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Abstract

We address the resource-constrained generalizations of the assignment problem with uncertain re-
source capacities, where the resource capacities have an unknown distribution that can be sampled. We
propose three stochastic programming-based formulations that can be used to solve this problem, and
provide exact and approximate solution techniques for the resulting models. We also present numerical
results for a large set of numerical problems. The results indicate that the solutions obtained using
the stochastic programming approaches perform significantly better than those obtained using expected
values of capacities in a deterministic solution strategy. In addition, stochastic-programming-based ap-
proximations are computationally as efficient as deterministic techniques.

1 Introduction

Many real-life problems involving the assignment of a set of tasks to a set of agents are constrained by
capacities of one or more resources that are consumed by these assignments. Due to this fact, generalizations
of the classical assignment problem concerning resource constraints have been studied extensively in the
literature. The majority of these studies assume deterministic conditions. However, the real-life applications
of these problems often encounter uncertainty in different problem parameters, such as the assignment costs
or the amount of resources needed for accomplishing tasks.

One major source of uncertainty in resource-constrained assignment problems is the uncertainty in re-
source capacities. In this study, we utilize stochastic programming methods to model capacity uncertainty
in resource-constrained assignment problems, and present exact and approximate techniques to solve the
resulting problems.

The rest of this article is organized as follows. In Section 2, we review resource-constrained generalizations
of the assignment problem, and discuss possible sources of uncertainty that may affect these problems in
Section 3. In Section 4, we identify three stochastic programming formulations to model resource-constrained
assignment problems with capacity uncertainty. We present exact and approximate techniques to solve the
resulting formulations in Section 5, and present the performance of these techniques on a large test set in
Section 6. We conclude the paper with a brief summary and a discussion on future research directions in
Section 7.

2 Background and Literature Survey

In the absence of resource constraints, the problem of finding the minimum-cost assignment of tasks to agents
is called the classical assignment problem, which has been widely studied in the literature (see Kennington
and Wang [15] for a survey of algorithms). The assignment problem is also of computational importance
(Kuhn [16], Srinivasan and Thompson [24], Glover, Karney and Klingman [10], and others). The assignment
problem itself has many applications such as facility location, personnel scheduling, and task assignment (see
for example, Winston [27]).
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To address real-life assignment decisions that are constrained by capacitated resources, resource-constrained
generalizations of the assignment problem have also been studied extensively in the literature. There are
two well-known resource-constrained generalizations of the assignment problem: the generalized assignment
problem (GAP) (Ross and Soland [20]) and the assignment problem with side constraints (APSC) (Mazzola
and Neebe [17]). Toktas, Yen and Zabinsky [25] define the assignment problem with individual capacities
(APIC) and the collectively capacitated GAP (CCGAP) as other possible generalizations.

2.1 Generalized Assignment Problem (GAP)

The GAP considers the assignment of a given set of tasks, I, to a set of agents, J , in the presence of a single
resource that is individually capacitated for each agent. First formally defined by Ross and Soland [20], the
GAP has many applications such as resource scheduling (Zimokha and Rubinstein [28]), fixed-charge plant
location (Ross and Soland [21]), and routing (Fisher and Jaikumar [5]). A binary programming formulation
of the GAP can be given as follows:

(GAP) Minimize
∑

i∈I

∑

j∈J

cijXij (1)

subject to
∑

i∈I

dijXij ≤ bj , j ∈ J , (2)

∑

j∈J

Xij = 1, i ∈ I, (3)

Xij = 0 or 1, i ∈ I, j ∈ J , (4)

where cij is the cost of assigning task i to agent j, dij is the capacity usage when task i is assigned to agent
j, and bj is the capacity of the single resource available to agent j. The binary variable Xij takes the value 1
when task i is assigned to agent j and 0 otherwise. Equation (2) constrains the task-agent assignments such
that the resource capacities are not exceeded. Equation (3) assures that each task is assigned to a single
agent.

The GAP is NP-Hard (Fisher, Jaikumar and Van Wassenhowe [6]), and a considerable amount of research
has been done to identify algorithms to solve GAP instances of reasonable size to optimality. The majority
of these algorithms are based on Lagrangian relaxation (Fisher, Jaikumar and Van Wassenhove [6], Guignard
and Rosenwein [11]), linear relaxation (Benders and van Nunen [1]), constraint deletion (Ross and Soland
[20]) and decomposition (Jörnsten and Näsberg [14], Haddadi [12]). The reader is referred to the survey by
Cattryse and Van Wassenhove [4] for an extensive review of such algorithms.

Gavish and Pirkul [7] extend the GAP to address multiple resources in the multi-resource generalized
assignment problem (MRGAP), which has been used to model many multi-resource applications, such as
database location in distributed computer systems (Pirkul [19]) and truck routing (Murphy [18]).

In the MRGAP, the agents consume multiple resources from a set R when accomplishing their assigned
task. This extension replaces the constraint set (2) in the GAP formulation by

∑

i∈I

aijrXij ≤ b′jr, j ∈ J , r ∈ R, (5)

where aijr represents the capacity usage of resource r when task i is assigned to agent j and b′jr is the
available capacity of resource r to agent j. In a later-dated study, Gavish and Pirkul [8] present a variety of
effective solution procedures for the MRGAP based on its Lagrangian relaxation.

2.2 Assignment Problem with Side Constraints (APSC)

The MRGAP introduces an important extension to the GAP by allowing the modeling of multiple resource
consumption. However, the need for an additional variation of this model arises if the multiple resources
in the real system are capacitated not individually for each agent, but collectively for all agents in J . The
second well-known generalization of the assignment problem, the assignment problem with side-constraints
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(APSC), addresses this need using the following binary programming formulation:

(APSC) Minimize (1)

subject to
∑

i∈I

∑

j∈J

aijrXij ≤ kr, r ∈ R, (6)

∑

i∈I

Xij = 1, j ∈ J , (7)

(3) and (4),

where kr is the total available capacity of resource r to the agents in J .
In addition to the structure in which the resources are capacitated, the second major difference between

the formal definitions of the GAP, MRGAP and APSC is the fact that APSC requires a one-to-one matching
of tasks to agents (hence |I| = |J |) whereas GAP and MRGAP do not.

Mazzola and Neebe [17] propose a branch-and-bound algorithm that utilizes subgradient optimization as
a bounding strategy for solving the APSC to optimality. They also present an effective subgradient-based
heuristic.

2.3 Other Generalizations

Toktas, Yen and Zabinsky [25] define two additional problems to complete the spectrum of different general-
izations of the assignment problem between the GAP and the APSC. The first of these problems, called the
collectively capacitated generalized assignment problem (CCGAP), allows for one-to-many matching between
tasks and agents and incorporates collectively capacitated resources. The binary programming formulation
of the CCGAP is as follows:

(CCGAP) Minimize (1)

subject to (3), (4) and (6).

A real-life application of this variation is the schedule recovery problem in air traffic management (see
Berge, Hopperstad and Haraldsdottir [2]). The CCGAP can also be applied to other real-life applications
of the GAP when the resources are collective. For instance, in resource scheduling, budget and equipment
may be collectively constrained for all agents.

The second additional generalization allows for individually capacitated resources (as in the GAP), but
address one-to-one matching of tasks to agents (as in the APSC). This assignment problem with individual
capacities (APIC) is formulated using:

(APIC) Minimize (1)

subject to (2), (3), (4) and (7).

We summarize the possible types of resource-constrained assignment problems in Table 1.

3 Uncertainty in Resource Constrained Assignment

Most of the literature that studies resource-constrained assignment assumes that the problem parameters
(such as assignment costs, resource usage vectors, and resource capacities) are perfectly known. These
deterministic studies can be used to formulate problems where the conditions are known with high accuracy.
However, for effective modelling of applications where conditions are not known perfectly, uncertainty should
not be overlooked, as the solutions obtained using the aforementioned formulations can be highly sensitive
to the problem parameters.

We can list different sources of uncertainty that may affect resource-constrained assignment problems.
One is when the actual amount of resources needed by different agents to process the tasks (dij , aijr) is not
known in advance. Similarly, the assignment costs (cij) might not be perfectly known. Another source of
uncertainty is when the presence or absence of individual tasks or agents (sets I and J ) is not known for
certain. The last possible source is the uncertainty in resource capacities (bj , b′jr, kr).
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Table 1: Classification of Resource-Constrained Assignment Problems

Task-Agent Matching

Resources

One-to-One
∑

j∈J Xij = 1, i ∈ I
∑

i∈I Xij = 1, j ∈ J

One-to-Many
∑

j∈J Xij = 1, i ∈ I

Individually
Capacitated

∑

i∈I aijrXij ≤ b′jr,

j ∈ J , r ∈ R

Assignment Problem
with Individual

Capacities
(APIC)

Generalized
Assignment Problem

(GAP)

Multi-Resource GAP
(MRGAP)

Collectively
Capacitated

∑

i∈I

∑

j∈J aijrXij ≤
kr,

r ∈ R

Assignment Problem
with Side Constraints

(APSC)

Collectively
Capacitated GAP

(CCGAP)

A somewhat straightforward (and common) approach to address parameter uncertainty is to ‘plug in’ the
average values of the stochastic parameters, and solve the resulting deterministic formulation of the problem.
Due to its simplicity, this approach may be suitable for certain cases. However, this approximation scheme
may result in solutions that are not robust under the range of actual parameter values.

Another approach to address uncertainty in resource-constrained assignment is to implement stochastic-
programming based approaches (see Birge and Louveaux [3] for an introductory text). The stochastic
programming-based approaches fully incorporate, in the formulation itself, the relative performance of any
solution under all possible realizations of uncertain parameters. Therefore, given a good understanding of the
uncertainty structure, the stochastic programming solution to a resource-constrained assignment problem
would be optimal in the expected sense.

There exist two studies in the literature (Albareda-Sambola, van der Vlerk and Aréizaga [22], Spoerl and
Wood [23]) that consider uncertainty in resource-constrained assignment problems. Both of these studies
use stochastic programming to address parameter uncertainty in the GAP. Albareda-Sambola, van der Vlerk
and Aréizaga [22] consider the GAP where only a random subset of the given set of tasks are required to
be actually processed, according to independent Bernoulli distributions. They assume that the assignment
of each task to an agent is decided a priori, and once the actual set of tasks (I) are known, reassignments
can be performed if there are overloaded agents. They construct a convex approximation of the objective
function, the minimal expected cost of assignments, and present an algorithm to solve the resulting problem.
Spoerl and Wood [23] also consider the GAP, but address uncertainty in the amount of resources (dij) used
by the task-agent assignments. They consider normally distributed resource usage parameters, and study a
stochastic programming formulation in which excess capacity usage is penalized under actual conditions.

In this study, we consider capacity uncertainty in resource-constrained assignment problems. Hence,
the resource capacities are no longer deterministic values, but random variables. We denote these random
variables by b̃ for GAP and APIC, b̃′ for MRGAP, and k̃ for APSC and CCGAP.

Unlike [22] and [23], we do not assume that the probability distribution that governs the capacities
is known. Hence, the stochastic programming formulations or our solution methodologies presented in
the following sections are independent of the governing probability distribution. We do assume that it is
possible to sample resource capacities from the underlying probability distribution. This allows for the
implementation of our techniques to address applications where there is limited information about the
uncertainty structure.
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In this stochastic setting, we have to make a set of assignment decisions (X) without full information on
the resource capacities. X denotes the first-stage decisions. Later, when full information about capacities
becomes available, corrective actions (Y ) can be taken to achieve feasibility under the actual set of resource
capacities (b, b′ or k). These corrective actions are our second-stage decisions.

The deterministic formulations introduced in the previous section no longer remain valid, as the right
hand sides of Equations (2), (5) and (6) are stochastic. We can, however, introduce generic two-stage
stochastic programming formulations of GAP, MRGAP, APSC, CCGAP and APIC.

A generic stochastic programming formulation for the generalizations with one-to-many matching (i.e.
GAP, MRGAP and CCGAP) can be defined as:

Minimize
∑

i∈I

∑

j∈J

cijXij + EQ(X) (8)

subject to (3) and (4).

The expected second-stage value function EQ(X) is given by

EQ(X) = EΩ[Q(X,ω)], (9)

where ω ∈ Ω denote the set of possible realizations of the stochastic parameters (b̃ for GAP, b̃′ for MRGAP
and k̃ for CCGAP). For a given realization ω,

Q(X,ω) = minY {qY |Y ∈ Υ(X,ω)} (10)

is defined as the second-stage value function, thus incorporating the randomness of resource capacities to
the objective function of the stochastic program. The vector Y denotes the set of second-stage variables,
while q denotes their cost coefficients in the second-stage value function. The set Υ governs the relationship
between the first-stage and second-stage decisions under the given set of resource capacities.

While the first-stage decisions are the assignment of tasks to agents, the definition of the second-stage
decisions depend on the formulation of Equation (10) and, specifically, Υ(X,ω). Alternative formulations
for Q(X,ω) will be discussed in detail in the next section. The stochastic programming formulations for
generalizations with one-to-one matching can be defined in the same manner, by adding Equation (7) in the
set of constraints.

Throughout the rest of this article, we focus on CCGAP when presenting alternative formulations and
solution techniques, and provide additional discussions for other resource-constrained assignment problems
where applicable and necessary.

4 Stochastic Programming Formulation for SCCGAP

Using the generic formulation presented in Section 3, the stochastic programming formulation for the stochas-
tic CCGAP (SCCGAP) can be given as:

(SCCGAP) Minimize
∑

i∈I

∑

j∈J

cijXij + Ek̃[Q(X, k̃)] (11)

subject to (3) and (4).

In the following subsections, we present three alternative second-stage value functions Q(X, k̃), hence three
alternative formulations, for the SCCGAP. In all three formulations, we assume that the set of resource
capacities is a multi-dimensional random variable, k̃, that follows an unknown probability distribution. A
group of independent samples, {kf = (k1f , k2f , . . . , kRf ), f ∈ F = {1, . . . , F}}, can be taken from this
distribution. The formulations presented next utilize the information obtained from these samples when
finding a solution to the CCGAP with unknown (but now forecasted) resource capacities.

4.1 Alternative 1: Simple Recourse on Amounts of Infeasibility

The first stochastic programming formulation alternative allows infeasibilities in the capacity constraints for
a subset of possible outcomes. That is, it allows, with some penalties, tasks to be assigned to agents even
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if, for some samples, these assignments result in resource usage in excess of their capacities. As an example,
consider a project scheduling problem where we assign tasks to a team of engineers and resources are yearly
budgets. For this example, the first formulation allows for going over budget at some years, and penalizes
how much over-budget the project is.

In this formulation, the second-stage value function for a given realization kf of the resource capacities
can be defined as

Q1(X, kf ) = minU{
∑

r∈R

βrUrf |
∑

i∈I

∑

j∈J

aijrXij ≤ krf + Urf , Urf ≥ 0, r ∈ R}, (12)

where Urf is the continuous second-stage variable that represents the amount of resource r used in excess of
its capacity, and βr is the positive marginal cost for each unit of excess capacity usage of resource r, given
in the same units as the assignment costs.

Since the set of possible outcomes of resource capacities is approximated by the sampled sets of capacities,
the SCCGAP formulation associated with Q1 is equivalent to the following mixed-integer formulation for
the stochastic CCGAP with simple recourse on amounts of infeasibility (SCCGAP-SRA),

(SCCGAP-SRA)

Minimize
∑

i∈I

∑

j∈J

cijXij +
1

F

∑

r∈R

∑

f∈F

βrUrf (13)

subject to
∑

i∈I

∑

j∈J

aijrXij ≤ krf + Urf , r ∈ R, f ∈ F , (14)

Urf ≥ 0, r ∈ R, f ∈ F , (15)

(3) and (4).

We assume the samples are equally likely expectations of the actual capacities. In general, probabilities can
be assigned to each sample and incorporated in the objective function.

Stochastic programming formulations that allow excess capacity usage for the other resource-constrained
assignment problems can be defined in similar fashion using a continuous recourse variable. For example,
the stochastic APSC with simple recourse on amounts of infeasibility (SAPSC-SRA) can be given as

(SAPSC-SRA) Minimize (13)

subject to (3), (4), (7), (14) and (15).

4.2 Alternative 2: Simple Recourse on Number of Infeasibilities

Our second stochastic programming formulation accounts for the number of infeasibilities instead of their
magnitudes. Similar to the first alternative formulation, excess capacity usage is allowed with some penalties.
However, these penalties are not incurred for each unit of capacity violation, but rather for each resource
with excess capacity usage. In the project scheduling example, this second formulation would penalize each
year the project is over-budget, regardless of the amount over budget.

The recourse on the number of infeasibilities can be modelled using the following second-stage value
function, for a given realization kf of the resource capacities:

Q2(X, kf ) = minV {
∑

r∈R

ψrVrf |

∑

i∈I

∑

j∈J

aijrXij ≤ krf + MVrf , Vrf = 0 or 1, r ∈ R}, (16)

where Vrf is a binary variable that is equal to 1 if resource r is used in excess of its capacity and 0 otherwise,
M is a sufficiently large number (for example, M = max{0,

∑

i∈I maxj∈J {aijr} − krf}) and ψr is the cost
of violating the capacity constraint for resource r, in the same units as the assignment costs.

The formulation for the stochastic CCGAP with simple recourse on the number of infeasibilities (SCCGAP-
SRN) using the second-stage value function given by Equation (16) has the following equivalent mixed-integer
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program:

(SCCGAP-SRN)

Minimize
∑

i∈I

∑

j∈J

cijXij +
1

F

∑

r∈R

∑

f∈F

ψrVrf (17)

subject to
∑

i∈I

∑

j∈J

aijrXij ≤ krf + MVrf , r ∈ R, f ∈ F , (18)

Vrf = 0 or 1, r ∈ R, f ∈ F , (19)

(3) and (4).

4.3 Alternative 3: Simple Recourse on Cancellations

The third stochastic programming formulation alternative focuses on assignments rather than resources.
Now, excess resource usage is not allowed, but the task-agent assignments are allowed to be “cancelled” as
recourse decisions. For the project scheduling example, the third formulation does not allow being over-
budget at any year. Instead, we have to cancel certain tasks to keep the project within budget.

Suppose that the cost of not assigning task i to any agent, that is cancelling task i, is identified as ni.
Then the second-stage value function that models the recourse on cancellations for a given realization kf of
the capacities can be given as follows:

Q3(X, kf ) = minY {
∑

i∈I

∑

j∈J

(ni − cij)Yijf |

−
∑

i∈I

∑

j∈J

aijrYijf +
∑

i∈I

∑

j∈J

aijrXij ≤ krf ,

Yijf ≤ Xij , Yijf = 0 or 1, i ∈ I, j ∈ J }, (20)

where Yijf is the binary second-stage variable that takes the value of 1 if the assignment of task i to agent j is
cancelled under capacities kf , and 0 otherwise. Constraints Yijf ≤ Xij ensure that only existing assignments
are cancelled. Note that if the assignment of task i to agent j is cancelled, we no longer incur the assignment
cost (cij), but we incur the cancellation cost (ni). Hence the cancellation coefficient in the above second-stage
value function is given as ni − cij .

Again, the SCCGAP that uses the above second-stage value function can be reduced to an ordinary mixed-
integer program since the set of possible realizations of k̃ is approximated by the sampled sets of capacities.
The resulting stochastic CCGAP with simple recourse on cancellations (SCCGAP-SRC) is formulated as

(SCCGAP-SRC)

Minimize
∑

i∈I

∑

j∈J

cijXij +
1

F

∑

i∈I

∑

j∈J

(ni − cij)
∑

f∈F

Yijf (21)

subject to
∑

i∈I

∑

j∈J

aijr(Xij − Yijf ) ≤ krf , r ∈ R, f ∈ F , (22)

Yijf ≤ Xij , i ∈ I, j ∈ J , f ∈ F , (23)

Yijf = 0 or 1, i ∈ I, j ∈ J , f ∈ F , (24)

(3) and (4).

5 Solution Techniques

Due to the structural similarity between the stochastic programming formulations of the five resource-
constrained assignment problems, we present detailed solution techniques only for SCCGAP. However, as in
earlier sections, we discuss extensions to the other formulations.

We present two techniques for solving the stochastic models: a branch-and-bound technique that finds
exact optimal solutions and a more efficient, approximate technique that finds near-optimal solutions. Both
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of these techniques are based on the Lagrangian relaxation of the capacity constraints, which can be seen
as an extension of the Lagrangian relaxation used by Fisher, Jaikumar and Van Wassenhove [6] for the
deterministic GAP.

A component of the Lagrangian relaxation approach is to solve the subproblems where the capacity
constraints (Equations (14), (18) and (22)) are dualized. In the next subsection, we derive trivial solutions
to these subproblems for all three stochastic programming models. These trivial solutions will provide lower
bounds on the objective functions of the original problems. We then present, in subsection 5.2, techniques
to construct primal feasible solutions based on these lower bound solutions. These primal feasible solutions
yield upper bounds on the original objective function values.

In subsection 5.3, we utilize these lower and upper bounds in a subgradient search algorithm. This
subgradient search algorithm is included in a branch-and-bound scheme, described in subsection 5.4, for
finding exact solutions to the stochastic programming models. Lastly, we discuss an approximate solution
technique that investigates the root node of the branch-and-bound tree, to find near-optimal solutions to
the original problems efficiently.

5.1 Lagrangian Relaxation

A close examination of the three stochastic programming formulations reveals that the capacity constraints
(Equations (14), (18) and (22)) make these these models difficult to solve. The Lagrangian relaxations of
SCCGAP-SRA, SCCGAP-SRN and SCCGAP-SRC, presented next, relax these constraints and incorporate
them in the objective function using dual prices. We show these relaxed problems are easier to solve due to
the absence of capacity constraints, and use their solutions to find lower bounds on the original objective
function values.

5.1.1 Lagrangian Relaxation of SCCGAP-SRA

In order to obtain a lower bound on the optimal objective function of SCCGAP-SRA, we first dualize the
constraint set (14) and obtain the following Lagrangian relaxation:

(SCCGAP-SRA-LR)

zSRA-LR(λ) = min
U,X

∑

i∈I

∑

j∈J

cijXij +
1

F

∑

r∈R

∑

f∈F

βrUrf

+
∑

r∈R

∑

f∈F

λrf (
∑

i∈I

∑

j∈J

aijrXij − krf − Urf ) (25)

subject to (3), (4) and (15),

Urf ≤ max{0,
∑

i∈I

max
j∈J

{aijr} − krf},

r ∈ R, f ∈ F , (26)

where λ = {λrf , r ∈ R, f ∈ F} is a set of dual variables associated with the capacity constraints. Note that
Equation (26) introduces an upper bound on the excess capacity usage variable for each resource and each
sample. This constraint set is added to the SCCGAP-SRA-LR in order to produce tighter bounds, without
changing the solution space.

For given λ, the Lagrangian relaxation decomposes into two subproblems. The first of these subproblems
can be given as:

(SCCGAP-SRA-LR1) Minimize
∑

i∈I

∑

j∈J

{cij +
∑

r∈R

∑

f∈F

λrfaijr}Xij (27)

subject to (3) and (4),

with the following trivial optimal solution:

XSRA-LR
ij (λ) =

{

1 for one j ∈ arg minj′∈J {cij′ +
∑

r∈R

∑

f∈F λrfaij′r},

0 otherwise,
(28)
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for i ∈ I, j ∈ J .
The second subproblem is

(SCCGAP-SRA-LR2) Minimize
∑

r∈R

∑

f∈F

(
1

F
βr − λrf )Urf − λrfkrf (29)

subject to (15) and (26),

which also has a trivial optimal solution:

USRA-LR
rf (λ) =

{

max{0,
∑

i∈I maxj∈J {aijr} − krf} if 1
F

βr − λrf < 0,
0 otherwise,

(30)

for r ∈ R, f ∈ F .
Note that, the term

∑

r∈R

∑

f∈F λrfkrf in Equation (29) is constant for given λ values, and is a byproduct
of the Lagrangian relaxation. It does not change the optimal solution of SCCGAP-SRA-LR but affects its
objective function value, which is used to determine the bounds on the primal problem. Hence, we arbitrarily
include this term in the SCCGAP-SRA-LR2 formulation.

The above decomposition structure holds for resource-constrained assignment problems other than CC-
GAP. The only difference occurs when the matching of tasks to agents is one-to-one. In that case, the
Lagrangian relaxation on capacity constraints still produces two subproblems. Although the second sub-
problem will have the same structure, the first subproblem will not have the above trivial solution due to
the addition of the constraint set (7). The subproblem becomes an assignment problem, which can be solved
using the Hungarian algorithm [16].

5.1.2 Lagrangian Relaxation of SCCGAP-SRN

Consider the Lagrangian relaxation of the SCCGAP-SRN obtained by dualizing Equation (18):

(SCCGAP-SRN-LR)

zSRN-LR(λ) = min
V,X

∑

i∈I

∑

j∈J

cijXij +
1

F

∑

r∈R

∑

f∈F

ψrVrf

+
∑

r∈R

∑

f∈F

λrf (
∑

i∈I

∑

j∈J

aijrXij − krf − MVrf ) (31)

subject to (3), (4) and (19),

where λ is the set of dual variables associated with the capacity constraints.
The resulting formulation is very similar to SCCGAP-SRA-LR, and has a very similar solution structure.

It follows that, for given λ, the optimal solution to SCCGAP-SRN-LR is given by:

XSRN-LR
ij (λ) =

{

1 for one j ∈ arg minj′∈J {cij′ +
∑

r∈R

∑

f∈F λrfaij′r},

0 otherwise,
i ∈ I, j ∈ J , (32)

and

V SRN-LR
rf (λ) =

{

1 if 1
F

ψr − Mλrf < 0,
0 otherwise,

r ∈ R, f ∈ F . (33)

5.1.3 Lagrangian Relaxation of SCCGAP-SRC

As before, we dualize the capacity constraints given by Equation (22). The resulting Lagrangian relaxation
of SCCGAP-SRC is given by:

(SCCGAP-SRC-LR)

zSRC-LR(λ) = min
Y,X

∑

i∈I

∑

j∈J

cijXij +
∑

i∈I

∑

j∈J

∑

f∈F

ni − cij

F
Yijf

+
∑

r∈R

∑

f∈F

λrf (
∑

i∈I

∑

j∈J

aijr(Xij − Yijf ) − krf ) (34)

subject to (3), (4), (23) and (24),
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where λ is the set of dual variables associated with the capacity constraints.
While the Lagrangian relaxation does not decompose into two subproblems due to constraints (23), it is

still possible to obtain a trivial solution for given λ. The Lagrangian relaxation becomes

(SCCGAP-SRC-LR1) Minimize
∑

i∈I

∑

j∈J

(cij +
∑

r∈R

∑

f∈F

λrfaijr)Xij

+
∑

i∈I

∑

j∈J

∑

f∈F

(
ni − cij

F
−

∑

r∈R

λrfaijr)Yijf

−
∑

r∈R

∑

f∈F

λrfkrf (35)

subject to (3), (4), (23) and (24).

The optimal solution to SCCGAP-SRC-LR is based on the optimal cancellation policies (cancellations
with negative objective function coefficients) in the relaxed problem. Based on this optimal cancellation
policy, each task is assigned to the agent with the least expected cost. The solutions can be given as

XSRC-LR
ij (λ) =







1 for one j ∈ arg minj′∈J {cij′ +
∑

r∈R

∑

f∈F λrfaij′r

+
∑

f∈F min{
ni−cij′

F
−

∑

r∈R λrfaij′r, 0}},

0 otherwise,

(36)

for i ∈ I, j ∈ J , and

Y SRC-LR
ijf (λ) =

{

1 if XSRC-LR
ij (λ) = 1 and ni − cij ≤ F

∑

r∈R λrfaijr,
0 otherwise,

(37)

for i ∈ I, j ∈ J , f ∈ F .
The above solution structure holds for resource-constrained assignment problems other than CCGAP.

However, if the matching of tasks to agents is one-to-one, the solution for the first-stage variables is deter-
mined by solving the following assignment problem:

Minimize
∑

i∈I

∑

j∈J

ĉij(λ)Xij (38)

subject to (3), (4) and (7)

where

ĉij(λ) = {cij +
∑

r∈R

∑

f∈F

λrfaijr +
∑

f∈F

min{
ni − cij

F
−

∑

r∈R

λrfaijr, 0}}. (39)

5.2 Primal Feasible Solutions

The trivial solutions obtained for the Lagrangian relaxations in the previous section provide lower bounds
on the primal objective function values of the three stochastic programming formulations, given λ ≥ 0
(Geoffrion [9]). Although these trivial solutions are feasible (and optimal) for the relaxed problems, they
may not be feasible with respect to the original set of constraints in the stochastic programming formulation.
Specifically, these trivial solutions may fail to satisfy the capacity constraints (Equations (14), (18) and (22))
for some r ∈ R and f ∈ F .

In order to obtain an upper bound on the optimal objective function values of the three stochastic pro-
gramming models, we need to find solutions that satisfy the capacity constraints. Next, we present techniques
to generate primal feasible solutions that satisfy these constraints, by modifying the trivial solutions to the
relaxed problems.
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5.2.1 Primal Feasible Solutions for SCCGAP-SRA

Remember that, for a given λ, the trivial solution to the Lagrangian relaxation of SCCGAP-SRA is given by
Equations (28) and (30). For the same λ, we construct a primal feasible solution to the original problem by
keeping the first-stage assignment variables (XSRA-LR(λ)) as in Equation (28), and modifying the values of
the second-stage variables (USRA-LR(λ)) such that they are feasible with respect to the capacity constraints:

XSRA-LR′

ij (λ) = XSRA-LR
ij (λ), i ∈ I, j ∈ J , (40)

USRA-LR′

rf (λ) = max







0,
∑

i∈I

∑

j∈J

aijrX
SRA-LR
ij (λ) − krf







,

r ∈ R, f ∈ F , (41)

where XSRA-LR′

(λ) and USRA-LR′

(λ) give a primal feasible solution.

5.2.2 Primal Feasible Solutions for SCCGAP-SRN

The solution to the Lagrangian relaxation of SCCGAP-SRN is given by Equations (32) and (33) for a given
λ. Similar to the first formulation, we construct a primal feasible solution as follows:

XSRN-LR′

ij (λ) = XSRN-LR
ij (λ), i ∈ I, j ∈ J , (42)

V SRN-LR′

rf (λ) =

{

1 if
∑

i∈I

∑

j∈J aijrX
SRN-LR(λ) > krf ,

0 otherwise,
,

r ∈ R, f ∈ F , (43)

where XSRN-LR′

(λ) and V SRN-LR′

(λ) satisfy the capacity constraints and provide a primal feasible solution.

5.2.3 Primal Feasible Solutions for SCCGAP-SRC

Similar to the first two formulations, we construct a primal feasible solution to SCCGAP-SRC for a given λ,
by keeping the first-stage assignment variables equal to their trivial solution from the Lagrangian relaxation
solution as in Equation (36). Now, modifying the second-stage (cancellation) variables to guarantee primal
feasibility is equivalent to picking a subset of tasks to cancel for each sample, such that the capacity con-
straints are satisfied. For a given λ, we systematically select the tasks to cancel (hence construct a primal
feasible solution to the original problem) using the following algorithm:

Step 0. Set XSRC-LR′

(λ) = XSRC-LR(λ) as in (36).

Step 1. Set Y SRC-LR′

(λ) = Y SRC-LR(λ) as in (37).

Step 2. Set γrf =
∑

i∈I

∑

j∈J aijr(X
SRA-LR
ij (λ) − Y SRA-LR

ijf (λ)) − krf ,

for r ∈ R and f ∈ F .

Step 3. Set f = 1.
Step 4. If f = F , stop, primal feasible solution found.

Step 5. If
∑

i∈I

∑

j∈J aijr(X
SRC-LR′

ij (λ) − Y SRC-LR′

ijf (λ)) ≤ krf

for all r ∈ R, then f ← f + 1, go to Step 4.

Step 6. Let τi =
∑

r∈R

∑

j∈J aijrX
SRC-LR′

(λ)γrf , i ∈ I.

Set Y SRC-LR′

ijf (λ) = 1 for one i ∈ arg max
i′∈I,

∑

j Y SRC-LR′

i′jf
(λ) 6=1

{τi}.

Go to Step 4.

The algorithm above ranks the tasks using the τ values, for each sample that the capacity constraints are
violated. The value τi measures the contribution of task i to infeasibilities for the sample under consideration.
The algorithm then iteratively cancels the tasks that rank the highest, until all capacity constraints regarding
that sample is satisfied. At the time the algorithm terminates, XSRC-LR′

(λ) and Y SRC-LR′

(λ) is a primal
feasible solution to SCCGAP-SRC.
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5.3 Subgradient Search

We know that zSRA-LR(λ), zSRN-LR(λ) and zSRC-LR(λ) provide lower bounds on the optimal objective
function vales, z∗SRA, z∗SRN and z∗SRC respectively, for any λ ≥ 0 (Geoffrion [9]), and that the best such
bounds can be obtained by solving the Lagrangian dual.

In our solution technique, we use the method of subgradient optimization (Held and Karp [13] and others)
to find an approximation to the optimal value of the Lagrangian dual. Subgradient optimization is a method
for iteratively searching through possible values of λ, such that the solution to the relaxed problem associated
with those λ values converges to the highest lower bound that can be obtained from the Lagrangian dual.

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Given dual variables
solve the Lagrangian

relaxation

Initialization
(s=0)

Relaxation
solution > lower

bound  ?
Update lower bound

Modify relaxation
solution to obtain a

primal feasible solution

Primal
feasible solution
< upper bound

?

Update upper bound

Calculate subgradients

Calculate step size

Stopping
criteria met?

Update dual variables

Terminate

Yes

No

Yes

No

Yes

No

s=s+1

Figure 1: Subgradient Search Algorithm

Our subgradient search algorithm is outlined in Figure 1, and is essentially equivalent for all three
formulations. Let the problem under consideration be denoted by P (SRA, SRN or SRC). Then we define
this algorithm as follows:

Step 0. Set λ(0) = 0, s = 0, µ = 1, zP = 0, zP = ∞.
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Step 1. (Lower bounds)

Step 1a. Given λ(s), solve P-LR and obtain XP-LR(λ(s)) and

USRA-LR(λ(s)) if P=SRA, V SRN-LR(λ(s)) if P=SRN,

Y SRC-LR(λ(s)) if P=SRC.

Step 1b. Evaluate zP-LR(λ(s)) using XP-LR(λ(s)) and

USRA-LR(λ(s)) if P=SRA, V SRN-LR(λ(s)) if P=SRN,

Y SRC-LR(λ(s)) if P=SRC.

Step 1c. If zP-LR(λ(s)) > zP, update the lower bound using

zP = zP-LR(λ(s)), XP = XP-LR(λ(s)) and

USRA = USRA-LR(λ(s)) if P=SRA,

V SRN = V SRN-LR(λ(s)) if P=SRN,

Y SRC = Y SRC-LR(λ(s)) if P=SRC.
Step 2. (Upper bounds)

Step 2a. Construct a primal feasible solution based on the lower

bound, and obtain XP-LR′

(λ(s)) and

USRA-LR′

(λ(s)) if P=SRA, V SRN-LR′

(λ(s)) if P=SRN,

Y SRC-LR′

(λ(s)) if P=SRC.

Step 2b. Evaluate zP-LR′

(λ(s)) using XP-LR′

(λ(s)) and

USRA-LR′

(λ(s)) if P=SRA, V SRN-LR′

(λ(s)) if P=SRN,

Y SRC-LR′

(λ(s)) if P=SRC.

Step 2c. If zP-LR′

(λ(s)) < zP, update the upper bound using

zP = zP-LR′

(λ(s)), X
P

= XP-LR′

(λ(s)) and

U
SRA

= USRA-LR′

(λ(s)) if P=SRA,

V
SRN

= V SRN-LR′

(λ(s)) if P=SRN,

Y
SRC

= Y SRC-LR′

(λ(s)) if P=SRC.
Step 3. Calculate subgradients:

γ
(s)
rf =

∑

i∈I

∑

j∈J aijrX
SRA-LR
ij (λ(s)) − krf − USRA-LR

rf (λ(s)),

r ∈ R, f ∈ F if P=SRA,

γ
(s)
rf =

∑

i∈I

∑

j∈J aijrX
SRN-LR
ij (λ(s)) − krf − MV SRN-LR

rf (λ(s)),

r ∈ R, f ∈ F if P=SRN,

γ
(s)
rf =

∑

i∈I

∑

j∈J aijr(X
SRC-LR
ij (λ(s)) − Y SRC-LR

ijf (λ(s))) − krf ,

r ∈ R, f ∈ F if P=SRC.
Step 4. Calculate step size:

θ(s) = µ
zP−zP

∑

r∈R

∑

f∈F

(

γ
(s)
rf

)2 .

Step 5. Set λ
(s+1)
rf = max{0, λ

(s)
rf + θ(s)γ

(s)
rf }, r ∈ R, f ∈ F .

If |λ
(s+1)
rf − λ

(s)
rf | < ǫ, r ∈ R, f ∈ F or s = slimit, stop.

Otherwise, s ← s + 1, go to Step 1a.

In the algorithm, ǫ ∈ R
+ and slimit ∈ Z

+ are user-defined variables that govern the stopping criteria.
We set the lower bound on z∗P to zP and the upper bound to zP at the time the subgradient search stops.

The subgradient search algorithm outlined above applies to the primal problems with no fixed variables
and corresponds to the initial node of our branch-and-bound tree. Next we describe our branch-and-bound
technique.

5.4 Branch-and-Bound Technique

In this section, we present a branch-and-bound technique that utilizes the bounds obtained from the subgra-
dient search algorithm outlined in Section 5.3. It solves any of the three stochastic programming formulations
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to optimality, and is a variation of the solution technique proposed by Mazzola and Neebe [17] for the de-
terministic APSC.

In our branch-and-bound technique, we use an |I|+1 level search tree that searches through the possible
values of the first-stage variables. Each level of this search tree corresponds to a task in I.

We determine which task is associated with each level of the search tree after we investigate the level-0
(root) node where there is no fixing of variables. We first measure each task’s contribution to excess capacity
usage in the level-0 primal feasible solution by calculating

τi =
∑

r∈R

∑

f∈F

∑

j∈J

aijrXij max{0,





∑

i∈I

∑

j∈J

aijrXij



 − krf}, i ∈ I, (44)

where X is the value of assignment variables in the level-0 solution, i.e., X = X
∗P

in Step 2c of the subgradient
search algorithm.

We sort the set I according to these τ values, that is

τ[1] ≥ τ[2] ≥ . . . ≥ τ[|I|]. (45)

Each branch that emanates from a node at level i corresponds to fixing the assignment of task [i] to an agent
in J . An example search tree is depicted in Figure 2.

0

1 2 J...

1 2 J...

...

...

Level 0

Level 1

Level 2

Level |I|

X[1]|J|=1X[1]1=1 X[1]2=1

X[1]1=1
X[2]1=1

X[1]1=1
X[2]2=1

X[1]1=1
X[2]|J|=1

Figure 2: Branch-and-Bound Tree

We use a depth-first branching strategy, and at each node, we obtain lower and upper bounds using the
subgradient search schemes from Section 5.3. At any node in the search tree, except node 0, some variables
are fixed and we obtain bounds by setting cij = M, j ∈ J \{l} if Xil is fixed to 1. We update the incumbent

solution, X̂ and Û , V̂ or Ŷ if any primal feasible (upper bound) solution obtained using the subgradient
search has a lower objective function value than the previous incumbent. If the lower bound at any node
is worse than the objective function value of the incumbent, or if the node is at level |I|, we fathom that
node. If the node is not fathomed, we branch from this node by generating |J | nodes at the next level. The
incumbent solution at the end of the search is an optimal solution to the problem under consideration.

14



5.5 Approximate Solution Technique

As approximate solutions to SCCGAP-SRA, SCCGAP-SRN and SCCGAP-SRC, we use the upper bound
primal feasible solution at the level-0 node of the branch-and-bound search tree. That is, we utilize a
subgradient search technique that uses the Lagrangian relaxation of the capacity constraints with no fixed
variables, and set the approximate solution zAP = zP after a single run of the subgradient search, for any of
the three formulations.

In fact, the incumbent solution at any node of the search tree can be used as the approximate solution. An
advantage of the branch-and-bound procedure outlined above is that an upper bound solution is calculated
at every node, and even if the search is terminated (for example, after a certain time limit), we are still able
to obtain a feasible near-optimal – if not optimal – solution.

6 Results

To analyze the performance of the alternative solution techniques, a set of experiments were carried out
on a group of random test problems. Next we discuss the performance evaluation technique, test problem
generation, and the results obtained from these experiments.

6.1 Performance Evaluation

In our experiments, regardless of which approach is used, the solution it produces is a set of task-agent
assignments. Let the set of assignments obtained using a given alternative approach be X∗ = {X∗

ij , i ∈ I, j ∈
J }, before the actual capacities are realized. Note that the planned cost of this solution is

∑

i∈I

∑

j∈J cijX
∗
ij .

We are interested in the actual performance of this set of assignments under the actual set of resource
capacities (k), which are unknown at the time the assignments are made.

We consider three measures when evaluating the performance of each solution: actual cost of amount of
infeasibilities, actual cost of number of infeasibilities, and actual cost of cancellations.

There is a strong correspondence between each of the three performance measures and the objective
functions of the three stochastic programming formulations. Indeed, each performance measure evaluates
the cost of the assignment decisions under the actual capacities, under each of the three recourse definitions
given in Section 4.

The first measure, actual cost of amount of infeasibilities, calculates and penalizes the amount of resources
used in excess of their actual capacities (k) under the given set of assignment decisions (X∗), using

AC1(X
∗, k) =

∑

i∈I

∑

j∈J

cijX
∗
ij +

∑

r∈R

βr max{0,
∑

i∈I

∑

j∈J

aijrX
∗
ij − kr}. (46)

Similarly, the second performance measure, actual cost of number of infeasibilities, calculates and pe-
nalizes the number of resources used in excess of their actual capacities under the given set of assignment
decisions:

AC2(X
∗, k) =

∑

i∈I

∑

j∈J

cijX
∗
ij +

∑

r∈R

ψrI
∑

i∈I

∑

j∈J
aijrX∗

ij>kr
, (47)

where I∑

i∈I

∑

j∈J
aijrX∗

ij>kr
is an indicator function that takes the value of 1 if

∑

i∈I

∑

j∈J aijrX
∗
ij > kr

and 0 otherwise.
In our final performance measure, actual cost of cancellations, we need to determine the optimal cancel-

lation policy to maintain resource usage feasibility given the actual capacities (k). We define the following
binary program to find an optimal subset of tasks to cancel:

Minimize
∑

i∈I

∑

j∈J

cijX
∗
ij(1 − Yi) +

∑

i∈I

niYi (48)

subject to
∑

i∈I





∑

j∈J

aijrX
∗
ij



 (1 − Yi) ≤ kr, r ∈ R, (49)

Yi = 0 or 1, i ∈ I, (50)
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where the binary variable Yi is 1 if task i is cancelled and 0 otherwise. Equation (48) minimizes the additional
cost incurred by the cancellations to maintain feasibility with respect to actual resource capacities, which
are declared in Equation (49). Note that Equation (48) can be rewritten as:

∑

i∈I

∑

j∈J

cijX
∗
ij +

∑

i∈I



ni −
∑

j∈J

cijX
∗
ij



 Yi, (51)

where the first term (
∑

i∈I

∑

j∈J cijX
∗
ij) is a constant.

Like the deterministic CCGAP solver, we use a branch-and-bound algorithm to solve this problem. The
search tree again has |I| + 1 levels, but now each node at level i corresponds to the fixing of i of the |I|
variables to 1. For a given node κ, let this subset of variables be Iκ ⊆ I, such that Yi = 1, i ∈ Iκ.

As before, we utilize a depth-first branching strategy, and at each node κ, we obtain a lower bound using:

z(κ) =
∑

i∈I\Iκ

∑

j∈J

cijX
∗
ij +

∑

i∈Iκ

ni, (52)

where the first term calculates the assignment cost of all uncancelled tasks and the second term accounts for
the cost of cancelled tasks at node κ.

During the search, when we reach a feasible solution at any node, we update the incumbent solution,
Ŷ , when this solution has a lower objective function value. If it has a higher objective function value, we
fathom that node. We also fathom a node if it does not correspond to a feasible solution and has a lower
bound value that is worse than the incumbent. If a node κ at level i is not fathomed, we branch from this
node by generating |I| − i nodes at the next level, each corresponding to the fixing of a variable in I \ Iκ.
The incumbent solution, Ŷ , at the end of the search is an optimal solution, Y ∗.

We then use this optimal solution to calculate the actual cost of cancellations of X∗ using

AC3(X
∗, k) =

∑

i∈I

∑

j∈J

cijX
∗
ij(1 − Y ∗

i ) +
∑

i∈I

niY
∗
i . (53)

In our experiments, the performance of any solution generated by the alternative approaches is measured
by AC1, AC2, and AC3.

6.2 Experimental Setup

Our experimental setup is built around a variety of numerical CCGAP instances that are randomly generated
using the following problem generation scheme, which is based on the scheme used by Mazzola and Neebe
[17] for the deterministic APSC.

For the problem size, we consider ten combinations of number of tasks, I, and number of agents, J . In
each combination, J is set to 30% of I, and we consider I = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

For the smaller problems (I = {10, 20}), we generate problems with the number of resources, R, equal to
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For medium-sized problems (I = {30, 40, 50}), we consider R = {1, 2, 3, 4, 5}, and
for large-sized problems (I = {60, 70, 80, 90, 100}), we consider a single resource (R = 1). Hence, we have a
total of 40 problem sizes.

For each problem size, we generate three independent test problems, totaling 120 test problems overall.
In each test problem, the assignment costs, cij , are uniformly distributed between 0 and 5. The resource
usages, aijr, are uniform between 0 and 10. The cost of each unit of excess capacity usage, βr, is set to 1,
and the cost of each resource with excess capacity usage, ψr, is set to 10 for all r ∈ R. The cost of cancelling
an assignment, ni, is set to 10 for all i ∈ I.

We consider three probability distributions for the resource capacities: normal, bimodal, and exponential.
For a given resource, these three distribution functions are given in Table 4 and depicted in Figure 3. Note
that the probability distribution for each resource is independent of that of the other resources.

For each of the 120 test problems in our experimental setup, we have 15 capacity cases, five each for the
three probability distributions. In each capacity case, we generate five sampled sets of resource capacities
(which are used in the alternative approaches; F = 5) and a single set of actual capacities (which is used in
the performance evaluation) from the corresponding distribution function.
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Table 4: Capacity Distributions in the Experimental Setup
Normal∗†

p
n(kr) =



















1

σr

√
2π

e
−(kr−µr)2

2σ2
r if kr ≥ 0,

∫

0

−∞
1

σr

√
2π

e
−(kr−µr)2

2σ2
r if kr = 0,

0 if kr < 0,

r ∈ R.

Bimodal∗†

p
b(kr) =























0.3

σr

√
2π

e
−(kr−0.8µr)2

2σ2
r + 0.7

σr

√
2π

e
−(kr−1.2µr)2

2σ2
r if kr ≥ 0,

∫

0

−∞

(

0.3

σr

√
2π

e
−(kr−0.8µr)2

2σ2
r + 0.7

σr

√
2π

e
−(kr−1.2µr)2

2σ2
r

)

if kr = 0,

0 if kr < 0,

r ∈ R.

Exponential∗

p
e(kr) =

{

1

µr
e
− kr

µr if kr ≥ 0,

0 if kr < 0,
r ∈ R.

∗ µr =
(

∑

i∈I
∑

j∈J aijr

)

/J, r ∈ R.

† σr = 0.1µr , r ∈ R.

We evaluate each test problem, under each capacity case, using the exact and approximate techniques
for the three formulations. For each test problem, we also investigate the performance of the solutions
obtained using two deterministic-formulation-based techniques for comparison purposes: using expected
values of resource capacities, and using risk-averse trimmed mean of resource capacities in a deterministic
formulation. The selection of these two techniques for comparison is due to their robust performance in a
study by Toktas, Yen and Zabinsky [25]. The study investigates deterministic-formulation-based approaches
to address capacity uncertainty in resource-constrained assignment problems. In this context, using expected
values of resource capacities in a deterministic formulation is equivalent to setting

kr =

∑

f∈F kf
r

F
, r ∈ R, (54)

when solving the deterministic CCGAP formulation. Similarly, using risk-averse trimmed mean of resource
capacities is equivalent to setting

kr =

∑

f≤⌊ρF⌋ k
[f ]
r

⌊ρF ⌋
, r ∈ R, (55)

where ρ, the fraction of samples to be used in the trimmed mean, is a number between 1
F

and 1. Among the
numerical results presented next, the solutions corresponding to the risk-averse trimmed mean approximation
is obtained using ρ = 0.8.

6.3 Numerical Results

The solution techniques were coded and compiled using Compaq Visual Fortran 6.6, and the tests were made
on a personal computer with a 1-GHz Intel Pentium III processor.
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Figure 3: Capacity Distributions in the Experimental Setup

In all of the subgradient search algorithms, ǫ was set to 10−5 and nlimit was set to 10,000. The branch-
and-bound algorithms were terminated if they failed to return an optimal solution in 1 hour of CPU time,
and the incumbent solution at the time of termination was used.

To provide a best-case scenario for each test problem, the actual cost under perfect information (AC0)
was calculated, supposing that perfect information about the resource capacities was available. Note that,
AC0 is the planned cost of the optimal solution to the deterministic CCGAP under the actual capacities
(k′ = k).

The actual costs (AC1, AC2 and AC3) of the solutions obtained using each alternative approach were
then scaled using

SC1 =
AC1 − AC0

AC0
, SC2 =

AC2 − AC0

AC0
, SC3 =

AC3 − AC0

AC0
, (56)

for each test problem. In this scale, the value zero corresponds to the performance with perfect information,
hence lower values denote better performance.

We summarize the numerical results obtained from the experiments in Figure 4 for problems with nor-
mally, bimodally and exponentially distributed capacities. In these charts, we report the scaled values of the
three performance measures for the solutions obtained using exact and approximate techniques for all three
formulations, and the two deterministic approaches, averaged over the 600 problems with the corresponding
capacity distribution. The horizontal axes in these charts list the methodologies used. The average values
of scaled actual costs (SC1, SC2 and SC3) are measured on the vertical axes, on the left-hand-sides. The
three overlapping bars in each column correspond to the average values of the three performance measures
for each approach.

For all of the three distributions, the results show that the six stochastic programming approaches
dominate the deterministic-formulation-based approaches in all three performance measures. Among the
stochastic programming-based approaches, each of the three formulations had the best performance in terms
of their corresponding performance measures. That is, the exact and approximate techniques for SCCGAP-
SRA had the lowest actual cost in terms of AC1, SCCGAP-SRN in terms of AC2 and SCCGAP-SRC in
terms of AC3.

There are a few notable differences between the results under different capacity distributions. The actual
costs under bimodally distributed capacities are relatively high when compared to those under normal and
exponential. The intuition behind this observation ties to the nature of the bimodal distribution used in
the experiments. Under bimodal distribution, the solutions produced by alternative approaches are more
likely to expect high resource capacities, as the second mode (higher capacities) of the distribution has a
larger weight than the first mode. However, across multiple tests, there is indeed a possibility (30 percent for
each resource, due to the way the distribution is constructed) that the resources have, on the average, lower
capacities than planned around. As a result, the cost for assuring feasibility under actual capacities will be
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Figure 4: Computational Results
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more than those under normal and exponential distributions. This observation signifies the importance of
the probability distribution that governs the resource capacities.

It can also be noted that, in the bimodal distribution results, the solutions have lower actual costs of
number of infeasibilities than the other performance measures. This observation relates to the costing scheme
used in our experiments. In the experimental setup, the cost of each resource with excess capacity usage
(ψr) is set to ten times the cost of each unit of excess capacity usage (βr). Given the hypothetical bimodal
distribution used, the intuition is as follows: if a resource plans for the second (high-capacity) mode, but the
first (low-capacity) mode is realized, the assignments become infeasible with respect to that resource. Even
if the number of these resources is low (as the results show), the distance between the two modes of the
distribution in our tests exceeds ten units of resource, on the average, and the total amount of infeasibilities
can be large.

We summarize the results of the experiments over all three probability distributions in Figure 5. In the
top graph, the horizontal axis lists alternative methodologies and the average values of scaled actual costs
are measured on the vertical axes. The three overlapping bars in each column correspond to the average
values of the three performance measures for each approach, across 1,800 problems. In the bottom graph,
the median CPU times are reported for each approach across all test problems.

Figure 5 illustrates the higher computational complexity of the exact (branch-and-bound) techniques for
the stochastic programming formulations relative to the deterministic approaches. We also observe that
the third formulation (SCCGAP-SRC) has the highest CPU times. An important observation is that the
approximate approaches for all three stochastic programming formulations produced solutions in very low
CPU times, outperforming the deterministic formulations.

The dominance of the stochastic programming approaches in performance is evident in this summary
chart. Although there is no clear winner among these approaches in terms of all three performance measures,
each of the three stochastic programming formulations produce solutions with the lowest actual costs under
their respective recourse definition.

When both performance and efficiency are considered, the stochastic programming-based approximate
solution strategies dominate. These approximate approaches can produce solutions that are remarkably
close to those obtained using the corresponding branch-and-bound approaches. This fact can be observed in
Table 5, which presents the average deviations of the approximate solution performance from the respective
branch-and-bound solution performance under each of the three capacity distributions, measured in terms
of AC1, AC2 and AC3. Furthermore, the stochastic-programming based approximate strategies were more
efficient than an exact deterministic approach (for example using expected values of capacities), producing
solutions in less than 1 CPU second for all of the 1,800 problems.

Table 5: Average Deviation of Approximate Solution Strategy Performance from Branch-and-Bound Perfor-
mance

SCCGAP-SRA SCCGAP-SRN SCCGAP-SRC
AC1 AC2 AC3 AC1 AC2 AC3 AC1 AC2 AC3

Normal 0.7% 1.0% 0.7% 1.7% 2.1% 1.9% 1.3% 2.0% 1.6%
Bimodal 1.3% 0.8% 1.1% 2.1% 1.6% 1.7% 1.2% 1.2% 1.1%

Exponential 0.5% 1.8% 0.8% 2.0% 5.6% 3.7% 1.9% 7.3% 3.1%

The reason for the high performance of approximate approaches can be tied to the formulation struc-
tures. The formulation of the Lagrangian relaxation on the capacity constraints structurally resembles the
stochastic programming formulation. In both the relaxation and the stochastic programming formulations,
over-capacity usage is penalized according to the relevant recourse definition. In the Lagrangian relaxation,
the penalties are indirectly incorporated via the dual variables, whereas in the stochastic programming
approaches, the penalties are defined in the primal problem directly.

The decision of which of the three heuristic approaches to use relies on the specific application addressed
and, in particular, the definition of recourse. In our tests, each of the three heuristics dominate the others
in terms of their respective recourse definition and performance measure. The branch-and-bound techniques
for the stochastic programming formulations can also be used in applications where added performance is
desirable at the expense of reduced computational efficiency.

20



0.00

0.10

0.20

0.30

0.40

0.50

0.60

Average Risk-Averse
Trimmed Mean

SCCGAP-SRA SCCGAP-SRA
Approximate

SCCGAP-SRN SCCGAP-SRN
Approximate

SCCGAP-SRC SCCGAP-SRC
Approximate

Methodology

A
ve

ra
g

e 
ac

tu
al

 c
o

st
 (

sc
al

ed
)

Average scaled actual cost of amount of infeasibility (SC1)

Average scaled actual cost of number of infeasibility (SC2)

Average scaled actual cost of cancellations (SC3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Average Risk-Averse
Trimmed Mean

SCCGAP-SRA SCCGAP-SRA
Approximate

SCCGAP-SRN SCCGAP-SRN
Approximate

SCCGAP-SRC SCCGAP-SRC
Approximate

Methodology

M
ed

ia
n

 C
P

U
 T

im
e

Median CPU time

Figure 5: Computational Results, Summary

21



In general, if actual cost and computational efficiency are the only criteria, approximate stochastic pro-
gramming approaches dominate the common approach of using expected values of capacities in a determin-
istic strategy, and provide, on average, approximately 40 % cost savings in less CPU time.

The only exception that would deem deterministic-formulation based approaches preferable is the case
when there exist complicating side constraints in the application under consideration, making stochastic
programming formulations either inefficient or not possible to implement. It should be noted, however,
that certain types of side constraints have structure which can be accommodated in the proposed solution
techniques (see, for example, Toktas [26]).

7 Conclusion

In this article we investigated stochastic-programming-based methodologies to address capacity uncertainty
in resource-constrained assignment problems. After a brief review of the resource-constrained generalizations
of the classical assignment problem, we summarized possible sources of uncertainty that can affect these
problems.

We focused on problems with unknown resource capacities and identified three alternative stochastic
programming formulations. The three alternative formulations differ mainly in their recourse definitions,
and allow for the modelling of applications where there is limited information on the uncertainty structure.
We also presented exact and approximate techniques to solve the resulting formulations.

In order to analyze the performance of these solution techniques, we focused on the CCGAP as a specific
generalization of the assignment problem. We discussed three alternative ways to measure each approach’s
solution performance under actual capacities. For one of these performance measures, we presented a feasi-
bility solver to determine the optimal subset of assignments to be cancelled after the actual capacities are
realized.

We utilized these algorithms when carrying out experiments on a large set of CCGAP instances, for
which the resource capacities were uncertain. The results from these experiments show that, regardless of
the probability distribution that the resource capacities follow, stochastic programming-based approaches
were superior to deterministic-formulation-based techniques. Moreover, approximate techniques for the
stochastic programming formulations could produce solutions that are remarkably close to those obtained
using the corresponding branch-and-bound approaches, in significantly low computational time. These ap-
proximate solutions were better than solutions obtained using expected values of capacities in a deterministic
formulation (as is commonly done) in terms of both solution performance and computation time.

There exist several future research directions on the topics presented in this article. A possible direction
is to explore strategies other than Lagrangian relaxation to solve the stochastic programming formulations
presented. Such alternative strategies could include linear relaxation, decomposition or heuristic approaches.
The efficiency and effectiveness of any alternative strategy should be compared to those presented.

Another possible extension is investigating uncertainty in parameters other than resource capacities in
resource-constrained assignment problems. In this case, the stochastic programming formulations would
be significantly different. A new development of solution techniques would need to redefine recourses and
take advantage of a different problem structure. Finally, it is also possible to extend the experimentation,
particularly by including tests on resource-constrained assignment problems other than CCGAP.

The resource-constrained generalizations of the assignment problem have many application areas, and
a typical issue is the effects of uncertainty. This research demonstrates that stochastic programming is a
viable approach to address specific resource-constrained assignment problems with uncertainty in resource
capacities. The stochastic-programming-based approximations are computationally efficient and provide a
methodology for near-optimal solutions.
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