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Abstract Circuit simulation is a standard task for the computer—aided design of
electronic circuits. The transient analysis is well understood and realized in power-
ful simulation packages for conventional circuits. But further developments in the
production engineering lead to new classes of circuits which may cause difficulties
for the numerical integration. The dimension of circuit models can be quite large
(10° equations). The complexity of the models demands a higher abstraction level.
In this paper, we analyze electric circuits with respect to their structural properties.
We discuss the relevant subspaces of the resulting differential algebraic equations
(DAESs) and present algorithms for calculating the index as well as consistent initial
values.

1 Introduction

The modern simulation of electric networks is based on modelling tech-
niques that allow an automatic generation of the model equations. One of
the mostly used technique is the Modified Nodal Analysis (MNA). It leads
to Differential-Algebraic Equations (DAEs)

fQ@'(t), x(t),t) =0. (1)

where f, is in general singular. For the numerical solution of these special
systems arising from circuit simulation, Gear [8] proposed the BDF (Back-
ward Difference Formulae). Their robustness and reliability have made the
BDF methods to become a standard in simulation packages up to now. How-
ever they failed in certain situations. The study of the theory of DAEs (cf.
e.g. [9], [1], [12]) has shown that DAE systems represent not only integration
problems but may also involve differentiation problems. DAEs of an index >
2 provide solutions including inherent differentiations of the input signals (cf.
[10], [15], [16], [6]). These inherent differentiations are not always properly
reflected by the BDF methods. Consequently, the variable stepsize BDF usu-
ally do not work well for index—3 problems (see e.g. [13]). In the index—2 case,
convergence and stability results were obtained for a large class of quasilinear
DAEs , e.g. [14], [18], [17].

Naturally, in the analysis of DAEs, various subspaces (and projectors) as
e.g. the leading nullspace fL,(2',2',t) and the tangent spaces to the obvious
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and hidden manifolds play an important role. Relevant results — from index
characterization up to error propagation — are usually given in terms of those
subspaces and projector matrices.

The study of various circuit examples led to the hypothesis that the space of
the algebraic components as well as the space of the index—2 components are
constant for standard circuit simulation problems. Under these assumptions,
convergence and weak instability of the BDF methods is satisfied for index—2
problems [18]. The detailed analysis of circuit systems that we present here
enables us to prove the hypothesis to be true for a wide class of circuits
(restricted by some conditions for controlled sources, see [4]). Additionally
we see that the circuit systems have a special structure that provides fast
algorithms for an index check basing on network graphs. This result is really
surprising since all other attempts for index tests (using numerical linear al-
gebra) were not always reliable and prohibitively expensive with respect to
the circuit simulation itself.

A further nice result of the structural investigations is that in index—2 circuit
systems the index—2 components appear only linearly. This can effectively
be used for an other practical simulation problem, the calculation of consis-
tent initial values!. In section 5 we present a fast and reliable algorithm for
computing consistent initial values for circuit systems of index 2.

2 Modeling

The index and the structure of the equations we obtain in electric circuit
simulation depend, among other things, on the scheme for setting up the
equations (cf. [10], [16]). We will restrict ourselves to two different formula-
tions of the most frequently used modeling technique, the Modified Nodal
Analysis.

2.1 Conventional Modified Nodal Analysis

Circuits are usually described in terms of all nodal potentials and currents of
current controlled elements. The equation system

C(l’, t)ml + f(xv t)=0 (2)
contains

— the KCL (Kirchhoft’s Current Law) equations and
— the constitutive relations of inductors and voltage sources.

Since the matrix C'(z, t) is usually singular, the system (2) represents a quasi-
linear DAE.

! For the definition of consistent initial values see Section 7.



2.2 Charge Oriented Modified Nodal Analysis

In this case, the circuit description bases additionally on the charges of ca-
pacitors and fluxes of inductors (y). The resulting equation system

Ayl+f(l’,t) =0 (3)
) :g(x,t) (4)

contains again (3)

— the KCL (Kirchhoff’s Current Law) equations and
— the constitutive relations of inductors and voltage sources

as well as (4)

— the constitutive relations for capacitors and
— the constitutive relations for inductors.

The matrix A is usually not quadratically but constant. The equation system
(3)—(4) represent so a quasilinear DAE with a constant leading coefficient
matrix.

Remark 1. We obtain formulation (2) if we substitute the expression (4) for
y into equation (3). The close connection between both formulations allows
a transfer of numerous results from one to the other. The charge oriented
one is preferred in practice since it guarantees charge and flux conservation
automatically (cf. [10]).

2.3 Model Assumptions

We deal with lumped circuits consisting of the following one— and multi—port
elements wherein j describes the branch currents and v denotes the branch
voltages.

— Passive elements and independent sources
e Capacitors with the constitutive relation j = %qc(u t)
e Inductors with the constitutive relation v = %q&L (4, t)
e Resistors with the constitutive relation j = r(v,t)
e Independent current sources described by j = i(t)
e Independent voltage sources described by v = v(t)
— Controlled sources
e Controlled current sources described by j = i(j, v, t)
e Controlled voltage sources described by v = v(j, v, t)
that satisfy certain assumptions (specified in [6]) concerning their location
in the network and the kind of controlling variables.

Furthermore, the capacitance matrix iaq%—(:’t), the inductance matrix
and the conductance matrix W are assumed to be positive definite?.

291 (j,t)
3

2 For capacitors and inductors with affine characteristics the positive definiteness
implies that they are strictly locally passive (cf. [7]).



2.4 Detailed Analysis of the Charge Oriented MNA

Splitting the incidence matrix and considering the special properties of the re-
sulting matrices provides a deeper insight into the structure of the equations.
If A, Ag, A, Ay and A; denote the incidence matrices of the capacitive,
resistive, inductive, voltage source and current source branches, respectively,
then the charge oriented MNA leads to a system of the form:

d . , L
Acd_g + Agr(Age,t) + Arjr + Avjv + Ari(e, jr,jv,t) =0,
d¢

% — A%e = 07
Ale—v(e,ju,jv,t) =0,
q— QC(Age7 t) = 07

¢ —or(jr,t) =0.

Here, e denotes the nodal voltages, jr the currents of inductive branches
and jy the currents of voltage source branches. We have summarized the
characteristics of independent and controlled current sources by i(-). Corre-
spondingly, the independent and controlled voltage sources are represented
by v(-).

Due to Kirchhoff’s laws, cutsets of current sources and loops of voltage sources
are forbidden. This implies for the element related incidence matrices that

— the matrix (A¢, Agr, Av, Ar) has full row rank and
— the matrix Ay has full column rank.

3 Index Classification

A long experience in circuit simulation has shown that cutsets of inductors
and current sources as well as loops of capacitors and voltage sources may
lead to difficulties in the transient analysis. It turns out that these network
configurations play (as expected) an essential role in the index classification
of networks. Before formulating the result, we introduce some projectors that
allow a simple mathematical description of such cutsets and loops. Let

— Qc be a projector onto ker Af,
— Qv—c a projector onto ker QL Ay, and
— Qcryv a projector onto ker(Ac, Ar, Av)T.

Then, the following network characterization is possible.

Lemma 2. 1. If the network does not contain an L-I cutset (a cutset of

inductors and/or current sources only (cf. Figure 1)) then the matriz
(Ay, AR, Ac)T has full column rank and it holds that Qcry = 0.



2. If the network does not contain a C-V loop (a loop of capacitors and
voltage sources (cf. Figure 1)) then the matriz QL Ay has full column
rank and it holds that Qv_c = 0.

Theorem 3. If the controlled sources satisfy certain topological conditions
(specified in [6]) then the DAE system (3)-(4) has an Index < 2. The index
1s equal 2 if and only if the network contains an L-I cutset or a C-V loop.

A detailed proof of this theorem is presented in [6].

i0)
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Figurel. Example for an LI cutset (left) and a C-V loop (right)

Remark 4. 1. Controlled sources in LI cutsets or C-V loops may lead to
arbitrarily high index systems (cf. [11]). Our assumptions for controlled
sources (specified in [6]) exclude controlled sources in L-I cutsets or C-V
loops.

2. The numerically unstable index—2 components consist of:
— branch voltages of the inductors and current sources of L-I cutsets

and
— branch currents through voltage sources of C-V loops.

4 Graph-Theoretical Determination of the Hidden
Constraints

For the charge—oriented MNA, the hidden constraints result from

d (- _
(@ cAtree =0 cuw) =0 )
d

T (QgRVALjL + QngAIit(t)) =0, (6)

and

d
%(q - QC(Age7 t)) = 07

46— orlin1) =0



Here, the functions i; and vy involve only independent current and voltage
sources. We are interested in expressions for (5)—(6) without requiring the
computation of the corresponding projectors. In [2] it was shown that these
equations can be obtained directly from the network by making use of the
following two procedures that analyze its graph. In fact, these procedures pre-
cisely determine the linearly independent equations that describe the hidden
constraints arising from C-V loops and L-I cutsets, respectively.

Let us first focus on the constraints (5) arising from the C-V loops. Recall
that

Ale—v()=0 (7

are the characteristic equations of the voltage sources. Since Qv ¢ describes
the C-V loops, it results that

Qv _cAVe — Q_cue(t) =0 (8)

corresponds to the sums of the characteristic equations of the voltage sources
that form a part of the C—V loops (cf. [2]). More exactly, these equations can
be determined by means of the following procedure.

Procedure 1

1. Search a C—V loop in the given network graph. If no C—V loop is found,
then end.

2. Write the equation resulting from the sum of the derivatives of the charac-
teristic equations of the voltage sources contained in the C—V loop, taking
into account the orientation of the loop and the reference direction of the
considered branches.

3. Form a new network graph by deleting the branch of one voltage source
that forms a part of the loop, leaving the nodes unchanged.

4. Return to 1, considering the new network graph.

Let us now focus on the constraints (6) arising from L-I cutsets. To get an
idea of where they arise from, recall that

d
Ac= + Apr(Afe.t) + Avji + Avjv + Agi(-) = 0 (9)

are the nodal equations. That means, these equations arise from KCL for
the L-T cutsets. Consequently, the equations corresponding to (6) can be
determined by means of the following procedure that starts again considering
the original graph (cf. [2]).

Procedure 2

1. Search an L-I cutset. If one is found, then select an arbitrary inductor
of this cutset. Realize that we can always find such an inductor because
cutsets of current sources only are forbidden. If no LI cutset is found,
then end.



2. Write a new equation resulting by differentiation of the cutset equation
arising from 1.

3. Delete the chosen inductor from the network contracting its incident
nodes.

4. Return to 1, considering the new network graph.

5 Consistent Initialization

Using the graph—theoretical description of the hidden constraints, it is pos-
sible to calculate consistent initial values at relatively low costs.

We obtain a consistent initial value starting up from a possibly inconsistent
one (z°) that fulfills the system’s equations (for instance, the DC-operating
point) in the following way (cf. [3]):

1. Add additional currents that flow through the C-V loops as a consequence
of the hidden constraints described by Procedure 1 to the values of the
currents through the branches that form a part of C-V loops.

2. Add convenient values to the node potentials to fulfill the additional
voltage across the LI cutsets defined by the hidden constraints described
by Procedure 2.

Practical advantage of this approach is that the values that have to be added
result by solving a linear system. This system consists of a part of the original
DAE together with the equation obtained by Procedure 1 and Procedure 2.
The graph—theoretical determination of the relevant equations is very fast
with respect to the transient analysis.

6 Computational Aspects and Practical Results

The methods suggested were implemented in the simulation package TITAN?,
For this purpose, a graph oriented algorithm was developed that provides
important features for several aspects:

1. Index determination (cf. Theorem 3).

2. Identification of critical variables: the currents through voltage sources
that form a part of C-V loops and the branch voltages of branches that
form a part of L-I cutsets.

3. Identification of the circuit elements and nodes which form the critical
circuit configurations; this provides valuable information for the user how
to regularize higher index configurations in case of problems.

4. Specification of smoothness requirements: Additional smoothness has only
to be given for the constitutive relations of the current sources and induc-
tors that form a part of L-I cutsets, and for the characteristic equations
of the voltage sources and capacitors that form a part of C-V loops.

5. Description of the linear system that provides the values required for the
computation of a consistent initialization.

% Infineon Technologies AG (formerly STEMENS AG).



6.1 Index Classification

The code was tested for a variety of artificial test circuits and real designs.
For some typical MOS circuits without controlled sources, the results are
given in Table 1

circuit transistors|equations|C—V loops| nodes in [CPU time
C-V loops
MOS ringoscillator 134 73 3 71 <10°?
16 bit adder 544 283 5 279 0.01
1MBit DRAM 2005 1211 21 1189 0.02
16MBit DRAM 5208 3500 73 3427 0.11
ALU 13005 32639 7 29626 6.76

Tablel. Index test for MOS circuits without controlled sources

We observe that all of these circuits are of index 2 due to the existence of
C-V loops, and almost all circuit nodes are part of these loops. Furthermore
we see that even for large circuits the CPU times (which are measured in sec
on a 350 MHz SUN workstation) are very moderate, and the same is true

for the circuit examples of Table 2, which contain explicitly given controlled
sources.

circuit |equations|controlled|index|CPU time
name sources
ringmo 42 8 =1]| <10°*
sq3bogner| 234 3 = <1072
fischer 2494 10 ? 0.04
xsection 13465 958 >2 0.88
clara 35979 2 =2 1.85
teethmi | 174881 39 >2| 167.01

Table2. Index test for circuits including controlled sources

Note that for the latter class of circuits any index is possible. For some of the
circuit examples the index diagnosis is not sharp or even fails. This is due to
one of the following reasons:

— The catalogue of conditions specified in [6] is not yet fully implemented.

— The conditions given in [6] are sufficient conditions for the index to be <
2; the particular circuit configuration considered here is not (yet) included
there.



— In this circuit configuration, the index depends on actual parameter val-

ues; in this case structural index diagnosis cannot be successful.

We should mention that controlled sources are implicitely included in any
semiconductor device model. Fortunately, the conditions given in [6] state
that these controlled sources are not ”dangerous” at all, provided that the
positive definiteness of the element stamps mentioned before is satisfied. This
can be watched during analysis with local numerical checks.

6.2 Consistent Initialization

Computational aspects played an important role for the particular develop-
ment of the methods:

1. Special care was taken to use only those variables which are available in

the circuit simulator anyway. The only quantities which had to be extra
coded were the time derivatives of the input source functions i;(t), ve(t).

. The algorithm was implemented as an add—on in the simulation flow. In

case of index-2 structures the consistent initial values are computed in an
extra step from the standard initial values #° ("DC-operating point”),
which are computed anyway before transient analysis is started.

Since the structure of the equations of the resulting linear system is sim-
ilar to the structure of the original system, part of them can be solved as
a structural subset of the original system, taking advantage of the sparse
handling. This turns out to be necessary especially in case of C—V loops,
which usually cover almost all circuit nodes, see Table 1. Note that this
may have an impact on the choice of pivot elements for the linear sparse
solver, which are usually selected statically in a preprocessing step in
circuit simulation.

As an example, we look at the circuit given in Figure 1 which contains a C-V
loop and hence is of index 2. With j, being the branch current of the voltage
source flowing from node 1 to node 2, the MNA equations are:

jv+cl'e,1:07
—ju+Ca-eh+1/R-e3 =0,

e1 —es = v(t).

The DC-operation point defined by ¢} = e, =0 = e =v(0), es =

0,

Jj» = 0 satisfies these equations, but may violate the hidden constraint

el — ey =v'(0).



For computing a consistent initial solution we assume an additional current
Jv to flow in the C-V loop, and get

51}‘{_01'6’1:07
_jv+c’2'612:07

el —eh =0'(0).

Adding the solution to the standard DC-solution, we obtain the following
consistent initial values:

Cz Cl
r_ / r_ !
€ = 01+02v(0)7 €9 01+02v(0)7
€ = U(O), €y = 0, jv = —%’U’(O)

In practice, the computation of a consistent initialization has been carried
out with regard to the following aspects:

1. To start the integration, i.e., in general, the DC operating point is cor-
rected in order to obtain a consistent starting point.

2. To obtain consistent values after discontinuities of the derivatives of the
input functions, i.e., at the breakpoints.

3. For a clean handling of user given initial conditions by calculating an
appropriate z° (cf. the approach presented in [3]).

As a practical example shows Figure 2 the waveforms of two index-2 variables
of an MOS circuit (word line booster with 124 MOS transistors and 108
equations).

Conventional (dashed) and consistent (solid) waveform differ significantly
at the beginning of transient analysis and at the breakpoints, where the
slope of input signals changes abruptly. The additional expense for consistent
initialization is equivalent to one additional Newton iteration at the beginning
and at each breakpoint.

7 Mathematical Background

In this section we summarize new results for specially structured DAEs as
described below. The particular properties of the MNA equations guarantee
that DAEs arising from circuit simulation have this special structure.

Consider quasilinear DAEs

Az, t)z" + b(x,t) =0, (10)
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Figure2. Conventional (dashed) and consistent (solid) waveforms for index—2 vari-
ables of an MOS circuit

fulfilling that ker A(z,t) and im A(x,t) are constant. Then, we find constant
projectors

Q onto ker A(z,t), P:=I1-@Q, and Wj alongim A(z,t).
Observe that each solution z(t) of (10) belongs to
Mo(t) :={z: Wob(z,t) =0}, (11)
that implies that the choice of initial values for the integration of (10) is
restricted. According to ODE theory, we define for DAEs:

Definition 5. A vector xo € IR" is a consistent initial value of (10) if there
exists a solution of (10) that fulfills (o) = 0.

In practice, we are also interested in the corresponding values of the deriva-
tives appearing in the DAE. The following definition will characterize these
values properly.

Definition 6. A vector (xo, Pyo) is a consistent initialization of (10), if xg
is a consistent initial value and (zg, Pyp) fulfills the equation

A(JJU, to)Pyg + b(l‘o,to) = 0 (12)

For the index—1 case, there exists always a solution through a point zy €
Mo (o) [9], i-e., My describes exactly the set of consistent initial values. Note
that the subspace im P may be considered to be a practical substitute of the
tangent space to My(to). For suitably given z°, condition

Py = Pa® (13)



fixes the free integration constants while r = rankA(z,t) = rankP is the
dynamical degree of freedom in the index—1 case.

In the higher—index cases, the set of consistent initial values is a proper subset
of My that is defined by so called hidden constraints. Let us demonstrate this
in detail for index—2 DAEs. Each consistent initial value has to satisfy also
the so—called hidden constraint, say equation

h(zo,to) = 0. (14)

On the other hand, the dynamical freedom decreases in comparison with
the index—1 case. By means of an appropriate projector IT = II(zo,to) the
subspace im IT may be considered to be a practical substitute of the tangent
space to

Ml(to) = {Z S Mo(to), h(Z,to) = 0} (15)

This time, for suitably given 2° the free integration constants are fixed by
the condition

H(l’g,to)l’o = H(l’o,to)l’o. (16)

The resulting system (12), (14),(16) to provide a consistent initialization (see
e.g. [5]) is somehow difficult to solve. A nice idea ([4]) is now, to use an
easily available projector U and to replace the practically very complicated
condition (16) by the simple one

Uzy = Ua®. (17)

The new system (12), (14), (17) is in fact an over—determined extension of
(12), (14),(16), supposed z° € My(tp). Then, in the linear case (12), (14),
(17) is a consistent linear full rank system and can be solved by least squares.

Let us consider in detail the systems (12), (14),(17) that result if we sup-
pose that the special structure of the MNA equations is given. Suppose that
ker[A(x,t) + Wbl (z,t)] is constant. Note that this nullspace is identical to
{0} in case of index—1 DAEs. For index—2 DAEs, this nullspace describes
the space of index—2 variables, i.e., the sensitive components with respect to
perturbations due to the inherent differentiation problem. We want to as-
sume this space not to be time dependent and even more not to be solution
dependent that seems to be natural. For a convenient description we choose
constant projectors

T onto ker[A(z,t) + Wobl,(2,t)] and U:=1-T.
Furthermore, we define a projector

Wi(z',x,t) along A(z,t) + ([A(z,t)2'], + b, (z,1)Q.



As a consequence, it results W1 (2, z,t) = W1 (Uz, t) and Wyb(z,t) = Wob(Uz, t).
In other words, the projector Wi as well as the derivative free equations
Wob = 0 are independent of the index—2 components Tx.

Using the above projectors, our investigations have shown [4] that the equa-
tions obtained by means of MNA are quasilinear DAEs even of the form

AUz, t)z' +b(Ux,t) + BTz =0 (18)

for a constant matrix B if the controlled sources of a network satisfy certain
conditions specified (cf. [3],[4]), i.e., the index—2 components appear only
linear in the DAE system. Obviously, all solutions z(t) of (18) have to satisfy
the algebraic relations

Wob(Uz(t),t) =0
and additionally its derivative?
%WOB(Ux(m t)=0. (19)

It results for the specific structure that the hidden constraints arise only from
the Wj—part of (19), i.e., from

Wi (Uz, t)(Wob),,(Uz, t)Pz' + Wi (Uz, t)(Wob)y(Uz,t) = 0.
Correspondingly, the set of consistent initial values for DAE systems (18) is

given by

M (t) := {z : 3y AUz, t)y+b(Uz,t) + BTz =0,

Wi(Uz,t) {(WOINJ);(UZ,t)y + (Wob)4(U =, t)] = 0}.

As a consequence, consistent initial values can be computed as follows:

Theorem 7. [4] Suppose that some values (x°, Py°) fulfilling
AUZ°, o) y° + b(U°, to) + BTz® =0

are given. We obtain a consistent initialization (xo, Pyo) starting up from
(20, Py®) setting Uzo := Uz°, computing the unique solution (o, Pio) of the
linear system
A(U.CC(), to):ljo + BT.CACO = 07
Uzg =0,
Wi (Uzo, to) (Wob);, (U, to) Ply” + 5]
+W1(UJJ[), to)(ng);(Uﬁ,’g, to) = 0,

4 Actually, smoothness is not necessary for complete Wob. A detailed analysis of
smoothness requirements can be found in [4].



and setting

.Z‘OZ.CCO-F.C@(),
Py, = Py + Pij.

This corresponds to the approach described in Section 5. The realization
was achieved making use of the fact that for the equations of the MNA the
projectors @, Wy, T', Wy can be expressed in terms of the projectors Q¢,
Qv—_c, Qcry introduced in Section 3.

8 Conclusion

Exploitation of the special structure of network equations is beneficial for
applying recent results of DAE theory to circuit simulation problems of in-
dustrial relevance and complexity. Since the relevant DAE subspaces of the
circuit equations can directly be constructed from properly coloured network
graphs, it is possible to develop very efficient and reliable methods for

— calculating the DAE index of even very large circuits;

— identifying critical circuit configurations and providing suggestions for
their regularization;

— computing consistent initial values;

— implementing a clean handling of user given initial conditions.

A key issue of the approaches presented here is to combine global topological
criteria — like the existence of C-V loops — with local numerical criteria —
like the positive definiteness of the device stamps — thus combining the speed
of graph oriented methods with the generality and reliability of numerical
checks.

The algorithms were successfully implemented into an industrial circuit sim-
ulator and have proven to be practical for circuits with more than 10° equa-
tions. Essential outcomes of this work are, that industry

— has learned how to construct future device and circuit models in order to
avoid numerical problems due to too high DAE index as far as possible;

— for the first time, has means to really assess the practical relevance of
circuit problems with DAE index > 2.

Actual work is concerned with some desirable extensions of the set of condi-
tions for checking the DAE index, and with industrial efforts to drive the new
algorithms into practical use. Furthermore, the methods serve for improve-
ments in the cooperative BMBF projects “Modifizierte ROW-Methoden in
der elektrischen Schaltungssimulation” at the TU Karlsruhe, see paper of M.
Glnther et al. in this issue (= consistent initialization), and “Analyse ge-
mischt analog—digitaler hochoszillierender Schaltungen” at the TU Miinchen,
see paper of A. Schwarz et al. in this issue (= identification of index-2 con-
figurations, fast construction of projectors onto the relevant subspaces).



Desirable topics for future work in this field are a generalization of the re-
sults presented here from topological to structural aspects, the development
of practical stability criteria, the structural analysis of circuits including ex-
tended semiconductor models and the extension to stochastic DAEs such that
noise effects can be efficiently included into transient circuit simulation.
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