAV )
TQCze +QT

CAV zV = 0; (3.22)

AT
VQCze = 0: (3.23)

Then, equation (3.23) provides additionally ze = QV�Cze. Thus, due to

(3.19) and (3.15) -(3.16), multiplying (3.22) by QT
V�C we obtain

QT
V�CQ

T
CARG(�)AT

RQCQV�Cze = 0:

Since G(�) was assumed to be positive de�nite, this implies AT
RQCQV�Cze =

0, i.e., AT
Rze = 0 and so ze 2 im QCRV . Now the relation (3.22) implies that

QT
CAV zV = 0, i.e., zV = �QV�CzV .

Secondly, we show that the relation \�" is satis�ed. Assume that ze =

QCRV ze, zL = 0, and zV = �QV�CzV . Then z 2 N holds trivially and

(AT
V �

dv(�)
de

AT
C)ze �

dv(�)
djL

zL = 0 (3.24)

is ful�lled. Additionally, we obtain that

QT
C [(ARG(�)AT

R + AI

di(�)
de

(ACARAV )
T )ze + (AL + AI

di(�)
djL

)zL + AV zV ] = 0:

To prove the expression given for W1 = Ŵ1 we note that straightforward

computation leads to

A1(�) =
 
ACC(�)A

T
C
+ ARG(�)A

T
R
QC + AI

di(�)

de
(ACARAV )

TQC 0 AV + AIb
dib(�)

djV
�PV�C

� AT
L
QC L(�) 0

AT
V
QC 0 0

!
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and verify

im A1(�) = kerQT
CRV � IRnL � ker �QT

V�C :

Firstly, note that im A1(�) � kerQT
CRV � IRnL � ker �QT

V�C holds trivially

because of Lemma 3.2.4.

Secondly, to show im A1(�) � kerQT
CRV � IRnL � ker �QT

V�C , we assume that

z 2 kerQT
CRV � IRnL � ker �QT

V�C , i.e., Q
T
CRV z1 = 0 and �QT

V�Cz3 = 0. Then,

there is an �0 such that

z3 = AT
VQC�0: (3.25)

Due to QT
CRVAI = (QT

CRVAIt 0) (cf. Lemma 3.2.4) the relation

z1 � ARG(�)AT
RQCPV�C�0 � AI

di(�)
de

(ACARAV )
TQCPV�C�0 2 kerQT

CRV

holds, i.e., there are �1, �2 and 1 such that

z1 � ARG(�)AT
RQCPV�C�0 � AI

di(�)
de

(ACARAV )
TQCPV�C�0

= ACC(�)AT
C�1 + ARG(�)AT

RQCQV�C�2 + AV 1: (3.26)

This is a simple conclusion of the fact that

kerQT
CRV = im (ACC(�)AT

C ; ARG(�)AT
RQCQV�C ; AVA

T
V );

since C(�) and G(�) are positive de�nite.

Let us now focus on the di�erent cases that may occur for the controlled

current sources. Considering (3.16) we see that

dia(�)
de

(ACARAV )
TQC =

dia((ACAV )
T e; jL; t)

de
(ACAV )

TQC

=
dia(�)
de

(ACAV )
TQCPV�C : (3.27)

Regarding (3.19) we �nd �3 and 2 such that

AIc

dic(�)
de

(ACARAV )
TQCQV�C�2 = ACC(�)AT

C�3 + AV 2: (3.28)

Using (3.17) we �nd �4 and �5 such that

AIb

dib(�)
de

(ACARAV )
TQCQV�C�2 = ACC(�)AT

C�4; (3.29)

AIb

dib(�)
djV

�PV�C(1 � 2) = ACC(�)AT
C�5: (3.30)
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Choosing � := PC(�1 � �3 � �4 � �5) + QCPV�C�0 + QCQV�C�2, � :=

L�1(�)(z2 + AT
LQC�),  := 1 � 2 and regarding (3.25)-(3.29), we obtain

that

z = A1(�)
0
@��


1
A 2 im A1(�):

q.e.d.

Observe that A2 is ful�lled, since N \ S(�) is constant.

Recall further that A3 should be assumed. Nevertheless, taking into account

that W1 is constant, for the conventional MNA we can consider KW1
= W1

(cf. Remark 2.4.5), and thus it suÆces to assume that the left hand sides of

d

dt

�
�QT
V�CA

T
V PCe� �QT

V�Cvt(t)

�
= 0; (3.31)

d

dt

�
QT
CRVALjL +QT

CRVAItit(t)

�
= 0; (3.32)

exist, where (3.31)-(3.32) are precisely the equations that lead to the hidden

constraints.

Observe that for Ŵ1 = W1 this would also imply A5. Moreover, from (3.31)-

(3.32) we deduce that only PCe; jL 2 C1 is required. Finally, note that A6

is also ful�lled.

Corollary 3.2.6 The equations of the conventional MNA

� ful�l assumptions A1, A2, A6,

� admit a slightly weaker version of A3 -A5, accordingly to Remark
2.4.5,

� require only PCe; jL 2 C1 (instead of x 2 C1
N\S) in Theorem 2.4.6, and

� have the structure A(Px; t)x0 + ~b(Ux; t) + BTx = 0, i.e., A7 is given
particularly.
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Proof: The �rst statements have been deduced above and the last one can

easily be veri�ed considering

BT :=

�
0 0 AV

�QV�C

� AT
L
QCRV 0 0

0 0 0

�

and AT
Ce = AT

CPCRV e, A
T
Re = AT

RPCRV e,A
T
V e = AT

V PCRV e.

q.e.d.

3.2.2 The Charge-oriented MNA

Analogously to the conventional MNA, straightforward computation leads to

A =

0
@AC 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
A

and

B(�) =

0
B@

0 0 ARG(�)A
T
R
+AI

di(�)

de
(ACARAV )

T AL +AI
di(�)

djL
AV +AIb

dib(�)

djV
�PV�C

0 0 �AT
L 0 0

0 0 AT
V
�

dv(�)

de
AT
C

�
dv(�)

djL
0

I 0 � C(�)AT
C

0 0

0 I 0 � L(�) 0

1
CA :

Hence, we may choose the following constant projectors onto kerA and along

im A:

Q =

0
@

�QC 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

1
A ; W0 =

0
@QT

C
0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

1
A ;

and, using again (3.17), represent S(�) by

S(�) = fz : QT
C(ARG(�)AT

R + AI

di(�)
de

(ACARAV )
T )ze

+QT
C(AL + AI

di(�)
djL

)zL +QT
CAV zV = 0;

(AT
V �

dv(�)
de

AT
C)ze �

dv(�)
djL

zL = 0;

zq � C(�)AT
Cze = 0;

z� � L(�)zL = 0g:



3.2. STRUCTURAL PROPERTIES OF MNA EQUATIONS 99

Lemma 3.2.7 For this Q we may choose10

T =

0
@0 0 0 0 0

0 0 0 0 0

0 0 QCRV 0 0

0 0 0 0 0

0 0 0 0 �QV�C

1
A ; U =

0
@I 0 0 0 0

0 I 0 0 0

0 0 PCRV 0 0

0 0 0 I 0

0 0 0 0 �PV�C

1
A ;

and

W1(�) =

0
B@

QT
CRV

0 0 0 QT
CRV

ALL
�1(�)

0 0 0 0 0

0 0 �QT
V�C

�QT
V�CA

T
VH

�1
1 (�)AC 0

0 0 0 0 0

0 0 0 0 0

1
CA;

where H1(A
T
Ce; t) := ACC(A

T
Ce; t)A

T
C +QT

CQC is a nonsingular matrix due to
the positive de�niteness of C(AT

Ce; t). Observe further that we may set:

Ŵ1 =

0
B@

QT
CRV 0 0 0 0

0 0 0 0 0

0 0 �QT
V�C 0 0

0 0 0 0 0

0 0 0 0 0

1
CA:

Proof: To prove the expression given for T , we show that

N \ S(�) = f0g � f0g � im QCRV � f0g � im �QV �C :

Firstly, we verify the relation \�". Assuming z 2 N \ S(�) we know that

zq = �QCzq , z� = 0 and z 2 S(�). Thus, we have

QT
CARG(�)AT

Rze +QT
CAI

di(�)
de

(ACARAV )
T ze

+QT
CALzL +QT

CAI

di(�)
djL

zL +QT
CAV zV = 0; (3.33)

(AT
V �

dv(�)
de

AT
C)ze �

dv(�)
djL

zL = 0; (3.34)

zq � C(�)AT
Cze = 0; (3.35)

z� � L(�)zL = 0: (3.36)

The equations (3.35) and (3.36) imply ze = QCze (and thus zq = 0), and

zL = 0, respectively. Consequently, equation (3.34) provides ze = �QV�Cze.

Multiplying (3.33) by QT
V�C we obtain, again by (3.19) and (3.15) -(3.16),

QT
V�CQ

T
CARG(�)AT

RQCQV�Cze = 0:

10These expressions were stated in [15] without proof.
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Since G(�) was assumed to be positive de�nite, this implies AT
RQCQV�Cze =

0, i.e., AT
Rze = 0 and so ze 2 im QCRV . Now the relation (3.33) implies that

QT
CAV zV = 0, i.e., zV = �QV�CzV .

Secondly, we show that the relation \�" is satis�ed. Assume that zq = 0,

z� = 0, ze = QCRV ze, zL = 0, and zV = �QV�CzV . Then z 2 N = kerA(�)
holds trivially and z 2 S(�) can easily be veri�ed.

Let us now focus on the expression given for W1(�). Straightforward compu-

tation yields

A1(�) =

0
B@

AC 0 ARG(�)A
T
R + AI

di(�)

de
(ACARAV )

T AL + AI
di(�)

djL
AV + AIb

dib(�)

djV
�PV�C

0 I � AT
L 0 0

0 0 AT
V
�

dv(�)

de
AT
C

�
dv(�)

djL
0

�QC 0 �C(�)AT
C 0 0

0 0 0 � L(�) 0

1
CA :

Firstly, note that im A1(�) � kerW1(�) holds, since due to Lemma 3.2.4 and

(3.13) the multiplicationW1(�)A1(�) leads to

QT
CRVAL �QT

CRVALL(�)L�1(�) = 0;

�QT
V�CA

T
V � �QT

V�CA
T
VH

�1(�)ACC(�)AT
C = 0:

Secondly, to show that im A1(�) � kerW1(�), we consider z 2 kerW1(�).
Hence, it holds

QT
CRV z1 +QT

CRVALL
�1(�)z5 = 0; (3.37)

�QT
V�Cz3 +

�QT
V�CA

T
VH

�1
1 (�)ACz4 = 0: (3.38)

From (3.38) and (3.13) it follows that there exists an ~�0 such that

z3 + AT
VH

�1
1 (�)ACz4 � dv(�)

de
AT
CH

�1
1 (�)ACz4 � dv(�)

djL
L�1(�)z5 = AT

VQC ~�0:

Furthermore, from (3.37) and Lemma 3.2.4 it follows that the expression

z1 + ALL
�1(�)z5 + [ARG(�)AT

R + AI

di(�)
de

(ACARAV )
T ]H�1

1 (�)ACz4

+ AI

di(�)
djL

L�1(�)z5 � ARG(�)AT
RQCPV�C ~�0

� AI

di(�)
de

(ACARAV )
TQCPV�C ~�0 (3.39)
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lies in kerQT
CRV . Since

kerQT
CRV = im (ACC(�)AT

C ; ARG(�)AT
RQCQV�C ; AVA

T
V );

there exist ~�1, ~�2, and ~1, such that (3.39) is equal to

ACC(�)AT
C ~�1 + ARG(�)AT

RQCQV�C ~�2 + AV ~1:

Let us now focus, analogously as we did for the conventional MNA, on the

three di�erent cases that may occur for controlled current sources. Consid-

ering (3.16) we see that

dia(�)
de

(ACARAV )
TQC =

dia((ACAV )
T e; jL; t)

de
(ACAV )

TQC

=
dia(�)
de

(ACAV )
TQCPV�C : (3.40)

Regarding (3.19) we �nd ~�3 and ~2 such that

AIc

dic(�)
de

(ACARAV )
TQCQV�C ~�2 = ACC(�)AT

C ~�3 + AV ~2: (3.41)

Using (3.17) we �nd ~�4 and ~�5 such that

AIb

dib(�)
de

(ACARAV )
TQCQV�C ~�2 = ACC(�)AT

C ~�4; (3.42)

AIb

dib(�)
djV

�PV�C(~1 � ~2) = ACC(�)AT
C ~�5: (3.43)

By the above considerations, for

� =

0
BBBB@

�PCC(�)A
T
C
(~�1�~�3�~�4�~�5)+ �QCz4

z2+A
T
L(QCPV�C ~�0+QCQV�C ~�2�H

�1
1 (�)ACz4)

QCPV�C ~�0+QCQV�C ~�2�H
�1
1 (�)ACz4

�L�1(�)z5

~1�~2

1
CCCCA

we thus obtain z = A1(�)�, i.e., z 2 im A1(�).
q.e.d.
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Observe that A2 is ful�lled, since N \ S(�) is constant.

Note again thatA3 should be assumed. Nevertheless, considering the speci�c

W1, for the charge-oriented MNA we can consider

KW1
:=

0
B@

QT
CRV 0 0 0 0

0 0 0 0 0

0 0 �QT
V�C 0 0

0 0 0 I 0

0 0 0 0 I

1
CA; (3.44)

(cf. Remark 2.4.5). Thus it suÆces to suppose that the left hand sides of

the equations

d

dt

�
�QT
V�CA

T
V PCe� �QT

V�Cvt(t)

�
= 0; (3.45)

d

dt

�
QT
CRVALjL +QT

CRVAItit(t)

�
= 0; (3.46)

d

dt
(q � qC(A

T
Ce; t)) = 0; (3.47)

d

dt
(�� �L(jL; t)) = 0; (3.48)

exist, where (3.45)-(3.48) are the equations involved in the expressions that

lead to the hidden constraints.

Observe also that A5 corresponds to the existence of the left hand of (3.45)

and (3.46) and, therefore, is given, too. Moreover, from (3.45)- (3.48) we

deduce that only q; �; PCe; jL 2 C1 is required. Finally, note that A6 is also

ful�lled.

Corollary 3.2.8 The equations of the charge-oriented MNA

� ful�l the assumptions A1, A2, A6,

� admit a slightly weaker version of A3-A5, according to Remark 2.4.5,

� require only q; �; PCe; jL 2 C1 (instead of x 2 C1
N\S) in Theorem 2.4.6,

and

� have the structure Ax0+~b(Ux; t)+BTx = 0, which corresponds to A9.
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Proof: The �rst assertions have been discussed above and the last one can

easily be ascertained considering

BT :=

0
@0 0 0 0 AV

�QV�C

0 0 �AT
L
QCRV 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
A

and AT
Ce = AT

CPCRV e, A
T
Re = AT

RPCRV e, A
T
V e = AT

V PCRV e.

q.e.d.

Remark 3.2.9 � Observe that the smoothness assumptions required for
the conventional MNA and the charge-oriented MNA correspond to each
other. In particular, for the solutions, it results that

{ for the conventional MNA it suÆces to suppose that PCe; jL 2 C1,

{ for the charge-oriented MNA it suÆces to suppose that

q; �; PCe; jL 2 C1:

� With respect to the smoothness that has to be given for the input signals,
the above results imply that only the characteristic equations of the
current and voltage sources that form part of L-I cutsets and C-V loops,
respectively, have to be smooth.

3.3 Consistent Initial Values for the MNA

Equations

In this section we apply the approach from Section 2.7 for computing a con-

sistent initialization to the MNA-equations, where the required smoothness

is assumed to be given. In order to avoid the introduction of new notations,

we will denote the values (x0; P y0) for the systems arising from the MNA

by (e0; jL0
; jV0 ; PCe

0
0; j

0
L0
) and (q0; �0; e0; jL0

; jV0 ;
�PCq

0
0; �

0
0), respectively. The

same will be done for (x0; P y0) and (x̂0; P ŷ0).

Corollary 3.3.1 For the MNA equations Theorem 2.7.2 implies:
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� For the conventional MNA the solution ( �QV�C ĵV0 , PC ê
0
0) of the system

ACC(A
T
Ce0; t0)A

T
C ê

0

0 + AV
�QV�C ĵV0 = 0;

�QT
V�CA

T
V ê

0

0 +
�QT
V�CA

T
V e

00 � �QT
V�Cv

0

t(t0) = 0

and the solution ( QCRV ê0 , ĵ
0
L0
) of the system

L(jL; t0)ĵ
0

L0
� AT

LQCRV ê0 = 0;

QT
CRVALĵ

0

L0
+QT

CRVALjL
00 +QT

CRVAIi
0

t(t0) = 0

provide the values we require to compute consistent initial values, where
PCe

00, jL
00 ,PCe

0 and jL
0 are �xed values.

� For the charge-oriented MNA the solution ( �QV�C ĵV0, �PC q̂
0
0) of the sys-

tem

AC q̂
0
0 + AV

�QV�C ĵV0 = 0;

�QT
V�CA

T
VC

�1(AT
Ce0; t0)q̂

0

0 +
�QT
V�CA

T
VC

�1(AT
Ce0; t0)q

00

� �QT
V�Cv

0

t(t0) = 0

and the solution (QCRV ê0 , �̂
0
0) of the system

�̂00 � AT
LQCRV ê0 = 0;

QT
CRVALL

�1(jL; t0)�̂
0

0 +QT
CRVALL

�1(jL; t0)�
00 +QT

CRVAIi
0

t(t0) = 0

provide the values we require to compute consistent initial values, where
�PCq

00, �
00,PCe

0 and jL
0 are �xed values.

Proof: Observe that, making use of the projectors from Lemma 3.2.5, for

the conventional MNA the system from Theorem 2.7.2 reads:

ACC(A
T
Ce0; t0)A

T
C ê

0
0 + AV

�QV�C ĵV0 = 0;

L(jL; t0)ĵ
0

L0
� AT

LQCRV ê0 = 0;

PCRV ê0 = 0;

ĵL0
= 0;

�PV�C ĵV0 = 0;

QT
CRVALĵ

0

L0
+QT

CRVALjL
00 +QT

CRVAI i
0

t(t0) = 0;

�QT
V�CA

T
V ê

0

0 +
�QT
V�CA

T
V e

00 � �QT
V�Cv

0

t(t0) = 0:
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e

datum

R2

21
v ( t )

1C C

e

Figure 3.5: Circuit containing a C-V loop

This leads to the stated system. For the charge oriented MNA, the projectors

presented in Lemma 3.2.7 yield the corresponding results.

q.e.d.

Note that the values obtained by Corollary 3.3.1 coincide with those obtained

in [11] directly.

Example 3.3.2 Let us consider the academic example from Figure 3.5 to
illustrate tha approach described in Corollary 3.3.1. The equations resulting
by the conventional MNA read:

C1e
0

1 + jV = 0;

�jV + C2e
0

2 +
1

R
e2 = 0;

e1 � e2 = v(t0):

The values we obtain for the DC operation point are

e1 = v(t0); e2 = 0 ; jV = 0;

and the corresponding consistent initialization is given by

e1 = v(t0); e2 = 0; jV = � 1
1
C1

+ 1
C2

v0(t0);

e01 =
1

C1

1
1
C1

+ 1
C2

v0(t0); e02 = � 1

C2

1
1
C1

+ 1
C2

v0(t0):
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Considering the graph of the network (cf. [12]), Corollary 3.3.1 implies that

the correction a�ects exactly those elements that form a part of the L-I

cutsets and C-V loops. Indeed, the above theorem can be interpreted as

follows.

Corollary 3.3.3 [11] For networks that contain only the speci�ed controlled
sources we obtain consistent initial values starting from possibly inconsistent
ones that ful�l the equations of the DAE in the following way:

1. Add convenient values to the values of the currents owing through the
branches of voltage sources that form a part of the C-V loops.

2. Add convenient values to the values of the node potentials to obtain
additional branch voltages across the branches that form a part of the
L-I cutsets.

Moreover, the values obtained in Corollary 3.3.1 imply that, at time t0, the
sum of the additional power delivered by the C-V loops and L-I cutsets is
equal to the sum of the additional power absorbed by the branches of the C-V
loops and L-I cutsets.

A proof can be found in [11].

3.4 Graph-theoretical Determination of the

Hidden Constraints

According to (3.31),(3.32) for the conventional MNA the equations that lead

to the hidden constraints are

d

dt

�
�QT
V�CA

T
V PCe� �QT

V�Cvt(t)

�
= 0; (3.49)

d

dt

�
QT
CRVALjL +QT

CRVAItit(t)

�
= 0: (3.50)

On the other hand, for the charge-oriented MNA, the hidden constraints

result (cf. (3.45)-(3.48)) from (3.49)-(3.50) and

d

dt
(q � qC(A

T
Ce; t)) = 0;

d

dt
(�� �L(jL; t)) = 0:
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Thus, we are interested in expressions for (3.49)-(3.50) without requiring the

computation of the corresponding projectors. In [12] it was shown that these

equations can be obtained directly from the network by making use of the

following two procedures that analyse its graph11. In fact, these procedures

exactly determine the linearly independent equations that describe the hid-

den constraints arising from C-V loops and L-I cutsets, respectively.

Let us �rst focus on the constraints (3.49) arising from the C-V loops. Recall

that

AT
V e� v(�) = 0

are the characteristic equations of the voltage sources. Since �QV�C describes

the C-V loops, it results that

�QT
V�CA

T
V e� �QT

V�Cvt(t) = 0

corresponds to the sums of the characteristic equations of the voltage sources

that form a part of the C-V loops (cf. [12]). More exactly, these equations

can be determined by means of the following procedure.

PROCEDURE 1

1. Search a C-V loop in the given network graph. If no C-V loop is found,

then end.

2. Write the equation resulting from the sum of the derivatives of the

characteristic equations of the voltage sources contained in the C-V

loop, taking into account the orientation of the loop and the reference

direction of the considered branches.

For instance, if the voltage sources v1; :::; vk form a part of the C-V loop

and we de�ne

�i :=

�
+1 if the orientation of the loop coincides with that of vi
�1 else,

11A similar graph-theoretical analysis of the network can be found in [8] for linear

passive RLC networks in order to determine state-variables. The approach is based on the

construction of a normal tree, i.e., a tree that contains all independent voltage sources,

no independent current sources, a maximal number of capacitive branches and a minimal

number of inductive branches.
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then the equation we write in this step is

kX
i=1

�i((A
T
V e)

0

i � v0i) = 0:

3. Form a new network graph by deleting the branch of one voltage source

that forms a part of the loop, leaving the nodes unchanged.

4. Return to 1, considering the new network graph.

Let us now focus on the constraints (3.50) arising from L-I cutsets. To get

an idea of where they arise from, recall that

AC

dq

dt
+ ARr(A

T
Re; t) + ALjL + AV jV + AIi(�) = 0

are the nodal equations. Since QCRV describes the L-I cutset, it can be shown

that

QT
CRVALjL +QT

CRVAIit(t) = 0

corresponds to the equations that arise from KCL for the L-I cutsets. Conse-

quently, the equations corresponding to (3.50) can be determined by means

of the following procedure that starts by considering the original graph (cf.

[12]).

PROCEDURE 2

1. Search an L-I cutset. If one is found, then select an arbitrary inductance

of this cutset. Realize that we can always �nd such an inductance

because cutsets of current sources only are forbidden. If no L-I cutset

is found, then end.

2. Write a new equation resulting by derivation of the cutset equation

arising from 1.

For instance, if the current sources i1; :::; ik and the inductances jL1; :::; jL~k
form a part of the L-I cutset and we de�ne

�j :=

�
+1 if the orientation of the cutset coincides with that of ij
�1 else,

~�j :=

�
+1 if the orientation of the cutset coincides with that of jLj
�1 else,
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then the equation obtained in this step reads

kX
j=1

�ji
0
j +

~kX
i=1

~�jj
0

Li = 0:

3. Delete the chosen inductance from the network contracting its incident

nodes.

4. Return to 1, considering the new network graph.

For the proofs we refer to [12]

3.5 Realization Speci�cs

The results from Theorem 3.1.3 and Corollary 3.3.1 have been implemented

by S. Sturtzel within the project \Structural analysis of DAEs in circuit

simulation"12 in the simulation package TITAN13. There, a graph theoretical

algorithm has been developed that provides important information for several

aspects:

1. Structural analysis (the assumptions on the controlled sources from

Theorem 3.1.3 have to be given).

2. Index determination (cf. Theorem 3.1.3).

3. Identi�cation of critical variables: the variables that are involved in

N \ S(�) are the currents through voltage sources that form a part of

C-V loops and the branch voltages of branches that form a part of L-I

cutsets.

4. Description of the linear system that provides the values required for

the computation of a consistent initialization (Corollary 3.3.1 and Pro-

cedures 1 and 2).

12The exact German title is \Untersuchung der speziellen di�erential-algebraischen

Struktur der Netzwerkgleichungen f�ur die Schaltkreissimulation zur Entwicklung zu-

verl�assiger und eÆzienter Simulationsverfahren". This project was sponsored by the Bun-

desministerium f�ur Bildung, Wissenschaft, Forschung und Technologie (BMBF) (German

Federal Ministry of Education, Science, Research and Technology) within the program

\Mathematical methods for solving problems in industry and economy".
13In�neon Technologies (formerly SIEMENS AG).



110 CHAPTER 3. APPLICATION TO CIRCUIT SIMULATION

With regard to the computation of a consistent initialization, it is important

to note that:

1. The derivatives of the functions it(t), vt(t), which we require for the

expressions of the hidden constraints, were available.

2. The algorithm is implemented as an add-on in the simulation package,

since values (x0; P y0) were given (e.g., the DC-operating point).

3. Since the structure of the equations from Corollary 3.3.1 is similar to

the structure of the original system, a part of them can be solved as a

structural subset of the original system, taking advantage of the sparse

handling.

In practice, the computation of a consistent initialization is carried out with

regard to the following aspects:

1. To start the integration, i.e., in general, the DC operating point is

corrected in order to obtain a consistent starting point.

2. To obtain consistent values after discontinuities of the derivatives of

the input functions, i.e., at the breakpoints.

3. For a clean handling of user given initial conditions by calculating an

appropriate x0 (cf. the approach presented in [11]).

A more detailed discussion and some examples can be found in [13].

3.6 Examples

Let us consider the academic example from Figure 3.6 to illustrate the e�ects

described in the Sections 2.7.2 and 2.7.3. The equations resulting by the

charge-oriented MNA read:

q01 +
1

R
e1 + jV + i(jV ; t) = 0;

� jV + q02 = 0;

e1 � e2 = v(t);

q1 = q1(e1);

q2 = C2e2:
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datum

C

e
v ( t )

e

R

1
2

2

C  (e )1 1

i(jv,t)

Figure 3.6: Example with a controlled source not ful�lling the assumptions

from Section 3.1.3

Suppose R = 1, C2 = 1, v(t) = 2sin(t), q1(e1) = e21. Depending on the

de�nition of the controlled source i(jV ; t) we may obtain di�erent structural

properties:

� Structure Ax0 + b(Ux; t) + BTx = 0 for14

i(jV ; t) = i(t) = �sin(t) � 2� (2sin(t) + 3)(cos(t)):

� Structure Ax0+b(Ux; t)+B(t)Tx = 0 for the current controlled current-

source15

i(jV ; t) = (2sin(t) + 3)jV � sin(t)� 2:

Note that the two possibilities are chosen in such a way that in both cases

we obtain the same solutions for the consistent value (4; 2; 2; 2;�1). The

di�erent numerical e�ects that these structures may yield are illustrated in

the Figures 3.7 and 3.8 for the implicit Euler method and the trapezoidal

rule for the constant step-size h = 0:1.

Notice on the one hand that, for the structure Ax0+b(Ux; t)+BTx = 0 (Fig-

ure 3.7), the implicit Euler method leads to the same results after the �rst

14Note that we assume that the current source is independent. Hence, the assumptions

from Section 3.1.3 are met.
15Note that this kind of controlled sources was forbidden in the class described in Section

3.1.3, because the controlling current corresponds to a voltage source that forms a part of

a C-V loop.
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step, starting up from the consistent and from inconsistent initial value, as

expected from Remark 2.7.3. Moreover, the trapezoidal rule precisely shows

the e�ect described in Remark 2.7.6.

On the other hand, if the structure Ax0+b(Ux; t)+B(t)Tx = 0 (Figure 3.8) is

given, then, for the trapezoidal rule, the error made in theN\S(�) component

may a�ect the other components, too. In this example, all components have

the oscillating behaviour that is introduced by the trapezoidal rule. However,

after the �rst step, the implicit Euler method leads to the same results,

starting up from the consistent and from the inconsistent initial value, as

expected from Remark 2.7.7.
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Starting from the consistent value (4,2,2,2,-1), h=0.1

0 50 100 150
0

2

4

6

8

10
Implicit Euler

q1

Steps

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

Steps

jV

0 50 100 150
0

2

4

6

8

10
Trapezoidal Rule

Steps

q1

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

jV

Steps

Starting from the inconsistent value (4,2,2,2,1000)
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Figure 3.7: Example of the structure Ax0 + b(Ux; t) + BTx = 0
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Starting from the consistent value (4,2,2,2,-1), h=0.1
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Starting from the inconsistent value (4,2,2,2,1000)
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Figure 3.8: Example of the structure Ax0 + b(Ux; t) + B(t)Tx = 0



Summary

It is well-known from a large body of literature that, for solving DAEs nu-

merically, consistent initial values have to be calculated. This thesis deals

with an approach for handling this problem for index-2 DAEs by considering

projectors onto the spaces related to the DAE. There are two major aspects

in the work presented here.

On the one hand, new structural properties are deduced from the assump-

tions A1 and A2 (cf. Lemma 2.3.4). Subsequently, a method is proposed to

choose suitable equations of an index-2 DAE, whose di�erentiation leads to

an index reduction (Theorem 2.4.6). This index reduction yields new theo-

retical results for the existence and uniqueness of solutions of index-2 DAEs

which apply to a wider class of applications than previous results. Based

on this method, a step-by-step approach (described in (2.58)-(2.60)) to com-

pute consistent initial values is developed. In this way, we gain new insights

about how to deal with structural properties of index-2 DAEs. In particular,

it turns out that, in comparison to index-1 DAEs, the additional step that

has to be undertaken in practice often consists in solving a linear system

(Theorem 2.7.2). The numerical consequences of this fact are exempli�ed for

two methods commonly used in circuit simulation, the implicit Euler method

and the trapezoidal rule.

On the other hand, the application of the obtained results to the equations

arising in circuit simulation by means of the modi�ed nodal analysis (MNA)

is worked out (Corollary 3.3.1), where a short overview of the speci�cs of

their realization is given.

115



116 SUMMARY



Appendix

Some Basic De�nitions and Results

De�nition 4.1.1 � A matrix Q 2 IRn�n is a projector onto R1 if and
only if Q2 = Q and im Q = R1.

� A matrix W 2 IRn�n is a projector along R2 if and only if W 2 = W

and kerW = R2.

� For IRn = R1�R2 a matrix Q 2 IRn�n is the uniquely de�ned projector
onto R1 along R2 if and only if Q2 = Q, im Q = R1, and kerQ = R2.

Lemma 4.1.2 � Assume Q and �Q to be projectors onto a subspace R1.
Then, Q = �QQ holds.

� Assume W and �W to be projectors along a subspace R2. Then, W =

W �W holds.

� If Q is a projector onto a subspace R1, then P := I �Q is a projector
along R1.

A fundamental relation between the spaces, the matrix chain and the choice

of the projectors related to the de�nition of the tractability index is given by

the following lemma.

Lemma 4.1.3 Let A�; B� 2 L(IRn) be given, let Q� be a projector onto
kerA� and W� be a projector along im A�. Denote

S� := fz 2 IRn :W�B�z = 0g

Then the following conditions are equivalent:

117



118 APPENDIX

1. The matrix G� := A� +B�Q� is nonsingular.

2. S� � kerA� = IRn.

3. S� \ kerA� = 0.

Moreover, if G� is nonsingular, then the relation

Q�S = Q�G
�1
� B�

holds for the canonical projector onto kerA� along S�.

For a proof see [25].

De�nition 4.1.4 A space R(�) : I ! IRn is said to depend smoothly on t if
it has a C1-basis, i.e., there are linear, independent C1-functions

n1(�); n2(�); : : : ; nk(�)

such that
R(t) = L(fn1(t); n2(t); : : : ; nk(t)g)

for all t 2 I.

Remark 4.1.5 � R(�) depends smoothly on t if and only if there is a
continuously di�erentiable projector Q(�) onto R(�).

� R(�) depends smoothly on t if and only if there is a continuously di�er-
entiable projector W (�) along R(�).
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Description of the NAND-Gate

For the NAND-gate model we consider in Section 2.9, the equations are given

by:

e1 � e2

Rs

� e7 � e1

Rd

+ q0 + q01gd + q01gs = 0;

� q01gs + q01sb +
e2 � e1

Rs

+
e2 � e3

Rsd

+ iDbd(e12 � e2)

+ iDds(e3 � e2; e1 � e2; e12 � e2) = 0;

� q01gd + q01db +
e3 � e4

Rd

� e2 � e3

Rsd

+ iDbd(e12 � e3)

� iDds(e3 � e2; e1 � e2; e12 � e2) = 0;
e4 � e3

Rd

+ jDD = 0;

q02gd + q02gs + j1 = 0;

� q02gs + q02sb +
e6 � e11

Rs

+
e6 � e7

Rsd

+ iEbs(e12 � e6)

+ iEds(e7 � e6; e5 � e6; e12 � e6) = 0;

� q02gd + q02db +
e7 � e1

Rd

� e6 � e7

Rsd

+ iEbd(e12 � e7)

� iEds(e7 � e6; e5 � e6; e12 � e6) = 0;

q03gd + q03gs + j2 = 0;

� q03gs + q03sb +
e9

Rs

+
e9 � e10

Rsd

+ iEbs(e12 � e9)

+ iEds(e10 � e9; e8 � e9; e12 � e9) = 0;

� q03gd + q03db +
e10 � e11

Rd

� e9 � e10

Rsd

+ iEbd(e12 � e10)

� iEds(e10 � e9; e8 � e9; e12 � e9) = 0;
e11 � e6

Rs

� e10 � e11

Rd

= 0;

� q01db � q01sb � iDbd(e12 � e2)� iDbd(e12 � e3)

� q02db � q02sb � iEbs(e12 � e6)� iEbd(e12 � e7)

� q03db � q03sb � iEbs(e12 � e9)� iEbd(e12 � e10) + jBB = 0;
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e5 � V1(t) = 0;

e8 � V2(t) = 0;

e12 � VBB = 0;

e4 � VDD = 0;

q � Ce1 = 0;

q1gd � qgd(e1 � e3) = 0;

q1gs � qgs(e1 � e2) = 0;

q1db � qdb(e3 � e12) = 0;

q1sb � qsb(e2 � e12) = 0;

q2gd � qgd(e5 � e7) = 0;

q2gs � qgs(e5 � e6) = 0;

q2db � qdb(e7 � e12) = 0;

q2sb � qsb(e6 � e12) = 0;

q3gd � qgd(e8 � e10) = 0;

q3gs � qgs(e8 � e9) = 0;

q3db � qdb(e10 � e12) = 0;

q3sb � qsb(e9 � e12) = 0:

The elements are modelled as follows [57].

i(u     ,u     ,u     )

 Gate

Bulk

DrainSource

G

S

B

D

R
C

BS BD
C

C
GS GD

C

BS

 DS   GS BS

     
BD

d(u     ) d(u     )

Figure 4.9: MOSFET-model
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ME MD

is 10�14 A 10�14 A

UT 25:85 V 25:85 V

UT0 0:8 V �2:43 V

� 1:748 � 10�3 A=V 2 5:35 � 10�4 A=V 2

 0:0
p
V 0:2

p
V

Æ 0:02 V �1 0:02 V �1

� 1:01 V 1:28 V

Table 4.8: Technical parameters the MOSFETs ME and MD

The current through the diode between bulk and source as well as the current

through the diode between bulk and drain is given by the function

ibs(u) = ibd(u) =

� �is � (exp( u
UT
� 1)) for u � 0;

0 for u > 0:

The current through the controlled current source between drain and source

is modelled by the function

ids(uds; ugs; ubs) =8<
:

0 for ugs � UTE � 0;

� � � (1 + Æ � uds) � (ugs � UTE) for 0 < ugs � UTE � uds;

� � � uds � (1 + Æ � uds) � [2 � (ugs � UTE)� uds] for 0 < uds < ugs � UTE

with UTE = UT0 +  � (p�� ubs �
p
�).

The technical parameters for the MOSFETs ME and MD are given in Table

4.8.

The values for the resistances are chosen for all MOSFETs as

Rs = Rd = 4
; Rsd = 105
:

The load capacitance is constant with C = 0:5 � 10�13 F. The capacitances

between gate and source as well as those between gate and drain are modelled

as linear capacitors, i.e.,

qgs(u) = qgd = C1 � u with C1 = 0:6 � 10�13 F:
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The capacitance between bulk and drain as well as the one between bulk and

source are modelled as nonlinear capacitances (Level B in [57]):

qdb(u) = qsb(u) =

(
�C0 � �B � (1�

q
1� u

�B
) for u � 0;

�C0 � (1 + u
4�B

) � u for u > 0;

with

C0 = 0:24 � 10�13F and �B = 0:87 V:

The voltage sources V1 and V2 are supposed to ful�l V1(t0) = V2(t0) = 0,

V 0
1(t0) = 109, and V 0

2(t0) = 0.

The obtained DC-operating point and the corresponding consistent values

read

x0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2:50000E � 13

�8:62244E � 26

�1:49214E � 27

3:73965E � 13

3:73965E � 13

�3:00000E � 13

�7:06710E � 14

3:73965E � 13

1:34912E � 13

�7:06710E � 14

�6:17042E � 29

1:34912E � 13

8:15517E � 14

5:00000E + 00

5:00000E + 00

5:00000E + 00

5:00000E + 00

0:00000E + 00

1:17785E + 00

5:00000E + 00

0:00000E + 00

1:02840E � 15

1:17785E + 00

1:17785E + 00

�2:50000E + 00

0:00000E + 00

0:00000E + 00

1:10103E � 14

�1:12674E � 14

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; x0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2:50000E � 13

�8:62244E � 26

�1:49214E � 27

3:73965E � 13

3:73965E � 13

�3:00000E � 13

�7:06710E � 14

3:73965E � 13

1:34912E � 13

�7:06710E � 14

�6:17042E � 29

1:34912E � 13

8:15517E � 14

5:00000E + 00

5:00000E + 00

5:00000E + 00

5:00000E + 00

0:00000E + 00

1:17785E + 00

5:00000E + 00

0:00000E + 00

1:02840E � 15

1:17785E + 00

1:17785E + 00

�2:50000E + 00

�7:40744E � 05

0:00000E + 00

7:40744E � 05

�1:12674E � 14

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where it has to be mentioned that for an easier realization the exponential

function describing ibs and ibd was approximated by a polynomial and for ibs,

ibd and qdb, qsb only the cases u < 0 and u > 0, respectively, were considered.
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Assumptions of Chapters 1 and 2

A1 : N(t) := kerA(x; t); im A(x; t) depend smoothly on t, and

do not depend on x for (x; t) 2 Df � If (p:14);

A2 : N(t) \ S(x; t) depends smoothly on t;

and does not depend on x for (x; t) 2 Df � If (p:29);

A3 :
d

dt

�
(IW1

W0b)(U(t)x; t)

�
exists for all (x; t) 2 Df � If (p:43);

A4 : W1

@

@t

@

@x

�
(IW1

W0b)

�
= W1

@

@x

@

@t

�
(IW1

W0b)

�
;

(W1(IW1
W0b)

0

x)
0

x; and (W1(IW1
W0b)

0

t)
0

x exist

for all (x; t) 2 Df � If ; where
(W1(IW1

W0b)
0

x)
0

x; (W1(IW1
W0b)

0

t)
0

x 2 C(Df � If ; IRn) (p:43);

A5 :
d

dt

�
(Ŵ1b)(U(t)x; t)

�
exists for all (x; t) 2 Df � If (p:47);

A6 : im A(x; t); kerA(x; t) and N(t) \ S(x; t) are constant for

(x; t) 2 Df � If (p:64);

A7 : A(Ux(t); t)x0(t) + ~b(Ux(t); t) + B(Ux(t); t)Tx(t) = 0

is given (p:65);

A8 : A(Ux(t); t)x0(t) + ~b(Ux(t); t) + BTx(t) = 0 is given (p:67);

A9 : Ax0(t) + ~b(Ux(t); t) + BTx(t) = 0 is given (p:68):
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Notations of Chapter 3

MNA Modi�ed Nodal Analysis;

V CV S voltage-controlled voltage sources;

CCV S current-controlled voltage sources;

V CCS voltage-controlled current sources;

CCCS current-controlled current sources;

L-I cutset cutset consisting of inductances and/or current sources only;

C-V loop loop consisting of capacitances and voltage sources only;

A = (AC ; AL; AR; AV ; AI) (reduced) incidence matrix describing

the branch-node relations:

AC capacitive branches;

AL inductive branches;

AR resistive branches;

AV branches of voltage sources;

AI branches of current sources;

QC projector onto kerAT
C ;

QV�C projector onto kerAT
VQC ;

QR�CV projector onto kerAT
RQCQV�C ;

�QC projector onto kerAC ;

�QV�C projector onto kerQT
CAV ;

QCRV := QCQV�CQR�CV ;

C(u; t) :=
@q(u; t)

@u
; q0t(u; t) :=

@q(u; t)

@t
;

L(j; t) :=
@�(j; t)

@j
; �0t(j; t) :=

@�(j; t)

@t
;

G(u; t) :=
@r(u; t)

@u
; r0t(u; t) :=

@r(u; t)

@t
;

H1(A
T
Ce; t) := ACC(A

T
Ce; t)A

T
C +QT

CQC ;
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